1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * Copyright (C) 2010 Red Hat, Inc., Peter Zij 3 * Copyright (C) 2010 Red Hat, Inc., Peter Zijlstra 4 * 4 * 5 * Provides a framework for enqueueing and run 5 * Provides a framework for enqueueing and running callbacks from hardirq 6 * context. The enqueueing is NMI-safe. 6 * context. The enqueueing is NMI-safe. 7 */ 7 */ 8 8 9 #include <linux/bug.h> 9 #include <linux/bug.h> 10 #include <linux/kernel.h> 10 #include <linux/kernel.h> 11 #include <linux/export.h> 11 #include <linux/export.h> 12 #include <linux/irq_work.h> 12 #include <linux/irq_work.h> 13 #include <linux/percpu.h> 13 #include <linux/percpu.h> 14 #include <linux/hardirq.h> 14 #include <linux/hardirq.h> 15 #include <linux/irqflags.h> 15 #include <linux/irqflags.h> 16 #include <linux/sched.h> 16 #include <linux/sched.h> 17 #include <linux/tick.h> 17 #include <linux/tick.h> 18 #include <linux/cpu.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 19 #include <linux/notifier.h> 20 #include <linux/smp.h> 20 #include <linux/smp.h> 21 #include <linux/smpboot.h> 21 #include <linux/smpboot.h> 22 #include <asm/processor.h> 22 #include <asm/processor.h> 23 #include <linux/kasan.h> 23 #include <linux/kasan.h> 24 24 25 #include <trace/events/ipi.h> 25 #include <trace/events/ipi.h> 26 26 27 static DEFINE_PER_CPU(struct llist_head, raise 27 static DEFINE_PER_CPU(struct llist_head, raised_list); 28 static DEFINE_PER_CPU(struct llist_head, lazy_ 28 static DEFINE_PER_CPU(struct llist_head, lazy_list); 29 static DEFINE_PER_CPU(struct task_struct *, ir 29 static DEFINE_PER_CPU(struct task_struct *, irq_workd); 30 30 31 static void wake_irq_workd(void) 31 static void wake_irq_workd(void) 32 { 32 { 33 struct task_struct *tsk = __this_cpu_r 33 struct task_struct *tsk = __this_cpu_read(irq_workd); 34 34 35 if (!llist_empty(this_cpu_ptr(&lazy_li 35 if (!llist_empty(this_cpu_ptr(&lazy_list)) && tsk) 36 wake_up_process(tsk); 36 wake_up_process(tsk); 37 } 37 } 38 38 39 #ifdef CONFIG_SMP 39 #ifdef CONFIG_SMP 40 static void irq_work_wake(struct irq_work *ent 40 static void irq_work_wake(struct irq_work *entry) 41 { 41 { 42 wake_irq_workd(); 42 wake_irq_workd(); 43 } 43 } 44 44 45 static DEFINE_PER_CPU(struct irq_work, irq_wor 45 static DEFINE_PER_CPU(struct irq_work, irq_work_wakeup) = 46 IRQ_WORK_INIT_HARD(irq_work_wake); 46 IRQ_WORK_INIT_HARD(irq_work_wake); 47 #endif 47 #endif 48 48 49 static int irq_workd_should_run(unsigned int c 49 static int irq_workd_should_run(unsigned int cpu) 50 { 50 { 51 return !llist_empty(this_cpu_ptr(&lazy 51 return !llist_empty(this_cpu_ptr(&lazy_list)); 52 } 52 } 53 53 54 /* 54 /* 55 * Claim the entry so that no one else will po 55 * Claim the entry so that no one else will poke at it. 56 */ 56 */ 57 static bool irq_work_claim(struct irq_work *wo 57 static bool irq_work_claim(struct irq_work *work) 58 { 58 { 59 int oflags; 59 int oflags; 60 60 61 oflags = atomic_fetch_or(IRQ_WORK_CLAI 61 oflags = atomic_fetch_or(IRQ_WORK_CLAIMED | CSD_TYPE_IRQ_WORK, &work->node.a_flags); 62 /* 62 /* 63 * If the work is already pending, no 63 * If the work is already pending, no need to raise the IPI. 64 * The pairing smp_mb() in irq_work_si 64 * The pairing smp_mb() in irq_work_single() makes sure 65 * everything we did before is visible 65 * everything we did before is visible. 66 */ 66 */ 67 if (oflags & IRQ_WORK_PENDING) 67 if (oflags & IRQ_WORK_PENDING) 68 return false; 68 return false; 69 return true; 69 return true; 70 } 70 } 71 71 72 void __weak arch_irq_work_raise(void) 72 void __weak arch_irq_work_raise(void) 73 { 73 { 74 /* 74 /* 75 * Lame architectures will get the tim 75 * Lame architectures will get the timer tick callback 76 */ 76 */ 77 } 77 } 78 78 79 static __always_inline void irq_work_raise(str 79 static __always_inline void irq_work_raise(struct irq_work *work) 80 { 80 { 81 if (trace_ipi_send_cpu_enabled() && ar 81 if (trace_ipi_send_cpu_enabled() && arch_irq_work_has_interrupt()) 82 trace_ipi_send_cpu(smp_process 82 trace_ipi_send_cpu(smp_processor_id(), _RET_IP_, work->func); 83 83 84 arch_irq_work_raise(); 84 arch_irq_work_raise(); 85 } 85 } 86 86 87 /* Enqueue on current CPU, work must already b 87 /* Enqueue on current CPU, work must already be claimed and preempt disabled */ 88 static void __irq_work_queue_local(struct irq_ 88 static void __irq_work_queue_local(struct irq_work *work) 89 { 89 { 90 struct llist_head *list; 90 struct llist_head *list; 91 bool rt_lazy_work = false; 91 bool rt_lazy_work = false; 92 bool lazy_work = false; 92 bool lazy_work = false; 93 int work_flags; 93 int work_flags; 94 94 95 work_flags = atomic_read(&work->node.a 95 work_flags = atomic_read(&work->node.a_flags); 96 if (work_flags & IRQ_WORK_LAZY) 96 if (work_flags & IRQ_WORK_LAZY) 97 lazy_work = true; 97 lazy_work = true; 98 else if (IS_ENABLED(CONFIG_PREEMPT_RT) 98 else if (IS_ENABLED(CONFIG_PREEMPT_RT) && 99 !(work_flags & IRQ_WORK_HARD_ 99 !(work_flags & IRQ_WORK_HARD_IRQ)) 100 rt_lazy_work = true; 100 rt_lazy_work = true; 101 101 102 if (lazy_work || rt_lazy_work) 102 if (lazy_work || rt_lazy_work) 103 list = this_cpu_ptr(&lazy_list 103 list = this_cpu_ptr(&lazy_list); 104 else 104 else 105 list = this_cpu_ptr(&raised_li 105 list = this_cpu_ptr(&raised_list); 106 106 107 if (!llist_add(&work->node.llist, list 107 if (!llist_add(&work->node.llist, list)) 108 return; 108 return; 109 109 110 /* If the work is "lazy", handle it fr 110 /* If the work is "lazy", handle it from next tick if any */ 111 if (!lazy_work || tick_nohz_tick_stopp 111 if (!lazy_work || tick_nohz_tick_stopped()) 112 irq_work_raise(work); 112 irq_work_raise(work); 113 } 113 } 114 114 115 /* Enqueue the irq work @work on the current C 115 /* Enqueue the irq work @work on the current CPU */ 116 bool irq_work_queue(struct irq_work *work) 116 bool irq_work_queue(struct irq_work *work) 117 { 117 { 118 /* Only queue if not already pending * 118 /* Only queue if not already pending */ 119 if (!irq_work_claim(work)) 119 if (!irq_work_claim(work)) 120 return false; 120 return false; 121 121 122 /* Queue the entry and raise the IPI i 122 /* Queue the entry and raise the IPI if needed. */ 123 preempt_disable(); 123 preempt_disable(); 124 __irq_work_queue_local(work); 124 __irq_work_queue_local(work); 125 preempt_enable(); 125 preempt_enable(); 126 126 127 return true; 127 return true; 128 } 128 } 129 EXPORT_SYMBOL_GPL(irq_work_queue); 129 EXPORT_SYMBOL_GPL(irq_work_queue); 130 130 131 /* 131 /* 132 * Enqueue the irq_work @work on @cpu unless i 132 * Enqueue the irq_work @work on @cpu unless it's already pending 133 * somewhere. 133 * somewhere. 134 * 134 * 135 * Can be re-enqueued while the callback is st 135 * Can be re-enqueued while the callback is still in progress. 136 */ 136 */ 137 bool irq_work_queue_on(struct irq_work *work, 137 bool irq_work_queue_on(struct irq_work *work, int cpu) 138 { 138 { 139 #ifndef CONFIG_SMP 139 #ifndef CONFIG_SMP 140 return irq_work_queue(work); 140 return irq_work_queue(work); 141 141 142 #else /* CONFIG_SMP: */ 142 #else /* CONFIG_SMP: */ 143 /* All work should have been flushed b 143 /* All work should have been flushed before going offline */ 144 WARN_ON_ONCE(cpu_is_offline(cpu)); 144 WARN_ON_ONCE(cpu_is_offline(cpu)); 145 145 146 /* Only queue if not already pending * 146 /* Only queue if not already pending */ 147 if (!irq_work_claim(work)) 147 if (!irq_work_claim(work)) 148 return false; 148 return false; 149 149 150 kasan_record_aux_stack_noalloc(work); 150 kasan_record_aux_stack_noalloc(work); 151 151 152 preempt_disable(); 152 preempt_disable(); 153 if (cpu != smp_processor_id()) { 153 if (cpu != smp_processor_id()) { 154 /* Arch remote IPI send/receiv 154 /* Arch remote IPI send/receive backend aren't NMI safe */ 155 WARN_ON_ONCE(in_nmi()); 155 WARN_ON_ONCE(in_nmi()); 156 156 157 /* 157 /* 158 * On PREEMPT_RT the items whi 158 * On PREEMPT_RT the items which are not marked as 159 * IRQ_WORK_HARD_IRQ are added 159 * IRQ_WORK_HARD_IRQ are added to the lazy list and a HARD work 160 * item is used on the remote 160 * item is used on the remote CPU to wake the thread. 161 */ 161 */ 162 if (IS_ENABLED(CONFIG_PREEMPT_ 162 if (IS_ENABLED(CONFIG_PREEMPT_RT) && 163 !(atomic_read(&work->node. 163 !(atomic_read(&work->node.a_flags) & IRQ_WORK_HARD_IRQ)) { 164 164 165 if (!llist_add(&work-> 165 if (!llist_add(&work->node.llist, &per_cpu(lazy_list, cpu))) 166 goto out; 166 goto out; 167 167 168 work = &per_cpu(irq_wo 168 work = &per_cpu(irq_work_wakeup, cpu); 169 if (!irq_work_claim(wo 169 if (!irq_work_claim(work)) 170 goto out; 170 goto out; 171 } 171 } 172 172 173 __smp_call_single_queue(cpu, & 173 __smp_call_single_queue(cpu, &work->node.llist); 174 } else { 174 } else { 175 __irq_work_queue_local(work); 175 __irq_work_queue_local(work); 176 } 176 } 177 out: 177 out: 178 preempt_enable(); 178 preempt_enable(); 179 179 180 return true; 180 return true; 181 #endif /* CONFIG_SMP */ 181 #endif /* CONFIG_SMP */ 182 } 182 } 183 183 184 bool irq_work_needs_cpu(void) 184 bool irq_work_needs_cpu(void) 185 { 185 { 186 struct llist_head *raised, *lazy; 186 struct llist_head *raised, *lazy; 187 187 188 raised = this_cpu_ptr(&raised_list); 188 raised = this_cpu_ptr(&raised_list); 189 lazy = this_cpu_ptr(&lazy_list); 189 lazy = this_cpu_ptr(&lazy_list); 190 190 191 if (llist_empty(raised) || arch_irq_wo 191 if (llist_empty(raised) || arch_irq_work_has_interrupt()) 192 if (llist_empty(lazy)) 192 if (llist_empty(lazy)) 193 return false; 193 return false; 194 194 195 /* All work should have been flushed b 195 /* All work should have been flushed before going offline */ 196 WARN_ON_ONCE(cpu_is_offline(smp_proces 196 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 197 197 198 return true; 198 return true; 199 } 199 } 200 200 201 void irq_work_single(void *arg) 201 void irq_work_single(void *arg) 202 { 202 { 203 struct irq_work *work = arg; 203 struct irq_work *work = arg; 204 int flags; 204 int flags; 205 205 206 /* 206 /* 207 * Clear the PENDING bit, after this p 207 * Clear the PENDING bit, after this point the @work can be re-used. 208 * The PENDING bit acts as a lock, and 208 * The PENDING bit acts as a lock, and we own it, so we can clear it 209 * without atomic ops. 209 * without atomic ops. 210 */ 210 */ 211 flags = atomic_read(&work->node.a_flag 211 flags = atomic_read(&work->node.a_flags); 212 flags &= ~IRQ_WORK_PENDING; 212 flags &= ~IRQ_WORK_PENDING; 213 atomic_set(&work->node.a_flags, flags) 213 atomic_set(&work->node.a_flags, flags); 214 214 215 /* 215 /* 216 * See irq_work_claim(). 216 * See irq_work_claim(). 217 */ 217 */ 218 smp_mb(); 218 smp_mb(); 219 219 220 lockdep_irq_work_enter(flags); 220 lockdep_irq_work_enter(flags); 221 work->func(work); 221 work->func(work); 222 lockdep_irq_work_exit(flags); 222 lockdep_irq_work_exit(flags); 223 223 224 /* 224 /* 225 * Clear the BUSY bit, if set, and ret 225 * Clear the BUSY bit, if set, and return to the free state if no-one 226 * else claimed it meanwhile. 226 * else claimed it meanwhile. 227 */ 227 */ 228 (void)atomic_cmpxchg(&work->node.a_fla 228 (void)atomic_cmpxchg(&work->node.a_flags, flags, flags & ~IRQ_WORK_BUSY); 229 229 230 if ((IS_ENABLED(CONFIG_PREEMPT_RT) && 230 if ((IS_ENABLED(CONFIG_PREEMPT_RT) && !irq_work_is_hard(work)) || 231 !arch_irq_work_has_interrupt()) 231 !arch_irq_work_has_interrupt()) 232 rcuwait_wake_up(&work->irqwait 232 rcuwait_wake_up(&work->irqwait); 233 } 233 } 234 234 235 static void irq_work_run_list(struct llist_hea 235 static void irq_work_run_list(struct llist_head *list) 236 { 236 { 237 struct irq_work *work, *tmp; 237 struct irq_work *work, *tmp; 238 struct llist_node *llnode; 238 struct llist_node *llnode; 239 239 240 /* 240 /* 241 * On PREEMPT_RT IRQ-work which is not 241 * On PREEMPT_RT IRQ-work which is not marked as HARD will be processed 242 * in a per-CPU thread in preemptible 242 * in a per-CPU thread in preemptible context. Only the items which are 243 * marked as IRQ_WORK_HARD_IRQ will be 243 * marked as IRQ_WORK_HARD_IRQ will be processed in hardirq context. 244 */ 244 */ 245 BUG_ON(!irqs_disabled() && !IS_ENABLED 245 BUG_ON(!irqs_disabled() && !IS_ENABLED(CONFIG_PREEMPT_RT)); 246 246 247 if (llist_empty(list)) 247 if (llist_empty(list)) 248 return; 248 return; 249 249 250 llnode = llist_del_all(list); 250 llnode = llist_del_all(list); 251 llist_for_each_entry_safe(work, tmp, l 251 llist_for_each_entry_safe(work, tmp, llnode, node.llist) 252 irq_work_single(work); 252 irq_work_single(work); 253 } 253 } 254 254 255 /* 255 /* 256 * hotplug calls this through: 256 * hotplug calls this through: 257 * hotplug_cfd() -> flush_smp_call_function_q 257 * hotplug_cfd() -> flush_smp_call_function_queue() 258 */ 258 */ 259 void irq_work_run(void) 259 void irq_work_run(void) 260 { 260 { 261 irq_work_run_list(this_cpu_ptr(&raised 261 irq_work_run_list(this_cpu_ptr(&raised_list)); 262 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 262 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 263 irq_work_run_list(this_cpu_ptr 263 irq_work_run_list(this_cpu_ptr(&lazy_list)); 264 else 264 else 265 wake_irq_workd(); 265 wake_irq_workd(); 266 } 266 } 267 EXPORT_SYMBOL_GPL(irq_work_run); 267 EXPORT_SYMBOL_GPL(irq_work_run); 268 268 269 void irq_work_tick(void) 269 void irq_work_tick(void) 270 { 270 { 271 struct llist_head *raised = this_cpu_p 271 struct llist_head *raised = this_cpu_ptr(&raised_list); 272 272 273 if (!llist_empty(raised) && !arch_irq_ 273 if (!llist_empty(raised) && !arch_irq_work_has_interrupt()) 274 irq_work_run_list(raised); 274 irq_work_run_list(raised); 275 275 276 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 276 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 277 irq_work_run_list(this_cpu_ptr 277 irq_work_run_list(this_cpu_ptr(&lazy_list)); 278 else 278 else 279 wake_irq_workd(); 279 wake_irq_workd(); 280 } 280 } 281 281 282 /* 282 /* 283 * Synchronize against the irq_work @entry, en 283 * Synchronize against the irq_work @entry, ensures the entry is not 284 * currently in use. 284 * currently in use. 285 */ 285 */ 286 void irq_work_sync(struct irq_work *work) 286 void irq_work_sync(struct irq_work *work) 287 { 287 { 288 lockdep_assert_irqs_enabled(); 288 lockdep_assert_irqs_enabled(); 289 might_sleep(); 289 might_sleep(); 290 290 291 if ((IS_ENABLED(CONFIG_PREEMPT_RT) && 291 if ((IS_ENABLED(CONFIG_PREEMPT_RT) && !irq_work_is_hard(work)) || 292 !arch_irq_work_has_interrupt()) { 292 !arch_irq_work_has_interrupt()) { 293 rcuwait_wait_event(&work->irqw 293 rcuwait_wait_event(&work->irqwait, !irq_work_is_busy(work), 294 TASK_UNINTE 294 TASK_UNINTERRUPTIBLE); 295 return; 295 return; 296 } 296 } 297 297 298 while (irq_work_is_busy(work)) 298 while (irq_work_is_busy(work)) 299 cpu_relax(); 299 cpu_relax(); 300 } 300 } 301 EXPORT_SYMBOL_GPL(irq_work_sync); 301 EXPORT_SYMBOL_GPL(irq_work_sync); 302 302 303 static void run_irq_workd(unsigned int cpu) 303 static void run_irq_workd(unsigned int cpu) 304 { 304 { 305 irq_work_run_list(this_cpu_ptr(&lazy_l 305 irq_work_run_list(this_cpu_ptr(&lazy_list)); 306 } 306 } 307 307 308 static void irq_workd_setup(unsigned int cpu) 308 static void irq_workd_setup(unsigned int cpu) 309 { 309 { 310 sched_set_fifo_low(current); 310 sched_set_fifo_low(current); 311 } 311 } 312 312 313 static struct smp_hotplug_thread irqwork_threa 313 static struct smp_hotplug_thread irqwork_threads = { 314 .store = &irq_workd, 314 .store = &irq_workd, 315 .setup = irq_workd_se 315 .setup = irq_workd_setup, 316 .thread_should_run = irq_workd_sh 316 .thread_should_run = irq_workd_should_run, 317 .thread_fn = run_irq_work 317 .thread_fn = run_irq_workd, 318 .thread_comm = "irq_work/%u 318 .thread_comm = "irq_work/%u", 319 }; 319 }; 320 320 321 static __init int irq_work_init_threads(void) 321 static __init int irq_work_init_threads(void) 322 { 322 { 323 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 323 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 324 BUG_ON(smpboot_register_percpu 324 BUG_ON(smpboot_register_percpu_thread(&irqwork_threads)); 325 return 0; 325 return 0; 326 } 326 } 327 early_initcall(irq_work_init_threads); 327 early_initcall(irq_work_init_threads); 328 328
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.