~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/kexec_core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/kexec_core.c (Version linux-6.11.5) and /kernel/kexec_core.c (Version linux-5.3.18)


  1 // SPDX-License-Identifier: GPL-2.0-only            1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*                                                  2 /*
  3  * kexec.c - kexec system call core code.           3  * kexec.c - kexec system call core code.
  4  * Copyright (C) 2002-2004 Eric Biederman  <eb      4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5  */                                                 5  */
  6                                                     6 
  7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt         7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8                                                     8 
  9 #include <linux/btf.h>                         << 
 10 #include <linux/capability.h>                       9 #include <linux/capability.h>
 11 #include <linux/mm.h>                              10 #include <linux/mm.h>
 12 #include <linux/file.h>                            11 #include <linux/file.h>
 13 #include <linux/slab.h>                            12 #include <linux/slab.h>
 14 #include <linux/fs.h>                              13 #include <linux/fs.h>
 15 #include <linux/kexec.h>                           14 #include <linux/kexec.h>
 16 #include <linux/mutex.h>                           15 #include <linux/mutex.h>
 17 #include <linux/list.h>                            16 #include <linux/list.h>
 18 #include <linux/highmem.h>                         17 #include <linux/highmem.h>
 19 #include <linux/syscalls.h>                        18 #include <linux/syscalls.h>
 20 #include <linux/reboot.h>                          19 #include <linux/reboot.h>
 21 #include <linux/ioport.h>                          20 #include <linux/ioport.h>
 22 #include <linux/hardirq.h>                         21 #include <linux/hardirq.h>
 23 #include <linux/elf.h>                             22 #include <linux/elf.h>
 24 #include <linux/elfcore.h>                         23 #include <linux/elfcore.h>
 25 #include <linux/utsname.h>                         24 #include <linux/utsname.h>
 26 #include <linux/numa.h>                            25 #include <linux/numa.h>
 27 #include <linux/suspend.h>                         26 #include <linux/suspend.h>
 28 #include <linux/device.h>                          27 #include <linux/device.h>
 29 #include <linux/freezer.h>                         28 #include <linux/freezer.h>
 30 #include <linux/panic_notifier.h>              << 
 31 #include <linux/pm.h>                              29 #include <linux/pm.h>
 32 #include <linux/cpu.h>                             30 #include <linux/cpu.h>
 33 #include <linux/uaccess.h>                         31 #include <linux/uaccess.h>
 34 #include <linux/io.h>                              32 #include <linux/io.h>
 35 #include <linux/console.h>                         33 #include <linux/console.h>
 36 #include <linux/vmalloc.h>                         34 #include <linux/vmalloc.h>
 37 #include <linux/swap.h>                            35 #include <linux/swap.h>
 38 #include <linux/syscore_ops.h>                     36 #include <linux/syscore_ops.h>
 39 #include <linux/compiler.h>                        37 #include <linux/compiler.h>
 40 #include <linux/hugetlb.h>                         38 #include <linux/hugetlb.h>
 41 #include <linux/objtool.h>                     !!  39 #include <linux/frame.h>
 42 #include <linux/kmsg_dump.h>                   << 
 43                                                    40 
 44 #include <asm/page.h>                              41 #include <asm/page.h>
 45 #include <asm/sections.h>                          42 #include <asm/sections.h>
 46                                                    43 
 47 #include <crypto/hash.h>                           44 #include <crypto/hash.h>
                                                   >>  45 #include <crypto/sha.h>
 48 #include "kexec_internal.h"                        46 #include "kexec_internal.h"
 49                                                    47 
 50 atomic_t __kexec_lock = ATOMIC_INIT(0);        !!  48 DEFINE_MUTEX(kexec_mutex);
                                                   >>  49 
                                                   >>  50 /* Per cpu memory for storing cpu states in case of system crash. */
                                                   >>  51 note_buf_t __percpu *crash_notes;
 51                                                    52 
 52 /* Flag to indicate we are going to kexec a ne     53 /* Flag to indicate we are going to kexec a new kernel */
 53 bool kexec_in_progress = false;                    54 bool kexec_in_progress = false;
 54                                                    55 
 55 bool kexec_file_dbg_print;                     !!  56 
                                                   >>  57 /* Location of the reserved area for the crash kernel */
                                                   >>  58 struct resource crashk_res = {
                                                   >>  59         .name  = "Crash kernel",
                                                   >>  60         .start = 0,
                                                   >>  61         .end   = 0,
                                                   >>  62         .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
                                                   >>  63         .desc  = IORES_DESC_CRASH_KERNEL
                                                   >>  64 };
                                                   >>  65 struct resource crashk_low_res = {
                                                   >>  66         .name  = "Crash kernel",
                                                   >>  67         .start = 0,
                                                   >>  68         .end   = 0,
                                                   >>  69         .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
                                                   >>  70         .desc  = IORES_DESC_CRASH_KERNEL
                                                   >>  71 };
                                                   >>  72 
                                                   >>  73 int kexec_should_crash(struct task_struct *p)
                                                   >>  74 {
                                                   >>  75         /*
                                                   >>  76          * If crash_kexec_post_notifiers is enabled, don't run
                                                   >>  77          * crash_kexec() here yet, which must be run after panic
                                                   >>  78          * notifiers in panic().
                                                   >>  79          */
                                                   >>  80         if (crash_kexec_post_notifiers)
                                                   >>  81                 return 0;
                                                   >>  82         /*
                                                   >>  83          * There are 4 panic() calls in do_exit() path, each of which
                                                   >>  84          * corresponds to each of these 4 conditions.
                                                   >>  85          */
                                                   >>  86         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
                                                   >>  87                 return 1;
                                                   >>  88         return 0;
                                                   >>  89 }
                                                   >>  90 
                                                   >>  91 int kexec_crash_loaded(void)
                                                   >>  92 {
                                                   >>  93         return !!kexec_crash_image;
                                                   >>  94 }
                                                   >>  95 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 56                                                    96 
 57 /*                                                 97 /*
 58  * When kexec transitions to the new kernel th     98  * When kexec transitions to the new kernel there is a one-to-one
 59  * mapping between physical and virtual addres     99  * mapping between physical and virtual addresses.  On processors
 60  * where you can disable the MMU this is trivi    100  * where you can disable the MMU this is trivial, and easy.  For
 61  * others it is still a simple predictable pag    101  * others it is still a simple predictable page table to setup.
 62  *                                                102  *
 63  * In that environment kexec copies the new ke    103  * In that environment kexec copies the new kernel to its final
 64  * resting place.  This means I can only suppo    104  * resting place.  This means I can only support memory whose
 65  * physical address can fit in an unsigned lon    105  * physical address can fit in an unsigned long.  In particular
 66  * addresses where (pfn << PAGE_SHIFT) > ULONG    106  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 67  * If the assembly stub has more restrictive r    107  * If the assembly stub has more restrictive requirements
 68  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME    108  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 69  * defined more restrictively in <asm/kexec.h>    109  * defined more restrictively in <asm/kexec.h>.
 70  *                                                110  *
 71  * The code for the transition from the curren    111  * The code for the transition from the current kernel to the
 72  * new kernel is placed in the control_code_bu !! 112  * the new kernel is placed in the control_code_buffer, whose size
 73  * is given by KEXEC_CONTROL_PAGE_SIZE.  In th    113  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 74  * page of memory is necessary, but some archi    114  * page of memory is necessary, but some architectures require more.
 75  * Because this memory must be identity mapped    115  * Because this memory must be identity mapped in the transition from
 76  * virtual to physical addresses it must live     116  * virtual to physical addresses it must live in the range
 77  * 0 - TASK_SIZE, as only the user space mappi    117  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 78  * modifiable.                                    118  * modifiable.
 79  *                                                119  *
 80  * The assembly stub in the control code buffe    120  * The assembly stub in the control code buffer is passed a linked list
 81  * of descriptor pages detailing the source pa    121  * of descriptor pages detailing the source pages of the new kernel,
 82  * and the destination addresses of those sour    122  * and the destination addresses of those source pages.  As this data
 83  * structure is not used in the context of the    123  * structure is not used in the context of the current OS, it must
 84  * be self-contained.                             124  * be self-contained.
 85  *                                                125  *
 86  * The code has been made to work with highmem    126  * The code has been made to work with highmem pages and will use a
 87  * destination page in its final resting place    127  * destination page in its final resting place (if it happens
 88  * to allocate it).  The end product of this i    128  * to allocate it).  The end product of this is that most of the
 89  * physical address space, and most of RAM can    129  * physical address space, and most of RAM can be used.
 90  *                                                130  *
 91  * Future directions include:                     131  * Future directions include:
 92  *  - allocating a page table with the control    132  *  - allocating a page table with the control code buffer identity
 93  *    mapped, to simplify machine_kexec and ma    133  *    mapped, to simplify machine_kexec and make kexec_on_panic more
 94  *    reliable.                                   134  *    reliable.
 95  */                                               135  */
 96                                                   136 
 97 /*                                                137 /*
 98  * KIMAGE_NO_DEST is an impossible destination    138  * KIMAGE_NO_DEST is an impossible destination address..., for
 99  * allocating pages whose destination address     139  * allocating pages whose destination address we do not care about.
100  */                                               140  */
101 #define KIMAGE_NO_DEST (-1UL)                     141 #define KIMAGE_NO_DEST (-1UL)
102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >    142 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
103                                                   143 
104 static struct page *kimage_alloc_page(struct k    144 static struct page *kimage_alloc_page(struct kimage *image,
105                                        gfp_t g    145                                        gfp_t gfp_mask,
106                                        unsigne    146                                        unsigned long dest);
107                                                   147 
108 int sanity_check_segment_list(struct kimage *i    148 int sanity_check_segment_list(struct kimage *image)
109 {                                                 149 {
110         int i;                                    150         int i;
111         unsigned long nr_segments = image->nr_    151         unsigned long nr_segments = image->nr_segments;
112         unsigned long total_pages = 0;            152         unsigned long total_pages = 0;
113         unsigned long nr_pages = totalram_page    153         unsigned long nr_pages = totalram_pages();
114                                                   154 
115         /*                                        155         /*
116          * Verify we have good destination add    156          * Verify we have good destination addresses.  The caller is
117          * responsible for making certain we d    157          * responsible for making certain we don't attempt to load
118          * the new image into invalid or reser    158          * the new image into invalid or reserved areas of RAM.  This
119          * just verifies it is an address we c    159          * just verifies it is an address we can use.
120          *                                        160          *
121          * Since the kernel does everything in    161          * Since the kernel does everything in page size chunks ensure
122          * the destination addresses are page     162          * the destination addresses are page aligned.  Too many
123          * special cases crop of when we don't    163          * special cases crop of when we don't do this.  The most
124          * insidious is getting overlapping de    164          * insidious is getting overlapping destination addresses
125          * simply because addresses are change    165          * simply because addresses are changed to page size
126          * granularity.                           166          * granularity.
127          */                                       167          */
128         for (i = 0; i < nr_segments; i++) {       168         for (i = 0; i < nr_segments; i++) {
129                 unsigned long mstart, mend;       169                 unsigned long mstart, mend;
130                                                   170 
131                 mstart = image->segment[i].mem    171                 mstart = image->segment[i].mem;
132                 mend   = mstart + image->segme    172                 mend   = mstart + image->segment[i].memsz;
133                 if (mstart > mend)                173                 if (mstart > mend)
134                         return -EADDRNOTAVAIL;    174                         return -EADDRNOTAVAIL;
135                 if ((mstart & ~PAGE_MASK) || (    175                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
136                         return -EADDRNOTAVAIL;    176                         return -EADDRNOTAVAIL;
137                 if (mend >= KEXEC_DESTINATION_    177                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
138                         return -EADDRNOTAVAIL;    178                         return -EADDRNOTAVAIL;
139         }                                         179         }
140                                                   180 
141         /* Verify our destination addresses do    181         /* Verify our destination addresses do not overlap.
142          * If we alloed overlapping destinatio    182          * If we alloed overlapping destination addresses
143          * through very weird things can happe    183          * through very weird things can happen with no
144          * easy explanation as one segment sto    184          * easy explanation as one segment stops on another.
145          */                                       185          */
146         for (i = 0; i < nr_segments; i++) {       186         for (i = 0; i < nr_segments; i++) {
147                 unsigned long mstart, mend;       187                 unsigned long mstart, mend;
148                 unsigned long j;                  188                 unsigned long j;
149                                                   189 
150                 mstart = image->segment[i].mem    190                 mstart = image->segment[i].mem;
151                 mend   = mstart + image->segme    191                 mend   = mstart + image->segment[i].memsz;
152                 for (j = 0; j < i; j++) {         192                 for (j = 0; j < i; j++) {
153                         unsigned long pstart,     193                         unsigned long pstart, pend;
154                                                   194 
155                         pstart = image->segmen    195                         pstart = image->segment[j].mem;
156                         pend   = pstart + imag    196                         pend   = pstart + image->segment[j].memsz;
157                         /* Do the segments ove    197                         /* Do the segments overlap ? */
158                         if ((mend > pstart) &&    198                         if ((mend > pstart) && (mstart < pend))
159                                 return -EINVAL    199                                 return -EINVAL;
160                 }                                 200                 }
161         }                                         201         }
162                                                   202 
163         /* Ensure our buffer sizes are strictl    203         /* Ensure our buffer sizes are strictly less than
164          * our memory sizes.  This should alwa    204          * our memory sizes.  This should always be the case,
165          * and it is easier to check up front     205          * and it is easier to check up front than to be surprised
166          * later on.                              206          * later on.
167          */                                       207          */
168         for (i = 0; i < nr_segments; i++) {       208         for (i = 0; i < nr_segments; i++) {
169                 if (image->segment[i].bufsz >     209                 if (image->segment[i].bufsz > image->segment[i].memsz)
170                         return -EINVAL;           210                         return -EINVAL;
171         }                                         211         }
172                                                   212 
173         /*                                        213         /*
174          * Verify that no more than half of me    214          * Verify that no more than half of memory will be consumed. If the
175          * request from userspace is too large    215          * request from userspace is too large, a large amount of time will be
176          * wasted allocating pages, which can     216          * wasted allocating pages, which can cause a soft lockup.
177          */                                       217          */
178         for (i = 0; i < nr_segments; i++) {       218         for (i = 0; i < nr_segments; i++) {
179                 if (PAGE_COUNT(image->segment[    219                 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
180                         return -EINVAL;           220                         return -EINVAL;
181                                                   221 
182                 total_pages += PAGE_COUNT(imag    222                 total_pages += PAGE_COUNT(image->segment[i].memsz);
183         }                                         223         }
184                                                   224 
185         if (total_pages > nr_pages / 2)           225         if (total_pages > nr_pages / 2)
186                 return -EINVAL;                   226                 return -EINVAL;
187                                                   227 
188 #ifdef CONFIG_CRASH_DUMP                       << 
189         /*                                        228         /*
190          * Verify we have good destination add    229          * Verify we have good destination addresses.  Normally
191          * the caller is responsible for makin    230          * the caller is responsible for making certain we don't
192          * attempt to load the new image into     231          * attempt to load the new image into invalid or reserved
193          * areas of RAM.  But crash kernels ar    232          * areas of RAM.  But crash kernels are preloaded into a
194          * reserved area of ram.  We must ensu    233          * reserved area of ram.  We must ensure the addresses
195          * are in the reserved area otherwise     234          * are in the reserved area otherwise preloading the
196          * kernel could corrupt things.           235          * kernel could corrupt things.
197          */                                       236          */
198                                                   237 
199         if (image->type == KEXEC_TYPE_CRASH) {    238         if (image->type == KEXEC_TYPE_CRASH) {
200                 for (i = 0; i < nr_segments; i    239                 for (i = 0; i < nr_segments; i++) {
201                         unsigned long mstart,     240                         unsigned long mstart, mend;
202                                                   241 
203                         mstart = image->segmen    242                         mstart = image->segment[i].mem;
204                         mend = mstart + image-    243                         mend = mstart + image->segment[i].memsz - 1;
205                         /* Ensure we are withi    244                         /* Ensure we are within the crash kernel limits */
206                         if ((mstart < phys_to_    245                         if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
207                             (mend > phys_to_bo    246                             (mend > phys_to_boot_phys(crashk_res.end)))
208                                 return -EADDRN    247                                 return -EADDRNOTAVAIL;
209                 }                                 248                 }
210         }                                         249         }
211 #endif                                         << 
212                                                   250 
213         return 0;                                 251         return 0;
214 }                                                 252 }
215                                                   253 
216 struct kimage *do_kimage_alloc_init(void)         254 struct kimage *do_kimage_alloc_init(void)
217 {                                                 255 {
218         struct kimage *image;                     256         struct kimage *image;
219                                                   257 
220         /* Allocate a controlling structure */    258         /* Allocate a controlling structure */
221         image = kzalloc(sizeof(*image), GFP_KE    259         image = kzalloc(sizeof(*image), GFP_KERNEL);
222         if (!image)                               260         if (!image)
223                 return NULL;                      261                 return NULL;
224                                                   262 
225         image->head = 0;                          263         image->head = 0;
226         image->entry = &image->head;              264         image->entry = &image->head;
227         image->last_entry = &image->head;         265         image->last_entry = &image->head;
228         image->control_page = ~0; /* By defaul    266         image->control_page = ~0; /* By default this does not apply */
229         image->type = KEXEC_TYPE_DEFAULT;         267         image->type = KEXEC_TYPE_DEFAULT;
230                                                   268 
231         /* Initialize the list of control page    269         /* Initialize the list of control pages */
232         INIT_LIST_HEAD(&image->control_pages);    270         INIT_LIST_HEAD(&image->control_pages);
233                                                   271 
234         /* Initialize the list of destination     272         /* Initialize the list of destination pages */
235         INIT_LIST_HEAD(&image->dest_pages);       273         INIT_LIST_HEAD(&image->dest_pages);
236                                                   274 
237         /* Initialize the list of unusable pag    275         /* Initialize the list of unusable pages */
238         INIT_LIST_HEAD(&image->unusable_pages)    276         INIT_LIST_HEAD(&image->unusable_pages);
239                                                   277 
240 #ifdef CONFIG_CRASH_HOTPLUG                    << 
241         image->hp_action = KEXEC_CRASH_HP_NONE << 
242         image->elfcorehdr_index = -1;          << 
243         image->elfcorehdr_updated = false;     << 
244 #endif                                         << 
245                                                << 
246         return image;                             278         return image;
247 }                                                 279 }
248                                                   280 
249 int kimage_is_destination_range(struct kimage     281 int kimage_is_destination_range(struct kimage *image,
250                                         unsign    282                                         unsigned long start,
251                                         unsign    283                                         unsigned long end)
252 {                                                 284 {
253         unsigned long i;                          285         unsigned long i;
254                                                   286 
255         for (i = 0; i < image->nr_segments; i+    287         for (i = 0; i < image->nr_segments; i++) {
256                 unsigned long mstart, mend;       288                 unsigned long mstart, mend;
257                                                   289 
258                 mstart = image->segment[i].mem    290                 mstart = image->segment[i].mem;
259                 mend = mstart + image->segment !! 291                 mend = mstart + image->segment[i].memsz;
260                 if ((end >= mstart) && (start  !! 292                 if ((end > mstart) && (start < mend))
261                         return 1;                 293                         return 1;
262         }                                         294         }
263                                                   295 
264         return 0;                                 296         return 0;
265 }                                                 297 }
266                                                   298 
267 static struct page *kimage_alloc_pages(gfp_t g    299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
268 {                                                 300 {
269         struct page *pages;                       301         struct page *pages;
270                                                   302 
271         if (fatal_signal_pending(current))        303         if (fatal_signal_pending(current))
272                 return NULL;                      304                 return NULL;
273         pages = alloc_pages(gfp_mask & ~__GFP_    305         pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
274         if (pages) {                              306         if (pages) {
275                 unsigned int count, i;            307                 unsigned int count, i;
276                                                   308 
277                 pages->mapping = NULL;            309                 pages->mapping = NULL;
278                 set_page_private(pages, order)    310                 set_page_private(pages, order);
279                 count = 1 << order;               311                 count = 1 << order;
280                 for (i = 0; i < count; i++)       312                 for (i = 0; i < count; i++)
281                         SetPageReserved(pages     313                         SetPageReserved(pages + i);
282                                                   314 
283                 arch_kexec_post_alloc_pages(pa    315                 arch_kexec_post_alloc_pages(page_address(pages), count,
284                                             gf    316                                             gfp_mask);
285                                                   317 
286                 if (gfp_mask & __GFP_ZERO)        318                 if (gfp_mask & __GFP_ZERO)
287                         for (i = 0; i < count;    319                         for (i = 0; i < count; i++)
288                                 clear_highpage    320                                 clear_highpage(pages + i);
289         }                                         321         }
290                                                   322 
291         return pages;                             323         return pages;
292 }                                                 324 }
293                                                   325 
294 static void kimage_free_pages(struct page *pag    326 static void kimage_free_pages(struct page *page)
295 {                                                 327 {
296         unsigned int order, count, i;             328         unsigned int order, count, i;
297                                                   329 
298         order = page_private(page);               330         order = page_private(page);
299         count = 1 << order;                       331         count = 1 << order;
300                                                   332 
301         arch_kexec_pre_free_pages(page_address    333         arch_kexec_pre_free_pages(page_address(page), count);
302                                                   334 
303         for (i = 0; i < count; i++)               335         for (i = 0; i < count; i++)
304                 ClearPageReserved(page + i);      336                 ClearPageReserved(page + i);
305         __free_pages(page, order);                337         __free_pages(page, order);
306 }                                                 338 }
307                                                   339 
308 void kimage_free_page_list(struct list_head *l    340 void kimage_free_page_list(struct list_head *list)
309 {                                                 341 {
310         struct page *page, *next;                 342         struct page *page, *next;
311                                                   343 
312         list_for_each_entry_safe(page, next, l    344         list_for_each_entry_safe(page, next, list, lru) {
313                 list_del(&page->lru);             345                 list_del(&page->lru);
314                 kimage_free_pages(page);          346                 kimage_free_pages(page);
315         }                                         347         }
316 }                                                 348 }
317                                                   349 
318 static struct page *kimage_alloc_normal_contro    350 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
319                                                   351                                                         unsigned int order)
320 {                                                 352 {
321         /* Control pages are special, they are    353         /* Control pages are special, they are the intermediaries
322          * that are needed while we copy the r    354          * that are needed while we copy the rest of the pages
323          * to their final resting place.  As s    355          * to their final resting place.  As such they must
324          * not conflict with either the destin    356          * not conflict with either the destination addresses
325          * or memory the kernel is already usi    357          * or memory the kernel is already using.
326          *                                        358          *
327          * The only case where we really need     359          * The only case where we really need more than one of
328          * these are for architectures where w    360          * these are for architectures where we cannot disable
329          * the MMU and must instead generate a    361          * the MMU and must instead generate an identity mapped
330          * page table for all of the memory.      362          * page table for all of the memory.
331          *                                        363          *
332          * At worst this runs in O(N) of the i    364          * At worst this runs in O(N) of the image size.
333          */                                       365          */
334         struct list_head extra_pages;             366         struct list_head extra_pages;
335         struct page *pages;                       367         struct page *pages;
336         unsigned int count;                       368         unsigned int count;
337                                                   369 
338         count = 1 << order;                       370         count = 1 << order;
339         INIT_LIST_HEAD(&extra_pages);             371         INIT_LIST_HEAD(&extra_pages);
340                                                   372 
341         /* Loop while I can allocate a page an    373         /* Loop while I can allocate a page and the page allocated
342          * is a destination page.                 374          * is a destination page.
343          */                                       375          */
344         do {                                      376         do {
345                 unsigned long pfn, epfn, addr,    377                 unsigned long pfn, epfn, addr, eaddr;
346                                                   378 
347                 pages = kimage_alloc_pages(KEX    379                 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
348                 if (!pages)                       380                 if (!pages)
349                         break;                    381                         break;
350                 pfn   = page_to_boot_pfn(pages    382                 pfn   = page_to_boot_pfn(pages);
351                 epfn  = pfn + count;              383                 epfn  = pfn + count;
352                 addr  = pfn << PAGE_SHIFT;        384                 addr  = pfn << PAGE_SHIFT;
353                 eaddr = (epfn << PAGE_SHIFT) - !! 385                 eaddr = epfn << PAGE_SHIFT;
354                 if ((epfn >= (KEXEC_CONTROL_ME    386                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
355                               kimage_is_destin    387                               kimage_is_destination_range(image, addr, eaddr)) {
356                         list_add(&pages->lru,     388                         list_add(&pages->lru, &extra_pages);
357                         pages = NULL;             389                         pages = NULL;
358                 }                                 390                 }
359         } while (!pages);                         391         } while (!pages);
360                                                   392 
361         if (pages) {                              393         if (pages) {
362                 /* Remember the allocated page    394                 /* Remember the allocated page... */
363                 list_add(&pages->lru, &image->    395                 list_add(&pages->lru, &image->control_pages);
364                                                   396 
365                 /* Because the page is already    397                 /* Because the page is already in it's destination
366                  * location we will never allo    398                  * location we will never allocate another page at
367                  * that address.  Therefore ki    399                  * that address.  Therefore kimage_alloc_pages
368                  * will not return it (again)     400                  * will not return it (again) and we don't need
369                  * to give it an entry in imag    401                  * to give it an entry in image->segment[].
370                  */                               402                  */
371         }                                         403         }
372         /* Deal with the destination pages I h    404         /* Deal with the destination pages I have inadvertently allocated.
373          *                                        405          *
374          * Ideally I would convert multi-page     406          * Ideally I would convert multi-page allocations into single
375          * page allocations, and add everythin    407          * page allocations, and add everything to image->dest_pages.
376          *                                        408          *
377          * For now it is simpler to just free     409          * For now it is simpler to just free the pages.
378          */                                       410          */
379         kimage_free_page_list(&extra_pages);      411         kimage_free_page_list(&extra_pages);
380                                                   412 
381         return pages;                             413         return pages;
382 }                                                 414 }
383                                                   415 
384 #ifdef CONFIG_CRASH_DUMP                       << 
385 static struct page *kimage_alloc_crash_control    416 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
386                                                   417                                                       unsigned int order)
387 {                                                 418 {
388         /* Control pages are special, they are    419         /* Control pages are special, they are the intermediaries
389          * that are needed while we copy the r    420          * that are needed while we copy the rest of the pages
390          * to their final resting place.  As s    421          * to their final resting place.  As such they must
391          * not conflict with either the destin    422          * not conflict with either the destination addresses
392          * or memory the kernel is already usi    423          * or memory the kernel is already using.
393          *                                        424          *
394          * Control pages are also the only pag    425          * Control pages are also the only pags we must allocate
395          * when loading a crash kernel.  All o    426          * when loading a crash kernel.  All of the other pages
396          * are specified by the segments and w    427          * are specified by the segments and we just memcpy
397          * into them directly.                    428          * into them directly.
398          *                                        429          *
399          * The only case where we really need     430          * The only case where we really need more than one of
400          * these are for architectures where w    431          * these are for architectures where we cannot disable
401          * the MMU and must instead generate a    432          * the MMU and must instead generate an identity mapped
402          * page table for all of the memory.      433          * page table for all of the memory.
403          *                                        434          *
404          * Given the low demand this implement    435          * Given the low demand this implements a very simple
405          * allocator that finds the first hole    436          * allocator that finds the first hole of the appropriate
406          * size in the reserved memory region,    437          * size in the reserved memory region, and allocates all
407          * of the memory up to and including t    438          * of the memory up to and including the hole.
408          */                                       439          */
409         unsigned long hole_start, hole_end, si    440         unsigned long hole_start, hole_end, size;
410         struct page *pages;                       441         struct page *pages;
411                                                   442 
412         pages = NULL;                             443         pages = NULL;
413         size = (1 << order) << PAGE_SHIFT;        444         size = (1 << order) << PAGE_SHIFT;
414         hole_start = ALIGN(image->control_page !! 445         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
415         hole_end   = hole_start + size - 1;       446         hole_end   = hole_start + size - 1;
416         while (hole_end <= crashk_res.end) {      447         while (hole_end <= crashk_res.end) {
417                 unsigned long i;                  448                 unsigned long i;
418                                                   449 
419                 cond_resched();                   450                 cond_resched();
420                                                   451 
421                 if (hole_end > KEXEC_CRASH_CON    452                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
422                         break;                    453                         break;
423                 /* See if I overlap any of the    454                 /* See if I overlap any of the segments */
424                 for (i = 0; i < image->nr_segm    455                 for (i = 0; i < image->nr_segments; i++) {
425                         unsigned long mstart,     456                         unsigned long mstart, mend;
426                                                   457 
427                         mstart = image->segmen    458                         mstart = image->segment[i].mem;
428                         mend   = mstart + imag    459                         mend   = mstart + image->segment[i].memsz - 1;
429                         if ((hole_end >= mstar    460                         if ((hole_end >= mstart) && (hole_start <= mend)) {
430                                 /* Advance the    461                                 /* Advance the hole to the end of the segment */
431                                 hole_start = A !! 462                                 hole_start = (mend + (size - 1)) & ~(size - 1);
432                                 hole_end   = h    463                                 hole_end   = hole_start + size - 1;
433                                 break;            464                                 break;
434                         }                         465                         }
435                 }                                 466                 }
436                 /* If I don't overlap any segm    467                 /* If I don't overlap any segments I have found my hole! */
437                 if (i == image->nr_segments) {    468                 if (i == image->nr_segments) {
438                         pages = pfn_to_page(ho    469                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
439                         image->control_page =  !! 470                         image->control_page = hole_end;
440                         break;                    471                         break;
441                 }                                 472                 }
442         }                                         473         }
443                                                   474 
444         /* Ensure that these pages are decrypt    475         /* Ensure that these pages are decrypted if SME is enabled. */
445         if (pages)                                476         if (pages)
446                 arch_kexec_post_alloc_pages(pa    477                 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
447                                                   478 
448         return pages;                             479         return pages;
449 }                                                 480 }
450 #endif                                         << 
451                                                   481 
452                                                   482 
453 struct page *kimage_alloc_control_pages(struct    483 struct page *kimage_alloc_control_pages(struct kimage *image,
454                                          unsig    484                                          unsigned int order)
455 {                                                 485 {
456         struct page *pages = NULL;                486         struct page *pages = NULL;
457                                                   487 
458         switch (image->type) {                    488         switch (image->type) {
459         case KEXEC_TYPE_DEFAULT:                  489         case KEXEC_TYPE_DEFAULT:
460                 pages = kimage_alloc_normal_co    490                 pages = kimage_alloc_normal_control_pages(image, order);
461                 break;                            491                 break;
462 #ifdef CONFIG_CRASH_DUMP                       << 
463         case KEXEC_TYPE_CRASH:                    492         case KEXEC_TYPE_CRASH:
464                 pages = kimage_alloc_crash_con    493                 pages = kimage_alloc_crash_control_pages(image, order);
465                 break;                            494                 break;
466 #endif                                         << 
467         }                                         495         }
468                                                   496 
469         return pages;                             497         return pages;
470 }                                                 498 }
471                                                   499 
                                                   >> 500 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
                                                   >> 501 {
                                                   >> 502         struct page *vmcoreinfo_page;
                                                   >> 503         void *safecopy;
                                                   >> 504 
                                                   >> 505         if (image->type != KEXEC_TYPE_CRASH)
                                                   >> 506                 return 0;
                                                   >> 507 
                                                   >> 508         /*
                                                   >> 509          * For kdump, allocate one vmcoreinfo safe copy from the
                                                   >> 510          * crash memory. as we have arch_kexec_protect_crashkres()
                                                   >> 511          * after kexec syscall, we naturally protect it from write
                                                   >> 512          * (even read) access under kernel direct mapping. But on
                                                   >> 513          * the other hand, we still need to operate it when crash
                                                   >> 514          * happens to generate vmcoreinfo note, hereby we rely on
                                                   >> 515          * vmap for this purpose.
                                                   >> 516          */
                                                   >> 517         vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
                                                   >> 518         if (!vmcoreinfo_page) {
                                                   >> 519                 pr_warn("Could not allocate vmcoreinfo buffer\n");
                                                   >> 520                 return -ENOMEM;
                                                   >> 521         }
                                                   >> 522         safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
                                                   >> 523         if (!safecopy) {
                                                   >> 524                 pr_warn("Could not vmap vmcoreinfo buffer\n");
                                                   >> 525                 return -ENOMEM;
                                                   >> 526         }
                                                   >> 527 
                                                   >> 528         image->vmcoreinfo_data_copy = safecopy;
                                                   >> 529         crash_update_vmcoreinfo_safecopy(safecopy);
                                                   >> 530 
                                                   >> 531         return 0;
                                                   >> 532 }
                                                   >> 533 
472 static int kimage_add_entry(struct kimage *ima    534 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
473 {                                                 535 {
474         if (*image->entry != 0)                   536         if (*image->entry != 0)
475                 image->entry++;                   537                 image->entry++;
476                                                   538 
477         if (image->entry == image->last_entry)    539         if (image->entry == image->last_entry) {
478                 kimage_entry_t *ind_page;         540                 kimage_entry_t *ind_page;
479                 struct page *page;                541                 struct page *page;
480                                                   542 
481                 page = kimage_alloc_page(image    543                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
482                 if (!page)                        544                 if (!page)
483                         return -ENOMEM;           545                         return -ENOMEM;
484                                                   546 
485                 ind_page = page_address(page);    547                 ind_page = page_address(page);
486                 *image->entry = virt_to_boot_p    548                 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
487                 image->entry = ind_page;          549                 image->entry = ind_page;
488                 image->last_entry = ind_page +    550                 image->last_entry = ind_page +
489                                       ((PAGE_S    551                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
490         }                                         552         }
491         *image->entry = entry;                    553         *image->entry = entry;
492         image->entry++;                           554         image->entry++;
493         *image->entry = 0;                        555         *image->entry = 0;
494                                                   556 
495         return 0;                                 557         return 0;
496 }                                                 558 }
497                                                   559 
498 static int kimage_set_destination(struct kimag    560 static int kimage_set_destination(struct kimage *image,
499                                    unsigned lo    561                                    unsigned long destination)
500 {                                                 562 {
                                                   >> 563         int result;
                                                   >> 564 
501         destination &= PAGE_MASK;                 565         destination &= PAGE_MASK;
                                                   >> 566         result = kimage_add_entry(image, destination | IND_DESTINATION);
502                                                   567 
503         return kimage_add_entry(image, destina !! 568         return result;
504 }                                                 569 }
505                                                   570 
506                                                   571 
507 static int kimage_add_page(struct kimage *imag    572 static int kimage_add_page(struct kimage *image, unsigned long page)
508 {                                                 573 {
                                                   >> 574         int result;
                                                   >> 575 
509         page &= PAGE_MASK;                        576         page &= PAGE_MASK;
                                                   >> 577         result = kimage_add_entry(image, page | IND_SOURCE);
510                                                   578 
511         return kimage_add_entry(image, page |  !! 579         return result;
512 }                                                 580 }
513                                                   581 
514                                                   582 
515 static void kimage_free_extra_pages(struct kim    583 static void kimage_free_extra_pages(struct kimage *image)
516 {                                                 584 {
517         /* Walk through and free any extra des    585         /* Walk through and free any extra destination pages I may have */
518         kimage_free_page_list(&image->dest_pag    586         kimage_free_page_list(&image->dest_pages);
519                                                   587 
520         /* Walk through and free any unusable     588         /* Walk through and free any unusable pages I have cached */
521         kimage_free_page_list(&image->unusable    589         kimage_free_page_list(&image->unusable_pages);
522                                                   590 
523 }                                                 591 }
524                                                << 
525 void kimage_terminate(struct kimage *image)       592 void kimage_terminate(struct kimage *image)
526 {                                                 593 {
527         if (*image->entry != 0)                   594         if (*image->entry != 0)
528                 image->entry++;                   595                 image->entry++;
529                                                   596 
530         *image->entry = IND_DONE;                 597         *image->entry = IND_DONE;
531 }                                                 598 }
532                                                   599 
533 #define for_each_kimage_entry(image, ptr, entr    600 #define for_each_kimage_entry(image, ptr, entry) \
534         for (ptr = &image->head; (entry = *ptr    601         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
535                 ptr = (entry & IND_INDIRECTION    602                 ptr = (entry & IND_INDIRECTION) ? \
536                         boot_phys_to_virt((ent    603                         boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
537                                                   604 
538 static void kimage_free_entry(kimage_entry_t e    605 static void kimage_free_entry(kimage_entry_t entry)
539 {                                                 606 {
540         struct page *page;                        607         struct page *page;
541                                                   608 
542         page = boot_pfn_to_page(entry >> PAGE_    609         page = boot_pfn_to_page(entry >> PAGE_SHIFT);
543         kimage_free_pages(page);                  610         kimage_free_pages(page);
544 }                                                 611 }
545                                                   612 
546 void kimage_free(struct kimage *image)            613 void kimage_free(struct kimage *image)
547 {                                                 614 {
548         kimage_entry_t *ptr, entry;               615         kimage_entry_t *ptr, entry;
549         kimage_entry_t ind = 0;                   616         kimage_entry_t ind = 0;
550                                                   617 
551         if (!image)                               618         if (!image)
552                 return;                           619                 return;
553                                                   620 
554 #ifdef CONFIG_CRASH_DUMP                       << 
555         if (image->vmcoreinfo_data_copy) {        621         if (image->vmcoreinfo_data_copy) {
556                 crash_update_vmcoreinfo_safeco    622                 crash_update_vmcoreinfo_safecopy(NULL);
557                 vunmap(image->vmcoreinfo_data_    623                 vunmap(image->vmcoreinfo_data_copy);
558         }                                         624         }
559 #endif                                         << 
560                                                   625 
561         kimage_free_extra_pages(image);           626         kimage_free_extra_pages(image);
562         for_each_kimage_entry(image, ptr, entr    627         for_each_kimage_entry(image, ptr, entry) {
563                 if (entry & IND_INDIRECTION) {    628                 if (entry & IND_INDIRECTION) {
564                         /* Free the previous i    629                         /* Free the previous indirection page */
565                         if (ind & IND_INDIRECT    630                         if (ind & IND_INDIRECTION)
566                                 kimage_free_en    631                                 kimage_free_entry(ind);
567                         /* Save this indirecti    632                         /* Save this indirection page until we are
568                          * done with it.          633                          * done with it.
569                          */                       634                          */
570                         ind = entry;              635                         ind = entry;
571                 } else if (entry & IND_SOURCE)    636                 } else if (entry & IND_SOURCE)
572                         kimage_free_entry(entr    637                         kimage_free_entry(entry);
573         }                                         638         }
574         /* Free the final indirection page */     639         /* Free the final indirection page */
575         if (ind & IND_INDIRECTION)                640         if (ind & IND_INDIRECTION)
576                 kimage_free_entry(ind);           641                 kimage_free_entry(ind);
577                                                   642 
578         /* Handle any machine specific cleanup    643         /* Handle any machine specific cleanup */
579         machine_kexec_cleanup(image);             644         machine_kexec_cleanup(image);
580                                                   645 
581         /* Free the kexec control pages... */     646         /* Free the kexec control pages... */
582         kimage_free_page_list(&image->control_    647         kimage_free_page_list(&image->control_pages);
583                                                   648 
584         /*                                        649         /*
585          * Free up any temporary buffers alloc    650          * Free up any temporary buffers allocated. This might hit if
586          * error occurred much later after buf    651          * error occurred much later after buffer allocation.
587          */                                       652          */
588         if (image->file_mode)                     653         if (image->file_mode)
589                 kimage_file_post_load_cleanup(    654                 kimage_file_post_load_cleanup(image);
590                                                   655 
591         kfree(image);                             656         kfree(image);
592 }                                                 657 }
593                                                   658 
594 static kimage_entry_t *kimage_dst_used(struct     659 static kimage_entry_t *kimage_dst_used(struct kimage *image,
595                                         unsign    660                                         unsigned long page)
596 {                                                 661 {
597         kimage_entry_t *ptr, entry;               662         kimage_entry_t *ptr, entry;
598         unsigned long destination = 0;            663         unsigned long destination = 0;
599                                                   664 
600         for_each_kimage_entry(image, ptr, entr    665         for_each_kimage_entry(image, ptr, entry) {
601                 if (entry & IND_DESTINATION)      666                 if (entry & IND_DESTINATION)
602                         destination = entry &     667                         destination = entry & PAGE_MASK;
603                 else if (entry & IND_SOURCE) {    668                 else if (entry & IND_SOURCE) {
604                         if (page == destinatio    669                         if (page == destination)
605                                 return ptr;       670                                 return ptr;
606                         destination += PAGE_SI    671                         destination += PAGE_SIZE;
607                 }                                 672                 }
608         }                                         673         }
609                                                   674 
610         return NULL;                              675         return NULL;
611 }                                                 676 }
612                                                   677 
613 static struct page *kimage_alloc_page(struct k    678 static struct page *kimage_alloc_page(struct kimage *image,
614                                         gfp_t     679                                         gfp_t gfp_mask,
615                                         unsign    680                                         unsigned long destination)
616 {                                                 681 {
617         /*                                        682         /*
618          * Here we implement safeguards to ens    683          * Here we implement safeguards to ensure that a source page
619          * is not copied to its destination pa    684          * is not copied to its destination page before the data on
620          * the destination page is no longer u    685          * the destination page is no longer useful.
621          *                                        686          *
622          * To do this we maintain the invarian    687          * To do this we maintain the invariant that a source page is
623          * either its own destination page, or    688          * either its own destination page, or it is not a
624          * destination page at all.               689          * destination page at all.
625          *                                        690          *
626          * That is slightly stronger than requ    691          * That is slightly stronger than required, but the proof
627          * that no problems will not occur is     692          * that no problems will not occur is trivial, and the
628          * implementation is simply to verify.    693          * implementation is simply to verify.
629          *                                        694          *
630          * When allocating all pages normally     695          * When allocating all pages normally this algorithm will run
631          * in O(N) time, but in the worst case    696          * in O(N) time, but in the worst case it will run in O(N^2)
632          * time.   If the runtime is a problem    697          * time.   If the runtime is a problem the data structures can
633          * be fixed.                              698          * be fixed.
634          */                                       699          */
635         struct page *page;                        700         struct page *page;
636         unsigned long addr;                       701         unsigned long addr;
637                                                   702 
638         /*                                        703         /*
639          * Walk through the list of destinatio    704          * Walk through the list of destination pages, and see if I
640          * have a match.                          705          * have a match.
641          */                                       706          */
642         list_for_each_entry(page, &image->dest    707         list_for_each_entry(page, &image->dest_pages, lru) {
643                 addr = page_to_boot_pfn(page)     708                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
644                 if (addr == destination) {        709                 if (addr == destination) {
645                         list_del(&page->lru);     710                         list_del(&page->lru);
646                         return page;              711                         return page;
647                 }                                 712                 }
648         }                                         713         }
649         page = NULL;                              714         page = NULL;
650         while (1) {                               715         while (1) {
651                 kimage_entry_t *old;              716                 kimage_entry_t *old;
652                                                   717 
653                 /* Allocate a page, if we run     718                 /* Allocate a page, if we run out of memory give up */
654                 page = kimage_alloc_pages(gfp_    719                 page = kimage_alloc_pages(gfp_mask, 0);
655                 if (!page)                        720                 if (!page)
656                         return NULL;              721                         return NULL;
657                 /* If the page cannot be used     722                 /* If the page cannot be used file it away */
658                 if (page_to_boot_pfn(page) >      723                 if (page_to_boot_pfn(page) >
659                                 (KEXEC_SOURCE_    724                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
660                         list_add(&page->lru, &    725                         list_add(&page->lru, &image->unusable_pages);
661                         continue;                 726                         continue;
662                 }                                 727                 }
663                 addr = page_to_boot_pfn(page)     728                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
664                                                   729 
665                 /* If it is the destination pa    730                 /* If it is the destination page we want use it */
666                 if (addr == destination)          731                 if (addr == destination)
667                         break;                    732                         break;
668                                                   733 
669                 /* If the page is not a destin    734                 /* If the page is not a destination page use it */
670                 if (!kimage_is_destination_ran    735                 if (!kimage_is_destination_range(image, addr,
671                                                !! 736                                                   addr + PAGE_SIZE))
672                         break;                    737                         break;
673                                                   738 
674                 /*                                739                 /*
675                  * I know that the page is som    740                  * I know that the page is someones destination page.
676                  * See if there is already a s    741                  * See if there is already a source page for this
677                  * destination page.  And if s    742                  * destination page.  And if so swap the source pages.
678                  */                               743                  */
679                 old = kimage_dst_used(image, a    744                 old = kimage_dst_used(image, addr);
680                 if (old) {                        745                 if (old) {
681                         /* If so move it */       746                         /* If so move it */
682                         unsigned long old_addr    747                         unsigned long old_addr;
683                         struct page *old_page;    748                         struct page *old_page;
684                                                   749 
685                         old_addr = *old & PAGE    750                         old_addr = *old & PAGE_MASK;
686                         old_page = boot_pfn_to    751                         old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
687                         copy_highpage(page, ol    752                         copy_highpage(page, old_page);
688                         *old = addr | (*old &     753                         *old = addr | (*old & ~PAGE_MASK);
689                                                   754 
690                         /* The old page I have    755                         /* The old page I have found cannot be a
691                          * destination page, s    756                          * destination page, so return it if it's
692                          * gfp_flags honor the    757                          * gfp_flags honor the ones passed in.
693                          */                       758                          */
694                         if (!(gfp_mask & __GFP    759                         if (!(gfp_mask & __GFP_HIGHMEM) &&
695                             PageHighMem(old_pa    760                             PageHighMem(old_page)) {
696                                 kimage_free_pa    761                                 kimage_free_pages(old_page);
697                                 continue;         762                                 continue;
698                         }                         763                         }
                                                   >> 764                         addr = old_addr;
699                         page = old_page;          765                         page = old_page;
700                         break;                    766                         break;
701                 }                                 767                 }
702                 /* Place the page on the desti    768                 /* Place the page on the destination list, to be used later */
703                 list_add(&page->lru, &image->d    769                 list_add(&page->lru, &image->dest_pages);
704         }                                         770         }
705                                                   771 
706         return page;                              772         return page;
707 }                                                 773 }
708                                                   774 
709 static int kimage_load_normal_segment(struct k    775 static int kimage_load_normal_segment(struct kimage *image,
710                                          struc    776                                          struct kexec_segment *segment)
711 {                                                 777 {
712         unsigned long maddr;                      778         unsigned long maddr;
713         size_t ubytes, mbytes;                    779         size_t ubytes, mbytes;
714         int result;                               780         int result;
715         unsigned char __user *buf = NULL;         781         unsigned char __user *buf = NULL;
716         unsigned char *kbuf = NULL;               782         unsigned char *kbuf = NULL;
717                                                   783 
                                                   >> 784         result = 0;
718         if (image->file_mode)                     785         if (image->file_mode)
719                 kbuf = segment->kbuf;             786                 kbuf = segment->kbuf;
720         else                                      787         else
721                 buf = segment->buf;               788                 buf = segment->buf;
722         ubytes = segment->bufsz;                  789         ubytes = segment->bufsz;
723         mbytes = segment->memsz;                  790         mbytes = segment->memsz;
724         maddr = segment->mem;                     791         maddr = segment->mem;
725                                                   792 
726         result = kimage_set_destination(image,    793         result = kimage_set_destination(image, maddr);
727         if (result < 0)                           794         if (result < 0)
728                 goto out;                         795                 goto out;
729                                                   796 
730         while (mbytes) {                          797         while (mbytes) {
731                 struct page *page;                798                 struct page *page;
732                 char *ptr;                        799                 char *ptr;
733                 size_t uchunk, mchunk;            800                 size_t uchunk, mchunk;
734                                                   801 
735                 page = kimage_alloc_page(image    802                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
736                 if (!page) {                      803                 if (!page) {
737                         result  = -ENOMEM;        804                         result  = -ENOMEM;
738                         goto out;                 805                         goto out;
739                 }                                 806                 }
740                 result = kimage_add_page(image    807                 result = kimage_add_page(image, page_to_boot_pfn(page)
741                                                   808                                                                 << PAGE_SHIFT);
742                 if (result < 0)                   809                 if (result < 0)
743                         goto out;                 810                         goto out;
744                                                   811 
745                 ptr = kmap_local_page(page);   !! 812                 ptr = kmap(page);
746                 /* Start with a clear page */     813                 /* Start with a clear page */
747                 clear_page(ptr);                  814                 clear_page(ptr);
748                 ptr += maddr & ~PAGE_MASK;        815                 ptr += maddr & ~PAGE_MASK;
749                 mchunk = min_t(size_t, mbytes,    816                 mchunk = min_t(size_t, mbytes,
750                                 PAGE_SIZE - (m    817                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
751                 uchunk = min(ubytes, mchunk);     818                 uchunk = min(ubytes, mchunk);
752                                                   819 
753                 if (uchunk) {                  !! 820                 /* For file based kexec, source pages are in kernel memory */
754                         /* For file based kexe !! 821                 if (image->file_mode)
755                         if (image->file_mode)  !! 822                         memcpy(ptr, kbuf, uchunk);
756                                 memcpy(ptr, kb !! 823                 else
757                         else                   !! 824                         result = copy_from_user(ptr, buf, uchunk);
758                                 result = copy_ !! 825                 kunmap(page);
759                         ubytes -= uchunk;      << 
760                         if (image->file_mode)  << 
761                                 kbuf += uchunk << 
762                         else                   << 
763                                 buf += uchunk; << 
764                 }                              << 
765                 kunmap_local(ptr);             << 
766                 if (result) {                     826                 if (result) {
767                         result = -EFAULT;         827                         result = -EFAULT;
768                         goto out;                 828                         goto out;
769                 }                                 829                 }
                                                   >> 830                 ubytes -= uchunk;
770                 maddr  += mchunk;                 831                 maddr  += mchunk;
                                                   >> 832                 if (image->file_mode)
                                                   >> 833                         kbuf += mchunk;
                                                   >> 834                 else
                                                   >> 835                         buf += mchunk;
771                 mbytes -= mchunk;                 836                 mbytes -= mchunk;
772                                                   837 
773                 cond_resched();                   838                 cond_resched();
774         }                                         839         }
775 out:                                              840 out:
776         return result;                            841         return result;
777 }                                                 842 }
778                                                   843 
779 #ifdef CONFIG_CRASH_DUMP                       << 
780 static int kimage_load_crash_segment(struct ki    844 static int kimage_load_crash_segment(struct kimage *image,
781                                         struct    845                                         struct kexec_segment *segment)
782 {                                                 846 {
783         /* For crash dumps kernels we simply c    847         /* For crash dumps kernels we simply copy the data from
784          * user space to it's destination.        848          * user space to it's destination.
785          * We do things a page at a time for t    849          * We do things a page at a time for the sake of kmap.
786          */                                       850          */
787         unsigned long maddr;                      851         unsigned long maddr;
788         size_t ubytes, mbytes;                    852         size_t ubytes, mbytes;
789         int result;                               853         int result;
790         unsigned char __user *buf = NULL;         854         unsigned char __user *buf = NULL;
791         unsigned char *kbuf = NULL;               855         unsigned char *kbuf = NULL;
792                                                   856 
793         result = 0;                               857         result = 0;
794         if (image->file_mode)                     858         if (image->file_mode)
795                 kbuf = segment->kbuf;             859                 kbuf = segment->kbuf;
796         else                                      860         else
797                 buf = segment->buf;               861                 buf = segment->buf;
798         ubytes = segment->bufsz;                  862         ubytes = segment->bufsz;
799         mbytes = segment->memsz;                  863         mbytes = segment->memsz;
800         maddr = segment->mem;                     864         maddr = segment->mem;
801         while (mbytes) {                          865         while (mbytes) {
802                 struct page *page;                866                 struct page *page;
803                 char *ptr;                        867                 char *ptr;
804                 size_t uchunk, mchunk;            868                 size_t uchunk, mchunk;
805                                                   869 
806                 page = boot_pfn_to_page(maddr     870                 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
807                 if (!page) {                      871                 if (!page) {
808                         result  = -ENOMEM;        872                         result  = -ENOMEM;
809                         goto out;                 873                         goto out;
810                 }                                 874                 }
811                 arch_kexec_post_alloc_pages(pa    875                 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
812                 ptr = kmap_local_page(page);   !! 876                 ptr = kmap(page);
813                 ptr += maddr & ~PAGE_MASK;        877                 ptr += maddr & ~PAGE_MASK;
814                 mchunk = min_t(size_t, mbytes,    878                 mchunk = min_t(size_t, mbytes,
815                                 PAGE_SIZE - (m    879                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
816                 uchunk = min(ubytes, mchunk);     880                 uchunk = min(ubytes, mchunk);
817                 if (mchunk > uchunk) {            881                 if (mchunk > uchunk) {
818                         /* Zero the trailing p    882                         /* Zero the trailing part of the page */
819                         memset(ptr + uchunk, 0    883                         memset(ptr + uchunk, 0, mchunk - uchunk);
820                 }                                 884                 }
821                                                   885 
822                 if (uchunk) {                  !! 886                 /* For file based kexec, source pages are in kernel memory */
823                         /* For file based kexe !! 887                 if (image->file_mode)
824                         if (image->file_mode)  !! 888                         memcpy(ptr, kbuf, uchunk);
825                                 memcpy(ptr, kb !! 889                 else
826                         else                   !! 890                         result = copy_from_user(ptr, buf, uchunk);
827                                 result = copy_ << 
828                         ubytes -= uchunk;      << 
829                         if (image->file_mode)  << 
830                                 kbuf += uchunk << 
831                         else                   << 
832                                 buf += uchunk; << 
833                 }                              << 
834                 kexec_flush_icache_page(page);    891                 kexec_flush_icache_page(page);
835                 kunmap_local(ptr);             !! 892                 kunmap(page);
836                 arch_kexec_pre_free_pages(page    893                 arch_kexec_pre_free_pages(page_address(page), 1);
837                 if (result) {                     894                 if (result) {
838                         result = -EFAULT;         895                         result = -EFAULT;
839                         goto out;                 896                         goto out;
840                 }                                 897                 }
                                                   >> 898                 ubytes -= uchunk;
841                 maddr  += mchunk;                 899                 maddr  += mchunk;
                                                   >> 900                 if (image->file_mode)
                                                   >> 901                         kbuf += mchunk;
                                                   >> 902                 else
                                                   >> 903                         buf += mchunk;
842                 mbytes -= mchunk;                 904                 mbytes -= mchunk;
843                                                   905 
844                 cond_resched();                   906                 cond_resched();
845         }                                         907         }
846 out:                                              908 out:
847         return result;                            909         return result;
848 }                                                 910 }
849 #endif                                         << 
850                                                   911 
851 int kimage_load_segment(struct kimage *image,     912 int kimage_load_segment(struct kimage *image,
852                                 struct kexec_s    913                                 struct kexec_segment *segment)
853 {                                                 914 {
854         int result = -ENOMEM;                     915         int result = -ENOMEM;
855                                                   916 
856         switch (image->type) {                    917         switch (image->type) {
857         case KEXEC_TYPE_DEFAULT:                  918         case KEXEC_TYPE_DEFAULT:
858                 result = kimage_load_normal_se    919                 result = kimage_load_normal_segment(image, segment);
859                 break;                            920                 break;
860 #ifdef CONFIG_CRASH_DUMP                       << 
861         case KEXEC_TYPE_CRASH:                    921         case KEXEC_TYPE_CRASH:
862                 result = kimage_load_crash_seg    922                 result = kimage_load_crash_segment(image, segment);
863                 break;                            923                 break;
864 #endif                                         << 
865         }                                         924         }
866                                                   925 
867         return result;                            926         return result;
868 }                                                 927 }
869                                                   928 
870 struct kexec_load_limit {                      << 
871         /* Mutex protects the limit count. */  << 
872         struct mutex mutex;                    << 
873         int limit;                             << 
874 };                                             << 
875                                                << 
876 static struct kexec_load_limit load_limit_rebo << 
877         .mutex = __MUTEX_INITIALIZER(load_limi << 
878         .limit = -1,                           << 
879 };                                             << 
880                                                << 
881 static struct kexec_load_limit load_limit_pani << 
882         .mutex = __MUTEX_INITIALIZER(load_limi << 
883         .limit = -1,                           << 
884 };                                             << 
885                                                << 
886 struct kimage *kexec_image;                       929 struct kimage *kexec_image;
887 struct kimage *kexec_crash_image;                 930 struct kimage *kexec_crash_image;
888 static int kexec_load_disabled;                !! 931 int kexec_load_disabled;
889                                                   932 
890 #ifdef CONFIG_SYSCTL                           !! 933 /*
891 static int kexec_limit_handler(const struct ct !! 934  * No panic_cpu check version of crash_kexec().  This function is called
892                                void *buffer, s !! 935  * only when panic_cpu holds the current CPU number; this is the only CPU
893 {                                              !! 936  * which processes crash_kexec routines.
894         struct kexec_load_limit *limit = table !! 937  */
895         int val;                               !! 938 void __noclone __crash_kexec(struct pt_regs *regs)
896         struct ctl_table tmp = {               !! 939 {
897                 .data = &val,                  !! 940         /* Take the kexec_mutex here to prevent sys_kexec_load
898                 .maxlen = sizeof(val),         !! 941          * running on one cpu from replacing the crash kernel
899                 .mode = table->mode,           !! 942          * we are using after a panic on a different cpu.
900         };                                     !! 943          *
901         int ret;                               !! 944          * If the crash kernel was not located in a fixed area
902                                                !! 945          * of memory the xchg(&kexec_crash_image) would be
903         if (write) {                           !! 946          * sufficient.  But since I reuse the memory...
904                 ret = proc_dointvec(&tmp, writ !! 947          */
905                 if (ret)                       !! 948         if (mutex_trylock(&kexec_mutex)) {
906                         return ret;            !! 949                 if (kexec_crash_image) {
                                                   >> 950                         struct pt_regs fixed_regs;
                                                   >> 951 
                                                   >> 952                         crash_setup_regs(&fixed_regs, regs);
                                                   >> 953                         crash_save_vmcoreinfo();
                                                   >> 954                         machine_crash_shutdown(&fixed_regs);
                                                   >> 955                         machine_kexec(kexec_crash_image);
                                                   >> 956                 }
                                                   >> 957                 mutex_unlock(&kexec_mutex);
                                                   >> 958         }
                                                   >> 959 }
                                                   >> 960 STACK_FRAME_NON_STANDARD(__crash_kexec);
907                                                   961 
908                 if (val < 0)                   !! 962 void crash_kexec(struct pt_regs *regs)
909                         return -EINVAL;        !! 963 {
                                                   >> 964         int old_cpu, this_cpu;
910                                                   965 
911                 mutex_lock(&limit->mutex);     !! 966         /*
912                 if (limit->limit != -1 && val  !! 967          * Only one CPU is allowed to execute the crash_kexec() code as with
913                         ret = -EINVAL;         !! 968          * panic().  Otherwise parallel calls of panic() and crash_kexec()
914                 else                           !! 969          * may stop each other.  To exclude them, we use panic_cpu here too.
915                         limit->limit = val;    !! 970          */
916                 mutex_unlock(&limit->mutex);   !! 971         this_cpu = raw_smp_processor_id();
                                                   >> 972         old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
                                                   >> 973         if (old_cpu == PANIC_CPU_INVALID) {
                                                   >> 974                 /* This is the 1st CPU which comes here, so go ahead. */
                                                   >> 975                 printk_safe_flush_on_panic();
                                                   >> 976                 __crash_kexec(regs);
917                                                   977 
918                 return ret;                    !! 978                 /*
                                                   >> 979                  * Reset panic_cpu to allow another panic()/crash_kexec()
                                                   >> 980                  * call.
                                                   >> 981                  */
                                                   >> 982                 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
919         }                                         983         }
                                                   >> 984 }
920                                                   985 
921         mutex_lock(&limit->mutex);             !! 986 size_t crash_get_memory_size(void)
922         val = limit->limit;                    !! 987 {
923         mutex_unlock(&limit->mutex);           !! 988         size_t size = 0;
924                                                   989 
925         return proc_dointvec(&tmp, write, buff !! 990         mutex_lock(&kexec_mutex);
                                                   >> 991         if (crashk_res.end != crashk_res.start)
                                                   >> 992                 size = resource_size(&crashk_res);
                                                   >> 993         mutex_unlock(&kexec_mutex);
                                                   >> 994         return size;
926 }                                                 995 }
927                                                   996 
928 static struct ctl_table kexec_core_sysctls[] = !! 997 void __weak crash_free_reserved_phys_range(unsigned long begin,
929         {                                      !! 998                                            unsigned long end)
930                 .procname       = "kexec_load_ !! 999 {
931                 .data           = &kexec_load_ !! 1000         unsigned long addr;
932                 .maxlen         = sizeof(int), << 
933                 .mode           = 0644,        << 
934                 /* only handle a transition fr << 
935                 .proc_handler   = proc_dointve << 
936                 .extra1         = SYSCTL_ONE,  << 
937                 .extra2         = SYSCTL_ONE,  << 
938         },                                     << 
939         {                                      << 
940                 .procname       = "kexec_load_ << 
941                 .data           = &load_limit_ << 
942                 .mode           = 0644,        << 
943                 .proc_handler   = kexec_limit_ << 
944         },                                     << 
945         {                                      << 
946                 .procname       = "kexec_load_ << 
947                 .data           = &load_limit_ << 
948                 .mode           = 0644,        << 
949                 .proc_handler   = kexec_limit_ << 
950         },                                     << 
951 };                                             << 
952                                                   1001 
953 static int __init kexec_core_sysctl_init(void) !! 1002         for (addr = begin; addr < end; addr += PAGE_SIZE)
                                                   >> 1003                 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
                                                   >> 1004 }
                                                   >> 1005 
                                                   >> 1006 int crash_shrink_memory(unsigned long new_size)
954 {                                                 1007 {
955         register_sysctl_init("kernel", kexec_c !! 1008         int ret = 0;
956         return 0;                              !! 1009         unsigned long start, end;
                                                   >> 1010         unsigned long old_size;
                                                   >> 1011         struct resource *ram_res;
                                                   >> 1012 
                                                   >> 1013         mutex_lock(&kexec_mutex);
                                                   >> 1014 
                                                   >> 1015         if (kexec_crash_image) {
                                                   >> 1016                 ret = -ENOENT;
                                                   >> 1017                 goto unlock;
                                                   >> 1018         }
                                                   >> 1019         start = crashk_res.start;
                                                   >> 1020         end = crashk_res.end;
                                                   >> 1021         old_size = (end == 0) ? 0 : end - start + 1;
                                                   >> 1022         if (new_size >= old_size) {
                                                   >> 1023                 ret = (new_size == old_size) ? 0 : -EINVAL;
                                                   >> 1024                 goto unlock;
                                                   >> 1025         }
                                                   >> 1026 
                                                   >> 1027         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
                                                   >> 1028         if (!ram_res) {
                                                   >> 1029                 ret = -ENOMEM;
                                                   >> 1030                 goto unlock;
                                                   >> 1031         }
                                                   >> 1032 
                                                   >> 1033         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
                                                   >> 1034         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
                                                   >> 1035 
                                                   >> 1036         crash_free_reserved_phys_range(end, crashk_res.end);
                                                   >> 1037 
                                                   >> 1038         if ((start == end) && (crashk_res.parent != NULL))
                                                   >> 1039                 release_resource(&crashk_res);
                                                   >> 1040 
                                                   >> 1041         ram_res->start = end;
                                                   >> 1042         ram_res->end = crashk_res.end;
                                                   >> 1043         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
                                                   >> 1044         ram_res->name = "System RAM";
                                                   >> 1045 
                                                   >> 1046         crashk_res.end = end - 1;
                                                   >> 1047 
                                                   >> 1048         insert_resource(&iomem_resource, ram_res);
                                                   >> 1049 
                                                   >> 1050 unlock:
                                                   >> 1051         mutex_unlock(&kexec_mutex);
                                                   >> 1052         return ret;
957 }                                                 1053 }
958 late_initcall(kexec_core_sysctl_init);         << 
959 #endif                                         << 
960                                                   1054 
961 bool kexec_load_permitted(int kexec_image_type !! 1055 void crash_save_cpu(struct pt_regs *regs, int cpu)
                                                   >> 1056 {
                                                   >> 1057         struct elf_prstatus prstatus;
                                                   >> 1058         u32 *buf;
                                                   >> 1059 
                                                   >> 1060         if ((cpu < 0) || (cpu >= nr_cpu_ids))
                                                   >> 1061                 return;
                                                   >> 1062 
                                                   >> 1063         /* Using ELF notes here is opportunistic.
                                                   >> 1064          * I need a well defined structure format
                                                   >> 1065          * for the data I pass, and I need tags
                                                   >> 1066          * on the data to indicate what information I have
                                                   >> 1067          * squirrelled away.  ELF notes happen to provide
                                                   >> 1068          * all of that, so there is no need to invent something new.
                                                   >> 1069          */
                                                   >> 1070         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
                                                   >> 1071         if (!buf)
                                                   >> 1072                 return;
                                                   >> 1073         memset(&prstatus, 0, sizeof(prstatus));
                                                   >> 1074         prstatus.pr_pid = current->pid;
                                                   >> 1075         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
                                                   >> 1076         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
                                                   >> 1077                               &prstatus, sizeof(prstatus));
                                                   >> 1078         final_note(buf);
                                                   >> 1079 }
                                                   >> 1080 
                                                   >> 1081 static int __init crash_notes_memory_init(void)
962 {                                                 1082 {
963         struct kexec_load_limit *limit;        !! 1083         /* Allocate memory for saving cpu registers. */
                                                   >> 1084         size_t size, align;
964                                                   1085 
965         /*                                        1086         /*
966          * Only the superuser can use the kexe !! 1087          * crash_notes could be allocated across 2 vmalloc pages when percpu
967          * been disabled.                      !! 1088          * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
                                                   >> 1089          * pages are also on 2 continuous physical pages. In this case the
                                                   >> 1090          * 2nd part of crash_notes in 2nd page could be lost since only the
                                                   >> 1091          * starting address and size of crash_notes are exported through sysfs.
                                                   >> 1092          * Here round up the size of crash_notes to the nearest power of two
                                                   >> 1093          * and pass it to __alloc_percpu as align value. This can make sure
                                                   >> 1094          * crash_notes is allocated inside one physical page.
968          */                                       1095          */
969         if (!capable(CAP_SYS_BOOT) || kexec_lo !! 1096         size = sizeof(note_buf_t);
970                 return false;                  !! 1097         align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
971                                                   1098 
972         /* Check limit counter and decrease it !! 1099         /*
973         limit = (kexec_image_type == KEXEC_TYP !! 1100          * Break compile if size is bigger than PAGE_SIZE since crash_notes
974                 &load_limit_panic : &load_limi !! 1101          * definitely will be in 2 pages with that.
975         mutex_lock(&limit->mutex);             !! 1102          */
976         if (!limit->limit) {                   !! 1103         BUILD_BUG_ON(size > PAGE_SIZE);
977                 mutex_unlock(&limit->mutex);   << 
978                 return false;                  << 
979         }                                      << 
980         if (limit->limit != -1)                << 
981                 limit->limit--;                << 
982         mutex_unlock(&limit->mutex);           << 
983                                                   1104 
984         return true;                           !! 1105         crash_notes = __alloc_percpu(size, align);
                                                   >> 1106         if (!crash_notes) {
                                                   >> 1107                 pr_warn("Memory allocation for saving cpu register states failed\n");
                                                   >> 1108                 return -ENOMEM;
                                                   >> 1109         }
                                                   >> 1110         return 0;
985 }                                                 1111 }
                                                   >> 1112 subsys_initcall(crash_notes_memory_init);
                                                   >> 1113 
986                                                   1114 
987 /*                                                1115 /*
988  * Move into place and start executing a prelo    1116  * Move into place and start executing a preloaded standalone
989  * executable.  If nothing was preloaded retur    1117  * executable.  If nothing was preloaded return an error.
990  */                                               1118  */
991 int kernel_kexec(void)                            1119 int kernel_kexec(void)
992 {                                                 1120 {
993         int error = 0;                            1121         int error = 0;
994                                                   1122 
995         if (!kexec_trylock())                  !! 1123         if (!mutex_trylock(&kexec_mutex))
996                 return -EBUSY;                    1124                 return -EBUSY;
997         if (!kexec_image) {                       1125         if (!kexec_image) {
998                 error = -EINVAL;                  1126                 error = -EINVAL;
999                 goto Unlock;                      1127                 goto Unlock;
1000         }                                        1128         }
1001                                                  1129 
1002 #ifdef CONFIG_KEXEC_JUMP                         1130 #ifdef CONFIG_KEXEC_JUMP
1003         if (kexec_image->preserve_context) {     1131         if (kexec_image->preserve_context) {
                                                   >> 1132                 lock_system_sleep();
1004                 pm_prepare_console();            1133                 pm_prepare_console();
1005                 error = freeze_processes();      1134                 error = freeze_processes();
1006                 if (error) {                     1135                 if (error) {
1007                         error = -EBUSY;          1136                         error = -EBUSY;
1008                         goto Restore_console;    1137                         goto Restore_console;
1009                 }                                1138                 }
1010                 suspend_console();               1139                 suspend_console();
1011                 error = dpm_suspend_start(PMS    1140                 error = dpm_suspend_start(PMSG_FREEZE);
1012                 if (error)                       1141                 if (error)
1013                         goto Resume_console;     1142                         goto Resume_console;
1014                 /* At this point, dpm_suspend    1143                 /* At this point, dpm_suspend_start() has been called,
1015                  * but *not* dpm_suspend_end(    1144                  * but *not* dpm_suspend_end(). We *must* call
1016                  * dpm_suspend_end() now.  Ot    1145                  * dpm_suspend_end() now.  Otherwise, drivers for
1017                  * some devices (e.g. interru    1146                  * some devices (e.g. interrupt controllers) become
1018                  * desynchronized with the ac    1147                  * desynchronized with the actual state of the
1019                  * hardware at resume time, a    1148                  * hardware at resume time, and evil weirdness ensues.
1020                  */                              1149                  */
1021                 error = dpm_suspend_end(PMSG_    1150                 error = dpm_suspend_end(PMSG_FREEZE);
1022                 if (error)                       1151                 if (error)
1023                         goto Resume_devices;     1152                         goto Resume_devices;
1024                 error = suspend_disable_secon    1153                 error = suspend_disable_secondary_cpus();
1025                 if (error)                       1154                 if (error)
1026                         goto Enable_cpus;        1155                         goto Enable_cpus;
1027                 local_irq_disable();             1156                 local_irq_disable();
1028                 error = syscore_suspend();       1157                 error = syscore_suspend();
1029                 if (error)                       1158                 if (error)
1030                         goto Enable_irqs;        1159                         goto Enable_irqs;
1031         } else                                   1160         } else
1032 #endif                                           1161 #endif
1033         {                                        1162         {
1034                 kexec_in_progress = true;        1163                 kexec_in_progress = true;
1035                 kernel_restart_prepare("kexec !! 1164                 kernel_restart_prepare(NULL);
1036                 migrate_to_reboot_cpu();         1165                 migrate_to_reboot_cpu();
1037                 syscore_shutdown();           << 
1038                                                  1166 
1039                 /*                               1167                 /*
1040                  * migrate_to_reboot_cpu() di    1168                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1041                  * no further code needs to u    1169                  * no further code needs to use CPU hotplug (which is true in
1042                  * the reboot case). However,    1170                  * the reboot case). However, the kexec path depends on using
1043                  * CPU hotplug again; so re-e    1171                  * CPU hotplug again; so re-enable it here.
1044                  */                              1172                  */
1045                 cpu_hotplug_enable();            1173                 cpu_hotplug_enable();
1046                 pr_notice("Starting new kerne !! 1174                 pr_emerg("Starting new kernel\n");
1047                 machine_shutdown();              1175                 machine_shutdown();
1048         }                                        1176         }
1049                                                  1177 
1050         kmsg_dump(KMSG_DUMP_SHUTDOWN);        << 
1051         machine_kexec(kexec_image);              1178         machine_kexec(kexec_image);
1052                                                  1179 
1053 #ifdef CONFIG_KEXEC_JUMP                         1180 #ifdef CONFIG_KEXEC_JUMP
1054         if (kexec_image->preserve_context) {     1181         if (kexec_image->preserve_context) {
1055                 syscore_resume();                1182                 syscore_resume();
1056  Enable_irqs:                                    1183  Enable_irqs:
1057                 local_irq_enable();              1184                 local_irq_enable();
1058  Enable_cpus:                                    1185  Enable_cpus:
1059                 suspend_enable_secondary_cpus    1186                 suspend_enable_secondary_cpus();
1060                 dpm_resume_start(PMSG_RESTORE    1187                 dpm_resume_start(PMSG_RESTORE);
1061  Resume_devices:                                 1188  Resume_devices:
1062                 dpm_resume_end(PMSG_RESTORE);    1189                 dpm_resume_end(PMSG_RESTORE);
1063  Resume_console:                                 1190  Resume_console:
1064                 resume_console();                1191                 resume_console();
1065                 thaw_processes();                1192                 thaw_processes();
1066  Restore_console:                                1193  Restore_console:
1067                 pm_restore_console();            1194                 pm_restore_console();
                                                   >> 1195                 unlock_system_sleep();
1068         }                                        1196         }
1069 #endif                                           1197 #endif
1070                                                  1198 
1071  Unlock:                                         1199  Unlock:
1072         kexec_unlock();                       !! 1200         mutex_unlock(&kexec_mutex);
1073         return error;                            1201         return error;
1074 }                                                1202 }
                                                   >> 1203 
                                                   >> 1204 /*
                                                   >> 1205  * Protection mechanism for crashkernel reserved memory after
                                                   >> 1206  * the kdump kernel is loaded.
                                                   >> 1207  *
                                                   >> 1208  * Provide an empty default implementation here -- architecture
                                                   >> 1209  * code may override this
                                                   >> 1210  */
                                                   >> 1211 void __weak arch_kexec_protect_crashkres(void)
                                                   >> 1212 {}
                                                   >> 1213 
                                                   >> 1214 void __weak arch_kexec_unprotect_crashkres(void)
                                                   >> 1215 {}
1075                                                  1216 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php