1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * kexec.c - kexec system call core code. 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <eb 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 5 */ 6 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 8 9 #include <linux/btf.h> << 10 #include <linux/capability.h> 9 #include <linux/capability.h> 11 #include <linux/mm.h> 10 #include <linux/mm.h> 12 #include <linux/file.h> 11 #include <linux/file.h> 13 #include <linux/slab.h> 12 #include <linux/slab.h> 14 #include <linux/fs.h> 13 #include <linux/fs.h> 15 #include <linux/kexec.h> 14 #include <linux/kexec.h> 16 #include <linux/mutex.h> 15 #include <linux/mutex.h> 17 #include <linux/list.h> 16 #include <linux/list.h> 18 #include <linux/highmem.h> 17 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 18 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 19 #include <linux/reboot.h> 21 #include <linux/ioport.h> 20 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 21 #include <linux/hardirq.h> 23 #include <linux/elf.h> 22 #include <linux/elf.h> 24 #include <linux/elfcore.h> 23 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 24 #include <linux/utsname.h> 26 #include <linux/numa.h> 25 #include <linux/numa.h> 27 #include <linux/suspend.h> 26 #include <linux/suspend.h> 28 #include <linux/device.h> 27 #include <linux/device.h> 29 #include <linux/freezer.h> 28 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> << 31 #include <linux/pm.h> 29 #include <linux/pm.h> 32 #include <linux/cpu.h> 30 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 31 #include <linux/uaccess.h> 34 #include <linux/io.h> 32 #include <linux/io.h> 35 #include <linux/console.h> 33 #include <linux/console.h> 36 #include <linux/vmalloc.h> 34 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 35 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 36 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 37 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 38 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> !! 39 #include <linux/frame.h> 42 #include <linux/kmsg_dump.h> << 43 40 44 #include <asm/page.h> 41 #include <asm/page.h> 45 #include <asm/sections.h> 42 #include <asm/sections.h> 46 43 47 #include <crypto/hash.h> 44 #include <crypto/hash.h> >> 45 #include <crypto/sha.h> 48 #include "kexec_internal.h" 46 #include "kexec_internal.h" 49 47 50 atomic_t __kexec_lock = ATOMIC_INIT(0); !! 48 DEFINE_MUTEX(kexec_mutex); >> 49 >> 50 /* Per cpu memory for storing cpu states in case of system crash. */ >> 51 note_buf_t __percpu *crash_notes; 51 52 52 /* Flag to indicate we are going to kexec a ne 53 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 54 bool kexec_in_progress = false; 54 55 55 bool kexec_file_dbg_print; !! 56 >> 57 /* Location of the reserved area for the crash kernel */ >> 58 struct resource crashk_res = { >> 59 .name = "Crash kernel", >> 60 .start = 0, >> 61 .end = 0, >> 62 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 63 .desc = IORES_DESC_CRASH_KERNEL >> 64 }; >> 65 struct resource crashk_low_res = { >> 66 .name = "Crash kernel", >> 67 .start = 0, >> 68 .end = 0, >> 69 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 70 .desc = IORES_DESC_CRASH_KERNEL >> 71 }; >> 72 >> 73 int kexec_should_crash(struct task_struct *p) >> 74 { >> 75 /* >> 76 * If crash_kexec_post_notifiers is enabled, don't run >> 77 * crash_kexec() here yet, which must be run after panic >> 78 * notifiers in panic(). >> 79 */ >> 80 if (crash_kexec_post_notifiers) >> 81 return 0; >> 82 /* >> 83 * There are 4 panic() calls in do_exit() path, each of which >> 84 * corresponds to each of these 4 conditions. >> 85 */ >> 86 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) >> 87 return 1; >> 88 return 0; >> 89 } >> 90 >> 91 int kexec_crash_loaded(void) >> 92 { >> 93 return !!kexec_crash_image; >> 94 } >> 95 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 56 96 57 /* 97 /* 58 * When kexec transitions to the new kernel th 98 * When kexec transitions to the new kernel there is a one-to-one 59 * mapping between physical and virtual addres 99 * mapping between physical and virtual addresses. On processors 60 * where you can disable the MMU this is trivi 100 * where you can disable the MMU this is trivial, and easy. For 61 * others it is still a simple predictable pag 101 * others it is still a simple predictable page table to setup. 62 * 102 * 63 * In that environment kexec copies the new ke 103 * In that environment kexec copies the new kernel to its final 64 * resting place. This means I can only suppo 104 * resting place. This means I can only support memory whose 65 * physical address can fit in an unsigned lon 105 * physical address can fit in an unsigned long. In particular 66 * addresses where (pfn << PAGE_SHIFT) > ULONG 106 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 67 * If the assembly stub has more restrictive r 107 * If the assembly stub has more restrictive requirements 68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME 108 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 69 * defined more restrictively in <asm/kexec.h> 109 * defined more restrictively in <asm/kexec.h>. 70 * 110 * 71 * The code for the transition from the curren 111 * The code for the transition from the current kernel to the 72 * new kernel is placed in the control_code_bu !! 112 * the new kernel is placed in the control_code_buffer, whose size 73 * is given by KEXEC_CONTROL_PAGE_SIZE. In th 113 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 74 * page of memory is necessary, but some archi 114 * page of memory is necessary, but some architectures require more. 75 * Because this memory must be identity mapped 115 * Because this memory must be identity mapped in the transition from 76 * virtual to physical addresses it must live 116 * virtual to physical addresses it must live in the range 77 * 0 - TASK_SIZE, as only the user space mappi 117 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 78 * modifiable. 118 * modifiable. 79 * 119 * 80 * The assembly stub in the control code buffe 120 * The assembly stub in the control code buffer is passed a linked list 81 * of descriptor pages detailing the source pa 121 * of descriptor pages detailing the source pages of the new kernel, 82 * and the destination addresses of those sour 122 * and the destination addresses of those source pages. As this data 83 * structure is not used in the context of the 123 * structure is not used in the context of the current OS, it must 84 * be self-contained. 124 * be self-contained. 85 * 125 * 86 * The code has been made to work with highmem 126 * The code has been made to work with highmem pages and will use a 87 * destination page in its final resting place 127 * destination page in its final resting place (if it happens 88 * to allocate it). The end product of this i 128 * to allocate it). The end product of this is that most of the 89 * physical address space, and most of RAM can 129 * physical address space, and most of RAM can be used. 90 * 130 * 91 * Future directions include: 131 * Future directions include: 92 * - allocating a page table with the control 132 * - allocating a page table with the control code buffer identity 93 * mapped, to simplify machine_kexec and ma 133 * mapped, to simplify machine_kexec and make kexec_on_panic more 94 * reliable. 134 * reliable. 95 */ 135 */ 96 136 97 /* 137 /* 98 * KIMAGE_NO_DEST is an impossible destination 138 * KIMAGE_NO_DEST is an impossible destination address..., for 99 * allocating pages whose destination address 139 * allocating pages whose destination address we do not care about. 100 */ 140 */ 101 #define KIMAGE_NO_DEST (-1UL) 141 #define KIMAGE_NO_DEST (-1UL) 102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) > 142 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 103 143 104 static struct page *kimage_alloc_page(struct k 144 static struct page *kimage_alloc_page(struct kimage *image, 105 gfp_t g 145 gfp_t gfp_mask, 106 unsigne 146 unsigned long dest); 107 147 108 int sanity_check_segment_list(struct kimage *i 148 int sanity_check_segment_list(struct kimage *image) 109 { 149 { 110 int i; 150 int i; 111 unsigned long nr_segments = image->nr_ 151 unsigned long nr_segments = image->nr_segments; 112 unsigned long total_pages = 0; 152 unsigned long total_pages = 0; 113 unsigned long nr_pages = totalram_page 153 unsigned long nr_pages = totalram_pages(); 114 154 115 /* 155 /* 116 * Verify we have good destination add 156 * Verify we have good destination addresses. The caller is 117 * responsible for making certain we d 157 * responsible for making certain we don't attempt to load 118 * the new image into invalid or reser 158 * the new image into invalid or reserved areas of RAM. This 119 * just verifies it is an address we c 159 * just verifies it is an address we can use. 120 * 160 * 121 * Since the kernel does everything in 161 * Since the kernel does everything in page size chunks ensure 122 * the destination addresses are page 162 * the destination addresses are page aligned. Too many 123 * special cases crop of when we don't 163 * special cases crop of when we don't do this. The most 124 * insidious is getting overlapping de 164 * insidious is getting overlapping destination addresses 125 * simply because addresses are change 165 * simply because addresses are changed to page size 126 * granularity. 166 * granularity. 127 */ 167 */ 128 for (i = 0; i < nr_segments; i++) { 168 for (i = 0; i < nr_segments; i++) { 129 unsigned long mstart, mend; 169 unsigned long mstart, mend; 130 170 131 mstart = image->segment[i].mem 171 mstart = image->segment[i].mem; 132 mend = mstart + image->segme 172 mend = mstart + image->segment[i].memsz; 133 if (mstart > mend) 173 if (mstart > mend) 134 return -EADDRNOTAVAIL; 174 return -EADDRNOTAVAIL; 135 if ((mstart & ~PAGE_MASK) || ( 175 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 136 return -EADDRNOTAVAIL; 176 return -EADDRNOTAVAIL; 137 if (mend >= KEXEC_DESTINATION_ 177 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 138 return -EADDRNOTAVAIL; 178 return -EADDRNOTAVAIL; 139 } 179 } 140 180 141 /* Verify our destination addresses do 181 /* Verify our destination addresses do not overlap. 142 * If we alloed overlapping destinatio 182 * If we alloed overlapping destination addresses 143 * through very weird things can happe 183 * through very weird things can happen with no 144 * easy explanation as one segment sto 184 * easy explanation as one segment stops on another. 145 */ 185 */ 146 for (i = 0; i < nr_segments; i++) { 186 for (i = 0; i < nr_segments; i++) { 147 unsigned long mstart, mend; 187 unsigned long mstart, mend; 148 unsigned long j; 188 unsigned long j; 149 189 150 mstart = image->segment[i].mem 190 mstart = image->segment[i].mem; 151 mend = mstart + image->segme 191 mend = mstart + image->segment[i].memsz; 152 for (j = 0; j < i; j++) { 192 for (j = 0; j < i; j++) { 153 unsigned long pstart, 193 unsigned long pstart, pend; 154 194 155 pstart = image->segmen 195 pstart = image->segment[j].mem; 156 pend = pstart + imag 196 pend = pstart + image->segment[j].memsz; 157 /* Do the segments ove 197 /* Do the segments overlap ? */ 158 if ((mend > pstart) && 198 if ((mend > pstart) && (mstart < pend)) 159 return -EINVAL 199 return -EINVAL; 160 } 200 } 161 } 201 } 162 202 163 /* Ensure our buffer sizes are strictl 203 /* Ensure our buffer sizes are strictly less than 164 * our memory sizes. This should alwa 204 * our memory sizes. This should always be the case, 165 * and it is easier to check up front 205 * and it is easier to check up front than to be surprised 166 * later on. 206 * later on. 167 */ 207 */ 168 for (i = 0; i < nr_segments; i++) { 208 for (i = 0; i < nr_segments; i++) { 169 if (image->segment[i].bufsz > 209 if (image->segment[i].bufsz > image->segment[i].memsz) 170 return -EINVAL; 210 return -EINVAL; 171 } 211 } 172 212 173 /* 213 /* 174 * Verify that no more than half of me 214 * Verify that no more than half of memory will be consumed. If the 175 * request from userspace is too large 215 * request from userspace is too large, a large amount of time will be 176 * wasted allocating pages, which can 216 * wasted allocating pages, which can cause a soft lockup. 177 */ 217 */ 178 for (i = 0; i < nr_segments; i++) { 218 for (i = 0; i < nr_segments; i++) { 179 if (PAGE_COUNT(image->segment[ 219 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 180 return -EINVAL; 220 return -EINVAL; 181 221 182 total_pages += PAGE_COUNT(imag 222 total_pages += PAGE_COUNT(image->segment[i].memsz); 183 } 223 } 184 224 185 if (total_pages > nr_pages / 2) 225 if (total_pages > nr_pages / 2) 186 return -EINVAL; 226 return -EINVAL; 187 227 188 #ifdef CONFIG_CRASH_DUMP << 189 /* 228 /* 190 * Verify we have good destination add 229 * Verify we have good destination addresses. Normally 191 * the caller is responsible for makin 230 * the caller is responsible for making certain we don't 192 * attempt to load the new image into 231 * attempt to load the new image into invalid or reserved 193 * areas of RAM. But crash kernels ar 232 * areas of RAM. But crash kernels are preloaded into a 194 * reserved area of ram. We must ensu 233 * reserved area of ram. We must ensure the addresses 195 * are in the reserved area otherwise 234 * are in the reserved area otherwise preloading the 196 * kernel could corrupt things. 235 * kernel could corrupt things. 197 */ 236 */ 198 237 199 if (image->type == KEXEC_TYPE_CRASH) { 238 if (image->type == KEXEC_TYPE_CRASH) { 200 for (i = 0; i < nr_segments; i 239 for (i = 0; i < nr_segments; i++) { 201 unsigned long mstart, 240 unsigned long mstart, mend; 202 241 203 mstart = image->segmen 242 mstart = image->segment[i].mem; 204 mend = mstart + image- 243 mend = mstart + image->segment[i].memsz - 1; 205 /* Ensure we are withi 244 /* Ensure we are within the crash kernel limits */ 206 if ((mstart < phys_to_ 245 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 207 (mend > phys_to_bo 246 (mend > phys_to_boot_phys(crashk_res.end))) 208 return -EADDRN 247 return -EADDRNOTAVAIL; 209 } 248 } 210 } 249 } 211 #endif << 212 250 213 return 0; 251 return 0; 214 } 252 } 215 253 216 struct kimage *do_kimage_alloc_init(void) 254 struct kimage *do_kimage_alloc_init(void) 217 { 255 { 218 struct kimage *image; 256 struct kimage *image; 219 257 220 /* Allocate a controlling structure */ 258 /* Allocate a controlling structure */ 221 image = kzalloc(sizeof(*image), GFP_KE 259 image = kzalloc(sizeof(*image), GFP_KERNEL); 222 if (!image) 260 if (!image) 223 return NULL; 261 return NULL; 224 262 225 image->head = 0; 263 image->head = 0; 226 image->entry = &image->head; 264 image->entry = &image->head; 227 image->last_entry = &image->head; 265 image->last_entry = &image->head; 228 image->control_page = ~0; /* By defaul 266 image->control_page = ~0; /* By default this does not apply */ 229 image->type = KEXEC_TYPE_DEFAULT; 267 image->type = KEXEC_TYPE_DEFAULT; 230 268 231 /* Initialize the list of control page 269 /* Initialize the list of control pages */ 232 INIT_LIST_HEAD(&image->control_pages); 270 INIT_LIST_HEAD(&image->control_pages); 233 271 234 /* Initialize the list of destination 272 /* Initialize the list of destination pages */ 235 INIT_LIST_HEAD(&image->dest_pages); 273 INIT_LIST_HEAD(&image->dest_pages); 236 274 237 /* Initialize the list of unusable pag 275 /* Initialize the list of unusable pages */ 238 INIT_LIST_HEAD(&image->unusable_pages) 276 INIT_LIST_HEAD(&image->unusable_pages); 239 277 240 #ifdef CONFIG_CRASH_HOTPLUG << 241 image->hp_action = KEXEC_CRASH_HP_NONE << 242 image->elfcorehdr_index = -1; << 243 image->elfcorehdr_updated = false; << 244 #endif << 245 << 246 return image; 278 return image; 247 } 279 } 248 280 249 int kimage_is_destination_range(struct kimage 281 int kimage_is_destination_range(struct kimage *image, 250 unsign 282 unsigned long start, 251 unsign 283 unsigned long end) 252 { 284 { 253 unsigned long i; 285 unsigned long i; 254 286 255 for (i = 0; i < image->nr_segments; i+ 287 for (i = 0; i < image->nr_segments; i++) { 256 unsigned long mstart, mend; 288 unsigned long mstart, mend; 257 289 258 mstart = image->segment[i].mem 290 mstart = image->segment[i].mem; 259 mend = mstart + image->segment !! 291 mend = mstart + image->segment[i].memsz; 260 if ((end >= mstart) && (start !! 292 if ((end > mstart) && (start < mend)) 261 return 1; 293 return 1; 262 } 294 } 263 295 264 return 0; 296 return 0; 265 } 297 } 266 298 267 static struct page *kimage_alloc_pages(gfp_t g 299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 268 { 300 { 269 struct page *pages; 301 struct page *pages; 270 302 271 if (fatal_signal_pending(current)) 303 if (fatal_signal_pending(current)) 272 return NULL; 304 return NULL; 273 pages = alloc_pages(gfp_mask & ~__GFP_ 305 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 274 if (pages) { 306 if (pages) { 275 unsigned int count, i; 307 unsigned int count, i; 276 308 277 pages->mapping = NULL; 309 pages->mapping = NULL; 278 set_page_private(pages, order) 310 set_page_private(pages, order); 279 count = 1 << order; 311 count = 1 << order; 280 for (i = 0; i < count; i++) 312 for (i = 0; i < count; i++) 281 SetPageReserved(pages 313 SetPageReserved(pages + i); 282 314 283 arch_kexec_post_alloc_pages(pa 315 arch_kexec_post_alloc_pages(page_address(pages), count, 284 gf 316 gfp_mask); 285 317 286 if (gfp_mask & __GFP_ZERO) 318 if (gfp_mask & __GFP_ZERO) 287 for (i = 0; i < count; 319 for (i = 0; i < count; i++) 288 clear_highpage 320 clear_highpage(pages + i); 289 } 321 } 290 322 291 return pages; 323 return pages; 292 } 324 } 293 325 294 static void kimage_free_pages(struct page *pag 326 static void kimage_free_pages(struct page *page) 295 { 327 { 296 unsigned int order, count, i; 328 unsigned int order, count, i; 297 329 298 order = page_private(page); 330 order = page_private(page); 299 count = 1 << order; 331 count = 1 << order; 300 332 301 arch_kexec_pre_free_pages(page_address 333 arch_kexec_pre_free_pages(page_address(page), count); 302 334 303 for (i = 0; i < count; i++) 335 for (i = 0; i < count; i++) 304 ClearPageReserved(page + i); 336 ClearPageReserved(page + i); 305 __free_pages(page, order); 337 __free_pages(page, order); 306 } 338 } 307 339 308 void kimage_free_page_list(struct list_head *l 340 void kimage_free_page_list(struct list_head *list) 309 { 341 { 310 struct page *page, *next; 342 struct page *page, *next; 311 343 312 list_for_each_entry_safe(page, next, l 344 list_for_each_entry_safe(page, next, list, lru) { 313 list_del(&page->lru); 345 list_del(&page->lru); 314 kimage_free_pages(page); 346 kimage_free_pages(page); 315 } 347 } 316 } 348 } 317 349 318 static struct page *kimage_alloc_normal_contro 350 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 319 351 unsigned int order) 320 { 352 { 321 /* Control pages are special, they are 353 /* Control pages are special, they are the intermediaries 322 * that are needed while we copy the r 354 * that are needed while we copy the rest of the pages 323 * to their final resting place. As s 355 * to their final resting place. As such they must 324 * not conflict with either the destin 356 * not conflict with either the destination addresses 325 * or memory the kernel is already usi 357 * or memory the kernel is already using. 326 * 358 * 327 * The only case where we really need 359 * The only case where we really need more than one of 328 * these are for architectures where w 360 * these are for architectures where we cannot disable 329 * the MMU and must instead generate a 361 * the MMU and must instead generate an identity mapped 330 * page table for all of the memory. 362 * page table for all of the memory. 331 * 363 * 332 * At worst this runs in O(N) of the i 364 * At worst this runs in O(N) of the image size. 333 */ 365 */ 334 struct list_head extra_pages; 366 struct list_head extra_pages; 335 struct page *pages; 367 struct page *pages; 336 unsigned int count; 368 unsigned int count; 337 369 338 count = 1 << order; 370 count = 1 << order; 339 INIT_LIST_HEAD(&extra_pages); 371 INIT_LIST_HEAD(&extra_pages); 340 372 341 /* Loop while I can allocate a page an 373 /* Loop while I can allocate a page and the page allocated 342 * is a destination page. 374 * is a destination page. 343 */ 375 */ 344 do { 376 do { 345 unsigned long pfn, epfn, addr, 377 unsigned long pfn, epfn, addr, eaddr; 346 378 347 pages = kimage_alloc_pages(KEX 379 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 348 if (!pages) 380 if (!pages) 349 break; 381 break; 350 pfn = page_to_boot_pfn(pages 382 pfn = page_to_boot_pfn(pages); 351 epfn = pfn + count; 383 epfn = pfn + count; 352 addr = pfn << PAGE_SHIFT; 384 addr = pfn << PAGE_SHIFT; 353 eaddr = (epfn << PAGE_SHIFT) - !! 385 eaddr = epfn << PAGE_SHIFT; 354 if ((epfn >= (KEXEC_CONTROL_ME 386 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 355 kimage_is_destin 387 kimage_is_destination_range(image, addr, eaddr)) { 356 list_add(&pages->lru, 388 list_add(&pages->lru, &extra_pages); 357 pages = NULL; 389 pages = NULL; 358 } 390 } 359 } while (!pages); 391 } while (!pages); 360 392 361 if (pages) { 393 if (pages) { 362 /* Remember the allocated page 394 /* Remember the allocated page... */ 363 list_add(&pages->lru, &image-> 395 list_add(&pages->lru, &image->control_pages); 364 396 365 /* Because the page is already 397 /* Because the page is already in it's destination 366 * location we will never allo 398 * location we will never allocate another page at 367 * that address. Therefore ki 399 * that address. Therefore kimage_alloc_pages 368 * will not return it (again) 400 * will not return it (again) and we don't need 369 * to give it an entry in imag 401 * to give it an entry in image->segment[]. 370 */ 402 */ 371 } 403 } 372 /* Deal with the destination pages I h 404 /* Deal with the destination pages I have inadvertently allocated. 373 * 405 * 374 * Ideally I would convert multi-page 406 * Ideally I would convert multi-page allocations into single 375 * page allocations, and add everythin 407 * page allocations, and add everything to image->dest_pages. 376 * 408 * 377 * For now it is simpler to just free 409 * For now it is simpler to just free the pages. 378 */ 410 */ 379 kimage_free_page_list(&extra_pages); 411 kimage_free_page_list(&extra_pages); 380 412 381 return pages; 413 return pages; 382 } 414 } 383 415 384 #ifdef CONFIG_CRASH_DUMP << 385 static struct page *kimage_alloc_crash_control 416 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 386 417 unsigned int order) 387 { 418 { 388 /* Control pages are special, they are 419 /* Control pages are special, they are the intermediaries 389 * that are needed while we copy the r 420 * that are needed while we copy the rest of the pages 390 * to their final resting place. As s 421 * to their final resting place. As such they must 391 * not conflict with either the destin 422 * not conflict with either the destination addresses 392 * or memory the kernel is already usi 423 * or memory the kernel is already using. 393 * 424 * 394 * Control pages are also the only pag 425 * Control pages are also the only pags we must allocate 395 * when loading a crash kernel. All o 426 * when loading a crash kernel. All of the other pages 396 * are specified by the segments and w 427 * are specified by the segments and we just memcpy 397 * into them directly. 428 * into them directly. 398 * 429 * 399 * The only case where we really need 430 * The only case where we really need more than one of 400 * these are for architectures where w 431 * these are for architectures where we cannot disable 401 * the MMU and must instead generate a 432 * the MMU and must instead generate an identity mapped 402 * page table for all of the memory. 433 * page table for all of the memory. 403 * 434 * 404 * Given the low demand this implement 435 * Given the low demand this implements a very simple 405 * allocator that finds the first hole 436 * allocator that finds the first hole of the appropriate 406 * size in the reserved memory region, 437 * size in the reserved memory region, and allocates all 407 * of the memory up to and including t 438 * of the memory up to and including the hole. 408 */ 439 */ 409 unsigned long hole_start, hole_end, si 440 unsigned long hole_start, hole_end, size; 410 struct page *pages; 441 struct page *pages; 411 442 412 pages = NULL; 443 pages = NULL; 413 size = (1 << order) << PAGE_SHIFT; 444 size = (1 << order) << PAGE_SHIFT; 414 hole_start = ALIGN(image->control_page !! 445 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 415 hole_end = hole_start + size - 1; 446 hole_end = hole_start + size - 1; 416 while (hole_end <= crashk_res.end) { 447 while (hole_end <= crashk_res.end) { 417 unsigned long i; 448 unsigned long i; 418 449 419 cond_resched(); 450 cond_resched(); 420 451 421 if (hole_end > KEXEC_CRASH_CON 452 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 422 break; 453 break; 423 /* See if I overlap any of the 454 /* See if I overlap any of the segments */ 424 for (i = 0; i < image->nr_segm 455 for (i = 0; i < image->nr_segments; i++) { 425 unsigned long mstart, 456 unsigned long mstart, mend; 426 457 427 mstart = image->segmen 458 mstart = image->segment[i].mem; 428 mend = mstart + imag 459 mend = mstart + image->segment[i].memsz - 1; 429 if ((hole_end >= mstar 460 if ((hole_end >= mstart) && (hole_start <= mend)) { 430 /* Advance the 461 /* Advance the hole to the end of the segment */ 431 hole_start = A !! 462 hole_start = (mend + (size - 1)) & ~(size - 1); 432 hole_end = h 463 hole_end = hole_start + size - 1; 433 break; 464 break; 434 } 465 } 435 } 466 } 436 /* If I don't overlap any segm 467 /* If I don't overlap any segments I have found my hole! */ 437 if (i == image->nr_segments) { 468 if (i == image->nr_segments) { 438 pages = pfn_to_page(ho 469 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 439 image->control_page = !! 470 image->control_page = hole_end; 440 break; 471 break; 441 } 472 } 442 } 473 } 443 474 444 /* Ensure that these pages are decrypt 475 /* Ensure that these pages are decrypted if SME is enabled. */ 445 if (pages) 476 if (pages) 446 arch_kexec_post_alloc_pages(pa 477 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 447 478 448 return pages; 479 return pages; 449 } 480 } 450 #endif << 451 481 452 482 453 struct page *kimage_alloc_control_pages(struct 483 struct page *kimage_alloc_control_pages(struct kimage *image, 454 unsig 484 unsigned int order) 455 { 485 { 456 struct page *pages = NULL; 486 struct page *pages = NULL; 457 487 458 switch (image->type) { 488 switch (image->type) { 459 case KEXEC_TYPE_DEFAULT: 489 case KEXEC_TYPE_DEFAULT: 460 pages = kimage_alloc_normal_co 490 pages = kimage_alloc_normal_control_pages(image, order); 461 break; 491 break; 462 #ifdef CONFIG_CRASH_DUMP << 463 case KEXEC_TYPE_CRASH: 492 case KEXEC_TYPE_CRASH: 464 pages = kimage_alloc_crash_con 493 pages = kimage_alloc_crash_control_pages(image, order); 465 break; 494 break; 466 #endif << 467 } 495 } 468 496 469 return pages; 497 return pages; 470 } 498 } 471 499 >> 500 int kimage_crash_copy_vmcoreinfo(struct kimage *image) >> 501 { >> 502 struct page *vmcoreinfo_page; >> 503 void *safecopy; >> 504 >> 505 if (image->type != KEXEC_TYPE_CRASH) >> 506 return 0; >> 507 >> 508 /* >> 509 * For kdump, allocate one vmcoreinfo safe copy from the >> 510 * crash memory. as we have arch_kexec_protect_crashkres() >> 511 * after kexec syscall, we naturally protect it from write >> 512 * (even read) access under kernel direct mapping. But on >> 513 * the other hand, we still need to operate it when crash >> 514 * happens to generate vmcoreinfo note, hereby we rely on >> 515 * vmap for this purpose. >> 516 */ >> 517 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); >> 518 if (!vmcoreinfo_page) { >> 519 pr_warn("Could not allocate vmcoreinfo buffer\n"); >> 520 return -ENOMEM; >> 521 } >> 522 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); >> 523 if (!safecopy) { >> 524 pr_warn("Could not vmap vmcoreinfo buffer\n"); >> 525 return -ENOMEM; >> 526 } >> 527 >> 528 image->vmcoreinfo_data_copy = safecopy; >> 529 crash_update_vmcoreinfo_safecopy(safecopy); >> 530 >> 531 return 0; >> 532 } >> 533 472 static int kimage_add_entry(struct kimage *ima 534 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 473 { 535 { 474 if (*image->entry != 0) 536 if (*image->entry != 0) 475 image->entry++; 537 image->entry++; 476 538 477 if (image->entry == image->last_entry) 539 if (image->entry == image->last_entry) { 478 kimage_entry_t *ind_page; 540 kimage_entry_t *ind_page; 479 struct page *page; 541 struct page *page; 480 542 481 page = kimage_alloc_page(image 543 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 482 if (!page) 544 if (!page) 483 return -ENOMEM; 545 return -ENOMEM; 484 546 485 ind_page = page_address(page); 547 ind_page = page_address(page); 486 *image->entry = virt_to_boot_p 548 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 487 image->entry = ind_page; 549 image->entry = ind_page; 488 image->last_entry = ind_page + 550 image->last_entry = ind_page + 489 ((PAGE_S 551 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 490 } 552 } 491 *image->entry = entry; 553 *image->entry = entry; 492 image->entry++; 554 image->entry++; 493 *image->entry = 0; 555 *image->entry = 0; 494 556 495 return 0; 557 return 0; 496 } 558 } 497 559 498 static int kimage_set_destination(struct kimag 560 static int kimage_set_destination(struct kimage *image, 499 unsigned lo 561 unsigned long destination) 500 { 562 { >> 563 int result; >> 564 501 destination &= PAGE_MASK; 565 destination &= PAGE_MASK; >> 566 result = kimage_add_entry(image, destination | IND_DESTINATION); 502 567 503 return kimage_add_entry(image, destina !! 568 return result; 504 } 569 } 505 570 506 571 507 static int kimage_add_page(struct kimage *imag 572 static int kimage_add_page(struct kimage *image, unsigned long page) 508 { 573 { >> 574 int result; >> 575 509 page &= PAGE_MASK; 576 page &= PAGE_MASK; >> 577 result = kimage_add_entry(image, page | IND_SOURCE); 510 578 511 return kimage_add_entry(image, page | !! 579 return result; 512 } 580 } 513 581 514 582 515 static void kimage_free_extra_pages(struct kim 583 static void kimage_free_extra_pages(struct kimage *image) 516 { 584 { 517 /* Walk through and free any extra des 585 /* Walk through and free any extra destination pages I may have */ 518 kimage_free_page_list(&image->dest_pag 586 kimage_free_page_list(&image->dest_pages); 519 587 520 /* Walk through and free any unusable 588 /* Walk through and free any unusable pages I have cached */ 521 kimage_free_page_list(&image->unusable 589 kimage_free_page_list(&image->unusable_pages); 522 590 523 } 591 } 524 << 525 void kimage_terminate(struct kimage *image) 592 void kimage_terminate(struct kimage *image) 526 { 593 { 527 if (*image->entry != 0) 594 if (*image->entry != 0) 528 image->entry++; 595 image->entry++; 529 596 530 *image->entry = IND_DONE; 597 *image->entry = IND_DONE; 531 } 598 } 532 599 533 #define for_each_kimage_entry(image, ptr, entr 600 #define for_each_kimage_entry(image, ptr, entry) \ 534 for (ptr = &image->head; (entry = *ptr 601 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 535 ptr = (entry & IND_INDIRECTION 602 ptr = (entry & IND_INDIRECTION) ? \ 536 boot_phys_to_virt((ent 603 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 537 604 538 static void kimage_free_entry(kimage_entry_t e 605 static void kimage_free_entry(kimage_entry_t entry) 539 { 606 { 540 struct page *page; 607 struct page *page; 541 608 542 page = boot_pfn_to_page(entry >> PAGE_ 609 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 543 kimage_free_pages(page); 610 kimage_free_pages(page); 544 } 611 } 545 612 546 void kimage_free(struct kimage *image) 613 void kimage_free(struct kimage *image) 547 { 614 { 548 kimage_entry_t *ptr, entry; 615 kimage_entry_t *ptr, entry; 549 kimage_entry_t ind = 0; 616 kimage_entry_t ind = 0; 550 617 551 if (!image) 618 if (!image) 552 return; 619 return; 553 620 554 #ifdef CONFIG_CRASH_DUMP << 555 if (image->vmcoreinfo_data_copy) { 621 if (image->vmcoreinfo_data_copy) { 556 crash_update_vmcoreinfo_safeco 622 crash_update_vmcoreinfo_safecopy(NULL); 557 vunmap(image->vmcoreinfo_data_ 623 vunmap(image->vmcoreinfo_data_copy); 558 } 624 } 559 #endif << 560 625 561 kimage_free_extra_pages(image); 626 kimage_free_extra_pages(image); 562 for_each_kimage_entry(image, ptr, entr 627 for_each_kimage_entry(image, ptr, entry) { 563 if (entry & IND_INDIRECTION) { 628 if (entry & IND_INDIRECTION) { 564 /* Free the previous i 629 /* Free the previous indirection page */ 565 if (ind & IND_INDIRECT 630 if (ind & IND_INDIRECTION) 566 kimage_free_en 631 kimage_free_entry(ind); 567 /* Save this indirecti 632 /* Save this indirection page until we are 568 * done with it. 633 * done with it. 569 */ 634 */ 570 ind = entry; 635 ind = entry; 571 } else if (entry & IND_SOURCE) 636 } else if (entry & IND_SOURCE) 572 kimage_free_entry(entr 637 kimage_free_entry(entry); 573 } 638 } 574 /* Free the final indirection page */ 639 /* Free the final indirection page */ 575 if (ind & IND_INDIRECTION) 640 if (ind & IND_INDIRECTION) 576 kimage_free_entry(ind); 641 kimage_free_entry(ind); 577 642 578 /* Handle any machine specific cleanup 643 /* Handle any machine specific cleanup */ 579 machine_kexec_cleanup(image); 644 machine_kexec_cleanup(image); 580 645 581 /* Free the kexec control pages... */ 646 /* Free the kexec control pages... */ 582 kimage_free_page_list(&image->control_ 647 kimage_free_page_list(&image->control_pages); 583 648 584 /* 649 /* 585 * Free up any temporary buffers alloc 650 * Free up any temporary buffers allocated. This might hit if 586 * error occurred much later after buf 651 * error occurred much later after buffer allocation. 587 */ 652 */ 588 if (image->file_mode) 653 if (image->file_mode) 589 kimage_file_post_load_cleanup( 654 kimage_file_post_load_cleanup(image); 590 655 591 kfree(image); 656 kfree(image); 592 } 657 } 593 658 594 static kimage_entry_t *kimage_dst_used(struct 659 static kimage_entry_t *kimage_dst_used(struct kimage *image, 595 unsign 660 unsigned long page) 596 { 661 { 597 kimage_entry_t *ptr, entry; 662 kimage_entry_t *ptr, entry; 598 unsigned long destination = 0; 663 unsigned long destination = 0; 599 664 600 for_each_kimage_entry(image, ptr, entr 665 for_each_kimage_entry(image, ptr, entry) { 601 if (entry & IND_DESTINATION) 666 if (entry & IND_DESTINATION) 602 destination = entry & 667 destination = entry & PAGE_MASK; 603 else if (entry & IND_SOURCE) { 668 else if (entry & IND_SOURCE) { 604 if (page == destinatio 669 if (page == destination) 605 return ptr; 670 return ptr; 606 destination += PAGE_SI 671 destination += PAGE_SIZE; 607 } 672 } 608 } 673 } 609 674 610 return NULL; 675 return NULL; 611 } 676 } 612 677 613 static struct page *kimage_alloc_page(struct k 678 static struct page *kimage_alloc_page(struct kimage *image, 614 gfp_t 679 gfp_t gfp_mask, 615 unsign 680 unsigned long destination) 616 { 681 { 617 /* 682 /* 618 * Here we implement safeguards to ens 683 * Here we implement safeguards to ensure that a source page 619 * is not copied to its destination pa 684 * is not copied to its destination page before the data on 620 * the destination page is no longer u 685 * the destination page is no longer useful. 621 * 686 * 622 * To do this we maintain the invarian 687 * To do this we maintain the invariant that a source page is 623 * either its own destination page, or 688 * either its own destination page, or it is not a 624 * destination page at all. 689 * destination page at all. 625 * 690 * 626 * That is slightly stronger than requ 691 * That is slightly stronger than required, but the proof 627 * that no problems will not occur is 692 * that no problems will not occur is trivial, and the 628 * implementation is simply to verify. 693 * implementation is simply to verify. 629 * 694 * 630 * When allocating all pages normally 695 * When allocating all pages normally this algorithm will run 631 * in O(N) time, but in the worst case 696 * in O(N) time, but in the worst case it will run in O(N^2) 632 * time. If the runtime is a problem 697 * time. If the runtime is a problem the data structures can 633 * be fixed. 698 * be fixed. 634 */ 699 */ 635 struct page *page; 700 struct page *page; 636 unsigned long addr; 701 unsigned long addr; 637 702 638 /* 703 /* 639 * Walk through the list of destinatio 704 * Walk through the list of destination pages, and see if I 640 * have a match. 705 * have a match. 641 */ 706 */ 642 list_for_each_entry(page, &image->dest 707 list_for_each_entry(page, &image->dest_pages, lru) { 643 addr = page_to_boot_pfn(page) 708 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 644 if (addr == destination) { 709 if (addr == destination) { 645 list_del(&page->lru); 710 list_del(&page->lru); 646 return page; 711 return page; 647 } 712 } 648 } 713 } 649 page = NULL; 714 page = NULL; 650 while (1) { 715 while (1) { 651 kimage_entry_t *old; 716 kimage_entry_t *old; 652 717 653 /* Allocate a page, if we run 718 /* Allocate a page, if we run out of memory give up */ 654 page = kimage_alloc_pages(gfp_ 719 page = kimage_alloc_pages(gfp_mask, 0); 655 if (!page) 720 if (!page) 656 return NULL; 721 return NULL; 657 /* If the page cannot be used 722 /* If the page cannot be used file it away */ 658 if (page_to_boot_pfn(page) > 723 if (page_to_boot_pfn(page) > 659 (KEXEC_SOURCE_ 724 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 660 list_add(&page->lru, & 725 list_add(&page->lru, &image->unusable_pages); 661 continue; 726 continue; 662 } 727 } 663 addr = page_to_boot_pfn(page) 728 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 664 729 665 /* If it is the destination pa 730 /* If it is the destination page we want use it */ 666 if (addr == destination) 731 if (addr == destination) 667 break; 732 break; 668 733 669 /* If the page is not a destin 734 /* If the page is not a destination page use it */ 670 if (!kimage_is_destination_ran 735 if (!kimage_is_destination_range(image, addr, 671 !! 736 addr + PAGE_SIZE)) 672 break; 737 break; 673 738 674 /* 739 /* 675 * I know that the page is som 740 * I know that the page is someones destination page. 676 * See if there is already a s 741 * See if there is already a source page for this 677 * destination page. And if s 742 * destination page. And if so swap the source pages. 678 */ 743 */ 679 old = kimage_dst_used(image, a 744 old = kimage_dst_used(image, addr); 680 if (old) { 745 if (old) { 681 /* If so move it */ 746 /* If so move it */ 682 unsigned long old_addr 747 unsigned long old_addr; 683 struct page *old_page; 748 struct page *old_page; 684 749 685 old_addr = *old & PAGE 750 old_addr = *old & PAGE_MASK; 686 old_page = boot_pfn_to 751 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 687 copy_highpage(page, ol 752 copy_highpage(page, old_page); 688 *old = addr | (*old & 753 *old = addr | (*old & ~PAGE_MASK); 689 754 690 /* The old page I have 755 /* The old page I have found cannot be a 691 * destination page, s 756 * destination page, so return it if it's 692 * gfp_flags honor the 757 * gfp_flags honor the ones passed in. 693 */ 758 */ 694 if (!(gfp_mask & __GFP 759 if (!(gfp_mask & __GFP_HIGHMEM) && 695 PageHighMem(old_pa 760 PageHighMem(old_page)) { 696 kimage_free_pa 761 kimage_free_pages(old_page); 697 continue; 762 continue; 698 } 763 } >> 764 addr = old_addr; 699 page = old_page; 765 page = old_page; 700 break; 766 break; 701 } 767 } 702 /* Place the page on the desti 768 /* Place the page on the destination list, to be used later */ 703 list_add(&page->lru, &image->d 769 list_add(&page->lru, &image->dest_pages); 704 } 770 } 705 771 706 return page; 772 return page; 707 } 773 } 708 774 709 static int kimage_load_normal_segment(struct k 775 static int kimage_load_normal_segment(struct kimage *image, 710 struc 776 struct kexec_segment *segment) 711 { 777 { 712 unsigned long maddr; 778 unsigned long maddr; 713 size_t ubytes, mbytes; 779 size_t ubytes, mbytes; 714 int result; 780 int result; 715 unsigned char __user *buf = NULL; 781 unsigned char __user *buf = NULL; 716 unsigned char *kbuf = NULL; 782 unsigned char *kbuf = NULL; 717 783 >> 784 result = 0; 718 if (image->file_mode) 785 if (image->file_mode) 719 kbuf = segment->kbuf; 786 kbuf = segment->kbuf; 720 else 787 else 721 buf = segment->buf; 788 buf = segment->buf; 722 ubytes = segment->bufsz; 789 ubytes = segment->bufsz; 723 mbytes = segment->memsz; 790 mbytes = segment->memsz; 724 maddr = segment->mem; 791 maddr = segment->mem; 725 792 726 result = kimage_set_destination(image, 793 result = kimage_set_destination(image, maddr); 727 if (result < 0) 794 if (result < 0) 728 goto out; 795 goto out; 729 796 730 while (mbytes) { 797 while (mbytes) { 731 struct page *page; 798 struct page *page; 732 char *ptr; 799 char *ptr; 733 size_t uchunk, mchunk; 800 size_t uchunk, mchunk; 734 801 735 page = kimage_alloc_page(image 802 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 736 if (!page) { 803 if (!page) { 737 result = -ENOMEM; 804 result = -ENOMEM; 738 goto out; 805 goto out; 739 } 806 } 740 result = kimage_add_page(image 807 result = kimage_add_page(image, page_to_boot_pfn(page) 741 808 << PAGE_SHIFT); 742 if (result < 0) 809 if (result < 0) 743 goto out; 810 goto out; 744 811 745 ptr = kmap_local_page(page); !! 812 ptr = kmap(page); 746 /* Start with a clear page */ 813 /* Start with a clear page */ 747 clear_page(ptr); 814 clear_page(ptr); 748 ptr += maddr & ~PAGE_MASK; 815 ptr += maddr & ~PAGE_MASK; 749 mchunk = min_t(size_t, mbytes, 816 mchunk = min_t(size_t, mbytes, 750 PAGE_SIZE - (m 817 PAGE_SIZE - (maddr & ~PAGE_MASK)); 751 uchunk = min(ubytes, mchunk); 818 uchunk = min(ubytes, mchunk); 752 819 753 if (uchunk) { !! 820 /* For file based kexec, source pages are in kernel memory */ 754 /* For file based kexe !! 821 if (image->file_mode) 755 if (image->file_mode) !! 822 memcpy(ptr, kbuf, uchunk); 756 memcpy(ptr, kb !! 823 else 757 else !! 824 result = copy_from_user(ptr, buf, uchunk); 758 result = copy_ !! 825 kunmap(page); 759 ubytes -= uchunk; << 760 if (image->file_mode) << 761 kbuf += uchunk << 762 else << 763 buf += uchunk; << 764 } << 765 kunmap_local(ptr); << 766 if (result) { 826 if (result) { 767 result = -EFAULT; 827 result = -EFAULT; 768 goto out; 828 goto out; 769 } 829 } >> 830 ubytes -= uchunk; 770 maddr += mchunk; 831 maddr += mchunk; >> 832 if (image->file_mode) >> 833 kbuf += mchunk; >> 834 else >> 835 buf += mchunk; 771 mbytes -= mchunk; 836 mbytes -= mchunk; 772 837 773 cond_resched(); 838 cond_resched(); 774 } 839 } 775 out: 840 out: 776 return result; 841 return result; 777 } 842 } 778 843 779 #ifdef CONFIG_CRASH_DUMP << 780 static int kimage_load_crash_segment(struct ki 844 static int kimage_load_crash_segment(struct kimage *image, 781 struct 845 struct kexec_segment *segment) 782 { 846 { 783 /* For crash dumps kernels we simply c 847 /* For crash dumps kernels we simply copy the data from 784 * user space to it's destination. 848 * user space to it's destination. 785 * We do things a page at a time for t 849 * We do things a page at a time for the sake of kmap. 786 */ 850 */ 787 unsigned long maddr; 851 unsigned long maddr; 788 size_t ubytes, mbytes; 852 size_t ubytes, mbytes; 789 int result; 853 int result; 790 unsigned char __user *buf = NULL; 854 unsigned char __user *buf = NULL; 791 unsigned char *kbuf = NULL; 855 unsigned char *kbuf = NULL; 792 856 793 result = 0; 857 result = 0; 794 if (image->file_mode) 858 if (image->file_mode) 795 kbuf = segment->kbuf; 859 kbuf = segment->kbuf; 796 else 860 else 797 buf = segment->buf; 861 buf = segment->buf; 798 ubytes = segment->bufsz; 862 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 863 mbytes = segment->memsz; 800 maddr = segment->mem; 864 maddr = segment->mem; 801 while (mbytes) { 865 while (mbytes) { 802 struct page *page; 866 struct page *page; 803 char *ptr; 867 char *ptr; 804 size_t uchunk, mchunk; 868 size_t uchunk, mchunk; 805 869 806 page = boot_pfn_to_page(maddr 870 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 807 if (!page) { 871 if (!page) { 808 result = -ENOMEM; 872 result = -ENOMEM; 809 goto out; 873 goto out; 810 } 874 } 811 arch_kexec_post_alloc_pages(pa 875 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 812 ptr = kmap_local_page(page); !! 876 ptr = kmap(page); 813 ptr += maddr & ~PAGE_MASK; 877 ptr += maddr & ~PAGE_MASK; 814 mchunk = min_t(size_t, mbytes, 878 mchunk = min_t(size_t, mbytes, 815 PAGE_SIZE - (m 879 PAGE_SIZE - (maddr & ~PAGE_MASK)); 816 uchunk = min(ubytes, mchunk); 880 uchunk = min(ubytes, mchunk); 817 if (mchunk > uchunk) { 881 if (mchunk > uchunk) { 818 /* Zero the trailing p 882 /* Zero the trailing part of the page */ 819 memset(ptr + uchunk, 0 883 memset(ptr + uchunk, 0, mchunk - uchunk); 820 } 884 } 821 885 822 if (uchunk) { !! 886 /* For file based kexec, source pages are in kernel memory */ 823 /* For file based kexe !! 887 if (image->file_mode) 824 if (image->file_mode) !! 888 memcpy(ptr, kbuf, uchunk); 825 memcpy(ptr, kb !! 889 else 826 else !! 890 result = copy_from_user(ptr, buf, uchunk); 827 result = copy_ << 828 ubytes -= uchunk; << 829 if (image->file_mode) << 830 kbuf += uchunk << 831 else << 832 buf += uchunk; << 833 } << 834 kexec_flush_icache_page(page); 891 kexec_flush_icache_page(page); 835 kunmap_local(ptr); !! 892 kunmap(page); 836 arch_kexec_pre_free_pages(page 893 arch_kexec_pre_free_pages(page_address(page), 1); 837 if (result) { 894 if (result) { 838 result = -EFAULT; 895 result = -EFAULT; 839 goto out; 896 goto out; 840 } 897 } >> 898 ubytes -= uchunk; 841 maddr += mchunk; 899 maddr += mchunk; >> 900 if (image->file_mode) >> 901 kbuf += mchunk; >> 902 else >> 903 buf += mchunk; 842 mbytes -= mchunk; 904 mbytes -= mchunk; 843 905 844 cond_resched(); 906 cond_resched(); 845 } 907 } 846 out: 908 out: 847 return result; 909 return result; 848 } 910 } 849 #endif << 850 911 851 int kimage_load_segment(struct kimage *image, 912 int kimage_load_segment(struct kimage *image, 852 struct kexec_s 913 struct kexec_segment *segment) 853 { 914 { 854 int result = -ENOMEM; 915 int result = -ENOMEM; 855 916 856 switch (image->type) { 917 switch (image->type) { 857 case KEXEC_TYPE_DEFAULT: 918 case KEXEC_TYPE_DEFAULT: 858 result = kimage_load_normal_se 919 result = kimage_load_normal_segment(image, segment); 859 break; 920 break; 860 #ifdef CONFIG_CRASH_DUMP << 861 case KEXEC_TYPE_CRASH: 921 case KEXEC_TYPE_CRASH: 862 result = kimage_load_crash_seg 922 result = kimage_load_crash_segment(image, segment); 863 break; 923 break; 864 #endif << 865 } 924 } 866 925 867 return result; 926 return result; 868 } 927 } 869 928 870 struct kexec_load_limit { << 871 /* Mutex protects the limit count. */ << 872 struct mutex mutex; << 873 int limit; << 874 }; << 875 << 876 static struct kexec_load_limit load_limit_rebo << 877 .mutex = __MUTEX_INITIALIZER(load_limi << 878 .limit = -1, << 879 }; << 880 << 881 static struct kexec_load_limit load_limit_pani << 882 .mutex = __MUTEX_INITIALIZER(load_limi << 883 .limit = -1, << 884 }; << 885 << 886 struct kimage *kexec_image; 929 struct kimage *kexec_image; 887 struct kimage *kexec_crash_image; 930 struct kimage *kexec_crash_image; 888 static int kexec_load_disabled; !! 931 int kexec_load_disabled; 889 932 890 #ifdef CONFIG_SYSCTL !! 933 /* 891 static int kexec_limit_handler(const struct ct !! 934 * No panic_cpu check version of crash_kexec(). This function is called 892 void *buffer, s !! 935 * only when panic_cpu holds the current CPU number; this is the only CPU 893 { !! 936 * which processes crash_kexec routines. 894 struct kexec_load_limit *limit = table !! 937 */ 895 int val; !! 938 void __noclone __crash_kexec(struct pt_regs *regs) 896 struct ctl_table tmp = { !! 939 { 897 .data = &val, !! 940 /* Take the kexec_mutex here to prevent sys_kexec_load 898 .maxlen = sizeof(val), !! 941 * running on one cpu from replacing the crash kernel 899 .mode = table->mode, !! 942 * we are using after a panic on a different cpu. 900 }; !! 943 * 901 int ret; !! 944 * If the crash kernel was not located in a fixed area 902 !! 945 * of memory the xchg(&kexec_crash_image) would be 903 if (write) { !! 946 * sufficient. But since I reuse the memory... 904 ret = proc_dointvec(&tmp, writ !! 947 */ 905 if (ret) !! 948 if (mutex_trylock(&kexec_mutex)) { 906 return ret; !! 949 if (kexec_crash_image) { >> 950 struct pt_regs fixed_regs; >> 951 >> 952 crash_setup_regs(&fixed_regs, regs); >> 953 crash_save_vmcoreinfo(); >> 954 machine_crash_shutdown(&fixed_regs); >> 955 machine_kexec(kexec_crash_image); >> 956 } >> 957 mutex_unlock(&kexec_mutex); >> 958 } >> 959 } >> 960 STACK_FRAME_NON_STANDARD(__crash_kexec); 907 961 908 if (val < 0) !! 962 void crash_kexec(struct pt_regs *regs) 909 return -EINVAL; !! 963 { >> 964 int old_cpu, this_cpu; 910 965 911 mutex_lock(&limit->mutex); !! 966 /* 912 if (limit->limit != -1 && val !! 967 * Only one CPU is allowed to execute the crash_kexec() code as with 913 ret = -EINVAL; !! 968 * panic(). Otherwise parallel calls of panic() and crash_kexec() 914 else !! 969 * may stop each other. To exclude them, we use panic_cpu here too. 915 limit->limit = val; !! 970 */ 916 mutex_unlock(&limit->mutex); !! 971 this_cpu = raw_smp_processor_id(); >> 972 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); >> 973 if (old_cpu == PANIC_CPU_INVALID) { >> 974 /* This is the 1st CPU which comes here, so go ahead. */ >> 975 printk_safe_flush_on_panic(); >> 976 __crash_kexec(regs); 917 977 918 return ret; !! 978 /* >> 979 * Reset panic_cpu to allow another panic()/crash_kexec() >> 980 * call. >> 981 */ >> 982 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 919 } 983 } >> 984 } 920 985 921 mutex_lock(&limit->mutex); !! 986 size_t crash_get_memory_size(void) 922 val = limit->limit; !! 987 { 923 mutex_unlock(&limit->mutex); !! 988 size_t size = 0; 924 989 925 return proc_dointvec(&tmp, write, buff !! 990 mutex_lock(&kexec_mutex); >> 991 if (crashk_res.end != crashk_res.start) >> 992 size = resource_size(&crashk_res); >> 993 mutex_unlock(&kexec_mutex); >> 994 return size; 926 } 995 } 927 996 928 static struct ctl_table kexec_core_sysctls[] = !! 997 void __weak crash_free_reserved_phys_range(unsigned long begin, 929 { !! 998 unsigned long end) 930 .procname = "kexec_load_ !! 999 { 931 .data = &kexec_load_ !! 1000 unsigned long addr; 932 .maxlen = sizeof(int), << 933 .mode = 0644, << 934 /* only handle a transition fr << 935 .proc_handler = proc_dointve << 936 .extra1 = SYSCTL_ONE, << 937 .extra2 = SYSCTL_ONE, << 938 }, << 939 { << 940 .procname = "kexec_load_ << 941 .data = &load_limit_ << 942 .mode = 0644, << 943 .proc_handler = kexec_limit_ << 944 }, << 945 { << 946 .procname = "kexec_load_ << 947 .data = &load_limit_ << 948 .mode = 0644, << 949 .proc_handler = kexec_limit_ << 950 }, << 951 }; << 952 1001 953 static int __init kexec_core_sysctl_init(void) !! 1002 for (addr = begin; addr < end; addr += PAGE_SIZE) >> 1003 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); >> 1004 } >> 1005 >> 1006 int crash_shrink_memory(unsigned long new_size) 954 { 1007 { 955 register_sysctl_init("kernel", kexec_c !! 1008 int ret = 0; 956 return 0; !! 1009 unsigned long start, end; >> 1010 unsigned long old_size; >> 1011 struct resource *ram_res; >> 1012 >> 1013 mutex_lock(&kexec_mutex); >> 1014 >> 1015 if (kexec_crash_image) { >> 1016 ret = -ENOENT; >> 1017 goto unlock; >> 1018 } >> 1019 start = crashk_res.start; >> 1020 end = crashk_res.end; >> 1021 old_size = (end == 0) ? 0 : end - start + 1; >> 1022 if (new_size >= old_size) { >> 1023 ret = (new_size == old_size) ? 0 : -EINVAL; >> 1024 goto unlock; >> 1025 } >> 1026 >> 1027 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); >> 1028 if (!ram_res) { >> 1029 ret = -ENOMEM; >> 1030 goto unlock; >> 1031 } >> 1032 >> 1033 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); >> 1034 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); >> 1035 >> 1036 crash_free_reserved_phys_range(end, crashk_res.end); >> 1037 >> 1038 if ((start == end) && (crashk_res.parent != NULL)) >> 1039 release_resource(&crashk_res); >> 1040 >> 1041 ram_res->start = end; >> 1042 ram_res->end = crashk_res.end; >> 1043 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; >> 1044 ram_res->name = "System RAM"; >> 1045 >> 1046 crashk_res.end = end - 1; >> 1047 >> 1048 insert_resource(&iomem_resource, ram_res); >> 1049 >> 1050 unlock: >> 1051 mutex_unlock(&kexec_mutex); >> 1052 return ret; 957 } 1053 } 958 late_initcall(kexec_core_sysctl_init); << 959 #endif << 960 1054 961 bool kexec_load_permitted(int kexec_image_type !! 1055 void crash_save_cpu(struct pt_regs *regs, int cpu) >> 1056 { >> 1057 struct elf_prstatus prstatus; >> 1058 u32 *buf; >> 1059 >> 1060 if ((cpu < 0) || (cpu >= nr_cpu_ids)) >> 1061 return; >> 1062 >> 1063 /* Using ELF notes here is opportunistic. >> 1064 * I need a well defined structure format >> 1065 * for the data I pass, and I need tags >> 1066 * on the data to indicate what information I have >> 1067 * squirrelled away. ELF notes happen to provide >> 1068 * all of that, so there is no need to invent something new. >> 1069 */ >> 1070 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); >> 1071 if (!buf) >> 1072 return; >> 1073 memset(&prstatus, 0, sizeof(prstatus)); >> 1074 prstatus.pr_pid = current->pid; >> 1075 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); >> 1076 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, >> 1077 &prstatus, sizeof(prstatus)); >> 1078 final_note(buf); >> 1079 } >> 1080 >> 1081 static int __init crash_notes_memory_init(void) 962 { 1082 { 963 struct kexec_load_limit *limit; !! 1083 /* Allocate memory for saving cpu registers. */ >> 1084 size_t size, align; 964 1085 965 /* 1086 /* 966 * Only the superuser can use the kexe !! 1087 * crash_notes could be allocated across 2 vmalloc pages when percpu 967 * been disabled. !! 1088 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc >> 1089 * pages are also on 2 continuous physical pages. In this case the >> 1090 * 2nd part of crash_notes in 2nd page could be lost since only the >> 1091 * starting address and size of crash_notes are exported through sysfs. >> 1092 * Here round up the size of crash_notes to the nearest power of two >> 1093 * and pass it to __alloc_percpu as align value. This can make sure >> 1094 * crash_notes is allocated inside one physical page. 968 */ 1095 */ 969 if (!capable(CAP_SYS_BOOT) || kexec_lo !! 1096 size = sizeof(note_buf_t); 970 return false; !! 1097 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 971 1098 972 /* Check limit counter and decrease it !! 1099 /* 973 limit = (kexec_image_type == KEXEC_TYP !! 1100 * Break compile if size is bigger than PAGE_SIZE since crash_notes 974 &load_limit_panic : &load_limi !! 1101 * definitely will be in 2 pages with that. 975 mutex_lock(&limit->mutex); !! 1102 */ 976 if (!limit->limit) { !! 1103 BUILD_BUG_ON(size > PAGE_SIZE); 977 mutex_unlock(&limit->mutex); << 978 return false; << 979 } << 980 if (limit->limit != -1) << 981 limit->limit--; << 982 mutex_unlock(&limit->mutex); << 983 1104 984 return true; !! 1105 crash_notes = __alloc_percpu(size, align); >> 1106 if (!crash_notes) { >> 1107 pr_warn("Memory allocation for saving cpu register states failed\n"); >> 1108 return -ENOMEM; >> 1109 } >> 1110 return 0; 985 } 1111 } >> 1112 subsys_initcall(crash_notes_memory_init); >> 1113 986 1114 987 /* 1115 /* 988 * Move into place and start executing a prelo 1116 * Move into place and start executing a preloaded standalone 989 * executable. If nothing was preloaded retur 1117 * executable. If nothing was preloaded return an error. 990 */ 1118 */ 991 int kernel_kexec(void) 1119 int kernel_kexec(void) 992 { 1120 { 993 int error = 0; 1121 int error = 0; 994 1122 995 if (!kexec_trylock()) !! 1123 if (!mutex_trylock(&kexec_mutex)) 996 return -EBUSY; 1124 return -EBUSY; 997 if (!kexec_image) { 1125 if (!kexec_image) { 998 error = -EINVAL; 1126 error = -EINVAL; 999 goto Unlock; 1127 goto Unlock; 1000 } 1128 } 1001 1129 1002 #ifdef CONFIG_KEXEC_JUMP 1130 #ifdef CONFIG_KEXEC_JUMP 1003 if (kexec_image->preserve_context) { 1131 if (kexec_image->preserve_context) { >> 1132 lock_system_sleep(); 1004 pm_prepare_console(); 1133 pm_prepare_console(); 1005 error = freeze_processes(); 1134 error = freeze_processes(); 1006 if (error) { 1135 if (error) { 1007 error = -EBUSY; 1136 error = -EBUSY; 1008 goto Restore_console; 1137 goto Restore_console; 1009 } 1138 } 1010 suspend_console(); 1139 suspend_console(); 1011 error = dpm_suspend_start(PMS 1140 error = dpm_suspend_start(PMSG_FREEZE); 1012 if (error) 1141 if (error) 1013 goto Resume_console; 1142 goto Resume_console; 1014 /* At this point, dpm_suspend 1143 /* At this point, dpm_suspend_start() has been called, 1015 * but *not* dpm_suspend_end( 1144 * but *not* dpm_suspend_end(). We *must* call 1016 * dpm_suspend_end() now. Ot 1145 * dpm_suspend_end() now. Otherwise, drivers for 1017 * some devices (e.g. interru 1146 * some devices (e.g. interrupt controllers) become 1018 * desynchronized with the ac 1147 * desynchronized with the actual state of the 1019 * hardware at resume time, a 1148 * hardware at resume time, and evil weirdness ensues. 1020 */ 1149 */ 1021 error = dpm_suspend_end(PMSG_ 1150 error = dpm_suspend_end(PMSG_FREEZE); 1022 if (error) 1151 if (error) 1023 goto Resume_devices; 1152 goto Resume_devices; 1024 error = suspend_disable_secon 1153 error = suspend_disable_secondary_cpus(); 1025 if (error) 1154 if (error) 1026 goto Enable_cpus; 1155 goto Enable_cpus; 1027 local_irq_disable(); 1156 local_irq_disable(); 1028 error = syscore_suspend(); 1157 error = syscore_suspend(); 1029 if (error) 1158 if (error) 1030 goto Enable_irqs; 1159 goto Enable_irqs; 1031 } else 1160 } else 1032 #endif 1161 #endif 1033 { 1162 { 1034 kexec_in_progress = true; 1163 kexec_in_progress = true; 1035 kernel_restart_prepare("kexec !! 1164 kernel_restart_prepare(NULL); 1036 migrate_to_reboot_cpu(); 1165 migrate_to_reboot_cpu(); 1037 syscore_shutdown(); << 1038 1166 1039 /* 1167 /* 1040 * migrate_to_reboot_cpu() di 1168 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1041 * no further code needs to u 1169 * no further code needs to use CPU hotplug (which is true in 1042 * the reboot case). However, 1170 * the reboot case). However, the kexec path depends on using 1043 * CPU hotplug again; so re-e 1171 * CPU hotplug again; so re-enable it here. 1044 */ 1172 */ 1045 cpu_hotplug_enable(); 1173 cpu_hotplug_enable(); 1046 pr_notice("Starting new kerne !! 1174 pr_emerg("Starting new kernel\n"); 1047 machine_shutdown(); 1175 machine_shutdown(); 1048 } 1176 } 1049 1177 1050 kmsg_dump(KMSG_DUMP_SHUTDOWN); << 1051 machine_kexec(kexec_image); 1178 machine_kexec(kexec_image); 1052 1179 1053 #ifdef CONFIG_KEXEC_JUMP 1180 #ifdef CONFIG_KEXEC_JUMP 1054 if (kexec_image->preserve_context) { 1181 if (kexec_image->preserve_context) { 1055 syscore_resume(); 1182 syscore_resume(); 1056 Enable_irqs: 1183 Enable_irqs: 1057 local_irq_enable(); 1184 local_irq_enable(); 1058 Enable_cpus: 1185 Enable_cpus: 1059 suspend_enable_secondary_cpus 1186 suspend_enable_secondary_cpus(); 1060 dpm_resume_start(PMSG_RESTORE 1187 dpm_resume_start(PMSG_RESTORE); 1061 Resume_devices: 1188 Resume_devices: 1062 dpm_resume_end(PMSG_RESTORE); 1189 dpm_resume_end(PMSG_RESTORE); 1063 Resume_console: 1190 Resume_console: 1064 resume_console(); 1191 resume_console(); 1065 thaw_processes(); 1192 thaw_processes(); 1066 Restore_console: 1193 Restore_console: 1067 pm_restore_console(); 1194 pm_restore_console(); >> 1195 unlock_system_sleep(); 1068 } 1196 } 1069 #endif 1197 #endif 1070 1198 1071 Unlock: 1199 Unlock: 1072 kexec_unlock(); !! 1200 mutex_unlock(&kexec_mutex); 1073 return error; 1201 return error; 1074 } 1202 } >> 1203 >> 1204 /* >> 1205 * Protection mechanism for crashkernel reserved memory after >> 1206 * the kdump kernel is loaded. >> 1207 * >> 1208 * Provide an empty default implementation here -- architecture >> 1209 * code may override this >> 1210 */ >> 1211 void __weak arch_kexec_protect_crashkres(void) >> 1212 {} >> 1213 >> 1214 void __weak arch_kexec_unprotect_crashkres(void) >> 1215 {} 1075 1216
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.