1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * kexec.c - kexec system call core code. 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <eb 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 5 */ 6 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 8 9 #include <linux/btf.h> << 10 #include <linux/capability.h> 9 #include <linux/capability.h> 11 #include <linux/mm.h> 10 #include <linux/mm.h> 12 #include <linux/file.h> 11 #include <linux/file.h> 13 #include <linux/slab.h> 12 #include <linux/slab.h> 14 #include <linux/fs.h> 13 #include <linux/fs.h> 15 #include <linux/kexec.h> 14 #include <linux/kexec.h> 16 #include <linux/mutex.h> 15 #include <linux/mutex.h> 17 #include <linux/list.h> 16 #include <linux/list.h> 18 #include <linux/highmem.h> 17 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 18 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 19 #include <linux/reboot.h> 21 #include <linux/ioport.h> 20 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 21 #include <linux/hardirq.h> 23 #include <linux/elf.h> 22 #include <linux/elf.h> 24 #include <linux/elfcore.h> 23 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 24 #include <linux/utsname.h> 26 #include <linux/numa.h> 25 #include <linux/numa.h> 27 #include <linux/suspend.h> 26 #include <linux/suspend.h> 28 #include <linux/device.h> 27 #include <linux/device.h> 29 #include <linux/freezer.h> 28 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 29 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 30 #include <linux/pm.h> 32 #include <linux/cpu.h> 31 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 32 #include <linux/uaccess.h> 34 #include <linux/io.h> 33 #include <linux/io.h> 35 #include <linux/console.h> 34 #include <linux/console.h> 36 #include <linux/vmalloc.h> 35 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 36 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 37 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 38 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 39 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 40 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 41 #include <linux/kmsg_dump.h> 43 42 44 #include <asm/page.h> 43 #include <asm/page.h> 45 #include <asm/sections.h> 44 #include <asm/sections.h> 46 45 47 #include <crypto/hash.h> 46 #include <crypto/hash.h> 48 #include "kexec_internal.h" 47 #include "kexec_internal.h" 49 48 50 atomic_t __kexec_lock = ATOMIC_INIT(0); !! 49 DEFINE_MUTEX(kexec_mutex); >> 50 >> 51 /* Per cpu memory for storing cpu states in case of system crash. */ >> 52 note_buf_t __percpu *crash_notes; 51 53 52 /* Flag to indicate we are going to kexec a ne 54 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 55 bool kexec_in_progress = false; 54 56 55 bool kexec_file_dbg_print; !! 57 >> 58 /* Location of the reserved area for the crash kernel */ >> 59 struct resource crashk_res = { >> 60 .name = "Crash kernel", >> 61 .start = 0, >> 62 .end = 0, >> 63 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 64 .desc = IORES_DESC_CRASH_KERNEL >> 65 }; >> 66 struct resource crashk_low_res = { >> 67 .name = "Crash kernel", >> 68 .start = 0, >> 69 .end = 0, >> 70 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 71 .desc = IORES_DESC_CRASH_KERNEL >> 72 }; >> 73 >> 74 int kexec_should_crash(struct task_struct *p) >> 75 { >> 76 /* >> 77 * If crash_kexec_post_notifiers is enabled, don't run >> 78 * crash_kexec() here yet, which must be run after panic >> 79 * notifiers in panic(). >> 80 */ >> 81 if (crash_kexec_post_notifiers) >> 82 return 0; >> 83 /* >> 84 * There are 4 panic() calls in make_task_dead() path, each of which >> 85 * corresponds to each of these 4 conditions. >> 86 */ >> 87 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) >> 88 return 1; >> 89 return 0; >> 90 } >> 91 >> 92 int kexec_crash_loaded(void) >> 93 { >> 94 return !!kexec_crash_image; >> 95 } >> 96 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 56 97 57 /* 98 /* 58 * When kexec transitions to the new kernel th 99 * When kexec transitions to the new kernel there is a one-to-one 59 * mapping between physical and virtual addres 100 * mapping between physical and virtual addresses. On processors 60 * where you can disable the MMU this is trivi 101 * where you can disable the MMU this is trivial, and easy. For 61 * others it is still a simple predictable pag 102 * others it is still a simple predictable page table to setup. 62 * 103 * 63 * In that environment kexec copies the new ke 104 * In that environment kexec copies the new kernel to its final 64 * resting place. This means I can only suppo 105 * resting place. This means I can only support memory whose 65 * physical address can fit in an unsigned lon 106 * physical address can fit in an unsigned long. In particular 66 * addresses where (pfn << PAGE_SHIFT) > ULONG 107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 67 * If the assembly stub has more restrictive r 108 * If the assembly stub has more restrictive requirements 68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME 109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 69 * defined more restrictively in <asm/kexec.h> 110 * defined more restrictively in <asm/kexec.h>. 70 * 111 * 71 * The code for the transition from the curren 112 * The code for the transition from the current kernel to the 72 * new kernel is placed in the control_code_bu 113 * new kernel is placed in the control_code_buffer, whose size 73 * is given by KEXEC_CONTROL_PAGE_SIZE. In th 114 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 74 * page of memory is necessary, but some archi 115 * page of memory is necessary, but some architectures require more. 75 * Because this memory must be identity mapped 116 * Because this memory must be identity mapped in the transition from 76 * virtual to physical addresses it must live 117 * virtual to physical addresses it must live in the range 77 * 0 - TASK_SIZE, as only the user space mappi 118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 78 * modifiable. 119 * modifiable. 79 * 120 * 80 * The assembly stub in the control code buffe 121 * The assembly stub in the control code buffer is passed a linked list 81 * of descriptor pages detailing the source pa 122 * of descriptor pages detailing the source pages of the new kernel, 82 * and the destination addresses of those sour 123 * and the destination addresses of those source pages. As this data 83 * structure is not used in the context of the 124 * structure is not used in the context of the current OS, it must 84 * be self-contained. 125 * be self-contained. 85 * 126 * 86 * The code has been made to work with highmem 127 * The code has been made to work with highmem pages and will use a 87 * destination page in its final resting place 128 * destination page in its final resting place (if it happens 88 * to allocate it). The end product of this i 129 * to allocate it). The end product of this is that most of the 89 * physical address space, and most of RAM can 130 * physical address space, and most of RAM can be used. 90 * 131 * 91 * Future directions include: 132 * Future directions include: 92 * - allocating a page table with the control 133 * - allocating a page table with the control code buffer identity 93 * mapped, to simplify machine_kexec and ma 134 * mapped, to simplify machine_kexec and make kexec_on_panic more 94 * reliable. 135 * reliable. 95 */ 136 */ 96 137 97 /* 138 /* 98 * KIMAGE_NO_DEST is an impossible destination 139 * KIMAGE_NO_DEST is an impossible destination address..., for 99 * allocating pages whose destination address 140 * allocating pages whose destination address we do not care about. 100 */ 141 */ 101 #define KIMAGE_NO_DEST (-1UL) 142 #define KIMAGE_NO_DEST (-1UL) 102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) > 143 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 103 144 104 static struct page *kimage_alloc_page(struct k 145 static struct page *kimage_alloc_page(struct kimage *image, 105 gfp_t g 146 gfp_t gfp_mask, 106 unsigne 147 unsigned long dest); 107 148 108 int sanity_check_segment_list(struct kimage *i 149 int sanity_check_segment_list(struct kimage *image) 109 { 150 { 110 int i; 151 int i; 111 unsigned long nr_segments = image->nr_ 152 unsigned long nr_segments = image->nr_segments; 112 unsigned long total_pages = 0; 153 unsigned long total_pages = 0; 113 unsigned long nr_pages = totalram_page 154 unsigned long nr_pages = totalram_pages(); 114 155 115 /* 156 /* 116 * Verify we have good destination add 157 * Verify we have good destination addresses. The caller is 117 * responsible for making certain we d 158 * responsible for making certain we don't attempt to load 118 * the new image into invalid or reser 159 * the new image into invalid or reserved areas of RAM. This 119 * just verifies it is an address we c 160 * just verifies it is an address we can use. 120 * 161 * 121 * Since the kernel does everything in 162 * Since the kernel does everything in page size chunks ensure 122 * the destination addresses are page 163 * the destination addresses are page aligned. Too many 123 * special cases crop of when we don't 164 * special cases crop of when we don't do this. The most 124 * insidious is getting overlapping de 165 * insidious is getting overlapping destination addresses 125 * simply because addresses are change 166 * simply because addresses are changed to page size 126 * granularity. 167 * granularity. 127 */ 168 */ 128 for (i = 0; i < nr_segments; i++) { 169 for (i = 0; i < nr_segments; i++) { 129 unsigned long mstart, mend; 170 unsigned long mstart, mend; 130 171 131 mstart = image->segment[i].mem 172 mstart = image->segment[i].mem; 132 mend = mstart + image->segme 173 mend = mstart + image->segment[i].memsz; 133 if (mstart > mend) 174 if (mstart > mend) 134 return -EADDRNOTAVAIL; 175 return -EADDRNOTAVAIL; 135 if ((mstart & ~PAGE_MASK) || ( 176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 136 return -EADDRNOTAVAIL; 177 return -EADDRNOTAVAIL; 137 if (mend >= KEXEC_DESTINATION_ 178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 138 return -EADDRNOTAVAIL; 179 return -EADDRNOTAVAIL; 139 } 180 } 140 181 141 /* Verify our destination addresses do 182 /* Verify our destination addresses do not overlap. 142 * If we alloed overlapping destinatio 183 * If we alloed overlapping destination addresses 143 * through very weird things can happe 184 * through very weird things can happen with no 144 * easy explanation as one segment sto 185 * easy explanation as one segment stops on another. 145 */ 186 */ 146 for (i = 0; i < nr_segments; i++) { 187 for (i = 0; i < nr_segments; i++) { 147 unsigned long mstart, mend; 188 unsigned long mstart, mend; 148 unsigned long j; 189 unsigned long j; 149 190 150 mstart = image->segment[i].mem 191 mstart = image->segment[i].mem; 151 mend = mstart + image->segme 192 mend = mstart + image->segment[i].memsz; 152 for (j = 0; j < i; j++) { 193 for (j = 0; j < i; j++) { 153 unsigned long pstart, 194 unsigned long pstart, pend; 154 195 155 pstart = image->segmen 196 pstart = image->segment[j].mem; 156 pend = pstart + imag 197 pend = pstart + image->segment[j].memsz; 157 /* Do the segments ove 198 /* Do the segments overlap ? */ 158 if ((mend > pstart) && 199 if ((mend > pstart) && (mstart < pend)) 159 return -EINVAL 200 return -EINVAL; 160 } 201 } 161 } 202 } 162 203 163 /* Ensure our buffer sizes are strictl 204 /* Ensure our buffer sizes are strictly less than 164 * our memory sizes. This should alwa 205 * our memory sizes. This should always be the case, 165 * and it is easier to check up front 206 * and it is easier to check up front than to be surprised 166 * later on. 207 * later on. 167 */ 208 */ 168 for (i = 0; i < nr_segments; i++) { 209 for (i = 0; i < nr_segments; i++) { 169 if (image->segment[i].bufsz > 210 if (image->segment[i].bufsz > image->segment[i].memsz) 170 return -EINVAL; 211 return -EINVAL; 171 } 212 } 172 213 173 /* 214 /* 174 * Verify that no more than half of me 215 * Verify that no more than half of memory will be consumed. If the 175 * request from userspace is too large 216 * request from userspace is too large, a large amount of time will be 176 * wasted allocating pages, which can 217 * wasted allocating pages, which can cause a soft lockup. 177 */ 218 */ 178 for (i = 0; i < nr_segments; i++) { 219 for (i = 0; i < nr_segments; i++) { 179 if (PAGE_COUNT(image->segment[ 220 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 180 return -EINVAL; 221 return -EINVAL; 181 222 182 total_pages += PAGE_COUNT(imag 223 total_pages += PAGE_COUNT(image->segment[i].memsz); 183 } 224 } 184 225 185 if (total_pages > nr_pages / 2) 226 if (total_pages > nr_pages / 2) 186 return -EINVAL; 227 return -EINVAL; 187 228 188 #ifdef CONFIG_CRASH_DUMP << 189 /* 229 /* 190 * Verify we have good destination add 230 * Verify we have good destination addresses. Normally 191 * the caller is responsible for makin 231 * the caller is responsible for making certain we don't 192 * attempt to load the new image into 232 * attempt to load the new image into invalid or reserved 193 * areas of RAM. But crash kernels ar 233 * areas of RAM. But crash kernels are preloaded into a 194 * reserved area of ram. We must ensu 234 * reserved area of ram. We must ensure the addresses 195 * are in the reserved area otherwise 235 * are in the reserved area otherwise preloading the 196 * kernel could corrupt things. 236 * kernel could corrupt things. 197 */ 237 */ 198 238 199 if (image->type == KEXEC_TYPE_CRASH) { 239 if (image->type == KEXEC_TYPE_CRASH) { 200 for (i = 0; i < nr_segments; i 240 for (i = 0; i < nr_segments; i++) { 201 unsigned long mstart, 241 unsigned long mstart, mend; 202 242 203 mstart = image->segmen 243 mstart = image->segment[i].mem; 204 mend = mstart + image- 244 mend = mstart + image->segment[i].memsz - 1; 205 /* Ensure we are withi 245 /* Ensure we are within the crash kernel limits */ 206 if ((mstart < phys_to_ 246 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 207 (mend > phys_to_bo 247 (mend > phys_to_boot_phys(crashk_res.end))) 208 return -EADDRN 248 return -EADDRNOTAVAIL; 209 } 249 } 210 } 250 } 211 #endif << 212 251 213 return 0; 252 return 0; 214 } 253 } 215 254 216 struct kimage *do_kimage_alloc_init(void) 255 struct kimage *do_kimage_alloc_init(void) 217 { 256 { 218 struct kimage *image; 257 struct kimage *image; 219 258 220 /* Allocate a controlling structure */ 259 /* Allocate a controlling structure */ 221 image = kzalloc(sizeof(*image), GFP_KE 260 image = kzalloc(sizeof(*image), GFP_KERNEL); 222 if (!image) 261 if (!image) 223 return NULL; 262 return NULL; 224 263 225 image->head = 0; 264 image->head = 0; 226 image->entry = &image->head; 265 image->entry = &image->head; 227 image->last_entry = &image->head; 266 image->last_entry = &image->head; 228 image->control_page = ~0; /* By defaul 267 image->control_page = ~0; /* By default this does not apply */ 229 image->type = KEXEC_TYPE_DEFAULT; 268 image->type = KEXEC_TYPE_DEFAULT; 230 269 231 /* Initialize the list of control page 270 /* Initialize the list of control pages */ 232 INIT_LIST_HEAD(&image->control_pages); 271 INIT_LIST_HEAD(&image->control_pages); 233 272 234 /* Initialize the list of destination 273 /* Initialize the list of destination pages */ 235 INIT_LIST_HEAD(&image->dest_pages); 274 INIT_LIST_HEAD(&image->dest_pages); 236 275 237 /* Initialize the list of unusable pag 276 /* Initialize the list of unusable pages */ 238 INIT_LIST_HEAD(&image->unusable_pages) 277 INIT_LIST_HEAD(&image->unusable_pages); 239 278 240 #ifdef CONFIG_CRASH_HOTPLUG << 241 image->hp_action = KEXEC_CRASH_HP_NONE << 242 image->elfcorehdr_index = -1; << 243 image->elfcorehdr_updated = false; << 244 #endif << 245 << 246 return image; 279 return image; 247 } 280 } 248 281 249 int kimage_is_destination_range(struct kimage 282 int kimage_is_destination_range(struct kimage *image, 250 unsign 283 unsigned long start, 251 unsign 284 unsigned long end) 252 { 285 { 253 unsigned long i; 286 unsigned long i; 254 287 255 for (i = 0; i < image->nr_segments; i+ 288 for (i = 0; i < image->nr_segments; i++) { 256 unsigned long mstart, mend; 289 unsigned long mstart, mend; 257 290 258 mstart = image->segment[i].mem 291 mstart = image->segment[i].mem; 259 mend = mstart + image->segment !! 292 mend = mstart + image->segment[i].memsz; 260 if ((end >= mstart) && (start !! 293 if ((end > mstart) && (start < mend)) 261 return 1; 294 return 1; 262 } 295 } 263 296 264 return 0; 297 return 0; 265 } 298 } 266 299 267 static struct page *kimage_alloc_pages(gfp_t g 300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 268 { 301 { 269 struct page *pages; 302 struct page *pages; 270 303 271 if (fatal_signal_pending(current)) 304 if (fatal_signal_pending(current)) 272 return NULL; 305 return NULL; 273 pages = alloc_pages(gfp_mask & ~__GFP_ 306 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 274 if (pages) { 307 if (pages) { 275 unsigned int count, i; 308 unsigned int count, i; 276 309 277 pages->mapping = NULL; 310 pages->mapping = NULL; 278 set_page_private(pages, order) 311 set_page_private(pages, order); 279 count = 1 << order; 312 count = 1 << order; 280 for (i = 0; i < count; i++) 313 for (i = 0; i < count; i++) 281 SetPageReserved(pages 314 SetPageReserved(pages + i); 282 315 283 arch_kexec_post_alloc_pages(pa 316 arch_kexec_post_alloc_pages(page_address(pages), count, 284 gf 317 gfp_mask); 285 318 286 if (gfp_mask & __GFP_ZERO) 319 if (gfp_mask & __GFP_ZERO) 287 for (i = 0; i < count; 320 for (i = 0; i < count; i++) 288 clear_highpage 321 clear_highpage(pages + i); 289 } 322 } 290 323 291 return pages; 324 return pages; 292 } 325 } 293 326 294 static void kimage_free_pages(struct page *pag 327 static void kimage_free_pages(struct page *page) 295 { 328 { 296 unsigned int order, count, i; 329 unsigned int order, count, i; 297 330 298 order = page_private(page); 331 order = page_private(page); 299 count = 1 << order; 332 count = 1 << order; 300 333 301 arch_kexec_pre_free_pages(page_address 334 arch_kexec_pre_free_pages(page_address(page), count); 302 335 303 for (i = 0; i < count; i++) 336 for (i = 0; i < count; i++) 304 ClearPageReserved(page + i); 337 ClearPageReserved(page + i); 305 __free_pages(page, order); 338 __free_pages(page, order); 306 } 339 } 307 340 308 void kimage_free_page_list(struct list_head *l 341 void kimage_free_page_list(struct list_head *list) 309 { 342 { 310 struct page *page, *next; 343 struct page *page, *next; 311 344 312 list_for_each_entry_safe(page, next, l 345 list_for_each_entry_safe(page, next, list, lru) { 313 list_del(&page->lru); 346 list_del(&page->lru); 314 kimage_free_pages(page); 347 kimage_free_pages(page); 315 } 348 } 316 } 349 } 317 350 318 static struct page *kimage_alloc_normal_contro 351 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 319 352 unsigned int order) 320 { 353 { 321 /* Control pages are special, they are 354 /* Control pages are special, they are the intermediaries 322 * that are needed while we copy the r 355 * that are needed while we copy the rest of the pages 323 * to their final resting place. As s 356 * to their final resting place. As such they must 324 * not conflict with either the destin 357 * not conflict with either the destination addresses 325 * or memory the kernel is already usi 358 * or memory the kernel is already using. 326 * 359 * 327 * The only case where we really need 360 * The only case where we really need more than one of 328 * these are for architectures where w 361 * these are for architectures where we cannot disable 329 * the MMU and must instead generate a 362 * the MMU and must instead generate an identity mapped 330 * page table for all of the memory. 363 * page table for all of the memory. 331 * 364 * 332 * At worst this runs in O(N) of the i 365 * At worst this runs in O(N) of the image size. 333 */ 366 */ 334 struct list_head extra_pages; 367 struct list_head extra_pages; 335 struct page *pages; 368 struct page *pages; 336 unsigned int count; 369 unsigned int count; 337 370 338 count = 1 << order; 371 count = 1 << order; 339 INIT_LIST_HEAD(&extra_pages); 372 INIT_LIST_HEAD(&extra_pages); 340 373 341 /* Loop while I can allocate a page an 374 /* Loop while I can allocate a page and the page allocated 342 * is a destination page. 375 * is a destination page. 343 */ 376 */ 344 do { 377 do { 345 unsigned long pfn, epfn, addr, 378 unsigned long pfn, epfn, addr, eaddr; 346 379 347 pages = kimage_alloc_pages(KEX 380 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 348 if (!pages) 381 if (!pages) 349 break; 382 break; 350 pfn = page_to_boot_pfn(pages 383 pfn = page_to_boot_pfn(pages); 351 epfn = pfn + count; 384 epfn = pfn + count; 352 addr = pfn << PAGE_SHIFT; 385 addr = pfn << PAGE_SHIFT; 353 eaddr = (epfn << PAGE_SHIFT) - !! 386 eaddr = epfn << PAGE_SHIFT; 354 if ((epfn >= (KEXEC_CONTROL_ME 387 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 355 kimage_is_destin 388 kimage_is_destination_range(image, addr, eaddr)) { 356 list_add(&pages->lru, 389 list_add(&pages->lru, &extra_pages); 357 pages = NULL; 390 pages = NULL; 358 } 391 } 359 } while (!pages); 392 } while (!pages); 360 393 361 if (pages) { 394 if (pages) { 362 /* Remember the allocated page 395 /* Remember the allocated page... */ 363 list_add(&pages->lru, &image-> 396 list_add(&pages->lru, &image->control_pages); 364 397 365 /* Because the page is already 398 /* Because the page is already in it's destination 366 * location we will never allo 399 * location we will never allocate another page at 367 * that address. Therefore ki 400 * that address. Therefore kimage_alloc_pages 368 * will not return it (again) 401 * will not return it (again) and we don't need 369 * to give it an entry in imag 402 * to give it an entry in image->segment[]. 370 */ 403 */ 371 } 404 } 372 /* Deal with the destination pages I h 405 /* Deal with the destination pages I have inadvertently allocated. 373 * 406 * 374 * Ideally I would convert multi-page 407 * Ideally I would convert multi-page allocations into single 375 * page allocations, and add everythin 408 * page allocations, and add everything to image->dest_pages. 376 * 409 * 377 * For now it is simpler to just free 410 * For now it is simpler to just free the pages. 378 */ 411 */ 379 kimage_free_page_list(&extra_pages); 412 kimage_free_page_list(&extra_pages); 380 413 381 return pages; 414 return pages; 382 } 415 } 383 416 384 #ifdef CONFIG_CRASH_DUMP << 385 static struct page *kimage_alloc_crash_control 417 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 386 418 unsigned int order) 387 { 419 { 388 /* Control pages are special, they are 420 /* Control pages are special, they are the intermediaries 389 * that are needed while we copy the r 421 * that are needed while we copy the rest of the pages 390 * to their final resting place. As s 422 * to their final resting place. As such they must 391 * not conflict with either the destin 423 * not conflict with either the destination addresses 392 * or memory the kernel is already usi 424 * or memory the kernel is already using. 393 * 425 * 394 * Control pages are also the only pag 426 * Control pages are also the only pags we must allocate 395 * when loading a crash kernel. All o 427 * when loading a crash kernel. All of the other pages 396 * are specified by the segments and w 428 * are specified by the segments and we just memcpy 397 * into them directly. 429 * into them directly. 398 * 430 * 399 * The only case where we really need 431 * The only case where we really need more than one of 400 * these are for architectures where w 432 * these are for architectures where we cannot disable 401 * the MMU and must instead generate a 433 * the MMU and must instead generate an identity mapped 402 * page table for all of the memory. 434 * page table for all of the memory. 403 * 435 * 404 * Given the low demand this implement 436 * Given the low demand this implements a very simple 405 * allocator that finds the first hole 437 * allocator that finds the first hole of the appropriate 406 * size in the reserved memory region, 438 * size in the reserved memory region, and allocates all 407 * of the memory up to and including t 439 * of the memory up to and including the hole. 408 */ 440 */ 409 unsigned long hole_start, hole_end, si 441 unsigned long hole_start, hole_end, size; 410 struct page *pages; 442 struct page *pages; 411 443 412 pages = NULL; 444 pages = NULL; 413 size = (1 << order) << PAGE_SHIFT; 445 size = (1 << order) << PAGE_SHIFT; 414 hole_start = ALIGN(image->control_page !! 446 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 415 hole_end = hole_start + size - 1; 447 hole_end = hole_start + size - 1; 416 while (hole_end <= crashk_res.end) { 448 while (hole_end <= crashk_res.end) { 417 unsigned long i; 449 unsigned long i; 418 450 419 cond_resched(); 451 cond_resched(); 420 452 421 if (hole_end > KEXEC_CRASH_CON 453 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 422 break; 454 break; 423 /* See if I overlap any of the 455 /* See if I overlap any of the segments */ 424 for (i = 0; i < image->nr_segm 456 for (i = 0; i < image->nr_segments; i++) { 425 unsigned long mstart, 457 unsigned long mstart, mend; 426 458 427 mstart = image->segmen 459 mstart = image->segment[i].mem; 428 mend = mstart + imag 460 mend = mstart + image->segment[i].memsz - 1; 429 if ((hole_end >= mstar 461 if ((hole_end >= mstart) && (hole_start <= mend)) { 430 /* Advance the 462 /* Advance the hole to the end of the segment */ 431 hole_start = A !! 463 hole_start = (mend + (size - 1)) & ~(size - 1); 432 hole_end = h 464 hole_end = hole_start + size - 1; 433 break; 465 break; 434 } 466 } 435 } 467 } 436 /* If I don't overlap any segm 468 /* If I don't overlap any segments I have found my hole! */ 437 if (i == image->nr_segments) { 469 if (i == image->nr_segments) { 438 pages = pfn_to_page(ho 470 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 439 image->control_page = !! 471 image->control_page = hole_end; 440 break; 472 break; 441 } 473 } 442 } 474 } 443 475 444 /* Ensure that these pages are decrypt 476 /* Ensure that these pages are decrypted if SME is enabled. */ 445 if (pages) 477 if (pages) 446 arch_kexec_post_alloc_pages(pa 478 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 447 479 448 return pages; 480 return pages; 449 } 481 } 450 #endif << 451 482 452 483 453 struct page *kimage_alloc_control_pages(struct 484 struct page *kimage_alloc_control_pages(struct kimage *image, 454 unsig 485 unsigned int order) 455 { 486 { 456 struct page *pages = NULL; 487 struct page *pages = NULL; 457 488 458 switch (image->type) { 489 switch (image->type) { 459 case KEXEC_TYPE_DEFAULT: 490 case KEXEC_TYPE_DEFAULT: 460 pages = kimage_alloc_normal_co 491 pages = kimage_alloc_normal_control_pages(image, order); 461 break; 492 break; 462 #ifdef CONFIG_CRASH_DUMP << 463 case KEXEC_TYPE_CRASH: 493 case KEXEC_TYPE_CRASH: 464 pages = kimage_alloc_crash_con 494 pages = kimage_alloc_crash_control_pages(image, order); 465 break; 495 break; 466 #endif << 467 } 496 } 468 497 469 return pages; 498 return pages; 470 } 499 } 471 500 >> 501 int kimage_crash_copy_vmcoreinfo(struct kimage *image) >> 502 { >> 503 struct page *vmcoreinfo_page; >> 504 void *safecopy; >> 505 >> 506 if (image->type != KEXEC_TYPE_CRASH) >> 507 return 0; >> 508 >> 509 /* >> 510 * For kdump, allocate one vmcoreinfo safe copy from the >> 511 * crash memory. as we have arch_kexec_protect_crashkres() >> 512 * after kexec syscall, we naturally protect it from write >> 513 * (even read) access under kernel direct mapping. But on >> 514 * the other hand, we still need to operate it when crash >> 515 * happens to generate vmcoreinfo note, hereby we rely on >> 516 * vmap for this purpose. >> 517 */ >> 518 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); >> 519 if (!vmcoreinfo_page) { >> 520 pr_warn("Could not allocate vmcoreinfo buffer\n"); >> 521 return -ENOMEM; >> 522 } >> 523 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); >> 524 if (!safecopy) { >> 525 pr_warn("Could not vmap vmcoreinfo buffer\n"); >> 526 return -ENOMEM; >> 527 } >> 528 >> 529 image->vmcoreinfo_data_copy = safecopy; >> 530 crash_update_vmcoreinfo_safecopy(safecopy); >> 531 >> 532 return 0; >> 533 } >> 534 472 static int kimage_add_entry(struct kimage *ima 535 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 473 { 536 { 474 if (*image->entry != 0) 537 if (*image->entry != 0) 475 image->entry++; 538 image->entry++; 476 539 477 if (image->entry == image->last_entry) 540 if (image->entry == image->last_entry) { 478 kimage_entry_t *ind_page; 541 kimage_entry_t *ind_page; 479 struct page *page; 542 struct page *page; 480 543 481 page = kimage_alloc_page(image 544 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 482 if (!page) 545 if (!page) 483 return -ENOMEM; 546 return -ENOMEM; 484 547 485 ind_page = page_address(page); 548 ind_page = page_address(page); 486 *image->entry = virt_to_boot_p 549 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 487 image->entry = ind_page; 550 image->entry = ind_page; 488 image->last_entry = ind_page + 551 image->last_entry = ind_page + 489 ((PAGE_S 552 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 490 } 553 } 491 *image->entry = entry; 554 *image->entry = entry; 492 image->entry++; 555 image->entry++; 493 *image->entry = 0; 556 *image->entry = 0; 494 557 495 return 0; 558 return 0; 496 } 559 } 497 560 498 static int kimage_set_destination(struct kimag 561 static int kimage_set_destination(struct kimage *image, 499 unsigned lo 562 unsigned long destination) 500 { 563 { >> 564 int result; >> 565 501 destination &= PAGE_MASK; 566 destination &= PAGE_MASK; >> 567 result = kimage_add_entry(image, destination | IND_DESTINATION); 502 568 503 return kimage_add_entry(image, destina !! 569 return result; 504 } 570 } 505 571 506 572 507 static int kimage_add_page(struct kimage *imag 573 static int kimage_add_page(struct kimage *image, unsigned long page) 508 { 574 { >> 575 int result; >> 576 509 page &= PAGE_MASK; 577 page &= PAGE_MASK; >> 578 result = kimage_add_entry(image, page | IND_SOURCE); 510 579 511 return kimage_add_entry(image, page | !! 580 return result; 512 } 581 } 513 582 514 583 515 static void kimage_free_extra_pages(struct kim 584 static void kimage_free_extra_pages(struct kimage *image) 516 { 585 { 517 /* Walk through and free any extra des 586 /* Walk through and free any extra destination pages I may have */ 518 kimage_free_page_list(&image->dest_pag 587 kimage_free_page_list(&image->dest_pages); 519 588 520 /* Walk through and free any unusable 589 /* Walk through and free any unusable pages I have cached */ 521 kimage_free_page_list(&image->unusable 590 kimage_free_page_list(&image->unusable_pages); 522 591 523 } 592 } 524 593 >> 594 int __weak machine_kexec_post_load(struct kimage *image) >> 595 { >> 596 return 0; >> 597 } >> 598 525 void kimage_terminate(struct kimage *image) 599 void kimage_terminate(struct kimage *image) 526 { 600 { 527 if (*image->entry != 0) 601 if (*image->entry != 0) 528 image->entry++; 602 image->entry++; 529 603 530 *image->entry = IND_DONE; 604 *image->entry = IND_DONE; 531 } 605 } 532 606 533 #define for_each_kimage_entry(image, ptr, entr 607 #define for_each_kimage_entry(image, ptr, entry) \ 534 for (ptr = &image->head; (entry = *ptr 608 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 535 ptr = (entry & IND_INDIRECTION 609 ptr = (entry & IND_INDIRECTION) ? \ 536 boot_phys_to_virt((ent 610 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 537 611 538 static void kimage_free_entry(kimage_entry_t e 612 static void kimage_free_entry(kimage_entry_t entry) 539 { 613 { 540 struct page *page; 614 struct page *page; 541 615 542 page = boot_pfn_to_page(entry >> PAGE_ 616 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 543 kimage_free_pages(page); 617 kimage_free_pages(page); 544 } 618 } 545 619 546 void kimage_free(struct kimage *image) 620 void kimage_free(struct kimage *image) 547 { 621 { 548 kimage_entry_t *ptr, entry; 622 kimage_entry_t *ptr, entry; 549 kimage_entry_t ind = 0; 623 kimage_entry_t ind = 0; 550 624 551 if (!image) 625 if (!image) 552 return; 626 return; 553 627 554 #ifdef CONFIG_CRASH_DUMP << 555 if (image->vmcoreinfo_data_copy) { 628 if (image->vmcoreinfo_data_copy) { 556 crash_update_vmcoreinfo_safeco 629 crash_update_vmcoreinfo_safecopy(NULL); 557 vunmap(image->vmcoreinfo_data_ 630 vunmap(image->vmcoreinfo_data_copy); 558 } 631 } 559 #endif << 560 632 561 kimage_free_extra_pages(image); 633 kimage_free_extra_pages(image); 562 for_each_kimage_entry(image, ptr, entr 634 for_each_kimage_entry(image, ptr, entry) { 563 if (entry & IND_INDIRECTION) { 635 if (entry & IND_INDIRECTION) { 564 /* Free the previous i 636 /* Free the previous indirection page */ 565 if (ind & IND_INDIRECT 637 if (ind & IND_INDIRECTION) 566 kimage_free_en 638 kimage_free_entry(ind); 567 /* Save this indirecti 639 /* Save this indirection page until we are 568 * done with it. 640 * done with it. 569 */ 641 */ 570 ind = entry; 642 ind = entry; 571 } else if (entry & IND_SOURCE) 643 } else if (entry & IND_SOURCE) 572 kimage_free_entry(entr 644 kimage_free_entry(entry); 573 } 645 } 574 /* Free the final indirection page */ 646 /* Free the final indirection page */ 575 if (ind & IND_INDIRECTION) 647 if (ind & IND_INDIRECTION) 576 kimage_free_entry(ind); 648 kimage_free_entry(ind); 577 649 578 /* Handle any machine specific cleanup 650 /* Handle any machine specific cleanup */ 579 machine_kexec_cleanup(image); 651 machine_kexec_cleanup(image); 580 652 581 /* Free the kexec control pages... */ 653 /* Free the kexec control pages... */ 582 kimage_free_page_list(&image->control_ 654 kimage_free_page_list(&image->control_pages); 583 655 584 /* 656 /* 585 * Free up any temporary buffers alloc 657 * Free up any temporary buffers allocated. This might hit if 586 * error occurred much later after buf 658 * error occurred much later after buffer allocation. 587 */ 659 */ 588 if (image->file_mode) 660 if (image->file_mode) 589 kimage_file_post_load_cleanup( 661 kimage_file_post_load_cleanup(image); 590 662 591 kfree(image); 663 kfree(image); 592 } 664 } 593 665 594 static kimage_entry_t *kimage_dst_used(struct 666 static kimage_entry_t *kimage_dst_used(struct kimage *image, 595 unsign 667 unsigned long page) 596 { 668 { 597 kimage_entry_t *ptr, entry; 669 kimage_entry_t *ptr, entry; 598 unsigned long destination = 0; 670 unsigned long destination = 0; 599 671 600 for_each_kimage_entry(image, ptr, entr 672 for_each_kimage_entry(image, ptr, entry) { 601 if (entry & IND_DESTINATION) 673 if (entry & IND_DESTINATION) 602 destination = entry & 674 destination = entry & PAGE_MASK; 603 else if (entry & IND_SOURCE) { 675 else if (entry & IND_SOURCE) { 604 if (page == destinatio 676 if (page == destination) 605 return ptr; 677 return ptr; 606 destination += PAGE_SI 678 destination += PAGE_SIZE; 607 } 679 } 608 } 680 } 609 681 610 return NULL; 682 return NULL; 611 } 683 } 612 684 613 static struct page *kimage_alloc_page(struct k 685 static struct page *kimage_alloc_page(struct kimage *image, 614 gfp_t 686 gfp_t gfp_mask, 615 unsign 687 unsigned long destination) 616 { 688 { 617 /* 689 /* 618 * Here we implement safeguards to ens 690 * Here we implement safeguards to ensure that a source page 619 * is not copied to its destination pa 691 * is not copied to its destination page before the data on 620 * the destination page is no longer u 692 * the destination page is no longer useful. 621 * 693 * 622 * To do this we maintain the invarian 694 * To do this we maintain the invariant that a source page is 623 * either its own destination page, or 695 * either its own destination page, or it is not a 624 * destination page at all. 696 * destination page at all. 625 * 697 * 626 * That is slightly stronger than requ 698 * That is slightly stronger than required, but the proof 627 * that no problems will not occur is 699 * that no problems will not occur is trivial, and the 628 * implementation is simply to verify. 700 * implementation is simply to verify. 629 * 701 * 630 * When allocating all pages normally 702 * When allocating all pages normally this algorithm will run 631 * in O(N) time, but in the worst case 703 * in O(N) time, but in the worst case it will run in O(N^2) 632 * time. If the runtime is a problem 704 * time. If the runtime is a problem the data structures can 633 * be fixed. 705 * be fixed. 634 */ 706 */ 635 struct page *page; 707 struct page *page; 636 unsigned long addr; 708 unsigned long addr; 637 709 638 /* 710 /* 639 * Walk through the list of destinatio 711 * Walk through the list of destination pages, and see if I 640 * have a match. 712 * have a match. 641 */ 713 */ 642 list_for_each_entry(page, &image->dest 714 list_for_each_entry(page, &image->dest_pages, lru) { 643 addr = page_to_boot_pfn(page) 715 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 644 if (addr == destination) { 716 if (addr == destination) { 645 list_del(&page->lru); 717 list_del(&page->lru); 646 return page; 718 return page; 647 } 719 } 648 } 720 } 649 page = NULL; 721 page = NULL; 650 while (1) { 722 while (1) { 651 kimage_entry_t *old; 723 kimage_entry_t *old; 652 724 653 /* Allocate a page, if we run 725 /* Allocate a page, if we run out of memory give up */ 654 page = kimage_alloc_pages(gfp_ 726 page = kimage_alloc_pages(gfp_mask, 0); 655 if (!page) 727 if (!page) 656 return NULL; 728 return NULL; 657 /* If the page cannot be used 729 /* If the page cannot be used file it away */ 658 if (page_to_boot_pfn(page) > 730 if (page_to_boot_pfn(page) > 659 (KEXEC_SOURCE_ 731 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 660 list_add(&page->lru, & 732 list_add(&page->lru, &image->unusable_pages); 661 continue; 733 continue; 662 } 734 } 663 addr = page_to_boot_pfn(page) 735 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 664 736 665 /* If it is the destination pa 737 /* If it is the destination page we want use it */ 666 if (addr == destination) 738 if (addr == destination) 667 break; 739 break; 668 740 669 /* If the page is not a destin 741 /* If the page is not a destination page use it */ 670 if (!kimage_is_destination_ran 742 if (!kimage_is_destination_range(image, addr, 671 !! 743 addr + PAGE_SIZE)) 672 break; 744 break; 673 745 674 /* 746 /* 675 * I know that the page is som 747 * I know that the page is someones destination page. 676 * See if there is already a s 748 * See if there is already a source page for this 677 * destination page. And if s 749 * destination page. And if so swap the source pages. 678 */ 750 */ 679 old = kimage_dst_used(image, a 751 old = kimage_dst_used(image, addr); 680 if (old) { 752 if (old) { 681 /* If so move it */ 753 /* If so move it */ 682 unsigned long old_addr 754 unsigned long old_addr; 683 struct page *old_page; 755 struct page *old_page; 684 756 685 old_addr = *old & PAGE 757 old_addr = *old & PAGE_MASK; 686 old_page = boot_pfn_to 758 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 687 copy_highpage(page, ol 759 copy_highpage(page, old_page); 688 *old = addr | (*old & 760 *old = addr | (*old & ~PAGE_MASK); 689 761 690 /* The old page I have 762 /* The old page I have found cannot be a 691 * destination page, s 763 * destination page, so return it if it's 692 * gfp_flags honor the 764 * gfp_flags honor the ones passed in. 693 */ 765 */ 694 if (!(gfp_mask & __GFP 766 if (!(gfp_mask & __GFP_HIGHMEM) && 695 PageHighMem(old_pa 767 PageHighMem(old_page)) { 696 kimage_free_pa 768 kimage_free_pages(old_page); 697 continue; 769 continue; 698 } 770 } >> 771 addr = old_addr; 699 page = old_page; 772 page = old_page; 700 break; 773 break; 701 } 774 } 702 /* Place the page on the desti 775 /* Place the page on the destination list, to be used later */ 703 list_add(&page->lru, &image->d 776 list_add(&page->lru, &image->dest_pages); 704 } 777 } 705 778 706 return page; 779 return page; 707 } 780 } 708 781 709 static int kimage_load_normal_segment(struct k 782 static int kimage_load_normal_segment(struct kimage *image, 710 struc 783 struct kexec_segment *segment) 711 { 784 { 712 unsigned long maddr; 785 unsigned long maddr; 713 size_t ubytes, mbytes; 786 size_t ubytes, mbytes; 714 int result; 787 int result; 715 unsigned char __user *buf = NULL; 788 unsigned char __user *buf = NULL; 716 unsigned char *kbuf = NULL; 789 unsigned char *kbuf = NULL; 717 790 >> 791 result = 0; 718 if (image->file_mode) 792 if (image->file_mode) 719 kbuf = segment->kbuf; 793 kbuf = segment->kbuf; 720 else 794 else 721 buf = segment->buf; 795 buf = segment->buf; 722 ubytes = segment->bufsz; 796 ubytes = segment->bufsz; 723 mbytes = segment->memsz; 797 mbytes = segment->memsz; 724 maddr = segment->mem; 798 maddr = segment->mem; 725 799 726 result = kimage_set_destination(image, 800 result = kimage_set_destination(image, maddr); 727 if (result < 0) 801 if (result < 0) 728 goto out; 802 goto out; 729 803 730 while (mbytes) { 804 while (mbytes) { 731 struct page *page; 805 struct page *page; 732 char *ptr; 806 char *ptr; 733 size_t uchunk, mchunk; 807 size_t uchunk, mchunk; 734 808 735 page = kimage_alloc_page(image 809 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 736 if (!page) { 810 if (!page) { 737 result = -ENOMEM; 811 result = -ENOMEM; 738 goto out; 812 goto out; 739 } 813 } 740 result = kimage_add_page(image 814 result = kimage_add_page(image, page_to_boot_pfn(page) 741 815 << PAGE_SHIFT); 742 if (result < 0) 816 if (result < 0) 743 goto out; 817 goto out; 744 818 745 ptr = kmap_local_page(page); !! 819 ptr = kmap(page); 746 /* Start with a clear page */ 820 /* Start with a clear page */ 747 clear_page(ptr); 821 clear_page(ptr); 748 ptr += maddr & ~PAGE_MASK; 822 ptr += maddr & ~PAGE_MASK; 749 mchunk = min_t(size_t, mbytes, 823 mchunk = min_t(size_t, mbytes, 750 PAGE_SIZE - (m 824 PAGE_SIZE - (maddr & ~PAGE_MASK)); 751 uchunk = min(ubytes, mchunk); 825 uchunk = min(ubytes, mchunk); 752 826 753 if (uchunk) { !! 827 /* For file based kexec, source pages are in kernel memory */ 754 /* For file based kexe !! 828 if (image->file_mode) 755 if (image->file_mode) !! 829 memcpy(ptr, kbuf, uchunk); 756 memcpy(ptr, kb !! 830 else 757 else !! 831 result = copy_from_user(ptr, buf, uchunk); 758 result = copy_ !! 832 kunmap(page); 759 ubytes -= uchunk; << 760 if (image->file_mode) << 761 kbuf += uchunk << 762 else << 763 buf += uchunk; << 764 } << 765 kunmap_local(ptr); << 766 if (result) { 833 if (result) { 767 result = -EFAULT; 834 result = -EFAULT; 768 goto out; 835 goto out; 769 } 836 } >> 837 ubytes -= uchunk; 770 maddr += mchunk; 838 maddr += mchunk; >> 839 if (image->file_mode) >> 840 kbuf += mchunk; >> 841 else >> 842 buf += mchunk; 771 mbytes -= mchunk; 843 mbytes -= mchunk; 772 844 773 cond_resched(); 845 cond_resched(); 774 } 846 } 775 out: 847 out: 776 return result; 848 return result; 777 } 849 } 778 850 779 #ifdef CONFIG_CRASH_DUMP << 780 static int kimage_load_crash_segment(struct ki 851 static int kimage_load_crash_segment(struct kimage *image, 781 struct 852 struct kexec_segment *segment) 782 { 853 { 783 /* For crash dumps kernels we simply c 854 /* For crash dumps kernels we simply copy the data from 784 * user space to it's destination. 855 * user space to it's destination. 785 * We do things a page at a time for t 856 * We do things a page at a time for the sake of kmap. 786 */ 857 */ 787 unsigned long maddr; 858 unsigned long maddr; 788 size_t ubytes, mbytes; 859 size_t ubytes, mbytes; 789 int result; 860 int result; 790 unsigned char __user *buf = NULL; 861 unsigned char __user *buf = NULL; 791 unsigned char *kbuf = NULL; 862 unsigned char *kbuf = NULL; 792 863 793 result = 0; 864 result = 0; 794 if (image->file_mode) 865 if (image->file_mode) 795 kbuf = segment->kbuf; 866 kbuf = segment->kbuf; 796 else 867 else 797 buf = segment->buf; 868 buf = segment->buf; 798 ubytes = segment->bufsz; 869 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 870 mbytes = segment->memsz; 800 maddr = segment->mem; 871 maddr = segment->mem; 801 while (mbytes) { 872 while (mbytes) { 802 struct page *page; 873 struct page *page; 803 char *ptr; 874 char *ptr; 804 size_t uchunk, mchunk; 875 size_t uchunk, mchunk; 805 876 806 page = boot_pfn_to_page(maddr 877 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 807 if (!page) { 878 if (!page) { 808 result = -ENOMEM; 879 result = -ENOMEM; 809 goto out; 880 goto out; 810 } 881 } 811 arch_kexec_post_alloc_pages(pa 882 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 812 ptr = kmap_local_page(page); !! 883 ptr = kmap(page); 813 ptr += maddr & ~PAGE_MASK; 884 ptr += maddr & ~PAGE_MASK; 814 mchunk = min_t(size_t, mbytes, 885 mchunk = min_t(size_t, mbytes, 815 PAGE_SIZE - (m 886 PAGE_SIZE - (maddr & ~PAGE_MASK)); 816 uchunk = min(ubytes, mchunk); 887 uchunk = min(ubytes, mchunk); 817 if (mchunk > uchunk) { 888 if (mchunk > uchunk) { 818 /* Zero the trailing p 889 /* Zero the trailing part of the page */ 819 memset(ptr + uchunk, 0 890 memset(ptr + uchunk, 0, mchunk - uchunk); 820 } 891 } 821 892 822 if (uchunk) { !! 893 /* For file based kexec, source pages are in kernel memory */ 823 /* For file based kexe !! 894 if (image->file_mode) 824 if (image->file_mode) !! 895 memcpy(ptr, kbuf, uchunk); 825 memcpy(ptr, kb !! 896 else 826 else !! 897 result = copy_from_user(ptr, buf, uchunk); 827 result = copy_ << 828 ubytes -= uchunk; << 829 if (image->file_mode) << 830 kbuf += uchunk << 831 else << 832 buf += uchunk; << 833 } << 834 kexec_flush_icache_page(page); 898 kexec_flush_icache_page(page); 835 kunmap_local(ptr); !! 899 kunmap(page); 836 arch_kexec_pre_free_pages(page 900 arch_kexec_pre_free_pages(page_address(page), 1); 837 if (result) { 901 if (result) { 838 result = -EFAULT; 902 result = -EFAULT; 839 goto out; 903 goto out; 840 } 904 } >> 905 ubytes -= uchunk; 841 maddr += mchunk; 906 maddr += mchunk; >> 907 if (image->file_mode) >> 908 kbuf += mchunk; >> 909 else >> 910 buf += mchunk; 842 mbytes -= mchunk; 911 mbytes -= mchunk; 843 912 844 cond_resched(); 913 cond_resched(); 845 } 914 } 846 out: 915 out: 847 return result; 916 return result; 848 } 917 } 849 #endif << 850 918 851 int kimage_load_segment(struct kimage *image, 919 int kimage_load_segment(struct kimage *image, 852 struct kexec_s 920 struct kexec_segment *segment) 853 { 921 { 854 int result = -ENOMEM; 922 int result = -ENOMEM; 855 923 856 switch (image->type) { 924 switch (image->type) { 857 case KEXEC_TYPE_DEFAULT: 925 case KEXEC_TYPE_DEFAULT: 858 result = kimage_load_normal_se 926 result = kimage_load_normal_segment(image, segment); 859 break; 927 break; 860 #ifdef CONFIG_CRASH_DUMP << 861 case KEXEC_TYPE_CRASH: 928 case KEXEC_TYPE_CRASH: 862 result = kimage_load_crash_seg 929 result = kimage_load_crash_segment(image, segment); 863 break; 930 break; 864 #endif << 865 } 931 } 866 932 867 return result; 933 return result; 868 } 934 } 869 935 870 struct kexec_load_limit { << 871 /* Mutex protects the limit count. */ << 872 struct mutex mutex; << 873 int limit; << 874 }; << 875 << 876 static struct kexec_load_limit load_limit_rebo << 877 .mutex = __MUTEX_INITIALIZER(load_limi << 878 .limit = -1, << 879 }; << 880 << 881 static struct kexec_load_limit load_limit_pani << 882 .mutex = __MUTEX_INITIALIZER(load_limi << 883 .limit = -1, << 884 }; << 885 << 886 struct kimage *kexec_image; 936 struct kimage *kexec_image; 887 struct kimage *kexec_crash_image; 937 struct kimage *kexec_crash_image; 888 static int kexec_load_disabled; !! 938 int kexec_load_disabled; 889 939 890 #ifdef CONFIG_SYSCTL !! 940 /* 891 static int kexec_limit_handler(const struct ct !! 941 * No panic_cpu check version of crash_kexec(). This function is called 892 void *buffer, s !! 942 * only when panic_cpu holds the current CPU number; this is the only CPU 893 { !! 943 * which processes crash_kexec routines. 894 struct kexec_load_limit *limit = table !! 944 */ 895 int val; !! 945 void __noclone __crash_kexec(struct pt_regs *regs) 896 struct ctl_table tmp = { !! 946 { 897 .data = &val, !! 947 /* Take the kexec_mutex here to prevent sys_kexec_load 898 .maxlen = sizeof(val), !! 948 * running on one cpu from replacing the crash kernel 899 .mode = table->mode, !! 949 * we are using after a panic on a different cpu. 900 }; !! 950 * 901 int ret; !! 951 * If the crash kernel was not located in a fixed area 902 !! 952 * of memory the xchg(&kexec_crash_image) would be 903 if (write) { !! 953 * sufficient. But since I reuse the memory... 904 ret = proc_dointvec(&tmp, writ !! 954 */ 905 if (ret) !! 955 if (mutex_trylock(&kexec_mutex)) { 906 return ret; !! 956 if (kexec_crash_image) { >> 957 struct pt_regs fixed_regs; >> 958 >> 959 crash_setup_regs(&fixed_regs, regs); >> 960 crash_save_vmcoreinfo(); >> 961 machine_crash_shutdown(&fixed_regs); >> 962 machine_kexec(kexec_crash_image); >> 963 } >> 964 mutex_unlock(&kexec_mutex); >> 965 } >> 966 } >> 967 STACK_FRAME_NON_STANDARD(__crash_kexec); 907 968 908 if (val < 0) !! 969 void crash_kexec(struct pt_regs *regs) 909 return -EINVAL; !! 970 { >> 971 int old_cpu, this_cpu; 910 972 911 mutex_lock(&limit->mutex); !! 973 /* 912 if (limit->limit != -1 && val !! 974 * Only one CPU is allowed to execute the crash_kexec() code as with 913 ret = -EINVAL; !! 975 * panic(). Otherwise parallel calls of panic() and crash_kexec() 914 else !! 976 * may stop each other. To exclude them, we use panic_cpu here too. 915 limit->limit = val; !! 977 */ 916 mutex_unlock(&limit->mutex); !! 978 this_cpu = raw_smp_processor_id(); >> 979 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); >> 980 if (old_cpu == PANIC_CPU_INVALID) { >> 981 /* This is the 1st CPU which comes here, so go ahead. */ >> 982 __crash_kexec(regs); 917 983 918 return ret; !! 984 /* >> 985 * Reset panic_cpu to allow another panic()/crash_kexec() >> 986 * call. >> 987 */ >> 988 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 919 } 989 } >> 990 } 920 991 921 mutex_lock(&limit->mutex); !! 992 size_t crash_get_memory_size(void) 922 val = limit->limit; !! 993 { 923 mutex_unlock(&limit->mutex); !! 994 size_t size = 0; 924 995 925 return proc_dointvec(&tmp, write, buff !! 996 mutex_lock(&kexec_mutex); >> 997 if (crashk_res.end != crashk_res.start) >> 998 size = resource_size(&crashk_res); >> 999 mutex_unlock(&kexec_mutex); >> 1000 return size; 926 } 1001 } 927 1002 928 static struct ctl_table kexec_core_sysctls[] = !! 1003 void __weak crash_free_reserved_phys_range(unsigned long begin, 929 { !! 1004 unsigned long end) 930 .procname = "kexec_load_ !! 1005 { 931 .data = &kexec_load_ !! 1006 unsigned long addr; 932 .maxlen = sizeof(int), << 933 .mode = 0644, << 934 /* only handle a transition fr << 935 .proc_handler = proc_dointve << 936 .extra1 = SYSCTL_ONE, << 937 .extra2 = SYSCTL_ONE, << 938 }, << 939 { << 940 .procname = "kexec_load_ << 941 .data = &load_limit_ << 942 .mode = 0644, << 943 .proc_handler = kexec_limit_ << 944 }, << 945 { << 946 .procname = "kexec_load_ << 947 .data = &load_limit_ << 948 .mode = 0644, << 949 .proc_handler = kexec_limit_ << 950 }, << 951 }; << 952 1007 953 static int __init kexec_core_sysctl_init(void) !! 1008 for (addr = begin; addr < end; addr += PAGE_SIZE) >> 1009 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); >> 1010 } >> 1011 >> 1012 int crash_shrink_memory(unsigned long new_size) 954 { 1013 { 955 register_sysctl_init("kernel", kexec_c !! 1014 int ret = 0; 956 return 0; !! 1015 unsigned long start, end; >> 1016 unsigned long old_size; >> 1017 struct resource *ram_res; >> 1018 >> 1019 mutex_lock(&kexec_mutex); >> 1020 >> 1021 if (kexec_crash_image) { >> 1022 ret = -ENOENT; >> 1023 goto unlock; >> 1024 } >> 1025 start = crashk_res.start; >> 1026 end = crashk_res.end; >> 1027 old_size = (end == 0) ? 0 : end - start + 1; >> 1028 if (new_size >= old_size) { >> 1029 ret = (new_size == old_size) ? 0 : -EINVAL; >> 1030 goto unlock; >> 1031 } >> 1032 >> 1033 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); >> 1034 if (!ram_res) { >> 1035 ret = -ENOMEM; >> 1036 goto unlock; >> 1037 } >> 1038 >> 1039 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); >> 1040 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); >> 1041 >> 1042 crash_free_reserved_phys_range(end, crashk_res.end); >> 1043 >> 1044 if ((start == end) && (crashk_res.parent != NULL)) >> 1045 release_resource(&crashk_res); >> 1046 >> 1047 ram_res->start = end; >> 1048 ram_res->end = crashk_res.end; >> 1049 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; >> 1050 ram_res->name = "System RAM"; >> 1051 >> 1052 crashk_res.end = end - 1; >> 1053 >> 1054 insert_resource(&iomem_resource, ram_res); >> 1055 >> 1056 unlock: >> 1057 mutex_unlock(&kexec_mutex); >> 1058 return ret; 957 } 1059 } 958 late_initcall(kexec_core_sysctl_init); << 959 #endif << 960 1060 961 bool kexec_load_permitted(int kexec_image_type !! 1061 void crash_save_cpu(struct pt_regs *regs, int cpu) >> 1062 { >> 1063 struct elf_prstatus prstatus; >> 1064 u32 *buf; >> 1065 >> 1066 if ((cpu < 0) || (cpu >= nr_cpu_ids)) >> 1067 return; >> 1068 >> 1069 /* Using ELF notes here is opportunistic. >> 1070 * I need a well defined structure format >> 1071 * for the data I pass, and I need tags >> 1072 * on the data to indicate what information I have >> 1073 * squirrelled away. ELF notes happen to provide >> 1074 * all of that, so there is no need to invent something new. >> 1075 */ >> 1076 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); >> 1077 if (!buf) >> 1078 return; >> 1079 memset(&prstatus, 0, sizeof(prstatus)); >> 1080 prstatus.common.pr_pid = current->pid; >> 1081 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); >> 1082 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, >> 1083 &prstatus, sizeof(prstatus)); >> 1084 final_note(buf); >> 1085 } >> 1086 >> 1087 static int __init crash_notes_memory_init(void) 962 { 1088 { 963 struct kexec_load_limit *limit; !! 1089 /* Allocate memory for saving cpu registers. */ >> 1090 size_t size, align; 964 1091 965 /* 1092 /* 966 * Only the superuser can use the kexe !! 1093 * crash_notes could be allocated across 2 vmalloc pages when percpu 967 * been disabled. !! 1094 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc >> 1095 * pages are also on 2 continuous physical pages. In this case the >> 1096 * 2nd part of crash_notes in 2nd page could be lost since only the >> 1097 * starting address and size of crash_notes are exported through sysfs. >> 1098 * Here round up the size of crash_notes to the nearest power of two >> 1099 * and pass it to __alloc_percpu as align value. This can make sure >> 1100 * crash_notes is allocated inside one physical page. 968 */ 1101 */ 969 if (!capable(CAP_SYS_BOOT) || kexec_lo !! 1102 size = sizeof(note_buf_t); 970 return false; !! 1103 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 971 1104 972 /* Check limit counter and decrease it !! 1105 /* 973 limit = (kexec_image_type == KEXEC_TYP !! 1106 * Break compile if size is bigger than PAGE_SIZE since crash_notes 974 &load_limit_panic : &load_limi !! 1107 * definitely will be in 2 pages with that. 975 mutex_lock(&limit->mutex); !! 1108 */ 976 if (!limit->limit) { !! 1109 BUILD_BUG_ON(size > PAGE_SIZE); 977 mutex_unlock(&limit->mutex); << 978 return false; << 979 } << 980 if (limit->limit != -1) << 981 limit->limit--; << 982 mutex_unlock(&limit->mutex); << 983 1110 984 return true; !! 1111 crash_notes = __alloc_percpu(size, align); >> 1112 if (!crash_notes) { >> 1113 pr_warn("Memory allocation for saving cpu register states failed\n"); >> 1114 return -ENOMEM; >> 1115 } >> 1116 return 0; 985 } 1117 } >> 1118 subsys_initcall(crash_notes_memory_init); >> 1119 986 1120 987 /* 1121 /* 988 * Move into place and start executing a prelo 1122 * Move into place and start executing a preloaded standalone 989 * executable. If nothing was preloaded retur 1123 * executable. If nothing was preloaded return an error. 990 */ 1124 */ 991 int kernel_kexec(void) 1125 int kernel_kexec(void) 992 { 1126 { 993 int error = 0; 1127 int error = 0; 994 1128 995 if (!kexec_trylock()) !! 1129 if (!mutex_trylock(&kexec_mutex)) 996 return -EBUSY; 1130 return -EBUSY; 997 if (!kexec_image) { 1131 if (!kexec_image) { 998 error = -EINVAL; 1132 error = -EINVAL; 999 goto Unlock; 1133 goto Unlock; 1000 } 1134 } 1001 1135 1002 #ifdef CONFIG_KEXEC_JUMP 1136 #ifdef CONFIG_KEXEC_JUMP 1003 if (kexec_image->preserve_context) { 1137 if (kexec_image->preserve_context) { 1004 pm_prepare_console(); 1138 pm_prepare_console(); 1005 error = freeze_processes(); 1139 error = freeze_processes(); 1006 if (error) { 1140 if (error) { 1007 error = -EBUSY; 1141 error = -EBUSY; 1008 goto Restore_console; 1142 goto Restore_console; 1009 } 1143 } 1010 suspend_console(); 1144 suspend_console(); 1011 error = dpm_suspend_start(PMS 1145 error = dpm_suspend_start(PMSG_FREEZE); 1012 if (error) 1146 if (error) 1013 goto Resume_console; 1147 goto Resume_console; 1014 /* At this point, dpm_suspend 1148 /* At this point, dpm_suspend_start() has been called, 1015 * but *not* dpm_suspend_end( 1149 * but *not* dpm_suspend_end(). We *must* call 1016 * dpm_suspend_end() now. Ot 1150 * dpm_suspend_end() now. Otherwise, drivers for 1017 * some devices (e.g. interru 1151 * some devices (e.g. interrupt controllers) become 1018 * desynchronized with the ac 1152 * desynchronized with the actual state of the 1019 * hardware at resume time, a 1153 * hardware at resume time, and evil weirdness ensues. 1020 */ 1154 */ 1021 error = dpm_suspend_end(PMSG_ 1155 error = dpm_suspend_end(PMSG_FREEZE); 1022 if (error) 1156 if (error) 1023 goto Resume_devices; 1157 goto Resume_devices; 1024 error = suspend_disable_secon 1158 error = suspend_disable_secondary_cpus(); 1025 if (error) 1159 if (error) 1026 goto Enable_cpus; 1160 goto Enable_cpus; 1027 local_irq_disable(); 1161 local_irq_disable(); 1028 error = syscore_suspend(); 1162 error = syscore_suspend(); 1029 if (error) 1163 if (error) 1030 goto Enable_irqs; 1164 goto Enable_irqs; 1031 } else 1165 } else 1032 #endif 1166 #endif 1033 { 1167 { 1034 kexec_in_progress = true; 1168 kexec_in_progress = true; 1035 kernel_restart_prepare("kexec 1169 kernel_restart_prepare("kexec reboot"); 1036 migrate_to_reboot_cpu(); 1170 migrate_to_reboot_cpu(); 1037 syscore_shutdown(); << 1038 1171 1039 /* 1172 /* 1040 * migrate_to_reboot_cpu() di 1173 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1041 * no further code needs to u 1174 * no further code needs to use CPU hotplug (which is true in 1042 * the reboot case). However, 1175 * the reboot case). However, the kexec path depends on using 1043 * CPU hotplug again; so re-e 1176 * CPU hotplug again; so re-enable it here. 1044 */ 1177 */ 1045 cpu_hotplug_enable(); 1178 cpu_hotplug_enable(); 1046 pr_notice("Starting new kerne 1179 pr_notice("Starting new kernel\n"); 1047 machine_shutdown(); 1180 machine_shutdown(); 1048 } 1181 } 1049 1182 1050 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1183 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1051 machine_kexec(kexec_image); 1184 machine_kexec(kexec_image); 1052 1185 1053 #ifdef CONFIG_KEXEC_JUMP 1186 #ifdef CONFIG_KEXEC_JUMP 1054 if (kexec_image->preserve_context) { 1187 if (kexec_image->preserve_context) { 1055 syscore_resume(); 1188 syscore_resume(); 1056 Enable_irqs: 1189 Enable_irqs: 1057 local_irq_enable(); 1190 local_irq_enable(); 1058 Enable_cpus: 1191 Enable_cpus: 1059 suspend_enable_secondary_cpus 1192 suspend_enable_secondary_cpus(); 1060 dpm_resume_start(PMSG_RESTORE 1193 dpm_resume_start(PMSG_RESTORE); 1061 Resume_devices: 1194 Resume_devices: 1062 dpm_resume_end(PMSG_RESTORE); 1195 dpm_resume_end(PMSG_RESTORE); 1063 Resume_console: 1196 Resume_console: 1064 resume_console(); 1197 resume_console(); 1065 thaw_processes(); 1198 thaw_processes(); 1066 Restore_console: 1199 Restore_console: 1067 pm_restore_console(); 1200 pm_restore_console(); 1068 } 1201 } 1069 #endif 1202 #endif 1070 1203 1071 Unlock: 1204 Unlock: 1072 kexec_unlock(); !! 1205 mutex_unlock(&kexec_mutex); 1073 return error; 1206 return error; 1074 } 1207 } >> 1208 >> 1209 /* >> 1210 * Protection mechanism for crashkernel reserved memory after >> 1211 * the kdump kernel is loaded. >> 1212 * >> 1213 * Provide an empty default implementation here -- architecture >> 1214 * code may override this >> 1215 */ >> 1216 void __weak arch_kexec_protect_crashkres(void) >> 1217 {} >> 1218 >> 1219 void __weak arch_kexec_unprotect_crashkres(void) >> 1220 {} 1075 1221
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.