1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * kexec.c - kexec system call core code. 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <eb 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 5 */ 6 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 8 9 #include <linux/btf.h> 9 #include <linux/btf.h> 10 #include <linux/capability.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 42 #include <linux/kmsg_dump.h> 43 43 44 #include <asm/page.h> 44 #include <asm/page.h> 45 #include <asm/sections.h> 45 #include <asm/sections.h> 46 46 47 #include <crypto/hash.h> 47 #include <crypto/hash.h> 48 #include "kexec_internal.h" 48 #include "kexec_internal.h" 49 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 51 51 52 /* Flag to indicate we are going to kexec a ne 52 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 53 bool kexec_in_progress = false; 54 54 55 bool kexec_file_dbg_print; 55 bool kexec_file_dbg_print; 56 56 >> 57 int kexec_should_crash(struct task_struct *p) >> 58 { >> 59 /* >> 60 * If crash_kexec_post_notifiers is enabled, don't run >> 61 * crash_kexec() here yet, which must be run after panic >> 62 * notifiers in panic(). >> 63 */ >> 64 if (crash_kexec_post_notifiers) >> 65 return 0; >> 66 /* >> 67 * There are 4 panic() calls in make_task_dead() path, each of which >> 68 * corresponds to each of these 4 conditions. >> 69 */ >> 70 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) >> 71 return 1; >> 72 return 0; >> 73 } >> 74 >> 75 int kexec_crash_loaded(void) >> 76 { >> 77 return !!kexec_crash_image; >> 78 } >> 79 EXPORT_SYMBOL_GPL(kexec_crash_loaded); >> 80 57 /* 81 /* 58 * When kexec transitions to the new kernel th 82 * When kexec transitions to the new kernel there is a one-to-one 59 * mapping between physical and virtual addres 83 * mapping between physical and virtual addresses. On processors 60 * where you can disable the MMU this is trivi 84 * where you can disable the MMU this is trivial, and easy. For 61 * others it is still a simple predictable pag 85 * others it is still a simple predictable page table to setup. 62 * 86 * 63 * In that environment kexec copies the new ke 87 * In that environment kexec copies the new kernel to its final 64 * resting place. This means I can only suppo 88 * resting place. This means I can only support memory whose 65 * physical address can fit in an unsigned lon 89 * physical address can fit in an unsigned long. In particular 66 * addresses where (pfn << PAGE_SHIFT) > ULONG 90 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 67 * If the assembly stub has more restrictive r 91 * If the assembly stub has more restrictive requirements 68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME 92 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 69 * defined more restrictively in <asm/kexec.h> 93 * defined more restrictively in <asm/kexec.h>. 70 * 94 * 71 * The code for the transition from the curren 95 * The code for the transition from the current kernel to the 72 * new kernel is placed in the control_code_bu 96 * new kernel is placed in the control_code_buffer, whose size 73 * is given by KEXEC_CONTROL_PAGE_SIZE. In th 97 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 74 * page of memory is necessary, but some archi 98 * page of memory is necessary, but some architectures require more. 75 * Because this memory must be identity mapped 99 * Because this memory must be identity mapped in the transition from 76 * virtual to physical addresses it must live 100 * virtual to physical addresses it must live in the range 77 * 0 - TASK_SIZE, as only the user space mappi 101 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 78 * modifiable. 102 * modifiable. 79 * 103 * 80 * The assembly stub in the control code buffe 104 * The assembly stub in the control code buffer is passed a linked list 81 * of descriptor pages detailing the source pa 105 * of descriptor pages detailing the source pages of the new kernel, 82 * and the destination addresses of those sour 106 * and the destination addresses of those source pages. As this data 83 * structure is not used in the context of the 107 * structure is not used in the context of the current OS, it must 84 * be self-contained. 108 * be self-contained. 85 * 109 * 86 * The code has been made to work with highmem 110 * The code has been made to work with highmem pages and will use a 87 * destination page in its final resting place 111 * destination page in its final resting place (if it happens 88 * to allocate it). The end product of this i 112 * to allocate it). The end product of this is that most of the 89 * physical address space, and most of RAM can 113 * physical address space, and most of RAM can be used. 90 * 114 * 91 * Future directions include: 115 * Future directions include: 92 * - allocating a page table with the control 116 * - allocating a page table with the control code buffer identity 93 * mapped, to simplify machine_kexec and ma 117 * mapped, to simplify machine_kexec and make kexec_on_panic more 94 * reliable. 118 * reliable. 95 */ 119 */ 96 120 97 /* 121 /* 98 * KIMAGE_NO_DEST is an impossible destination 122 * KIMAGE_NO_DEST is an impossible destination address..., for 99 * allocating pages whose destination address 123 * allocating pages whose destination address we do not care about. 100 */ 124 */ 101 #define KIMAGE_NO_DEST (-1UL) 125 #define KIMAGE_NO_DEST (-1UL) 102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) > 126 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 103 127 104 static struct page *kimage_alloc_page(struct k 128 static struct page *kimage_alloc_page(struct kimage *image, 105 gfp_t g 129 gfp_t gfp_mask, 106 unsigne 130 unsigned long dest); 107 131 108 int sanity_check_segment_list(struct kimage *i 132 int sanity_check_segment_list(struct kimage *image) 109 { 133 { 110 int i; 134 int i; 111 unsigned long nr_segments = image->nr_ 135 unsigned long nr_segments = image->nr_segments; 112 unsigned long total_pages = 0; 136 unsigned long total_pages = 0; 113 unsigned long nr_pages = totalram_page 137 unsigned long nr_pages = totalram_pages(); 114 138 115 /* 139 /* 116 * Verify we have good destination add 140 * Verify we have good destination addresses. The caller is 117 * responsible for making certain we d 141 * responsible for making certain we don't attempt to load 118 * the new image into invalid or reser 142 * the new image into invalid or reserved areas of RAM. This 119 * just verifies it is an address we c 143 * just verifies it is an address we can use. 120 * 144 * 121 * Since the kernel does everything in 145 * Since the kernel does everything in page size chunks ensure 122 * the destination addresses are page 146 * the destination addresses are page aligned. Too many 123 * special cases crop of when we don't 147 * special cases crop of when we don't do this. The most 124 * insidious is getting overlapping de 148 * insidious is getting overlapping destination addresses 125 * simply because addresses are change 149 * simply because addresses are changed to page size 126 * granularity. 150 * granularity. 127 */ 151 */ 128 for (i = 0; i < nr_segments; i++) { 152 for (i = 0; i < nr_segments; i++) { 129 unsigned long mstart, mend; 153 unsigned long mstart, mend; 130 154 131 mstart = image->segment[i].mem 155 mstart = image->segment[i].mem; 132 mend = mstart + image->segme 156 mend = mstart + image->segment[i].memsz; 133 if (mstart > mend) 157 if (mstart > mend) 134 return -EADDRNOTAVAIL; 158 return -EADDRNOTAVAIL; 135 if ((mstart & ~PAGE_MASK) || ( 159 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 136 return -EADDRNOTAVAIL; 160 return -EADDRNOTAVAIL; 137 if (mend >= KEXEC_DESTINATION_ 161 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 138 return -EADDRNOTAVAIL; 162 return -EADDRNOTAVAIL; 139 } 163 } 140 164 141 /* Verify our destination addresses do 165 /* Verify our destination addresses do not overlap. 142 * If we alloed overlapping destinatio 166 * If we alloed overlapping destination addresses 143 * through very weird things can happe 167 * through very weird things can happen with no 144 * easy explanation as one segment sto 168 * easy explanation as one segment stops on another. 145 */ 169 */ 146 for (i = 0; i < nr_segments; i++) { 170 for (i = 0; i < nr_segments; i++) { 147 unsigned long mstart, mend; 171 unsigned long mstart, mend; 148 unsigned long j; 172 unsigned long j; 149 173 150 mstart = image->segment[i].mem 174 mstart = image->segment[i].mem; 151 mend = mstart + image->segme 175 mend = mstart + image->segment[i].memsz; 152 for (j = 0; j < i; j++) { 176 for (j = 0; j < i; j++) { 153 unsigned long pstart, 177 unsigned long pstart, pend; 154 178 155 pstart = image->segmen 179 pstart = image->segment[j].mem; 156 pend = pstart + imag 180 pend = pstart + image->segment[j].memsz; 157 /* Do the segments ove 181 /* Do the segments overlap ? */ 158 if ((mend > pstart) && 182 if ((mend > pstart) && (mstart < pend)) 159 return -EINVAL 183 return -EINVAL; 160 } 184 } 161 } 185 } 162 186 163 /* Ensure our buffer sizes are strictl 187 /* Ensure our buffer sizes are strictly less than 164 * our memory sizes. This should alwa 188 * our memory sizes. This should always be the case, 165 * and it is easier to check up front 189 * and it is easier to check up front than to be surprised 166 * later on. 190 * later on. 167 */ 191 */ 168 for (i = 0; i < nr_segments; i++) { 192 for (i = 0; i < nr_segments; i++) { 169 if (image->segment[i].bufsz > 193 if (image->segment[i].bufsz > image->segment[i].memsz) 170 return -EINVAL; 194 return -EINVAL; 171 } 195 } 172 196 173 /* 197 /* 174 * Verify that no more than half of me 198 * Verify that no more than half of memory will be consumed. If the 175 * request from userspace is too large 199 * request from userspace is too large, a large amount of time will be 176 * wasted allocating pages, which can 200 * wasted allocating pages, which can cause a soft lockup. 177 */ 201 */ 178 for (i = 0; i < nr_segments; i++) { 202 for (i = 0; i < nr_segments; i++) { 179 if (PAGE_COUNT(image->segment[ 203 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 180 return -EINVAL; 204 return -EINVAL; 181 205 182 total_pages += PAGE_COUNT(imag 206 total_pages += PAGE_COUNT(image->segment[i].memsz); 183 } 207 } 184 208 185 if (total_pages > nr_pages / 2) 209 if (total_pages > nr_pages / 2) 186 return -EINVAL; 210 return -EINVAL; 187 211 188 #ifdef CONFIG_CRASH_DUMP << 189 /* 212 /* 190 * Verify we have good destination add 213 * Verify we have good destination addresses. Normally 191 * the caller is responsible for makin 214 * the caller is responsible for making certain we don't 192 * attempt to load the new image into 215 * attempt to load the new image into invalid or reserved 193 * areas of RAM. But crash kernels ar 216 * areas of RAM. But crash kernels are preloaded into a 194 * reserved area of ram. We must ensu 217 * reserved area of ram. We must ensure the addresses 195 * are in the reserved area otherwise 218 * are in the reserved area otherwise preloading the 196 * kernel could corrupt things. 219 * kernel could corrupt things. 197 */ 220 */ 198 221 199 if (image->type == KEXEC_TYPE_CRASH) { 222 if (image->type == KEXEC_TYPE_CRASH) { 200 for (i = 0; i < nr_segments; i 223 for (i = 0; i < nr_segments; i++) { 201 unsigned long mstart, 224 unsigned long mstart, mend; 202 225 203 mstart = image->segmen 226 mstart = image->segment[i].mem; 204 mend = mstart + image- 227 mend = mstart + image->segment[i].memsz - 1; 205 /* Ensure we are withi 228 /* Ensure we are within the crash kernel limits */ 206 if ((mstart < phys_to_ 229 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 207 (mend > phys_to_bo 230 (mend > phys_to_boot_phys(crashk_res.end))) 208 return -EADDRN 231 return -EADDRNOTAVAIL; 209 } 232 } 210 } 233 } 211 #endif << 212 234 213 return 0; 235 return 0; 214 } 236 } 215 237 216 struct kimage *do_kimage_alloc_init(void) 238 struct kimage *do_kimage_alloc_init(void) 217 { 239 { 218 struct kimage *image; 240 struct kimage *image; 219 241 220 /* Allocate a controlling structure */ 242 /* Allocate a controlling structure */ 221 image = kzalloc(sizeof(*image), GFP_KE 243 image = kzalloc(sizeof(*image), GFP_KERNEL); 222 if (!image) 244 if (!image) 223 return NULL; 245 return NULL; 224 246 225 image->head = 0; 247 image->head = 0; 226 image->entry = &image->head; 248 image->entry = &image->head; 227 image->last_entry = &image->head; 249 image->last_entry = &image->head; 228 image->control_page = ~0; /* By defaul 250 image->control_page = ~0; /* By default this does not apply */ 229 image->type = KEXEC_TYPE_DEFAULT; 251 image->type = KEXEC_TYPE_DEFAULT; 230 252 231 /* Initialize the list of control page 253 /* Initialize the list of control pages */ 232 INIT_LIST_HEAD(&image->control_pages); 254 INIT_LIST_HEAD(&image->control_pages); 233 255 234 /* Initialize the list of destination 256 /* Initialize the list of destination pages */ 235 INIT_LIST_HEAD(&image->dest_pages); 257 INIT_LIST_HEAD(&image->dest_pages); 236 258 237 /* Initialize the list of unusable pag 259 /* Initialize the list of unusable pages */ 238 INIT_LIST_HEAD(&image->unusable_pages) 260 INIT_LIST_HEAD(&image->unusable_pages); 239 261 240 #ifdef CONFIG_CRASH_HOTPLUG 262 #ifdef CONFIG_CRASH_HOTPLUG 241 image->hp_action = KEXEC_CRASH_HP_NONE 263 image->hp_action = KEXEC_CRASH_HP_NONE; 242 image->elfcorehdr_index = -1; 264 image->elfcorehdr_index = -1; 243 image->elfcorehdr_updated = false; 265 image->elfcorehdr_updated = false; 244 #endif 266 #endif 245 267 246 return image; 268 return image; 247 } 269 } 248 270 249 int kimage_is_destination_range(struct kimage 271 int kimage_is_destination_range(struct kimage *image, 250 unsign 272 unsigned long start, 251 unsign 273 unsigned long end) 252 { 274 { 253 unsigned long i; 275 unsigned long i; 254 276 255 for (i = 0; i < image->nr_segments; i+ 277 for (i = 0; i < image->nr_segments; i++) { 256 unsigned long mstart, mend; 278 unsigned long mstart, mend; 257 279 258 mstart = image->segment[i].mem 280 mstart = image->segment[i].mem; 259 mend = mstart + image->segment 281 mend = mstart + image->segment[i].memsz - 1; 260 if ((end >= mstart) && (start 282 if ((end >= mstart) && (start <= mend)) 261 return 1; 283 return 1; 262 } 284 } 263 285 264 return 0; 286 return 0; 265 } 287 } 266 288 267 static struct page *kimage_alloc_pages(gfp_t g 289 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 268 { 290 { 269 struct page *pages; 291 struct page *pages; 270 292 271 if (fatal_signal_pending(current)) 293 if (fatal_signal_pending(current)) 272 return NULL; 294 return NULL; 273 pages = alloc_pages(gfp_mask & ~__GFP_ 295 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 274 if (pages) { 296 if (pages) { 275 unsigned int count, i; 297 unsigned int count, i; 276 298 277 pages->mapping = NULL; 299 pages->mapping = NULL; 278 set_page_private(pages, order) 300 set_page_private(pages, order); 279 count = 1 << order; 301 count = 1 << order; 280 for (i = 0; i < count; i++) 302 for (i = 0; i < count; i++) 281 SetPageReserved(pages 303 SetPageReserved(pages + i); 282 304 283 arch_kexec_post_alloc_pages(pa 305 arch_kexec_post_alloc_pages(page_address(pages), count, 284 gf 306 gfp_mask); 285 307 286 if (gfp_mask & __GFP_ZERO) 308 if (gfp_mask & __GFP_ZERO) 287 for (i = 0; i < count; 309 for (i = 0; i < count; i++) 288 clear_highpage 310 clear_highpage(pages + i); 289 } 311 } 290 312 291 return pages; 313 return pages; 292 } 314 } 293 315 294 static void kimage_free_pages(struct page *pag 316 static void kimage_free_pages(struct page *page) 295 { 317 { 296 unsigned int order, count, i; 318 unsigned int order, count, i; 297 319 298 order = page_private(page); 320 order = page_private(page); 299 count = 1 << order; 321 count = 1 << order; 300 322 301 arch_kexec_pre_free_pages(page_address 323 arch_kexec_pre_free_pages(page_address(page), count); 302 324 303 for (i = 0; i < count; i++) 325 for (i = 0; i < count; i++) 304 ClearPageReserved(page + i); 326 ClearPageReserved(page + i); 305 __free_pages(page, order); 327 __free_pages(page, order); 306 } 328 } 307 329 308 void kimage_free_page_list(struct list_head *l 330 void kimage_free_page_list(struct list_head *list) 309 { 331 { 310 struct page *page, *next; 332 struct page *page, *next; 311 333 312 list_for_each_entry_safe(page, next, l 334 list_for_each_entry_safe(page, next, list, lru) { 313 list_del(&page->lru); 335 list_del(&page->lru); 314 kimage_free_pages(page); 336 kimage_free_pages(page); 315 } 337 } 316 } 338 } 317 339 318 static struct page *kimage_alloc_normal_contro 340 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 319 341 unsigned int order) 320 { 342 { 321 /* Control pages are special, they are 343 /* Control pages are special, they are the intermediaries 322 * that are needed while we copy the r 344 * that are needed while we copy the rest of the pages 323 * to their final resting place. As s 345 * to their final resting place. As such they must 324 * not conflict with either the destin 346 * not conflict with either the destination addresses 325 * or memory the kernel is already usi 347 * or memory the kernel is already using. 326 * 348 * 327 * The only case where we really need 349 * The only case where we really need more than one of 328 * these are for architectures where w 350 * these are for architectures where we cannot disable 329 * the MMU and must instead generate a 351 * the MMU and must instead generate an identity mapped 330 * page table for all of the memory. 352 * page table for all of the memory. 331 * 353 * 332 * At worst this runs in O(N) of the i 354 * At worst this runs in O(N) of the image size. 333 */ 355 */ 334 struct list_head extra_pages; 356 struct list_head extra_pages; 335 struct page *pages; 357 struct page *pages; 336 unsigned int count; 358 unsigned int count; 337 359 338 count = 1 << order; 360 count = 1 << order; 339 INIT_LIST_HEAD(&extra_pages); 361 INIT_LIST_HEAD(&extra_pages); 340 362 341 /* Loop while I can allocate a page an 363 /* Loop while I can allocate a page and the page allocated 342 * is a destination page. 364 * is a destination page. 343 */ 365 */ 344 do { 366 do { 345 unsigned long pfn, epfn, addr, 367 unsigned long pfn, epfn, addr, eaddr; 346 368 347 pages = kimage_alloc_pages(KEX 369 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 348 if (!pages) 370 if (!pages) 349 break; 371 break; 350 pfn = page_to_boot_pfn(pages 372 pfn = page_to_boot_pfn(pages); 351 epfn = pfn + count; 373 epfn = pfn + count; 352 addr = pfn << PAGE_SHIFT; 374 addr = pfn << PAGE_SHIFT; 353 eaddr = (epfn << PAGE_SHIFT) - 375 eaddr = (epfn << PAGE_SHIFT) - 1; 354 if ((epfn >= (KEXEC_CONTROL_ME 376 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 355 kimage_is_destin 377 kimage_is_destination_range(image, addr, eaddr)) { 356 list_add(&pages->lru, 378 list_add(&pages->lru, &extra_pages); 357 pages = NULL; 379 pages = NULL; 358 } 380 } 359 } while (!pages); 381 } while (!pages); 360 382 361 if (pages) { 383 if (pages) { 362 /* Remember the allocated page 384 /* Remember the allocated page... */ 363 list_add(&pages->lru, &image-> 385 list_add(&pages->lru, &image->control_pages); 364 386 365 /* Because the page is already 387 /* Because the page is already in it's destination 366 * location we will never allo 388 * location we will never allocate another page at 367 * that address. Therefore ki 389 * that address. Therefore kimage_alloc_pages 368 * will not return it (again) 390 * will not return it (again) and we don't need 369 * to give it an entry in imag 391 * to give it an entry in image->segment[]. 370 */ 392 */ 371 } 393 } 372 /* Deal with the destination pages I h 394 /* Deal with the destination pages I have inadvertently allocated. 373 * 395 * 374 * Ideally I would convert multi-page 396 * Ideally I would convert multi-page allocations into single 375 * page allocations, and add everythin 397 * page allocations, and add everything to image->dest_pages. 376 * 398 * 377 * For now it is simpler to just free 399 * For now it is simpler to just free the pages. 378 */ 400 */ 379 kimage_free_page_list(&extra_pages); 401 kimage_free_page_list(&extra_pages); 380 402 381 return pages; 403 return pages; 382 } 404 } 383 405 384 #ifdef CONFIG_CRASH_DUMP << 385 static struct page *kimage_alloc_crash_control 406 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 386 407 unsigned int order) 387 { 408 { 388 /* Control pages are special, they are 409 /* Control pages are special, they are the intermediaries 389 * that are needed while we copy the r 410 * that are needed while we copy the rest of the pages 390 * to their final resting place. As s 411 * to their final resting place. As such they must 391 * not conflict with either the destin 412 * not conflict with either the destination addresses 392 * or memory the kernel is already usi 413 * or memory the kernel is already using. 393 * 414 * 394 * Control pages are also the only pag 415 * Control pages are also the only pags we must allocate 395 * when loading a crash kernel. All o 416 * when loading a crash kernel. All of the other pages 396 * are specified by the segments and w 417 * are specified by the segments and we just memcpy 397 * into them directly. 418 * into them directly. 398 * 419 * 399 * The only case where we really need 420 * The only case where we really need more than one of 400 * these are for architectures where w 421 * these are for architectures where we cannot disable 401 * the MMU and must instead generate a 422 * the MMU and must instead generate an identity mapped 402 * page table for all of the memory. 423 * page table for all of the memory. 403 * 424 * 404 * Given the low demand this implement 425 * Given the low demand this implements a very simple 405 * allocator that finds the first hole 426 * allocator that finds the first hole of the appropriate 406 * size in the reserved memory region, 427 * size in the reserved memory region, and allocates all 407 * of the memory up to and including t 428 * of the memory up to and including the hole. 408 */ 429 */ 409 unsigned long hole_start, hole_end, si 430 unsigned long hole_start, hole_end, size; 410 struct page *pages; 431 struct page *pages; 411 432 412 pages = NULL; 433 pages = NULL; 413 size = (1 << order) << PAGE_SHIFT; 434 size = (1 << order) << PAGE_SHIFT; 414 hole_start = ALIGN(image->control_page 435 hole_start = ALIGN(image->control_page, size); 415 hole_end = hole_start + size - 1; 436 hole_end = hole_start + size - 1; 416 while (hole_end <= crashk_res.end) { 437 while (hole_end <= crashk_res.end) { 417 unsigned long i; 438 unsigned long i; 418 439 419 cond_resched(); 440 cond_resched(); 420 441 421 if (hole_end > KEXEC_CRASH_CON 442 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 422 break; 443 break; 423 /* See if I overlap any of the 444 /* See if I overlap any of the segments */ 424 for (i = 0; i < image->nr_segm 445 for (i = 0; i < image->nr_segments; i++) { 425 unsigned long mstart, 446 unsigned long mstart, mend; 426 447 427 mstart = image->segmen 448 mstart = image->segment[i].mem; 428 mend = mstart + imag 449 mend = mstart + image->segment[i].memsz - 1; 429 if ((hole_end >= mstar 450 if ((hole_end >= mstart) && (hole_start <= mend)) { 430 /* Advance the 451 /* Advance the hole to the end of the segment */ 431 hole_start = A 452 hole_start = ALIGN(mend, size); 432 hole_end = h 453 hole_end = hole_start + size - 1; 433 break; 454 break; 434 } 455 } 435 } 456 } 436 /* If I don't overlap any segm 457 /* If I don't overlap any segments I have found my hole! */ 437 if (i == image->nr_segments) { 458 if (i == image->nr_segments) { 438 pages = pfn_to_page(ho 459 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 439 image->control_page = 460 image->control_page = hole_end + 1; 440 break; 461 break; 441 } 462 } 442 } 463 } 443 464 444 /* Ensure that these pages are decrypt 465 /* Ensure that these pages are decrypted if SME is enabled. */ 445 if (pages) 466 if (pages) 446 arch_kexec_post_alloc_pages(pa 467 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 447 468 448 return pages; 469 return pages; 449 } 470 } 450 #endif << 451 471 452 472 453 struct page *kimage_alloc_control_pages(struct 473 struct page *kimage_alloc_control_pages(struct kimage *image, 454 unsig 474 unsigned int order) 455 { 475 { 456 struct page *pages = NULL; 476 struct page *pages = NULL; 457 477 458 switch (image->type) { 478 switch (image->type) { 459 case KEXEC_TYPE_DEFAULT: 479 case KEXEC_TYPE_DEFAULT: 460 pages = kimage_alloc_normal_co 480 pages = kimage_alloc_normal_control_pages(image, order); 461 break; 481 break; 462 #ifdef CONFIG_CRASH_DUMP << 463 case KEXEC_TYPE_CRASH: 482 case KEXEC_TYPE_CRASH: 464 pages = kimage_alloc_crash_con 483 pages = kimage_alloc_crash_control_pages(image, order); 465 break; 484 break; 466 #endif << 467 } 485 } 468 486 469 return pages; 487 return pages; 470 } 488 } 471 489 >> 490 int kimage_crash_copy_vmcoreinfo(struct kimage *image) >> 491 { >> 492 struct page *vmcoreinfo_page; >> 493 void *safecopy; >> 494 >> 495 if (image->type != KEXEC_TYPE_CRASH) >> 496 return 0; >> 497 >> 498 /* >> 499 * For kdump, allocate one vmcoreinfo safe copy from the >> 500 * crash memory. as we have arch_kexec_protect_crashkres() >> 501 * after kexec syscall, we naturally protect it from write >> 502 * (even read) access under kernel direct mapping. But on >> 503 * the other hand, we still need to operate it when crash >> 504 * happens to generate vmcoreinfo note, hereby we rely on >> 505 * vmap for this purpose. >> 506 */ >> 507 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); >> 508 if (!vmcoreinfo_page) { >> 509 pr_warn("Could not allocate vmcoreinfo buffer\n"); >> 510 return -ENOMEM; >> 511 } >> 512 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); >> 513 if (!safecopy) { >> 514 pr_warn("Could not vmap vmcoreinfo buffer\n"); >> 515 return -ENOMEM; >> 516 } >> 517 >> 518 image->vmcoreinfo_data_copy = safecopy; >> 519 crash_update_vmcoreinfo_safecopy(safecopy); >> 520 >> 521 return 0; >> 522 } >> 523 472 static int kimage_add_entry(struct kimage *ima 524 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 473 { 525 { 474 if (*image->entry != 0) 526 if (*image->entry != 0) 475 image->entry++; 527 image->entry++; 476 528 477 if (image->entry == image->last_entry) 529 if (image->entry == image->last_entry) { 478 kimage_entry_t *ind_page; 530 kimage_entry_t *ind_page; 479 struct page *page; 531 struct page *page; 480 532 481 page = kimage_alloc_page(image 533 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 482 if (!page) 534 if (!page) 483 return -ENOMEM; 535 return -ENOMEM; 484 536 485 ind_page = page_address(page); 537 ind_page = page_address(page); 486 *image->entry = virt_to_boot_p 538 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 487 image->entry = ind_page; 539 image->entry = ind_page; 488 image->last_entry = ind_page + 540 image->last_entry = ind_page + 489 ((PAGE_S 541 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 490 } 542 } 491 *image->entry = entry; 543 *image->entry = entry; 492 image->entry++; 544 image->entry++; 493 *image->entry = 0; 545 *image->entry = 0; 494 546 495 return 0; 547 return 0; 496 } 548 } 497 549 498 static int kimage_set_destination(struct kimag 550 static int kimage_set_destination(struct kimage *image, 499 unsigned lo 551 unsigned long destination) 500 { 552 { 501 destination &= PAGE_MASK; 553 destination &= PAGE_MASK; 502 554 503 return kimage_add_entry(image, destina 555 return kimage_add_entry(image, destination | IND_DESTINATION); 504 } 556 } 505 557 506 558 507 static int kimage_add_page(struct kimage *imag 559 static int kimage_add_page(struct kimage *image, unsigned long page) 508 { 560 { 509 page &= PAGE_MASK; 561 page &= PAGE_MASK; 510 562 511 return kimage_add_entry(image, page | 563 return kimage_add_entry(image, page | IND_SOURCE); 512 } 564 } 513 565 514 566 515 static void kimage_free_extra_pages(struct kim 567 static void kimage_free_extra_pages(struct kimage *image) 516 { 568 { 517 /* Walk through and free any extra des 569 /* Walk through and free any extra destination pages I may have */ 518 kimage_free_page_list(&image->dest_pag 570 kimage_free_page_list(&image->dest_pages); 519 571 520 /* Walk through and free any unusable 572 /* Walk through and free any unusable pages I have cached */ 521 kimage_free_page_list(&image->unusable 573 kimage_free_page_list(&image->unusable_pages); 522 574 523 } 575 } 524 576 525 void kimage_terminate(struct kimage *image) 577 void kimage_terminate(struct kimage *image) 526 { 578 { 527 if (*image->entry != 0) 579 if (*image->entry != 0) 528 image->entry++; 580 image->entry++; 529 581 530 *image->entry = IND_DONE; 582 *image->entry = IND_DONE; 531 } 583 } 532 584 533 #define for_each_kimage_entry(image, ptr, entr 585 #define for_each_kimage_entry(image, ptr, entry) \ 534 for (ptr = &image->head; (entry = *ptr 586 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 535 ptr = (entry & IND_INDIRECTION 587 ptr = (entry & IND_INDIRECTION) ? \ 536 boot_phys_to_virt((ent 588 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 537 589 538 static void kimage_free_entry(kimage_entry_t e 590 static void kimage_free_entry(kimage_entry_t entry) 539 { 591 { 540 struct page *page; 592 struct page *page; 541 593 542 page = boot_pfn_to_page(entry >> PAGE_ 594 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 543 kimage_free_pages(page); 595 kimage_free_pages(page); 544 } 596 } 545 597 546 void kimage_free(struct kimage *image) 598 void kimage_free(struct kimage *image) 547 { 599 { 548 kimage_entry_t *ptr, entry; 600 kimage_entry_t *ptr, entry; 549 kimage_entry_t ind = 0; 601 kimage_entry_t ind = 0; 550 602 551 if (!image) 603 if (!image) 552 return; 604 return; 553 605 554 #ifdef CONFIG_CRASH_DUMP << 555 if (image->vmcoreinfo_data_copy) { 606 if (image->vmcoreinfo_data_copy) { 556 crash_update_vmcoreinfo_safeco 607 crash_update_vmcoreinfo_safecopy(NULL); 557 vunmap(image->vmcoreinfo_data_ 608 vunmap(image->vmcoreinfo_data_copy); 558 } 609 } 559 #endif << 560 610 561 kimage_free_extra_pages(image); 611 kimage_free_extra_pages(image); 562 for_each_kimage_entry(image, ptr, entr 612 for_each_kimage_entry(image, ptr, entry) { 563 if (entry & IND_INDIRECTION) { 613 if (entry & IND_INDIRECTION) { 564 /* Free the previous i 614 /* Free the previous indirection page */ 565 if (ind & IND_INDIRECT 615 if (ind & IND_INDIRECTION) 566 kimage_free_en 616 kimage_free_entry(ind); 567 /* Save this indirecti 617 /* Save this indirection page until we are 568 * done with it. 618 * done with it. 569 */ 619 */ 570 ind = entry; 620 ind = entry; 571 } else if (entry & IND_SOURCE) 621 } else if (entry & IND_SOURCE) 572 kimage_free_entry(entr 622 kimage_free_entry(entry); 573 } 623 } 574 /* Free the final indirection page */ 624 /* Free the final indirection page */ 575 if (ind & IND_INDIRECTION) 625 if (ind & IND_INDIRECTION) 576 kimage_free_entry(ind); 626 kimage_free_entry(ind); 577 627 578 /* Handle any machine specific cleanup 628 /* Handle any machine specific cleanup */ 579 machine_kexec_cleanup(image); 629 machine_kexec_cleanup(image); 580 630 581 /* Free the kexec control pages... */ 631 /* Free the kexec control pages... */ 582 kimage_free_page_list(&image->control_ 632 kimage_free_page_list(&image->control_pages); 583 633 584 /* 634 /* 585 * Free up any temporary buffers alloc 635 * Free up any temporary buffers allocated. This might hit if 586 * error occurred much later after buf 636 * error occurred much later after buffer allocation. 587 */ 637 */ 588 if (image->file_mode) 638 if (image->file_mode) 589 kimage_file_post_load_cleanup( 639 kimage_file_post_load_cleanup(image); 590 640 591 kfree(image); 641 kfree(image); 592 } 642 } 593 643 594 static kimage_entry_t *kimage_dst_used(struct 644 static kimage_entry_t *kimage_dst_used(struct kimage *image, 595 unsign 645 unsigned long page) 596 { 646 { 597 kimage_entry_t *ptr, entry; 647 kimage_entry_t *ptr, entry; 598 unsigned long destination = 0; 648 unsigned long destination = 0; 599 649 600 for_each_kimage_entry(image, ptr, entr 650 for_each_kimage_entry(image, ptr, entry) { 601 if (entry & IND_DESTINATION) 651 if (entry & IND_DESTINATION) 602 destination = entry & 652 destination = entry & PAGE_MASK; 603 else if (entry & IND_SOURCE) { 653 else if (entry & IND_SOURCE) { 604 if (page == destinatio 654 if (page == destination) 605 return ptr; 655 return ptr; 606 destination += PAGE_SI 656 destination += PAGE_SIZE; 607 } 657 } 608 } 658 } 609 659 610 return NULL; 660 return NULL; 611 } 661 } 612 662 613 static struct page *kimage_alloc_page(struct k 663 static struct page *kimage_alloc_page(struct kimage *image, 614 gfp_t 664 gfp_t gfp_mask, 615 unsign 665 unsigned long destination) 616 { 666 { 617 /* 667 /* 618 * Here we implement safeguards to ens 668 * Here we implement safeguards to ensure that a source page 619 * is not copied to its destination pa 669 * is not copied to its destination page before the data on 620 * the destination page is no longer u 670 * the destination page is no longer useful. 621 * 671 * 622 * To do this we maintain the invarian 672 * To do this we maintain the invariant that a source page is 623 * either its own destination page, or 673 * either its own destination page, or it is not a 624 * destination page at all. 674 * destination page at all. 625 * 675 * 626 * That is slightly stronger than requ 676 * That is slightly stronger than required, but the proof 627 * that no problems will not occur is 677 * that no problems will not occur is trivial, and the 628 * implementation is simply to verify. 678 * implementation is simply to verify. 629 * 679 * 630 * When allocating all pages normally 680 * When allocating all pages normally this algorithm will run 631 * in O(N) time, but in the worst case 681 * in O(N) time, but in the worst case it will run in O(N^2) 632 * time. If the runtime is a problem 682 * time. If the runtime is a problem the data structures can 633 * be fixed. 683 * be fixed. 634 */ 684 */ 635 struct page *page; 685 struct page *page; 636 unsigned long addr; 686 unsigned long addr; 637 687 638 /* 688 /* 639 * Walk through the list of destinatio 689 * Walk through the list of destination pages, and see if I 640 * have a match. 690 * have a match. 641 */ 691 */ 642 list_for_each_entry(page, &image->dest 692 list_for_each_entry(page, &image->dest_pages, lru) { 643 addr = page_to_boot_pfn(page) 693 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 644 if (addr == destination) { 694 if (addr == destination) { 645 list_del(&page->lru); 695 list_del(&page->lru); 646 return page; 696 return page; 647 } 697 } 648 } 698 } 649 page = NULL; 699 page = NULL; 650 while (1) { 700 while (1) { 651 kimage_entry_t *old; 701 kimage_entry_t *old; 652 702 653 /* Allocate a page, if we run 703 /* Allocate a page, if we run out of memory give up */ 654 page = kimage_alloc_pages(gfp_ 704 page = kimage_alloc_pages(gfp_mask, 0); 655 if (!page) 705 if (!page) 656 return NULL; 706 return NULL; 657 /* If the page cannot be used 707 /* If the page cannot be used file it away */ 658 if (page_to_boot_pfn(page) > 708 if (page_to_boot_pfn(page) > 659 (KEXEC_SOURCE_ 709 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 660 list_add(&page->lru, & 710 list_add(&page->lru, &image->unusable_pages); 661 continue; 711 continue; 662 } 712 } 663 addr = page_to_boot_pfn(page) 713 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 664 714 665 /* If it is the destination pa 715 /* If it is the destination page we want use it */ 666 if (addr == destination) 716 if (addr == destination) 667 break; 717 break; 668 718 669 /* If the page is not a destin 719 /* If the page is not a destination page use it */ 670 if (!kimage_is_destination_ran 720 if (!kimage_is_destination_range(image, addr, 671 721 addr + PAGE_SIZE - 1)) 672 break; 722 break; 673 723 674 /* 724 /* 675 * I know that the page is som 725 * I know that the page is someones destination page. 676 * See if there is already a s 726 * See if there is already a source page for this 677 * destination page. And if s 727 * destination page. And if so swap the source pages. 678 */ 728 */ 679 old = kimage_dst_used(image, a 729 old = kimage_dst_used(image, addr); 680 if (old) { 730 if (old) { 681 /* If so move it */ 731 /* If so move it */ 682 unsigned long old_addr 732 unsigned long old_addr; 683 struct page *old_page; 733 struct page *old_page; 684 734 685 old_addr = *old & PAGE 735 old_addr = *old & PAGE_MASK; 686 old_page = boot_pfn_to 736 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 687 copy_highpage(page, ol 737 copy_highpage(page, old_page); 688 *old = addr | (*old & 738 *old = addr | (*old & ~PAGE_MASK); 689 739 690 /* The old page I have 740 /* The old page I have found cannot be a 691 * destination page, s 741 * destination page, so return it if it's 692 * gfp_flags honor the 742 * gfp_flags honor the ones passed in. 693 */ 743 */ 694 if (!(gfp_mask & __GFP 744 if (!(gfp_mask & __GFP_HIGHMEM) && 695 PageHighMem(old_pa 745 PageHighMem(old_page)) { 696 kimage_free_pa 746 kimage_free_pages(old_page); 697 continue; 747 continue; 698 } 748 } 699 page = old_page; 749 page = old_page; 700 break; 750 break; 701 } 751 } 702 /* Place the page on the desti 752 /* Place the page on the destination list, to be used later */ 703 list_add(&page->lru, &image->d 753 list_add(&page->lru, &image->dest_pages); 704 } 754 } 705 755 706 return page; 756 return page; 707 } 757 } 708 758 709 static int kimage_load_normal_segment(struct k 759 static int kimage_load_normal_segment(struct kimage *image, 710 struc 760 struct kexec_segment *segment) 711 { 761 { 712 unsigned long maddr; 762 unsigned long maddr; 713 size_t ubytes, mbytes; 763 size_t ubytes, mbytes; 714 int result; 764 int result; 715 unsigned char __user *buf = NULL; 765 unsigned char __user *buf = NULL; 716 unsigned char *kbuf = NULL; 766 unsigned char *kbuf = NULL; 717 767 718 if (image->file_mode) 768 if (image->file_mode) 719 kbuf = segment->kbuf; 769 kbuf = segment->kbuf; 720 else 770 else 721 buf = segment->buf; 771 buf = segment->buf; 722 ubytes = segment->bufsz; 772 ubytes = segment->bufsz; 723 mbytes = segment->memsz; 773 mbytes = segment->memsz; 724 maddr = segment->mem; 774 maddr = segment->mem; 725 775 726 result = kimage_set_destination(image, 776 result = kimage_set_destination(image, maddr); 727 if (result < 0) 777 if (result < 0) 728 goto out; 778 goto out; 729 779 730 while (mbytes) { 780 while (mbytes) { 731 struct page *page; 781 struct page *page; 732 char *ptr; 782 char *ptr; 733 size_t uchunk, mchunk; 783 size_t uchunk, mchunk; 734 784 735 page = kimage_alloc_page(image 785 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 736 if (!page) { 786 if (!page) { 737 result = -ENOMEM; 787 result = -ENOMEM; 738 goto out; 788 goto out; 739 } 789 } 740 result = kimage_add_page(image 790 result = kimage_add_page(image, page_to_boot_pfn(page) 741 791 << PAGE_SHIFT); 742 if (result < 0) 792 if (result < 0) 743 goto out; 793 goto out; 744 794 745 ptr = kmap_local_page(page); 795 ptr = kmap_local_page(page); 746 /* Start with a clear page */ 796 /* Start with a clear page */ 747 clear_page(ptr); 797 clear_page(ptr); 748 ptr += maddr & ~PAGE_MASK; 798 ptr += maddr & ~PAGE_MASK; 749 mchunk = min_t(size_t, mbytes, 799 mchunk = min_t(size_t, mbytes, 750 PAGE_SIZE - (m 800 PAGE_SIZE - (maddr & ~PAGE_MASK)); 751 uchunk = min(ubytes, mchunk); 801 uchunk = min(ubytes, mchunk); 752 802 753 if (uchunk) { !! 803 /* For file based kexec, source pages are in kernel memory */ 754 /* For file based kexe !! 804 if (image->file_mode) 755 if (image->file_mode) !! 805 memcpy(ptr, kbuf, uchunk); 756 memcpy(ptr, kb !! 806 else 757 else !! 807 result = copy_from_user(ptr, buf, uchunk); 758 result = copy_ << 759 ubytes -= uchunk; << 760 if (image->file_mode) << 761 kbuf += uchunk << 762 else << 763 buf += uchunk; << 764 } << 765 kunmap_local(ptr); 808 kunmap_local(ptr); 766 if (result) { 809 if (result) { 767 result = -EFAULT; 810 result = -EFAULT; 768 goto out; 811 goto out; 769 } 812 } >> 813 ubytes -= uchunk; 770 maddr += mchunk; 814 maddr += mchunk; >> 815 if (image->file_mode) >> 816 kbuf += mchunk; >> 817 else >> 818 buf += mchunk; 771 mbytes -= mchunk; 819 mbytes -= mchunk; 772 820 773 cond_resched(); 821 cond_resched(); 774 } 822 } 775 out: 823 out: 776 return result; 824 return result; 777 } 825 } 778 826 779 #ifdef CONFIG_CRASH_DUMP << 780 static int kimage_load_crash_segment(struct ki 827 static int kimage_load_crash_segment(struct kimage *image, 781 struct 828 struct kexec_segment *segment) 782 { 829 { 783 /* For crash dumps kernels we simply c 830 /* For crash dumps kernels we simply copy the data from 784 * user space to it's destination. 831 * user space to it's destination. 785 * We do things a page at a time for t 832 * We do things a page at a time for the sake of kmap. 786 */ 833 */ 787 unsigned long maddr; 834 unsigned long maddr; 788 size_t ubytes, mbytes; 835 size_t ubytes, mbytes; 789 int result; 836 int result; 790 unsigned char __user *buf = NULL; 837 unsigned char __user *buf = NULL; 791 unsigned char *kbuf = NULL; 838 unsigned char *kbuf = NULL; 792 839 793 result = 0; 840 result = 0; 794 if (image->file_mode) 841 if (image->file_mode) 795 kbuf = segment->kbuf; 842 kbuf = segment->kbuf; 796 else 843 else 797 buf = segment->buf; 844 buf = segment->buf; 798 ubytes = segment->bufsz; 845 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 846 mbytes = segment->memsz; 800 maddr = segment->mem; 847 maddr = segment->mem; 801 while (mbytes) { 848 while (mbytes) { 802 struct page *page; 849 struct page *page; 803 char *ptr; 850 char *ptr; 804 size_t uchunk, mchunk; 851 size_t uchunk, mchunk; 805 852 806 page = boot_pfn_to_page(maddr 853 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 807 if (!page) { 854 if (!page) { 808 result = -ENOMEM; 855 result = -ENOMEM; 809 goto out; 856 goto out; 810 } 857 } 811 arch_kexec_post_alloc_pages(pa 858 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 812 ptr = kmap_local_page(page); 859 ptr = kmap_local_page(page); 813 ptr += maddr & ~PAGE_MASK; 860 ptr += maddr & ~PAGE_MASK; 814 mchunk = min_t(size_t, mbytes, 861 mchunk = min_t(size_t, mbytes, 815 PAGE_SIZE - (m 862 PAGE_SIZE - (maddr & ~PAGE_MASK)); 816 uchunk = min(ubytes, mchunk); 863 uchunk = min(ubytes, mchunk); 817 if (mchunk > uchunk) { 864 if (mchunk > uchunk) { 818 /* Zero the trailing p 865 /* Zero the trailing part of the page */ 819 memset(ptr + uchunk, 0 866 memset(ptr + uchunk, 0, mchunk - uchunk); 820 } 867 } 821 868 822 if (uchunk) { !! 869 /* For file based kexec, source pages are in kernel memory */ 823 /* For file based kexe !! 870 if (image->file_mode) 824 if (image->file_mode) !! 871 memcpy(ptr, kbuf, uchunk); 825 memcpy(ptr, kb !! 872 else 826 else !! 873 result = copy_from_user(ptr, buf, uchunk); 827 result = copy_ << 828 ubytes -= uchunk; << 829 if (image->file_mode) << 830 kbuf += uchunk << 831 else << 832 buf += uchunk; << 833 } << 834 kexec_flush_icache_page(page); 874 kexec_flush_icache_page(page); 835 kunmap_local(ptr); 875 kunmap_local(ptr); 836 arch_kexec_pre_free_pages(page 876 arch_kexec_pre_free_pages(page_address(page), 1); 837 if (result) { 877 if (result) { 838 result = -EFAULT; 878 result = -EFAULT; 839 goto out; 879 goto out; 840 } 880 } >> 881 ubytes -= uchunk; 841 maddr += mchunk; 882 maddr += mchunk; >> 883 if (image->file_mode) >> 884 kbuf += mchunk; >> 885 else >> 886 buf += mchunk; 842 mbytes -= mchunk; 887 mbytes -= mchunk; 843 888 844 cond_resched(); 889 cond_resched(); 845 } 890 } 846 out: 891 out: 847 return result; 892 return result; 848 } 893 } 849 #endif << 850 894 851 int kimage_load_segment(struct kimage *image, 895 int kimage_load_segment(struct kimage *image, 852 struct kexec_s 896 struct kexec_segment *segment) 853 { 897 { 854 int result = -ENOMEM; 898 int result = -ENOMEM; 855 899 856 switch (image->type) { 900 switch (image->type) { 857 case KEXEC_TYPE_DEFAULT: 901 case KEXEC_TYPE_DEFAULT: 858 result = kimage_load_normal_se 902 result = kimage_load_normal_segment(image, segment); 859 break; 903 break; 860 #ifdef CONFIG_CRASH_DUMP << 861 case KEXEC_TYPE_CRASH: 904 case KEXEC_TYPE_CRASH: 862 result = kimage_load_crash_seg 905 result = kimage_load_crash_segment(image, segment); 863 break; 906 break; 864 #endif << 865 } 907 } 866 908 867 return result; 909 return result; 868 } 910 } 869 911 870 struct kexec_load_limit { 912 struct kexec_load_limit { 871 /* Mutex protects the limit count. */ 913 /* Mutex protects the limit count. */ 872 struct mutex mutex; 914 struct mutex mutex; 873 int limit; 915 int limit; 874 }; 916 }; 875 917 876 static struct kexec_load_limit load_limit_rebo 918 static struct kexec_load_limit load_limit_reboot = { 877 .mutex = __MUTEX_INITIALIZER(load_limi 919 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 878 .limit = -1, 920 .limit = -1, 879 }; 921 }; 880 922 881 static struct kexec_load_limit load_limit_pani 923 static struct kexec_load_limit load_limit_panic = { 882 .mutex = __MUTEX_INITIALIZER(load_limi 924 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 883 .limit = -1, 925 .limit = -1, 884 }; 926 }; 885 927 886 struct kimage *kexec_image; 928 struct kimage *kexec_image; 887 struct kimage *kexec_crash_image; 929 struct kimage *kexec_crash_image; 888 static int kexec_load_disabled; 930 static int kexec_load_disabled; 889 931 890 #ifdef CONFIG_SYSCTL 932 #ifdef CONFIG_SYSCTL 891 static int kexec_limit_handler(const struct ct !! 933 static int kexec_limit_handler(struct ctl_table *table, int write, 892 void *buffer, s 934 void *buffer, size_t *lenp, loff_t *ppos) 893 { 935 { 894 struct kexec_load_limit *limit = table 936 struct kexec_load_limit *limit = table->data; 895 int val; 937 int val; 896 struct ctl_table tmp = { 938 struct ctl_table tmp = { 897 .data = &val, 939 .data = &val, 898 .maxlen = sizeof(val), 940 .maxlen = sizeof(val), 899 .mode = table->mode, 941 .mode = table->mode, 900 }; 942 }; 901 int ret; 943 int ret; 902 944 903 if (write) { 945 if (write) { 904 ret = proc_dointvec(&tmp, writ 946 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 905 if (ret) 947 if (ret) 906 return ret; 948 return ret; 907 949 908 if (val < 0) 950 if (val < 0) 909 return -EINVAL; 951 return -EINVAL; 910 952 911 mutex_lock(&limit->mutex); 953 mutex_lock(&limit->mutex); 912 if (limit->limit != -1 && val 954 if (limit->limit != -1 && val >= limit->limit) 913 ret = -EINVAL; 955 ret = -EINVAL; 914 else 956 else 915 limit->limit = val; 957 limit->limit = val; 916 mutex_unlock(&limit->mutex); 958 mutex_unlock(&limit->mutex); 917 959 918 return ret; 960 return ret; 919 } 961 } 920 962 921 mutex_lock(&limit->mutex); 963 mutex_lock(&limit->mutex); 922 val = limit->limit; 964 val = limit->limit; 923 mutex_unlock(&limit->mutex); 965 mutex_unlock(&limit->mutex); 924 966 925 return proc_dointvec(&tmp, write, buff 967 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 926 } 968 } 927 969 928 static struct ctl_table kexec_core_sysctls[] = 970 static struct ctl_table kexec_core_sysctls[] = { 929 { 971 { 930 .procname = "kexec_load_ 972 .procname = "kexec_load_disabled", 931 .data = &kexec_load_ 973 .data = &kexec_load_disabled, 932 .maxlen = sizeof(int), 974 .maxlen = sizeof(int), 933 .mode = 0644, 975 .mode = 0644, 934 /* only handle a transition fr 976 /* only handle a transition from default "" to "1" */ 935 .proc_handler = proc_dointve 977 .proc_handler = proc_dointvec_minmax, 936 .extra1 = SYSCTL_ONE, 978 .extra1 = SYSCTL_ONE, 937 .extra2 = SYSCTL_ONE, 979 .extra2 = SYSCTL_ONE, 938 }, 980 }, 939 { 981 { 940 .procname = "kexec_load_ 982 .procname = "kexec_load_limit_panic", 941 .data = &load_limit_ 983 .data = &load_limit_panic, 942 .mode = 0644, 984 .mode = 0644, 943 .proc_handler = kexec_limit_ 985 .proc_handler = kexec_limit_handler, 944 }, 986 }, 945 { 987 { 946 .procname = "kexec_load_ 988 .procname = "kexec_load_limit_reboot", 947 .data = &load_limit_ 989 .data = &load_limit_reboot, 948 .mode = 0644, 990 .mode = 0644, 949 .proc_handler = kexec_limit_ 991 .proc_handler = kexec_limit_handler, 950 }, 992 }, >> 993 { } 951 }; 994 }; 952 995 953 static int __init kexec_core_sysctl_init(void) 996 static int __init kexec_core_sysctl_init(void) 954 { 997 { 955 register_sysctl_init("kernel", kexec_c 998 register_sysctl_init("kernel", kexec_core_sysctls); 956 return 0; 999 return 0; 957 } 1000 } 958 late_initcall(kexec_core_sysctl_init); 1001 late_initcall(kexec_core_sysctl_init); 959 #endif 1002 #endif 960 1003 961 bool kexec_load_permitted(int kexec_image_type 1004 bool kexec_load_permitted(int kexec_image_type) 962 { 1005 { 963 struct kexec_load_limit *limit; 1006 struct kexec_load_limit *limit; 964 1007 965 /* 1008 /* 966 * Only the superuser can use the kexe 1009 * Only the superuser can use the kexec syscall and if it has not 967 * been disabled. 1010 * been disabled. 968 */ 1011 */ 969 if (!capable(CAP_SYS_BOOT) || kexec_lo 1012 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 970 return false; 1013 return false; 971 1014 972 /* Check limit counter and decrease it 1015 /* Check limit counter and decrease it.*/ 973 limit = (kexec_image_type == KEXEC_TYP 1016 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 974 &load_limit_panic : &load_limi 1017 &load_limit_panic : &load_limit_reboot; 975 mutex_lock(&limit->mutex); 1018 mutex_lock(&limit->mutex); 976 if (!limit->limit) { 1019 if (!limit->limit) { 977 mutex_unlock(&limit->mutex); 1020 mutex_unlock(&limit->mutex); 978 return false; 1021 return false; 979 } 1022 } 980 if (limit->limit != -1) 1023 if (limit->limit != -1) 981 limit->limit--; 1024 limit->limit--; 982 mutex_unlock(&limit->mutex); 1025 mutex_unlock(&limit->mutex); 983 1026 984 return true; 1027 return true; >> 1028 } >> 1029 >> 1030 /* >> 1031 * No panic_cpu check version of crash_kexec(). This function is called >> 1032 * only when panic_cpu holds the current CPU number; this is the only CPU >> 1033 * which processes crash_kexec routines. >> 1034 */ >> 1035 void __noclone __crash_kexec(struct pt_regs *regs) >> 1036 { >> 1037 /* Take the kexec_lock here to prevent sys_kexec_load >> 1038 * running on one cpu from replacing the crash kernel >> 1039 * we are using after a panic on a different cpu. >> 1040 * >> 1041 * If the crash kernel was not located in a fixed area >> 1042 * of memory the xchg(&kexec_crash_image) would be >> 1043 * sufficient. But since I reuse the memory... >> 1044 */ >> 1045 if (kexec_trylock()) { >> 1046 if (kexec_crash_image) { >> 1047 struct pt_regs fixed_regs; >> 1048 >> 1049 crash_setup_regs(&fixed_regs, regs); >> 1050 crash_save_vmcoreinfo(); >> 1051 machine_crash_shutdown(&fixed_regs); >> 1052 machine_kexec(kexec_crash_image); >> 1053 } >> 1054 kexec_unlock(); >> 1055 } >> 1056 } >> 1057 STACK_FRAME_NON_STANDARD(__crash_kexec); >> 1058 >> 1059 __bpf_kfunc void crash_kexec(struct pt_regs *regs) >> 1060 { >> 1061 int old_cpu, this_cpu; >> 1062 >> 1063 /* >> 1064 * Only one CPU is allowed to execute the crash_kexec() code as with >> 1065 * panic(). Otherwise parallel calls of panic() and crash_kexec() >> 1066 * may stop each other. To exclude them, we use panic_cpu here too. >> 1067 */ >> 1068 old_cpu = PANIC_CPU_INVALID; >> 1069 this_cpu = raw_smp_processor_id(); >> 1070 >> 1071 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) { >> 1072 /* This is the 1st CPU which comes here, so go ahead. */ >> 1073 __crash_kexec(regs); >> 1074 >> 1075 /* >> 1076 * Reset panic_cpu to allow another panic()/crash_kexec() >> 1077 * call. >> 1078 */ >> 1079 atomic_set(&panic_cpu, PANIC_CPU_INVALID); >> 1080 } >> 1081 } >> 1082 >> 1083 static inline resource_size_t crash_resource_size(const struct resource *res) >> 1084 { >> 1085 return !res->end ? 0 : resource_size(res); >> 1086 } >> 1087 >> 1088 ssize_t crash_get_memory_size(void) >> 1089 { >> 1090 ssize_t size = 0; >> 1091 >> 1092 if (!kexec_trylock()) >> 1093 return -EBUSY; >> 1094 >> 1095 size += crash_resource_size(&crashk_res); >> 1096 size += crash_resource_size(&crashk_low_res); >> 1097 >> 1098 kexec_unlock(); >> 1099 return size; >> 1100 } >> 1101 >> 1102 static int __crash_shrink_memory(struct resource *old_res, >> 1103 unsigned long new_size) >> 1104 { >> 1105 struct resource *ram_res; >> 1106 >> 1107 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); >> 1108 if (!ram_res) >> 1109 return -ENOMEM; >> 1110 >> 1111 ram_res->start = old_res->start + new_size; >> 1112 ram_res->end = old_res->end; >> 1113 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; >> 1114 ram_res->name = "System RAM"; >> 1115 >> 1116 if (!new_size) { >> 1117 release_resource(old_res); >> 1118 old_res->start = 0; >> 1119 old_res->end = 0; >> 1120 } else { >> 1121 crashk_res.end = ram_res->start - 1; >> 1122 } >> 1123 >> 1124 crash_free_reserved_phys_range(ram_res->start, ram_res->end); >> 1125 insert_resource(&iomem_resource, ram_res); >> 1126 >> 1127 return 0; >> 1128 } >> 1129 >> 1130 int crash_shrink_memory(unsigned long new_size) >> 1131 { >> 1132 int ret = 0; >> 1133 unsigned long old_size, low_size; >> 1134 >> 1135 if (!kexec_trylock()) >> 1136 return -EBUSY; >> 1137 >> 1138 if (kexec_crash_image) { >> 1139 ret = -ENOENT; >> 1140 goto unlock; >> 1141 } >> 1142 >> 1143 low_size = crash_resource_size(&crashk_low_res); >> 1144 old_size = crash_resource_size(&crashk_res) + low_size; >> 1145 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); >> 1146 if (new_size >= old_size) { >> 1147 ret = (new_size == old_size) ? 0 : -EINVAL; >> 1148 goto unlock; >> 1149 } >> 1150 >> 1151 /* >> 1152 * (low_size > new_size) implies that low_size is greater than zero. >> 1153 * This also means that if low_size is zero, the else branch is taken. >> 1154 * >> 1155 * If low_size is greater than 0, (low_size > new_size) indicates that >> 1156 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res >> 1157 * needs to be shrunken. >> 1158 */ >> 1159 if (low_size > new_size) { >> 1160 ret = __crash_shrink_memory(&crashk_res, 0); >> 1161 if (ret) >> 1162 goto unlock; >> 1163 >> 1164 ret = __crash_shrink_memory(&crashk_low_res, new_size); >> 1165 } else { >> 1166 ret = __crash_shrink_memory(&crashk_res, new_size - low_size); >> 1167 } >> 1168 >> 1169 /* Swap crashk_res and crashk_low_res if needed */ >> 1170 if (!crashk_res.end && crashk_low_res.end) { >> 1171 crashk_res.start = crashk_low_res.start; >> 1172 crashk_res.end = crashk_low_res.end; >> 1173 release_resource(&crashk_low_res); >> 1174 crashk_low_res.start = 0; >> 1175 crashk_low_res.end = 0; >> 1176 insert_resource(&iomem_resource, &crashk_res); >> 1177 } >> 1178 >> 1179 unlock: >> 1180 kexec_unlock(); >> 1181 return ret; >> 1182 } >> 1183 >> 1184 void crash_save_cpu(struct pt_regs *regs, int cpu) >> 1185 { >> 1186 struct elf_prstatus prstatus; >> 1187 u32 *buf; >> 1188 >> 1189 if ((cpu < 0) || (cpu >= nr_cpu_ids)) >> 1190 return; >> 1191 >> 1192 /* Using ELF notes here is opportunistic. >> 1193 * I need a well defined structure format >> 1194 * for the data I pass, and I need tags >> 1195 * on the data to indicate what information I have >> 1196 * squirrelled away. ELF notes happen to provide >> 1197 * all of that, so there is no need to invent something new. >> 1198 */ >> 1199 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); >> 1200 if (!buf) >> 1201 return; >> 1202 memset(&prstatus, 0, sizeof(prstatus)); >> 1203 prstatus.common.pr_pid = current->pid; >> 1204 elf_core_copy_regs(&prstatus.pr_reg, regs); >> 1205 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, >> 1206 &prstatus, sizeof(prstatus)); >> 1207 final_note(buf); 985 } 1208 } 986 1209 987 /* 1210 /* 988 * Move into place and start executing a prelo 1211 * Move into place and start executing a preloaded standalone 989 * executable. If nothing was preloaded retur 1212 * executable. If nothing was preloaded return an error. 990 */ 1213 */ 991 int kernel_kexec(void) 1214 int kernel_kexec(void) 992 { 1215 { 993 int error = 0; 1216 int error = 0; 994 1217 995 if (!kexec_trylock()) 1218 if (!kexec_trylock()) 996 return -EBUSY; 1219 return -EBUSY; 997 if (!kexec_image) { 1220 if (!kexec_image) { 998 error = -EINVAL; 1221 error = -EINVAL; 999 goto Unlock; 1222 goto Unlock; 1000 } 1223 } 1001 1224 1002 #ifdef CONFIG_KEXEC_JUMP 1225 #ifdef CONFIG_KEXEC_JUMP 1003 if (kexec_image->preserve_context) { 1226 if (kexec_image->preserve_context) { 1004 pm_prepare_console(); 1227 pm_prepare_console(); 1005 error = freeze_processes(); 1228 error = freeze_processes(); 1006 if (error) { 1229 if (error) { 1007 error = -EBUSY; 1230 error = -EBUSY; 1008 goto Restore_console; 1231 goto Restore_console; 1009 } 1232 } 1010 suspend_console(); 1233 suspend_console(); 1011 error = dpm_suspend_start(PMS 1234 error = dpm_suspend_start(PMSG_FREEZE); 1012 if (error) 1235 if (error) 1013 goto Resume_console; 1236 goto Resume_console; 1014 /* At this point, dpm_suspend 1237 /* At this point, dpm_suspend_start() has been called, 1015 * but *not* dpm_suspend_end( 1238 * but *not* dpm_suspend_end(). We *must* call 1016 * dpm_suspend_end() now. Ot 1239 * dpm_suspend_end() now. Otherwise, drivers for 1017 * some devices (e.g. interru 1240 * some devices (e.g. interrupt controllers) become 1018 * desynchronized with the ac 1241 * desynchronized with the actual state of the 1019 * hardware at resume time, a 1242 * hardware at resume time, and evil weirdness ensues. 1020 */ 1243 */ 1021 error = dpm_suspend_end(PMSG_ 1244 error = dpm_suspend_end(PMSG_FREEZE); 1022 if (error) 1245 if (error) 1023 goto Resume_devices; 1246 goto Resume_devices; 1024 error = suspend_disable_secon 1247 error = suspend_disable_secondary_cpus(); 1025 if (error) 1248 if (error) 1026 goto Enable_cpus; 1249 goto Enable_cpus; 1027 local_irq_disable(); 1250 local_irq_disable(); 1028 error = syscore_suspend(); 1251 error = syscore_suspend(); 1029 if (error) 1252 if (error) 1030 goto Enable_irqs; 1253 goto Enable_irqs; 1031 } else 1254 } else 1032 #endif 1255 #endif 1033 { 1256 { 1034 kexec_in_progress = true; 1257 kexec_in_progress = true; 1035 kernel_restart_prepare("kexec 1258 kernel_restart_prepare("kexec reboot"); 1036 migrate_to_reboot_cpu(); 1259 migrate_to_reboot_cpu(); 1037 syscore_shutdown(); 1260 syscore_shutdown(); 1038 1261 1039 /* 1262 /* 1040 * migrate_to_reboot_cpu() di 1263 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1041 * no further code needs to u 1264 * no further code needs to use CPU hotplug (which is true in 1042 * the reboot case). However, 1265 * the reboot case). However, the kexec path depends on using 1043 * CPU hotplug again; so re-e 1266 * CPU hotplug again; so re-enable it here. 1044 */ 1267 */ 1045 cpu_hotplug_enable(); 1268 cpu_hotplug_enable(); 1046 pr_notice("Starting new kerne 1269 pr_notice("Starting new kernel\n"); 1047 machine_shutdown(); 1270 machine_shutdown(); 1048 } 1271 } 1049 1272 1050 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1273 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1051 machine_kexec(kexec_image); 1274 machine_kexec(kexec_image); 1052 1275 1053 #ifdef CONFIG_KEXEC_JUMP 1276 #ifdef CONFIG_KEXEC_JUMP 1054 if (kexec_image->preserve_context) { 1277 if (kexec_image->preserve_context) { 1055 syscore_resume(); 1278 syscore_resume(); 1056 Enable_irqs: 1279 Enable_irqs: 1057 local_irq_enable(); 1280 local_irq_enable(); 1058 Enable_cpus: 1281 Enable_cpus: 1059 suspend_enable_secondary_cpus 1282 suspend_enable_secondary_cpus(); 1060 dpm_resume_start(PMSG_RESTORE 1283 dpm_resume_start(PMSG_RESTORE); 1061 Resume_devices: 1284 Resume_devices: 1062 dpm_resume_end(PMSG_RESTORE); 1285 dpm_resume_end(PMSG_RESTORE); 1063 Resume_console: 1286 Resume_console: 1064 resume_console(); 1287 resume_console(); 1065 thaw_processes(); 1288 thaw_processes(); 1066 Restore_console: 1289 Restore_console: 1067 pm_restore_console(); 1290 pm_restore_console(); 1068 } 1291 } 1069 #endif 1292 #endif 1070 1293 1071 Unlock: 1294 Unlock: 1072 kexec_unlock(); 1295 kexec_unlock(); 1073 return error; 1296 return error; 1074 } 1297 } 1075 1298
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.