1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * Copyright (C) 2010 Red Hat, Inc., Peter Zij 3 * Copyright (C) 2010 Red Hat, Inc., Peter Zijlstra 4 * 4 * 5 * Provides a framework for enqueueing and run 5 * Provides a framework for enqueueing and running callbacks from hardirq 6 * context. The enqueueing is NMI-safe. 6 * context. The enqueueing is NMI-safe. 7 */ 7 */ 8 8 9 #include <linux/bug.h> 9 #include <linux/bug.h> 10 #include <linux/kernel.h> 10 #include <linux/kernel.h> 11 #include <linux/export.h> 11 #include <linux/export.h> 12 #include <linux/irq_work.h> 12 #include <linux/irq_work.h> 13 #include <linux/percpu.h> 13 #include <linux/percpu.h> 14 #include <linux/hardirq.h> 14 #include <linux/hardirq.h> 15 #include <linux/irqflags.h> 15 #include <linux/irqflags.h> 16 #include <linux/sched.h> 16 #include <linux/sched.h> 17 #include <linux/tick.h> 17 #include <linux/tick.h> 18 #include <linux/cpu.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 19 #include <linux/notifier.h> 20 #include <linux/smp.h> 20 #include <linux/smp.h> 21 #include <linux/smpboot.h> 21 #include <linux/smpboot.h> 22 #include <asm/processor.h> 22 #include <asm/processor.h> 23 #include <linux/kasan.h> 23 #include <linux/kasan.h> 24 24 25 #include <trace/events/ipi.h> << 26 << 27 static DEFINE_PER_CPU(struct llist_head, raise 25 static DEFINE_PER_CPU(struct llist_head, raised_list); 28 static DEFINE_PER_CPU(struct llist_head, lazy_ 26 static DEFINE_PER_CPU(struct llist_head, lazy_list); 29 static DEFINE_PER_CPU(struct task_struct *, ir 27 static DEFINE_PER_CPU(struct task_struct *, irq_workd); 30 28 31 static void wake_irq_workd(void) 29 static void wake_irq_workd(void) 32 { 30 { 33 struct task_struct *tsk = __this_cpu_r 31 struct task_struct *tsk = __this_cpu_read(irq_workd); 34 32 35 if (!llist_empty(this_cpu_ptr(&lazy_li 33 if (!llist_empty(this_cpu_ptr(&lazy_list)) && tsk) 36 wake_up_process(tsk); 34 wake_up_process(tsk); 37 } 35 } 38 36 39 #ifdef CONFIG_SMP 37 #ifdef CONFIG_SMP 40 static void irq_work_wake(struct irq_work *ent 38 static void irq_work_wake(struct irq_work *entry) 41 { 39 { 42 wake_irq_workd(); 40 wake_irq_workd(); 43 } 41 } 44 42 45 static DEFINE_PER_CPU(struct irq_work, irq_wor 43 static DEFINE_PER_CPU(struct irq_work, irq_work_wakeup) = 46 IRQ_WORK_INIT_HARD(irq_work_wake); 44 IRQ_WORK_INIT_HARD(irq_work_wake); 47 #endif 45 #endif 48 46 49 static int irq_workd_should_run(unsigned int c 47 static int irq_workd_should_run(unsigned int cpu) 50 { 48 { 51 return !llist_empty(this_cpu_ptr(&lazy 49 return !llist_empty(this_cpu_ptr(&lazy_list)); 52 } 50 } 53 51 54 /* 52 /* 55 * Claim the entry so that no one else will po 53 * Claim the entry so that no one else will poke at it. 56 */ 54 */ 57 static bool irq_work_claim(struct irq_work *wo 55 static bool irq_work_claim(struct irq_work *work) 58 { 56 { 59 int oflags; 57 int oflags; 60 58 61 oflags = atomic_fetch_or(IRQ_WORK_CLAI 59 oflags = atomic_fetch_or(IRQ_WORK_CLAIMED | CSD_TYPE_IRQ_WORK, &work->node.a_flags); 62 /* 60 /* 63 * If the work is already pending, no 61 * If the work is already pending, no need to raise the IPI. 64 * The pairing smp_mb() in irq_work_si 62 * The pairing smp_mb() in irq_work_single() makes sure 65 * everything we did before is visible 63 * everything we did before is visible. 66 */ 64 */ 67 if (oflags & IRQ_WORK_PENDING) 65 if (oflags & IRQ_WORK_PENDING) 68 return false; 66 return false; 69 return true; 67 return true; 70 } 68 } 71 69 72 void __weak arch_irq_work_raise(void) 70 void __weak arch_irq_work_raise(void) 73 { 71 { 74 /* 72 /* 75 * Lame architectures will get the tim 73 * Lame architectures will get the timer tick callback 76 */ 74 */ 77 } 75 } 78 76 79 static __always_inline void irq_work_raise(str << 80 { << 81 if (trace_ipi_send_cpu_enabled() && ar << 82 trace_ipi_send_cpu(smp_process << 83 << 84 arch_irq_work_raise(); << 85 } << 86 << 87 /* Enqueue on current CPU, work must already b 77 /* Enqueue on current CPU, work must already be claimed and preempt disabled */ 88 static void __irq_work_queue_local(struct irq_ 78 static void __irq_work_queue_local(struct irq_work *work) 89 { 79 { 90 struct llist_head *list; 80 struct llist_head *list; 91 bool rt_lazy_work = false; 81 bool rt_lazy_work = false; 92 bool lazy_work = false; 82 bool lazy_work = false; 93 int work_flags; 83 int work_flags; 94 84 95 work_flags = atomic_read(&work->node.a 85 work_flags = atomic_read(&work->node.a_flags); 96 if (work_flags & IRQ_WORK_LAZY) 86 if (work_flags & IRQ_WORK_LAZY) 97 lazy_work = true; 87 lazy_work = true; 98 else if (IS_ENABLED(CONFIG_PREEMPT_RT) 88 else if (IS_ENABLED(CONFIG_PREEMPT_RT) && 99 !(work_flags & IRQ_WORK_HARD_ 89 !(work_flags & IRQ_WORK_HARD_IRQ)) 100 rt_lazy_work = true; 90 rt_lazy_work = true; 101 91 102 if (lazy_work || rt_lazy_work) 92 if (lazy_work || rt_lazy_work) 103 list = this_cpu_ptr(&lazy_list 93 list = this_cpu_ptr(&lazy_list); 104 else 94 else 105 list = this_cpu_ptr(&raised_li 95 list = this_cpu_ptr(&raised_list); 106 96 107 if (!llist_add(&work->node.llist, list 97 if (!llist_add(&work->node.llist, list)) 108 return; 98 return; 109 99 110 /* If the work is "lazy", handle it fr 100 /* If the work is "lazy", handle it from next tick if any */ 111 if (!lazy_work || tick_nohz_tick_stopp 101 if (!lazy_work || tick_nohz_tick_stopped()) 112 irq_work_raise(work); !! 102 arch_irq_work_raise(); 113 } 103 } 114 104 115 /* Enqueue the irq work @work on the current C 105 /* Enqueue the irq work @work on the current CPU */ 116 bool irq_work_queue(struct irq_work *work) 106 bool irq_work_queue(struct irq_work *work) 117 { 107 { 118 /* Only queue if not already pending * 108 /* Only queue if not already pending */ 119 if (!irq_work_claim(work)) 109 if (!irq_work_claim(work)) 120 return false; 110 return false; 121 111 122 /* Queue the entry and raise the IPI i 112 /* Queue the entry and raise the IPI if needed. */ 123 preempt_disable(); 113 preempt_disable(); 124 __irq_work_queue_local(work); 114 __irq_work_queue_local(work); 125 preempt_enable(); 115 preempt_enable(); 126 116 127 return true; 117 return true; 128 } 118 } 129 EXPORT_SYMBOL_GPL(irq_work_queue); 119 EXPORT_SYMBOL_GPL(irq_work_queue); 130 120 131 /* 121 /* 132 * Enqueue the irq_work @work on @cpu unless i 122 * Enqueue the irq_work @work on @cpu unless it's already pending 133 * somewhere. 123 * somewhere. 134 * 124 * 135 * Can be re-enqueued while the callback is st 125 * Can be re-enqueued while the callback is still in progress. 136 */ 126 */ 137 bool irq_work_queue_on(struct irq_work *work, 127 bool irq_work_queue_on(struct irq_work *work, int cpu) 138 { 128 { 139 #ifndef CONFIG_SMP 129 #ifndef CONFIG_SMP 140 return irq_work_queue(work); 130 return irq_work_queue(work); 141 131 142 #else /* CONFIG_SMP: */ 132 #else /* CONFIG_SMP: */ 143 /* All work should have been flushed b 133 /* All work should have been flushed before going offline */ 144 WARN_ON_ONCE(cpu_is_offline(cpu)); 134 WARN_ON_ONCE(cpu_is_offline(cpu)); 145 135 146 /* Only queue if not already pending * 136 /* Only queue if not already pending */ 147 if (!irq_work_claim(work)) 137 if (!irq_work_claim(work)) 148 return false; 138 return false; 149 139 150 kasan_record_aux_stack_noalloc(work); 140 kasan_record_aux_stack_noalloc(work); 151 141 152 preempt_disable(); 142 preempt_disable(); 153 if (cpu != smp_processor_id()) { 143 if (cpu != smp_processor_id()) { 154 /* Arch remote IPI send/receiv 144 /* Arch remote IPI send/receive backend aren't NMI safe */ 155 WARN_ON_ONCE(in_nmi()); 145 WARN_ON_ONCE(in_nmi()); 156 146 157 /* 147 /* 158 * On PREEMPT_RT the items whi 148 * On PREEMPT_RT the items which are not marked as 159 * IRQ_WORK_HARD_IRQ are added 149 * IRQ_WORK_HARD_IRQ are added to the lazy list and a HARD work 160 * item is used on the remote 150 * item is used on the remote CPU to wake the thread. 161 */ 151 */ 162 if (IS_ENABLED(CONFIG_PREEMPT_ 152 if (IS_ENABLED(CONFIG_PREEMPT_RT) && 163 !(atomic_read(&work->node. 153 !(atomic_read(&work->node.a_flags) & IRQ_WORK_HARD_IRQ)) { 164 154 165 if (!llist_add(&work-> 155 if (!llist_add(&work->node.llist, &per_cpu(lazy_list, cpu))) 166 goto out; 156 goto out; 167 157 168 work = &per_cpu(irq_wo 158 work = &per_cpu(irq_work_wakeup, cpu); 169 if (!irq_work_claim(wo 159 if (!irq_work_claim(work)) 170 goto out; 160 goto out; 171 } 161 } 172 162 173 __smp_call_single_queue(cpu, & 163 __smp_call_single_queue(cpu, &work->node.llist); 174 } else { 164 } else { 175 __irq_work_queue_local(work); 165 __irq_work_queue_local(work); 176 } 166 } 177 out: 167 out: 178 preempt_enable(); 168 preempt_enable(); 179 169 180 return true; 170 return true; 181 #endif /* CONFIG_SMP */ 171 #endif /* CONFIG_SMP */ 182 } 172 } 183 173 184 bool irq_work_needs_cpu(void) 174 bool irq_work_needs_cpu(void) 185 { 175 { 186 struct llist_head *raised, *lazy; 176 struct llist_head *raised, *lazy; 187 177 188 raised = this_cpu_ptr(&raised_list); 178 raised = this_cpu_ptr(&raised_list); 189 lazy = this_cpu_ptr(&lazy_list); 179 lazy = this_cpu_ptr(&lazy_list); 190 180 191 if (llist_empty(raised) || arch_irq_wo 181 if (llist_empty(raised) || arch_irq_work_has_interrupt()) 192 if (llist_empty(lazy)) 182 if (llist_empty(lazy)) 193 return false; 183 return false; 194 184 195 /* All work should have been flushed b 185 /* All work should have been flushed before going offline */ 196 WARN_ON_ONCE(cpu_is_offline(smp_proces 186 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 197 187 198 return true; 188 return true; 199 } 189 } 200 190 201 void irq_work_single(void *arg) 191 void irq_work_single(void *arg) 202 { 192 { 203 struct irq_work *work = arg; 193 struct irq_work *work = arg; 204 int flags; 194 int flags; 205 195 206 /* 196 /* 207 * Clear the PENDING bit, after this p 197 * Clear the PENDING bit, after this point the @work can be re-used. 208 * The PENDING bit acts as a lock, and 198 * The PENDING bit acts as a lock, and we own it, so we can clear it 209 * without atomic ops. 199 * without atomic ops. 210 */ 200 */ 211 flags = atomic_read(&work->node.a_flag 201 flags = atomic_read(&work->node.a_flags); 212 flags &= ~IRQ_WORK_PENDING; 202 flags &= ~IRQ_WORK_PENDING; 213 atomic_set(&work->node.a_flags, flags) 203 atomic_set(&work->node.a_flags, flags); 214 204 215 /* 205 /* 216 * See irq_work_claim(). 206 * See irq_work_claim(). 217 */ 207 */ 218 smp_mb(); 208 smp_mb(); 219 209 220 lockdep_irq_work_enter(flags); 210 lockdep_irq_work_enter(flags); 221 work->func(work); 211 work->func(work); 222 lockdep_irq_work_exit(flags); 212 lockdep_irq_work_exit(flags); 223 213 224 /* 214 /* 225 * Clear the BUSY bit, if set, and ret 215 * Clear the BUSY bit, if set, and return to the free state if no-one 226 * else claimed it meanwhile. 216 * else claimed it meanwhile. 227 */ 217 */ 228 (void)atomic_cmpxchg(&work->node.a_fla 218 (void)atomic_cmpxchg(&work->node.a_flags, flags, flags & ~IRQ_WORK_BUSY); 229 219 230 if ((IS_ENABLED(CONFIG_PREEMPT_RT) && 220 if ((IS_ENABLED(CONFIG_PREEMPT_RT) && !irq_work_is_hard(work)) || 231 !arch_irq_work_has_interrupt()) 221 !arch_irq_work_has_interrupt()) 232 rcuwait_wake_up(&work->irqwait 222 rcuwait_wake_up(&work->irqwait); 233 } 223 } 234 224 235 static void irq_work_run_list(struct llist_hea 225 static void irq_work_run_list(struct llist_head *list) 236 { 226 { 237 struct irq_work *work, *tmp; 227 struct irq_work *work, *tmp; 238 struct llist_node *llnode; 228 struct llist_node *llnode; 239 229 240 /* 230 /* 241 * On PREEMPT_RT IRQ-work which is not 231 * On PREEMPT_RT IRQ-work which is not marked as HARD will be processed 242 * in a per-CPU thread in preemptible 232 * in a per-CPU thread in preemptible context. Only the items which are 243 * marked as IRQ_WORK_HARD_IRQ will be 233 * marked as IRQ_WORK_HARD_IRQ will be processed in hardirq context. 244 */ 234 */ 245 BUG_ON(!irqs_disabled() && !IS_ENABLED 235 BUG_ON(!irqs_disabled() && !IS_ENABLED(CONFIG_PREEMPT_RT)); 246 236 247 if (llist_empty(list)) 237 if (llist_empty(list)) 248 return; 238 return; 249 239 250 llnode = llist_del_all(list); 240 llnode = llist_del_all(list); 251 llist_for_each_entry_safe(work, tmp, l 241 llist_for_each_entry_safe(work, tmp, llnode, node.llist) 252 irq_work_single(work); 242 irq_work_single(work); 253 } 243 } 254 244 255 /* 245 /* 256 * hotplug calls this through: 246 * hotplug calls this through: 257 * hotplug_cfd() -> flush_smp_call_function_q 247 * hotplug_cfd() -> flush_smp_call_function_queue() 258 */ 248 */ 259 void irq_work_run(void) 249 void irq_work_run(void) 260 { 250 { 261 irq_work_run_list(this_cpu_ptr(&raised 251 irq_work_run_list(this_cpu_ptr(&raised_list)); 262 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 252 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 263 irq_work_run_list(this_cpu_ptr 253 irq_work_run_list(this_cpu_ptr(&lazy_list)); 264 else 254 else 265 wake_irq_workd(); 255 wake_irq_workd(); 266 } 256 } 267 EXPORT_SYMBOL_GPL(irq_work_run); 257 EXPORT_SYMBOL_GPL(irq_work_run); 268 258 269 void irq_work_tick(void) 259 void irq_work_tick(void) 270 { 260 { 271 struct llist_head *raised = this_cpu_p 261 struct llist_head *raised = this_cpu_ptr(&raised_list); 272 262 273 if (!llist_empty(raised) && !arch_irq_ 263 if (!llist_empty(raised) && !arch_irq_work_has_interrupt()) 274 irq_work_run_list(raised); 264 irq_work_run_list(raised); 275 265 276 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 266 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 277 irq_work_run_list(this_cpu_ptr 267 irq_work_run_list(this_cpu_ptr(&lazy_list)); 278 else 268 else 279 wake_irq_workd(); 269 wake_irq_workd(); 280 } 270 } 281 271 282 /* 272 /* 283 * Synchronize against the irq_work @entry, en 273 * Synchronize against the irq_work @entry, ensures the entry is not 284 * currently in use. 274 * currently in use. 285 */ 275 */ 286 void irq_work_sync(struct irq_work *work) 276 void irq_work_sync(struct irq_work *work) 287 { 277 { 288 lockdep_assert_irqs_enabled(); 278 lockdep_assert_irqs_enabled(); 289 might_sleep(); 279 might_sleep(); 290 280 291 if ((IS_ENABLED(CONFIG_PREEMPT_RT) && 281 if ((IS_ENABLED(CONFIG_PREEMPT_RT) && !irq_work_is_hard(work)) || 292 !arch_irq_work_has_interrupt()) { 282 !arch_irq_work_has_interrupt()) { 293 rcuwait_wait_event(&work->irqw 283 rcuwait_wait_event(&work->irqwait, !irq_work_is_busy(work), 294 TASK_UNINTE 284 TASK_UNINTERRUPTIBLE); 295 return; 285 return; 296 } 286 } 297 287 298 while (irq_work_is_busy(work)) 288 while (irq_work_is_busy(work)) 299 cpu_relax(); 289 cpu_relax(); 300 } 290 } 301 EXPORT_SYMBOL_GPL(irq_work_sync); 291 EXPORT_SYMBOL_GPL(irq_work_sync); 302 292 303 static void run_irq_workd(unsigned int cpu) 293 static void run_irq_workd(unsigned int cpu) 304 { 294 { 305 irq_work_run_list(this_cpu_ptr(&lazy_l 295 irq_work_run_list(this_cpu_ptr(&lazy_list)); 306 } 296 } 307 297 308 static void irq_workd_setup(unsigned int cpu) 298 static void irq_workd_setup(unsigned int cpu) 309 { 299 { 310 sched_set_fifo_low(current); 300 sched_set_fifo_low(current); 311 } 301 } 312 302 313 static struct smp_hotplug_thread irqwork_threa 303 static struct smp_hotplug_thread irqwork_threads = { 314 .store = &irq_workd, 304 .store = &irq_workd, 315 .setup = irq_workd_se 305 .setup = irq_workd_setup, 316 .thread_should_run = irq_workd_sh 306 .thread_should_run = irq_workd_should_run, 317 .thread_fn = run_irq_work 307 .thread_fn = run_irq_workd, 318 .thread_comm = "irq_work/%u 308 .thread_comm = "irq_work/%u", 319 }; 309 }; 320 310 321 static __init int irq_work_init_threads(void) 311 static __init int irq_work_init_threads(void) 322 { 312 { 323 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 313 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 324 BUG_ON(smpboot_register_percpu 314 BUG_ON(smpboot_register_percpu_thread(&irqwork_threads)); 325 return 0; 315 return 0; 326 } 316 } 327 early_initcall(irq_work_init_threads); 317 early_initcall(irq_work_init_threads); 328 318
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.