1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * kexec.c - kexec system call core code. 2 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <eb 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> >> 4 * >> 5 * This source code is licensed under the GNU General Public License, >> 6 * Version 2. See the file COPYING for more details. 5 */ 7 */ 6 8 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 10 9 #include <linux/btf.h> << 10 #include <linux/capability.h> 11 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> << 31 #include <linux/pm.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> << 42 #include <linux/kmsg_dump.h> << 43 41 44 #include <asm/page.h> 42 #include <asm/page.h> 45 #include <asm/sections.h> 43 #include <asm/sections.h> 46 44 47 #include <crypto/hash.h> 45 #include <crypto/hash.h> >> 46 #include <crypto/sha.h> 48 #include "kexec_internal.h" 47 #include "kexec_internal.h" 49 48 50 atomic_t __kexec_lock = ATOMIC_INIT(0); !! 49 DEFINE_MUTEX(kexec_mutex); >> 50 >> 51 /* Per cpu memory for storing cpu states in case of system crash. */ >> 52 note_buf_t __percpu *crash_notes; >> 53 >> 54 /* vmcoreinfo stuff */ >> 55 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; >> 56 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; >> 57 size_t vmcoreinfo_size; >> 58 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 51 59 52 /* Flag to indicate we are going to kexec a ne 60 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 61 bool kexec_in_progress = false; 54 62 55 bool kexec_file_dbg_print; !! 63 >> 64 /* Location of the reserved area for the crash kernel */ >> 65 struct resource crashk_res = { >> 66 .name = "Crash kernel", >> 67 .start = 0, >> 68 .end = 0, >> 69 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 70 .desc = IORES_DESC_CRASH_KERNEL >> 71 }; >> 72 struct resource crashk_low_res = { >> 73 .name = "Crash kernel", >> 74 .start = 0, >> 75 .end = 0, >> 76 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 77 .desc = IORES_DESC_CRASH_KERNEL >> 78 }; >> 79 >> 80 int kexec_should_crash(struct task_struct *p) >> 81 { >> 82 /* >> 83 * If crash_kexec_post_notifiers is enabled, don't run >> 84 * crash_kexec() here yet, which must be run after panic >> 85 * notifiers in panic(). >> 86 */ >> 87 if (crash_kexec_post_notifiers) >> 88 return 0; >> 89 /* >> 90 * There are 4 panic() calls in do_exit() path, each of which >> 91 * corresponds to each of these 4 conditions. >> 92 */ >> 93 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) >> 94 return 1; >> 95 return 0; >> 96 } >> 97 >> 98 int kexec_crash_loaded(void) >> 99 { >> 100 return !!kexec_crash_image; >> 101 } >> 102 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 56 103 57 /* 104 /* 58 * When kexec transitions to the new kernel th 105 * When kexec transitions to the new kernel there is a one-to-one 59 * mapping between physical and virtual addres 106 * mapping between physical and virtual addresses. On processors 60 * where you can disable the MMU this is trivi 107 * where you can disable the MMU this is trivial, and easy. For 61 * others it is still a simple predictable pag 108 * others it is still a simple predictable page table to setup. 62 * 109 * 63 * In that environment kexec copies the new ke 110 * In that environment kexec copies the new kernel to its final 64 * resting place. This means I can only suppo 111 * resting place. This means I can only support memory whose 65 * physical address can fit in an unsigned lon 112 * physical address can fit in an unsigned long. In particular 66 * addresses where (pfn << PAGE_SHIFT) > ULONG 113 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 67 * If the assembly stub has more restrictive r 114 * If the assembly stub has more restrictive requirements 68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME 115 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 69 * defined more restrictively in <asm/kexec.h> 116 * defined more restrictively in <asm/kexec.h>. 70 * 117 * 71 * The code for the transition from the curren 118 * The code for the transition from the current kernel to the 72 * new kernel is placed in the control_code_bu !! 119 * the new kernel is placed in the control_code_buffer, whose size 73 * is given by KEXEC_CONTROL_PAGE_SIZE. In th 120 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 74 * page of memory is necessary, but some archi 121 * page of memory is necessary, but some architectures require more. 75 * Because this memory must be identity mapped 122 * Because this memory must be identity mapped in the transition from 76 * virtual to physical addresses it must live 123 * virtual to physical addresses it must live in the range 77 * 0 - TASK_SIZE, as only the user space mappi 124 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 78 * modifiable. 125 * modifiable. 79 * 126 * 80 * The assembly stub in the control code buffe 127 * The assembly stub in the control code buffer is passed a linked list 81 * of descriptor pages detailing the source pa 128 * of descriptor pages detailing the source pages of the new kernel, 82 * and the destination addresses of those sour 129 * and the destination addresses of those source pages. As this data 83 * structure is not used in the context of the 130 * structure is not used in the context of the current OS, it must 84 * be self-contained. 131 * be self-contained. 85 * 132 * 86 * The code has been made to work with highmem 133 * The code has been made to work with highmem pages and will use a 87 * destination page in its final resting place 134 * destination page in its final resting place (if it happens 88 * to allocate it). The end product of this i 135 * to allocate it). The end product of this is that most of the 89 * physical address space, and most of RAM can 136 * physical address space, and most of RAM can be used. 90 * 137 * 91 * Future directions include: 138 * Future directions include: 92 * - allocating a page table with the control 139 * - allocating a page table with the control code buffer identity 93 * mapped, to simplify machine_kexec and ma 140 * mapped, to simplify machine_kexec and make kexec_on_panic more 94 * reliable. 141 * reliable. 95 */ 142 */ 96 143 97 /* 144 /* 98 * KIMAGE_NO_DEST is an impossible destination 145 * KIMAGE_NO_DEST is an impossible destination address..., for 99 * allocating pages whose destination address 146 * allocating pages whose destination address we do not care about. 100 */ 147 */ 101 #define KIMAGE_NO_DEST (-1UL) 148 #define KIMAGE_NO_DEST (-1UL) 102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) > 149 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 103 150 104 static struct page *kimage_alloc_page(struct k 151 static struct page *kimage_alloc_page(struct kimage *image, 105 gfp_t g 152 gfp_t gfp_mask, 106 unsigne 153 unsigned long dest); 107 154 108 int sanity_check_segment_list(struct kimage *i 155 int sanity_check_segment_list(struct kimage *image) 109 { 156 { 110 int i; 157 int i; 111 unsigned long nr_segments = image->nr_ 158 unsigned long nr_segments = image->nr_segments; 112 unsigned long total_pages = 0; 159 unsigned long total_pages = 0; 113 unsigned long nr_pages = totalram_page << 114 160 115 /* 161 /* 116 * Verify we have good destination add 162 * Verify we have good destination addresses. The caller is 117 * responsible for making certain we d 163 * responsible for making certain we don't attempt to load 118 * the new image into invalid or reser 164 * the new image into invalid or reserved areas of RAM. This 119 * just verifies it is an address we c 165 * just verifies it is an address we can use. 120 * 166 * 121 * Since the kernel does everything in 167 * Since the kernel does everything in page size chunks ensure 122 * the destination addresses are page 168 * the destination addresses are page aligned. Too many 123 * special cases crop of when we don't 169 * special cases crop of when we don't do this. The most 124 * insidious is getting overlapping de 170 * insidious is getting overlapping destination addresses 125 * simply because addresses are change 171 * simply because addresses are changed to page size 126 * granularity. 172 * granularity. 127 */ 173 */ 128 for (i = 0; i < nr_segments; i++) { 174 for (i = 0; i < nr_segments; i++) { 129 unsigned long mstart, mend; 175 unsigned long mstart, mend; 130 176 131 mstart = image->segment[i].mem 177 mstart = image->segment[i].mem; 132 mend = mstart + image->segme 178 mend = mstart + image->segment[i].memsz; 133 if (mstart > mend) 179 if (mstart > mend) 134 return -EADDRNOTAVAIL; 180 return -EADDRNOTAVAIL; 135 if ((mstart & ~PAGE_MASK) || ( 181 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 136 return -EADDRNOTAVAIL; 182 return -EADDRNOTAVAIL; 137 if (mend >= KEXEC_DESTINATION_ 183 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 138 return -EADDRNOTAVAIL; 184 return -EADDRNOTAVAIL; 139 } 185 } 140 186 141 /* Verify our destination addresses do 187 /* Verify our destination addresses do not overlap. 142 * If we alloed overlapping destinatio 188 * If we alloed overlapping destination addresses 143 * through very weird things can happe 189 * through very weird things can happen with no 144 * easy explanation as one segment sto 190 * easy explanation as one segment stops on another. 145 */ 191 */ 146 for (i = 0; i < nr_segments; i++) { 192 for (i = 0; i < nr_segments; i++) { 147 unsigned long mstart, mend; 193 unsigned long mstart, mend; 148 unsigned long j; 194 unsigned long j; 149 195 150 mstart = image->segment[i].mem 196 mstart = image->segment[i].mem; 151 mend = mstart + image->segme 197 mend = mstart + image->segment[i].memsz; 152 for (j = 0; j < i; j++) { 198 for (j = 0; j < i; j++) { 153 unsigned long pstart, 199 unsigned long pstart, pend; 154 200 155 pstart = image->segmen 201 pstart = image->segment[j].mem; 156 pend = pstart + imag 202 pend = pstart + image->segment[j].memsz; 157 /* Do the segments ove 203 /* Do the segments overlap ? */ 158 if ((mend > pstart) && 204 if ((mend > pstart) && (mstart < pend)) 159 return -EINVAL 205 return -EINVAL; 160 } 206 } 161 } 207 } 162 208 163 /* Ensure our buffer sizes are strictl 209 /* Ensure our buffer sizes are strictly less than 164 * our memory sizes. This should alwa 210 * our memory sizes. This should always be the case, 165 * and it is easier to check up front 211 * and it is easier to check up front than to be surprised 166 * later on. 212 * later on. 167 */ 213 */ 168 for (i = 0; i < nr_segments; i++) { 214 for (i = 0; i < nr_segments; i++) { 169 if (image->segment[i].bufsz > 215 if (image->segment[i].bufsz > image->segment[i].memsz) 170 return -EINVAL; 216 return -EINVAL; 171 } 217 } 172 218 173 /* 219 /* 174 * Verify that no more than half of me 220 * Verify that no more than half of memory will be consumed. If the 175 * request from userspace is too large 221 * request from userspace is too large, a large amount of time will be 176 * wasted allocating pages, which can 222 * wasted allocating pages, which can cause a soft lockup. 177 */ 223 */ 178 for (i = 0; i < nr_segments; i++) { 224 for (i = 0; i < nr_segments; i++) { 179 if (PAGE_COUNT(image->segment[ !! 225 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2) 180 return -EINVAL; 226 return -EINVAL; 181 227 182 total_pages += PAGE_COUNT(imag 228 total_pages += PAGE_COUNT(image->segment[i].memsz); 183 } 229 } 184 230 185 if (total_pages > nr_pages / 2) !! 231 if (total_pages > totalram_pages / 2) 186 return -EINVAL; 232 return -EINVAL; 187 233 188 #ifdef CONFIG_CRASH_DUMP << 189 /* 234 /* 190 * Verify we have good destination add 235 * Verify we have good destination addresses. Normally 191 * the caller is responsible for makin 236 * the caller is responsible for making certain we don't 192 * attempt to load the new image into 237 * attempt to load the new image into invalid or reserved 193 * areas of RAM. But crash kernels ar 238 * areas of RAM. But crash kernels are preloaded into a 194 * reserved area of ram. We must ensu 239 * reserved area of ram. We must ensure the addresses 195 * are in the reserved area otherwise 240 * are in the reserved area otherwise preloading the 196 * kernel could corrupt things. 241 * kernel could corrupt things. 197 */ 242 */ 198 243 199 if (image->type == KEXEC_TYPE_CRASH) { 244 if (image->type == KEXEC_TYPE_CRASH) { 200 for (i = 0; i < nr_segments; i 245 for (i = 0; i < nr_segments; i++) { 201 unsigned long mstart, 246 unsigned long mstart, mend; 202 247 203 mstart = image->segmen 248 mstart = image->segment[i].mem; 204 mend = mstart + image- 249 mend = mstart + image->segment[i].memsz - 1; 205 /* Ensure we are withi 250 /* Ensure we are within the crash kernel limits */ 206 if ((mstart < phys_to_ 251 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 207 (mend > phys_to_bo 252 (mend > phys_to_boot_phys(crashk_res.end))) 208 return -EADDRN 253 return -EADDRNOTAVAIL; 209 } 254 } 210 } 255 } 211 #endif << 212 256 213 return 0; 257 return 0; 214 } 258 } 215 259 216 struct kimage *do_kimage_alloc_init(void) 260 struct kimage *do_kimage_alloc_init(void) 217 { 261 { 218 struct kimage *image; 262 struct kimage *image; 219 263 220 /* Allocate a controlling structure */ 264 /* Allocate a controlling structure */ 221 image = kzalloc(sizeof(*image), GFP_KE 265 image = kzalloc(sizeof(*image), GFP_KERNEL); 222 if (!image) 266 if (!image) 223 return NULL; 267 return NULL; 224 268 225 image->head = 0; 269 image->head = 0; 226 image->entry = &image->head; 270 image->entry = &image->head; 227 image->last_entry = &image->head; 271 image->last_entry = &image->head; 228 image->control_page = ~0; /* By defaul 272 image->control_page = ~0; /* By default this does not apply */ 229 image->type = KEXEC_TYPE_DEFAULT; 273 image->type = KEXEC_TYPE_DEFAULT; 230 274 231 /* Initialize the list of control page 275 /* Initialize the list of control pages */ 232 INIT_LIST_HEAD(&image->control_pages); 276 INIT_LIST_HEAD(&image->control_pages); 233 277 234 /* Initialize the list of destination 278 /* Initialize the list of destination pages */ 235 INIT_LIST_HEAD(&image->dest_pages); 279 INIT_LIST_HEAD(&image->dest_pages); 236 280 237 /* Initialize the list of unusable pag 281 /* Initialize the list of unusable pages */ 238 INIT_LIST_HEAD(&image->unusable_pages) 282 INIT_LIST_HEAD(&image->unusable_pages); 239 283 240 #ifdef CONFIG_CRASH_HOTPLUG << 241 image->hp_action = KEXEC_CRASH_HP_NONE << 242 image->elfcorehdr_index = -1; << 243 image->elfcorehdr_updated = false; << 244 #endif << 245 << 246 return image; 284 return image; 247 } 285 } 248 286 249 int kimage_is_destination_range(struct kimage 287 int kimage_is_destination_range(struct kimage *image, 250 unsign 288 unsigned long start, 251 unsign 289 unsigned long end) 252 { 290 { 253 unsigned long i; 291 unsigned long i; 254 292 255 for (i = 0; i < image->nr_segments; i+ 293 for (i = 0; i < image->nr_segments; i++) { 256 unsigned long mstart, mend; 294 unsigned long mstart, mend; 257 295 258 mstart = image->segment[i].mem 296 mstart = image->segment[i].mem; 259 mend = mstart + image->segment !! 297 mend = mstart + image->segment[i].memsz; 260 if ((end >= mstart) && (start !! 298 if ((end > mstart) && (start < mend)) 261 return 1; 299 return 1; 262 } 300 } 263 301 264 return 0; 302 return 0; 265 } 303 } 266 304 267 static struct page *kimage_alloc_pages(gfp_t g 305 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 268 { 306 { 269 struct page *pages; 307 struct page *pages; 270 308 271 if (fatal_signal_pending(current)) !! 309 pages = alloc_pages(gfp_mask, order); 272 return NULL; << 273 pages = alloc_pages(gfp_mask & ~__GFP_ << 274 if (pages) { 310 if (pages) { 275 unsigned int count, i; 311 unsigned int count, i; 276 312 277 pages->mapping = NULL; 313 pages->mapping = NULL; 278 set_page_private(pages, order) 314 set_page_private(pages, order); 279 count = 1 << order; 315 count = 1 << order; 280 for (i = 0; i < count; i++) 316 for (i = 0; i < count; i++) 281 SetPageReserved(pages 317 SetPageReserved(pages + i); 282 << 283 arch_kexec_post_alloc_pages(pa << 284 gf << 285 << 286 if (gfp_mask & __GFP_ZERO) << 287 for (i = 0; i < count; << 288 clear_highpage << 289 } 318 } 290 319 291 return pages; 320 return pages; 292 } 321 } 293 322 294 static void kimage_free_pages(struct page *pag 323 static void kimage_free_pages(struct page *page) 295 { 324 { 296 unsigned int order, count, i; 325 unsigned int order, count, i; 297 326 298 order = page_private(page); 327 order = page_private(page); 299 count = 1 << order; 328 count = 1 << order; 300 << 301 arch_kexec_pre_free_pages(page_address << 302 << 303 for (i = 0; i < count; i++) 329 for (i = 0; i < count; i++) 304 ClearPageReserved(page + i); 330 ClearPageReserved(page + i); 305 __free_pages(page, order); 331 __free_pages(page, order); 306 } 332 } 307 333 308 void kimage_free_page_list(struct list_head *l 334 void kimage_free_page_list(struct list_head *list) 309 { 335 { 310 struct page *page, *next; 336 struct page *page, *next; 311 337 312 list_for_each_entry_safe(page, next, l 338 list_for_each_entry_safe(page, next, list, lru) { 313 list_del(&page->lru); 339 list_del(&page->lru); 314 kimage_free_pages(page); 340 kimage_free_pages(page); 315 } 341 } 316 } 342 } 317 343 318 static struct page *kimage_alloc_normal_contro 344 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 319 345 unsigned int order) 320 { 346 { 321 /* Control pages are special, they are 347 /* Control pages are special, they are the intermediaries 322 * that are needed while we copy the r 348 * that are needed while we copy the rest of the pages 323 * to their final resting place. As s 349 * to their final resting place. As such they must 324 * not conflict with either the destin 350 * not conflict with either the destination addresses 325 * or memory the kernel is already usi 351 * or memory the kernel is already using. 326 * 352 * 327 * The only case where we really need 353 * The only case where we really need more than one of 328 * these are for architectures where w 354 * these are for architectures where we cannot disable 329 * the MMU and must instead generate a 355 * the MMU and must instead generate an identity mapped 330 * page table for all of the memory. 356 * page table for all of the memory. 331 * 357 * 332 * At worst this runs in O(N) of the i 358 * At worst this runs in O(N) of the image size. 333 */ 359 */ 334 struct list_head extra_pages; 360 struct list_head extra_pages; 335 struct page *pages; 361 struct page *pages; 336 unsigned int count; 362 unsigned int count; 337 363 338 count = 1 << order; 364 count = 1 << order; 339 INIT_LIST_HEAD(&extra_pages); 365 INIT_LIST_HEAD(&extra_pages); 340 366 341 /* Loop while I can allocate a page an 367 /* Loop while I can allocate a page and the page allocated 342 * is a destination page. 368 * is a destination page. 343 */ 369 */ 344 do { 370 do { 345 unsigned long pfn, epfn, addr, 371 unsigned long pfn, epfn, addr, eaddr; 346 372 347 pages = kimage_alloc_pages(KEX 373 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 348 if (!pages) 374 if (!pages) 349 break; 375 break; 350 pfn = page_to_boot_pfn(pages 376 pfn = page_to_boot_pfn(pages); 351 epfn = pfn + count; 377 epfn = pfn + count; 352 addr = pfn << PAGE_SHIFT; 378 addr = pfn << PAGE_SHIFT; 353 eaddr = (epfn << PAGE_SHIFT) - !! 379 eaddr = epfn << PAGE_SHIFT; 354 if ((epfn >= (KEXEC_CONTROL_ME 380 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 355 kimage_is_destin 381 kimage_is_destination_range(image, addr, eaddr)) { 356 list_add(&pages->lru, 382 list_add(&pages->lru, &extra_pages); 357 pages = NULL; 383 pages = NULL; 358 } 384 } 359 } while (!pages); 385 } while (!pages); 360 386 361 if (pages) { 387 if (pages) { 362 /* Remember the allocated page 388 /* Remember the allocated page... */ 363 list_add(&pages->lru, &image-> 389 list_add(&pages->lru, &image->control_pages); 364 390 365 /* Because the page is already 391 /* Because the page is already in it's destination 366 * location we will never allo 392 * location we will never allocate another page at 367 * that address. Therefore ki 393 * that address. Therefore kimage_alloc_pages 368 * will not return it (again) 394 * will not return it (again) and we don't need 369 * to give it an entry in imag 395 * to give it an entry in image->segment[]. 370 */ 396 */ 371 } 397 } 372 /* Deal with the destination pages I h 398 /* Deal with the destination pages I have inadvertently allocated. 373 * 399 * 374 * Ideally I would convert multi-page 400 * Ideally I would convert multi-page allocations into single 375 * page allocations, and add everythin 401 * page allocations, and add everything to image->dest_pages. 376 * 402 * 377 * For now it is simpler to just free 403 * For now it is simpler to just free the pages. 378 */ 404 */ 379 kimage_free_page_list(&extra_pages); 405 kimage_free_page_list(&extra_pages); 380 406 381 return pages; 407 return pages; 382 } 408 } 383 409 384 #ifdef CONFIG_CRASH_DUMP << 385 static struct page *kimage_alloc_crash_control 410 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 386 411 unsigned int order) 387 { 412 { 388 /* Control pages are special, they are 413 /* Control pages are special, they are the intermediaries 389 * that are needed while we copy the r 414 * that are needed while we copy the rest of the pages 390 * to their final resting place. As s 415 * to their final resting place. As such they must 391 * not conflict with either the destin 416 * not conflict with either the destination addresses 392 * or memory the kernel is already usi 417 * or memory the kernel is already using. 393 * 418 * 394 * Control pages are also the only pag 419 * Control pages are also the only pags we must allocate 395 * when loading a crash kernel. All o 420 * when loading a crash kernel. All of the other pages 396 * are specified by the segments and w 421 * are specified by the segments and we just memcpy 397 * into them directly. 422 * into them directly. 398 * 423 * 399 * The only case where we really need 424 * The only case where we really need more than one of 400 * these are for architectures where w 425 * these are for architectures where we cannot disable 401 * the MMU and must instead generate a 426 * the MMU and must instead generate an identity mapped 402 * page table for all of the memory. 427 * page table for all of the memory. 403 * 428 * 404 * Given the low demand this implement 429 * Given the low demand this implements a very simple 405 * allocator that finds the first hole 430 * allocator that finds the first hole of the appropriate 406 * size in the reserved memory region, 431 * size in the reserved memory region, and allocates all 407 * of the memory up to and including t 432 * of the memory up to and including the hole. 408 */ 433 */ 409 unsigned long hole_start, hole_end, si 434 unsigned long hole_start, hole_end, size; 410 struct page *pages; 435 struct page *pages; 411 436 412 pages = NULL; 437 pages = NULL; 413 size = (1 << order) << PAGE_SHIFT; 438 size = (1 << order) << PAGE_SHIFT; 414 hole_start = ALIGN(image->control_page !! 439 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 415 hole_end = hole_start + size - 1; 440 hole_end = hole_start + size - 1; 416 while (hole_end <= crashk_res.end) { 441 while (hole_end <= crashk_res.end) { 417 unsigned long i; 442 unsigned long i; 418 443 419 cond_resched(); 444 cond_resched(); 420 445 421 if (hole_end > KEXEC_CRASH_CON 446 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 422 break; 447 break; 423 /* See if I overlap any of the 448 /* See if I overlap any of the segments */ 424 for (i = 0; i < image->nr_segm 449 for (i = 0; i < image->nr_segments; i++) { 425 unsigned long mstart, 450 unsigned long mstart, mend; 426 451 427 mstart = image->segmen 452 mstart = image->segment[i].mem; 428 mend = mstart + imag 453 mend = mstart + image->segment[i].memsz - 1; 429 if ((hole_end >= mstar 454 if ((hole_end >= mstart) && (hole_start <= mend)) { 430 /* Advance the 455 /* Advance the hole to the end of the segment */ 431 hole_start = A !! 456 hole_start = (mend + (size - 1)) & ~(size - 1); 432 hole_end = h 457 hole_end = hole_start + size - 1; 433 break; 458 break; 434 } 459 } 435 } 460 } 436 /* If I don't overlap any segm 461 /* If I don't overlap any segments I have found my hole! */ 437 if (i == image->nr_segments) { 462 if (i == image->nr_segments) { 438 pages = pfn_to_page(ho 463 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 439 image->control_page = !! 464 image->control_page = hole_end; 440 break; 465 break; 441 } 466 } 442 } 467 } 443 468 444 /* Ensure that these pages are decrypt << 445 if (pages) << 446 arch_kexec_post_alloc_pages(pa << 447 << 448 return pages; 469 return pages; 449 } 470 } 450 #endif << 451 471 452 472 453 struct page *kimage_alloc_control_pages(struct 473 struct page *kimage_alloc_control_pages(struct kimage *image, 454 unsig 474 unsigned int order) 455 { 475 { 456 struct page *pages = NULL; 476 struct page *pages = NULL; 457 477 458 switch (image->type) { 478 switch (image->type) { 459 case KEXEC_TYPE_DEFAULT: 479 case KEXEC_TYPE_DEFAULT: 460 pages = kimage_alloc_normal_co 480 pages = kimage_alloc_normal_control_pages(image, order); 461 break; 481 break; 462 #ifdef CONFIG_CRASH_DUMP << 463 case KEXEC_TYPE_CRASH: 482 case KEXEC_TYPE_CRASH: 464 pages = kimage_alloc_crash_con 483 pages = kimage_alloc_crash_control_pages(image, order); 465 break; 484 break; 466 #endif << 467 } 485 } 468 486 469 return pages; 487 return pages; 470 } 488 } 471 489 472 static int kimage_add_entry(struct kimage *ima 490 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 473 { 491 { 474 if (*image->entry != 0) 492 if (*image->entry != 0) 475 image->entry++; 493 image->entry++; 476 494 477 if (image->entry == image->last_entry) 495 if (image->entry == image->last_entry) { 478 kimage_entry_t *ind_page; 496 kimage_entry_t *ind_page; 479 struct page *page; 497 struct page *page; 480 498 481 page = kimage_alloc_page(image 499 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 482 if (!page) 500 if (!page) 483 return -ENOMEM; 501 return -ENOMEM; 484 502 485 ind_page = page_address(page); 503 ind_page = page_address(page); 486 *image->entry = virt_to_boot_p 504 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 487 image->entry = ind_page; 505 image->entry = ind_page; 488 image->last_entry = ind_page + 506 image->last_entry = ind_page + 489 ((PAGE_S 507 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 490 } 508 } 491 *image->entry = entry; 509 *image->entry = entry; 492 image->entry++; 510 image->entry++; 493 *image->entry = 0; 511 *image->entry = 0; 494 512 495 return 0; 513 return 0; 496 } 514 } 497 515 498 static int kimage_set_destination(struct kimag 516 static int kimage_set_destination(struct kimage *image, 499 unsigned lo 517 unsigned long destination) 500 { 518 { >> 519 int result; >> 520 501 destination &= PAGE_MASK; 521 destination &= PAGE_MASK; >> 522 result = kimage_add_entry(image, destination | IND_DESTINATION); 502 523 503 return kimage_add_entry(image, destina !! 524 return result; 504 } 525 } 505 526 506 527 507 static int kimage_add_page(struct kimage *imag 528 static int kimage_add_page(struct kimage *image, unsigned long page) 508 { 529 { >> 530 int result; >> 531 509 page &= PAGE_MASK; 532 page &= PAGE_MASK; >> 533 result = kimage_add_entry(image, page | IND_SOURCE); 510 534 511 return kimage_add_entry(image, page | !! 535 return result; 512 } 536 } 513 537 514 538 515 static void kimage_free_extra_pages(struct kim 539 static void kimage_free_extra_pages(struct kimage *image) 516 { 540 { 517 /* Walk through and free any extra des 541 /* Walk through and free any extra destination pages I may have */ 518 kimage_free_page_list(&image->dest_pag 542 kimage_free_page_list(&image->dest_pages); 519 543 520 /* Walk through and free any unusable 544 /* Walk through and free any unusable pages I have cached */ 521 kimage_free_page_list(&image->unusable 545 kimage_free_page_list(&image->unusable_pages); 522 546 523 } 547 } 524 << 525 void kimage_terminate(struct kimage *image) 548 void kimage_terminate(struct kimage *image) 526 { 549 { 527 if (*image->entry != 0) 550 if (*image->entry != 0) 528 image->entry++; 551 image->entry++; 529 552 530 *image->entry = IND_DONE; 553 *image->entry = IND_DONE; 531 } 554 } 532 555 533 #define for_each_kimage_entry(image, ptr, entr 556 #define for_each_kimage_entry(image, ptr, entry) \ 534 for (ptr = &image->head; (entry = *ptr 557 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 535 ptr = (entry & IND_INDIRECTION 558 ptr = (entry & IND_INDIRECTION) ? \ 536 boot_phys_to_virt((ent 559 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 537 560 538 static void kimage_free_entry(kimage_entry_t e 561 static void kimage_free_entry(kimage_entry_t entry) 539 { 562 { 540 struct page *page; 563 struct page *page; 541 564 542 page = boot_pfn_to_page(entry >> PAGE_ 565 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 543 kimage_free_pages(page); 566 kimage_free_pages(page); 544 } 567 } 545 568 546 void kimage_free(struct kimage *image) 569 void kimage_free(struct kimage *image) 547 { 570 { 548 kimage_entry_t *ptr, entry; 571 kimage_entry_t *ptr, entry; 549 kimage_entry_t ind = 0; 572 kimage_entry_t ind = 0; 550 573 551 if (!image) 574 if (!image) 552 return; 575 return; 553 576 554 #ifdef CONFIG_CRASH_DUMP << 555 if (image->vmcoreinfo_data_copy) { << 556 crash_update_vmcoreinfo_safeco << 557 vunmap(image->vmcoreinfo_data_ << 558 } << 559 #endif << 560 << 561 kimage_free_extra_pages(image); 577 kimage_free_extra_pages(image); 562 for_each_kimage_entry(image, ptr, entr 578 for_each_kimage_entry(image, ptr, entry) { 563 if (entry & IND_INDIRECTION) { 579 if (entry & IND_INDIRECTION) { 564 /* Free the previous i 580 /* Free the previous indirection page */ 565 if (ind & IND_INDIRECT 581 if (ind & IND_INDIRECTION) 566 kimage_free_en 582 kimage_free_entry(ind); 567 /* Save this indirecti 583 /* Save this indirection page until we are 568 * done with it. 584 * done with it. 569 */ 585 */ 570 ind = entry; 586 ind = entry; 571 } else if (entry & IND_SOURCE) 587 } else if (entry & IND_SOURCE) 572 kimage_free_entry(entr 588 kimage_free_entry(entry); 573 } 589 } 574 /* Free the final indirection page */ 590 /* Free the final indirection page */ 575 if (ind & IND_INDIRECTION) 591 if (ind & IND_INDIRECTION) 576 kimage_free_entry(ind); 592 kimage_free_entry(ind); 577 593 578 /* Handle any machine specific cleanup 594 /* Handle any machine specific cleanup */ 579 machine_kexec_cleanup(image); 595 machine_kexec_cleanup(image); 580 596 581 /* Free the kexec control pages... */ 597 /* Free the kexec control pages... */ 582 kimage_free_page_list(&image->control_ 598 kimage_free_page_list(&image->control_pages); 583 599 584 /* 600 /* 585 * Free up any temporary buffers alloc 601 * Free up any temporary buffers allocated. This might hit if 586 * error occurred much later after buf 602 * error occurred much later after buffer allocation. 587 */ 603 */ 588 if (image->file_mode) 604 if (image->file_mode) 589 kimage_file_post_load_cleanup( 605 kimage_file_post_load_cleanup(image); 590 606 591 kfree(image); 607 kfree(image); 592 } 608 } 593 609 594 static kimage_entry_t *kimage_dst_used(struct 610 static kimage_entry_t *kimage_dst_used(struct kimage *image, 595 unsign 611 unsigned long page) 596 { 612 { 597 kimage_entry_t *ptr, entry; 613 kimage_entry_t *ptr, entry; 598 unsigned long destination = 0; 614 unsigned long destination = 0; 599 615 600 for_each_kimage_entry(image, ptr, entr 616 for_each_kimage_entry(image, ptr, entry) { 601 if (entry & IND_DESTINATION) 617 if (entry & IND_DESTINATION) 602 destination = entry & 618 destination = entry & PAGE_MASK; 603 else if (entry & IND_SOURCE) { 619 else if (entry & IND_SOURCE) { 604 if (page == destinatio 620 if (page == destination) 605 return ptr; 621 return ptr; 606 destination += PAGE_SI 622 destination += PAGE_SIZE; 607 } 623 } 608 } 624 } 609 625 610 return NULL; 626 return NULL; 611 } 627 } 612 628 613 static struct page *kimage_alloc_page(struct k 629 static struct page *kimage_alloc_page(struct kimage *image, 614 gfp_t 630 gfp_t gfp_mask, 615 unsign 631 unsigned long destination) 616 { 632 { 617 /* 633 /* 618 * Here we implement safeguards to ens 634 * Here we implement safeguards to ensure that a source page 619 * is not copied to its destination pa 635 * is not copied to its destination page before the data on 620 * the destination page is no longer u 636 * the destination page is no longer useful. 621 * 637 * 622 * To do this we maintain the invarian 638 * To do this we maintain the invariant that a source page is 623 * either its own destination page, or 639 * either its own destination page, or it is not a 624 * destination page at all. 640 * destination page at all. 625 * 641 * 626 * That is slightly stronger than requ 642 * That is slightly stronger than required, but the proof 627 * that no problems will not occur is 643 * that no problems will not occur is trivial, and the 628 * implementation is simply to verify. 644 * implementation is simply to verify. 629 * 645 * 630 * When allocating all pages normally 646 * When allocating all pages normally this algorithm will run 631 * in O(N) time, but in the worst case 647 * in O(N) time, but in the worst case it will run in O(N^2) 632 * time. If the runtime is a problem 648 * time. If the runtime is a problem the data structures can 633 * be fixed. 649 * be fixed. 634 */ 650 */ 635 struct page *page; 651 struct page *page; 636 unsigned long addr; 652 unsigned long addr; 637 653 638 /* 654 /* 639 * Walk through the list of destinatio 655 * Walk through the list of destination pages, and see if I 640 * have a match. 656 * have a match. 641 */ 657 */ 642 list_for_each_entry(page, &image->dest 658 list_for_each_entry(page, &image->dest_pages, lru) { 643 addr = page_to_boot_pfn(page) 659 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 644 if (addr == destination) { 660 if (addr == destination) { 645 list_del(&page->lru); 661 list_del(&page->lru); 646 return page; 662 return page; 647 } 663 } 648 } 664 } 649 page = NULL; 665 page = NULL; 650 while (1) { 666 while (1) { 651 kimage_entry_t *old; 667 kimage_entry_t *old; 652 668 653 /* Allocate a page, if we run 669 /* Allocate a page, if we run out of memory give up */ 654 page = kimage_alloc_pages(gfp_ 670 page = kimage_alloc_pages(gfp_mask, 0); 655 if (!page) 671 if (!page) 656 return NULL; 672 return NULL; 657 /* If the page cannot be used 673 /* If the page cannot be used file it away */ 658 if (page_to_boot_pfn(page) > 674 if (page_to_boot_pfn(page) > 659 (KEXEC_SOURCE_ 675 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 660 list_add(&page->lru, & 676 list_add(&page->lru, &image->unusable_pages); 661 continue; 677 continue; 662 } 678 } 663 addr = page_to_boot_pfn(page) 679 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 664 680 665 /* If it is the destination pa 681 /* If it is the destination page we want use it */ 666 if (addr == destination) 682 if (addr == destination) 667 break; 683 break; 668 684 669 /* If the page is not a destin 685 /* If the page is not a destination page use it */ 670 if (!kimage_is_destination_ran 686 if (!kimage_is_destination_range(image, addr, 671 !! 687 addr + PAGE_SIZE)) 672 break; 688 break; 673 689 674 /* 690 /* 675 * I know that the page is som 691 * I know that the page is someones destination page. 676 * See if there is already a s 692 * See if there is already a source page for this 677 * destination page. And if s 693 * destination page. And if so swap the source pages. 678 */ 694 */ 679 old = kimage_dst_used(image, a 695 old = kimage_dst_used(image, addr); 680 if (old) { 696 if (old) { 681 /* If so move it */ 697 /* If so move it */ 682 unsigned long old_addr 698 unsigned long old_addr; 683 struct page *old_page; 699 struct page *old_page; 684 700 685 old_addr = *old & PAGE 701 old_addr = *old & PAGE_MASK; 686 old_page = boot_pfn_to 702 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 687 copy_highpage(page, ol 703 copy_highpage(page, old_page); 688 *old = addr | (*old & 704 *old = addr | (*old & ~PAGE_MASK); 689 705 690 /* The old page I have 706 /* The old page I have found cannot be a 691 * destination page, s 707 * destination page, so return it if it's 692 * gfp_flags honor the 708 * gfp_flags honor the ones passed in. 693 */ 709 */ 694 if (!(gfp_mask & __GFP 710 if (!(gfp_mask & __GFP_HIGHMEM) && 695 PageHighMem(old_pa 711 PageHighMem(old_page)) { 696 kimage_free_pa 712 kimage_free_pages(old_page); 697 continue; 713 continue; 698 } 714 } >> 715 addr = old_addr; 699 page = old_page; 716 page = old_page; 700 break; 717 break; 701 } 718 } 702 /* Place the page on the desti 719 /* Place the page on the destination list, to be used later */ 703 list_add(&page->lru, &image->d 720 list_add(&page->lru, &image->dest_pages); 704 } 721 } 705 722 706 return page; 723 return page; 707 } 724 } 708 725 709 static int kimage_load_normal_segment(struct k 726 static int kimage_load_normal_segment(struct kimage *image, 710 struc 727 struct kexec_segment *segment) 711 { 728 { 712 unsigned long maddr; 729 unsigned long maddr; 713 size_t ubytes, mbytes; 730 size_t ubytes, mbytes; 714 int result; 731 int result; 715 unsigned char __user *buf = NULL; 732 unsigned char __user *buf = NULL; 716 unsigned char *kbuf = NULL; 733 unsigned char *kbuf = NULL; 717 734 >> 735 result = 0; 718 if (image->file_mode) 736 if (image->file_mode) 719 kbuf = segment->kbuf; 737 kbuf = segment->kbuf; 720 else 738 else 721 buf = segment->buf; 739 buf = segment->buf; 722 ubytes = segment->bufsz; 740 ubytes = segment->bufsz; 723 mbytes = segment->memsz; 741 mbytes = segment->memsz; 724 maddr = segment->mem; 742 maddr = segment->mem; 725 743 726 result = kimage_set_destination(image, 744 result = kimage_set_destination(image, maddr); 727 if (result < 0) 745 if (result < 0) 728 goto out; 746 goto out; 729 747 730 while (mbytes) { 748 while (mbytes) { 731 struct page *page; 749 struct page *page; 732 char *ptr; 750 char *ptr; 733 size_t uchunk, mchunk; 751 size_t uchunk, mchunk; 734 752 735 page = kimage_alloc_page(image 753 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 736 if (!page) { 754 if (!page) { 737 result = -ENOMEM; 755 result = -ENOMEM; 738 goto out; 756 goto out; 739 } 757 } 740 result = kimage_add_page(image 758 result = kimage_add_page(image, page_to_boot_pfn(page) 741 759 << PAGE_SHIFT); 742 if (result < 0) 760 if (result < 0) 743 goto out; 761 goto out; 744 762 745 ptr = kmap_local_page(page); !! 763 ptr = kmap(page); 746 /* Start with a clear page */ 764 /* Start with a clear page */ 747 clear_page(ptr); 765 clear_page(ptr); 748 ptr += maddr & ~PAGE_MASK; 766 ptr += maddr & ~PAGE_MASK; 749 mchunk = min_t(size_t, mbytes, 767 mchunk = min_t(size_t, mbytes, 750 PAGE_SIZE - (m 768 PAGE_SIZE - (maddr & ~PAGE_MASK)); 751 uchunk = min(ubytes, mchunk); 769 uchunk = min(ubytes, mchunk); 752 770 753 if (uchunk) { !! 771 /* For file based kexec, source pages are in kernel memory */ 754 /* For file based kexe !! 772 if (image->file_mode) 755 if (image->file_mode) !! 773 memcpy(ptr, kbuf, uchunk); 756 memcpy(ptr, kb !! 774 else 757 else !! 775 result = copy_from_user(ptr, buf, uchunk); 758 result = copy_ !! 776 kunmap(page); 759 ubytes -= uchunk; << 760 if (image->file_mode) << 761 kbuf += uchunk << 762 else << 763 buf += uchunk; << 764 } << 765 kunmap_local(ptr); << 766 if (result) { 777 if (result) { 767 result = -EFAULT; 778 result = -EFAULT; 768 goto out; 779 goto out; 769 } 780 } >> 781 ubytes -= uchunk; 770 maddr += mchunk; 782 maddr += mchunk; >> 783 if (image->file_mode) >> 784 kbuf += mchunk; >> 785 else >> 786 buf += mchunk; 771 mbytes -= mchunk; 787 mbytes -= mchunk; 772 << 773 cond_resched(); << 774 } 788 } 775 out: 789 out: 776 return result; 790 return result; 777 } 791 } 778 792 779 #ifdef CONFIG_CRASH_DUMP << 780 static int kimage_load_crash_segment(struct ki 793 static int kimage_load_crash_segment(struct kimage *image, 781 struct 794 struct kexec_segment *segment) 782 { 795 { 783 /* For crash dumps kernels we simply c 796 /* For crash dumps kernels we simply copy the data from 784 * user space to it's destination. 797 * user space to it's destination. 785 * We do things a page at a time for t 798 * We do things a page at a time for the sake of kmap. 786 */ 799 */ 787 unsigned long maddr; 800 unsigned long maddr; 788 size_t ubytes, mbytes; 801 size_t ubytes, mbytes; 789 int result; 802 int result; 790 unsigned char __user *buf = NULL; 803 unsigned char __user *buf = NULL; 791 unsigned char *kbuf = NULL; 804 unsigned char *kbuf = NULL; 792 805 793 result = 0; 806 result = 0; 794 if (image->file_mode) 807 if (image->file_mode) 795 kbuf = segment->kbuf; 808 kbuf = segment->kbuf; 796 else 809 else 797 buf = segment->buf; 810 buf = segment->buf; 798 ubytes = segment->bufsz; 811 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 812 mbytes = segment->memsz; 800 maddr = segment->mem; 813 maddr = segment->mem; 801 while (mbytes) { 814 while (mbytes) { 802 struct page *page; 815 struct page *page; 803 char *ptr; 816 char *ptr; 804 size_t uchunk, mchunk; 817 size_t uchunk, mchunk; 805 818 806 page = boot_pfn_to_page(maddr 819 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 807 if (!page) { 820 if (!page) { 808 result = -ENOMEM; 821 result = -ENOMEM; 809 goto out; 822 goto out; 810 } 823 } 811 arch_kexec_post_alloc_pages(pa !! 824 ptr = kmap(page); 812 ptr = kmap_local_page(page); << 813 ptr += maddr & ~PAGE_MASK; 825 ptr += maddr & ~PAGE_MASK; 814 mchunk = min_t(size_t, mbytes, 826 mchunk = min_t(size_t, mbytes, 815 PAGE_SIZE - (m 827 PAGE_SIZE - (maddr & ~PAGE_MASK)); 816 uchunk = min(ubytes, mchunk); 828 uchunk = min(ubytes, mchunk); 817 if (mchunk > uchunk) { 829 if (mchunk > uchunk) { 818 /* Zero the trailing p 830 /* Zero the trailing part of the page */ 819 memset(ptr + uchunk, 0 831 memset(ptr + uchunk, 0, mchunk - uchunk); 820 } 832 } 821 833 822 if (uchunk) { !! 834 /* For file based kexec, source pages are in kernel memory */ 823 /* For file based kexe !! 835 if (image->file_mode) 824 if (image->file_mode) !! 836 memcpy(ptr, kbuf, uchunk); 825 memcpy(ptr, kb !! 837 else 826 else !! 838 result = copy_from_user(ptr, buf, uchunk); 827 result = copy_ << 828 ubytes -= uchunk; << 829 if (image->file_mode) << 830 kbuf += uchunk << 831 else << 832 buf += uchunk; << 833 } << 834 kexec_flush_icache_page(page); 839 kexec_flush_icache_page(page); 835 kunmap_local(ptr); !! 840 kunmap(page); 836 arch_kexec_pre_free_pages(page << 837 if (result) { 841 if (result) { 838 result = -EFAULT; 842 result = -EFAULT; 839 goto out; 843 goto out; 840 } 844 } >> 845 ubytes -= uchunk; 841 maddr += mchunk; 846 maddr += mchunk; >> 847 if (image->file_mode) >> 848 kbuf += mchunk; >> 849 else >> 850 buf += mchunk; 842 mbytes -= mchunk; 851 mbytes -= mchunk; 843 << 844 cond_resched(); << 845 } 852 } 846 out: 853 out: 847 return result; 854 return result; 848 } 855 } 849 #endif << 850 856 851 int kimage_load_segment(struct kimage *image, 857 int kimage_load_segment(struct kimage *image, 852 struct kexec_s 858 struct kexec_segment *segment) 853 { 859 { 854 int result = -ENOMEM; 860 int result = -ENOMEM; 855 861 856 switch (image->type) { 862 switch (image->type) { 857 case KEXEC_TYPE_DEFAULT: 863 case KEXEC_TYPE_DEFAULT: 858 result = kimage_load_normal_se 864 result = kimage_load_normal_segment(image, segment); 859 break; 865 break; 860 #ifdef CONFIG_CRASH_DUMP << 861 case KEXEC_TYPE_CRASH: 866 case KEXEC_TYPE_CRASH: 862 result = kimage_load_crash_seg 867 result = kimage_load_crash_segment(image, segment); 863 break; 868 break; 864 #endif << 865 } 869 } 866 870 867 return result; 871 return result; 868 } 872 } 869 873 870 struct kexec_load_limit { !! 874 struct kimage *kexec_image; 871 /* Mutex protects the limit count. */ !! 875 struct kimage *kexec_crash_image; 872 struct mutex mutex; !! 876 int kexec_load_disabled; 873 int limit; << 874 }; << 875 877 876 static struct kexec_load_limit load_limit_rebo !! 878 /* 877 .mutex = __MUTEX_INITIALIZER(load_limi !! 879 * No panic_cpu check version of crash_kexec(). This function is called 878 .limit = -1, !! 880 * only when panic_cpu holds the current CPU number; this is the only CPU 879 }; !! 881 * which processes crash_kexec routines. >> 882 */ >> 883 void __crash_kexec(struct pt_regs *regs) >> 884 { >> 885 /* Take the kexec_mutex here to prevent sys_kexec_load >> 886 * running on one cpu from replacing the crash kernel >> 887 * we are using after a panic on a different cpu. >> 888 * >> 889 * If the crash kernel was not located in a fixed area >> 890 * of memory the xchg(&kexec_crash_image) would be >> 891 * sufficient. But since I reuse the memory... >> 892 */ >> 893 if (mutex_trylock(&kexec_mutex)) { >> 894 if (kexec_crash_image) { >> 895 struct pt_regs fixed_regs; >> 896 >> 897 crash_setup_regs(&fixed_regs, regs); >> 898 crash_save_vmcoreinfo(); >> 899 machine_crash_shutdown(&fixed_regs); >> 900 machine_kexec(kexec_crash_image); >> 901 } >> 902 mutex_unlock(&kexec_mutex); >> 903 } >> 904 } 880 905 881 static struct kexec_load_limit load_limit_pani !! 906 void crash_kexec(struct pt_regs *regs) 882 .mutex = __MUTEX_INITIALIZER(load_limi !! 907 { 883 .limit = -1, !! 908 int old_cpu, this_cpu; 884 }; !! 909 >> 910 /* >> 911 * Only one CPU is allowed to execute the crash_kexec() code as with >> 912 * panic(). Otherwise parallel calls of panic() and crash_kexec() >> 913 * may stop each other. To exclude them, we use panic_cpu here too. >> 914 */ >> 915 this_cpu = raw_smp_processor_id(); >> 916 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); >> 917 if (old_cpu == PANIC_CPU_INVALID) { >> 918 /* This is the 1st CPU which comes here, so go ahead. */ >> 919 printk_safe_flush_on_panic(); >> 920 __crash_kexec(regs); >> 921 >> 922 /* >> 923 * Reset panic_cpu to allow another panic()/crash_kexec() >> 924 * call. >> 925 */ >> 926 atomic_set(&panic_cpu, PANIC_CPU_INVALID); >> 927 } >> 928 } >> 929 >> 930 size_t crash_get_memory_size(void) >> 931 { >> 932 size_t size = 0; >> 933 >> 934 mutex_lock(&kexec_mutex); >> 935 if (crashk_res.end != crashk_res.start) >> 936 size = resource_size(&crashk_res); >> 937 mutex_unlock(&kexec_mutex); >> 938 return size; >> 939 } >> 940 >> 941 void __weak crash_free_reserved_phys_range(unsigned long begin, >> 942 unsigned long end) >> 943 { >> 944 unsigned long addr; >> 945 >> 946 for (addr = begin; addr < end; addr += PAGE_SIZE) >> 947 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); >> 948 } >> 949 >> 950 int crash_shrink_memory(unsigned long new_size) >> 951 { >> 952 int ret = 0; >> 953 unsigned long start, end; >> 954 unsigned long old_size; >> 955 struct resource *ram_res; >> 956 >> 957 mutex_lock(&kexec_mutex); >> 958 >> 959 if (kexec_crash_image) { >> 960 ret = -ENOENT; >> 961 goto unlock; >> 962 } >> 963 start = crashk_res.start; >> 964 end = crashk_res.end; >> 965 old_size = (end == 0) ? 0 : end - start + 1; >> 966 if (new_size >= old_size) { >> 967 ret = (new_size == old_size) ? 0 : -EINVAL; >> 968 goto unlock; >> 969 } >> 970 >> 971 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); >> 972 if (!ram_res) { >> 973 ret = -ENOMEM; >> 974 goto unlock; >> 975 } >> 976 >> 977 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); >> 978 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); >> 979 >> 980 crash_free_reserved_phys_range(end, crashk_res.end); >> 981 >> 982 if ((start == end) && (crashk_res.parent != NULL)) >> 983 release_resource(&crashk_res); >> 984 >> 985 ram_res->start = end; >> 986 ram_res->end = crashk_res.end; >> 987 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; >> 988 ram_res->name = "System RAM"; >> 989 >> 990 crashk_res.end = end - 1; >> 991 >> 992 insert_resource(&iomem_resource, ram_res); >> 993 >> 994 unlock: >> 995 mutex_unlock(&kexec_mutex); >> 996 return ret; >> 997 } >> 998 >> 999 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, >> 1000 size_t data_len) >> 1001 { >> 1002 struct elf_note note; >> 1003 >> 1004 note.n_namesz = strlen(name) + 1; >> 1005 note.n_descsz = data_len; >> 1006 note.n_type = type; >> 1007 memcpy(buf, ¬e, sizeof(note)); >> 1008 buf += (sizeof(note) + 3)/4; >> 1009 memcpy(buf, name, note.n_namesz); >> 1010 buf += (note.n_namesz + 3)/4; >> 1011 memcpy(buf, data, note.n_descsz); >> 1012 buf += (note.n_descsz + 3)/4; >> 1013 >> 1014 return buf; >> 1015 } >> 1016 >> 1017 static void final_note(u32 *buf) >> 1018 { >> 1019 struct elf_note note; >> 1020 >> 1021 note.n_namesz = 0; >> 1022 note.n_descsz = 0; >> 1023 note.n_type = 0; >> 1024 memcpy(buf, ¬e, sizeof(note)); >> 1025 } >> 1026 >> 1027 void crash_save_cpu(struct pt_regs *regs, int cpu) >> 1028 { >> 1029 struct elf_prstatus prstatus; >> 1030 u32 *buf; >> 1031 >> 1032 if ((cpu < 0) || (cpu >= nr_cpu_ids)) >> 1033 return; >> 1034 >> 1035 /* Using ELF notes here is opportunistic. >> 1036 * I need a well defined structure format >> 1037 * for the data I pass, and I need tags >> 1038 * on the data to indicate what information I have >> 1039 * squirrelled away. ELF notes happen to provide >> 1040 * all of that, so there is no need to invent something new. >> 1041 */ >> 1042 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); >> 1043 if (!buf) >> 1044 return; >> 1045 memset(&prstatus, 0, sizeof(prstatus)); >> 1046 prstatus.pr_pid = current->pid; >> 1047 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); >> 1048 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, >> 1049 &prstatus, sizeof(prstatus)); >> 1050 final_note(buf); >> 1051 } >> 1052 >> 1053 static int __init crash_notes_memory_init(void) >> 1054 { >> 1055 /* Allocate memory for saving cpu registers. */ >> 1056 size_t size, align; >> 1057 >> 1058 /* >> 1059 * crash_notes could be allocated across 2 vmalloc pages when percpu >> 1060 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc >> 1061 * pages are also on 2 continuous physical pages. In this case the >> 1062 * 2nd part of crash_notes in 2nd page could be lost since only the >> 1063 * starting address and size of crash_notes are exported through sysfs. >> 1064 * Here round up the size of crash_notes to the nearest power of two >> 1065 * and pass it to __alloc_percpu as align value. This can make sure >> 1066 * crash_notes is allocated inside one physical page. >> 1067 */ >> 1068 size = sizeof(note_buf_t); >> 1069 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); >> 1070 >> 1071 /* >> 1072 * Break compile if size is bigger than PAGE_SIZE since crash_notes >> 1073 * definitely will be in 2 pages with that. >> 1074 */ >> 1075 BUILD_BUG_ON(size > PAGE_SIZE); >> 1076 >> 1077 crash_notes = __alloc_percpu(size, align); >> 1078 if (!crash_notes) { >> 1079 pr_warn("Memory allocation for saving cpu register states failed\n"); >> 1080 return -ENOMEM; >> 1081 } >> 1082 return 0; >> 1083 } >> 1084 subsys_initcall(crash_notes_memory_init); 885 1085 886 struct kimage *kexec_image; << 887 struct kimage *kexec_crash_image; << 888 static int kexec_load_disabled; << 889 1086 890 #ifdef CONFIG_SYSCTL !! 1087 /* 891 static int kexec_limit_handler(const struct ct !! 1088 * parsing the "crashkernel" commandline 892 void *buffer, s !! 1089 * 893 { !! 1090 * this code is intended to be called from architecture specific code 894 struct kexec_load_limit *limit = table !! 1091 */ 895 int val; << 896 struct ctl_table tmp = { << 897 .data = &val, << 898 .maxlen = sizeof(val), << 899 .mode = table->mode, << 900 }; << 901 int ret; << 902 << 903 if (write) { << 904 ret = proc_dointvec(&tmp, writ << 905 if (ret) << 906 return ret; << 907 1092 908 if (val < 0) !! 1093 >> 1094 /* >> 1095 * This function parses command lines in the format >> 1096 * >> 1097 * crashkernel=ramsize-range:size[,...][@offset] >> 1098 * >> 1099 * The function returns 0 on success and -EINVAL on failure. >> 1100 */ >> 1101 static int __init parse_crashkernel_mem(char *cmdline, >> 1102 unsigned long long system_ram, >> 1103 unsigned long long *crash_size, >> 1104 unsigned long long *crash_base) >> 1105 { >> 1106 char *cur = cmdline, *tmp; >> 1107 >> 1108 /* for each entry of the comma-separated list */ >> 1109 do { >> 1110 unsigned long long start, end = ULLONG_MAX, size; >> 1111 >> 1112 /* get the start of the range */ >> 1113 start = memparse(cur, &tmp); >> 1114 if (cur == tmp) { >> 1115 pr_warn("crashkernel: Memory value expected\n"); >> 1116 return -EINVAL; >> 1117 } >> 1118 cur = tmp; >> 1119 if (*cur != '-') { >> 1120 pr_warn("crashkernel: '-' expected\n"); 909 return -EINVAL; 1121 return -EINVAL; >> 1122 } >> 1123 cur++; 910 1124 911 mutex_lock(&limit->mutex); !! 1125 /* if no ':' is here, than we read the end */ 912 if (limit->limit != -1 && val !! 1126 if (*cur != ':') { 913 ret = -EINVAL; !! 1127 end = memparse(cur, &tmp); 914 else !! 1128 if (cur == tmp) { 915 limit->limit = val; !! 1129 pr_warn("crashkernel: Memory value expected\n"); 916 mutex_unlock(&limit->mutex); !! 1130 return -EINVAL; >> 1131 } >> 1132 cur = tmp; >> 1133 if (end <= start) { >> 1134 pr_warn("crashkernel: end <= start\n"); >> 1135 return -EINVAL; >> 1136 } >> 1137 } >> 1138 >> 1139 if (*cur != ':') { >> 1140 pr_warn("crashkernel: ':' expected\n"); >> 1141 return -EINVAL; >> 1142 } >> 1143 cur++; >> 1144 >> 1145 size = memparse(cur, &tmp); >> 1146 if (cur == tmp) { >> 1147 pr_warn("Memory value expected\n"); >> 1148 return -EINVAL; >> 1149 } >> 1150 cur = tmp; >> 1151 if (size >= system_ram) { >> 1152 pr_warn("crashkernel: invalid size\n"); >> 1153 return -EINVAL; >> 1154 } 917 1155 918 return ret; !! 1156 /* match ? */ >> 1157 if (system_ram >= start && system_ram < end) { >> 1158 *crash_size = size; >> 1159 break; >> 1160 } >> 1161 } while (*cur++ == ','); >> 1162 >> 1163 if (*crash_size > 0) { >> 1164 while (*cur && *cur != ' ' && *cur != '@') >> 1165 cur++; >> 1166 if (*cur == '@') { >> 1167 cur++; >> 1168 *crash_base = memparse(cur, &tmp); >> 1169 if (cur == tmp) { >> 1170 pr_warn("Memory value expected after '@'\n"); >> 1171 return -EINVAL; >> 1172 } >> 1173 } >> 1174 } >> 1175 >> 1176 return 0; >> 1177 } >> 1178 >> 1179 /* >> 1180 * That function parses "simple" (old) crashkernel command lines like >> 1181 * >> 1182 * crashkernel=size[@offset] >> 1183 * >> 1184 * It returns 0 on success and -EINVAL on failure. >> 1185 */ >> 1186 static int __init parse_crashkernel_simple(char *cmdline, >> 1187 unsigned long long *crash_size, >> 1188 unsigned long long *crash_base) >> 1189 { >> 1190 char *cur = cmdline; >> 1191 >> 1192 *crash_size = memparse(cmdline, &cur); >> 1193 if (cmdline == cur) { >> 1194 pr_warn("crashkernel: memory value expected\n"); >> 1195 return -EINVAL; 919 } 1196 } 920 1197 921 mutex_lock(&limit->mutex); !! 1198 if (*cur == '@') 922 val = limit->limit; !! 1199 *crash_base = memparse(cur+1, &cur); 923 mutex_unlock(&limit->mutex); !! 1200 else if (*cur != ' ' && *cur != '\0') { >> 1201 pr_warn("crashkernel: unrecognized char: %c\n", *cur); >> 1202 return -EINVAL; >> 1203 } 924 1204 925 return proc_dointvec(&tmp, write, buff !! 1205 return 0; 926 } 1206 } 927 1207 928 static struct ctl_table kexec_core_sysctls[] = !! 1208 #define SUFFIX_HIGH 0 929 { !! 1209 #define SUFFIX_LOW 1 930 .procname = "kexec_load_ !! 1210 #define SUFFIX_NULL 2 931 .data = &kexec_load_ !! 1211 static __initdata char *suffix_tbl[] = { 932 .maxlen = sizeof(int), !! 1212 [SUFFIX_HIGH] = ",high", 933 .mode = 0644, !! 1213 [SUFFIX_LOW] = ",low", 934 /* only handle a transition fr !! 1214 [SUFFIX_NULL] = NULL, 935 .proc_handler = proc_dointve << 936 .extra1 = SYSCTL_ONE, << 937 .extra2 = SYSCTL_ONE, << 938 }, << 939 { << 940 .procname = "kexec_load_ << 941 .data = &load_limit_ << 942 .mode = 0644, << 943 .proc_handler = kexec_limit_ << 944 }, << 945 { << 946 .procname = "kexec_load_ << 947 .data = &load_limit_ << 948 .mode = 0644, << 949 .proc_handler = kexec_limit_ << 950 }, << 951 }; 1215 }; 952 1216 953 static int __init kexec_core_sysctl_init(void) !! 1217 /* 954 { !! 1218 * That function parses "suffix" crashkernel command lines like 955 register_sysctl_init("kernel", kexec_c !! 1219 * >> 1220 * crashkernel=size,[high|low] >> 1221 * >> 1222 * It returns 0 on success and -EINVAL on failure. >> 1223 */ >> 1224 static int __init parse_crashkernel_suffix(char *cmdline, >> 1225 unsigned long long *crash_size, >> 1226 const char *suffix) >> 1227 { >> 1228 char *cur = cmdline; >> 1229 >> 1230 *crash_size = memparse(cmdline, &cur); >> 1231 if (cmdline == cur) { >> 1232 pr_warn("crashkernel: memory value expected\n"); >> 1233 return -EINVAL; >> 1234 } >> 1235 >> 1236 /* check with suffix */ >> 1237 if (strncmp(cur, suffix, strlen(suffix))) { >> 1238 pr_warn("crashkernel: unrecognized char: %c\n", *cur); >> 1239 return -EINVAL; >> 1240 } >> 1241 cur += strlen(suffix); >> 1242 if (*cur != ' ' && *cur != '\0') { >> 1243 pr_warn("crashkernel: unrecognized char: %c\n", *cur); >> 1244 return -EINVAL; >> 1245 } >> 1246 956 return 0; 1247 return 0; 957 } 1248 } 958 late_initcall(kexec_core_sysctl_init); << 959 #endif << 960 1249 961 bool kexec_load_permitted(int kexec_image_type !! 1250 static __init char *get_last_crashkernel(char *cmdline, >> 1251 const char *name, >> 1252 const char *suffix) >> 1253 { >> 1254 char *p = cmdline, *ck_cmdline = NULL; >> 1255 >> 1256 /* find crashkernel and use the last one if there are more */ >> 1257 p = strstr(p, name); >> 1258 while (p) { >> 1259 char *end_p = strchr(p, ' '); >> 1260 char *q; >> 1261 >> 1262 if (!end_p) >> 1263 end_p = p + strlen(p); >> 1264 >> 1265 if (!suffix) { >> 1266 int i; >> 1267 >> 1268 /* skip the one with any known suffix */ >> 1269 for (i = 0; suffix_tbl[i]; i++) { >> 1270 q = end_p - strlen(suffix_tbl[i]); >> 1271 if (!strncmp(q, suffix_tbl[i], >> 1272 strlen(suffix_tbl[i]))) >> 1273 goto next; >> 1274 } >> 1275 ck_cmdline = p; >> 1276 } else { >> 1277 q = end_p - strlen(suffix); >> 1278 if (!strncmp(q, suffix, strlen(suffix))) >> 1279 ck_cmdline = p; >> 1280 } >> 1281 next: >> 1282 p = strstr(p+1, name); >> 1283 } >> 1284 >> 1285 if (!ck_cmdline) >> 1286 return NULL; >> 1287 >> 1288 return ck_cmdline; >> 1289 } >> 1290 >> 1291 static int __init __parse_crashkernel(char *cmdline, >> 1292 unsigned long long system_ram, >> 1293 unsigned long long *crash_size, >> 1294 unsigned long long *crash_base, >> 1295 const char *name, >> 1296 const char *suffix) 962 { 1297 { 963 struct kexec_load_limit *limit; !! 1298 char *first_colon, *first_space; >> 1299 char *ck_cmdline; 964 1300 >> 1301 BUG_ON(!crash_size || !crash_base); >> 1302 *crash_size = 0; >> 1303 *crash_base = 0; >> 1304 >> 1305 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); >> 1306 >> 1307 if (!ck_cmdline) >> 1308 return -EINVAL; >> 1309 >> 1310 ck_cmdline += strlen(name); >> 1311 >> 1312 if (suffix) >> 1313 return parse_crashkernel_suffix(ck_cmdline, crash_size, >> 1314 suffix); 965 /* 1315 /* 966 * Only the superuser can use the kexe !! 1316 * if the commandline contains a ':', then that's the extended 967 * been disabled. !! 1317 * syntax -- if not, it must be the classic syntax 968 */ 1318 */ 969 if (!capable(CAP_SYS_BOOT) || kexec_lo !! 1319 first_colon = strchr(ck_cmdline, ':'); 970 return false; !! 1320 first_space = strchr(ck_cmdline, ' '); >> 1321 if (first_colon && (!first_space || first_colon < first_space)) >> 1322 return parse_crashkernel_mem(ck_cmdline, system_ram, >> 1323 crash_size, crash_base); >> 1324 >> 1325 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); >> 1326 } >> 1327 >> 1328 /* >> 1329 * That function is the entry point for command line parsing and should be >> 1330 * called from the arch-specific code. >> 1331 */ >> 1332 int __init parse_crashkernel(char *cmdline, >> 1333 unsigned long long system_ram, >> 1334 unsigned long long *crash_size, >> 1335 unsigned long long *crash_base) >> 1336 { >> 1337 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, >> 1338 "crashkernel=", NULL); >> 1339 } >> 1340 >> 1341 int __init parse_crashkernel_high(char *cmdline, >> 1342 unsigned long long system_ram, >> 1343 unsigned long long *crash_size, >> 1344 unsigned long long *crash_base) >> 1345 { >> 1346 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, >> 1347 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); >> 1348 } >> 1349 >> 1350 int __init parse_crashkernel_low(char *cmdline, >> 1351 unsigned long long system_ram, >> 1352 unsigned long long *crash_size, >> 1353 unsigned long long *crash_base) >> 1354 { >> 1355 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, >> 1356 "crashkernel=", suffix_tbl[SUFFIX_LOW]); >> 1357 } >> 1358 >> 1359 static void update_vmcoreinfo_note(void) >> 1360 { >> 1361 u32 *buf = vmcoreinfo_note; >> 1362 >> 1363 if (!vmcoreinfo_size) >> 1364 return; >> 1365 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, >> 1366 vmcoreinfo_size); >> 1367 final_note(buf); >> 1368 } >> 1369 >> 1370 void crash_save_vmcoreinfo(void) >> 1371 { >> 1372 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); >> 1373 update_vmcoreinfo_note(); >> 1374 } >> 1375 >> 1376 void vmcoreinfo_append_str(const char *fmt, ...) >> 1377 { >> 1378 va_list args; >> 1379 char buf[0x50]; >> 1380 size_t r; >> 1381 >> 1382 va_start(args, fmt); >> 1383 r = vscnprintf(buf, sizeof(buf), fmt, args); >> 1384 va_end(args); >> 1385 >> 1386 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); >> 1387 >> 1388 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); >> 1389 >> 1390 vmcoreinfo_size += r; >> 1391 } >> 1392 >> 1393 /* >> 1394 * provide an empty default implementation here -- architecture >> 1395 * code may override this >> 1396 */ >> 1397 void __weak arch_crash_save_vmcoreinfo(void) >> 1398 {} >> 1399 >> 1400 phys_addr_t __weak paddr_vmcoreinfo_note(void) >> 1401 { >> 1402 return __pa_symbol((unsigned long)(char *)&vmcoreinfo_note); >> 1403 } >> 1404 >> 1405 static int __init crash_save_vmcoreinfo_init(void) >> 1406 { >> 1407 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); >> 1408 VMCOREINFO_PAGESIZE(PAGE_SIZE); >> 1409 >> 1410 VMCOREINFO_SYMBOL(init_uts_ns); >> 1411 VMCOREINFO_SYMBOL(node_online_map); >> 1412 #ifdef CONFIG_MMU >> 1413 VMCOREINFO_SYMBOL(swapper_pg_dir); >> 1414 #endif >> 1415 VMCOREINFO_SYMBOL(_stext); >> 1416 VMCOREINFO_SYMBOL(vmap_area_list); >> 1417 >> 1418 #ifndef CONFIG_NEED_MULTIPLE_NODES >> 1419 VMCOREINFO_SYMBOL(mem_map); >> 1420 VMCOREINFO_SYMBOL(contig_page_data); >> 1421 #endif >> 1422 #ifdef CONFIG_SPARSEMEM >> 1423 VMCOREINFO_SYMBOL(mem_section); >> 1424 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); >> 1425 VMCOREINFO_STRUCT_SIZE(mem_section); >> 1426 VMCOREINFO_OFFSET(mem_section, section_mem_map); >> 1427 #endif >> 1428 VMCOREINFO_STRUCT_SIZE(page); >> 1429 VMCOREINFO_STRUCT_SIZE(pglist_data); >> 1430 VMCOREINFO_STRUCT_SIZE(zone); >> 1431 VMCOREINFO_STRUCT_SIZE(free_area); >> 1432 VMCOREINFO_STRUCT_SIZE(list_head); >> 1433 VMCOREINFO_SIZE(nodemask_t); >> 1434 VMCOREINFO_OFFSET(page, flags); >> 1435 VMCOREINFO_OFFSET(page, _refcount); >> 1436 VMCOREINFO_OFFSET(page, mapping); >> 1437 VMCOREINFO_OFFSET(page, lru); >> 1438 VMCOREINFO_OFFSET(page, _mapcount); >> 1439 VMCOREINFO_OFFSET(page, private); >> 1440 VMCOREINFO_OFFSET(page, compound_dtor); >> 1441 VMCOREINFO_OFFSET(page, compound_order); >> 1442 VMCOREINFO_OFFSET(page, compound_head); >> 1443 VMCOREINFO_OFFSET(pglist_data, node_zones); >> 1444 VMCOREINFO_OFFSET(pglist_data, nr_zones); >> 1445 #ifdef CONFIG_FLAT_NODE_MEM_MAP >> 1446 VMCOREINFO_OFFSET(pglist_data, node_mem_map); >> 1447 #endif >> 1448 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); >> 1449 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); >> 1450 VMCOREINFO_OFFSET(pglist_data, node_id); >> 1451 VMCOREINFO_OFFSET(zone, free_area); >> 1452 VMCOREINFO_OFFSET(zone, vm_stat); >> 1453 VMCOREINFO_OFFSET(zone, spanned_pages); >> 1454 VMCOREINFO_OFFSET(free_area, free_list); >> 1455 VMCOREINFO_OFFSET(list_head, next); >> 1456 VMCOREINFO_OFFSET(list_head, prev); >> 1457 VMCOREINFO_OFFSET(vmap_area, va_start); >> 1458 VMCOREINFO_OFFSET(vmap_area, list); >> 1459 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); >> 1460 log_buf_kexec_setup(); >> 1461 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); >> 1462 VMCOREINFO_NUMBER(NR_FREE_PAGES); >> 1463 VMCOREINFO_NUMBER(PG_lru); >> 1464 VMCOREINFO_NUMBER(PG_private); >> 1465 VMCOREINFO_NUMBER(PG_swapcache); >> 1466 VMCOREINFO_NUMBER(PG_slab); >> 1467 #ifdef CONFIG_MEMORY_FAILURE >> 1468 VMCOREINFO_NUMBER(PG_hwpoison); >> 1469 #endif >> 1470 VMCOREINFO_NUMBER(PG_head_mask); >> 1471 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); >> 1472 #ifdef CONFIG_HUGETLB_PAGE >> 1473 VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR); >> 1474 #endif 971 1475 972 /* Check limit counter and decrease it !! 1476 arch_crash_save_vmcoreinfo(); 973 limit = (kexec_image_type == KEXEC_TYP !! 1477 update_vmcoreinfo_note(); 974 &load_limit_panic : &load_limi << 975 mutex_lock(&limit->mutex); << 976 if (!limit->limit) { << 977 mutex_unlock(&limit->mutex); << 978 return false; << 979 } << 980 if (limit->limit != -1) << 981 limit->limit--; << 982 mutex_unlock(&limit->mutex); << 983 1478 984 return true; !! 1479 return 0; 985 } 1480 } 986 1481 >> 1482 subsys_initcall(crash_save_vmcoreinfo_init); >> 1483 987 /* 1484 /* 988 * Move into place and start executing a prelo 1485 * Move into place and start executing a preloaded standalone 989 * executable. If nothing was preloaded retur 1486 * executable. If nothing was preloaded return an error. 990 */ 1487 */ 991 int kernel_kexec(void) 1488 int kernel_kexec(void) 992 { 1489 { 993 int error = 0; 1490 int error = 0; 994 1491 995 if (!kexec_trylock()) !! 1492 if (!mutex_trylock(&kexec_mutex)) 996 return -EBUSY; 1493 return -EBUSY; 997 if (!kexec_image) { 1494 if (!kexec_image) { 998 error = -EINVAL; 1495 error = -EINVAL; 999 goto Unlock; 1496 goto Unlock; 1000 } 1497 } 1001 1498 1002 #ifdef CONFIG_KEXEC_JUMP 1499 #ifdef CONFIG_KEXEC_JUMP 1003 if (kexec_image->preserve_context) { 1500 if (kexec_image->preserve_context) { >> 1501 lock_system_sleep(); 1004 pm_prepare_console(); 1502 pm_prepare_console(); 1005 error = freeze_processes(); 1503 error = freeze_processes(); 1006 if (error) { 1504 if (error) { 1007 error = -EBUSY; 1505 error = -EBUSY; 1008 goto Restore_console; 1506 goto Restore_console; 1009 } 1507 } 1010 suspend_console(); 1508 suspend_console(); 1011 error = dpm_suspend_start(PMS 1509 error = dpm_suspend_start(PMSG_FREEZE); 1012 if (error) 1510 if (error) 1013 goto Resume_console; 1511 goto Resume_console; 1014 /* At this point, dpm_suspend 1512 /* At this point, dpm_suspend_start() has been called, 1015 * but *not* dpm_suspend_end( 1513 * but *not* dpm_suspend_end(). We *must* call 1016 * dpm_suspend_end() now. Ot 1514 * dpm_suspend_end() now. Otherwise, drivers for 1017 * some devices (e.g. interru 1515 * some devices (e.g. interrupt controllers) become 1018 * desynchronized with the ac 1516 * desynchronized with the actual state of the 1019 * hardware at resume time, a 1517 * hardware at resume time, and evil weirdness ensues. 1020 */ 1518 */ 1021 error = dpm_suspend_end(PMSG_ 1519 error = dpm_suspend_end(PMSG_FREEZE); 1022 if (error) 1520 if (error) 1023 goto Resume_devices; 1521 goto Resume_devices; 1024 error = suspend_disable_secon !! 1522 error = disable_nonboot_cpus(); 1025 if (error) 1523 if (error) 1026 goto Enable_cpus; 1524 goto Enable_cpus; 1027 local_irq_disable(); 1525 local_irq_disable(); 1028 error = syscore_suspend(); 1526 error = syscore_suspend(); 1029 if (error) 1527 if (error) 1030 goto Enable_irqs; 1528 goto Enable_irqs; 1031 } else 1529 } else 1032 #endif 1530 #endif 1033 { 1531 { 1034 kexec_in_progress = true; 1532 kexec_in_progress = true; 1035 kernel_restart_prepare("kexec !! 1533 kernel_restart_prepare(NULL); 1036 migrate_to_reboot_cpu(); 1534 migrate_to_reboot_cpu(); 1037 syscore_shutdown(); << 1038 1535 1039 /* 1536 /* 1040 * migrate_to_reboot_cpu() di 1537 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1041 * no further code needs to u 1538 * no further code needs to use CPU hotplug (which is true in 1042 * the reboot case). However, 1539 * the reboot case). However, the kexec path depends on using 1043 * CPU hotplug again; so re-e 1540 * CPU hotplug again; so re-enable it here. 1044 */ 1541 */ 1045 cpu_hotplug_enable(); 1542 cpu_hotplug_enable(); 1046 pr_notice("Starting new kerne !! 1543 pr_emerg("Starting new kernel\n"); 1047 machine_shutdown(); 1544 machine_shutdown(); 1048 } 1545 } 1049 1546 1050 kmsg_dump(KMSG_DUMP_SHUTDOWN); << 1051 machine_kexec(kexec_image); 1547 machine_kexec(kexec_image); 1052 1548 1053 #ifdef CONFIG_KEXEC_JUMP 1549 #ifdef CONFIG_KEXEC_JUMP 1054 if (kexec_image->preserve_context) { 1550 if (kexec_image->preserve_context) { 1055 syscore_resume(); 1551 syscore_resume(); 1056 Enable_irqs: 1552 Enable_irqs: 1057 local_irq_enable(); 1553 local_irq_enable(); 1058 Enable_cpus: 1554 Enable_cpus: 1059 suspend_enable_secondary_cpus !! 1555 enable_nonboot_cpus(); 1060 dpm_resume_start(PMSG_RESTORE 1556 dpm_resume_start(PMSG_RESTORE); 1061 Resume_devices: 1557 Resume_devices: 1062 dpm_resume_end(PMSG_RESTORE); 1558 dpm_resume_end(PMSG_RESTORE); 1063 Resume_console: 1559 Resume_console: 1064 resume_console(); 1560 resume_console(); 1065 thaw_processes(); 1561 thaw_processes(); 1066 Restore_console: 1562 Restore_console: 1067 pm_restore_console(); 1563 pm_restore_console(); >> 1564 unlock_system_sleep(); 1068 } 1565 } 1069 #endif 1566 #endif 1070 1567 1071 Unlock: 1568 Unlock: 1072 kexec_unlock(); !! 1569 mutex_unlock(&kexec_mutex); 1073 return error; 1570 return error; 1074 } 1571 } >> 1572 >> 1573 /* >> 1574 * Protection mechanism for crashkernel reserved memory after >> 1575 * the kdump kernel is loaded. >> 1576 * >> 1577 * Provide an empty default implementation here -- architecture >> 1578 * code may override this >> 1579 */ >> 1580 void __weak arch_kexec_protect_crashkres(void) >> 1581 {} >> 1582 >> 1583 void __weak arch_kexec_unprotect_crashkres(void) >> 1584 {} 1075 1585
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.