1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * kexec.c - kexec system call core code. 2 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <eb 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> >> 4 * >> 5 * This source code is licensed under the GNU General Public License, >> 6 * Version 2. See the file COPYING for more details. 5 */ 7 */ 6 8 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 10 9 #include <linux/btf.h> << 10 #include <linux/capability.h> 11 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> << 31 #include <linux/pm.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> !! 41 #include <linux/frame.h> 42 #include <linux/kmsg_dump.h> << 43 42 44 #include <asm/page.h> 43 #include <asm/page.h> 45 #include <asm/sections.h> 44 #include <asm/sections.h> 46 45 47 #include <crypto/hash.h> 46 #include <crypto/hash.h> >> 47 #include <crypto/sha.h> 48 #include "kexec_internal.h" 48 #include "kexec_internal.h" 49 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); !! 50 DEFINE_MUTEX(kexec_mutex); >> 51 >> 52 /* Per cpu memory for storing cpu states in case of system crash. */ >> 53 note_buf_t __percpu *crash_notes; >> 54 >> 55 /* vmcoreinfo stuff */ >> 56 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; >> 57 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; >> 58 size_t vmcoreinfo_size; >> 59 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 51 60 52 /* Flag to indicate we are going to kexec a ne 61 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 62 bool kexec_in_progress = false; 54 63 55 bool kexec_file_dbg_print; !! 64 >> 65 /* Location of the reserved area for the crash kernel */ >> 66 struct resource crashk_res = { >> 67 .name = "Crash kernel", >> 68 .start = 0, >> 69 .end = 0, >> 70 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 71 .desc = IORES_DESC_CRASH_KERNEL >> 72 }; >> 73 struct resource crashk_low_res = { >> 74 .name = "Crash kernel", >> 75 .start = 0, >> 76 .end = 0, >> 77 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 78 .desc = IORES_DESC_CRASH_KERNEL >> 79 }; >> 80 >> 81 int kexec_should_crash(struct task_struct *p) >> 82 { >> 83 /* >> 84 * If crash_kexec_post_notifiers is enabled, don't run >> 85 * crash_kexec() here yet, which must be run after panic >> 86 * notifiers in panic(). >> 87 */ >> 88 if (crash_kexec_post_notifiers) >> 89 return 0; >> 90 /* >> 91 * There are 4 panic() calls in do_exit() path, each of which >> 92 * corresponds to each of these 4 conditions. >> 93 */ >> 94 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) >> 95 return 1; >> 96 return 0; >> 97 } >> 98 >> 99 int kexec_crash_loaded(void) >> 100 { >> 101 return !!kexec_crash_image; >> 102 } >> 103 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 56 104 57 /* 105 /* 58 * When kexec transitions to the new kernel th 106 * When kexec transitions to the new kernel there is a one-to-one 59 * mapping between physical and virtual addres 107 * mapping between physical and virtual addresses. On processors 60 * where you can disable the MMU this is trivi 108 * where you can disable the MMU this is trivial, and easy. For 61 * others it is still a simple predictable pag 109 * others it is still a simple predictable page table to setup. 62 * 110 * 63 * In that environment kexec copies the new ke 111 * In that environment kexec copies the new kernel to its final 64 * resting place. This means I can only suppo 112 * resting place. This means I can only support memory whose 65 * physical address can fit in an unsigned lon 113 * physical address can fit in an unsigned long. In particular 66 * addresses where (pfn << PAGE_SHIFT) > ULONG 114 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 67 * If the assembly stub has more restrictive r 115 * If the assembly stub has more restrictive requirements 68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME 116 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 69 * defined more restrictively in <asm/kexec.h> 117 * defined more restrictively in <asm/kexec.h>. 70 * 118 * 71 * The code for the transition from the curren 119 * The code for the transition from the current kernel to the 72 * new kernel is placed in the control_code_bu !! 120 * the new kernel is placed in the control_code_buffer, whose size 73 * is given by KEXEC_CONTROL_PAGE_SIZE. In th 121 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 74 * page of memory is necessary, but some archi 122 * page of memory is necessary, but some architectures require more. 75 * Because this memory must be identity mapped 123 * Because this memory must be identity mapped in the transition from 76 * virtual to physical addresses it must live 124 * virtual to physical addresses it must live in the range 77 * 0 - TASK_SIZE, as only the user space mappi 125 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 78 * modifiable. 126 * modifiable. 79 * 127 * 80 * The assembly stub in the control code buffe 128 * The assembly stub in the control code buffer is passed a linked list 81 * of descriptor pages detailing the source pa 129 * of descriptor pages detailing the source pages of the new kernel, 82 * and the destination addresses of those sour 130 * and the destination addresses of those source pages. As this data 83 * structure is not used in the context of the 131 * structure is not used in the context of the current OS, it must 84 * be self-contained. 132 * be self-contained. 85 * 133 * 86 * The code has been made to work with highmem 134 * The code has been made to work with highmem pages and will use a 87 * destination page in its final resting place 135 * destination page in its final resting place (if it happens 88 * to allocate it). The end product of this i 136 * to allocate it). The end product of this is that most of the 89 * physical address space, and most of RAM can 137 * physical address space, and most of RAM can be used. 90 * 138 * 91 * Future directions include: 139 * Future directions include: 92 * - allocating a page table with the control 140 * - allocating a page table with the control code buffer identity 93 * mapped, to simplify machine_kexec and ma 141 * mapped, to simplify machine_kexec and make kexec_on_panic more 94 * reliable. 142 * reliable. 95 */ 143 */ 96 144 97 /* 145 /* 98 * KIMAGE_NO_DEST is an impossible destination 146 * KIMAGE_NO_DEST is an impossible destination address..., for 99 * allocating pages whose destination address 147 * allocating pages whose destination address we do not care about. 100 */ 148 */ 101 #define KIMAGE_NO_DEST (-1UL) 149 #define KIMAGE_NO_DEST (-1UL) 102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) > 150 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 103 151 104 static struct page *kimage_alloc_page(struct k 152 static struct page *kimage_alloc_page(struct kimage *image, 105 gfp_t g 153 gfp_t gfp_mask, 106 unsigne 154 unsigned long dest); 107 155 108 int sanity_check_segment_list(struct kimage *i 156 int sanity_check_segment_list(struct kimage *image) 109 { 157 { 110 int i; 158 int i; 111 unsigned long nr_segments = image->nr_ 159 unsigned long nr_segments = image->nr_segments; 112 unsigned long total_pages = 0; 160 unsigned long total_pages = 0; 113 unsigned long nr_pages = totalram_page << 114 161 115 /* 162 /* 116 * Verify we have good destination add 163 * Verify we have good destination addresses. The caller is 117 * responsible for making certain we d 164 * responsible for making certain we don't attempt to load 118 * the new image into invalid or reser 165 * the new image into invalid or reserved areas of RAM. This 119 * just verifies it is an address we c 166 * just verifies it is an address we can use. 120 * 167 * 121 * Since the kernel does everything in 168 * Since the kernel does everything in page size chunks ensure 122 * the destination addresses are page 169 * the destination addresses are page aligned. Too many 123 * special cases crop of when we don't 170 * special cases crop of when we don't do this. The most 124 * insidious is getting overlapping de 171 * insidious is getting overlapping destination addresses 125 * simply because addresses are change 172 * simply because addresses are changed to page size 126 * granularity. 173 * granularity. 127 */ 174 */ 128 for (i = 0; i < nr_segments; i++) { 175 for (i = 0; i < nr_segments; i++) { 129 unsigned long mstart, mend; 176 unsigned long mstart, mend; 130 177 131 mstart = image->segment[i].mem 178 mstart = image->segment[i].mem; 132 mend = mstart + image->segme 179 mend = mstart + image->segment[i].memsz; 133 if (mstart > mend) 180 if (mstart > mend) 134 return -EADDRNOTAVAIL; 181 return -EADDRNOTAVAIL; 135 if ((mstart & ~PAGE_MASK) || ( 182 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 136 return -EADDRNOTAVAIL; 183 return -EADDRNOTAVAIL; 137 if (mend >= KEXEC_DESTINATION_ 184 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 138 return -EADDRNOTAVAIL; 185 return -EADDRNOTAVAIL; 139 } 186 } 140 187 141 /* Verify our destination addresses do 188 /* Verify our destination addresses do not overlap. 142 * If we alloed overlapping destinatio 189 * If we alloed overlapping destination addresses 143 * through very weird things can happe 190 * through very weird things can happen with no 144 * easy explanation as one segment sto 191 * easy explanation as one segment stops on another. 145 */ 192 */ 146 for (i = 0; i < nr_segments; i++) { 193 for (i = 0; i < nr_segments; i++) { 147 unsigned long mstart, mend; 194 unsigned long mstart, mend; 148 unsigned long j; 195 unsigned long j; 149 196 150 mstart = image->segment[i].mem 197 mstart = image->segment[i].mem; 151 mend = mstart + image->segme 198 mend = mstart + image->segment[i].memsz; 152 for (j = 0; j < i; j++) { 199 for (j = 0; j < i; j++) { 153 unsigned long pstart, 200 unsigned long pstart, pend; 154 201 155 pstart = image->segmen 202 pstart = image->segment[j].mem; 156 pend = pstart + imag 203 pend = pstart + image->segment[j].memsz; 157 /* Do the segments ove 204 /* Do the segments overlap ? */ 158 if ((mend > pstart) && 205 if ((mend > pstart) && (mstart < pend)) 159 return -EINVAL 206 return -EINVAL; 160 } 207 } 161 } 208 } 162 209 163 /* Ensure our buffer sizes are strictl 210 /* Ensure our buffer sizes are strictly less than 164 * our memory sizes. This should alwa 211 * our memory sizes. This should always be the case, 165 * and it is easier to check up front 212 * and it is easier to check up front than to be surprised 166 * later on. 213 * later on. 167 */ 214 */ 168 for (i = 0; i < nr_segments; i++) { 215 for (i = 0; i < nr_segments; i++) { 169 if (image->segment[i].bufsz > 216 if (image->segment[i].bufsz > image->segment[i].memsz) 170 return -EINVAL; 217 return -EINVAL; 171 } 218 } 172 219 173 /* 220 /* 174 * Verify that no more than half of me 221 * Verify that no more than half of memory will be consumed. If the 175 * request from userspace is too large 222 * request from userspace is too large, a large amount of time will be 176 * wasted allocating pages, which can 223 * wasted allocating pages, which can cause a soft lockup. 177 */ 224 */ 178 for (i = 0; i < nr_segments; i++) { 225 for (i = 0; i < nr_segments; i++) { 179 if (PAGE_COUNT(image->segment[ !! 226 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2) 180 return -EINVAL; 227 return -EINVAL; 181 228 182 total_pages += PAGE_COUNT(imag 229 total_pages += PAGE_COUNT(image->segment[i].memsz); 183 } 230 } 184 231 185 if (total_pages > nr_pages / 2) !! 232 if (total_pages > totalram_pages / 2) 186 return -EINVAL; 233 return -EINVAL; 187 234 188 #ifdef CONFIG_CRASH_DUMP << 189 /* 235 /* 190 * Verify we have good destination add 236 * Verify we have good destination addresses. Normally 191 * the caller is responsible for makin 237 * the caller is responsible for making certain we don't 192 * attempt to load the new image into 238 * attempt to load the new image into invalid or reserved 193 * areas of RAM. But crash kernels ar 239 * areas of RAM. But crash kernels are preloaded into a 194 * reserved area of ram. We must ensu 240 * reserved area of ram. We must ensure the addresses 195 * are in the reserved area otherwise 241 * are in the reserved area otherwise preloading the 196 * kernel could corrupt things. 242 * kernel could corrupt things. 197 */ 243 */ 198 244 199 if (image->type == KEXEC_TYPE_CRASH) { 245 if (image->type == KEXEC_TYPE_CRASH) { 200 for (i = 0; i < nr_segments; i 246 for (i = 0; i < nr_segments; i++) { 201 unsigned long mstart, 247 unsigned long mstart, mend; 202 248 203 mstart = image->segmen 249 mstart = image->segment[i].mem; 204 mend = mstart + image- 250 mend = mstart + image->segment[i].memsz - 1; 205 /* Ensure we are withi 251 /* Ensure we are within the crash kernel limits */ 206 if ((mstart < phys_to_ 252 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 207 (mend > phys_to_bo 253 (mend > phys_to_boot_phys(crashk_res.end))) 208 return -EADDRN 254 return -EADDRNOTAVAIL; 209 } 255 } 210 } 256 } 211 #endif << 212 257 213 return 0; 258 return 0; 214 } 259 } 215 260 216 struct kimage *do_kimage_alloc_init(void) 261 struct kimage *do_kimage_alloc_init(void) 217 { 262 { 218 struct kimage *image; 263 struct kimage *image; 219 264 220 /* Allocate a controlling structure */ 265 /* Allocate a controlling structure */ 221 image = kzalloc(sizeof(*image), GFP_KE 266 image = kzalloc(sizeof(*image), GFP_KERNEL); 222 if (!image) 267 if (!image) 223 return NULL; 268 return NULL; 224 269 225 image->head = 0; 270 image->head = 0; 226 image->entry = &image->head; 271 image->entry = &image->head; 227 image->last_entry = &image->head; 272 image->last_entry = &image->head; 228 image->control_page = ~0; /* By defaul 273 image->control_page = ~0; /* By default this does not apply */ 229 image->type = KEXEC_TYPE_DEFAULT; 274 image->type = KEXEC_TYPE_DEFAULT; 230 275 231 /* Initialize the list of control page 276 /* Initialize the list of control pages */ 232 INIT_LIST_HEAD(&image->control_pages); 277 INIT_LIST_HEAD(&image->control_pages); 233 278 234 /* Initialize the list of destination 279 /* Initialize the list of destination pages */ 235 INIT_LIST_HEAD(&image->dest_pages); 280 INIT_LIST_HEAD(&image->dest_pages); 236 281 237 /* Initialize the list of unusable pag 282 /* Initialize the list of unusable pages */ 238 INIT_LIST_HEAD(&image->unusable_pages) 283 INIT_LIST_HEAD(&image->unusable_pages); 239 284 240 #ifdef CONFIG_CRASH_HOTPLUG << 241 image->hp_action = KEXEC_CRASH_HP_NONE << 242 image->elfcorehdr_index = -1; << 243 image->elfcorehdr_updated = false; << 244 #endif << 245 << 246 return image; 285 return image; 247 } 286 } 248 287 249 int kimage_is_destination_range(struct kimage 288 int kimage_is_destination_range(struct kimage *image, 250 unsign 289 unsigned long start, 251 unsign 290 unsigned long end) 252 { 291 { 253 unsigned long i; 292 unsigned long i; 254 293 255 for (i = 0; i < image->nr_segments; i+ 294 for (i = 0; i < image->nr_segments; i++) { 256 unsigned long mstart, mend; 295 unsigned long mstart, mend; 257 296 258 mstart = image->segment[i].mem 297 mstart = image->segment[i].mem; 259 mend = mstart + image->segment !! 298 mend = mstart + image->segment[i].memsz; 260 if ((end >= mstart) && (start !! 299 if ((end > mstart) && (start < mend)) 261 return 1; 300 return 1; 262 } 301 } 263 302 264 return 0; 303 return 0; 265 } 304 } 266 305 267 static struct page *kimage_alloc_pages(gfp_t g 306 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 268 { 307 { 269 struct page *pages; 308 struct page *pages; 270 309 271 if (fatal_signal_pending(current)) !! 310 pages = alloc_pages(gfp_mask, order); 272 return NULL; << 273 pages = alloc_pages(gfp_mask & ~__GFP_ << 274 if (pages) { 311 if (pages) { 275 unsigned int count, i; 312 unsigned int count, i; 276 313 277 pages->mapping = NULL; 314 pages->mapping = NULL; 278 set_page_private(pages, order) 315 set_page_private(pages, order); 279 count = 1 << order; 316 count = 1 << order; 280 for (i = 0; i < count; i++) 317 for (i = 0; i < count; i++) 281 SetPageReserved(pages 318 SetPageReserved(pages + i); 282 << 283 arch_kexec_post_alloc_pages(pa << 284 gf << 285 << 286 if (gfp_mask & __GFP_ZERO) << 287 for (i = 0; i < count; << 288 clear_highpage << 289 } 319 } 290 320 291 return pages; 321 return pages; 292 } 322 } 293 323 294 static void kimage_free_pages(struct page *pag 324 static void kimage_free_pages(struct page *page) 295 { 325 { 296 unsigned int order, count, i; 326 unsigned int order, count, i; 297 327 298 order = page_private(page); 328 order = page_private(page); 299 count = 1 << order; 329 count = 1 << order; 300 << 301 arch_kexec_pre_free_pages(page_address << 302 << 303 for (i = 0; i < count; i++) 330 for (i = 0; i < count; i++) 304 ClearPageReserved(page + i); 331 ClearPageReserved(page + i); 305 __free_pages(page, order); 332 __free_pages(page, order); 306 } 333 } 307 334 308 void kimage_free_page_list(struct list_head *l 335 void kimage_free_page_list(struct list_head *list) 309 { 336 { 310 struct page *page, *next; 337 struct page *page, *next; 311 338 312 list_for_each_entry_safe(page, next, l 339 list_for_each_entry_safe(page, next, list, lru) { 313 list_del(&page->lru); 340 list_del(&page->lru); 314 kimage_free_pages(page); 341 kimage_free_pages(page); 315 } 342 } 316 } 343 } 317 344 318 static struct page *kimage_alloc_normal_contro 345 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 319 346 unsigned int order) 320 { 347 { 321 /* Control pages are special, they are 348 /* Control pages are special, they are the intermediaries 322 * that are needed while we copy the r 349 * that are needed while we copy the rest of the pages 323 * to their final resting place. As s 350 * to their final resting place. As such they must 324 * not conflict with either the destin 351 * not conflict with either the destination addresses 325 * or memory the kernel is already usi 352 * or memory the kernel is already using. 326 * 353 * 327 * The only case where we really need 354 * The only case where we really need more than one of 328 * these are for architectures where w 355 * these are for architectures where we cannot disable 329 * the MMU and must instead generate a 356 * the MMU and must instead generate an identity mapped 330 * page table for all of the memory. 357 * page table for all of the memory. 331 * 358 * 332 * At worst this runs in O(N) of the i 359 * At worst this runs in O(N) of the image size. 333 */ 360 */ 334 struct list_head extra_pages; 361 struct list_head extra_pages; 335 struct page *pages; 362 struct page *pages; 336 unsigned int count; 363 unsigned int count; 337 364 338 count = 1 << order; 365 count = 1 << order; 339 INIT_LIST_HEAD(&extra_pages); 366 INIT_LIST_HEAD(&extra_pages); 340 367 341 /* Loop while I can allocate a page an 368 /* Loop while I can allocate a page and the page allocated 342 * is a destination page. 369 * is a destination page. 343 */ 370 */ 344 do { 371 do { 345 unsigned long pfn, epfn, addr, 372 unsigned long pfn, epfn, addr, eaddr; 346 373 347 pages = kimage_alloc_pages(KEX 374 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 348 if (!pages) 375 if (!pages) 349 break; 376 break; 350 pfn = page_to_boot_pfn(pages 377 pfn = page_to_boot_pfn(pages); 351 epfn = pfn + count; 378 epfn = pfn + count; 352 addr = pfn << PAGE_SHIFT; 379 addr = pfn << PAGE_SHIFT; 353 eaddr = (epfn << PAGE_SHIFT) - !! 380 eaddr = epfn << PAGE_SHIFT; 354 if ((epfn >= (KEXEC_CONTROL_ME 381 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 355 kimage_is_destin 382 kimage_is_destination_range(image, addr, eaddr)) { 356 list_add(&pages->lru, 383 list_add(&pages->lru, &extra_pages); 357 pages = NULL; 384 pages = NULL; 358 } 385 } 359 } while (!pages); 386 } while (!pages); 360 387 361 if (pages) { 388 if (pages) { 362 /* Remember the allocated page 389 /* Remember the allocated page... */ 363 list_add(&pages->lru, &image-> 390 list_add(&pages->lru, &image->control_pages); 364 391 365 /* Because the page is already 392 /* Because the page is already in it's destination 366 * location we will never allo 393 * location we will never allocate another page at 367 * that address. Therefore ki 394 * that address. Therefore kimage_alloc_pages 368 * will not return it (again) 395 * will not return it (again) and we don't need 369 * to give it an entry in imag 396 * to give it an entry in image->segment[]. 370 */ 397 */ 371 } 398 } 372 /* Deal with the destination pages I h 399 /* Deal with the destination pages I have inadvertently allocated. 373 * 400 * 374 * Ideally I would convert multi-page 401 * Ideally I would convert multi-page allocations into single 375 * page allocations, and add everythin 402 * page allocations, and add everything to image->dest_pages. 376 * 403 * 377 * For now it is simpler to just free 404 * For now it is simpler to just free the pages. 378 */ 405 */ 379 kimage_free_page_list(&extra_pages); 406 kimage_free_page_list(&extra_pages); 380 407 381 return pages; 408 return pages; 382 } 409 } 383 410 384 #ifdef CONFIG_CRASH_DUMP << 385 static struct page *kimage_alloc_crash_control 411 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 386 412 unsigned int order) 387 { 413 { 388 /* Control pages are special, they are 414 /* Control pages are special, they are the intermediaries 389 * that are needed while we copy the r 415 * that are needed while we copy the rest of the pages 390 * to their final resting place. As s 416 * to their final resting place. As such they must 391 * not conflict with either the destin 417 * not conflict with either the destination addresses 392 * or memory the kernel is already usi 418 * or memory the kernel is already using. 393 * 419 * 394 * Control pages are also the only pag 420 * Control pages are also the only pags we must allocate 395 * when loading a crash kernel. All o 421 * when loading a crash kernel. All of the other pages 396 * are specified by the segments and w 422 * are specified by the segments and we just memcpy 397 * into them directly. 423 * into them directly. 398 * 424 * 399 * The only case where we really need 425 * The only case where we really need more than one of 400 * these are for architectures where w 426 * these are for architectures where we cannot disable 401 * the MMU and must instead generate a 427 * the MMU and must instead generate an identity mapped 402 * page table for all of the memory. 428 * page table for all of the memory. 403 * 429 * 404 * Given the low demand this implement 430 * Given the low demand this implements a very simple 405 * allocator that finds the first hole 431 * allocator that finds the first hole of the appropriate 406 * size in the reserved memory region, 432 * size in the reserved memory region, and allocates all 407 * of the memory up to and including t 433 * of the memory up to and including the hole. 408 */ 434 */ 409 unsigned long hole_start, hole_end, si 435 unsigned long hole_start, hole_end, size; 410 struct page *pages; 436 struct page *pages; 411 437 412 pages = NULL; 438 pages = NULL; 413 size = (1 << order) << PAGE_SHIFT; 439 size = (1 << order) << PAGE_SHIFT; 414 hole_start = ALIGN(image->control_page !! 440 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 415 hole_end = hole_start + size - 1; 441 hole_end = hole_start + size - 1; 416 while (hole_end <= crashk_res.end) { 442 while (hole_end <= crashk_res.end) { 417 unsigned long i; 443 unsigned long i; 418 444 419 cond_resched(); << 420 << 421 if (hole_end > KEXEC_CRASH_CON 445 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 422 break; 446 break; 423 /* See if I overlap any of the 447 /* See if I overlap any of the segments */ 424 for (i = 0; i < image->nr_segm 448 for (i = 0; i < image->nr_segments; i++) { 425 unsigned long mstart, 449 unsigned long mstart, mend; 426 450 427 mstart = image->segmen 451 mstart = image->segment[i].mem; 428 mend = mstart + imag 452 mend = mstart + image->segment[i].memsz - 1; 429 if ((hole_end >= mstar 453 if ((hole_end >= mstart) && (hole_start <= mend)) { 430 /* Advance the 454 /* Advance the hole to the end of the segment */ 431 hole_start = A !! 455 hole_start = (mend + (size - 1)) & ~(size - 1); 432 hole_end = h 456 hole_end = hole_start + size - 1; 433 break; 457 break; 434 } 458 } 435 } 459 } 436 /* If I don't overlap any segm 460 /* If I don't overlap any segments I have found my hole! */ 437 if (i == image->nr_segments) { 461 if (i == image->nr_segments) { 438 pages = pfn_to_page(ho 462 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 439 image->control_page = !! 463 image->control_page = hole_end; 440 break; 464 break; 441 } 465 } 442 } 466 } 443 467 444 /* Ensure that these pages are decrypt << 445 if (pages) << 446 arch_kexec_post_alloc_pages(pa << 447 << 448 return pages; 468 return pages; 449 } 469 } 450 #endif << 451 470 452 471 453 struct page *kimage_alloc_control_pages(struct 472 struct page *kimage_alloc_control_pages(struct kimage *image, 454 unsig 473 unsigned int order) 455 { 474 { 456 struct page *pages = NULL; 475 struct page *pages = NULL; 457 476 458 switch (image->type) { 477 switch (image->type) { 459 case KEXEC_TYPE_DEFAULT: 478 case KEXEC_TYPE_DEFAULT: 460 pages = kimage_alloc_normal_co 479 pages = kimage_alloc_normal_control_pages(image, order); 461 break; 480 break; 462 #ifdef CONFIG_CRASH_DUMP << 463 case KEXEC_TYPE_CRASH: 481 case KEXEC_TYPE_CRASH: 464 pages = kimage_alloc_crash_con 482 pages = kimage_alloc_crash_control_pages(image, order); 465 break; 483 break; 466 #endif << 467 } 484 } 468 485 469 return pages; 486 return pages; 470 } 487 } 471 488 472 static int kimage_add_entry(struct kimage *ima 489 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 473 { 490 { 474 if (*image->entry != 0) 491 if (*image->entry != 0) 475 image->entry++; 492 image->entry++; 476 493 477 if (image->entry == image->last_entry) 494 if (image->entry == image->last_entry) { 478 kimage_entry_t *ind_page; 495 kimage_entry_t *ind_page; 479 struct page *page; 496 struct page *page; 480 497 481 page = kimage_alloc_page(image 498 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 482 if (!page) 499 if (!page) 483 return -ENOMEM; 500 return -ENOMEM; 484 501 485 ind_page = page_address(page); 502 ind_page = page_address(page); 486 *image->entry = virt_to_boot_p 503 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 487 image->entry = ind_page; 504 image->entry = ind_page; 488 image->last_entry = ind_page + 505 image->last_entry = ind_page + 489 ((PAGE_S 506 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 490 } 507 } 491 *image->entry = entry; 508 *image->entry = entry; 492 image->entry++; 509 image->entry++; 493 *image->entry = 0; 510 *image->entry = 0; 494 511 495 return 0; 512 return 0; 496 } 513 } 497 514 498 static int kimage_set_destination(struct kimag 515 static int kimage_set_destination(struct kimage *image, 499 unsigned lo 516 unsigned long destination) 500 { 517 { >> 518 int result; >> 519 501 destination &= PAGE_MASK; 520 destination &= PAGE_MASK; >> 521 result = kimage_add_entry(image, destination | IND_DESTINATION); 502 522 503 return kimage_add_entry(image, destina !! 523 return result; 504 } 524 } 505 525 506 526 507 static int kimage_add_page(struct kimage *imag 527 static int kimage_add_page(struct kimage *image, unsigned long page) 508 { 528 { >> 529 int result; >> 530 509 page &= PAGE_MASK; 531 page &= PAGE_MASK; >> 532 result = kimage_add_entry(image, page | IND_SOURCE); 510 533 511 return kimage_add_entry(image, page | !! 534 return result; 512 } 535 } 513 536 514 537 515 static void kimage_free_extra_pages(struct kim 538 static void kimage_free_extra_pages(struct kimage *image) 516 { 539 { 517 /* Walk through and free any extra des 540 /* Walk through and free any extra destination pages I may have */ 518 kimage_free_page_list(&image->dest_pag 541 kimage_free_page_list(&image->dest_pages); 519 542 520 /* Walk through and free any unusable 543 /* Walk through and free any unusable pages I have cached */ 521 kimage_free_page_list(&image->unusable 544 kimage_free_page_list(&image->unusable_pages); 522 545 523 } 546 } 524 << 525 void kimage_terminate(struct kimage *image) 547 void kimage_terminate(struct kimage *image) 526 { 548 { 527 if (*image->entry != 0) 549 if (*image->entry != 0) 528 image->entry++; 550 image->entry++; 529 551 530 *image->entry = IND_DONE; 552 *image->entry = IND_DONE; 531 } 553 } 532 554 533 #define for_each_kimage_entry(image, ptr, entr 555 #define for_each_kimage_entry(image, ptr, entry) \ 534 for (ptr = &image->head; (entry = *ptr 556 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 535 ptr = (entry & IND_INDIRECTION 557 ptr = (entry & IND_INDIRECTION) ? \ 536 boot_phys_to_virt((ent 558 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 537 559 538 static void kimage_free_entry(kimage_entry_t e 560 static void kimage_free_entry(kimage_entry_t entry) 539 { 561 { 540 struct page *page; 562 struct page *page; 541 563 542 page = boot_pfn_to_page(entry >> PAGE_ 564 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 543 kimage_free_pages(page); 565 kimage_free_pages(page); 544 } 566 } 545 567 546 void kimage_free(struct kimage *image) 568 void kimage_free(struct kimage *image) 547 { 569 { 548 kimage_entry_t *ptr, entry; 570 kimage_entry_t *ptr, entry; 549 kimage_entry_t ind = 0; 571 kimage_entry_t ind = 0; 550 572 551 if (!image) 573 if (!image) 552 return; 574 return; 553 575 554 #ifdef CONFIG_CRASH_DUMP << 555 if (image->vmcoreinfo_data_copy) { << 556 crash_update_vmcoreinfo_safeco << 557 vunmap(image->vmcoreinfo_data_ << 558 } << 559 #endif << 560 << 561 kimage_free_extra_pages(image); 576 kimage_free_extra_pages(image); 562 for_each_kimage_entry(image, ptr, entr 577 for_each_kimage_entry(image, ptr, entry) { 563 if (entry & IND_INDIRECTION) { 578 if (entry & IND_INDIRECTION) { 564 /* Free the previous i 579 /* Free the previous indirection page */ 565 if (ind & IND_INDIRECT 580 if (ind & IND_INDIRECTION) 566 kimage_free_en 581 kimage_free_entry(ind); 567 /* Save this indirecti 582 /* Save this indirection page until we are 568 * done with it. 583 * done with it. 569 */ 584 */ 570 ind = entry; 585 ind = entry; 571 } else if (entry & IND_SOURCE) 586 } else if (entry & IND_SOURCE) 572 kimage_free_entry(entr 587 kimage_free_entry(entry); 573 } 588 } 574 /* Free the final indirection page */ 589 /* Free the final indirection page */ 575 if (ind & IND_INDIRECTION) 590 if (ind & IND_INDIRECTION) 576 kimage_free_entry(ind); 591 kimage_free_entry(ind); 577 592 578 /* Handle any machine specific cleanup 593 /* Handle any machine specific cleanup */ 579 machine_kexec_cleanup(image); 594 machine_kexec_cleanup(image); 580 595 581 /* Free the kexec control pages... */ 596 /* Free the kexec control pages... */ 582 kimage_free_page_list(&image->control_ 597 kimage_free_page_list(&image->control_pages); 583 598 584 /* 599 /* 585 * Free up any temporary buffers alloc 600 * Free up any temporary buffers allocated. This might hit if 586 * error occurred much later after buf 601 * error occurred much later after buffer allocation. 587 */ 602 */ 588 if (image->file_mode) 603 if (image->file_mode) 589 kimage_file_post_load_cleanup( 604 kimage_file_post_load_cleanup(image); 590 605 591 kfree(image); 606 kfree(image); 592 } 607 } 593 608 594 static kimage_entry_t *kimage_dst_used(struct 609 static kimage_entry_t *kimage_dst_used(struct kimage *image, 595 unsign 610 unsigned long page) 596 { 611 { 597 kimage_entry_t *ptr, entry; 612 kimage_entry_t *ptr, entry; 598 unsigned long destination = 0; 613 unsigned long destination = 0; 599 614 600 for_each_kimage_entry(image, ptr, entr 615 for_each_kimage_entry(image, ptr, entry) { 601 if (entry & IND_DESTINATION) 616 if (entry & IND_DESTINATION) 602 destination = entry & 617 destination = entry & PAGE_MASK; 603 else if (entry & IND_SOURCE) { 618 else if (entry & IND_SOURCE) { 604 if (page == destinatio 619 if (page == destination) 605 return ptr; 620 return ptr; 606 destination += PAGE_SI 621 destination += PAGE_SIZE; 607 } 622 } 608 } 623 } 609 624 610 return NULL; 625 return NULL; 611 } 626 } 612 627 613 static struct page *kimage_alloc_page(struct k 628 static struct page *kimage_alloc_page(struct kimage *image, 614 gfp_t 629 gfp_t gfp_mask, 615 unsign 630 unsigned long destination) 616 { 631 { 617 /* 632 /* 618 * Here we implement safeguards to ens 633 * Here we implement safeguards to ensure that a source page 619 * is not copied to its destination pa 634 * is not copied to its destination page before the data on 620 * the destination page is no longer u 635 * the destination page is no longer useful. 621 * 636 * 622 * To do this we maintain the invarian 637 * To do this we maintain the invariant that a source page is 623 * either its own destination page, or 638 * either its own destination page, or it is not a 624 * destination page at all. 639 * destination page at all. 625 * 640 * 626 * That is slightly stronger than requ 641 * That is slightly stronger than required, but the proof 627 * that no problems will not occur is 642 * that no problems will not occur is trivial, and the 628 * implementation is simply to verify. 643 * implementation is simply to verify. 629 * 644 * 630 * When allocating all pages normally 645 * When allocating all pages normally this algorithm will run 631 * in O(N) time, but in the worst case 646 * in O(N) time, but in the worst case it will run in O(N^2) 632 * time. If the runtime is a problem 647 * time. If the runtime is a problem the data structures can 633 * be fixed. 648 * be fixed. 634 */ 649 */ 635 struct page *page; 650 struct page *page; 636 unsigned long addr; 651 unsigned long addr; 637 652 638 /* 653 /* 639 * Walk through the list of destinatio 654 * Walk through the list of destination pages, and see if I 640 * have a match. 655 * have a match. 641 */ 656 */ 642 list_for_each_entry(page, &image->dest 657 list_for_each_entry(page, &image->dest_pages, lru) { 643 addr = page_to_boot_pfn(page) 658 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 644 if (addr == destination) { 659 if (addr == destination) { 645 list_del(&page->lru); 660 list_del(&page->lru); 646 return page; 661 return page; 647 } 662 } 648 } 663 } 649 page = NULL; 664 page = NULL; 650 while (1) { 665 while (1) { 651 kimage_entry_t *old; 666 kimage_entry_t *old; 652 667 653 /* Allocate a page, if we run 668 /* Allocate a page, if we run out of memory give up */ 654 page = kimage_alloc_pages(gfp_ 669 page = kimage_alloc_pages(gfp_mask, 0); 655 if (!page) 670 if (!page) 656 return NULL; 671 return NULL; 657 /* If the page cannot be used 672 /* If the page cannot be used file it away */ 658 if (page_to_boot_pfn(page) > 673 if (page_to_boot_pfn(page) > 659 (KEXEC_SOURCE_ 674 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 660 list_add(&page->lru, & 675 list_add(&page->lru, &image->unusable_pages); 661 continue; 676 continue; 662 } 677 } 663 addr = page_to_boot_pfn(page) 678 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 664 679 665 /* If it is the destination pa 680 /* If it is the destination page we want use it */ 666 if (addr == destination) 681 if (addr == destination) 667 break; 682 break; 668 683 669 /* If the page is not a destin 684 /* If the page is not a destination page use it */ 670 if (!kimage_is_destination_ran 685 if (!kimage_is_destination_range(image, addr, 671 !! 686 addr + PAGE_SIZE)) 672 break; 687 break; 673 688 674 /* 689 /* 675 * I know that the page is som 690 * I know that the page is someones destination page. 676 * See if there is already a s 691 * See if there is already a source page for this 677 * destination page. And if s 692 * destination page. And if so swap the source pages. 678 */ 693 */ 679 old = kimage_dst_used(image, a 694 old = kimage_dst_used(image, addr); 680 if (old) { 695 if (old) { 681 /* If so move it */ 696 /* If so move it */ 682 unsigned long old_addr 697 unsigned long old_addr; 683 struct page *old_page; 698 struct page *old_page; 684 699 685 old_addr = *old & PAGE 700 old_addr = *old & PAGE_MASK; 686 old_page = boot_pfn_to 701 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 687 copy_highpage(page, ol 702 copy_highpage(page, old_page); 688 *old = addr | (*old & 703 *old = addr | (*old & ~PAGE_MASK); 689 704 690 /* The old page I have 705 /* The old page I have found cannot be a 691 * destination page, s 706 * destination page, so return it if it's 692 * gfp_flags honor the 707 * gfp_flags honor the ones passed in. 693 */ 708 */ 694 if (!(gfp_mask & __GFP 709 if (!(gfp_mask & __GFP_HIGHMEM) && 695 PageHighMem(old_pa 710 PageHighMem(old_page)) { 696 kimage_free_pa 711 kimage_free_pages(old_page); 697 continue; 712 continue; 698 } 713 } >> 714 addr = old_addr; 699 page = old_page; 715 page = old_page; 700 break; 716 break; 701 } 717 } 702 /* Place the page on the desti 718 /* Place the page on the destination list, to be used later */ 703 list_add(&page->lru, &image->d 719 list_add(&page->lru, &image->dest_pages); 704 } 720 } 705 721 706 return page; 722 return page; 707 } 723 } 708 724 709 static int kimage_load_normal_segment(struct k 725 static int kimage_load_normal_segment(struct kimage *image, 710 struc 726 struct kexec_segment *segment) 711 { 727 { 712 unsigned long maddr; 728 unsigned long maddr; 713 size_t ubytes, mbytes; 729 size_t ubytes, mbytes; 714 int result; 730 int result; 715 unsigned char __user *buf = NULL; 731 unsigned char __user *buf = NULL; 716 unsigned char *kbuf = NULL; 732 unsigned char *kbuf = NULL; 717 733 >> 734 result = 0; 718 if (image->file_mode) 735 if (image->file_mode) 719 kbuf = segment->kbuf; 736 kbuf = segment->kbuf; 720 else 737 else 721 buf = segment->buf; 738 buf = segment->buf; 722 ubytes = segment->bufsz; 739 ubytes = segment->bufsz; 723 mbytes = segment->memsz; 740 mbytes = segment->memsz; 724 maddr = segment->mem; 741 maddr = segment->mem; 725 742 726 result = kimage_set_destination(image, 743 result = kimage_set_destination(image, maddr); 727 if (result < 0) 744 if (result < 0) 728 goto out; 745 goto out; 729 746 730 while (mbytes) { 747 while (mbytes) { 731 struct page *page; 748 struct page *page; 732 char *ptr; 749 char *ptr; 733 size_t uchunk, mchunk; 750 size_t uchunk, mchunk; 734 751 735 page = kimage_alloc_page(image 752 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 736 if (!page) { 753 if (!page) { 737 result = -ENOMEM; 754 result = -ENOMEM; 738 goto out; 755 goto out; 739 } 756 } 740 result = kimage_add_page(image 757 result = kimage_add_page(image, page_to_boot_pfn(page) 741 758 << PAGE_SHIFT); 742 if (result < 0) 759 if (result < 0) 743 goto out; 760 goto out; 744 761 745 ptr = kmap_local_page(page); !! 762 ptr = kmap(page); 746 /* Start with a clear page */ 763 /* Start with a clear page */ 747 clear_page(ptr); 764 clear_page(ptr); 748 ptr += maddr & ~PAGE_MASK; 765 ptr += maddr & ~PAGE_MASK; 749 mchunk = min_t(size_t, mbytes, 766 mchunk = min_t(size_t, mbytes, 750 PAGE_SIZE - (m 767 PAGE_SIZE - (maddr & ~PAGE_MASK)); 751 uchunk = min(ubytes, mchunk); 768 uchunk = min(ubytes, mchunk); 752 769 753 if (uchunk) { !! 770 /* For file based kexec, source pages are in kernel memory */ 754 /* For file based kexe !! 771 if (image->file_mode) 755 if (image->file_mode) !! 772 memcpy(ptr, kbuf, uchunk); 756 memcpy(ptr, kb !! 773 else 757 else !! 774 result = copy_from_user(ptr, buf, uchunk); 758 result = copy_ !! 775 kunmap(page); 759 ubytes -= uchunk; << 760 if (image->file_mode) << 761 kbuf += uchunk << 762 else << 763 buf += uchunk; << 764 } << 765 kunmap_local(ptr); << 766 if (result) { 776 if (result) { 767 result = -EFAULT; 777 result = -EFAULT; 768 goto out; 778 goto out; 769 } 779 } >> 780 ubytes -= uchunk; 770 maddr += mchunk; 781 maddr += mchunk; >> 782 if (image->file_mode) >> 783 kbuf += mchunk; >> 784 else >> 785 buf += mchunk; 771 mbytes -= mchunk; 786 mbytes -= mchunk; 772 << 773 cond_resched(); << 774 } 787 } 775 out: 788 out: 776 return result; 789 return result; 777 } 790 } 778 791 779 #ifdef CONFIG_CRASH_DUMP << 780 static int kimage_load_crash_segment(struct ki 792 static int kimage_load_crash_segment(struct kimage *image, 781 struct 793 struct kexec_segment *segment) 782 { 794 { 783 /* For crash dumps kernels we simply c 795 /* For crash dumps kernels we simply copy the data from 784 * user space to it's destination. 796 * user space to it's destination. 785 * We do things a page at a time for t 797 * We do things a page at a time for the sake of kmap. 786 */ 798 */ 787 unsigned long maddr; 799 unsigned long maddr; 788 size_t ubytes, mbytes; 800 size_t ubytes, mbytes; 789 int result; 801 int result; 790 unsigned char __user *buf = NULL; 802 unsigned char __user *buf = NULL; 791 unsigned char *kbuf = NULL; 803 unsigned char *kbuf = NULL; 792 804 793 result = 0; 805 result = 0; 794 if (image->file_mode) 806 if (image->file_mode) 795 kbuf = segment->kbuf; 807 kbuf = segment->kbuf; 796 else 808 else 797 buf = segment->buf; 809 buf = segment->buf; 798 ubytes = segment->bufsz; 810 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 811 mbytes = segment->memsz; 800 maddr = segment->mem; 812 maddr = segment->mem; 801 while (mbytes) { 813 while (mbytes) { 802 struct page *page; 814 struct page *page; 803 char *ptr; 815 char *ptr; 804 size_t uchunk, mchunk; 816 size_t uchunk, mchunk; 805 817 806 page = boot_pfn_to_page(maddr 818 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 807 if (!page) { 819 if (!page) { 808 result = -ENOMEM; 820 result = -ENOMEM; 809 goto out; 821 goto out; 810 } 822 } 811 arch_kexec_post_alloc_pages(pa !! 823 ptr = kmap(page); 812 ptr = kmap_local_page(page); << 813 ptr += maddr & ~PAGE_MASK; 824 ptr += maddr & ~PAGE_MASK; 814 mchunk = min_t(size_t, mbytes, 825 mchunk = min_t(size_t, mbytes, 815 PAGE_SIZE - (m 826 PAGE_SIZE - (maddr & ~PAGE_MASK)); 816 uchunk = min(ubytes, mchunk); 827 uchunk = min(ubytes, mchunk); 817 if (mchunk > uchunk) { 828 if (mchunk > uchunk) { 818 /* Zero the trailing p 829 /* Zero the trailing part of the page */ 819 memset(ptr + uchunk, 0 830 memset(ptr + uchunk, 0, mchunk - uchunk); 820 } 831 } 821 832 822 if (uchunk) { !! 833 /* For file based kexec, source pages are in kernel memory */ 823 /* For file based kexe !! 834 if (image->file_mode) 824 if (image->file_mode) !! 835 memcpy(ptr, kbuf, uchunk); 825 memcpy(ptr, kb !! 836 else 826 else !! 837 result = copy_from_user(ptr, buf, uchunk); 827 result = copy_ << 828 ubytes -= uchunk; << 829 if (image->file_mode) << 830 kbuf += uchunk << 831 else << 832 buf += uchunk; << 833 } << 834 kexec_flush_icache_page(page); 838 kexec_flush_icache_page(page); 835 kunmap_local(ptr); !! 839 kunmap(page); 836 arch_kexec_pre_free_pages(page << 837 if (result) { 840 if (result) { 838 result = -EFAULT; 841 result = -EFAULT; 839 goto out; 842 goto out; 840 } 843 } >> 844 ubytes -= uchunk; 841 maddr += mchunk; 845 maddr += mchunk; >> 846 if (image->file_mode) >> 847 kbuf += mchunk; >> 848 else >> 849 buf += mchunk; 842 mbytes -= mchunk; 850 mbytes -= mchunk; 843 << 844 cond_resched(); << 845 } 851 } 846 out: 852 out: 847 return result; 853 return result; 848 } 854 } 849 #endif << 850 855 851 int kimage_load_segment(struct kimage *image, 856 int kimage_load_segment(struct kimage *image, 852 struct kexec_s 857 struct kexec_segment *segment) 853 { 858 { 854 int result = -ENOMEM; 859 int result = -ENOMEM; 855 860 856 switch (image->type) { 861 switch (image->type) { 857 case KEXEC_TYPE_DEFAULT: 862 case KEXEC_TYPE_DEFAULT: 858 result = kimage_load_normal_se 863 result = kimage_load_normal_segment(image, segment); 859 break; 864 break; 860 #ifdef CONFIG_CRASH_DUMP << 861 case KEXEC_TYPE_CRASH: 865 case KEXEC_TYPE_CRASH: 862 result = kimage_load_crash_seg 866 result = kimage_load_crash_segment(image, segment); 863 break; 867 break; 864 #endif << 865 } 868 } 866 869 867 return result; 870 return result; 868 } 871 } 869 872 870 struct kexec_load_limit { !! 873 struct kimage *kexec_image; 871 /* Mutex protects the limit count. */ !! 874 struct kimage *kexec_crash_image; 872 struct mutex mutex; !! 875 int kexec_load_disabled; 873 int limit; << 874 }; << 875 876 876 static struct kexec_load_limit load_limit_rebo !! 877 /* 877 .mutex = __MUTEX_INITIALIZER(load_limi !! 878 * No panic_cpu check version of crash_kexec(). This function is called 878 .limit = -1, !! 879 * only when panic_cpu holds the current CPU number; this is the only CPU 879 }; !! 880 * which processes crash_kexec routines. >> 881 */ >> 882 void __noclone __crash_kexec(struct pt_regs *regs) >> 883 { >> 884 /* Take the kexec_mutex here to prevent sys_kexec_load >> 885 * running on one cpu from replacing the crash kernel >> 886 * we are using after a panic on a different cpu. >> 887 * >> 888 * If the crash kernel was not located in a fixed area >> 889 * of memory the xchg(&kexec_crash_image) would be >> 890 * sufficient. But since I reuse the memory... >> 891 */ >> 892 if (mutex_trylock(&kexec_mutex)) { >> 893 if (kexec_crash_image) { >> 894 struct pt_regs fixed_regs; >> 895 >> 896 crash_setup_regs(&fixed_regs, regs); >> 897 crash_save_vmcoreinfo(); >> 898 machine_crash_shutdown(&fixed_regs); >> 899 machine_kexec(kexec_crash_image); >> 900 } >> 901 mutex_unlock(&kexec_mutex); >> 902 } >> 903 } >> 904 STACK_FRAME_NON_STANDARD(__crash_kexec); 880 905 881 static struct kexec_load_limit load_limit_pani !! 906 void crash_kexec(struct pt_regs *regs) 882 .mutex = __MUTEX_INITIALIZER(load_limi !! 907 { 883 .limit = -1, !! 908 int old_cpu, this_cpu; 884 }; << 885 909 886 struct kimage *kexec_image; !! 910 /* 887 struct kimage *kexec_crash_image; !! 911 * Only one CPU is allowed to execute the crash_kexec() code as with 888 static int kexec_load_disabled; !! 912 * panic(). Otherwise parallel calls of panic() and crash_kexec() >> 913 * may stop each other. To exclude them, we use panic_cpu here too. >> 914 */ >> 915 this_cpu = raw_smp_processor_id(); >> 916 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); >> 917 if (old_cpu == PANIC_CPU_INVALID) { >> 918 /* This is the 1st CPU which comes here, so go ahead. */ >> 919 printk_nmi_flush_on_panic(); >> 920 __crash_kexec(regs); >> 921 >> 922 /* >> 923 * Reset panic_cpu to allow another panic()/crash_kexec() >> 924 * call. >> 925 */ >> 926 atomic_set(&panic_cpu, PANIC_CPU_INVALID); >> 927 } >> 928 } >> 929 >> 930 size_t crash_get_memory_size(void) >> 931 { >> 932 size_t size = 0; >> 933 >> 934 mutex_lock(&kexec_mutex); >> 935 if (crashk_res.end != crashk_res.start) >> 936 size = resource_size(&crashk_res); >> 937 mutex_unlock(&kexec_mutex); >> 938 return size; >> 939 } >> 940 >> 941 void __weak crash_free_reserved_phys_range(unsigned long begin, >> 942 unsigned long end) >> 943 { >> 944 unsigned long addr; >> 945 >> 946 for (addr = begin; addr < end; addr += PAGE_SIZE) >> 947 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); >> 948 } >> 949 >> 950 int crash_shrink_memory(unsigned long new_size) >> 951 { >> 952 int ret = 0; >> 953 unsigned long start, end; >> 954 unsigned long old_size; >> 955 struct resource *ram_res; >> 956 >> 957 mutex_lock(&kexec_mutex); >> 958 >> 959 if (kexec_crash_image) { >> 960 ret = -ENOENT; >> 961 goto unlock; >> 962 } >> 963 start = crashk_res.start; >> 964 end = crashk_res.end; >> 965 old_size = (end == 0) ? 0 : end - start + 1; >> 966 if (new_size >= old_size) { >> 967 ret = (new_size == old_size) ? 0 : -EINVAL; >> 968 goto unlock; >> 969 } >> 970 >> 971 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); >> 972 if (!ram_res) { >> 973 ret = -ENOMEM; >> 974 goto unlock; >> 975 } >> 976 >> 977 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); >> 978 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); >> 979 >> 980 crash_free_reserved_phys_range(end, crashk_res.end); >> 981 >> 982 if ((start == end) && (crashk_res.parent != NULL)) >> 983 release_resource(&crashk_res); >> 984 >> 985 ram_res->start = end; >> 986 ram_res->end = crashk_res.end; >> 987 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; >> 988 ram_res->name = "System RAM"; >> 989 >> 990 crashk_res.end = end - 1; >> 991 >> 992 insert_resource(&iomem_resource, ram_res); >> 993 >> 994 unlock: >> 995 mutex_unlock(&kexec_mutex); >> 996 return ret; >> 997 } >> 998 >> 999 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, >> 1000 size_t data_len) >> 1001 { >> 1002 struct elf_note note; >> 1003 >> 1004 note.n_namesz = strlen(name) + 1; >> 1005 note.n_descsz = data_len; >> 1006 note.n_type = type; >> 1007 memcpy(buf, ¬e, sizeof(note)); >> 1008 buf += (sizeof(note) + 3)/4; >> 1009 memcpy(buf, name, note.n_namesz); >> 1010 buf += (note.n_namesz + 3)/4; >> 1011 memcpy(buf, data, note.n_descsz); >> 1012 buf += (note.n_descsz + 3)/4; >> 1013 >> 1014 return buf; >> 1015 } >> 1016 >> 1017 static void final_note(u32 *buf) >> 1018 { >> 1019 struct elf_note note; >> 1020 >> 1021 note.n_namesz = 0; >> 1022 note.n_descsz = 0; >> 1023 note.n_type = 0; >> 1024 memcpy(buf, ¬e, sizeof(note)); >> 1025 } >> 1026 >> 1027 void crash_save_cpu(struct pt_regs *regs, int cpu) >> 1028 { >> 1029 struct elf_prstatus prstatus; >> 1030 u32 *buf; >> 1031 >> 1032 if ((cpu < 0) || (cpu >= nr_cpu_ids)) >> 1033 return; >> 1034 >> 1035 /* Using ELF notes here is opportunistic. >> 1036 * I need a well defined structure format >> 1037 * for the data I pass, and I need tags >> 1038 * on the data to indicate what information I have >> 1039 * squirrelled away. ELF notes happen to provide >> 1040 * all of that, so there is no need to invent something new. >> 1041 */ >> 1042 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); >> 1043 if (!buf) >> 1044 return; >> 1045 memset(&prstatus, 0, sizeof(prstatus)); >> 1046 prstatus.pr_pid = current->pid; >> 1047 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); >> 1048 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, >> 1049 &prstatus, sizeof(prstatus)); >> 1050 final_note(buf); >> 1051 } >> 1052 >> 1053 static int __init crash_notes_memory_init(void) >> 1054 { >> 1055 /* Allocate memory for saving cpu registers. */ >> 1056 size_t size, align; >> 1057 >> 1058 /* >> 1059 * crash_notes could be allocated across 2 vmalloc pages when percpu >> 1060 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc >> 1061 * pages are also on 2 continuous physical pages. In this case the >> 1062 * 2nd part of crash_notes in 2nd page could be lost since only the >> 1063 * starting address and size of crash_notes are exported through sysfs. >> 1064 * Here round up the size of crash_notes to the nearest power of two >> 1065 * and pass it to __alloc_percpu as align value. This can make sure >> 1066 * crash_notes is allocated inside one physical page. >> 1067 */ >> 1068 size = sizeof(note_buf_t); >> 1069 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); >> 1070 >> 1071 /* >> 1072 * Break compile if size is bigger than PAGE_SIZE since crash_notes >> 1073 * definitely will be in 2 pages with that. >> 1074 */ >> 1075 BUILD_BUG_ON(size > PAGE_SIZE); >> 1076 >> 1077 crash_notes = __alloc_percpu(size, align); >> 1078 if (!crash_notes) { >> 1079 pr_warn("Memory allocation for saving cpu register states failed\n"); >> 1080 return -ENOMEM; >> 1081 } >> 1082 return 0; >> 1083 } >> 1084 subsys_initcall(crash_notes_memory_init); >> 1085 >> 1086 >> 1087 /* >> 1088 * parsing the "crashkernel" commandline >> 1089 * >> 1090 * this code is intended to be called from architecture specific code >> 1091 */ 889 1092 890 #ifdef CONFIG_SYSCTL << 891 static int kexec_limit_handler(const struct ct << 892 void *buffer, s << 893 { << 894 struct kexec_load_limit *limit = table << 895 int val; << 896 struct ctl_table tmp = { << 897 .data = &val, << 898 .maxlen = sizeof(val), << 899 .mode = table->mode, << 900 }; << 901 int ret; << 902 << 903 if (write) { << 904 ret = proc_dointvec(&tmp, writ << 905 if (ret) << 906 return ret; << 907 1093 908 if (val < 0) !! 1094 /* >> 1095 * This function parses command lines in the format >> 1096 * >> 1097 * crashkernel=ramsize-range:size[,...][@offset] >> 1098 * >> 1099 * The function returns 0 on success and -EINVAL on failure. >> 1100 */ >> 1101 static int __init parse_crashkernel_mem(char *cmdline, >> 1102 unsigned long long system_ram, >> 1103 unsigned long long *crash_size, >> 1104 unsigned long long *crash_base) >> 1105 { >> 1106 char *cur = cmdline, *tmp; >> 1107 >> 1108 /* for each entry of the comma-separated list */ >> 1109 do { >> 1110 unsigned long long start, end = ULLONG_MAX, size; >> 1111 >> 1112 /* get the start of the range */ >> 1113 start = memparse(cur, &tmp); >> 1114 if (cur == tmp) { >> 1115 pr_warn("crashkernel: Memory value expected\n"); >> 1116 return -EINVAL; >> 1117 } >> 1118 cur = tmp; >> 1119 if (*cur != '-') { >> 1120 pr_warn("crashkernel: '-' expected\n"); 909 return -EINVAL; 1121 return -EINVAL; >> 1122 } >> 1123 cur++; 910 1124 911 mutex_lock(&limit->mutex); !! 1125 /* if no ':' is here, than we read the end */ 912 if (limit->limit != -1 && val !! 1126 if (*cur != ':') { 913 ret = -EINVAL; !! 1127 end = memparse(cur, &tmp); 914 else !! 1128 if (cur == tmp) { 915 limit->limit = val; !! 1129 pr_warn("crashkernel: Memory value expected\n"); 916 mutex_unlock(&limit->mutex); !! 1130 return -EINVAL; >> 1131 } >> 1132 cur = tmp; >> 1133 if (end <= start) { >> 1134 pr_warn("crashkernel: end <= start\n"); >> 1135 return -EINVAL; >> 1136 } >> 1137 } >> 1138 >> 1139 if (*cur != ':') { >> 1140 pr_warn("crashkernel: ':' expected\n"); >> 1141 return -EINVAL; >> 1142 } >> 1143 cur++; >> 1144 >> 1145 size = memparse(cur, &tmp); >> 1146 if (cur == tmp) { >> 1147 pr_warn("Memory value expected\n"); >> 1148 return -EINVAL; >> 1149 } >> 1150 cur = tmp; >> 1151 if (size >= system_ram) { >> 1152 pr_warn("crashkernel: invalid size\n"); >> 1153 return -EINVAL; >> 1154 } >> 1155 >> 1156 /* match ? */ >> 1157 if (system_ram >= start && system_ram < end) { >> 1158 *crash_size = size; >> 1159 break; >> 1160 } >> 1161 } while (*cur++ == ','); 917 1162 918 return ret; !! 1163 if (*crash_size > 0) { >> 1164 while (*cur && *cur != ' ' && *cur != '@') >> 1165 cur++; >> 1166 if (*cur == '@') { >> 1167 cur++; >> 1168 *crash_base = memparse(cur, &tmp); >> 1169 if (cur == tmp) { >> 1170 pr_warn("Memory value expected after '@'\n"); >> 1171 return -EINVAL; >> 1172 } >> 1173 } >> 1174 } >> 1175 >> 1176 return 0; >> 1177 } >> 1178 >> 1179 /* >> 1180 * That function parses "simple" (old) crashkernel command lines like >> 1181 * >> 1182 * crashkernel=size[@offset] >> 1183 * >> 1184 * It returns 0 on success and -EINVAL on failure. >> 1185 */ >> 1186 static int __init parse_crashkernel_simple(char *cmdline, >> 1187 unsigned long long *crash_size, >> 1188 unsigned long long *crash_base) >> 1189 { >> 1190 char *cur = cmdline; >> 1191 >> 1192 *crash_size = memparse(cmdline, &cur); >> 1193 if (cmdline == cur) { >> 1194 pr_warn("crashkernel: memory value expected\n"); >> 1195 return -EINVAL; 919 } 1196 } 920 1197 921 mutex_lock(&limit->mutex); !! 1198 if (*cur == '@') 922 val = limit->limit; !! 1199 *crash_base = memparse(cur+1, &cur); 923 mutex_unlock(&limit->mutex); !! 1200 else if (*cur != ' ' && *cur != '\0') { >> 1201 pr_warn("crashkernel: unrecognized char: %c\n", *cur); >> 1202 return -EINVAL; >> 1203 } 924 1204 925 return proc_dointvec(&tmp, write, buff !! 1205 return 0; 926 } 1206 } 927 1207 928 static struct ctl_table kexec_core_sysctls[] = !! 1208 #define SUFFIX_HIGH 0 929 { !! 1209 #define SUFFIX_LOW 1 930 .procname = "kexec_load_ !! 1210 #define SUFFIX_NULL 2 931 .data = &kexec_load_ !! 1211 static __initdata char *suffix_tbl[] = { 932 .maxlen = sizeof(int), !! 1212 [SUFFIX_HIGH] = ",high", 933 .mode = 0644, !! 1213 [SUFFIX_LOW] = ",low", 934 /* only handle a transition fr !! 1214 [SUFFIX_NULL] = NULL, 935 .proc_handler = proc_dointve << 936 .extra1 = SYSCTL_ONE, << 937 .extra2 = SYSCTL_ONE, << 938 }, << 939 { << 940 .procname = "kexec_load_ << 941 .data = &load_limit_ << 942 .mode = 0644, << 943 .proc_handler = kexec_limit_ << 944 }, << 945 { << 946 .procname = "kexec_load_ << 947 .data = &load_limit_ << 948 .mode = 0644, << 949 .proc_handler = kexec_limit_ << 950 }, << 951 }; 1215 }; 952 1216 953 static int __init kexec_core_sysctl_init(void) !! 1217 /* 954 { !! 1218 * That function parses "suffix" crashkernel command lines like 955 register_sysctl_init("kernel", kexec_c !! 1219 * >> 1220 * crashkernel=size,[high|low] >> 1221 * >> 1222 * It returns 0 on success and -EINVAL on failure. >> 1223 */ >> 1224 static int __init parse_crashkernel_suffix(char *cmdline, >> 1225 unsigned long long *crash_size, >> 1226 const char *suffix) >> 1227 { >> 1228 char *cur = cmdline; >> 1229 >> 1230 *crash_size = memparse(cmdline, &cur); >> 1231 if (cmdline == cur) { >> 1232 pr_warn("crashkernel: memory value expected\n"); >> 1233 return -EINVAL; >> 1234 } >> 1235 >> 1236 /* check with suffix */ >> 1237 if (strncmp(cur, suffix, strlen(suffix))) { >> 1238 pr_warn("crashkernel: unrecognized char: %c\n", *cur); >> 1239 return -EINVAL; >> 1240 } >> 1241 cur += strlen(suffix); >> 1242 if (*cur != ' ' && *cur != '\0') { >> 1243 pr_warn("crashkernel: unrecognized char: %c\n", *cur); >> 1244 return -EINVAL; >> 1245 } >> 1246 956 return 0; 1247 return 0; 957 } 1248 } 958 late_initcall(kexec_core_sysctl_init); << 959 #endif << 960 1249 961 bool kexec_load_permitted(int kexec_image_type !! 1250 static __init char *get_last_crashkernel(char *cmdline, >> 1251 const char *name, >> 1252 const char *suffix) >> 1253 { >> 1254 char *p = cmdline, *ck_cmdline = NULL; >> 1255 >> 1256 /* find crashkernel and use the last one if there are more */ >> 1257 p = strstr(p, name); >> 1258 while (p) { >> 1259 char *end_p = strchr(p, ' '); >> 1260 char *q; >> 1261 >> 1262 if (!end_p) >> 1263 end_p = p + strlen(p); >> 1264 >> 1265 if (!suffix) { >> 1266 int i; >> 1267 >> 1268 /* skip the one with any known suffix */ >> 1269 for (i = 0; suffix_tbl[i]; i++) { >> 1270 q = end_p - strlen(suffix_tbl[i]); >> 1271 if (!strncmp(q, suffix_tbl[i], >> 1272 strlen(suffix_tbl[i]))) >> 1273 goto next; >> 1274 } >> 1275 ck_cmdline = p; >> 1276 } else { >> 1277 q = end_p - strlen(suffix); >> 1278 if (!strncmp(q, suffix, strlen(suffix))) >> 1279 ck_cmdline = p; >> 1280 } >> 1281 next: >> 1282 p = strstr(p+1, name); >> 1283 } >> 1284 >> 1285 if (!ck_cmdline) >> 1286 return NULL; >> 1287 >> 1288 return ck_cmdline; >> 1289 } >> 1290 >> 1291 static int __init __parse_crashkernel(char *cmdline, >> 1292 unsigned long long system_ram, >> 1293 unsigned long long *crash_size, >> 1294 unsigned long long *crash_base, >> 1295 const char *name, >> 1296 const char *suffix) 962 { 1297 { 963 struct kexec_load_limit *limit; !! 1298 char *first_colon, *first_space; >> 1299 char *ck_cmdline; >> 1300 >> 1301 BUG_ON(!crash_size || !crash_base); >> 1302 *crash_size = 0; >> 1303 *crash_base = 0; 964 1304 >> 1305 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); >> 1306 >> 1307 if (!ck_cmdline) >> 1308 return -EINVAL; >> 1309 >> 1310 ck_cmdline += strlen(name); >> 1311 >> 1312 if (suffix) >> 1313 return parse_crashkernel_suffix(ck_cmdline, crash_size, >> 1314 suffix); 965 /* 1315 /* 966 * Only the superuser can use the kexe !! 1316 * if the commandline contains a ':', then that's the extended 967 * been disabled. !! 1317 * syntax -- if not, it must be the classic syntax 968 */ 1318 */ 969 if (!capable(CAP_SYS_BOOT) || kexec_lo !! 1319 first_colon = strchr(ck_cmdline, ':'); 970 return false; !! 1320 first_space = strchr(ck_cmdline, ' '); >> 1321 if (first_colon && (!first_space || first_colon < first_space)) >> 1322 return parse_crashkernel_mem(ck_cmdline, system_ram, >> 1323 crash_size, crash_base); >> 1324 >> 1325 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); >> 1326 } >> 1327 >> 1328 /* >> 1329 * That function is the entry point for command line parsing and should be >> 1330 * called from the arch-specific code. >> 1331 */ >> 1332 int __init parse_crashkernel(char *cmdline, >> 1333 unsigned long long system_ram, >> 1334 unsigned long long *crash_size, >> 1335 unsigned long long *crash_base) >> 1336 { >> 1337 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, >> 1338 "crashkernel=", NULL); >> 1339 } >> 1340 >> 1341 int __init parse_crashkernel_high(char *cmdline, >> 1342 unsigned long long system_ram, >> 1343 unsigned long long *crash_size, >> 1344 unsigned long long *crash_base) >> 1345 { >> 1346 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, >> 1347 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); >> 1348 } >> 1349 >> 1350 int __init parse_crashkernel_low(char *cmdline, >> 1351 unsigned long long system_ram, >> 1352 unsigned long long *crash_size, >> 1353 unsigned long long *crash_base) >> 1354 { >> 1355 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, >> 1356 "crashkernel=", suffix_tbl[SUFFIX_LOW]); >> 1357 } >> 1358 >> 1359 static void update_vmcoreinfo_note(void) >> 1360 { >> 1361 u32 *buf = vmcoreinfo_note; >> 1362 >> 1363 if (!vmcoreinfo_size) >> 1364 return; >> 1365 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, >> 1366 vmcoreinfo_size); >> 1367 final_note(buf); >> 1368 } >> 1369 >> 1370 void crash_save_vmcoreinfo(void) >> 1371 { >> 1372 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); >> 1373 update_vmcoreinfo_note(); >> 1374 } >> 1375 >> 1376 void vmcoreinfo_append_str(const char *fmt, ...) >> 1377 { >> 1378 va_list args; >> 1379 char buf[0x50]; >> 1380 size_t r; >> 1381 >> 1382 va_start(args, fmt); >> 1383 r = vscnprintf(buf, sizeof(buf), fmt, args); >> 1384 va_end(args); >> 1385 >> 1386 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); >> 1387 >> 1388 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); >> 1389 >> 1390 vmcoreinfo_size += r; >> 1391 } >> 1392 >> 1393 /* >> 1394 * provide an empty default implementation here -- architecture >> 1395 * code may override this >> 1396 */ >> 1397 void __weak arch_crash_save_vmcoreinfo(void) >> 1398 {} >> 1399 >> 1400 phys_addr_t __weak paddr_vmcoreinfo_note(void) >> 1401 { >> 1402 return __pa((unsigned long)(char *)&vmcoreinfo_note); >> 1403 } >> 1404 >> 1405 static int __init crash_save_vmcoreinfo_init(void) >> 1406 { >> 1407 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); >> 1408 VMCOREINFO_PAGESIZE(PAGE_SIZE); 971 1409 972 /* Check limit counter and decrease it !! 1410 VMCOREINFO_SYMBOL(init_uts_ns); 973 limit = (kexec_image_type == KEXEC_TYP !! 1411 VMCOREINFO_SYMBOL(node_online_map); 974 &load_limit_panic : &load_limi !! 1412 #ifdef CONFIG_MMU 975 mutex_lock(&limit->mutex); !! 1413 VMCOREINFO_SYMBOL(swapper_pg_dir); 976 if (!limit->limit) { !! 1414 #endif 977 mutex_unlock(&limit->mutex); !! 1415 VMCOREINFO_SYMBOL(_stext); 978 return false; !! 1416 VMCOREINFO_SYMBOL(vmap_area_list); 979 } !! 1417 980 if (limit->limit != -1) !! 1418 #ifndef CONFIG_NEED_MULTIPLE_NODES 981 limit->limit--; !! 1419 VMCOREINFO_SYMBOL(mem_map); 982 mutex_unlock(&limit->mutex); !! 1420 VMCOREINFO_SYMBOL(contig_page_data); >> 1421 #endif >> 1422 #ifdef CONFIG_SPARSEMEM >> 1423 VMCOREINFO_SYMBOL(mem_section); >> 1424 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); >> 1425 VMCOREINFO_STRUCT_SIZE(mem_section); >> 1426 VMCOREINFO_OFFSET(mem_section, section_mem_map); >> 1427 #endif >> 1428 VMCOREINFO_STRUCT_SIZE(page); >> 1429 VMCOREINFO_STRUCT_SIZE(pglist_data); >> 1430 VMCOREINFO_STRUCT_SIZE(zone); >> 1431 VMCOREINFO_STRUCT_SIZE(free_area); >> 1432 VMCOREINFO_STRUCT_SIZE(list_head); >> 1433 VMCOREINFO_SIZE(nodemask_t); >> 1434 VMCOREINFO_OFFSET(page, flags); >> 1435 VMCOREINFO_OFFSET(page, _refcount); >> 1436 VMCOREINFO_OFFSET(page, mapping); >> 1437 VMCOREINFO_OFFSET(page, lru); >> 1438 VMCOREINFO_OFFSET(page, _mapcount); >> 1439 VMCOREINFO_OFFSET(page, private); >> 1440 VMCOREINFO_OFFSET(page, compound_dtor); >> 1441 VMCOREINFO_OFFSET(page, compound_order); >> 1442 VMCOREINFO_OFFSET(page, compound_head); >> 1443 VMCOREINFO_OFFSET(pglist_data, node_zones); >> 1444 VMCOREINFO_OFFSET(pglist_data, nr_zones); >> 1445 #ifdef CONFIG_FLAT_NODE_MEM_MAP >> 1446 VMCOREINFO_OFFSET(pglist_data, node_mem_map); >> 1447 #endif >> 1448 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); >> 1449 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); >> 1450 VMCOREINFO_OFFSET(pglist_data, node_id); >> 1451 VMCOREINFO_OFFSET(zone, free_area); >> 1452 VMCOREINFO_OFFSET(zone, vm_stat); >> 1453 VMCOREINFO_OFFSET(zone, spanned_pages); >> 1454 VMCOREINFO_OFFSET(free_area, free_list); >> 1455 VMCOREINFO_OFFSET(list_head, next); >> 1456 VMCOREINFO_OFFSET(list_head, prev); >> 1457 VMCOREINFO_OFFSET(vmap_area, va_start); >> 1458 VMCOREINFO_OFFSET(vmap_area, list); >> 1459 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); >> 1460 log_buf_kexec_setup(); >> 1461 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); >> 1462 VMCOREINFO_NUMBER(NR_FREE_PAGES); >> 1463 VMCOREINFO_NUMBER(PG_lru); >> 1464 VMCOREINFO_NUMBER(PG_private); >> 1465 VMCOREINFO_NUMBER(PG_swapcache); >> 1466 VMCOREINFO_NUMBER(PG_slab); >> 1467 #ifdef CONFIG_MEMORY_FAILURE >> 1468 VMCOREINFO_NUMBER(PG_hwpoison); >> 1469 #endif >> 1470 VMCOREINFO_NUMBER(PG_head_mask); >> 1471 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); >> 1472 #ifdef CONFIG_X86 >> 1473 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); >> 1474 #endif >> 1475 #ifdef CONFIG_HUGETLB_PAGE >> 1476 VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR); >> 1477 #endif 983 1478 984 return true; !! 1479 arch_crash_save_vmcoreinfo(); >> 1480 update_vmcoreinfo_note(); >> 1481 >> 1482 return 0; 985 } 1483 } 986 1484 >> 1485 subsys_initcall(crash_save_vmcoreinfo_init); >> 1486 987 /* 1487 /* 988 * Move into place and start executing a prelo 1488 * Move into place and start executing a preloaded standalone 989 * executable. If nothing was preloaded retur 1489 * executable. If nothing was preloaded return an error. 990 */ 1490 */ 991 int kernel_kexec(void) 1491 int kernel_kexec(void) 992 { 1492 { 993 int error = 0; 1493 int error = 0; 994 1494 995 if (!kexec_trylock()) !! 1495 if (!mutex_trylock(&kexec_mutex)) 996 return -EBUSY; 1496 return -EBUSY; 997 if (!kexec_image) { 1497 if (!kexec_image) { 998 error = -EINVAL; 1498 error = -EINVAL; 999 goto Unlock; 1499 goto Unlock; 1000 } 1500 } 1001 1501 1002 #ifdef CONFIG_KEXEC_JUMP 1502 #ifdef CONFIG_KEXEC_JUMP 1003 if (kexec_image->preserve_context) { 1503 if (kexec_image->preserve_context) { >> 1504 lock_system_sleep(); 1004 pm_prepare_console(); 1505 pm_prepare_console(); 1005 error = freeze_processes(); 1506 error = freeze_processes(); 1006 if (error) { 1507 if (error) { 1007 error = -EBUSY; 1508 error = -EBUSY; 1008 goto Restore_console; 1509 goto Restore_console; 1009 } 1510 } 1010 suspend_console(); 1511 suspend_console(); 1011 error = dpm_suspend_start(PMS 1512 error = dpm_suspend_start(PMSG_FREEZE); 1012 if (error) 1513 if (error) 1013 goto Resume_console; 1514 goto Resume_console; 1014 /* At this point, dpm_suspend 1515 /* At this point, dpm_suspend_start() has been called, 1015 * but *not* dpm_suspend_end( 1516 * but *not* dpm_suspend_end(). We *must* call 1016 * dpm_suspend_end() now. Ot 1517 * dpm_suspend_end() now. Otherwise, drivers for 1017 * some devices (e.g. interru 1518 * some devices (e.g. interrupt controllers) become 1018 * desynchronized with the ac 1519 * desynchronized with the actual state of the 1019 * hardware at resume time, a 1520 * hardware at resume time, and evil weirdness ensues. 1020 */ 1521 */ 1021 error = dpm_suspend_end(PMSG_ 1522 error = dpm_suspend_end(PMSG_FREEZE); 1022 if (error) 1523 if (error) 1023 goto Resume_devices; 1524 goto Resume_devices; 1024 error = suspend_disable_secon !! 1525 error = disable_nonboot_cpus(); 1025 if (error) 1526 if (error) 1026 goto Enable_cpus; 1527 goto Enable_cpus; 1027 local_irq_disable(); 1528 local_irq_disable(); 1028 error = syscore_suspend(); 1529 error = syscore_suspend(); 1029 if (error) 1530 if (error) 1030 goto Enable_irqs; 1531 goto Enable_irqs; 1031 } else 1532 } else 1032 #endif 1533 #endif 1033 { 1534 { 1034 kexec_in_progress = true; 1535 kexec_in_progress = true; 1035 kernel_restart_prepare("kexec !! 1536 kernel_restart_prepare(NULL); 1036 migrate_to_reboot_cpu(); 1537 migrate_to_reboot_cpu(); 1037 syscore_shutdown(); << 1038 1538 1039 /* 1539 /* 1040 * migrate_to_reboot_cpu() di 1540 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1041 * no further code needs to u 1541 * no further code needs to use CPU hotplug (which is true in 1042 * the reboot case). However, 1542 * the reboot case). However, the kexec path depends on using 1043 * CPU hotplug again; so re-e 1543 * CPU hotplug again; so re-enable it here. 1044 */ 1544 */ 1045 cpu_hotplug_enable(); 1545 cpu_hotplug_enable(); 1046 pr_notice("Starting new kerne !! 1546 pr_emerg("Starting new kernel\n"); 1047 machine_shutdown(); 1547 machine_shutdown(); 1048 } 1548 } 1049 1549 1050 kmsg_dump(KMSG_DUMP_SHUTDOWN); << 1051 machine_kexec(kexec_image); 1550 machine_kexec(kexec_image); 1052 1551 1053 #ifdef CONFIG_KEXEC_JUMP 1552 #ifdef CONFIG_KEXEC_JUMP 1054 if (kexec_image->preserve_context) { 1553 if (kexec_image->preserve_context) { 1055 syscore_resume(); 1554 syscore_resume(); 1056 Enable_irqs: 1555 Enable_irqs: 1057 local_irq_enable(); 1556 local_irq_enable(); 1058 Enable_cpus: 1557 Enable_cpus: 1059 suspend_enable_secondary_cpus !! 1558 enable_nonboot_cpus(); 1060 dpm_resume_start(PMSG_RESTORE 1559 dpm_resume_start(PMSG_RESTORE); 1061 Resume_devices: 1560 Resume_devices: 1062 dpm_resume_end(PMSG_RESTORE); 1561 dpm_resume_end(PMSG_RESTORE); 1063 Resume_console: 1562 Resume_console: 1064 resume_console(); 1563 resume_console(); 1065 thaw_processes(); 1564 thaw_processes(); 1066 Restore_console: 1565 Restore_console: 1067 pm_restore_console(); 1566 pm_restore_console(); >> 1567 unlock_system_sleep(); 1068 } 1568 } 1069 #endif 1569 #endif 1070 1570 1071 Unlock: 1571 Unlock: 1072 kexec_unlock(); !! 1572 mutex_unlock(&kexec_mutex); 1073 return error; 1573 return error; 1074 } 1574 } >> 1575 >> 1576 /* >> 1577 * Protection mechanism for crashkernel reserved memory after >> 1578 * the kdump kernel is loaded. >> 1579 * >> 1580 * Provide an empty default implementation here -- architecture >> 1581 * code may override this >> 1582 */ >> 1583 void __weak arch_kexec_protect_crashkres(void) >> 1584 {} >> 1585 >> 1586 void __weak arch_kexec_unprotect_crashkres(void) >> 1587 {} 1075 1588
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.