~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/kexec_core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/kexec_core.c (Version linux-6.11.5) and /kernel/kexec_core.c (Version linux-6.8.12)


  1 // SPDX-License-Identifier: GPL-2.0-only            1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*                                                  2 /*
  3  * kexec.c - kexec system call core code.           3  * kexec.c - kexec system call core code.
  4  * Copyright (C) 2002-2004 Eric Biederman  <eb      4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5  */                                                 5  */
  6                                                     6 
  7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt         7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8                                                     8 
  9 #include <linux/btf.h>                              9 #include <linux/btf.h>
 10 #include <linux/capability.h>                      10 #include <linux/capability.h>
 11 #include <linux/mm.h>                              11 #include <linux/mm.h>
 12 #include <linux/file.h>                            12 #include <linux/file.h>
 13 #include <linux/slab.h>                            13 #include <linux/slab.h>
 14 #include <linux/fs.h>                              14 #include <linux/fs.h>
 15 #include <linux/kexec.h>                           15 #include <linux/kexec.h>
 16 #include <linux/mutex.h>                           16 #include <linux/mutex.h>
 17 #include <linux/list.h>                            17 #include <linux/list.h>
 18 #include <linux/highmem.h>                         18 #include <linux/highmem.h>
 19 #include <linux/syscalls.h>                        19 #include <linux/syscalls.h>
 20 #include <linux/reboot.h>                          20 #include <linux/reboot.h>
 21 #include <linux/ioport.h>                          21 #include <linux/ioport.h>
 22 #include <linux/hardirq.h>                         22 #include <linux/hardirq.h>
 23 #include <linux/elf.h>                             23 #include <linux/elf.h>
 24 #include <linux/elfcore.h>                         24 #include <linux/elfcore.h>
 25 #include <linux/utsname.h>                         25 #include <linux/utsname.h>
 26 #include <linux/numa.h>                            26 #include <linux/numa.h>
 27 #include <linux/suspend.h>                         27 #include <linux/suspend.h>
 28 #include <linux/device.h>                          28 #include <linux/device.h>
 29 #include <linux/freezer.h>                         29 #include <linux/freezer.h>
 30 #include <linux/panic_notifier.h>                  30 #include <linux/panic_notifier.h>
 31 #include <linux/pm.h>                              31 #include <linux/pm.h>
 32 #include <linux/cpu.h>                             32 #include <linux/cpu.h>
 33 #include <linux/uaccess.h>                         33 #include <linux/uaccess.h>
 34 #include <linux/io.h>                              34 #include <linux/io.h>
 35 #include <linux/console.h>                         35 #include <linux/console.h>
 36 #include <linux/vmalloc.h>                         36 #include <linux/vmalloc.h>
 37 #include <linux/swap.h>                            37 #include <linux/swap.h>
 38 #include <linux/syscore_ops.h>                     38 #include <linux/syscore_ops.h>
 39 #include <linux/compiler.h>                        39 #include <linux/compiler.h>
 40 #include <linux/hugetlb.h>                         40 #include <linux/hugetlb.h>
 41 #include <linux/objtool.h>                         41 #include <linux/objtool.h>
 42 #include <linux/kmsg_dump.h>                       42 #include <linux/kmsg_dump.h>
 43                                                    43 
 44 #include <asm/page.h>                              44 #include <asm/page.h>
 45 #include <asm/sections.h>                          45 #include <asm/sections.h>
 46                                                    46 
 47 #include <crypto/hash.h>                           47 #include <crypto/hash.h>
 48 #include "kexec_internal.h"                        48 #include "kexec_internal.h"
 49                                                    49 
 50 atomic_t __kexec_lock = ATOMIC_INIT(0);            50 atomic_t __kexec_lock = ATOMIC_INIT(0);
 51                                                    51 
 52 /* Flag to indicate we are going to kexec a ne     52 /* Flag to indicate we are going to kexec a new kernel */
 53 bool kexec_in_progress = false;                    53 bool kexec_in_progress = false;
 54                                                    54 
 55 bool kexec_file_dbg_print;                         55 bool kexec_file_dbg_print;
 56                                                    56 
                                                   >>  57 int kexec_should_crash(struct task_struct *p)
                                                   >>  58 {
                                                   >>  59         /*
                                                   >>  60          * If crash_kexec_post_notifiers is enabled, don't run
                                                   >>  61          * crash_kexec() here yet, which must be run after panic
                                                   >>  62          * notifiers in panic().
                                                   >>  63          */
                                                   >>  64         if (crash_kexec_post_notifiers)
                                                   >>  65                 return 0;
                                                   >>  66         /*
                                                   >>  67          * There are 4 panic() calls in make_task_dead() path, each of which
                                                   >>  68          * corresponds to each of these 4 conditions.
                                                   >>  69          */
                                                   >>  70         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
                                                   >>  71                 return 1;
                                                   >>  72         return 0;
                                                   >>  73 }
                                                   >>  74 
                                                   >>  75 int kexec_crash_loaded(void)
                                                   >>  76 {
                                                   >>  77         return !!kexec_crash_image;
                                                   >>  78 }
                                                   >>  79 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
                                                   >>  80 
 57 /*                                                 81 /*
 58  * When kexec transitions to the new kernel th     82  * When kexec transitions to the new kernel there is a one-to-one
 59  * mapping between physical and virtual addres     83  * mapping between physical and virtual addresses.  On processors
 60  * where you can disable the MMU this is trivi     84  * where you can disable the MMU this is trivial, and easy.  For
 61  * others it is still a simple predictable pag     85  * others it is still a simple predictable page table to setup.
 62  *                                                 86  *
 63  * In that environment kexec copies the new ke     87  * In that environment kexec copies the new kernel to its final
 64  * resting place.  This means I can only suppo     88  * resting place.  This means I can only support memory whose
 65  * physical address can fit in an unsigned lon     89  * physical address can fit in an unsigned long.  In particular
 66  * addresses where (pfn << PAGE_SHIFT) > ULONG     90  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 67  * If the assembly stub has more restrictive r     91  * If the assembly stub has more restrictive requirements
 68  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_ME     92  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 69  * defined more restrictively in <asm/kexec.h>     93  * defined more restrictively in <asm/kexec.h>.
 70  *                                                 94  *
 71  * The code for the transition from the curren     95  * The code for the transition from the current kernel to the
 72  * new kernel is placed in the control_code_bu     96  * new kernel is placed in the control_code_buffer, whose size
 73  * is given by KEXEC_CONTROL_PAGE_SIZE.  In th     97  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 74  * page of memory is necessary, but some archi     98  * page of memory is necessary, but some architectures require more.
 75  * Because this memory must be identity mapped     99  * Because this memory must be identity mapped in the transition from
 76  * virtual to physical addresses it must live     100  * virtual to physical addresses it must live in the range
 77  * 0 - TASK_SIZE, as only the user space mappi    101  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 78  * modifiable.                                    102  * modifiable.
 79  *                                                103  *
 80  * The assembly stub in the control code buffe    104  * The assembly stub in the control code buffer is passed a linked list
 81  * of descriptor pages detailing the source pa    105  * of descriptor pages detailing the source pages of the new kernel,
 82  * and the destination addresses of those sour    106  * and the destination addresses of those source pages.  As this data
 83  * structure is not used in the context of the    107  * structure is not used in the context of the current OS, it must
 84  * be self-contained.                             108  * be self-contained.
 85  *                                                109  *
 86  * The code has been made to work with highmem    110  * The code has been made to work with highmem pages and will use a
 87  * destination page in its final resting place    111  * destination page in its final resting place (if it happens
 88  * to allocate it).  The end product of this i    112  * to allocate it).  The end product of this is that most of the
 89  * physical address space, and most of RAM can    113  * physical address space, and most of RAM can be used.
 90  *                                                114  *
 91  * Future directions include:                     115  * Future directions include:
 92  *  - allocating a page table with the control    116  *  - allocating a page table with the control code buffer identity
 93  *    mapped, to simplify machine_kexec and ma    117  *    mapped, to simplify machine_kexec and make kexec_on_panic more
 94  *    reliable.                                   118  *    reliable.
 95  */                                               119  */
 96                                                   120 
 97 /*                                                121 /*
 98  * KIMAGE_NO_DEST is an impossible destination    122  * KIMAGE_NO_DEST is an impossible destination address..., for
 99  * allocating pages whose destination address     123  * allocating pages whose destination address we do not care about.
100  */                                               124  */
101 #define KIMAGE_NO_DEST (-1UL)                     125 #define KIMAGE_NO_DEST (-1UL)
102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >    126 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
103                                                   127 
104 static struct page *kimage_alloc_page(struct k    128 static struct page *kimage_alloc_page(struct kimage *image,
105                                        gfp_t g    129                                        gfp_t gfp_mask,
106                                        unsigne    130                                        unsigned long dest);
107                                                   131 
108 int sanity_check_segment_list(struct kimage *i    132 int sanity_check_segment_list(struct kimage *image)
109 {                                                 133 {
110         int i;                                    134         int i;
111         unsigned long nr_segments = image->nr_    135         unsigned long nr_segments = image->nr_segments;
112         unsigned long total_pages = 0;            136         unsigned long total_pages = 0;
113         unsigned long nr_pages = totalram_page    137         unsigned long nr_pages = totalram_pages();
114                                                   138 
115         /*                                        139         /*
116          * Verify we have good destination add    140          * Verify we have good destination addresses.  The caller is
117          * responsible for making certain we d    141          * responsible for making certain we don't attempt to load
118          * the new image into invalid or reser    142          * the new image into invalid or reserved areas of RAM.  This
119          * just verifies it is an address we c    143          * just verifies it is an address we can use.
120          *                                        144          *
121          * Since the kernel does everything in    145          * Since the kernel does everything in page size chunks ensure
122          * the destination addresses are page     146          * the destination addresses are page aligned.  Too many
123          * special cases crop of when we don't    147          * special cases crop of when we don't do this.  The most
124          * insidious is getting overlapping de    148          * insidious is getting overlapping destination addresses
125          * simply because addresses are change    149          * simply because addresses are changed to page size
126          * granularity.                           150          * granularity.
127          */                                       151          */
128         for (i = 0; i < nr_segments; i++) {       152         for (i = 0; i < nr_segments; i++) {
129                 unsigned long mstart, mend;       153                 unsigned long mstart, mend;
130                                                   154 
131                 mstart = image->segment[i].mem    155                 mstart = image->segment[i].mem;
132                 mend   = mstart + image->segme    156                 mend   = mstart + image->segment[i].memsz;
133                 if (mstart > mend)                157                 if (mstart > mend)
134                         return -EADDRNOTAVAIL;    158                         return -EADDRNOTAVAIL;
135                 if ((mstart & ~PAGE_MASK) || (    159                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
136                         return -EADDRNOTAVAIL;    160                         return -EADDRNOTAVAIL;
137                 if (mend >= KEXEC_DESTINATION_    161                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
138                         return -EADDRNOTAVAIL;    162                         return -EADDRNOTAVAIL;
139         }                                         163         }
140                                                   164 
141         /* Verify our destination addresses do    165         /* Verify our destination addresses do not overlap.
142          * If we alloed overlapping destinatio    166          * If we alloed overlapping destination addresses
143          * through very weird things can happe    167          * through very weird things can happen with no
144          * easy explanation as one segment sto    168          * easy explanation as one segment stops on another.
145          */                                       169          */
146         for (i = 0; i < nr_segments; i++) {       170         for (i = 0; i < nr_segments; i++) {
147                 unsigned long mstart, mend;       171                 unsigned long mstart, mend;
148                 unsigned long j;                  172                 unsigned long j;
149                                                   173 
150                 mstart = image->segment[i].mem    174                 mstart = image->segment[i].mem;
151                 mend   = mstart + image->segme    175                 mend   = mstart + image->segment[i].memsz;
152                 for (j = 0; j < i; j++) {         176                 for (j = 0; j < i; j++) {
153                         unsigned long pstart,     177                         unsigned long pstart, pend;
154                                                   178 
155                         pstart = image->segmen    179                         pstart = image->segment[j].mem;
156                         pend   = pstart + imag    180                         pend   = pstart + image->segment[j].memsz;
157                         /* Do the segments ove    181                         /* Do the segments overlap ? */
158                         if ((mend > pstart) &&    182                         if ((mend > pstart) && (mstart < pend))
159                                 return -EINVAL    183                                 return -EINVAL;
160                 }                                 184                 }
161         }                                         185         }
162                                                   186 
163         /* Ensure our buffer sizes are strictl    187         /* Ensure our buffer sizes are strictly less than
164          * our memory sizes.  This should alwa    188          * our memory sizes.  This should always be the case,
165          * and it is easier to check up front     189          * and it is easier to check up front than to be surprised
166          * later on.                              190          * later on.
167          */                                       191          */
168         for (i = 0; i < nr_segments; i++) {       192         for (i = 0; i < nr_segments; i++) {
169                 if (image->segment[i].bufsz >     193                 if (image->segment[i].bufsz > image->segment[i].memsz)
170                         return -EINVAL;           194                         return -EINVAL;
171         }                                         195         }
172                                                   196 
173         /*                                        197         /*
174          * Verify that no more than half of me    198          * Verify that no more than half of memory will be consumed. If the
175          * request from userspace is too large    199          * request from userspace is too large, a large amount of time will be
176          * wasted allocating pages, which can     200          * wasted allocating pages, which can cause a soft lockup.
177          */                                       201          */
178         for (i = 0; i < nr_segments; i++) {       202         for (i = 0; i < nr_segments; i++) {
179                 if (PAGE_COUNT(image->segment[    203                 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
180                         return -EINVAL;           204                         return -EINVAL;
181                                                   205 
182                 total_pages += PAGE_COUNT(imag    206                 total_pages += PAGE_COUNT(image->segment[i].memsz);
183         }                                         207         }
184                                                   208 
185         if (total_pages > nr_pages / 2)           209         if (total_pages > nr_pages / 2)
186                 return -EINVAL;                   210                 return -EINVAL;
187                                                   211 
188 #ifdef CONFIG_CRASH_DUMP                       << 
189         /*                                        212         /*
190          * Verify we have good destination add    213          * Verify we have good destination addresses.  Normally
191          * the caller is responsible for makin    214          * the caller is responsible for making certain we don't
192          * attempt to load the new image into     215          * attempt to load the new image into invalid or reserved
193          * areas of RAM.  But crash kernels ar    216          * areas of RAM.  But crash kernels are preloaded into a
194          * reserved area of ram.  We must ensu    217          * reserved area of ram.  We must ensure the addresses
195          * are in the reserved area otherwise     218          * are in the reserved area otherwise preloading the
196          * kernel could corrupt things.           219          * kernel could corrupt things.
197          */                                       220          */
198                                                   221 
199         if (image->type == KEXEC_TYPE_CRASH) {    222         if (image->type == KEXEC_TYPE_CRASH) {
200                 for (i = 0; i < nr_segments; i    223                 for (i = 0; i < nr_segments; i++) {
201                         unsigned long mstart,     224                         unsigned long mstart, mend;
202                                                   225 
203                         mstart = image->segmen    226                         mstart = image->segment[i].mem;
204                         mend = mstart + image-    227                         mend = mstart + image->segment[i].memsz - 1;
205                         /* Ensure we are withi    228                         /* Ensure we are within the crash kernel limits */
206                         if ((mstart < phys_to_    229                         if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
207                             (mend > phys_to_bo    230                             (mend > phys_to_boot_phys(crashk_res.end)))
208                                 return -EADDRN    231                                 return -EADDRNOTAVAIL;
209                 }                                 232                 }
210         }                                         233         }
211 #endif                                         << 
212                                                   234 
213         return 0;                                 235         return 0;
214 }                                                 236 }
215                                                   237 
216 struct kimage *do_kimage_alloc_init(void)         238 struct kimage *do_kimage_alloc_init(void)
217 {                                                 239 {
218         struct kimage *image;                     240         struct kimage *image;
219                                                   241 
220         /* Allocate a controlling structure */    242         /* Allocate a controlling structure */
221         image = kzalloc(sizeof(*image), GFP_KE    243         image = kzalloc(sizeof(*image), GFP_KERNEL);
222         if (!image)                               244         if (!image)
223                 return NULL;                      245                 return NULL;
224                                                   246 
225         image->head = 0;                          247         image->head = 0;
226         image->entry = &image->head;              248         image->entry = &image->head;
227         image->last_entry = &image->head;         249         image->last_entry = &image->head;
228         image->control_page = ~0; /* By defaul    250         image->control_page = ~0; /* By default this does not apply */
229         image->type = KEXEC_TYPE_DEFAULT;         251         image->type = KEXEC_TYPE_DEFAULT;
230                                                   252 
231         /* Initialize the list of control page    253         /* Initialize the list of control pages */
232         INIT_LIST_HEAD(&image->control_pages);    254         INIT_LIST_HEAD(&image->control_pages);
233                                                   255 
234         /* Initialize the list of destination     256         /* Initialize the list of destination pages */
235         INIT_LIST_HEAD(&image->dest_pages);       257         INIT_LIST_HEAD(&image->dest_pages);
236                                                   258 
237         /* Initialize the list of unusable pag    259         /* Initialize the list of unusable pages */
238         INIT_LIST_HEAD(&image->unusable_pages)    260         INIT_LIST_HEAD(&image->unusable_pages);
239                                                   261 
240 #ifdef CONFIG_CRASH_HOTPLUG                       262 #ifdef CONFIG_CRASH_HOTPLUG
241         image->hp_action = KEXEC_CRASH_HP_NONE    263         image->hp_action = KEXEC_CRASH_HP_NONE;
242         image->elfcorehdr_index = -1;             264         image->elfcorehdr_index = -1;
243         image->elfcorehdr_updated = false;        265         image->elfcorehdr_updated = false;
244 #endif                                            266 #endif
245                                                   267 
246         return image;                             268         return image;
247 }                                                 269 }
248                                                   270 
249 int kimage_is_destination_range(struct kimage     271 int kimage_is_destination_range(struct kimage *image,
250                                         unsign    272                                         unsigned long start,
251                                         unsign    273                                         unsigned long end)
252 {                                                 274 {
253         unsigned long i;                          275         unsigned long i;
254                                                   276 
255         for (i = 0; i < image->nr_segments; i+    277         for (i = 0; i < image->nr_segments; i++) {
256                 unsigned long mstart, mend;       278                 unsigned long mstart, mend;
257                                                   279 
258                 mstart = image->segment[i].mem    280                 mstart = image->segment[i].mem;
259                 mend = mstart + image->segment    281                 mend = mstart + image->segment[i].memsz - 1;
260                 if ((end >= mstart) && (start     282                 if ((end >= mstart) && (start <= mend))
261                         return 1;                 283                         return 1;
262         }                                         284         }
263                                                   285 
264         return 0;                                 286         return 0;
265 }                                                 287 }
266                                                   288 
267 static struct page *kimage_alloc_pages(gfp_t g    289 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
268 {                                                 290 {
269         struct page *pages;                       291         struct page *pages;
270                                                   292 
271         if (fatal_signal_pending(current))        293         if (fatal_signal_pending(current))
272                 return NULL;                      294                 return NULL;
273         pages = alloc_pages(gfp_mask & ~__GFP_    295         pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
274         if (pages) {                              296         if (pages) {
275                 unsigned int count, i;            297                 unsigned int count, i;
276                                                   298 
277                 pages->mapping = NULL;            299                 pages->mapping = NULL;
278                 set_page_private(pages, order)    300                 set_page_private(pages, order);
279                 count = 1 << order;               301                 count = 1 << order;
280                 for (i = 0; i < count; i++)       302                 for (i = 0; i < count; i++)
281                         SetPageReserved(pages     303                         SetPageReserved(pages + i);
282                                                   304 
283                 arch_kexec_post_alloc_pages(pa    305                 arch_kexec_post_alloc_pages(page_address(pages), count,
284                                             gf    306                                             gfp_mask);
285                                                   307 
286                 if (gfp_mask & __GFP_ZERO)        308                 if (gfp_mask & __GFP_ZERO)
287                         for (i = 0; i < count;    309                         for (i = 0; i < count; i++)
288                                 clear_highpage    310                                 clear_highpage(pages + i);
289         }                                         311         }
290                                                   312 
291         return pages;                             313         return pages;
292 }                                                 314 }
293                                                   315 
294 static void kimage_free_pages(struct page *pag    316 static void kimage_free_pages(struct page *page)
295 {                                                 317 {
296         unsigned int order, count, i;             318         unsigned int order, count, i;
297                                                   319 
298         order = page_private(page);               320         order = page_private(page);
299         count = 1 << order;                       321         count = 1 << order;
300                                                   322 
301         arch_kexec_pre_free_pages(page_address    323         arch_kexec_pre_free_pages(page_address(page), count);
302                                                   324 
303         for (i = 0; i < count; i++)               325         for (i = 0; i < count; i++)
304                 ClearPageReserved(page + i);      326                 ClearPageReserved(page + i);
305         __free_pages(page, order);                327         __free_pages(page, order);
306 }                                                 328 }
307                                                   329 
308 void kimage_free_page_list(struct list_head *l    330 void kimage_free_page_list(struct list_head *list)
309 {                                                 331 {
310         struct page *page, *next;                 332         struct page *page, *next;
311                                                   333 
312         list_for_each_entry_safe(page, next, l    334         list_for_each_entry_safe(page, next, list, lru) {
313                 list_del(&page->lru);             335                 list_del(&page->lru);
314                 kimage_free_pages(page);          336                 kimage_free_pages(page);
315         }                                         337         }
316 }                                                 338 }
317                                                   339 
318 static struct page *kimage_alloc_normal_contro    340 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
319                                                   341                                                         unsigned int order)
320 {                                                 342 {
321         /* Control pages are special, they are    343         /* Control pages are special, they are the intermediaries
322          * that are needed while we copy the r    344          * that are needed while we copy the rest of the pages
323          * to their final resting place.  As s    345          * to their final resting place.  As such they must
324          * not conflict with either the destin    346          * not conflict with either the destination addresses
325          * or memory the kernel is already usi    347          * or memory the kernel is already using.
326          *                                        348          *
327          * The only case where we really need     349          * The only case where we really need more than one of
328          * these are for architectures where w    350          * these are for architectures where we cannot disable
329          * the MMU and must instead generate a    351          * the MMU and must instead generate an identity mapped
330          * page table for all of the memory.      352          * page table for all of the memory.
331          *                                        353          *
332          * At worst this runs in O(N) of the i    354          * At worst this runs in O(N) of the image size.
333          */                                       355          */
334         struct list_head extra_pages;             356         struct list_head extra_pages;
335         struct page *pages;                       357         struct page *pages;
336         unsigned int count;                       358         unsigned int count;
337                                                   359 
338         count = 1 << order;                       360         count = 1 << order;
339         INIT_LIST_HEAD(&extra_pages);             361         INIT_LIST_HEAD(&extra_pages);
340                                                   362 
341         /* Loop while I can allocate a page an    363         /* Loop while I can allocate a page and the page allocated
342          * is a destination page.                 364          * is a destination page.
343          */                                       365          */
344         do {                                      366         do {
345                 unsigned long pfn, epfn, addr,    367                 unsigned long pfn, epfn, addr, eaddr;
346                                                   368 
347                 pages = kimage_alloc_pages(KEX    369                 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
348                 if (!pages)                       370                 if (!pages)
349                         break;                    371                         break;
350                 pfn   = page_to_boot_pfn(pages    372                 pfn   = page_to_boot_pfn(pages);
351                 epfn  = pfn + count;              373                 epfn  = pfn + count;
352                 addr  = pfn << PAGE_SHIFT;        374                 addr  = pfn << PAGE_SHIFT;
353                 eaddr = (epfn << PAGE_SHIFT) -    375                 eaddr = (epfn << PAGE_SHIFT) - 1;
354                 if ((epfn >= (KEXEC_CONTROL_ME    376                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
355                               kimage_is_destin    377                               kimage_is_destination_range(image, addr, eaddr)) {
356                         list_add(&pages->lru,     378                         list_add(&pages->lru, &extra_pages);
357                         pages = NULL;             379                         pages = NULL;
358                 }                                 380                 }
359         } while (!pages);                         381         } while (!pages);
360                                                   382 
361         if (pages) {                              383         if (pages) {
362                 /* Remember the allocated page    384                 /* Remember the allocated page... */
363                 list_add(&pages->lru, &image->    385                 list_add(&pages->lru, &image->control_pages);
364                                                   386 
365                 /* Because the page is already    387                 /* Because the page is already in it's destination
366                  * location we will never allo    388                  * location we will never allocate another page at
367                  * that address.  Therefore ki    389                  * that address.  Therefore kimage_alloc_pages
368                  * will not return it (again)     390                  * will not return it (again) and we don't need
369                  * to give it an entry in imag    391                  * to give it an entry in image->segment[].
370                  */                               392                  */
371         }                                         393         }
372         /* Deal with the destination pages I h    394         /* Deal with the destination pages I have inadvertently allocated.
373          *                                        395          *
374          * Ideally I would convert multi-page     396          * Ideally I would convert multi-page allocations into single
375          * page allocations, and add everythin    397          * page allocations, and add everything to image->dest_pages.
376          *                                        398          *
377          * For now it is simpler to just free     399          * For now it is simpler to just free the pages.
378          */                                       400          */
379         kimage_free_page_list(&extra_pages);      401         kimage_free_page_list(&extra_pages);
380                                                   402 
381         return pages;                             403         return pages;
382 }                                                 404 }
383                                                   405 
384 #ifdef CONFIG_CRASH_DUMP                       << 
385 static struct page *kimage_alloc_crash_control    406 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
386                                                   407                                                       unsigned int order)
387 {                                                 408 {
388         /* Control pages are special, they are    409         /* Control pages are special, they are the intermediaries
389          * that are needed while we copy the r    410          * that are needed while we copy the rest of the pages
390          * to their final resting place.  As s    411          * to their final resting place.  As such they must
391          * not conflict with either the destin    412          * not conflict with either the destination addresses
392          * or memory the kernel is already usi    413          * or memory the kernel is already using.
393          *                                        414          *
394          * Control pages are also the only pag    415          * Control pages are also the only pags we must allocate
395          * when loading a crash kernel.  All o    416          * when loading a crash kernel.  All of the other pages
396          * are specified by the segments and w    417          * are specified by the segments and we just memcpy
397          * into them directly.                    418          * into them directly.
398          *                                        419          *
399          * The only case where we really need     420          * The only case where we really need more than one of
400          * these are for architectures where w    421          * these are for architectures where we cannot disable
401          * the MMU and must instead generate a    422          * the MMU and must instead generate an identity mapped
402          * page table for all of the memory.      423          * page table for all of the memory.
403          *                                        424          *
404          * Given the low demand this implement    425          * Given the low demand this implements a very simple
405          * allocator that finds the first hole    426          * allocator that finds the first hole of the appropriate
406          * size in the reserved memory region,    427          * size in the reserved memory region, and allocates all
407          * of the memory up to and including t    428          * of the memory up to and including the hole.
408          */                                       429          */
409         unsigned long hole_start, hole_end, si    430         unsigned long hole_start, hole_end, size;
410         struct page *pages;                       431         struct page *pages;
411                                                   432 
412         pages = NULL;                             433         pages = NULL;
413         size = (1 << order) << PAGE_SHIFT;        434         size = (1 << order) << PAGE_SHIFT;
414         hole_start = ALIGN(image->control_page    435         hole_start = ALIGN(image->control_page, size);
415         hole_end   = hole_start + size - 1;       436         hole_end   = hole_start + size - 1;
416         while (hole_end <= crashk_res.end) {      437         while (hole_end <= crashk_res.end) {
417                 unsigned long i;                  438                 unsigned long i;
418                                                   439 
419                 cond_resched();                   440                 cond_resched();
420                                                   441 
421                 if (hole_end > KEXEC_CRASH_CON    442                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
422                         break;                    443                         break;
423                 /* See if I overlap any of the    444                 /* See if I overlap any of the segments */
424                 for (i = 0; i < image->nr_segm    445                 for (i = 0; i < image->nr_segments; i++) {
425                         unsigned long mstart,     446                         unsigned long mstart, mend;
426                                                   447 
427                         mstart = image->segmen    448                         mstart = image->segment[i].mem;
428                         mend   = mstart + imag    449                         mend   = mstart + image->segment[i].memsz - 1;
429                         if ((hole_end >= mstar    450                         if ((hole_end >= mstart) && (hole_start <= mend)) {
430                                 /* Advance the    451                                 /* Advance the hole to the end of the segment */
431                                 hole_start = A    452                                 hole_start = ALIGN(mend, size);
432                                 hole_end   = h    453                                 hole_end   = hole_start + size - 1;
433                                 break;            454                                 break;
434                         }                         455                         }
435                 }                                 456                 }
436                 /* If I don't overlap any segm    457                 /* If I don't overlap any segments I have found my hole! */
437                 if (i == image->nr_segments) {    458                 if (i == image->nr_segments) {
438                         pages = pfn_to_page(ho    459                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
439                         image->control_page =     460                         image->control_page = hole_end + 1;
440                         break;                    461                         break;
441                 }                                 462                 }
442         }                                         463         }
443                                                   464 
444         /* Ensure that these pages are decrypt    465         /* Ensure that these pages are decrypted if SME is enabled. */
445         if (pages)                                466         if (pages)
446                 arch_kexec_post_alloc_pages(pa    467                 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
447                                                   468 
448         return pages;                             469         return pages;
449 }                                                 470 }
450 #endif                                         << 
451                                                   471 
452                                                   472 
453 struct page *kimage_alloc_control_pages(struct    473 struct page *kimage_alloc_control_pages(struct kimage *image,
454                                          unsig    474                                          unsigned int order)
455 {                                                 475 {
456         struct page *pages = NULL;                476         struct page *pages = NULL;
457                                                   477 
458         switch (image->type) {                    478         switch (image->type) {
459         case KEXEC_TYPE_DEFAULT:                  479         case KEXEC_TYPE_DEFAULT:
460                 pages = kimage_alloc_normal_co    480                 pages = kimage_alloc_normal_control_pages(image, order);
461                 break;                            481                 break;
462 #ifdef CONFIG_CRASH_DUMP                       << 
463         case KEXEC_TYPE_CRASH:                    482         case KEXEC_TYPE_CRASH:
464                 pages = kimage_alloc_crash_con    483                 pages = kimage_alloc_crash_control_pages(image, order);
465                 break;                            484                 break;
466 #endif                                         << 
467         }                                         485         }
468                                                   486 
469         return pages;                             487         return pages;
470 }                                                 488 }
471                                                   489 
                                                   >> 490 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
                                                   >> 491 {
                                                   >> 492         struct page *vmcoreinfo_page;
                                                   >> 493         void *safecopy;
                                                   >> 494 
                                                   >> 495         if (image->type != KEXEC_TYPE_CRASH)
                                                   >> 496                 return 0;
                                                   >> 497 
                                                   >> 498         /*
                                                   >> 499          * For kdump, allocate one vmcoreinfo safe copy from the
                                                   >> 500          * crash memory. as we have arch_kexec_protect_crashkres()
                                                   >> 501          * after kexec syscall, we naturally protect it from write
                                                   >> 502          * (even read) access under kernel direct mapping. But on
                                                   >> 503          * the other hand, we still need to operate it when crash
                                                   >> 504          * happens to generate vmcoreinfo note, hereby we rely on
                                                   >> 505          * vmap for this purpose.
                                                   >> 506          */
                                                   >> 507         vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
                                                   >> 508         if (!vmcoreinfo_page) {
                                                   >> 509                 pr_warn("Could not allocate vmcoreinfo buffer\n");
                                                   >> 510                 return -ENOMEM;
                                                   >> 511         }
                                                   >> 512         safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
                                                   >> 513         if (!safecopy) {
                                                   >> 514                 pr_warn("Could not vmap vmcoreinfo buffer\n");
                                                   >> 515                 return -ENOMEM;
                                                   >> 516         }
                                                   >> 517 
                                                   >> 518         image->vmcoreinfo_data_copy = safecopy;
                                                   >> 519         crash_update_vmcoreinfo_safecopy(safecopy);
                                                   >> 520 
                                                   >> 521         return 0;
                                                   >> 522 }
                                                   >> 523 
472 static int kimage_add_entry(struct kimage *ima    524 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
473 {                                                 525 {
474         if (*image->entry != 0)                   526         if (*image->entry != 0)
475                 image->entry++;                   527                 image->entry++;
476                                                   528 
477         if (image->entry == image->last_entry)    529         if (image->entry == image->last_entry) {
478                 kimage_entry_t *ind_page;         530                 kimage_entry_t *ind_page;
479                 struct page *page;                531                 struct page *page;
480                                                   532 
481                 page = kimage_alloc_page(image    533                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
482                 if (!page)                        534                 if (!page)
483                         return -ENOMEM;           535                         return -ENOMEM;
484                                                   536 
485                 ind_page = page_address(page);    537                 ind_page = page_address(page);
486                 *image->entry = virt_to_boot_p    538                 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
487                 image->entry = ind_page;          539                 image->entry = ind_page;
488                 image->last_entry = ind_page +    540                 image->last_entry = ind_page +
489                                       ((PAGE_S    541                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
490         }                                         542         }
491         *image->entry = entry;                    543         *image->entry = entry;
492         image->entry++;                           544         image->entry++;
493         *image->entry = 0;                        545         *image->entry = 0;
494                                                   546 
495         return 0;                                 547         return 0;
496 }                                                 548 }
497                                                   549 
498 static int kimage_set_destination(struct kimag    550 static int kimage_set_destination(struct kimage *image,
499                                    unsigned lo    551                                    unsigned long destination)
500 {                                                 552 {
501         destination &= PAGE_MASK;                 553         destination &= PAGE_MASK;
502                                                   554 
503         return kimage_add_entry(image, destina    555         return kimage_add_entry(image, destination | IND_DESTINATION);
504 }                                                 556 }
505                                                   557 
506                                                   558 
507 static int kimage_add_page(struct kimage *imag    559 static int kimage_add_page(struct kimage *image, unsigned long page)
508 {                                                 560 {
509         page &= PAGE_MASK;                        561         page &= PAGE_MASK;
510                                                   562 
511         return kimage_add_entry(image, page |     563         return kimage_add_entry(image, page | IND_SOURCE);
512 }                                                 564 }
513                                                   565 
514                                                   566 
515 static void kimage_free_extra_pages(struct kim    567 static void kimage_free_extra_pages(struct kimage *image)
516 {                                                 568 {
517         /* Walk through and free any extra des    569         /* Walk through and free any extra destination pages I may have */
518         kimage_free_page_list(&image->dest_pag    570         kimage_free_page_list(&image->dest_pages);
519                                                   571 
520         /* Walk through and free any unusable     572         /* Walk through and free any unusable pages I have cached */
521         kimage_free_page_list(&image->unusable    573         kimage_free_page_list(&image->unusable_pages);
522                                                   574 
523 }                                                 575 }
524                                                   576 
525 void kimage_terminate(struct kimage *image)       577 void kimage_terminate(struct kimage *image)
526 {                                                 578 {
527         if (*image->entry != 0)                   579         if (*image->entry != 0)
528                 image->entry++;                   580                 image->entry++;
529                                                   581 
530         *image->entry = IND_DONE;                 582         *image->entry = IND_DONE;
531 }                                                 583 }
532                                                   584 
533 #define for_each_kimage_entry(image, ptr, entr    585 #define for_each_kimage_entry(image, ptr, entry) \
534         for (ptr = &image->head; (entry = *ptr    586         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
535                 ptr = (entry & IND_INDIRECTION    587                 ptr = (entry & IND_INDIRECTION) ? \
536                         boot_phys_to_virt((ent    588                         boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
537                                                   589 
538 static void kimage_free_entry(kimage_entry_t e    590 static void kimage_free_entry(kimage_entry_t entry)
539 {                                                 591 {
540         struct page *page;                        592         struct page *page;
541                                                   593 
542         page = boot_pfn_to_page(entry >> PAGE_    594         page = boot_pfn_to_page(entry >> PAGE_SHIFT);
543         kimage_free_pages(page);                  595         kimage_free_pages(page);
544 }                                                 596 }
545                                                   597 
546 void kimage_free(struct kimage *image)            598 void kimage_free(struct kimage *image)
547 {                                                 599 {
548         kimage_entry_t *ptr, entry;               600         kimage_entry_t *ptr, entry;
549         kimage_entry_t ind = 0;                   601         kimage_entry_t ind = 0;
550                                                   602 
551         if (!image)                               603         if (!image)
552                 return;                           604                 return;
553                                                   605 
554 #ifdef CONFIG_CRASH_DUMP                       << 
555         if (image->vmcoreinfo_data_copy) {        606         if (image->vmcoreinfo_data_copy) {
556                 crash_update_vmcoreinfo_safeco    607                 crash_update_vmcoreinfo_safecopy(NULL);
557                 vunmap(image->vmcoreinfo_data_    608                 vunmap(image->vmcoreinfo_data_copy);
558         }                                         609         }
559 #endif                                         << 
560                                                   610 
561         kimage_free_extra_pages(image);           611         kimage_free_extra_pages(image);
562         for_each_kimage_entry(image, ptr, entr    612         for_each_kimage_entry(image, ptr, entry) {
563                 if (entry & IND_INDIRECTION) {    613                 if (entry & IND_INDIRECTION) {
564                         /* Free the previous i    614                         /* Free the previous indirection page */
565                         if (ind & IND_INDIRECT    615                         if (ind & IND_INDIRECTION)
566                                 kimage_free_en    616                                 kimage_free_entry(ind);
567                         /* Save this indirecti    617                         /* Save this indirection page until we are
568                          * done with it.          618                          * done with it.
569                          */                       619                          */
570                         ind = entry;              620                         ind = entry;
571                 } else if (entry & IND_SOURCE)    621                 } else if (entry & IND_SOURCE)
572                         kimage_free_entry(entr    622                         kimage_free_entry(entry);
573         }                                         623         }
574         /* Free the final indirection page */     624         /* Free the final indirection page */
575         if (ind & IND_INDIRECTION)                625         if (ind & IND_INDIRECTION)
576                 kimage_free_entry(ind);           626                 kimage_free_entry(ind);
577                                                   627 
578         /* Handle any machine specific cleanup    628         /* Handle any machine specific cleanup */
579         machine_kexec_cleanup(image);             629         machine_kexec_cleanup(image);
580                                                   630 
581         /* Free the kexec control pages... */     631         /* Free the kexec control pages... */
582         kimage_free_page_list(&image->control_    632         kimage_free_page_list(&image->control_pages);
583                                                   633 
584         /*                                        634         /*
585          * Free up any temporary buffers alloc    635          * Free up any temporary buffers allocated. This might hit if
586          * error occurred much later after buf    636          * error occurred much later after buffer allocation.
587          */                                       637          */
588         if (image->file_mode)                     638         if (image->file_mode)
589                 kimage_file_post_load_cleanup(    639                 kimage_file_post_load_cleanup(image);
590                                                   640 
591         kfree(image);                             641         kfree(image);
592 }                                                 642 }
593                                                   643 
594 static kimage_entry_t *kimage_dst_used(struct     644 static kimage_entry_t *kimage_dst_used(struct kimage *image,
595                                         unsign    645                                         unsigned long page)
596 {                                                 646 {
597         kimage_entry_t *ptr, entry;               647         kimage_entry_t *ptr, entry;
598         unsigned long destination = 0;            648         unsigned long destination = 0;
599                                                   649 
600         for_each_kimage_entry(image, ptr, entr    650         for_each_kimage_entry(image, ptr, entry) {
601                 if (entry & IND_DESTINATION)      651                 if (entry & IND_DESTINATION)
602                         destination = entry &     652                         destination = entry & PAGE_MASK;
603                 else if (entry & IND_SOURCE) {    653                 else if (entry & IND_SOURCE) {
604                         if (page == destinatio    654                         if (page == destination)
605                                 return ptr;       655                                 return ptr;
606                         destination += PAGE_SI    656                         destination += PAGE_SIZE;
607                 }                                 657                 }
608         }                                         658         }
609                                                   659 
610         return NULL;                              660         return NULL;
611 }                                                 661 }
612                                                   662 
613 static struct page *kimage_alloc_page(struct k    663 static struct page *kimage_alloc_page(struct kimage *image,
614                                         gfp_t     664                                         gfp_t gfp_mask,
615                                         unsign    665                                         unsigned long destination)
616 {                                                 666 {
617         /*                                        667         /*
618          * Here we implement safeguards to ens    668          * Here we implement safeguards to ensure that a source page
619          * is not copied to its destination pa    669          * is not copied to its destination page before the data on
620          * the destination page is no longer u    670          * the destination page is no longer useful.
621          *                                        671          *
622          * To do this we maintain the invarian    672          * To do this we maintain the invariant that a source page is
623          * either its own destination page, or    673          * either its own destination page, or it is not a
624          * destination page at all.               674          * destination page at all.
625          *                                        675          *
626          * That is slightly stronger than requ    676          * That is slightly stronger than required, but the proof
627          * that no problems will not occur is     677          * that no problems will not occur is trivial, and the
628          * implementation is simply to verify.    678          * implementation is simply to verify.
629          *                                        679          *
630          * When allocating all pages normally     680          * When allocating all pages normally this algorithm will run
631          * in O(N) time, but in the worst case    681          * in O(N) time, but in the worst case it will run in O(N^2)
632          * time.   If the runtime is a problem    682          * time.   If the runtime is a problem the data structures can
633          * be fixed.                              683          * be fixed.
634          */                                       684          */
635         struct page *page;                        685         struct page *page;
636         unsigned long addr;                       686         unsigned long addr;
637                                                   687 
638         /*                                        688         /*
639          * Walk through the list of destinatio    689          * Walk through the list of destination pages, and see if I
640          * have a match.                          690          * have a match.
641          */                                       691          */
642         list_for_each_entry(page, &image->dest    692         list_for_each_entry(page, &image->dest_pages, lru) {
643                 addr = page_to_boot_pfn(page)     693                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
644                 if (addr == destination) {        694                 if (addr == destination) {
645                         list_del(&page->lru);     695                         list_del(&page->lru);
646                         return page;              696                         return page;
647                 }                                 697                 }
648         }                                         698         }
649         page = NULL;                              699         page = NULL;
650         while (1) {                               700         while (1) {
651                 kimage_entry_t *old;              701                 kimage_entry_t *old;
652                                                   702 
653                 /* Allocate a page, if we run     703                 /* Allocate a page, if we run out of memory give up */
654                 page = kimage_alloc_pages(gfp_    704                 page = kimage_alloc_pages(gfp_mask, 0);
655                 if (!page)                        705                 if (!page)
656                         return NULL;              706                         return NULL;
657                 /* If the page cannot be used     707                 /* If the page cannot be used file it away */
658                 if (page_to_boot_pfn(page) >      708                 if (page_to_boot_pfn(page) >
659                                 (KEXEC_SOURCE_    709                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
660                         list_add(&page->lru, &    710                         list_add(&page->lru, &image->unusable_pages);
661                         continue;                 711                         continue;
662                 }                                 712                 }
663                 addr = page_to_boot_pfn(page)     713                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
664                                                   714 
665                 /* If it is the destination pa    715                 /* If it is the destination page we want use it */
666                 if (addr == destination)          716                 if (addr == destination)
667                         break;                    717                         break;
668                                                   718 
669                 /* If the page is not a destin    719                 /* If the page is not a destination page use it */
670                 if (!kimage_is_destination_ran    720                 if (!kimage_is_destination_range(image, addr,
671                                                   721                                                   addr + PAGE_SIZE - 1))
672                         break;                    722                         break;
673                                                   723 
674                 /*                                724                 /*
675                  * I know that the page is som    725                  * I know that the page is someones destination page.
676                  * See if there is already a s    726                  * See if there is already a source page for this
677                  * destination page.  And if s    727                  * destination page.  And if so swap the source pages.
678                  */                               728                  */
679                 old = kimage_dst_used(image, a    729                 old = kimage_dst_used(image, addr);
680                 if (old) {                        730                 if (old) {
681                         /* If so move it */       731                         /* If so move it */
682                         unsigned long old_addr    732                         unsigned long old_addr;
683                         struct page *old_page;    733                         struct page *old_page;
684                                                   734 
685                         old_addr = *old & PAGE    735                         old_addr = *old & PAGE_MASK;
686                         old_page = boot_pfn_to    736                         old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
687                         copy_highpage(page, ol    737                         copy_highpage(page, old_page);
688                         *old = addr | (*old &     738                         *old = addr | (*old & ~PAGE_MASK);
689                                                   739 
690                         /* The old page I have    740                         /* The old page I have found cannot be a
691                          * destination page, s    741                          * destination page, so return it if it's
692                          * gfp_flags honor the    742                          * gfp_flags honor the ones passed in.
693                          */                       743                          */
694                         if (!(gfp_mask & __GFP    744                         if (!(gfp_mask & __GFP_HIGHMEM) &&
695                             PageHighMem(old_pa    745                             PageHighMem(old_page)) {
696                                 kimage_free_pa    746                                 kimage_free_pages(old_page);
697                                 continue;         747                                 continue;
698                         }                         748                         }
699                         page = old_page;          749                         page = old_page;
700                         break;                    750                         break;
701                 }                                 751                 }
702                 /* Place the page on the desti    752                 /* Place the page on the destination list, to be used later */
703                 list_add(&page->lru, &image->d    753                 list_add(&page->lru, &image->dest_pages);
704         }                                         754         }
705                                                   755 
706         return page;                              756         return page;
707 }                                                 757 }
708                                                   758 
709 static int kimage_load_normal_segment(struct k    759 static int kimage_load_normal_segment(struct kimage *image,
710                                          struc    760                                          struct kexec_segment *segment)
711 {                                                 761 {
712         unsigned long maddr;                      762         unsigned long maddr;
713         size_t ubytes, mbytes;                    763         size_t ubytes, mbytes;
714         int result;                               764         int result;
715         unsigned char __user *buf = NULL;         765         unsigned char __user *buf = NULL;
716         unsigned char *kbuf = NULL;               766         unsigned char *kbuf = NULL;
717                                                   767 
718         if (image->file_mode)                     768         if (image->file_mode)
719                 kbuf = segment->kbuf;             769                 kbuf = segment->kbuf;
720         else                                      770         else
721                 buf = segment->buf;               771                 buf = segment->buf;
722         ubytes = segment->bufsz;                  772         ubytes = segment->bufsz;
723         mbytes = segment->memsz;                  773         mbytes = segment->memsz;
724         maddr = segment->mem;                     774         maddr = segment->mem;
725                                                   775 
726         result = kimage_set_destination(image,    776         result = kimage_set_destination(image, maddr);
727         if (result < 0)                           777         if (result < 0)
728                 goto out;                         778                 goto out;
729                                                   779 
730         while (mbytes) {                          780         while (mbytes) {
731                 struct page *page;                781                 struct page *page;
732                 char *ptr;                        782                 char *ptr;
733                 size_t uchunk, mchunk;            783                 size_t uchunk, mchunk;
734                                                   784 
735                 page = kimage_alloc_page(image    785                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
736                 if (!page) {                      786                 if (!page) {
737                         result  = -ENOMEM;        787                         result  = -ENOMEM;
738                         goto out;                 788                         goto out;
739                 }                                 789                 }
740                 result = kimage_add_page(image    790                 result = kimage_add_page(image, page_to_boot_pfn(page)
741                                                   791                                                                 << PAGE_SHIFT);
742                 if (result < 0)                   792                 if (result < 0)
743                         goto out;                 793                         goto out;
744                                                   794 
745                 ptr = kmap_local_page(page);      795                 ptr = kmap_local_page(page);
746                 /* Start with a clear page */     796                 /* Start with a clear page */
747                 clear_page(ptr);                  797                 clear_page(ptr);
748                 ptr += maddr & ~PAGE_MASK;        798                 ptr += maddr & ~PAGE_MASK;
749                 mchunk = min_t(size_t, mbytes,    799                 mchunk = min_t(size_t, mbytes,
750                                 PAGE_SIZE - (m    800                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
751                 uchunk = min(ubytes, mchunk);     801                 uchunk = min(ubytes, mchunk);
752                                                   802 
753                 if (uchunk) {                  !! 803                 /* For file based kexec, source pages are in kernel memory */
754                         /* For file based kexe !! 804                 if (image->file_mode)
755                         if (image->file_mode)  !! 805                         memcpy(ptr, kbuf, uchunk);
756                                 memcpy(ptr, kb !! 806                 else
757                         else                   !! 807                         result = copy_from_user(ptr, buf, uchunk);
758                                 result = copy_ << 
759                         ubytes -= uchunk;      << 
760                         if (image->file_mode)  << 
761                                 kbuf += uchunk << 
762                         else                   << 
763                                 buf += uchunk; << 
764                 }                              << 
765                 kunmap_local(ptr);                808                 kunmap_local(ptr);
766                 if (result) {                     809                 if (result) {
767                         result = -EFAULT;         810                         result = -EFAULT;
768                         goto out;                 811                         goto out;
769                 }                                 812                 }
                                                   >> 813                 ubytes -= uchunk;
770                 maddr  += mchunk;                 814                 maddr  += mchunk;
                                                   >> 815                 if (image->file_mode)
                                                   >> 816                         kbuf += mchunk;
                                                   >> 817                 else
                                                   >> 818                         buf += mchunk;
771                 mbytes -= mchunk;                 819                 mbytes -= mchunk;
772                                                   820 
773                 cond_resched();                   821                 cond_resched();
774         }                                         822         }
775 out:                                              823 out:
776         return result;                            824         return result;
777 }                                                 825 }
778                                                   826 
779 #ifdef CONFIG_CRASH_DUMP                       << 
780 static int kimage_load_crash_segment(struct ki    827 static int kimage_load_crash_segment(struct kimage *image,
781                                         struct    828                                         struct kexec_segment *segment)
782 {                                                 829 {
783         /* For crash dumps kernels we simply c    830         /* For crash dumps kernels we simply copy the data from
784          * user space to it's destination.        831          * user space to it's destination.
785          * We do things a page at a time for t    832          * We do things a page at a time for the sake of kmap.
786          */                                       833          */
787         unsigned long maddr;                      834         unsigned long maddr;
788         size_t ubytes, mbytes;                    835         size_t ubytes, mbytes;
789         int result;                               836         int result;
790         unsigned char __user *buf = NULL;         837         unsigned char __user *buf = NULL;
791         unsigned char *kbuf = NULL;               838         unsigned char *kbuf = NULL;
792                                                   839 
793         result = 0;                               840         result = 0;
794         if (image->file_mode)                     841         if (image->file_mode)
795                 kbuf = segment->kbuf;             842                 kbuf = segment->kbuf;
796         else                                      843         else
797                 buf = segment->buf;               844                 buf = segment->buf;
798         ubytes = segment->bufsz;                  845         ubytes = segment->bufsz;
799         mbytes = segment->memsz;                  846         mbytes = segment->memsz;
800         maddr = segment->mem;                     847         maddr = segment->mem;
801         while (mbytes) {                          848         while (mbytes) {
802                 struct page *page;                849                 struct page *page;
803                 char *ptr;                        850                 char *ptr;
804                 size_t uchunk, mchunk;            851                 size_t uchunk, mchunk;
805                                                   852 
806                 page = boot_pfn_to_page(maddr     853                 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
807                 if (!page) {                      854                 if (!page) {
808                         result  = -ENOMEM;        855                         result  = -ENOMEM;
809                         goto out;                 856                         goto out;
810                 }                                 857                 }
811                 arch_kexec_post_alloc_pages(pa    858                 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
812                 ptr = kmap_local_page(page);      859                 ptr = kmap_local_page(page);
813                 ptr += maddr & ~PAGE_MASK;        860                 ptr += maddr & ~PAGE_MASK;
814                 mchunk = min_t(size_t, mbytes,    861                 mchunk = min_t(size_t, mbytes,
815                                 PAGE_SIZE - (m    862                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
816                 uchunk = min(ubytes, mchunk);     863                 uchunk = min(ubytes, mchunk);
817                 if (mchunk > uchunk) {            864                 if (mchunk > uchunk) {
818                         /* Zero the trailing p    865                         /* Zero the trailing part of the page */
819                         memset(ptr + uchunk, 0    866                         memset(ptr + uchunk, 0, mchunk - uchunk);
820                 }                                 867                 }
821                                                   868 
822                 if (uchunk) {                  !! 869                 /* For file based kexec, source pages are in kernel memory */
823                         /* For file based kexe !! 870                 if (image->file_mode)
824                         if (image->file_mode)  !! 871                         memcpy(ptr, kbuf, uchunk);
825                                 memcpy(ptr, kb !! 872                 else
826                         else                   !! 873                         result = copy_from_user(ptr, buf, uchunk);
827                                 result = copy_ << 
828                         ubytes -= uchunk;      << 
829                         if (image->file_mode)  << 
830                                 kbuf += uchunk << 
831                         else                   << 
832                                 buf += uchunk; << 
833                 }                              << 
834                 kexec_flush_icache_page(page);    874                 kexec_flush_icache_page(page);
835                 kunmap_local(ptr);                875                 kunmap_local(ptr);
836                 arch_kexec_pre_free_pages(page    876                 arch_kexec_pre_free_pages(page_address(page), 1);
837                 if (result) {                     877                 if (result) {
838                         result = -EFAULT;         878                         result = -EFAULT;
839                         goto out;                 879                         goto out;
840                 }                                 880                 }
                                                   >> 881                 ubytes -= uchunk;
841                 maddr  += mchunk;                 882                 maddr  += mchunk;
                                                   >> 883                 if (image->file_mode)
                                                   >> 884                         kbuf += mchunk;
                                                   >> 885                 else
                                                   >> 886                         buf += mchunk;
842                 mbytes -= mchunk;                 887                 mbytes -= mchunk;
843                                                   888 
844                 cond_resched();                   889                 cond_resched();
845         }                                         890         }
846 out:                                              891 out:
847         return result;                            892         return result;
848 }                                                 893 }
849 #endif                                         << 
850                                                   894 
851 int kimage_load_segment(struct kimage *image,     895 int kimage_load_segment(struct kimage *image,
852                                 struct kexec_s    896                                 struct kexec_segment *segment)
853 {                                                 897 {
854         int result = -ENOMEM;                     898         int result = -ENOMEM;
855                                                   899 
856         switch (image->type) {                    900         switch (image->type) {
857         case KEXEC_TYPE_DEFAULT:                  901         case KEXEC_TYPE_DEFAULT:
858                 result = kimage_load_normal_se    902                 result = kimage_load_normal_segment(image, segment);
859                 break;                            903                 break;
860 #ifdef CONFIG_CRASH_DUMP                       << 
861         case KEXEC_TYPE_CRASH:                    904         case KEXEC_TYPE_CRASH:
862                 result = kimage_load_crash_seg    905                 result = kimage_load_crash_segment(image, segment);
863                 break;                            906                 break;
864 #endif                                         << 
865         }                                         907         }
866                                                   908 
867         return result;                            909         return result;
868 }                                                 910 }
869                                                   911 
870 struct kexec_load_limit {                         912 struct kexec_load_limit {
871         /* Mutex protects the limit count. */     913         /* Mutex protects the limit count. */
872         struct mutex mutex;                       914         struct mutex mutex;
873         int limit;                                915         int limit;
874 };                                                916 };
875                                                   917 
876 static struct kexec_load_limit load_limit_rebo    918 static struct kexec_load_limit load_limit_reboot = {
877         .mutex = __MUTEX_INITIALIZER(load_limi    919         .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
878         .limit = -1,                              920         .limit = -1,
879 };                                                921 };
880                                                   922 
881 static struct kexec_load_limit load_limit_pani    923 static struct kexec_load_limit load_limit_panic = {
882         .mutex = __MUTEX_INITIALIZER(load_limi    924         .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
883         .limit = -1,                              925         .limit = -1,
884 };                                                926 };
885                                                   927 
886 struct kimage *kexec_image;                       928 struct kimage *kexec_image;
887 struct kimage *kexec_crash_image;                 929 struct kimage *kexec_crash_image;
888 static int kexec_load_disabled;                   930 static int kexec_load_disabled;
889                                                   931 
890 #ifdef CONFIG_SYSCTL                              932 #ifdef CONFIG_SYSCTL
891 static int kexec_limit_handler(const struct ct !! 933 static int kexec_limit_handler(struct ctl_table *table, int write,
892                                void *buffer, s    934                                void *buffer, size_t *lenp, loff_t *ppos)
893 {                                                 935 {
894         struct kexec_load_limit *limit = table    936         struct kexec_load_limit *limit = table->data;
895         int val;                                  937         int val;
896         struct ctl_table tmp = {                  938         struct ctl_table tmp = {
897                 .data = &val,                     939                 .data = &val,
898                 .maxlen = sizeof(val),            940                 .maxlen = sizeof(val),
899                 .mode = table->mode,              941                 .mode = table->mode,
900         };                                        942         };
901         int ret;                                  943         int ret;
902                                                   944 
903         if (write) {                              945         if (write) {
904                 ret = proc_dointvec(&tmp, writ    946                 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
905                 if (ret)                          947                 if (ret)
906                         return ret;               948                         return ret;
907                                                   949 
908                 if (val < 0)                      950                 if (val < 0)
909                         return -EINVAL;           951                         return -EINVAL;
910                                                   952 
911                 mutex_lock(&limit->mutex);        953                 mutex_lock(&limit->mutex);
912                 if (limit->limit != -1 && val     954                 if (limit->limit != -1 && val >= limit->limit)
913                         ret = -EINVAL;            955                         ret = -EINVAL;
914                 else                              956                 else
915                         limit->limit = val;       957                         limit->limit = val;
916                 mutex_unlock(&limit->mutex);      958                 mutex_unlock(&limit->mutex);
917                                                   959 
918                 return ret;                       960                 return ret;
919         }                                         961         }
920                                                   962 
921         mutex_lock(&limit->mutex);                963         mutex_lock(&limit->mutex);
922         val = limit->limit;                       964         val = limit->limit;
923         mutex_unlock(&limit->mutex);              965         mutex_unlock(&limit->mutex);
924                                                   966 
925         return proc_dointvec(&tmp, write, buff    967         return proc_dointvec(&tmp, write, buffer, lenp, ppos);
926 }                                                 968 }
927                                                   969 
928 static struct ctl_table kexec_core_sysctls[] =    970 static struct ctl_table kexec_core_sysctls[] = {
929         {                                         971         {
930                 .procname       = "kexec_load_    972                 .procname       = "kexec_load_disabled",
931                 .data           = &kexec_load_    973                 .data           = &kexec_load_disabled,
932                 .maxlen         = sizeof(int),    974                 .maxlen         = sizeof(int),
933                 .mode           = 0644,           975                 .mode           = 0644,
934                 /* only handle a transition fr    976                 /* only handle a transition from default "" to "1" */
935                 .proc_handler   = proc_dointve    977                 .proc_handler   = proc_dointvec_minmax,
936                 .extra1         = SYSCTL_ONE,     978                 .extra1         = SYSCTL_ONE,
937                 .extra2         = SYSCTL_ONE,     979                 .extra2         = SYSCTL_ONE,
938         },                                        980         },
939         {                                         981         {
940                 .procname       = "kexec_load_    982                 .procname       = "kexec_load_limit_panic",
941                 .data           = &load_limit_    983                 .data           = &load_limit_panic,
942                 .mode           = 0644,           984                 .mode           = 0644,
943                 .proc_handler   = kexec_limit_    985                 .proc_handler   = kexec_limit_handler,
944         },                                        986         },
945         {                                         987         {
946                 .procname       = "kexec_load_    988                 .procname       = "kexec_load_limit_reboot",
947                 .data           = &load_limit_    989                 .data           = &load_limit_reboot,
948                 .mode           = 0644,           990                 .mode           = 0644,
949                 .proc_handler   = kexec_limit_    991                 .proc_handler   = kexec_limit_handler,
950         },                                        992         },
                                                   >> 993         { }
951 };                                                994 };
952                                                   995 
953 static int __init kexec_core_sysctl_init(void)    996 static int __init kexec_core_sysctl_init(void)
954 {                                                 997 {
955         register_sysctl_init("kernel", kexec_c    998         register_sysctl_init("kernel", kexec_core_sysctls);
956         return 0;                                 999         return 0;
957 }                                                 1000 }
958 late_initcall(kexec_core_sysctl_init);            1001 late_initcall(kexec_core_sysctl_init);
959 #endif                                            1002 #endif
960                                                   1003 
961 bool kexec_load_permitted(int kexec_image_type    1004 bool kexec_load_permitted(int kexec_image_type)
962 {                                                 1005 {
963         struct kexec_load_limit *limit;           1006         struct kexec_load_limit *limit;
964                                                   1007 
965         /*                                        1008         /*
966          * Only the superuser can use the kexe    1009          * Only the superuser can use the kexec syscall and if it has not
967          * been disabled.                         1010          * been disabled.
968          */                                       1011          */
969         if (!capable(CAP_SYS_BOOT) || kexec_lo    1012         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
970                 return false;                     1013                 return false;
971                                                   1014 
972         /* Check limit counter and decrease it    1015         /* Check limit counter and decrease it.*/
973         limit = (kexec_image_type == KEXEC_TYP    1016         limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
974                 &load_limit_panic : &load_limi    1017                 &load_limit_panic : &load_limit_reboot;
975         mutex_lock(&limit->mutex);                1018         mutex_lock(&limit->mutex);
976         if (!limit->limit) {                      1019         if (!limit->limit) {
977                 mutex_unlock(&limit->mutex);      1020                 mutex_unlock(&limit->mutex);
978                 return false;                     1021                 return false;
979         }                                         1022         }
980         if (limit->limit != -1)                   1023         if (limit->limit != -1)
981                 limit->limit--;                   1024                 limit->limit--;
982         mutex_unlock(&limit->mutex);              1025         mutex_unlock(&limit->mutex);
983                                                   1026 
984         return true;                              1027         return true;
                                                   >> 1028 }
                                                   >> 1029 
                                                   >> 1030 /*
                                                   >> 1031  * No panic_cpu check version of crash_kexec().  This function is called
                                                   >> 1032  * only when panic_cpu holds the current CPU number; this is the only CPU
                                                   >> 1033  * which processes crash_kexec routines.
                                                   >> 1034  */
                                                   >> 1035 void __noclone __crash_kexec(struct pt_regs *regs)
                                                   >> 1036 {
                                                   >> 1037         /* Take the kexec_lock here to prevent sys_kexec_load
                                                   >> 1038          * running on one cpu from replacing the crash kernel
                                                   >> 1039          * we are using after a panic on a different cpu.
                                                   >> 1040          *
                                                   >> 1041          * If the crash kernel was not located in a fixed area
                                                   >> 1042          * of memory the xchg(&kexec_crash_image) would be
                                                   >> 1043          * sufficient.  But since I reuse the memory...
                                                   >> 1044          */
                                                   >> 1045         if (kexec_trylock()) {
                                                   >> 1046                 if (kexec_crash_image) {
                                                   >> 1047                         struct pt_regs fixed_regs;
                                                   >> 1048 
                                                   >> 1049                         crash_setup_regs(&fixed_regs, regs);
                                                   >> 1050                         crash_save_vmcoreinfo();
                                                   >> 1051                         machine_crash_shutdown(&fixed_regs);
                                                   >> 1052                         machine_kexec(kexec_crash_image);
                                                   >> 1053                 }
                                                   >> 1054                 kexec_unlock();
                                                   >> 1055         }
                                                   >> 1056 }
                                                   >> 1057 STACK_FRAME_NON_STANDARD(__crash_kexec);
                                                   >> 1058 
                                                   >> 1059 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
                                                   >> 1060 {
                                                   >> 1061         int old_cpu, this_cpu;
                                                   >> 1062 
                                                   >> 1063         /*
                                                   >> 1064          * Only one CPU is allowed to execute the crash_kexec() code as with
                                                   >> 1065          * panic().  Otherwise parallel calls of panic() and crash_kexec()
                                                   >> 1066          * may stop each other.  To exclude them, we use panic_cpu here too.
                                                   >> 1067          */
                                                   >> 1068         old_cpu = PANIC_CPU_INVALID;
                                                   >> 1069         this_cpu = raw_smp_processor_id();
                                                   >> 1070 
                                                   >> 1071         if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
                                                   >> 1072                 /* This is the 1st CPU which comes here, so go ahead. */
                                                   >> 1073                 __crash_kexec(regs);
                                                   >> 1074 
                                                   >> 1075                 /*
                                                   >> 1076                  * Reset panic_cpu to allow another panic()/crash_kexec()
                                                   >> 1077                  * call.
                                                   >> 1078                  */
                                                   >> 1079                 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
                                                   >> 1080         }
                                                   >> 1081 }
                                                   >> 1082 
                                                   >> 1083 static inline resource_size_t crash_resource_size(const struct resource *res)
                                                   >> 1084 {
                                                   >> 1085         return !res->end ? 0 : resource_size(res);
                                                   >> 1086 }
                                                   >> 1087 
                                                   >> 1088 ssize_t crash_get_memory_size(void)
                                                   >> 1089 {
                                                   >> 1090         ssize_t size = 0;
                                                   >> 1091 
                                                   >> 1092         if (!kexec_trylock())
                                                   >> 1093                 return -EBUSY;
                                                   >> 1094 
                                                   >> 1095         size += crash_resource_size(&crashk_res);
                                                   >> 1096         size += crash_resource_size(&crashk_low_res);
                                                   >> 1097 
                                                   >> 1098         kexec_unlock();
                                                   >> 1099         return size;
                                                   >> 1100 }
                                                   >> 1101 
                                                   >> 1102 static int __crash_shrink_memory(struct resource *old_res,
                                                   >> 1103                                  unsigned long new_size)
                                                   >> 1104 {
                                                   >> 1105         struct resource *ram_res;
                                                   >> 1106 
                                                   >> 1107         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
                                                   >> 1108         if (!ram_res)
                                                   >> 1109                 return -ENOMEM;
                                                   >> 1110 
                                                   >> 1111         ram_res->start = old_res->start + new_size;
                                                   >> 1112         ram_res->end   = old_res->end;
                                                   >> 1113         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
                                                   >> 1114         ram_res->name  = "System RAM";
                                                   >> 1115 
                                                   >> 1116         if (!new_size) {
                                                   >> 1117                 release_resource(old_res);
                                                   >> 1118                 old_res->start = 0;
                                                   >> 1119                 old_res->end   = 0;
                                                   >> 1120         } else {
                                                   >> 1121                 crashk_res.end = ram_res->start - 1;
                                                   >> 1122         }
                                                   >> 1123 
                                                   >> 1124         crash_free_reserved_phys_range(ram_res->start, ram_res->end);
                                                   >> 1125         insert_resource(&iomem_resource, ram_res);
                                                   >> 1126 
                                                   >> 1127         return 0;
                                                   >> 1128 }
                                                   >> 1129 
                                                   >> 1130 int crash_shrink_memory(unsigned long new_size)
                                                   >> 1131 {
                                                   >> 1132         int ret = 0;
                                                   >> 1133         unsigned long old_size, low_size;
                                                   >> 1134 
                                                   >> 1135         if (!kexec_trylock())
                                                   >> 1136                 return -EBUSY;
                                                   >> 1137 
                                                   >> 1138         if (kexec_crash_image) {
                                                   >> 1139                 ret = -ENOENT;
                                                   >> 1140                 goto unlock;
                                                   >> 1141         }
                                                   >> 1142 
                                                   >> 1143         low_size = crash_resource_size(&crashk_low_res);
                                                   >> 1144         old_size = crash_resource_size(&crashk_res) + low_size;
                                                   >> 1145         new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
                                                   >> 1146         if (new_size >= old_size) {
                                                   >> 1147                 ret = (new_size == old_size) ? 0 : -EINVAL;
                                                   >> 1148                 goto unlock;
                                                   >> 1149         }
                                                   >> 1150 
                                                   >> 1151         /*
                                                   >> 1152          * (low_size > new_size) implies that low_size is greater than zero.
                                                   >> 1153          * This also means that if low_size is zero, the else branch is taken.
                                                   >> 1154          *
                                                   >> 1155          * If low_size is greater than 0, (low_size > new_size) indicates that
                                                   >> 1156          * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
                                                   >> 1157          * needs to be shrunken.
                                                   >> 1158          */
                                                   >> 1159         if (low_size > new_size) {
                                                   >> 1160                 ret = __crash_shrink_memory(&crashk_res, 0);
                                                   >> 1161                 if (ret)
                                                   >> 1162                         goto unlock;
                                                   >> 1163 
                                                   >> 1164                 ret = __crash_shrink_memory(&crashk_low_res, new_size);
                                                   >> 1165         } else {
                                                   >> 1166                 ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
                                                   >> 1167         }
                                                   >> 1168 
                                                   >> 1169         /* Swap crashk_res and crashk_low_res if needed */
                                                   >> 1170         if (!crashk_res.end && crashk_low_res.end) {
                                                   >> 1171                 crashk_res.start = crashk_low_res.start;
                                                   >> 1172                 crashk_res.end   = crashk_low_res.end;
                                                   >> 1173                 release_resource(&crashk_low_res);
                                                   >> 1174                 crashk_low_res.start = 0;
                                                   >> 1175                 crashk_low_res.end   = 0;
                                                   >> 1176                 insert_resource(&iomem_resource, &crashk_res);
                                                   >> 1177         }
                                                   >> 1178 
                                                   >> 1179 unlock:
                                                   >> 1180         kexec_unlock();
                                                   >> 1181         return ret;
                                                   >> 1182 }
                                                   >> 1183 
                                                   >> 1184 void crash_save_cpu(struct pt_regs *regs, int cpu)
                                                   >> 1185 {
                                                   >> 1186         struct elf_prstatus prstatus;
                                                   >> 1187         u32 *buf;
                                                   >> 1188 
                                                   >> 1189         if ((cpu < 0) || (cpu >= nr_cpu_ids))
                                                   >> 1190                 return;
                                                   >> 1191 
                                                   >> 1192         /* Using ELF notes here is opportunistic.
                                                   >> 1193          * I need a well defined structure format
                                                   >> 1194          * for the data I pass, and I need tags
                                                   >> 1195          * on the data to indicate what information I have
                                                   >> 1196          * squirrelled away.  ELF notes happen to provide
                                                   >> 1197          * all of that, so there is no need to invent something new.
                                                   >> 1198          */
                                                   >> 1199         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
                                                   >> 1200         if (!buf)
                                                   >> 1201                 return;
                                                   >> 1202         memset(&prstatus, 0, sizeof(prstatus));
                                                   >> 1203         prstatus.common.pr_pid = current->pid;
                                                   >> 1204         elf_core_copy_regs(&prstatus.pr_reg, regs);
                                                   >> 1205         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
                                                   >> 1206                               &prstatus, sizeof(prstatus));
                                                   >> 1207         final_note(buf);
985 }                                                 1208 }
986                                                   1209 
987 /*                                                1210 /*
988  * Move into place and start executing a prelo    1211  * Move into place and start executing a preloaded standalone
989  * executable.  If nothing was preloaded retur    1212  * executable.  If nothing was preloaded return an error.
990  */                                               1213  */
991 int kernel_kexec(void)                            1214 int kernel_kexec(void)
992 {                                                 1215 {
993         int error = 0;                            1216         int error = 0;
994                                                   1217 
995         if (!kexec_trylock())                     1218         if (!kexec_trylock())
996                 return -EBUSY;                    1219                 return -EBUSY;
997         if (!kexec_image) {                       1220         if (!kexec_image) {
998                 error = -EINVAL;                  1221                 error = -EINVAL;
999                 goto Unlock;                      1222                 goto Unlock;
1000         }                                        1223         }
1001                                                  1224 
1002 #ifdef CONFIG_KEXEC_JUMP                         1225 #ifdef CONFIG_KEXEC_JUMP
1003         if (kexec_image->preserve_context) {     1226         if (kexec_image->preserve_context) {
1004                 pm_prepare_console();            1227                 pm_prepare_console();
1005                 error = freeze_processes();      1228                 error = freeze_processes();
1006                 if (error) {                     1229                 if (error) {
1007                         error = -EBUSY;          1230                         error = -EBUSY;
1008                         goto Restore_console;    1231                         goto Restore_console;
1009                 }                                1232                 }
1010                 suspend_console();               1233                 suspend_console();
1011                 error = dpm_suspend_start(PMS    1234                 error = dpm_suspend_start(PMSG_FREEZE);
1012                 if (error)                       1235                 if (error)
1013                         goto Resume_console;     1236                         goto Resume_console;
1014                 /* At this point, dpm_suspend    1237                 /* At this point, dpm_suspend_start() has been called,
1015                  * but *not* dpm_suspend_end(    1238                  * but *not* dpm_suspend_end(). We *must* call
1016                  * dpm_suspend_end() now.  Ot    1239                  * dpm_suspend_end() now.  Otherwise, drivers for
1017                  * some devices (e.g. interru    1240                  * some devices (e.g. interrupt controllers) become
1018                  * desynchronized with the ac    1241                  * desynchronized with the actual state of the
1019                  * hardware at resume time, a    1242                  * hardware at resume time, and evil weirdness ensues.
1020                  */                              1243                  */
1021                 error = dpm_suspend_end(PMSG_    1244                 error = dpm_suspend_end(PMSG_FREEZE);
1022                 if (error)                       1245                 if (error)
1023                         goto Resume_devices;     1246                         goto Resume_devices;
1024                 error = suspend_disable_secon    1247                 error = suspend_disable_secondary_cpus();
1025                 if (error)                       1248                 if (error)
1026                         goto Enable_cpus;        1249                         goto Enable_cpus;
1027                 local_irq_disable();             1250                 local_irq_disable();
1028                 error = syscore_suspend();       1251                 error = syscore_suspend();
1029                 if (error)                       1252                 if (error)
1030                         goto Enable_irqs;        1253                         goto Enable_irqs;
1031         } else                                   1254         } else
1032 #endif                                           1255 #endif
1033         {                                        1256         {
1034                 kexec_in_progress = true;        1257                 kexec_in_progress = true;
1035                 kernel_restart_prepare("kexec    1258                 kernel_restart_prepare("kexec reboot");
1036                 migrate_to_reboot_cpu();         1259                 migrate_to_reboot_cpu();
1037                 syscore_shutdown();              1260                 syscore_shutdown();
1038                                                  1261 
1039                 /*                               1262                 /*
1040                  * migrate_to_reboot_cpu() di    1263                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1041                  * no further code needs to u    1264                  * no further code needs to use CPU hotplug (which is true in
1042                  * the reboot case). However,    1265                  * the reboot case). However, the kexec path depends on using
1043                  * CPU hotplug again; so re-e    1266                  * CPU hotplug again; so re-enable it here.
1044                  */                              1267                  */
1045                 cpu_hotplug_enable();            1268                 cpu_hotplug_enable();
1046                 pr_notice("Starting new kerne    1269                 pr_notice("Starting new kernel\n");
1047                 machine_shutdown();              1270                 machine_shutdown();
1048         }                                        1271         }
1049                                                  1272 
1050         kmsg_dump(KMSG_DUMP_SHUTDOWN);           1273         kmsg_dump(KMSG_DUMP_SHUTDOWN);
1051         machine_kexec(kexec_image);              1274         machine_kexec(kexec_image);
1052                                                  1275 
1053 #ifdef CONFIG_KEXEC_JUMP                         1276 #ifdef CONFIG_KEXEC_JUMP
1054         if (kexec_image->preserve_context) {     1277         if (kexec_image->preserve_context) {
1055                 syscore_resume();                1278                 syscore_resume();
1056  Enable_irqs:                                    1279  Enable_irqs:
1057                 local_irq_enable();              1280                 local_irq_enable();
1058  Enable_cpus:                                    1281  Enable_cpus:
1059                 suspend_enable_secondary_cpus    1282                 suspend_enable_secondary_cpus();
1060                 dpm_resume_start(PMSG_RESTORE    1283                 dpm_resume_start(PMSG_RESTORE);
1061  Resume_devices:                                 1284  Resume_devices:
1062                 dpm_resume_end(PMSG_RESTORE);    1285                 dpm_resume_end(PMSG_RESTORE);
1063  Resume_console:                                 1286  Resume_console:
1064                 resume_console();                1287                 resume_console();
1065                 thaw_processes();                1288                 thaw_processes();
1066  Restore_console:                                1289  Restore_console:
1067                 pm_restore_console();            1290                 pm_restore_console();
1068         }                                        1291         }
1069 #endif                                           1292 #endif
1070                                                  1293 
1071  Unlock:                                         1294  Unlock:
1072         kexec_unlock();                          1295         kexec_unlock();
1073         return error;                            1296         return error;
1074 }                                                1297 }
1075                                                  1298 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php