1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * kexec.c - kexec system call core code. 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <eb 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 5 */ 6 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 8 9 #include <linux/btf.h> 9 #include <linux/btf.h> 10 #include <linux/capability.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 42 #include <linux/kmsg_dump.h> 43 43 44 #include <asm/page.h> 44 #include <asm/page.h> 45 #include <asm/sections.h> 45 #include <asm/sections.h> 46 46 47 #include <crypto/hash.h> 47 #include <crypto/hash.h> 48 #include "kexec_internal.h" 48 #include "kexec_internal.h" 49 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 51 51 >> 52 /* Per cpu memory for storing cpu states in case of system crash. */ >> 53 note_buf_t __percpu *crash_notes; >> 54 52 /* Flag to indicate we are going to kexec a ne 55 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 56 bool kexec_in_progress = false; 54 57 55 bool kexec_file_dbg_print; !! 58 >> 59 /* Location of the reserved area for the crash kernel */ >> 60 struct resource crashk_res = { >> 61 .name = "Crash kernel", >> 62 .start = 0, >> 63 .end = 0, >> 64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 65 .desc = IORES_DESC_CRASH_KERNEL >> 66 }; >> 67 struct resource crashk_low_res = { >> 68 .name = "Crash kernel", >> 69 .start = 0, >> 70 .end = 0, >> 71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, >> 72 .desc = IORES_DESC_CRASH_KERNEL >> 73 }; >> 74 >> 75 int kexec_should_crash(struct task_struct *p) >> 76 { >> 77 /* >> 78 * If crash_kexec_post_notifiers is enabled, don't run >> 79 * crash_kexec() here yet, which must be run after panic >> 80 * notifiers in panic(). >> 81 */ >> 82 if (crash_kexec_post_notifiers) >> 83 return 0; >> 84 /* >> 85 * There are 4 panic() calls in make_task_dead() path, each of which >> 86 * corresponds to each of these 4 conditions. >> 87 */ >> 88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) >> 89 return 1; >> 90 return 0; >> 91 } >> 92 >> 93 int kexec_crash_loaded(void) >> 94 { >> 95 return !!kexec_crash_image; >> 96 } >> 97 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 56 98 57 /* 99 /* 58 * When kexec transitions to the new kernel th 100 * When kexec transitions to the new kernel there is a one-to-one 59 * mapping between physical and virtual addres 101 * mapping between physical and virtual addresses. On processors 60 * where you can disable the MMU this is trivi 102 * where you can disable the MMU this is trivial, and easy. For 61 * others it is still a simple predictable pag 103 * others it is still a simple predictable page table to setup. 62 * 104 * 63 * In that environment kexec copies the new ke 105 * In that environment kexec copies the new kernel to its final 64 * resting place. This means I can only suppo 106 * resting place. This means I can only support memory whose 65 * physical address can fit in an unsigned lon 107 * physical address can fit in an unsigned long. In particular 66 * addresses where (pfn << PAGE_SHIFT) > ULONG 108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 67 * If the assembly stub has more restrictive r 109 * If the assembly stub has more restrictive requirements 68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME 110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 69 * defined more restrictively in <asm/kexec.h> 111 * defined more restrictively in <asm/kexec.h>. 70 * 112 * 71 * The code for the transition from the curren 113 * The code for the transition from the current kernel to the 72 * new kernel is placed in the control_code_bu 114 * new kernel is placed in the control_code_buffer, whose size 73 * is given by KEXEC_CONTROL_PAGE_SIZE. In th 115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 74 * page of memory is necessary, but some archi 116 * page of memory is necessary, but some architectures require more. 75 * Because this memory must be identity mapped 117 * Because this memory must be identity mapped in the transition from 76 * virtual to physical addresses it must live 118 * virtual to physical addresses it must live in the range 77 * 0 - TASK_SIZE, as only the user space mappi 119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 78 * modifiable. 120 * modifiable. 79 * 121 * 80 * The assembly stub in the control code buffe 122 * The assembly stub in the control code buffer is passed a linked list 81 * of descriptor pages detailing the source pa 123 * of descriptor pages detailing the source pages of the new kernel, 82 * and the destination addresses of those sour 124 * and the destination addresses of those source pages. As this data 83 * structure is not used in the context of the 125 * structure is not used in the context of the current OS, it must 84 * be self-contained. 126 * be self-contained. 85 * 127 * 86 * The code has been made to work with highmem 128 * The code has been made to work with highmem pages and will use a 87 * destination page in its final resting place 129 * destination page in its final resting place (if it happens 88 * to allocate it). The end product of this i 130 * to allocate it). The end product of this is that most of the 89 * physical address space, and most of RAM can 131 * physical address space, and most of RAM can be used. 90 * 132 * 91 * Future directions include: 133 * Future directions include: 92 * - allocating a page table with the control 134 * - allocating a page table with the control code buffer identity 93 * mapped, to simplify machine_kexec and ma 135 * mapped, to simplify machine_kexec and make kexec_on_panic more 94 * reliable. 136 * reliable. 95 */ 137 */ 96 138 97 /* 139 /* 98 * KIMAGE_NO_DEST is an impossible destination 140 * KIMAGE_NO_DEST is an impossible destination address..., for 99 * allocating pages whose destination address 141 * allocating pages whose destination address we do not care about. 100 */ 142 */ 101 #define KIMAGE_NO_DEST (-1UL) 143 #define KIMAGE_NO_DEST (-1UL) 102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) > 144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 103 145 104 static struct page *kimage_alloc_page(struct k 146 static struct page *kimage_alloc_page(struct kimage *image, 105 gfp_t g 147 gfp_t gfp_mask, 106 unsigne 148 unsigned long dest); 107 149 108 int sanity_check_segment_list(struct kimage *i 150 int sanity_check_segment_list(struct kimage *image) 109 { 151 { 110 int i; 152 int i; 111 unsigned long nr_segments = image->nr_ 153 unsigned long nr_segments = image->nr_segments; 112 unsigned long total_pages = 0; 154 unsigned long total_pages = 0; 113 unsigned long nr_pages = totalram_page 155 unsigned long nr_pages = totalram_pages(); 114 156 115 /* 157 /* 116 * Verify we have good destination add 158 * Verify we have good destination addresses. The caller is 117 * responsible for making certain we d 159 * responsible for making certain we don't attempt to load 118 * the new image into invalid or reser 160 * the new image into invalid or reserved areas of RAM. This 119 * just verifies it is an address we c 161 * just verifies it is an address we can use. 120 * 162 * 121 * Since the kernel does everything in 163 * Since the kernel does everything in page size chunks ensure 122 * the destination addresses are page 164 * the destination addresses are page aligned. Too many 123 * special cases crop of when we don't 165 * special cases crop of when we don't do this. The most 124 * insidious is getting overlapping de 166 * insidious is getting overlapping destination addresses 125 * simply because addresses are change 167 * simply because addresses are changed to page size 126 * granularity. 168 * granularity. 127 */ 169 */ 128 for (i = 0; i < nr_segments; i++) { 170 for (i = 0; i < nr_segments; i++) { 129 unsigned long mstart, mend; 171 unsigned long mstart, mend; 130 172 131 mstart = image->segment[i].mem 173 mstart = image->segment[i].mem; 132 mend = mstart + image->segme 174 mend = mstart + image->segment[i].memsz; 133 if (mstart > mend) 175 if (mstart > mend) 134 return -EADDRNOTAVAIL; 176 return -EADDRNOTAVAIL; 135 if ((mstart & ~PAGE_MASK) || ( 177 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 136 return -EADDRNOTAVAIL; 178 return -EADDRNOTAVAIL; 137 if (mend >= KEXEC_DESTINATION_ 179 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 138 return -EADDRNOTAVAIL; 180 return -EADDRNOTAVAIL; 139 } 181 } 140 182 141 /* Verify our destination addresses do 183 /* Verify our destination addresses do not overlap. 142 * If we alloed overlapping destinatio 184 * If we alloed overlapping destination addresses 143 * through very weird things can happe 185 * through very weird things can happen with no 144 * easy explanation as one segment sto 186 * easy explanation as one segment stops on another. 145 */ 187 */ 146 for (i = 0; i < nr_segments; i++) { 188 for (i = 0; i < nr_segments; i++) { 147 unsigned long mstart, mend; 189 unsigned long mstart, mend; 148 unsigned long j; 190 unsigned long j; 149 191 150 mstart = image->segment[i].mem 192 mstart = image->segment[i].mem; 151 mend = mstart + image->segme 193 mend = mstart + image->segment[i].memsz; 152 for (j = 0; j < i; j++) { 194 for (j = 0; j < i; j++) { 153 unsigned long pstart, 195 unsigned long pstart, pend; 154 196 155 pstart = image->segmen 197 pstart = image->segment[j].mem; 156 pend = pstart + imag 198 pend = pstart + image->segment[j].memsz; 157 /* Do the segments ove 199 /* Do the segments overlap ? */ 158 if ((mend > pstart) && 200 if ((mend > pstart) && (mstart < pend)) 159 return -EINVAL 201 return -EINVAL; 160 } 202 } 161 } 203 } 162 204 163 /* Ensure our buffer sizes are strictl 205 /* Ensure our buffer sizes are strictly less than 164 * our memory sizes. This should alwa 206 * our memory sizes. This should always be the case, 165 * and it is easier to check up front 207 * and it is easier to check up front than to be surprised 166 * later on. 208 * later on. 167 */ 209 */ 168 for (i = 0; i < nr_segments; i++) { 210 for (i = 0; i < nr_segments; i++) { 169 if (image->segment[i].bufsz > 211 if (image->segment[i].bufsz > image->segment[i].memsz) 170 return -EINVAL; 212 return -EINVAL; 171 } 213 } 172 214 173 /* 215 /* 174 * Verify that no more than half of me 216 * Verify that no more than half of memory will be consumed. If the 175 * request from userspace is too large 217 * request from userspace is too large, a large amount of time will be 176 * wasted allocating pages, which can 218 * wasted allocating pages, which can cause a soft lockup. 177 */ 219 */ 178 for (i = 0; i < nr_segments; i++) { 220 for (i = 0; i < nr_segments; i++) { 179 if (PAGE_COUNT(image->segment[ 221 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 180 return -EINVAL; 222 return -EINVAL; 181 223 182 total_pages += PAGE_COUNT(imag 224 total_pages += PAGE_COUNT(image->segment[i].memsz); 183 } 225 } 184 226 185 if (total_pages > nr_pages / 2) 227 if (total_pages > nr_pages / 2) 186 return -EINVAL; 228 return -EINVAL; 187 229 188 #ifdef CONFIG_CRASH_DUMP << 189 /* 230 /* 190 * Verify we have good destination add 231 * Verify we have good destination addresses. Normally 191 * the caller is responsible for makin 232 * the caller is responsible for making certain we don't 192 * attempt to load the new image into 233 * attempt to load the new image into invalid or reserved 193 * areas of RAM. But crash kernels ar 234 * areas of RAM. But crash kernels are preloaded into a 194 * reserved area of ram. We must ensu 235 * reserved area of ram. We must ensure the addresses 195 * are in the reserved area otherwise 236 * are in the reserved area otherwise preloading the 196 * kernel could corrupt things. 237 * kernel could corrupt things. 197 */ 238 */ 198 239 199 if (image->type == KEXEC_TYPE_CRASH) { 240 if (image->type == KEXEC_TYPE_CRASH) { 200 for (i = 0; i < nr_segments; i 241 for (i = 0; i < nr_segments; i++) { 201 unsigned long mstart, 242 unsigned long mstart, mend; 202 243 203 mstart = image->segmen 244 mstart = image->segment[i].mem; 204 mend = mstart + image- 245 mend = mstart + image->segment[i].memsz - 1; 205 /* Ensure we are withi 246 /* Ensure we are within the crash kernel limits */ 206 if ((mstart < phys_to_ 247 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 207 (mend > phys_to_bo 248 (mend > phys_to_boot_phys(crashk_res.end))) 208 return -EADDRN 249 return -EADDRNOTAVAIL; 209 } 250 } 210 } 251 } 211 #endif << 212 252 213 return 0; 253 return 0; 214 } 254 } 215 255 216 struct kimage *do_kimage_alloc_init(void) 256 struct kimage *do_kimage_alloc_init(void) 217 { 257 { 218 struct kimage *image; 258 struct kimage *image; 219 259 220 /* Allocate a controlling structure */ 260 /* Allocate a controlling structure */ 221 image = kzalloc(sizeof(*image), GFP_KE 261 image = kzalloc(sizeof(*image), GFP_KERNEL); 222 if (!image) 262 if (!image) 223 return NULL; 263 return NULL; 224 264 225 image->head = 0; 265 image->head = 0; 226 image->entry = &image->head; 266 image->entry = &image->head; 227 image->last_entry = &image->head; 267 image->last_entry = &image->head; 228 image->control_page = ~0; /* By defaul 268 image->control_page = ~0; /* By default this does not apply */ 229 image->type = KEXEC_TYPE_DEFAULT; 269 image->type = KEXEC_TYPE_DEFAULT; 230 270 231 /* Initialize the list of control page 271 /* Initialize the list of control pages */ 232 INIT_LIST_HEAD(&image->control_pages); 272 INIT_LIST_HEAD(&image->control_pages); 233 273 234 /* Initialize the list of destination 274 /* Initialize the list of destination pages */ 235 INIT_LIST_HEAD(&image->dest_pages); 275 INIT_LIST_HEAD(&image->dest_pages); 236 276 237 /* Initialize the list of unusable pag 277 /* Initialize the list of unusable pages */ 238 INIT_LIST_HEAD(&image->unusable_pages) 278 INIT_LIST_HEAD(&image->unusable_pages); 239 279 240 #ifdef CONFIG_CRASH_HOTPLUG << 241 image->hp_action = KEXEC_CRASH_HP_NONE << 242 image->elfcorehdr_index = -1; << 243 image->elfcorehdr_updated = false; << 244 #endif << 245 << 246 return image; 280 return image; 247 } 281 } 248 282 249 int kimage_is_destination_range(struct kimage 283 int kimage_is_destination_range(struct kimage *image, 250 unsign 284 unsigned long start, 251 unsign 285 unsigned long end) 252 { 286 { 253 unsigned long i; 287 unsigned long i; 254 288 255 for (i = 0; i < image->nr_segments; i+ 289 for (i = 0; i < image->nr_segments; i++) { 256 unsigned long mstart, mend; 290 unsigned long mstart, mend; 257 291 258 mstart = image->segment[i].mem 292 mstart = image->segment[i].mem; 259 mend = mstart + image->segment !! 293 mend = mstart + image->segment[i].memsz; 260 if ((end >= mstart) && (start !! 294 if ((end > mstart) && (start < mend)) 261 return 1; 295 return 1; 262 } 296 } 263 297 264 return 0; 298 return 0; 265 } 299 } 266 300 267 static struct page *kimage_alloc_pages(gfp_t g 301 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 268 { 302 { 269 struct page *pages; 303 struct page *pages; 270 304 271 if (fatal_signal_pending(current)) 305 if (fatal_signal_pending(current)) 272 return NULL; 306 return NULL; 273 pages = alloc_pages(gfp_mask & ~__GFP_ 307 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 274 if (pages) { 308 if (pages) { 275 unsigned int count, i; 309 unsigned int count, i; 276 310 277 pages->mapping = NULL; 311 pages->mapping = NULL; 278 set_page_private(pages, order) 312 set_page_private(pages, order); 279 count = 1 << order; 313 count = 1 << order; 280 for (i = 0; i < count; i++) 314 for (i = 0; i < count; i++) 281 SetPageReserved(pages 315 SetPageReserved(pages + i); 282 316 283 arch_kexec_post_alloc_pages(pa 317 arch_kexec_post_alloc_pages(page_address(pages), count, 284 gf 318 gfp_mask); 285 319 286 if (gfp_mask & __GFP_ZERO) 320 if (gfp_mask & __GFP_ZERO) 287 for (i = 0; i < count; 321 for (i = 0; i < count; i++) 288 clear_highpage 322 clear_highpage(pages + i); 289 } 323 } 290 324 291 return pages; 325 return pages; 292 } 326 } 293 327 294 static void kimage_free_pages(struct page *pag 328 static void kimage_free_pages(struct page *page) 295 { 329 { 296 unsigned int order, count, i; 330 unsigned int order, count, i; 297 331 298 order = page_private(page); 332 order = page_private(page); 299 count = 1 << order; 333 count = 1 << order; 300 334 301 arch_kexec_pre_free_pages(page_address 335 arch_kexec_pre_free_pages(page_address(page), count); 302 336 303 for (i = 0; i < count; i++) 337 for (i = 0; i < count; i++) 304 ClearPageReserved(page + i); 338 ClearPageReserved(page + i); 305 __free_pages(page, order); 339 __free_pages(page, order); 306 } 340 } 307 341 308 void kimage_free_page_list(struct list_head *l 342 void kimage_free_page_list(struct list_head *list) 309 { 343 { 310 struct page *page, *next; 344 struct page *page, *next; 311 345 312 list_for_each_entry_safe(page, next, l 346 list_for_each_entry_safe(page, next, list, lru) { 313 list_del(&page->lru); 347 list_del(&page->lru); 314 kimage_free_pages(page); 348 kimage_free_pages(page); 315 } 349 } 316 } 350 } 317 351 318 static struct page *kimage_alloc_normal_contro 352 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 319 353 unsigned int order) 320 { 354 { 321 /* Control pages are special, they are 355 /* Control pages are special, they are the intermediaries 322 * that are needed while we copy the r 356 * that are needed while we copy the rest of the pages 323 * to their final resting place. As s 357 * to their final resting place. As such they must 324 * not conflict with either the destin 358 * not conflict with either the destination addresses 325 * or memory the kernel is already usi 359 * or memory the kernel is already using. 326 * 360 * 327 * The only case where we really need 361 * The only case where we really need more than one of 328 * these are for architectures where w 362 * these are for architectures where we cannot disable 329 * the MMU and must instead generate a 363 * the MMU and must instead generate an identity mapped 330 * page table for all of the memory. 364 * page table for all of the memory. 331 * 365 * 332 * At worst this runs in O(N) of the i 366 * At worst this runs in O(N) of the image size. 333 */ 367 */ 334 struct list_head extra_pages; 368 struct list_head extra_pages; 335 struct page *pages; 369 struct page *pages; 336 unsigned int count; 370 unsigned int count; 337 371 338 count = 1 << order; 372 count = 1 << order; 339 INIT_LIST_HEAD(&extra_pages); 373 INIT_LIST_HEAD(&extra_pages); 340 374 341 /* Loop while I can allocate a page an 375 /* Loop while I can allocate a page and the page allocated 342 * is a destination page. 376 * is a destination page. 343 */ 377 */ 344 do { 378 do { 345 unsigned long pfn, epfn, addr, 379 unsigned long pfn, epfn, addr, eaddr; 346 380 347 pages = kimage_alloc_pages(KEX 381 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 348 if (!pages) 382 if (!pages) 349 break; 383 break; 350 pfn = page_to_boot_pfn(pages 384 pfn = page_to_boot_pfn(pages); 351 epfn = pfn + count; 385 epfn = pfn + count; 352 addr = pfn << PAGE_SHIFT; 386 addr = pfn << PAGE_SHIFT; 353 eaddr = (epfn << PAGE_SHIFT) - !! 387 eaddr = epfn << PAGE_SHIFT; 354 if ((epfn >= (KEXEC_CONTROL_ME 388 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 355 kimage_is_destin 389 kimage_is_destination_range(image, addr, eaddr)) { 356 list_add(&pages->lru, 390 list_add(&pages->lru, &extra_pages); 357 pages = NULL; 391 pages = NULL; 358 } 392 } 359 } while (!pages); 393 } while (!pages); 360 394 361 if (pages) { 395 if (pages) { 362 /* Remember the allocated page 396 /* Remember the allocated page... */ 363 list_add(&pages->lru, &image-> 397 list_add(&pages->lru, &image->control_pages); 364 398 365 /* Because the page is already 399 /* Because the page is already in it's destination 366 * location we will never allo 400 * location we will never allocate another page at 367 * that address. Therefore ki 401 * that address. Therefore kimage_alloc_pages 368 * will not return it (again) 402 * will not return it (again) and we don't need 369 * to give it an entry in imag 403 * to give it an entry in image->segment[]. 370 */ 404 */ 371 } 405 } 372 /* Deal with the destination pages I h 406 /* Deal with the destination pages I have inadvertently allocated. 373 * 407 * 374 * Ideally I would convert multi-page 408 * Ideally I would convert multi-page allocations into single 375 * page allocations, and add everythin 409 * page allocations, and add everything to image->dest_pages. 376 * 410 * 377 * For now it is simpler to just free 411 * For now it is simpler to just free the pages. 378 */ 412 */ 379 kimage_free_page_list(&extra_pages); 413 kimage_free_page_list(&extra_pages); 380 414 381 return pages; 415 return pages; 382 } 416 } 383 417 384 #ifdef CONFIG_CRASH_DUMP << 385 static struct page *kimage_alloc_crash_control 418 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 386 419 unsigned int order) 387 { 420 { 388 /* Control pages are special, they are 421 /* Control pages are special, they are the intermediaries 389 * that are needed while we copy the r 422 * that are needed while we copy the rest of the pages 390 * to their final resting place. As s 423 * to their final resting place. As such they must 391 * not conflict with either the destin 424 * not conflict with either the destination addresses 392 * or memory the kernel is already usi 425 * or memory the kernel is already using. 393 * 426 * 394 * Control pages are also the only pag 427 * Control pages are also the only pags we must allocate 395 * when loading a crash kernel. All o 428 * when loading a crash kernel. All of the other pages 396 * are specified by the segments and w 429 * are specified by the segments and we just memcpy 397 * into them directly. 430 * into them directly. 398 * 431 * 399 * The only case where we really need 432 * The only case where we really need more than one of 400 * these are for architectures where w 433 * these are for architectures where we cannot disable 401 * the MMU and must instead generate a 434 * the MMU and must instead generate an identity mapped 402 * page table for all of the memory. 435 * page table for all of the memory. 403 * 436 * 404 * Given the low demand this implement 437 * Given the low demand this implements a very simple 405 * allocator that finds the first hole 438 * allocator that finds the first hole of the appropriate 406 * size in the reserved memory region, 439 * size in the reserved memory region, and allocates all 407 * of the memory up to and including t 440 * of the memory up to and including the hole. 408 */ 441 */ 409 unsigned long hole_start, hole_end, si 442 unsigned long hole_start, hole_end, size; 410 struct page *pages; 443 struct page *pages; 411 444 412 pages = NULL; 445 pages = NULL; 413 size = (1 << order) << PAGE_SHIFT; 446 size = (1 << order) << PAGE_SHIFT; 414 hole_start = ALIGN(image->control_page !! 447 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 415 hole_end = hole_start + size - 1; 448 hole_end = hole_start + size - 1; 416 while (hole_end <= crashk_res.end) { 449 while (hole_end <= crashk_res.end) { 417 unsigned long i; 450 unsigned long i; 418 451 419 cond_resched(); 452 cond_resched(); 420 453 421 if (hole_end > KEXEC_CRASH_CON 454 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 422 break; 455 break; 423 /* See if I overlap any of the 456 /* See if I overlap any of the segments */ 424 for (i = 0; i < image->nr_segm 457 for (i = 0; i < image->nr_segments; i++) { 425 unsigned long mstart, 458 unsigned long mstart, mend; 426 459 427 mstart = image->segmen 460 mstart = image->segment[i].mem; 428 mend = mstart + imag 461 mend = mstart + image->segment[i].memsz - 1; 429 if ((hole_end >= mstar 462 if ((hole_end >= mstart) && (hole_start <= mend)) { 430 /* Advance the 463 /* Advance the hole to the end of the segment */ 431 hole_start = A !! 464 hole_start = (mend + (size - 1)) & ~(size - 1); 432 hole_end = h 465 hole_end = hole_start + size - 1; 433 break; 466 break; 434 } 467 } 435 } 468 } 436 /* If I don't overlap any segm 469 /* If I don't overlap any segments I have found my hole! */ 437 if (i == image->nr_segments) { 470 if (i == image->nr_segments) { 438 pages = pfn_to_page(ho 471 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 439 image->control_page = !! 472 image->control_page = hole_end; 440 break; 473 break; 441 } 474 } 442 } 475 } 443 476 444 /* Ensure that these pages are decrypt 477 /* Ensure that these pages are decrypted if SME is enabled. */ 445 if (pages) 478 if (pages) 446 arch_kexec_post_alloc_pages(pa 479 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 447 480 448 return pages; 481 return pages; 449 } 482 } 450 #endif << 451 483 452 484 453 struct page *kimage_alloc_control_pages(struct 485 struct page *kimage_alloc_control_pages(struct kimage *image, 454 unsig 486 unsigned int order) 455 { 487 { 456 struct page *pages = NULL; 488 struct page *pages = NULL; 457 489 458 switch (image->type) { 490 switch (image->type) { 459 case KEXEC_TYPE_DEFAULT: 491 case KEXEC_TYPE_DEFAULT: 460 pages = kimage_alloc_normal_co 492 pages = kimage_alloc_normal_control_pages(image, order); 461 break; 493 break; 462 #ifdef CONFIG_CRASH_DUMP << 463 case KEXEC_TYPE_CRASH: 494 case KEXEC_TYPE_CRASH: 464 pages = kimage_alloc_crash_con 495 pages = kimage_alloc_crash_control_pages(image, order); 465 break; 496 break; 466 #endif << 467 } 497 } 468 498 469 return pages; 499 return pages; 470 } 500 } 471 501 >> 502 int kimage_crash_copy_vmcoreinfo(struct kimage *image) >> 503 { >> 504 struct page *vmcoreinfo_page; >> 505 void *safecopy; >> 506 >> 507 if (image->type != KEXEC_TYPE_CRASH) >> 508 return 0; >> 509 >> 510 /* >> 511 * For kdump, allocate one vmcoreinfo safe copy from the >> 512 * crash memory. as we have arch_kexec_protect_crashkres() >> 513 * after kexec syscall, we naturally protect it from write >> 514 * (even read) access under kernel direct mapping. But on >> 515 * the other hand, we still need to operate it when crash >> 516 * happens to generate vmcoreinfo note, hereby we rely on >> 517 * vmap for this purpose. >> 518 */ >> 519 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); >> 520 if (!vmcoreinfo_page) { >> 521 pr_warn("Could not allocate vmcoreinfo buffer\n"); >> 522 return -ENOMEM; >> 523 } >> 524 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); >> 525 if (!safecopy) { >> 526 pr_warn("Could not vmap vmcoreinfo buffer\n"); >> 527 return -ENOMEM; >> 528 } >> 529 >> 530 image->vmcoreinfo_data_copy = safecopy; >> 531 crash_update_vmcoreinfo_safecopy(safecopy); >> 532 >> 533 return 0; >> 534 } >> 535 472 static int kimage_add_entry(struct kimage *ima 536 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 473 { 537 { 474 if (*image->entry != 0) 538 if (*image->entry != 0) 475 image->entry++; 539 image->entry++; 476 540 477 if (image->entry == image->last_entry) 541 if (image->entry == image->last_entry) { 478 kimage_entry_t *ind_page; 542 kimage_entry_t *ind_page; 479 struct page *page; 543 struct page *page; 480 544 481 page = kimage_alloc_page(image 545 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 482 if (!page) 546 if (!page) 483 return -ENOMEM; 547 return -ENOMEM; 484 548 485 ind_page = page_address(page); 549 ind_page = page_address(page); 486 *image->entry = virt_to_boot_p 550 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 487 image->entry = ind_page; 551 image->entry = ind_page; 488 image->last_entry = ind_page + 552 image->last_entry = ind_page + 489 ((PAGE_S 553 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 490 } 554 } 491 *image->entry = entry; 555 *image->entry = entry; 492 image->entry++; 556 image->entry++; 493 *image->entry = 0; 557 *image->entry = 0; 494 558 495 return 0; 559 return 0; 496 } 560 } 497 561 498 static int kimage_set_destination(struct kimag 562 static int kimage_set_destination(struct kimage *image, 499 unsigned lo 563 unsigned long destination) 500 { 564 { 501 destination &= PAGE_MASK; 565 destination &= PAGE_MASK; 502 566 503 return kimage_add_entry(image, destina 567 return kimage_add_entry(image, destination | IND_DESTINATION); 504 } 568 } 505 569 506 570 507 static int kimage_add_page(struct kimage *imag 571 static int kimage_add_page(struct kimage *image, unsigned long page) 508 { 572 { 509 page &= PAGE_MASK; 573 page &= PAGE_MASK; 510 574 511 return kimage_add_entry(image, page | 575 return kimage_add_entry(image, page | IND_SOURCE); 512 } 576 } 513 577 514 578 515 static void kimage_free_extra_pages(struct kim 579 static void kimage_free_extra_pages(struct kimage *image) 516 { 580 { 517 /* Walk through and free any extra des 581 /* Walk through and free any extra destination pages I may have */ 518 kimage_free_page_list(&image->dest_pag 582 kimage_free_page_list(&image->dest_pages); 519 583 520 /* Walk through and free any unusable 584 /* Walk through and free any unusable pages I have cached */ 521 kimage_free_page_list(&image->unusable 585 kimage_free_page_list(&image->unusable_pages); 522 586 523 } 587 } 524 588 525 void kimage_terminate(struct kimage *image) 589 void kimage_terminate(struct kimage *image) 526 { 590 { 527 if (*image->entry != 0) 591 if (*image->entry != 0) 528 image->entry++; 592 image->entry++; 529 593 530 *image->entry = IND_DONE; 594 *image->entry = IND_DONE; 531 } 595 } 532 596 533 #define for_each_kimage_entry(image, ptr, entr 597 #define for_each_kimage_entry(image, ptr, entry) \ 534 for (ptr = &image->head; (entry = *ptr 598 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 535 ptr = (entry & IND_INDIRECTION 599 ptr = (entry & IND_INDIRECTION) ? \ 536 boot_phys_to_virt((ent 600 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 537 601 538 static void kimage_free_entry(kimage_entry_t e 602 static void kimage_free_entry(kimage_entry_t entry) 539 { 603 { 540 struct page *page; 604 struct page *page; 541 605 542 page = boot_pfn_to_page(entry >> PAGE_ 606 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 543 kimage_free_pages(page); 607 kimage_free_pages(page); 544 } 608 } 545 609 546 void kimage_free(struct kimage *image) 610 void kimage_free(struct kimage *image) 547 { 611 { 548 kimage_entry_t *ptr, entry; 612 kimage_entry_t *ptr, entry; 549 kimage_entry_t ind = 0; 613 kimage_entry_t ind = 0; 550 614 551 if (!image) 615 if (!image) 552 return; 616 return; 553 617 554 #ifdef CONFIG_CRASH_DUMP << 555 if (image->vmcoreinfo_data_copy) { 618 if (image->vmcoreinfo_data_copy) { 556 crash_update_vmcoreinfo_safeco 619 crash_update_vmcoreinfo_safecopy(NULL); 557 vunmap(image->vmcoreinfo_data_ 620 vunmap(image->vmcoreinfo_data_copy); 558 } 621 } 559 #endif << 560 622 561 kimage_free_extra_pages(image); 623 kimage_free_extra_pages(image); 562 for_each_kimage_entry(image, ptr, entr 624 for_each_kimage_entry(image, ptr, entry) { 563 if (entry & IND_INDIRECTION) { 625 if (entry & IND_INDIRECTION) { 564 /* Free the previous i 626 /* Free the previous indirection page */ 565 if (ind & IND_INDIRECT 627 if (ind & IND_INDIRECTION) 566 kimage_free_en 628 kimage_free_entry(ind); 567 /* Save this indirecti 629 /* Save this indirection page until we are 568 * done with it. 630 * done with it. 569 */ 631 */ 570 ind = entry; 632 ind = entry; 571 } else if (entry & IND_SOURCE) 633 } else if (entry & IND_SOURCE) 572 kimage_free_entry(entr 634 kimage_free_entry(entry); 573 } 635 } 574 /* Free the final indirection page */ 636 /* Free the final indirection page */ 575 if (ind & IND_INDIRECTION) 637 if (ind & IND_INDIRECTION) 576 kimage_free_entry(ind); 638 kimage_free_entry(ind); 577 639 578 /* Handle any machine specific cleanup 640 /* Handle any machine specific cleanup */ 579 machine_kexec_cleanup(image); 641 machine_kexec_cleanup(image); 580 642 581 /* Free the kexec control pages... */ 643 /* Free the kexec control pages... */ 582 kimage_free_page_list(&image->control_ 644 kimage_free_page_list(&image->control_pages); 583 645 584 /* 646 /* 585 * Free up any temporary buffers alloc 647 * Free up any temporary buffers allocated. This might hit if 586 * error occurred much later after buf 648 * error occurred much later after buffer allocation. 587 */ 649 */ 588 if (image->file_mode) 650 if (image->file_mode) 589 kimage_file_post_load_cleanup( 651 kimage_file_post_load_cleanup(image); 590 652 591 kfree(image); 653 kfree(image); 592 } 654 } 593 655 594 static kimage_entry_t *kimage_dst_used(struct 656 static kimage_entry_t *kimage_dst_used(struct kimage *image, 595 unsign 657 unsigned long page) 596 { 658 { 597 kimage_entry_t *ptr, entry; 659 kimage_entry_t *ptr, entry; 598 unsigned long destination = 0; 660 unsigned long destination = 0; 599 661 600 for_each_kimage_entry(image, ptr, entr 662 for_each_kimage_entry(image, ptr, entry) { 601 if (entry & IND_DESTINATION) 663 if (entry & IND_DESTINATION) 602 destination = entry & 664 destination = entry & PAGE_MASK; 603 else if (entry & IND_SOURCE) { 665 else if (entry & IND_SOURCE) { 604 if (page == destinatio 666 if (page == destination) 605 return ptr; 667 return ptr; 606 destination += PAGE_SI 668 destination += PAGE_SIZE; 607 } 669 } 608 } 670 } 609 671 610 return NULL; 672 return NULL; 611 } 673 } 612 674 613 static struct page *kimage_alloc_page(struct k 675 static struct page *kimage_alloc_page(struct kimage *image, 614 gfp_t 676 gfp_t gfp_mask, 615 unsign 677 unsigned long destination) 616 { 678 { 617 /* 679 /* 618 * Here we implement safeguards to ens 680 * Here we implement safeguards to ensure that a source page 619 * is not copied to its destination pa 681 * is not copied to its destination page before the data on 620 * the destination page is no longer u 682 * the destination page is no longer useful. 621 * 683 * 622 * To do this we maintain the invarian 684 * To do this we maintain the invariant that a source page is 623 * either its own destination page, or 685 * either its own destination page, or it is not a 624 * destination page at all. 686 * destination page at all. 625 * 687 * 626 * That is slightly stronger than requ 688 * That is slightly stronger than required, but the proof 627 * that no problems will not occur is 689 * that no problems will not occur is trivial, and the 628 * implementation is simply to verify. 690 * implementation is simply to verify. 629 * 691 * 630 * When allocating all pages normally 692 * When allocating all pages normally this algorithm will run 631 * in O(N) time, but in the worst case 693 * in O(N) time, but in the worst case it will run in O(N^2) 632 * time. If the runtime is a problem 694 * time. If the runtime is a problem the data structures can 633 * be fixed. 695 * be fixed. 634 */ 696 */ 635 struct page *page; 697 struct page *page; 636 unsigned long addr; 698 unsigned long addr; 637 699 638 /* 700 /* 639 * Walk through the list of destinatio 701 * Walk through the list of destination pages, and see if I 640 * have a match. 702 * have a match. 641 */ 703 */ 642 list_for_each_entry(page, &image->dest 704 list_for_each_entry(page, &image->dest_pages, lru) { 643 addr = page_to_boot_pfn(page) 705 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 644 if (addr == destination) { 706 if (addr == destination) { 645 list_del(&page->lru); 707 list_del(&page->lru); 646 return page; 708 return page; 647 } 709 } 648 } 710 } 649 page = NULL; 711 page = NULL; 650 while (1) { 712 while (1) { 651 kimage_entry_t *old; 713 kimage_entry_t *old; 652 714 653 /* Allocate a page, if we run 715 /* Allocate a page, if we run out of memory give up */ 654 page = kimage_alloc_pages(gfp_ 716 page = kimage_alloc_pages(gfp_mask, 0); 655 if (!page) 717 if (!page) 656 return NULL; 718 return NULL; 657 /* If the page cannot be used 719 /* If the page cannot be used file it away */ 658 if (page_to_boot_pfn(page) > 720 if (page_to_boot_pfn(page) > 659 (KEXEC_SOURCE_ 721 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 660 list_add(&page->lru, & 722 list_add(&page->lru, &image->unusable_pages); 661 continue; 723 continue; 662 } 724 } 663 addr = page_to_boot_pfn(page) 725 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 664 726 665 /* If it is the destination pa 727 /* If it is the destination page we want use it */ 666 if (addr == destination) 728 if (addr == destination) 667 break; 729 break; 668 730 669 /* If the page is not a destin 731 /* If the page is not a destination page use it */ 670 if (!kimage_is_destination_ran 732 if (!kimage_is_destination_range(image, addr, 671 !! 733 addr + PAGE_SIZE)) 672 break; 734 break; 673 735 674 /* 736 /* 675 * I know that the page is som 737 * I know that the page is someones destination page. 676 * See if there is already a s 738 * See if there is already a source page for this 677 * destination page. And if s 739 * destination page. And if so swap the source pages. 678 */ 740 */ 679 old = kimage_dst_used(image, a 741 old = kimage_dst_used(image, addr); 680 if (old) { 742 if (old) { 681 /* If so move it */ 743 /* If so move it */ 682 unsigned long old_addr 744 unsigned long old_addr; 683 struct page *old_page; 745 struct page *old_page; 684 746 685 old_addr = *old & PAGE 747 old_addr = *old & PAGE_MASK; 686 old_page = boot_pfn_to 748 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 687 copy_highpage(page, ol 749 copy_highpage(page, old_page); 688 *old = addr | (*old & 750 *old = addr | (*old & ~PAGE_MASK); 689 751 690 /* The old page I have 752 /* The old page I have found cannot be a 691 * destination page, s 753 * destination page, so return it if it's 692 * gfp_flags honor the 754 * gfp_flags honor the ones passed in. 693 */ 755 */ 694 if (!(gfp_mask & __GFP 756 if (!(gfp_mask & __GFP_HIGHMEM) && 695 PageHighMem(old_pa 757 PageHighMem(old_page)) { 696 kimage_free_pa 758 kimage_free_pages(old_page); 697 continue; 759 continue; 698 } 760 } 699 page = old_page; 761 page = old_page; 700 break; 762 break; 701 } 763 } 702 /* Place the page on the desti 764 /* Place the page on the destination list, to be used later */ 703 list_add(&page->lru, &image->d 765 list_add(&page->lru, &image->dest_pages); 704 } 766 } 705 767 706 return page; 768 return page; 707 } 769 } 708 770 709 static int kimage_load_normal_segment(struct k 771 static int kimage_load_normal_segment(struct kimage *image, 710 struc 772 struct kexec_segment *segment) 711 { 773 { 712 unsigned long maddr; 774 unsigned long maddr; 713 size_t ubytes, mbytes; 775 size_t ubytes, mbytes; 714 int result; 776 int result; 715 unsigned char __user *buf = NULL; 777 unsigned char __user *buf = NULL; 716 unsigned char *kbuf = NULL; 778 unsigned char *kbuf = NULL; 717 779 718 if (image->file_mode) 780 if (image->file_mode) 719 kbuf = segment->kbuf; 781 kbuf = segment->kbuf; 720 else 782 else 721 buf = segment->buf; 783 buf = segment->buf; 722 ubytes = segment->bufsz; 784 ubytes = segment->bufsz; 723 mbytes = segment->memsz; 785 mbytes = segment->memsz; 724 maddr = segment->mem; 786 maddr = segment->mem; 725 787 726 result = kimage_set_destination(image, 788 result = kimage_set_destination(image, maddr); 727 if (result < 0) 789 if (result < 0) 728 goto out; 790 goto out; 729 791 730 while (mbytes) { 792 while (mbytes) { 731 struct page *page; 793 struct page *page; 732 char *ptr; 794 char *ptr; 733 size_t uchunk, mchunk; 795 size_t uchunk, mchunk; 734 796 735 page = kimage_alloc_page(image 797 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 736 if (!page) { 798 if (!page) { 737 result = -ENOMEM; 799 result = -ENOMEM; 738 goto out; 800 goto out; 739 } 801 } 740 result = kimage_add_page(image 802 result = kimage_add_page(image, page_to_boot_pfn(page) 741 803 << PAGE_SHIFT); 742 if (result < 0) 804 if (result < 0) 743 goto out; 805 goto out; 744 806 745 ptr = kmap_local_page(page); 807 ptr = kmap_local_page(page); 746 /* Start with a clear page */ 808 /* Start with a clear page */ 747 clear_page(ptr); 809 clear_page(ptr); 748 ptr += maddr & ~PAGE_MASK; 810 ptr += maddr & ~PAGE_MASK; 749 mchunk = min_t(size_t, mbytes, 811 mchunk = min_t(size_t, mbytes, 750 PAGE_SIZE - (m 812 PAGE_SIZE - (maddr & ~PAGE_MASK)); 751 uchunk = min(ubytes, mchunk); 813 uchunk = min(ubytes, mchunk); 752 814 753 if (uchunk) { !! 815 /* For file based kexec, source pages are in kernel memory */ 754 /* For file based kexe !! 816 if (image->file_mode) 755 if (image->file_mode) !! 817 memcpy(ptr, kbuf, uchunk); 756 memcpy(ptr, kb !! 818 else 757 else !! 819 result = copy_from_user(ptr, buf, uchunk); 758 result = copy_ << 759 ubytes -= uchunk; << 760 if (image->file_mode) << 761 kbuf += uchunk << 762 else << 763 buf += uchunk; << 764 } << 765 kunmap_local(ptr); 820 kunmap_local(ptr); 766 if (result) { 821 if (result) { 767 result = -EFAULT; 822 result = -EFAULT; 768 goto out; 823 goto out; 769 } 824 } >> 825 ubytes -= uchunk; 770 maddr += mchunk; 826 maddr += mchunk; >> 827 if (image->file_mode) >> 828 kbuf += mchunk; >> 829 else >> 830 buf += mchunk; 771 mbytes -= mchunk; 831 mbytes -= mchunk; 772 832 773 cond_resched(); 833 cond_resched(); 774 } 834 } 775 out: 835 out: 776 return result; 836 return result; 777 } 837 } 778 838 779 #ifdef CONFIG_CRASH_DUMP << 780 static int kimage_load_crash_segment(struct ki 839 static int kimage_load_crash_segment(struct kimage *image, 781 struct 840 struct kexec_segment *segment) 782 { 841 { 783 /* For crash dumps kernels we simply c 842 /* For crash dumps kernels we simply copy the data from 784 * user space to it's destination. 843 * user space to it's destination. 785 * We do things a page at a time for t 844 * We do things a page at a time for the sake of kmap. 786 */ 845 */ 787 unsigned long maddr; 846 unsigned long maddr; 788 size_t ubytes, mbytes; 847 size_t ubytes, mbytes; 789 int result; 848 int result; 790 unsigned char __user *buf = NULL; 849 unsigned char __user *buf = NULL; 791 unsigned char *kbuf = NULL; 850 unsigned char *kbuf = NULL; 792 851 793 result = 0; 852 result = 0; 794 if (image->file_mode) 853 if (image->file_mode) 795 kbuf = segment->kbuf; 854 kbuf = segment->kbuf; 796 else 855 else 797 buf = segment->buf; 856 buf = segment->buf; 798 ubytes = segment->bufsz; 857 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 858 mbytes = segment->memsz; 800 maddr = segment->mem; 859 maddr = segment->mem; 801 while (mbytes) { 860 while (mbytes) { 802 struct page *page; 861 struct page *page; 803 char *ptr; 862 char *ptr; 804 size_t uchunk, mchunk; 863 size_t uchunk, mchunk; 805 864 806 page = boot_pfn_to_page(maddr 865 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 807 if (!page) { 866 if (!page) { 808 result = -ENOMEM; 867 result = -ENOMEM; 809 goto out; 868 goto out; 810 } 869 } 811 arch_kexec_post_alloc_pages(pa 870 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 812 ptr = kmap_local_page(page); 871 ptr = kmap_local_page(page); 813 ptr += maddr & ~PAGE_MASK; 872 ptr += maddr & ~PAGE_MASK; 814 mchunk = min_t(size_t, mbytes, 873 mchunk = min_t(size_t, mbytes, 815 PAGE_SIZE - (m 874 PAGE_SIZE - (maddr & ~PAGE_MASK)); 816 uchunk = min(ubytes, mchunk); 875 uchunk = min(ubytes, mchunk); 817 if (mchunk > uchunk) { 876 if (mchunk > uchunk) { 818 /* Zero the trailing p 877 /* Zero the trailing part of the page */ 819 memset(ptr + uchunk, 0 878 memset(ptr + uchunk, 0, mchunk - uchunk); 820 } 879 } 821 880 822 if (uchunk) { !! 881 /* For file based kexec, source pages are in kernel memory */ 823 /* For file based kexe !! 882 if (image->file_mode) 824 if (image->file_mode) !! 883 memcpy(ptr, kbuf, uchunk); 825 memcpy(ptr, kb !! 884 else 826 else !! 885 result = copy_from_user(ptr, buf, uchunk); 827 result = copy_ << 828 ubytes -= uchunk; << 829 if (image->file_mode) << 830 kbuf += uchunk << 831 else << 832 buf += uchunk; << 833 } << 834 kexec_flush_icache_page(page); 886 kexec_flush_icache_page(page); 835 kunmap_local(ptr); 887 kunmap_local(ptr); 836 arch_kexec_pre_free_pages(page 888 arch_kexec_pre_free_pages(page_address(page), 1); 837 if (result) { 889 if (result) { 838 result = -EFAULT; 890 result = -EFAULT; 839 goto out; 891 goto out; 840 } 892 } >> 893 ubytes -= uchunk; 841 maddr += mchunk; 894 maddr += mchunk; >> 895 if (image->file_mode) >> 896 kbuf += mchunk; >> 897 else >> 898 buf += mchunk; 842 mbytes -= mchunk; 899 mbytes -= mchunk; 843 900 844 cond_resched(); 901 cond_resched(); 845 } 902 } 846 out: 903 out: 847 return result; 904 return result; 848 } 905 } 849 #endif << 850 906 851 int kimage_load_segment(struct kimage *image, 907 int kimage_load_segment(struct kimage *image, 852 struct kexec_s 908 struct kexec_segment *segment) 853 { 909 { 854 int result = -ENOMEM; 910 int result = -ENOMEM; 855 911 856 switch (image->type) { 912 switch (image->type) { 857 case KEXEC_TYPE_DEFAULT: 913 case KEXEC_TYPE_DEFAULT: 858 result = kimage_load_normal_se 914 result = kimage_load_normal_segment(image, segment); 859 break; 915 break; 860 #ifdef CONFIG_CRASH_DUMP << 861 case KEXEC_TYPE_CRASH: 916 case KEXEC_TYPE_CRASH: 862 result = kimage_load_crash_seg 917 result = kimage_load_crash_segment(image, segment); 863 break; 918 break; 864 #endif << 865 } 919 } 866 920 867 return result; 921 return result; 868 } 922 } 869 923 870 struct kexec_load_limit { 924 struct kexec_load_limit { 871 /* Mutex protects the limit count. */ 925 /* Mutex protects the limit count. */ 872 struct mutex mutex; 926 struct mutex mutex; 873 int limit; 927 int limit; 874 }; 928 }; 875 929 876 static struct kexec_load_limit load_limit_rebo 930 static struct kexec_load_limit load_limit_reboot = { 877 .mutex = __MUTEX_INITIALIZER(load_limi 931 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 878 .limit = -1, 932 .limit = -1, 879 }; 933 }; 880 934 881 static struct kexec_load_limit load_limit_pani 935 static struct kexec_load_limit load_limit_panic = { 882 .mutex = __MUTEX_INITIALIZER(load_limi 936 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 883 .limit = -1, 937 .limit = -1, 884 }; 938 }; 885 939 886 struct kimage *kexec_image; 940 struct kimage *kexec_image; 887 struct kimage *kexec_crash_image; 941 struct kimage *kexec_crash_image; 888 static int kexec_load_disabled; 942 static int kexec_load_disabled; 889 943 890 #ifdef CONFIG_SYSCTL 944 #ifdef CONFIG_SYSCTL 891 static int kexec_limit_handler(const struct ct !! 945 static int kexec_limit_handler(struct ctl_table *table, int write, 892 void *buffer, s 946 void *buffer, size_t *lenp, loff_t *ppos) 893 { 947 { 894 struct kexec_load_limit *limit = table 948 struct kexec_load_limit *limit = table->data; 895 int val; 949 int val; 896 struct ctl_table tmp = { 950 struct ctl_table tmp = { 897 .data = &val, 951 .data = &val, 898 .maxlen = sizeof(val), 952 .maxlen = sizeof(val), 899 .mode = table->mode, 953 .mode = table->mode, 900 }; 954 }; 901 int ret; 955 int ret; 902 956 903 if (write) { 957 if (write) { 904 ret = proc_dointvec(&tmp, writ 958 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 905 if (ret) 959 if (ret) 906 return ret; 960 return ret; 907 961 908 if (val < 0) 962 if (val < 0) 909 return -EINVAL; 963 return -EINVAL; 910 964 911 mutex_lock(&limit->mutex); 965 mutex_lock(&limit->mutex); 912 if (limit->limit != -1 && val 966 if (limit->limit != -1 && val >= limit->limit) 913 ret = -EINVAL; 967 ret = -EINVAL; 914 else 968 else 915 limit->limit = val; 969 limit->limit = val; 916 mutex_unlock(&limit->mutex); 970 mutex_unlock(&limit->mutex); 917 971 918 return ret; 972 return ret; 919 } 973 } 920 974 921 mutex_lock(&limit->mutex); 975 mutex_lock(&limit->mutex); 922 val = limit->limit; 976 val = limit->limit; 923 mutex_unlock(&limit->mutex); 977 mutex_unlock(&limit->mutex); 924 978 925 return proc_dointvec(&tmp, write, buff 979 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 926 } 980 } 927 981 928 static struct ctl_table kexec_core_sysctls[] = 982 static struct ctl_table kexec_core_sysctls[] = { 929 { 983 { 930 .procname = "kexec_load_ 984 .procname = "kexec_load_disabled", 931 .data = &kexec_load_ 985 .data = &kexec_load_disabled, 932 .maxlen = sizeof(int), 986 .maxlen = sizeof(int), 933 .mode = 0644, 987 .mode = 0644, 934 /* only handle a transition fr 988 /* only handle a transition from default "" to "1" */ 935 .proc_handler = proc_dointve 989 .proc_handler = proc_dointvec_minmax, 936 .extra1 = SYSCTL_ONE, 990 .extra1 = SYSCTL_ONE, 937 .extra2 = SYSCTL_ONE, 991 .extra2 = SYSCTL_ONE, 938 }, 992 }, 939 { 993 { 940 .procname = "kexec_load_ 994 .procname = "kexec_load_limit_panic", 941 .data = &load_limit_ 995 .data = &load_limit_panic, 942 .mode = 0644, 996 .mode = 0644, 943 .proc_handler = kexec_limit_ 997 .proc_handler = kexec_limit_handler, 944 }, 998 }, 945 { 999 { 946 .procname = "kexec_load_ 1000 .procname = "kexec_load_limit_reboot", 947 .data = &load_limit_ 1001 .data = &load_limit_reboot, 948 .mode = 0644, 1002 .mode = 0644, 949 .proc_handler = kexec_limit_ 1003 .proc_handler = kexec_limit_handler, 950 }, 1004 }, >> 1005 { } 951 }; 1006 }; 952 1007 953 static int __init kexec_core_sysctl_init(void) 1008 static int __init kexec_core_sysctl_init(void) 954 { 1009 { 955 register_sysctl_init("kernel", kexec_c 1010 register_sysctl_init("kernel", kexec_core_sysctls); 956 return 0; 1011 return 0; 957 } 1012 } 958 late_initcall(kexec_core_sysctl_init); 1013 late_initcall(kexec_core_sysctl_init); 959 #endif 1014 #endif 960 1015 961 bool kexec_load_permitted(int kexec_image_type 1016 bool kexec_load_permitted(int kexec_image_type) 962 { 1017 { 963 struct kexec_load_limit *limit; 1018 struct kexec_load_limit *limit; 964 1019 965 /* 1020 /* 966 * Only the superuser can use the kexe 1021 * Only the superuser can use the kexec syscall and if it has not 967 * been disabled. 1022 * been disabled. 968 */ 1023 */ 969 if (!capable(CAP_SYS_BOOT) || kexec_lo 1024 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 970 return false; 1025 return false; 971 1026 972 /* Check limit counter and decrease it 1027 /* Check limit counter and decrease it.*/ 973 limit = (kexec_image_type == KEXEC_TYP 1028 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 974 &load_limit_panic : &load_limi 1029 &load_limit_panic : &load_limit_reboot; 975 mutex_lock(&limit->mutex); 1030 mutex_lock(&limit->mutex); 976 if (!limit->limit) { 1031 if (!limit->limit) { 977 mutex_unlock(&limit->mutex); 1032 mutex_unlock(&limit->mutex); 978 return false; 1033 return false; 979 } 1034 } 980 if (limit->limit != -1) 1035 if (limit->limit != -1) 981 limit->limit--; 1036 limit->limit--; 982 mutex_unlock(&limit->mutex); 1037 mutex_unlock(&limit->mutex); 983 1038 984 return true; 1039 return true; 985 } 1040 } 986 1041 987 /* 1042 /* >> 1043 * No panic_cpu check version of crash_kexec(). This function is called >> 1044 * only when panic_cpu holds the current CPU number; this is the only CPU >> 1045 * which processes crash_kexec routines. >> 1046 */ >> 1047 void __noclone __crash_kexec(struct pt_regs *regs) >> 1048 { >> 1049 /* Take the kexec_lock here to prevent sys_kexec_load >> 1050 * running on one cpu from replacing the crash kernel >> 1051 * we are using after a panic on a different cpu. >> 1052 * >> 1053 * If the crash kernel was not located in a fixed area >> 1054 * of memory the xchg(&kexec_crash_image) would be >> 1055 * sufficient. But since I reuse the memory... >> 1056 */ >> 1057 if (kexec_trylock()) { >> 1058 if (kexec_crash_image) { >> 1059 struct pt_regs fixed_regs; >> 1060 >> 1061 crash_setup_regs(&fixed_regs, regs); >> 1062 crash_save_vmcoreinfo(); >> 1063 machine_crash_shutdown(&fixed_regs); >> 1064 machine_kexec(kexec_crash_image); >> 1065 } >> 1066 kexec_unlock(); >> 1067 } >> 1068 } >> 1069 STACK_FRAME_NON_STANDARD(__crash_kexec); >> 1070 >> 1071 __bpf_kfunc void crash_kexec(struct pt_regs *regs) >> 1072 { >> 1073 int old_cpu, this_cpu; >> 1074 >> 1075 /* >> 1076 * Only one CPU is allowed to execute the crash_kexec() code as with >> 1077 * panic(). Otherwise parallel calls of panic() and crash_kexec() >> 1078 * may stop each other. To exclude them, we use panic_cpu here too. >> 1079 */ >> 1080 this_cpu = raw_smp_processor_id(); >> 1081 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); >> 1082 if (old_cpu == PANIC_CPU_INVALID) { >> 1083 /* This is the 1st CPU which comes here, so go ahead. */ >> 1084 __crash_kexec(regs); >> 1085 >> 1086 /* >> 1087 * Reset panic_cpu to allow another panic()/crash_kexec() >> 1088 * call. >> 1089 */ >> 1090 atomic_set(&panic_cpu, PANIC_CPU_INVALID); >> 1091 } >> 1092 } >> 1093 >> 1094 static inline resource_size_t crash_resource_size(const struct resource *res) >> 1095 { >> 1096 return !res->end ? 0 : resource_size(res); >> 1097 } >> 1098 >> 1099 ssize_t crash_get_memory_size(void) >> 1100 { >> 1101 ssize_t size = 0; >> 1102 >> 1103 if (!kexec_trylock()) >> 1104 return -EBUSY; >> 1105 >> 1106 size += crash_resource_size(&crashk_res); >> 1107 size += crash_resource_size(&crashk_low_res); >> 1108 >> 1109 kexec_unlock(); >> 1110 return size; >> 1111 } >> 1112 >> 1113 static int __crash_shrink_memory(struct resource *old_res, >> 1114 unsigned long new_size) >> 1115 { >> 1116 struct resource *ram_res; >> 1117 >> 1118 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); >> 1119 if (!ram_res) >> 1120 return -ENOMEM; >> 1121 >> 1122 ram_res->start = old_res->start + new_size; >> 1123 ram_res->end = old_res->end; >> 1124 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; >> 1125 ram_res->name = "System RAM"; >> 1126 >> 1127 if (!new_size) { >> 1128 release_resource(old_res); >> 1129 old_res->start = 0; >> 1130 old_res->end = 0; >> 1131 } else { >> 1132 crashk_res.end = ram_res->start - 1; >> 1133 } >> 1134 >> 1135 crash_free_reserved_phys_range(ram_res->start, ram_res->end); >> 1136 insert_resource(&iomem_resource, ram_res); >> 1137 >> 1138 return 0; >> 1139 } >> 1140 >> 1141 int crash_shrink_memory(unsigned long new_size) >> 1142 { >> 1143 int ret = 0; >> 1144 unsigned long old_size, low_size; >> 1145 >> 1146 if (!kexec_trylock()) >> 1147 return -EBUSY; >> 1148 >> 1149 if (kexec_crash_image) { >> 1150 ret = -ENOENT; >> 1151 goto unlock; >> 1152 } >> 1153 >> 1154 low_size = crash_resource_size(&crashk_low_res); >> 1155 old_size = crash_resource_size(&crashk_res) + low_size; >> 1156 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); >> 1157 if (new_size >= old_size) { >> 1158 ret = (new_size == old_size) ? 0 : -EINVAL; >> 1159 goto unlock; >> 1160 } >> 1161 >> 1162 /* >> 1163 * (low_size > new_size) implies that low_size is greater than zero. >> 1164 * This also means that if low_size is zero, the else branch is taken. >> 1165 * >> 1166 * If low_size is greater than 0, (low_size > new_size) indicates that >> 1167 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res >> 1168 * needs to be shrunken. >> 1169 */ >> 1170 if (low_size > new_size) { >> 1171 ret = __crash_shrink_memory(&crashk_res, 0); >> 1172 if (ret) >> 1173 goto unlock; >> 1174 >> 1175 ret = __crash_shrink_memory(&crashk_low_res, new_size); >> 1176 } else { >> 1177 ret = __crash_shrink_memory(&crashk_res, new_size - low_size); >> 1178 } >> 1179 >> 1180 /* Swap crashk_res and crashk_low_res if needed */ >> 1181 if (!crashk_res.end && crashk_low_res.end) { >> 1182 crashk_res.start = crashk_low_res.start; >> 1183 crashk_res.end = crashk_low_res.end; >> 1184 release_resource(&crashk_low_res); >> 1185 crashk_low_res.start = 0; >> 1186 crashk_low_res.end = 0; >> 1187 insert_resource(&iomem_resource, &crashk_res); >> 1188 } >> 1189 >> 1190 unlock: >> 1191 kexec_unlock(); >> 1192 return ret; >> 1193 } >> 1194 >> 1195 void crash_save_cpu(struct pt_regs *regs, int cpu) >> 1196 { >> 1197 struct elf_prstatus prstatus; >> 1198 u32 *buf; >> 1199 >> 1200 if ((cpu < 0) || (cpu >= nr_cpu_ids)) >> 1201 return; >> 1202 >> 1203 /* Using ELF notes here is opportunistic. >> 1204 * I need a well defined structure format >> 1205 * for the data I pass, and I need tags >> 1206 * on the data to indicate what information I have >> 1207 * squirrelled away. ELF notes happen to provide >> 1208 * all of that, so there is no need to invent something new. >> 1209 */ >> 1210 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); >> 1211 if (!buf) >> 1212 return; >> 1213 memset(&prstatus, 0, sizeof(prstatus)); >> 1214 prstatus.common.pr_pid = current->pid; >> 1215 elf_core_copy_regs(&prstatus.pr_reg, regs); >> 1216 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, >> 1217 &prstatus, sizeof(prstatus)); >> 1218 final_note(buf); >> 1219 } >> 1220 >> 1221 static int __init crash_notes_memory_init(void) >> 1222 { >> 1223 /* Allocate memory for saving cpu registers. */ >> 1224 size_t size, align; >> 1225 >> 1226 /* >> 1227 * crash_notes could be allocated across 2 vmalloc pages when percpu >> 1228 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc >> 1229 * pages are also on 2 continuous physical pages. In this case the >> 1230 * 2nd part of crash_notes in 2nd page could be lost since only the >> 1231 * starting address and size of crash_notes are exported through sysfs. >> 1232 * Here round up the size of crash_notes to the nearest power of two >> 1233 * and pass it to __alloc_percpu as align value. This can make sure >> 1234 * crash_notes is allocated inside one physical page. >> 1235 */ >> 1236 size = sizeof(note_buf_t); >> 1237 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); >> 1238 >> 1239 /* >> 1240 * Break compile if size is bigger than PAGE_SIZE since crash_notes >> 1241 * definitely will be in 2 pages with that. >> 1242 */ >> 1243 BUILD_BUG_ON(size > PAGE_SIZE); >> 1244 >> 1245 crash_notes = __alloc_percpu(size, align); >> 1246 if (!crash_notes) { >> 1247 pr_warn("Memory allocation for saving cpu register states failed\n"); >> 1248 return -ENOMEM; >> 1249 } >> 1250 return 0; >> 1251 } >> 1252 subsys_initcall(crash_notes_memory_init); >> 1253 >> 1254 >> 1255 /* 988 * Move into place and start executing a prelo 1256 * Move into place and start executing a preloaded standalone 989 * executable. If nothing was preloaded retur 1257 * executable. If nothing was preloaded return an error. 990 */ 1258 */ 991 int kernel_kexec(void) 1259 int kernel_kexec(void) 992 { 1260 { 993 int error = 0; 1261 int error = 0; 994 1262 995 if (!kexec_trylock()) 1263 if (!kexec_trylock()) 996 return -EBUSY; 1264 return -EBUSY; 997 if (!kexec_image) { 1265 if (!kexec_image) { 998 error = -EINVAL; 1266 error = -EINVAL; 999 goto Unlock; 1267 goto Unlock; 1000 } 1268 } 1001 1269 1002 #ifdef CONFIG_KEXEC_JUMP 1270 #ifdef CONFIG_KEXEC_JUMP 1003 if (kexec_image->preserve_context) { 1271 if (kexec_image->preserve_context) { 1004 pm_prepare_console(); 1272 pm_prepare_console(); 1005 error = freeze_processes(); 1273 error = freeze_processes(); 1006 if (error) { 1274 if (error) { 1007 error = -EBUSY; 1275 error = -EBUSY; 1008 goto Restore_console; 1276 goto Restore_console; 1009 } 1277 } 1010 suspend_console(); 1278 suspend_console(); 1011 error = dpm_suspend_start(PMS 1279 error = dpm_suspend_start(PMSG_FREEZE); 1012 if (error) 1280 if (error) 1013 goto Resume_console; 1281 goto Resume_console; 1014 /* At this point, dpm_suspend 1282 /* At this point, dpm_suspend_start() has been called, 1015 * but *not* dpm_suspend_end( 1283 * but *not* dpm_suspend_end(). We *must* call 1016 * dpm_suspend_end() now. Ot 1284 * dpm_suspend_end() now. Otherwise, drivers for 1017 * some devices (e.g. interru 1285 * some devices (e.g. interrupt controllers) become 1018 * desynchronized with the ac 1286 * desynchronized with the actual state of the 1019 * hardware at resume time, a 1287 * hardware at resume time, and evil weirdness ensues. 1020 */ 1288 */ 1021 error = dpm_suspend_end(PMSG_ 1289 error = dpm_suspend_end(PMSG_FREEZE); 1022 if (error) 1290 if (error) 1023 goto Resume_devices; 1291 goto Resume_devices; 1024 error = suspend_disable_secon 1292 error = suspend_disable_secondary_cpus(); 1025 if (error) 1293 if (error) 1026 goto Enable_cpus; 1294 goto Enable_cpus; 1027 local_irq_disable(); 1295 local_irq_disable(); 1028 error = syscore_suspend(); 1296 error = syscore_suspend(); 1029 if (error) 1297 if (error) 1030 goto Enable_irqs; 1298 goto Enable_irqs; 1031 } else 1299 } else 1032 #endif 1300 #endif 1033 { 1301 { 1034 kexec_in_progress = true; 1302 kexec_in_progress = true; 1035 kernel_restart_prepare("kexec 1303 kernel_restart_prepare("kexec reboot"); 1036 migrate_to_reboot_cpu(); 1304 migrate_to_reboot_cpu(); 1037 syscore_shutdown(); << 1038 1305 1039 /* 1306 /* 1040 * migrate_to_reboot_cpu() di 1307 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1041 * no further code needs to u 1308 * no further code needs to use CPU hotplug (which is true in 1042 * the reboot case). However, 1309 * the reboot case). However, the kexec path depends on using 1043 * CPU hotplug again; so re-e 1310 * CPU hotplug again; so re-enable it here. 1044 */ 1311 */ 1045 cpu_hotplug_enable(); 1312 cpu_hotplug_enable(); 1046 pr_notice("Starting new kerne 1313 pr_notice("Starting new kernel\n"); 1047 machine_shutdown(); 1314 machine_shutdown(); 1048 } 1315 } 1049 1316 1050 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1317 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1051 machine_kexec(kexec_image); 1318 machine_kexec(kexec_image); 1052 1319 1053 #ifdef CONFIG_KEXEC_JUMP 1320 #ifdef CONFIG_KEXEC_JUMP 1054 if (kexec_image->preserve_context) { 1321 if (kexec_image->preserve_context) { 1055 syscore_resume(); 1322 syscore_resume(); 1056 Enable_irqs: 1323 Enable_irqs: 1057 local_irq_enable(); 1324 local_irq_enable(); 1058 Enable_cpus: 1325 Enable_cpus: 1059 suspend_enable_secondary_cpus 1326 suspend_enable_secondary_cpus(); 1060 dpm_resume_start(PMSG_RESTORE 1327 dpm_resume_start(PMSG_RESTORE); 1061 Resume_devices: 1328 Resume_devices: 1062 dpm_resume_end(PMSG_RESTORE); 1329 dpm_resume_end(PMSG_RESTORE); 1063 Resume_console: 1330 Resume_console: 1064 resume_console(); 1331 resume_console(); 1065 thaw_processes(); 1332 thaw_processes(); 1066 Restore_console: 1333 Restore_console: 1067 pm_restore_console(); 1334 pm_restore_console(); 1068 } 1335 } 1069 #endif 1336 #endif 1070 1337 1071 Unlock: 1338 Unlock: 1072 kexec_unlock(); 1339 kexec_unlock(); 1073 return error; 1340 return error; 1074 } 1341 } 1075 1342
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.