~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/kexec_core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/kexec_core.c (Version linux-6.11.5) and /kernel/kexec_core.c (Version linux-5.18.19)


  1 // SPDX-License-Identifier: GPL-2.0-only            1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*                                                  2 /*
  3  * kexec.c - kexec system call core code.           3  * kexec.c - kexec system call core code.
  4  * Copyright (C) 2002-2004 Eric Biederman  <eb      4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5  */                                                 5  */
  6                                                     6 
  7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt         7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8                                                     8 
  9 #include <linux/btf.h>                         << 
 10 #include <linux/capability.h>                       9 #include <linux/capability.h>
 11 #include <linux/mm.h>                              10 #include <linux/mm.h>
 12 #include <linux/file.h>                            11 #include <linux/file.h>
 13 #include <linux/slab.h>                            12 #include <linux/slab.h>
 14 #include <linux/fs.h>                              13 #include <linux/fs.h>
 15 #include <linux/kexec.h>                           14 #include <linux/kexec.h>
 16 #include <linux/mutex.h>                           15 #include <linux/mutex.h>
 17 #include <linux/list.h>                            16 #include <linux/list.h>
 18 #include <linux/highmem.h>                         17 #include <linux/highmem.h>
 19 #include <linux/syscalls.h>                        18 #include <linux/syscalls.h>
 20 #include <linux/reboot.h>                          19 #include <linux/reboot.h>
 21 #include <linux/ioport.h>                          20 #include <linux/ioport.h>
 22 #include <linux/hardirq.h>                         21 #include <linux/hardirq.h>
 23 #include <linux/elf.h>                             22 #include <linux/elf.h>
 24 #include <linux/elfcore.h>                         23 #include <linux/elfcore.h>
 25 #include <linux/utsname.h>                         24 #include <linux/utsname.h>
 26 #include <linux/numa.h>                            25 #include <linux/numa.h>
 27 #include <linux/suspend.h>                         26 #include <linux/suspend.h>
 28 #include <linux/device.h>                          27 #include <linux/device.h>
 29 #include <linux/freezer.h>                         28 #include <linux/freezer.h>
 30 #include <linux/panic_notifier.h>                  29 #include <linux/panic_notifier.h>
 31 #include <linux/pm.h>                              30 #include <linux/pm.h>
 32 #include <linux/cpu.h>                             31 #include <linux/cpu.h>
 33 #include <linux/uaccess.h>                         32 #include <linux/uaccess.h>
 34 #include <linux/io.h>                              33 #include <linux/io.h>
 35 #include <linux/console.h>                         34 #include <linux/console.h>
 36 #include <linux/vmalloc.h>                         35 #include <linux/vmalloc.h>
 37 #include <linux/swap.h>                            36 #include <linux/swap.h>
 38 #include <linux/syscore_ops.h>                     37 #include <linux/syscore_ops.h>
 39 #include <linux/compiler.h>                        38 #include <linux/compiler.h>
 40 #include <linux/hugetlb.h>                         39 #include <linux/hugetlb.h>
 41 #include <linux/objtool.h>                         40 #include <linux/objtool.h>
 42 #include <linux/kmsg_dump.h>                       41 #include <linux/kmsg_dump.h>
 43                                                    42 
 44 #include <asm/page.h>                              43 #include <asm/page.h>
 45 #include <asm/sections.h>                          44 #include <asm/sections.h>
 46                                                    45 
 47 #include <crypto/hash.h>                           46 #include <crypto/hash.h>
 48 #include "kexec_internal.h"                        47 #include "kexec_internal.h"
 49                                                    48 
 50 atomic_t __kexec_lock = ATOMIC_INIT(0);        !!  49 DEFINE_MUTEX(kexec_mutex);
                                                   >>  50 
                                                   >>  51 /* Per cpu memory for storing cpu states in case of system crash. */
                                                   >>  52 note_buf_t __percpu *crash_notes;
 51                                                    53 
 52 /* Flag to indicate we are going to kexec a ne     54 /* Flag to indicate we are going to kexec a new kernel */
 53 bool kexec_in_progress = false;                    55 bool kexec_in_progress = false;
 54                                                    56 
 55 bool kexec_file_dbg_print;                     !!  57 
                                                   >>  58 /* Location of the reserved area for the crash kernel */
                                                   >>  59 struct resource crashk_res = {
                                                   >>  60         .name  = "Crash kernel",
                                                   >>  61         .start = 0,
                                                   >>  62         .end   = 0,
                                                   >>  63         .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
                                                   >>  64         .desc  = IORES_DESC_CRASH_KERNEL
                                                   >>  65 };
                                                   >>  66 struct resource crashk_low_res = {
                                                   >>  67         .name  = "Crash kernel",
                                                   >>  68         .start = 0,
                                                   >>  69         .end   = 0,
                                                   >>  70         .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
                                                   >>  71         .desc  = IORES_DESC_CRASH_KERNEL
                                                   >>  72 };
                                                   >>  73 
                                                   >>  74 int kexec_should_crash(struct task_struct *p)
                                                   >>  75 {
                                                   >>  76         /*
                                                   >>  77          * If crash_kexec_post_notifiers is enabled, don't run
                                                   >>  78          * crash_kexec() here yet, which must be run after panic
                                                   >>  79          * notifiers in panic().
                                                   >>  80          */
                                                   >>  81         if (crash_kexec_post_notifiers)
                                                   >>  82                 return 0;
                                                   >>  83         /*
                                                   >>  84          * There are 4 panic() calls in make_task_dead() path, each of which
                                                   >>  85          * corresponds to each of these 4 conditions.
                                                   >>  86          */
                                                   >>  87         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
                                                   >>  88                 return 1;
                                                   >>  89         return 0;
                                                   >>  90 }
                                                   >>  91 
                                                   >>  92 int kexec_crash_loaded(void)
                                                   >>  93 {
                                                   >>  94         return !!kexec_crash_image;
                                                   >>  95 }
                                                   >>  96 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 56                                                    97 
 57 /*                                                 98 /*
 58  * When kexec transitions to the new kernel th     99  * When kexec transitions to the new kernel there is a one-to-one
 59  * mapping between physical and virtual addres    100  * mapping between physical and virtual addresses.  On processors
 60  * where you can disable the MMU this is trivi    101  * where you can disable the MMU this is trivial, and easy.  For
 61  * others it is still a simple predictable pag    102  * others it is still a simple predictable page table to setup.
 62  *                                                103  *
 63  * In that environment kexec copies the new ke    104  * In that environment kexec copies the new kernel to its final
 64  * resting place.  This means I can only suppo    105  * resting place.  This means I can only support memory whose
 65  * physical address can fit in an unsigned lon    106  * physical address can fit in an unsigned long.  In particular
 66  * addresses where (pfn << PAGE_SHIFT) > ULONG    107  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 67  * If the assembly stub has more restrictive r    108  * If the assembly stub has more restrictive requirements
 68  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME    109  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 69  * defined more restrictively in <asm/kexec.h>    110  * defined more restrictively in <asm/kexec.h>.
 70  *                                                111  *
 71  * The code for the transition from the curren    112  * The code for the transition from the current kernel to the
 72  * new kernel is placed in the control_code_bu    113  * new kernel is placed in the control_code_buffer, whose size
 73  * is given by KEXEC_CONTROL_PAGE_SIZE.  In th    114  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 74  * page of memory is necessary, but some archi    115  * page of memory is necessary, but some architectures require more.
 75  * Because this memory must be identity mapped    116  * Because this memory must be identity mapped in the transition from
 76  * virtual to physical addresses it must live     117  * virtual to physical addresses it must live in the range
 77  * 0 - TASK_SIZE, as only the user space mappi    118  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 78  * modifiable.                                    119  * modifiable.
 79  *                                                120  *
 80  * The assembly stub in the control code buffe    121  * The assembly stub in the control code buffer is passed a linked list
 81  * of descriptor pages detailing the source pa    122  * of descriptor pages detailing the source pages of the new kernel,
 82  * and the destination addresses of those sour    123  * and the destination addresses of those source pages.  As this data
 83  * structure is not used in the context of the    124  * structure is not used in the context of the current OS, it must
 84  * be self-contained.                             125  * be self-contained.
 85  *                                                126  *
 86  * The code has been made to work with highmem    127  * The code has been made to work with highmem pages and will use a
 87  * destination page in its final resting place    128  * destination page in its final resting place (if it happens
 88  * to allocate it).  The end product of this i    129  * to allocate it).  The end product of this is that most of the
 89  * physical address space, and most of RAM can    130  * physical address space, and most of RAM can be used.
 90  *                                                131  *
 91  * Future directions include:                     132  * Future directions include:
 92  *  - allocating a page table with the control    133  *  - allocating a page table with the control code buffer identity
 93  *    mapped, to simplify machine_kexec and ma    134  *    mapped, to simplify machine_kexec and make kexec_on_panic more
 94  *    reliable.                                   135  *    reliable.
 95  */                                               136  */
 96                                                   137 
 97 /*                                                138 /*
 98  * KIMAGE_NO_DEST is an impossible destination    139  * KIMAGE_NO_DEST is an impossible destination address..., for
 99  * allocating pages whose destination address     140  * allocating pages whose destination address we do not care about.
100  */                                               141  */
101 #define KIMAGE_NO_DEST (-1UL)                     142 #define KIMAGE_NO_DEST (-1UL)
102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >    143 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
103                                                   144 
104 static struct page *kimage_alloc_page(struct k    145 static struct page *kimage_alloc_page(struct kimage *image,
105                                        gfp_t g    146                                        gfp_t gfp_mask,
106                                        unsigne    147                                        unsigned long dest);
107                                                   148 
108 int sanity_check_segment_list(struct kimage *i    149 int sanity_check_segment_list(struct kimage *image)
109 {                                                 150 {
110         int i;                                    151         int i;
111         unsigned long nr_segments = image->nr_    152         unsigned long nr_segments = image->nr_segments;
112         unsigned long total_pages = 0;            153         unsigned long total_pages = 0;
113         unsigned long nr_pages = totalram_page    154         unsigned long nr_pages = totalram_pages();
114                                                   155 
115         /*                                        156         /*
116          * Verify we have good destination add    157          * Verify we have good destination addresses.  The caller is
117          * responsible for making certain we d    158          * responsible for making certain we don't attempt to load
118          * the new image into invalid or reser    159          * the new image into invalid or reserved areas of RAM.  This
119          * just verifies it is an address we c    160          * just verifies it is an address we can use.
120          *                                        161          *
121          * Since the kernel does everything in    162          * Since the kernel does everything in page size chunks ensure
122          * the destination addresses are page     163          * the destination addresses are page aligned.  Too many
123          * special cases crop of when we don't    164          * special cases crop of when we don't do this.  The most
124          * insidious is getting overlapping de    165          * insidious is getting overlapping destination addresses
125          * simply because addresses are change    166          * simply because addresses are changed to page size
126          * granularity.                           167          * granularity.
127          */                                       168          */
128         for (i = 0; i < nr_segments; i++) {       169         for (i = 0; i < nr_segments; i++) {
129                 unsigned long mstart, mend;       170                 unsigned long mstart, mend;
130                                                   171 
131                 mstart = image->segment[i].mem    172                 mstart = image->segment[i].mem;
132                 mend   = mstart + image->segme    173                 mend   = mstart + image->segment[i].memsz;
133                 if (mstart > mend)                174                 if (mstart > mend)
134                         return -EADDRNOTAVAIL;    175                         return -EADDRNOTAVAIL;
135                 if ((mstart & ~PAGE_MASK) || (    176                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
136                         return -EADDRNOTAVAIL;    177                         return -EADDRNOTAVAIL;
137                 if (mend >= KEXEC_DESTINATION_    178                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
138                         return -EADDRNOTAVAIL;    179                         return -EADDRNOTAVAIL;
139         }                                         180         }
140                                                   181 
141         /* Verify our destination addresses do    182         /* Verify our destination addresses do not overlap.
142          * If we alloed overlapping destinatio    183          * If we alloed overlapping destination addresses
143          * through very weird things can happe    184          * through very weird things can happen with no
144          * easy explanation as one segment sto    185          * easy explanation as one segment stops on another.
145          */                                       186          */
146         for (i = 0; i < nr_segments; i++) {       187         for (i = 0; i < nr_segments; i++) {
147                 unsigned long mstart, mend;       188                 unsigned long mstart, mend;
148                 unsigned long j;                  189                 unsigned long j;
149                                                   190 
150                 mstart = image->segment[i].mem    191                 mstart = image->segment[i].mem;
151                 mend   = mstart + image->segme    192                 mend   = mstart + image->segment[i].memsz;
152                 for (j = 0; j < i; j++) {         193                 for (j = 0; j < i; j++) {
153                         unsigned long pstart,     194                         unsigned long pstart, pend;
154                                                   195 
155                         pstart = image->segmen    196                         pstart = image->segment[j].mem;
156                         pend   = pstart + imag    197                         pend   = pstart + image->segment[j].memsz;
157                         /* Do the segments ove    198                         /* Do the segments overlap ? */
158                         if ((mend > pstart) &&    199                         if ((mend > pstart) && (mstart < pend))
159                                 return -EINVAL    200                                 return -EINVAL;
160                 }                                 201                 }
161         }                                         202         }
162                                                   203 
163         /* Ensure our buffer sizes are strictl    204         /* Ensure our buffer sizes are strictly less than
164          * our memory sizes.  This should alwa    205          * our memory sizes.  This should always be the case,
165          * and it is easier to check up front     206          * and it is easier to check up front than to be surprised
166          * later on.                              207          * later on.
167          */                                       208          */
168         for (i = 0; i < nr_segments; i++) {       209         for (i = 0; i < nr_segments; i++) {
169                 if (image->segment[i].bufsz >     210                 if (image->segment[i].bufsz > image->segment[i].memsz)
170                         return -EINVAL;           211                         return -EINVAL;
171         }                                         212         }
172                                                   213 
173         /*                                        214         /*
174          * Verify that no more than half of me    215          * Verify that no more than half of memory will be consumed. If the
175          * request from userspace is too large    216          * request from userspace is too large, a large amount of time will be
176          * wasted allocating pages, which can     217          * wasted allocating pages, which can cause a soft lockup.
177          */                                       218          */
178         for (i = 0; i < nr_segments; i++) {       219         for (i = 0; i < nr_segments; i++) {
179                 if (PAGE_COUNT(image->segment[    220                 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
180                         return -EINVAL;           221                         return -EINVAL;
181                                                   222 
182                 total_pages += PAGE_COUNT(imag    223                 total_pages += PAGE_COUNT(image->segment[i].memsz);
183         }                                         224         }
184                                                   225 
185         if (total_pages > nr_pages / 2)           226         if (total_pages > nr_pages / 2)
186                 return -EINVAL;                   227                 return -EINVAL;
187                                                   228 
188 #ifdef CONFIG_CRASH_DUMP                       << 
189         /*                                        229         /*
190          * Verify we have good destination add    230          * Verify we have good destination addresses.  Normally
191          * the caller is responsible for makin    231          * the caller is responsible for making certain we don't
192          * attempt to load the new image into     232          * attempt to load the new image into invalid or reserved
193          * areas of RAM.  But crash kernels ar    233          * areas of RAM.  But crash kernels are preloaded into a
194          * reserved area of ram.  We must ensu    234          * reserved area of ram.  We must ensure the addresses
195          * are in the reserved area otherwise     235          * are in the reserved area otherwise preloading the
196          * kernel could corrupt things.           236          * kernel could corrupt things.
197          */                                       237          */
198                                                   238 
199         if (image->type == KEXEC_TYPE_CRASH) {    239         if (image->type == KEXEC_TYPE_CRASH) {
200                 for (i = 0; i < nr_segments; i    240                 for (i = 0; i < nr_segments; i++) {
201                         unsigned long mstart,     241                         unsigned long mstart, mend;
202                                                   242 
203                         mstart = image->segmen    243                         mstart = image->segment[i].mem;
204                         mend = mstart + image-    244                         mend = mstart + image->segment[i].memsz - 1;
205                         /* Ensure we are withi    245                         /* Ensure we are within the crash kernel limits */
206                         if ((mstart < phys_to_    246                         if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
207                             (mend > phys_to_bo    247                             (mend > phys_to_boot_phys(crashk_res.end)))
208                                 return -EADDRN    248                                 return -EADDRNOTAVAIL;
209                 }                                 249                 }
210         }                                         250         }
211 #endif                                         << 
212                                                   251 
213         return 0;                                 252         return 0;
214 }                                                 253 }
215                                                   254 
216 struct kimage *do_kimage_alloc_init(void)         255 struct kimage *do_kimage_alloc_init(void)
217 {                                                 256 {
218         struct kimage *image;                     257         struct kimage *image;
219                                                   258 
220         /* Allocate a controlling structure */    259         /* Allocate a controlling structure */
221         image = kzalloc(sizeof(*image), GFP_KE    260         image = kzalloc(sizeof(*image), GFP_KERNEL);
222         if (!image)                               261         if (!image)
223                 return NULL;                      262                 return NULL;
224                                                   263 
225         image->head = 0;                          264         image->head = 0;
226         image->entry = &image->head;              265         image->entry = &image->head;
227         image->last_entry = &image->head;         266         image->last_entry = &image->head;
228         image->control_page = ~0; /* By defaul    267         image->control_page = ~0; /* By default this does not apply */
229         image->type = KEXEC_TYPE_DEFAULT;         268         image->type = KEXEC_TYPE_DEFAULT;
230                                                   269 
231         /* Initialize the list of control page    270         /* Initialize the list of control pages */
232         INIT_LIST_HEAD(&image->control_pages);    271         INIT_LIST_HEAD(&image->control_pages);
233                                                   272 
234         /* Initialize the list of destination     273         /* Initialize the list of destination pages */
235         INIT_LIST_HEAD(&image->dest_pages);       274         INIT_LIST_HEAD(&image->dest_pages);
236                                                   275 
237         /* Initialize the list of unusable pag    276         /* Initialize the list of unusable pages */
238         INIT_LIST_HEAD(&image->unusable_pages)    277         INIT_LIST_HEAD(&image->unusable_pages);
239                                                   278 
240 #ifdef CONFIG_CRASH_HOTPLUG                    << 
241         image->hp_action = KEXEC_CRASH_HP_NONE << 
242         image->elfcorehdr_index = -1;          << 
243         image->elfcorehdr_updated = false;     << 
244 #endif                                         << 
245                                                << 
246         return image;                             279         return image;
247 }                                                 280 }
248                                                   281 
249 int kimage_is_destination_range(struct kimage     282 int kimage_is_destination_range(struct kimage *image,
250                                         unsign    283                                         unsigned long start,
251                                         unsign    284                                         unsigned long end)
252 {                                                 285 {
253         unsigned long i;                          286         unsigned long i;
254                                                   287 
255         for (i = 0; i < image->nr_segments; i+    288         for (i = 0; i < image->nr_segments; i++) {
256                 unsigned long mstart, mend;       289                 unsigned long mstart, mend;
257                                                   290 
258                 mstart = image->segment[i].mem    291                 mstart = image->segment[i].mem;
259                 mend = mstart + image->segment !! 292                 mend = mstart + image->segment[i].memsz;
260                 if ((end >= mstart) && (start  !! 293                 if ((end > mstart) && (start < mend))
261                         return 1;                 294                         return 1;
262         }                                         295         }
263                                                   296 
264         return 0;                                 297         return 0;
265 }                                                 298 }
266                                                   299 
267 static struct page *kimage_alloc_pages(gfp_t g    300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
268 {                                                 301 {
269         struct page *pages;                       302         struct page *pages;
270                                                   303 
271         if (fatal_signal_pending(current))        304         if (fatal_signal_pending(current))
272                 return NULL;                      305                 return NULL;
273         pages = alloc_pages(gfp_mask & ~__GFP_    306         pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
274         if (pages) {                              307         if (pages) {
275                 unsigned int count, i;            308                 unsigned int count, i;
276                                                   309 
277                 pages->mapping = NULL;            310                 pages->mapping = NULL;
278                 set_page_private(pages, order)    311                 set_page_private(pages, order);
279                 count = 1 << order;               312                 count = 1 << order;
280                 for (i = 0; i < count; i++)       313                 for (i = 0; i < count; i++)
281                         SetPageReserved(pages     314                         SetPageReserved(pages + i);
282                                                   315 
283                 arch_kexec_post_alloc_pages(pa    316                 arch_kexec_post_alloc_pages(page_address(pages), count,
284                                             gf    317                                             gfp_mask);
285                                                   318 
286                 if (gfp_mask & __GFP_ZERO)        319                 if (gfp_mask & __GFP_ZERO)
287                         for (i = 0; i < count;    320                         for (i = 0; i < count; i++)
288                                 clear_highpage    321                                 clear_highpage(pages + i);
289         }                                         322         }
290                                                   323 
291         return pages;                             324         return pages;
292 }                                                 325 }
293                                                   326 
294 static void kimage_free_pages(struct page *pag    327 static void kimage_free_pages(struct page *page)
295 {                                                 328 {
296         unsigned int order, count, i;             329         unsigned int order, count, i;
297                                                   330 
298         order = page_private(page);               331         order = page_private(page);
299         count = 1 << order;                       332         count = 1 << order;
300                                                   333 
301         arch_kexec_pre_free_pages(page_address    334         arch_kexec_pre_free_pages(page_address(page), count);
302                                                   335 
303         for (i = 0; i < count; i++)               336         for (i = 0; i < count; i++)
304                 ClearPageReserved(page + i);      337                 ClearPageReserved(page + i);
305         __free_pages(page, order);                338         __free_pages(page, order);
306 }                                                 339 }
307                                                   340 
308 void kimage_free_page_list(struct list_head *l    341 void kimage_free_page_list(struct list_head *list)
309 {                                                 342 {
310         struct page *page, *next;                 343         struct page *page, *next;
311                                                   344 
312         list_for_each_entry_safe(page, next, l    345         list_for_each_entry_safe(page, next, list, lru) {
313                 list_del(&page->lru);             346                 list_del(&page->lru);
314                 kimage_free_pages(page);          347                 kimage_free_pages(page);
315         }                                         348         }
316 }                                                 349 }
317                                                   350 
318 static struct page *kimage_alloc_normal_contro    351 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
319                                                   352                                                         unsigned int order)
320 {                                                 353 {
321         /* Control pages are special, they are    354         /* Control pages are special, they are the intermediaries
322          * that are needed while we copy the r    355          * that are needed while we copy the rest of the pages
323          * to their final resting place.  As s    356          * to their final resting place.  As such they must
324          * not conflict with either the destin    357          * not conflict with either the destination addresses
325          * or memory the kernel is already usi    358          * or memory the kernel is already using.
326          *                                        359          *
327          * The only case where we really need     360          * The only case where we really need more than one of
328          * these are for architectures where w    361          * these are for architectures where we cannot disable
329          * the MMU and must instead generate a    362          * the MMU and must instead generate an identity mapped
330          * page table for all of the memory.      363          * page table for all of the memory.
331          *                                        364          *
332          * At worst this runs in O(N) of the i    365          * At worst this runs in O(N) of the image size.
333          */                                       366          */
334         struct list_head extra_pages;             367         struct list_head extra_pages;
335         struct page *pages;                       368         struct page *pages;
336         unsigned int count;                       369         unsigned int count;
337                                                   370 
338         count = 1 << order;                       371         count = 1 << order;
339         INIT_LIST_HEAD(&extra_pages);             372         INIT_LIST_HEAD(&extra_pages);
340                                                   373 
341         /* Loop while I can allocate a page an    374         /* Loop while I can allocate a page and the page allocated
342          * is a destination page.                 375          * is a destination page.
343          */                                       376          */
344         do {                                      377         do {
345                 unsigned long pfn, epfn, addr,    378                 unsigned long pfn, epfn, addr, eaddr;
346                                                   379 
347                 pages = kimage_alloc_pages(KEX    380                 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
348                 if (!pages)                       381                 if (!pages)
349                         break;                    382                         break;
350                 pfn   = page_to_boot_pfn(pages    383                 pfn   = page_to_boot_pfn(pages);
351                 epfn  = pfn + count;              384                 epfn  = pfn + count;
352                 addr  = pfn << PAGE_SHIFT;        385                 addr  = pfn << PAGE_SHIFT;
353                 eaddr = (epfn << PAGE_SHIFT) - !! 386                 eaddr = epfn << PAGE_SHIFT;
354                 if ((epfn >= (KEXEC_CONTROL_ME    387                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
355                               kimage_is_destin    388                               kimage_is_destination_range(image, addr, eaddr)) {
356                         list_add(&pages->lru,     389                         list_add(&pages->lru, &extra_pages);
357                         pages = NULL;             390                         pages = NULL;
358                 }                                 391                 }
359         } while (!pages);                         392         } while (!pages);
360                                                   393 
361         if (pages) {                              394         if (pages) {
362                 /* Remember the allocated page    395                 /* Remember the allocated page... */
363                 list_add(&pages->lru, &image->    396                 list_add(&pages->lru, &image->control_pages);
364                                                   397 
365                 /* Because the page is already    398                 /* Because the page is already in it's destination
366                  * location we will never allo    399                  * location we will never allocate another page at
367                  * that address.  Therefore ki    400                  * that address.  Therefore kimage_alloc_pages
368                  * will not return it (again)     401                  * will not return it (again) and we don't need
369                  * to give it an entry in imag    402                  * to give it an entry in image->segment[].
370                  */                               403                  */
371         }                                         404         }
372         /* Deal with the destination pages I h    405         /* Deal with the destination pages I have inadvertently allocated.
373          *                                        406          *
374          * Ideally I would convert multi-page     407          * Ideally I would convert multi-page allocations into single
375          * page allocations, and add everythin    408          * page allocations, and add everything to image->dest_pages.
376          *                                        409          *
377          * For now it is simpler to just free     410          * For now it is simpler to just free the pages.
378          */                                       411          */
379         kimage_free_page_list(&extra_pages);      412         kimage_free_page_list(&extra_pages);
380                                                   413 
381         return pages;                             414         return pages;
382 }                                                 415 }
383                                                   416 
384 #ifdef CONFIG_CRASH_DUMP                       << 
385 static struct page *kimage_alloc_crash_control    417 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
386                                                   418                                                       unsigned int order)
387 {                                                 419 {
388         /* Control pages are special, they are    420         /* Control pages are special, they are the intermediaries
389          * that are needed while we copy the r    421          * that are needed while we copy the rest of the pages
390          * to their final resting place.  As s    422          * to their final resting place.  As such they must
391          * not conflict with either the destin    423          * not conflict with either the destination addresses
392          * or memory the kernel is already usi    424          * or memory the kernel is already using.
393          *                                        425          *
394          * Control pages are also the only pag    426          * Control pages are also the only pags we must allocate
395          * when loading a crash kernel.  All o    427          * when loading a crash kernel.  All of the other pages
396          * are specified by the segments and w    428          * are specified by the segments and we just memcpy
397          * into them directly.                    429          * into them directly.
398          *                                        430          *
399          * The only case where we really need     431          * The only case where we really need more than one of
400          * these are for architectures where w    432          * these are for architectures where we cannot disable
401          * the MMU and must instead generate a    433          * the MMU and must instead generate an identity mapped
402          * page table for all of the memory.      434          * page table for all of the memory.
403          *                                        435          *
404          * Given the low demand this implement    436          * Given the low demand this implements a very simple
405          * allocator that finds the first hole    437          * allocator that finds the first hole of the appropriate
406          * size in the reserved memory region,    438          * size in the reserved memory region, and allocates all
407          * of the memory up to and including t    439          * of the memory up to and including the hole.
408          */                                       440          */
409         unsigned long hole_start, hole_end, si    441         unsigned long hole_start, hole_end, size;
410         struct page *pages;                       442         struct page *pages;
411                                                   443 
412         pages = NULL;                             444         pages = NULL;
413         size = (1 << order) << PAGE_SHIFT;        445         size = (1 << order) << PAGE_SHIFT;
414         hole_start = ALIGN(image->control_page !! 446         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
415         hole_end   = hole_start + size - 1;       447         hole_end   = hole_start + size - 1;
416         while (hole_end <= crashk_res.end) {      448         while (hole_end <= crashk_res.end) {
417                 unsigned long i;                  449                 unsigned long i;
418                                                   450 
419                 cond_resched();                   451                 cond_resched();
420                                                   452 
421                 if (hole_end > KEXEC_CRASH_CON    453                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
422                         break;                    454                         break;
423                 /* See if I overlap any of the    455                 /* See if I overlap any of the segments */
424                 for (i = 0; i < image->nr_segm    456                 for (i = 0; i < image->nr_segments; i++) {
425                         unsigned long mstart,     457                         unsigned long mstart, mend;
426                                                   458 
427                         mstart = image->segmen    459                         mstart = image->segment[i].mem;
428                         mend   = mstart + imag    460                         mend   = mstart + image->segment[i].memsz - 1;
429                         if ((hole_end >= mstar    461                         if ((hole_end >= mstart) && (hole_start <= mend)) {
430                                 /* Advance the    462                                 /* Advance the hole to the end of the segment */
431                                 hole_start = A !! 463                                 hole_start = (mend + (size - 1)) & ~(size - 1);
432                                 hole_end   = h    464                                 hole_end   = hole_start + size - 1;
433                                 break;            465                                 break;
434                         }                         466                         }
435                 }                                 467                 }
436                 /* If I don't overlap any segm    468                 /* If I don't overlap any segments I have found my hole! */
437                 if (i == image->nr_segments) {    469                 if (i == image->nr_segments) {
438                         pages = pfn_to_page(ho    470                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
439                         image->control_page =  !! 471                         image->control_page = hole_end;
440                         break;                    472                         break;
441                 }                                 473                 }
442         }                                         474         }
443                                                   475 
444         /* Ensure that these pages are decrypt    476         /* Ensure that these pages are decrypted if SME is enabled. */
445         if (pages)                                477         if (pages)
446                 arch_kexec_post_alloc_pages(pa    478                 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
447                                                   479 
448         return pages;                             480         return pages;
449 }                                                 481 }
450 #endif                                         << 
451                                                   482 
452                                                   483 
453 struct page *kimage_alloc_control_pages(struct    484 struct page *kimage_alloc_control_pages(struct kimage *image,
454                                          unsig    485                                          unsigned int order)
455 {                                                 486 {
456         struct page *pages = NULL;                487         struct page *pages = NULL;
457                                                   488 
458         switch (image->type) {                    489         switch (image->type) {
459         case KEXEC_TYPE_DEFAULT:                  490         case KEXEC_TYPE_DEFAULT:
460                 pages = kimage_alloc_normal_co    491                 pages = kimage_alloc_normal_control_pages(image, order);
461                 break;                            492                 break;
462 #ifdef CONFIG_CRASH_DUMP                       << 
463         case KEXEC_TYPE_CRASH:                    493         case KEXEC_TYPE_CRASH:
464                 pages = kimage_alloc_crash_con    494                 pages = kimage_alloc_crash_control_pages(image, order);
465                 break;                            495                 break;
466 #endif                                         << 
467         }                                         496         }
468                                                   497 
469         return pages;                             498         return pages;
470 }                                                 499 }
471                                                   500 
                                                   >> 501 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
                                                   >> 502 {
                                                   >> 503         struct page *vmcoreinfo_page;
                                                   >> 504         void *safecopy;
                                                   >> 505 
                                                   >> 506         if (image->type != KEXEC_TYPE_CRASH)
                                                   >> 507                 return 0;
                                                   >> 508 
                                                   >> 509         /*
                                                   >> 510          * For kdump, allocate one vmcoreinfo safe copy from the
                                                   >> 511          * crash memory. as we have arch_kexec_protect_crashkres()
                                                   >> 512          * after kexec syscall, we naturally protect it from write
                                                   >> 513          * (even read) access under kernel direct mapping. But on
                                                   >> 514          * the other hand, we still need to operate it when crash
                                                   >> 515          * happens to generate vmcoreinfo note, hereby we rely on
                                                   >> 516          * vmap for this purpose.
                                                   >> 517          */
                                                   >> 518         vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
                                                   >> 519         if (!vmcoreinfo_page) {
                                                   >> 520                 pr_warn("Could not allocate vmcoreinfo buffer\n");
                                                   >> 521                 return -ENOMEM;
                                                   >> 522         }
                                                   >> 523         safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
                                                   >> 524         if (!safecopy) {
                                                   >> 525                 pr_warn("Could not vmap vmcoreinfo buffer\n");
                                                   >> 526                 return -ENOMEM;
                                                   >> 527         }
                                                   >> 528 
                                                   >> 529         image->vmcoreinfo_data_copy = safecopy;
                                                   >> 530         crash_update_vmcoreinfo_safecopy(safecopy);
                                                   >> 531 
                                                   >> 532         return 0;
                                                   >> 533 }
                                                   >> 534 
472 static int kimage_add_entry(struct kimage *ima    535 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
473 {                                                 536 {
474         if (*image->entry != 0)                   537         if (*image->entry != 0)
475                 image->entry++;                   538                 image->entry++;
476                                                   539 
477         if (image->entry == image->last_entry)    540         if (image->entry == image->last_entry) {
478                 kimage_entry_t *ind_page;         541                 kimage_entry_t *ind_page;
479                 struct page *page;                542                 struct page *page;
480                                                   543 
481                 page = kimage_alloc_page(image    544                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
482                 if (!page)                        545                 if (!page)
483                         return -ENOMEM;           546                         return -ENOMEM;
484                                                   547 
485                 ind_page = page_address(page);    548                 ind_page = page_address(page);
486                 *image->entry = virt_to_boot_p    549                 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
487                 image->entry = ind_page;          550                 image->entry = ind_page;
488                 image->last_entry = ind_page +    551                 image->last_entry = ind_page +
489                                       ((PAGE_S    552                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
490         }                                         553         }
491         *image->entry = entry;                    554         *image->entry = entry;
492         image->entry++;                           555         image->entry++;
493         *image->entry = 0;                        556         *image->entry = 0;
494                                                   557 
495         return 0;                                 558         return 0;
496 }                                                 559 }
497                                                   560 
498 static int kimage_set_destination(struct kimag    561 static int kimage_set_destination(struct kimage *image,
499                                    unsigned lo    562                                    unsigned long destination)
500 {                                                 563 {
                                                   >> 564         int result;
                                                   >> 565 
501         destination &= PAGE_MASK;                 566         destination &= PAGE_MASK;
                                                   >> 567         result = kimage_add_entry(image, destination | IND_DESTINATION);
502                                                   568 
503         return kimage_add_entry(image, destina !! 569         return result;
504 }                                                 570 }
505                                                   571 
506                                                   572 
507 static int kimage_add_page(struct kimage *imag    573 static int kimage_add_page(struct kimage *image, unsigned long page)
508 {                                                 574 {
                                                   >> 575         int result;
                                                   >> 576 
509         page &= PAGE_MASK;                        577         page &= PAGE_MASK;
                                                   >> 578         result = kimage_add_entry(image, page | IND_SOURCE);
510                                                   579 
511         return kimage_add_entry(image, page |  !! 580         return result;
512 }                                                 581 }
513                                                   582 
514                                                   583 
515 static void kimage_free_extra_pages(struct kim    584 static void kimage_free_extra_pages(struct kimage *image)
516 {                                                 585 {
517         /* Walk through and free any extra des    586         /* Walk through and free any extra destination pages I may have */
518         kimage_free_page_list(&image->dest_pag    587         kimage_free_page_list(&image->dest_pages);
519                                                   588 
520         /* Walk through and free any unusable     589         /* Walk through and free any unusable pages I have cached */
521         kimage_free_page_list(&image->unusable    590         kimage_free_page_list(&image->unusable_pages);
522                                                   591 
523 }                                                 592 }
524                                                   593 
                                                   >> 594 int __weak machine_kexec_post_load(struct kimage *image)
                                                   >> 595 {
                                                   >> 596         return 0;
                                                   >> 597 }
                                                   >> 598 
525 void kimage_terminate(struct kimage *image)       599 void kimage_terminate(struct kimage *image)
526 {                                                 600 {
527         if (*image->entry != 0)                   601         if (*image->entry != 0)
528                 image->entry++;                   602                 image->entry++;
529                                                   603 
530         *image->entry = IND_DONE;                 604         *image->entry = IND_DONE;
531 }                                                 605 }
532                                                   606 
533 #define for_each_kimage_entry(image, ptr, entr    607 #define for_each_kimage_entry(image, ptr, entry) \
534         for (ptr = &image->head; (entry = *ptr    608         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
535                 ptr = (entry & IND_INDIRECTION    609                 ptr = (entry & IND_INDIRECTION) ? \
536                         boot_phys_to_virt((ent    610                         boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
537                                                   611 
538 static void kimage_free_entry(kimage_entry_t e    612 static void kimage_free_entry(kimage_entry_t entry)
539 {                                                 613 {
540         struct page *page;                        614         struct page *page;
541                                                   615 
542         page = boot_pfn_to_page(entry >> PAGE_    616         page = boot_pfn_to_page(entry >> PAGE_SHIFT);
543         kimage_free_pages(page);                  617         kimage_free_pages(page);
544 }                                                 618 }
545                                                   619 
546 void kimage_free(struct kimage *image)            620 void kimage_free(struct kimage *image)
547 {                                                 621 {
548         kimage_entry_t *ptr, entry;               622         kimage_entry_t *ptr, entry;
549         kimage_entry_t ind = 0;                   623         kimage_entry_t ind = 0;
550                                                   624 
551         if (!image)                               625         if (!image)
552                 return;                           626                 return;
553                                                   627 
554 #ifdef CONFIG_CRASH_DUMP                       << 
555         if (image->vmcoreinfo_data_copy) {        628         if (image->vmcoreinfo_data_copy) {
556                 crash_update_vmcoreinfo_safeco    629                 crash_update_vmcoreinfo_safecopy(NULL);
557                 vunmap(image->vmcoreinfo_data_    630                 vunmap(image->vmcoreinfo_data_copy);
558         }                                         631         }
559 #endif                                         << 
560                                                   632 
561         kimage_free_extra_pages(image);           633         kimage_free_extra_pages(image);
562         for_each_kimage_entry(image, ptr, entr    634         for_each_kimage_entry(image, ptr, entry) {
563                 if (entry & IND_INDIRECTION) {    635                 if (entry & IND_INDIRECTION) {
564                         /* Free the previous i    636                         /* Free the previous indirection page */
565                         if (ind & IND_INDIRECT    637                         if (ind & IND_INDIRECTION)
566                                 kimage_free_en    638                                 kimage_free_entry(ind);
567                         /* Save this indirecti    639                         /* Save this indirection page until we are
568                          * done with it.          640                          * done with it.
569                          */                       641                          */
570                         ind = entry;              642                         ind = entry;
571                 } else if (entry & IND_SOURCE)    643                 } else if (entry & IND_SOURCE)
572                         kimage_free_entry(entr    644                         kimage_free_entry(entry);
573         }                                         645         }
574         /* Free the final indirection page */     646         /* Free the final indirection page */
575         if (ind & IND_INDIRECTION)                647         if (ind & IND_INDIRECTION)
576                 kimage_free_entry(ind);           648                 kimage_free_entry(ind);
577                                                   649 
578         /* Handle any machine specific cleanup    650         /* Handle any machine specific cleanup */
579         machine_kexec_cleanup(image);             651         machine_kexec_cleanup(image);
580                                                   652 
581         /* Free the kexec control pages... */     653         /* Free the kexec control pages... */
582         kimage_free_page_list(&image->control_    654         kimage_free_page_list(&image->control_pages);
583                                                   655 
584         /*                                        656         /*
585          * Free up any temporary buffers alloc    657          * Free up any temporary buffers allocated. This might hit if
586          * error occurred much later after buf    658          * error occurred much later after buffer allocation.
587          */                                       659          */
588         if (image->file_mode)                     660         if (image->file_mode)
589                 kimage_file_post_load_cleanup(    661                 kimage_file_post_load_cleanup(image);
590                                                   662 
591         kfree(image);                             663         kfree(image);
592 }                                                 664 }
593                                                   665 
594 static kimage_entry_t *kimage_dst_used(struct     666 static kimage_entry_t *kimage_dst_used(struct kimage *image,
595                                         unsign    667                                         unsigned long page)
596 {                                                 668 {
597         kimage_entry_t *ptr, entry;               669         kimage_entry_t *ptr, entry;
598         unsigned long destination = 0;            670         unsigned long destination = 0;
599                                                   671 
600         for_each_kimage_entry(image, ptr, entr    672         for_each_kimage_entry(image, ptr, entry) {
601                 if (entry & IND_DESTINATION)      673                 if (entry & IND_DESTINATION)
602                         destination = entry &     674                         destination = entry & PAGE_MASK;
603                 else if (entry & IND_SOURCE) {    675                 else if (entry & IND_SOURCE) {
604                         if (page == destinatio    676                         if (page == destination)
605                                 return ptr;       677                                 return ptr;
606                         destination += PAGE_SI    678                         destination += PAGE_SIZE;
607                 }                                 679                 }
608         }                                         680         }
609                                                   681 
610         return NULL;                              682         return NULL;
611 }                                                 683 }
612                                                   684 
613 static struct page *kimage_alloc_page(struct k    685 static struct page *kimage_alloc_page(struct kimage *image,
614                                         gfp_t     686                                         gfp_t gfp_mask,
615                                         unsign    687                                         unsigned long destination)
616 {                                                 688 {
617         /*                                        689         /*
618          * Here we implement safeguards to ens    690          * Here we implement safeguards to ensure that a source page
619          * is not copied to its destination pa    691          * is not copied to its destination page before the data on
620          * the destination page is no longer u    692          * the destination page is no longer useful.
621          *                                        693          *
622          * To do this we maintain the invarian    694          * To do this we maintain the invariant that a source page is
623          * either its own destination page, or    695          * either its own destination page, or it is not a
624          * destination page at all.               696          * destination page at all.
625          *                                        697          *
626          * That is slightly stronger than requ    698          * That is slightly stronger than required, but the proof
627          * that no problems will not occur is     699          * that no problems will not occur is trivial, and the
628          * implementation is simply to verify.    700          * implementation is simply to verify.
629          *                                        701          *
630          * When allocating all pages normally     702          * When allocating all pages normally this algorithm will run
631          * in O(N) time, but in the worst case    703          * in O(N) time, but in the worst case it will run in O(N^2)
632          * time.   If the runtime is a problem    704          * time.   If the runtime is a problem the data structures can
633          * be fixed.                              705          * be fixed.
634          */                                       706          */
635         struct page *page;                        707         struct page *page;
636         unsigned long addr;                       708         unsigned long addr;
637                                                   709 
638         /*                                        710         /*
639          * Walk through the list of destinatio    711          * Walk through the list of destination pages, and see if I
640          * have a match.                          712          * have a match.
641          */                                       713          */
642         list_for_each_entry(page, &image->dest    714         list_for_each_entry(page, &image->dest_pages, lru) {
643                 addr = page_to_boot_pfn(page)     715                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
644                 if (addr == destination) {        716                 if (addr == destination) {
645                         list_del(&page->lru);     717                         list_del(&page->lru);
646                         return page;              718                         return page;
647                 }                                 719                 }
648         }                                         720         }
649         page = NULL;                              721         page = NULL;
650         while (1) {                               722         while (1) {
651                 kimage_entry_t *old;              723                 kimage_entry_t *old;
652                                                   724 
653                 /* Allocate a page, if we run     725                 /* Allocate a page, if we run out of memory give up */
654                 page = kimage_alloc_pages(gfp_    726                 page = kimage_alloc_pages(gfp_mask, 0);
655                 if (!page)                        727                 if (!page)
656                         return NULL;              728                         return NULL;
657                 /* If the page cannot be used     729                 /* If the page cannot be used file it away */
658                 if (page_to_boot_pfn(page) >      730                 if (page_to_boot_pfn(page) >
659                                 (KEXEC_SOURCE_    731                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
660                         list_add(&page->lru, &    732                         list_add(&page->lru, &image->unusable_pages);
661                         continue;                 733                         continue;
662                 }                                 734                 }
663                 addr = page_to_boot_pfn(page)     735                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
664                                                   736 
665                 /* If it is the destination pa    737                 /* If it is the destination page we want use it */
666                 if (addr == destination)          738                 if (addr == destination)
667                         break;                    739                         break;
668                                                   740 
669                 /* If the page is not a destin    741                 /* If the page is not a destination page use it */
670                 if (!kimage_is_destination_ran    742                 if (!kimage_is_destination_range(image, addr,
671                                                !! 743                                                   addr + PAGE_SIZE))
672                         break;                    744                         break;
673                                                   745 
674                 /*                                746                 /*
675                  * I know that the page is som    747                  * I know that the page is someones destination page.
676                  * See if there is already a s    748                  * See if there is already a source page for this
677                  * destination page.  And if s    749                  * destination page.  And if so swap the source pages.
678                  */                               750                  */
679                 old = kimage_dst_used(image, a    751                 old = kimage_dst_used(image, addr);
680                 if (old) {                        752                 if (old) {
681                         /* If so move it */       753                         /* If so move it */
682                         unsigned long old_addr    754                         unsigned long old_addr;
683                         struct page *old_page;    755                         struct page *old_page;
684                                                   756 
685                         old_addr = *old & PAGE    757                         old_addr = *old & PAGE_MASK;
686                         old_page = boot_pfn_to    758                         old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
687                         copy_highpage(page, ol    759                         copy_highpage(page, old_page);
688                         *old = addr | (*old &     760                         *old = addr | (*old & ~PAGE_MASK);
689                                                   761 
690                         /* The old page I have    762                         /* The old page I have found cannot be a
691                          * destination page, s    763                          * destination page, so return it if it's
692                          * gfp_flags honor the    764                          * gfp_flags honor the ones passed in.
693                          */                       765                          */
694                         if (!(gfp_mask & __GFP    766                         if (!(gfp_mask & __GFP_HIGHMEM) &&
695                             PageHighMem(old_pa    767                             PageHighMem(old_page)) {
696                                 kimage_free_pa    768                                 kimage_free_pages(old_page);
697                                 continue;         769                                 continue;
698                         }                         770                         }
                                                   >> 771                         addr = old_addr;
699                         page = old_page;          772                         page = old_page;
700                         break;                    773                         break;
701                 }                                 774                 }
702                 /* Place the page on the desti    775                 /* Place the page on the destination list, to be used later */
703                 list_add(&page->lru, &image->d    776                 list_add(&page->lru, &image->dest_pages);
704         }                                         777         }
705                                                   778 
706         return page;                              779         return page;
707 }                                                 780 }
708                                                   781 
709 static int kimage_load_normal_segment(struct k    782 static int kimage_load_normal_segment(struct kimage *image,
710                                          struc    783                                          struct kexec_segment *segment)
711 {                                                 784 {
712         unsigned long maddr;                      785         unsigned long maddr;
713         size_t ubytes, mbytes;                    786         size_t ubytes, mbytes;
714         int result;                               787         int result;
715         unsigned char __user *buf = NULL;         788         unsigned char __user *buf = NULL;
716         unsigned char *kbuf = NULL;               789         unsigned char *kbuf = NULL;
717                                                   790 
                                                   >> 791         result = 0;
718         if (image->file_mode)                     792         if (image->file_mode)
719                 kbuf = segment->kbuf;             793                 kbuf = segment->kbuf;
720         else                                      794         else
721                 buf = segment->buf;               795                 buf = segment->buf;
722         ubytes = segment->bufsz;                  796         ubytes = segment->bufsz;
723         mbytes = segment->memsz;                  797         mbytes = segment->memsz;
724         maddr = segment->mem;                     798         maddr = segment->mem;
725                                                   799 
726         result = kimage_set_destination(image,    800         result = kimage_set_destination(image, maddr);
727         if (result < 0)                           801         if (result < 0)
728                 goto out;                         802                 goto out;
729                                                   803 
730         while (mbytes) {                          804         while (mbytes) {
731                 struct page *page;                805                 struct page *page;
732                 char *ptr;                        806                 char *ptr;
733                 size_t uchunk, mchunk;            807                 size_t uchunk, mchunk;
734                                                   808 
735                 page = kimage_alloc_page(image    809                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
736                 if (!page) {                      810                 if (!page) {
737                         result  = -ENOMEM;        811                         result  = -ENOMEM;
738                         goto out;                 812                         goto out;
739                 }                                 813                 }
740                 result = kimage_add_page(image    814                 result = kimage_add_page(image, page_to_boot_pfn(page)
741                                                   815                                                                 << PAGE_SHIFT);
742                 if (result < 0)                   816                 if (result < 0)
743                         goto out;                 817                         goto out;
744                                                   818 
745                 ptr = kmap_local_page(page);   !! 819                 ptr = kmap(page);
746                 /* Start with a clear page */     820                 /* Start with a clear page */
747                 clear_page(ptr);                  821                 clear_page(ptr);
748                 ptr += maddr & ~PAGE_MASK;        822                 ptr += maddr & ~PAGE_MASK;
749                 mchunk = min_t(size_t, mbytes,    823                 mchunk = min_t(size_t, mbytes,
750                                 PAGE_SIZE - (m    824                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
751                 uchunk = min(ubytes, mchunk);     825                 uchunk = min(ubytes, mchunk);
752                                                   826 
753                 if (uchunk) {                  !! 827                 /* For file based kexec, source pages are in kernel memory */
754                         /* For file based kexe !! 828                 if (image->file_mode)
755                         if (image->file_mode)  !! 829                         memcpy(ptr, kbuf, uchunk);
756                                 memcpy(ptr, kb !! 830                 else
757                         else                   !! 831                         result = copy_from_user(ptr, buf, uchunk);
758                                 result = copy_ !! 832                 kunmap(page);
759                         ubytes -= uchunk;      << 
760                         if (image->file_mode)  << 
761                                 kbuf += uchunk << 
762                         else                   << 
763                                 buf += uchunk; << 
764                 }                              << 
765                 kunmap_local(ptr);             << 
766                 if (result) {                     833                 if (result) {
767                         result = -EFAULT;         834                         result = -EFAULT;
768                         goto out;                 835                         goto out;
769                 }                                 836                 }
                                                   >> 837                 ubytes -= uchunk;
770                 maddr  += mchunk;                 838                 maddr  += mchunk;
                                                   >> 839                 if (image->file_mode)
                                                   >> 840                         kbuf += mchunk;
                                                   >> 841                 else
                                                   >> 842                         buf += mchunk;
771                 mbytes -= mchunk;                 843                 mbytes -= mchunk;
772                                                   844 
773                 cond_resched();                   845                 cond_resched();
774         }                                         846         }
775 out:                                              847 out:
776         return result;                            848         return result;
777 }                                                 849 }
778                                                   850 
779 #ifdef CONFIG_CRASH_DUMP                       << 
780 static int kimage_load_crash_segment(struct ki    851 static int kimage_load_crash_segment(struct kimage *image,
781                                         struct    852                                         struct kexec_segment *segment)
782 {                                                 853 {
783         /* For crash dumps kernels we simply c    854         /* For crash dumps kernels we simply copy the data from
784          * user space to it's destination.        855          * user space to it's destination.
785          * We do things a page at a time for t    856          * We do things a page at a time for the sake of kmap.
786          */                                       857          */
787         unsigned long maddr;                      858         unsigned long maddr;
788         size_t ubytes, mbytes;                    859         size_t ubytes, mbytes;
789         int result;                               860         int result;
790         unsigned char __user *buf = NULL;         861         unsigned char __user *buf = NULL;
791         unsigned char *kbuf = NULL;               862         unsigned char *kbuf = NULL;
792                                                   863 
793         result = 0;                               864         result = 0;
794         if (image->file_mode)                     865         if (image->file_mode)
795                 kbuf = segment->kbuf;             866                 kbuf = segment->kbuf;
796         else                                      867         else
797                 buf = segment->buf;               868                 buf = segment->buf;
798         ubytes = segment->bufsz;                  869         ubytes = segment->bufsz;
799         mbytes = segment->memsz;                  870         mbytes = segment->memsz;
800         maddr = segment->mem;                     871         maddr = segment->mem;
801         while (mbytes) {                          872         while (mbytes) {
802                 struct page *page;                873                 struct page *page;
803                 char *ptr;                        874                 char *ptr;
804                 size_t uchunk, mchunk;            875                 size_t uchunk, mchunk;
805                                                   876 
806                 page = boot_pfn_to_page(maddr     877                 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
807                 if (!page) {                      878                 if (!page) {
808                         result  = -ENOMEM;        879                         result  = -ENOMEM;
809                         goto out;                 880                         goto out;
810                 }                                 881                 }
811                 arch_kexec_post_alloc_pages(pa    882                 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
812                 ptr = kmap_local_page(page);   !! 883                 ptr = kmap(page);
813                 ptr += maddr & ~PAGE_MASK;        884                 ptr += maddr & ~PAGE_MASK;
814                 mchunk = min_t(size_t, mbytes,    885                 mchunk = min_t(size_t, mbytes,
815                                 PAGE_SIZE - (m    886                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
816                 uchunk = min(ubytes, mchunk);     887                 uchunk = min(ubytes, mchunk);
817                 if (mchunk > uchunk) {            888                 if (mchunk > uchunk) {
818                         /* Zero the trailing p    889                         /* Zero the trailing part of the page */
819                         memset(ptr + uchunk, 0    890                         memset(ptr + uchunk, 0, mchunk - uchunk);
820                 }                                 891                 }
821                                                   892 
822                 if (uchunk) {                  !! 893                 /* For file based kexec, source pages are in kernel memory */
823                         /* For file based kexe !! 894                 if (image->file_mode)
824                         if (image->file_mode)  !! 895                         memcpy(ptr, kbuf, uchunk);
825                                 memcpy(ptr, kb !! 896                 else
826                         else                   !! 897                         result = copy_from_user(ptr, buf, uchunk);
827                                 result = copy_ << 
828                         ubytes -= uchunk;      << 
829                         if (image->file_mode)  << 
830                                 kbuf += uchunk << 
831                         else                   << 
832                                 buf += uchunk; << 
833                 }                              << 
834                 kexec_flush_icache_page(page);    898                 kexec_flush_icache_page(page);
835                 kunmap_local(ptr);             !! 899                 kunmap(page);
836                 arch_kexec_pre_free_pages(page    900                 arch_kexec_pre_free_pages(page_address(page), 1);
837                 if (result) {                     901                 if (result) {
838                         result = -EFAULT;         902                         result = -EFAULT;
839                         goto out;                 903                         goto out;
840                 }                                 904                 }
                                                   >> 905                 ubytes -= uchunk;
841                 maddr  += mchunk;                 906                 maddr  += mchunk;
                                                   >> 907                 if (image->file_mode)
                                                   >> 908                         kbuf += mchunk;
                                                   >> 909                 else
                                                   >> 910                         buf += mchunk;
842                 mbytes -= mchunk;                 911                 mbytes -= mchunk;
843                                                   912 
844                 cond_resched();                   913                 cond_resched();
845         }                                         914         }
846 out:                                              915 out:
847         return result;                            916         return result;
848 }                                                 917 }
849 #endif                                         << 
850                                                   918 
851 int kimage_load_segment(struct kimage *image,     919 int kimage_load_segment(struct kimage *image,
852                                 struct kexec_s    920                                 struct kexec_segment *segment)
853 {                                                 921 {
854         int result = -ENOMEM;                     922         int result = -ENOMEM;
855                                                   923 
856         switch (image->type) {                    924         switch (image->type) {
857         case KEXEC_TYPE_DEFAULT:                  925         case KEXEC_TYPE_DEFAULT:
858                 result = kimage_load_normal_se    926                 result = kimage_load_normal_segment(image, segment);
859                 break;                            927                 break;
860 #ifdef CONFIG_CRASH_DUMP                       << 
861         case KEXEC_TYPE_CRASH:                    928         case KEXEC_TYPE_CRASH:
862                 result = kimage_load_crash_seg    929                 result = kimage_load_crash_segment(image, segment);
863                 break;                            930                 break;
864 #endif                                         << 
865         }                                         931         }
866                                                   932 
867         return result;                            933         return result;
868 }                                                 934 }
869                                                   935 
870 struct kexec_load_limit {                      << 
871         /* Mutex protects the limit count. */  << 
872         struct mutex mutex;                    << 
873         int limit;                             << 
874 };                                             << 
875                                                << 
876 static struct kexec_load_limit load_limit_rebo << 
877         .mutex = __MUTEX_INITIALIZER(load_limi << 
878         .limit = -1,                           << 
879 };                                             << 
880                                                << 
881 static struct kexec_load_limit load_limit_pani << 
882         .mutex = __MUTEX_INITIALIZER(load_limi << 
883         .limit = -1,                           << 
884 };                                             << 
885                                                << 
886 struct kimage *kexec_image;                       936 struct kimage *kexec_image;
887 struct kimage *kexec_crash_image;                 937 struct kimage *kexec_crash_image;
888 static int kexec_load_disabled;                !! 938 int kexec_load_disabled;
889                                                   939 
890 #ifdef CONFIG_SYSCTL                           !! 940 /*
891 static int kexec_limit_handler(const struct ct !! 941  * No panic_cpu check version of crash_kexec().  This function is called
892                                void *buffer, s !! 942  * only when panic_cpu holds the current CPU number; this is the only CPU
893 {                                              !! 943  * which processes crash_kexec routines.
894         struct kexec_load_limit *limit = table !! 944  */
895         int val;                               !! 945 void __noclone __crash_kexec(struct pt_regs *regs)
896         struct ctl_table tmp = {               !! 946 {
897                 .data = &val,                  !! 947         /* Take the kexec_mutex here to prevent sys_kexec_load
898                 .maxlen = sizeof(val),         !! 948          * running on one cpu from replacing the crash kernel
899                 .mode = table->mode,           !! 949          * we are using after a panic on a different cpu.
900         };                                     !! 950          *
901         int ret;                               !! 951          * If the crash kernel was not located in a fixed area
902                                                !! 952          * of memory the xchg(&kexec_crash_image) would be
903         if (write) {                           !! 953          * sufficient.  But since I reuse the memory...
904                 ret = proc_dointvec(&tmp, writ !! 954          */
905                 if (ret)                       !! 955         if (mutex_trylock(&kexec_mutex)) {
906                         return ret;            !! 956                 if (kexec_crash_image) {
                                                   >> 957                         struct pt_regs fixed_regs;
                                                   >> 958 
                                                   >> 959                         crash_setup_regs(&fixed_regs, regs);
                                                   >> 960                         crash_save_vmcoreinfo();
                                                   >> 961                         machine_crash_shutdown(&fixed_regs);
                                                   >> 962                         machine_kexec(kexec_crash_image);
                                                   >> 963                 }
                                                   >> 964                 mutex_unlock(&kexec_mutex);
                                                   >> 965         }
                                                   >> 966 }
                                                   >> 967 STACK_FRAME_NON_STANDARD(__crash_kexec);
907                                                   968 
908                 if (val < 0)                   !! 969 void crash_kexec(struct pt_regs *regs)
909                         return -EINVAL;        !! 970 {
                                                   >> 971         int old_cpu, this_cpu;
910                                                   972 
911                 mutex_lock(&limit->mutex);     !! 973         /*
912                 if (limit->limit != -1 && val  !! 974          * Only one CPU is allowed to execute the crash_kexec() code as with
913                         ret = -EINVAL;         !! 975          * panic().  Otherwise parallel calls of panic() and crash_kexec()
914                 else                           !! 976          * may stop each other.  To exclude them, we use panic_cpu here too.
915                         limit->limit = val;    !! 977          */
916                 mutex_unlock(&limit->mutex);   !! 978         this_cpu = raw_smp_processor_id();
                                                   >> 979         old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
                                                   >> 980         if (old_cpu == PANIC_CPU_INVALID) {
                                                   >> 981                 /* This is the 1st CPU which comes here, so go ahead. */
                                                   >> 982                 __crash_kexec(regs);
917                                                   983 
918                 return ret;                    !! 984                 /*
                                                   >> 985                  * Reset panic_cpu to allow another panic()/crash_kexec()
                                                   >> 986                  * call.
                                                   >> 987                  */
                                                   >> 988                 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
919         }                                         989         }
                                                   >> 990 }
920                                                   991 
921         mutex_lock(&limit->mutex);             !! 992 size_t crash_get_memory_size(void)
922         val = limit->limit;                    !! 993 {
923         mutex_unlock(&limit->mutex);           !! 994         size_t size = 0;
924                                                   995 
925         return proc_dointvec(&tmp, write, buff !! 996         mutex_lock(&kexec_mutex);
                                                   >> 997         if (crashk_res.end != crashk_res.start)
                                                   >> 998                 size = resource_size(&crashk_res);
                                                   >> 999         mutex_unlock(&kexec_mutex);
                                                   >> 1000         return size;
926 }                                                 1001 }
927                                                   1002 
928 static struct ctl_table kexec_core_sysctls[] = !! 1003 void __weak crash_free_reserved_phys_range(unsigned long begin,
929         {                                      !! 1004                                            unsigned long end)
930                 .procname       = "kexec_load_ !! 1005 {
931                 .data           = &kexec_load_ !! 1006         unsigned long addr;
932                 .maxlen         = sizeof(int), << 
933                 .mode           = 0644,        << 
934                 /* only handle a transition fr << 
935                 .proc_handler   = proc_dointve << 
936                 .extra1         = SYSCTL_ONE,  << 
937                 .extra2         = SYSCTL_ONE,  << 
938         },                                     << 
939         {                                      << 
940                 .procname       = "kexec_load_ << 
941                 .data           = &load_limit_ << 
942                 .mode           = 0644,        << 
943                 .proc_handler   = kexec_limit_ << 
944         },                                     << 
945         {                                      << 
946                 .procname       = "kexec_load_ << 
947                 .data           = &load_limit_ << 
948                 .mode           = 0644,        << 
949                 .proc_handler   = kexec_limit_ << 
950         },                                     << 
951 };                                             << 
952                                                   1007 
953 static int __init kexec_core_sysctl_init(void) !! 1008         for (addr = begin; addr < end; addr += PAGE_SIZE)
                                                   >> 1009                 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
                                                   >> 1010 }
                                                   >> 1011 
                                                   >> 1012 int crash_shrink_memory(unsigned long new_size)
954 {                                                 1013 {
955         register_sysctl_init("kernel", kexec_c !! 1014         int ret = 0;
956         return 0;                              !! 1015         unsigned long start, end;
                                                   >> 1016         unsigned long old_size;
                                                   >> 1017         struct resource *ram_res;
                                                   >> 1018 
                                                   >> 1019         mutex_lock(&kexec_mutex);
                                                   >> 1020 
                                                   >> 1021         if (kexec_crash_image) {
                                                   >> 1022                 ret = -ENOENT;
                                                   >> 1023                 goto unlock;
                                                   >> 1024         }
                                                   >> 1025         start = crashk_res.start;
                                                   >> 1026         end = crashk_res.end;
                                                   >> 1027         old_size = (end == 0) ? 0 : end - start + 1;
                                                   >> 1028         if (new_size >= old_size) {
                                                   >> 1029                 ret = (new_size == old_size) ? 0 : -EINVAL;
                                                   >> 1030                 goto unlock;
                                                   >> 1031         }
                                                   >> 1032 
                                                   >> 1033         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
                                                   >> 1034         if (!ram_res) {
                                                   >> 1035                 ret = -ENOMEM;
                                                   >> 1036                 goto unlock;
                                                   >> 1037         }
                                                   >> 1038 
                                                   >> 1039         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
                                                   >> 1040         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
                                                   >> 1041 
                                                   >> 1042         crash_free_reserved_phys_range(end, crashk_res.end);
                                                   >> 1043 
                                                   >> 1044         if ((start == end) && (crashk_res.parent != NULL))
                                                   >> 1045                 release_resource(&crashk_res);
                                                   >> 1046 
                                                   >> 1047         ram_res->start = end;
                                                   >> 1048         ram_res->end = crashk_res.end;
                                                   >> 1049         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
                                                   >> 1050         ram_res->name = "System RAM";
                                                   >> 1051 
                                                   >> 1052         crashk_res.end = end - 1;
                                                   >> 1053 
                                                   >> 1054         insert_resource(&iomem_resource, ram_res);
                                                   >> 1055 
                                                   >> 1056 unlock:
                                                   >> 1057         mutex_unlock(&kexec_mutex);
                                                   >> 1058         return ret;
957 }                                                 1059 }
958 late_initcall(kexec_core_sysctl_init);         << 
959 #endif                                         << 
960                                                   1060 
961 bool kexec_load_permitted(int kexec_image_type !! 1061 void crash_save_cpu(struct pt_regs *regs, int cpu)
                                                   >> 1062 {
                                                   >> 1063         struct elf_prstatus prstatus;
                                                   >> 1064         u32 *buf;
                                                   >> 1065 
                                                   >> 1066         if ((cpu < 0) || (cpu >= nr_cpu_ids))
                                                   >> 1067                 return;
                                                   >> 1068 
                                                   >> 1069         /* Using ELF notes here is opportunistic.
                                                   >> 1070          * I need a well defined structure format
                                                   >> 1071          * for the data I pass, and I need tags
                                                   >> 1072          * on the data to indicate what information I have
                                                   >> 1073          * squirrelled away.  ELF notes happen to provide
                                                   >> 1074          * all of that, so there is no need to invent something new.
                                                   >> 1075          */
                                                   >> 1076         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
                                                   >> 1077         if (!buf)
                                                   >> 1078                 return;
                                                   >> 1079         memset(&prstatus, 0, sizeof(prstatus));
                                                   >> 1080         prstatus.common.pr_pid = current->pid;
                                                   >> 1081         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
                                                   >> 1082         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
                                                   >> 1083                               &prstatus, sizeof(prstatus));
                                                   >> 1084         final_note(buf);
                                                   >> 1085 }
                                                   >> 1086 
                                                   >> 1087 static int __init crash_notes_memory_init(void)
962 {                                                 1088 {
963         struct kexec_load_limit *limit;        !! 1089         /* Allocate memory for saving cpu registers. */
                                                   >> 1090         size_t size, align;
964                                                   1091 
965         /*                                        1092         /*
966          * Only the superuser can use the kexe !! 1093          * crash_notes could be allocated across 2 vmalloc pages when percpu
967          * been disabled.                      !! 1094          * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
                                                   >> 1095          * pages are also on 2 continuous physical pages. In this case the
                                                   >> 1096          * 2nd part of crash_notes in 2nd page could be lost since only the
                                                   >> 1097          * starting address and size of crash_notes are exported through sysfs.
                                                   >> 1098          * Here round up the size of crash_notes to the nearest power of two
                                                   >> 1099          * and pass it to __alloc_percpu as align value. This can make sure
                                                   >> 1100          * crash_notes is allocated inside one physical page.
968          */                                       1101          */
969         if (!capable(CAP_SYS_BOOT) || kexec_lo !! 1102         size = sizeof(note_buf_t);
970                 return false;                  !! 1103         align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
971                                                   1104 
972         /* Check limit counter and decrease it !! 1105         /*
973         limit = (kexec_image_type == KEXEC_TYP !! 1106          * Break compile if size is bigger than PAGE_SIZE since crash_notes
974                 &load_limit_panic : &load_limi !! 1107          * definitely will be in 2 pages with that.
975         mutex_lock(&limit->mutex);             !! 1108          */
976         if (!limit->limit) {                   !! 1109         BUILD_BUG_ON(size > PAGE_SIZE);
977                 mutex_unlock(&limit->mutex);   << 
978                 return false;                  << 
979         }                                      << 
980         if (limit->limit != -1)                << 
981                 limit->limit--;                << 
982         mutex_unlock(&limit->mutex);           << 
983                                                   1110 
984         return true;                           !! 1111         crash_notes = __alloc_percpu(size, align);
                                                   >> 1112         if (!crash_notes) {
                                                   >> 1113                 pr_warn("Memory allocation for saving cpu register states failed\n");
                                                   >> 1114                 return -ENOMEM;
                                                   >> 1115         }
                                                   >> 1116         return 0;
985 }                                                 1117 }
                                                   >> 1118 subsys_initcall(crash_notes_memory_init);
                                                   >> 1119 
986                                                   1120 
987 /*                                                1121 /*
988  * Move into place and start executing a prelo    1122  * Move into place and start executing a preloaded standalone
989  * executable.  If nothing was preloaded retur    1123  * executable.  If nothing was preloaded return an error.
990  */                                               1124  */
991 int kernel_kexec(void)                            1125 int kernel_kexec(void)
992 {                                                 1126 {
993         int error = 0;                            1127         int error = 0;
994                                                   1128 
995         if (!kexec_trylock())                  !! 1129         if (!mutex_trylock(&kexec_mutex))
996                 return -EBUSY;                    1130                 return -EBUSY;
997         if (!kexec_image) {                       1131         if (!kexec_image) {
998                 error = -EINVAL;                  1132                 error = -EINVAL;
999                 goto Unlock;                      1133                 goto Unlock;
1000         }                                        1134         }
1001                                                  1135 
1002 #ifdef CONFIG_KEXEC_JUMP                         1136 #ifdef CONFIG_KEXEC_JUMP
1003         if (kexec_image->preserve_context) {     1137         if (kexec_image->preserve_context) {
1004                 pm_prepare_console();            1138                 pm_prepare_console();
1005                 error = freeze_processes();      1139                 error = freeze_processes();
1006                 if (error) {                     1140                 if (error) {
1007                         error = -EBUSY;          1141                         error = -EBUSY;
1008                         goto Restore_console;    1142                         goto Restore_console;
1009                 }                                1143                 }
1010                 suspend_console();               1144                 suspend_console();
1011                 error = dpm_suspend_start(PMS    1145                 error = dpm_suspend_start(PMSG_FREEZE);
1012                 if (error)                       1146                 if (error)
1013                         goto Resume_console;     1147                         goto Resume_console;
1014                 /* At this point, dpm_suspend    1148                 /* At this point, dpm_suspend_start() has been called,
1015                  * but *not* dpm_suspend_end(    1149                  * but *not* dpm_suspend_end(). We *must* call
1016                  * dpm_suspend_end() now.  Ot    1150                  * dpm_suspend_end() now.  Otherwise, drivers for
1017                  * some devices (e.g. interru    1151                  * some devices (e.g. interrupt controllers) become
1018                  * desynchronized with the ac    1152                  * desynchronized with the actual state of the
1019                  * hardware at resume time, a    1153                  * hardware at resume time, and evil weirdness ensues.
1020                  */                              1154                  */
1021                 error = dpm_suspend_end(PMSG_    1155                 error = dpm_suspend_end(PMSG_FREEZE);
1022                 if (error)                       1156                 if (error)
1023                         goto Resume_devices;     1157                         goto Resume_devices;
1024                 error = suspend_disable_secon    1158                 error = suspend_disable_secondary_cpus();
1025                 if (error)                       1159                 if (error)
1026                         goto Enable_cpus;        1160                         goto Enable_cpus;
1027                 local_irq_disable();             1161                 local_irq_disable();
1028                 error = syscore_suspend();       1162                 error = syscore_suspend();
1029                 if (error)                       1163                 if (error)
1030                         goto Enable_irqs;        1164                         goto Enable_irqs;
1031         } else                                   1165         } else
1032 #endif                                           1166 #endif
1033         {                                        1167         {
1034                 kexec_in_progress = true;        1168                 kexec_in_progress = true;
1035                 kernel_restart_prepare("kexec    1169                 kernel_restart_prepare("kexec reboot");
1036                 migrate_to_reboot_cpu();         1170                 migrate_to_reboot_cpu();
1037                 syscore_shutdown();           << 
1038                                                  1171 
1039                 /*                               1172                 /*
1040                  * migrate_to_reboot_cpu() di    1173                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1041                  * no further code needs to u    1174                  * no further code needs to use CPU hotplug (which is true in
1042                  * the reboot case). However,    1175                  * the reboot case). However, the kexec path depends on using
1043                  * CPU hotplug again; so re-e    1176                  * CPU hotplug again; so re-enable it here.
1044                  */                              1177                  */
1045                 cpu_hotplug_enable();            1178                 cpu_hotplug_enable();
1046                 pr_notice("Starting new kerne    1179                 pr_notice("Starting new kernel\n");
1047                 machine_shutdown();              1180                 machine_shutdown();
1048         }                                        1181         }
1049                                                  1182 
1050         kmsg_dump(KMSG_DUMP_SHUTDOWN);           1183         kmsg_dump(KMSG_DUMP_SHUTDOWN);
1051         machine_kexec(kexec_image);              1184         machine_kexec(kexec_image);
1052                                                  1185 
1053 #ifdef CONFIG_KEXEC_JUMP                         1186 #ifdef CONFIG_KEXEC_JUMP
1054         if (kexec_image->preserve_context) {     1187         if (kexec_image->preserve_context) {
1055                 syscore_resume();                1188                 syscore_resume();
1056  Enable_irqs:                                    1189  Enable_irqs:
1057                 local_irq_enable();              1190                 local_irq_enable();
1058  Enable_cpus:                                    1191  Enable_cpus:
1059                 suspend_enable_secondary_cpus    1192                 suspend_enable_secondary_cpus();
1060                 dpm_resume_start(PMSG_RESTORE    1193                 dpm_resume_start(PMSG_RESTORE);
1061  Resume_devices:                                 1194  Resume_devices:
1062                 dpm_resume_end(PMSG_RESTORE);    1195                 dpm_resume_end(PMSG_RESTORE);
1063  Resume_console:                                 1196  Resume_console:
1064                 resume_console();                1197                 resume_console();
1065                 thaw_processes();                1198                 thaw_processes();
1066  Restore_console:                                1199  Restore_console:
1067                 pm_restore_console();            1200                 pm_restore_console();
1068         }                                        1201         }
1069 #endif                                           1202 #endif
1070                                                  1203 
1071  Unlock:                                         1204  Unlock:
1072         kexec_unlock();                       !! 1205         mutex_unlock(&kexec_mutex);
1073         return error;                            1206         return error;
1074 }                                                1207 }
                                                   >> 1208 
                                                   >> 1209 /*
                                                   >> 1210  * Protection mechanism for crashkernel reserved memory after
                                                   >> 1211  * the kdump kernel is loaded.
                                                   >> 1212  *
                                                   >> 1213  * Provide an empty default implementation here -- architecture
                                                   >> 1214  * code may override this
                                                   >> 1215  */
                                                   >> 1216 void __weak arch_kexec_protect_crashkres(void)
                                                   >> 1217 {}
                                                   >> 1218 
                                                   >> 1219 void __weak arch_kexec_unprotect_crashkres(void)
                                                   >> 1220 {}
1075                                                  1221 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php