1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * latencytop.c: Latency display infrastructur 2 * latencytop.c: Latency display infrastructure 4 * 3 * 5 * (C) Copyright 2008 Intel Corporation 4 * (C) Copyright 2008 Intel Corporation 6 * Author: Arjan van de Ven <arjan@linux.intel 5 * Author: Arjan van de Ven <arjan@linux.intel.com> >> 6 * >> 7 * This program is free software; you can redistribute it and/or >> 8 * modify it under the terms of the GNU General Public License >> 9 * as published by the Free Software Foundation; version 2 >> 10 * of the License. 7 */ 11 */ 8 12 9 /* 13 /* 10 * CONFIG_LATENCYTOP enables a kernel latency 14 * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is 11 * used by the "latencytop" userspace tool. Th 15 * used by the "latencytop" userspace tool. The latency that is tracked is not 12 * the 'traditional' interrupt latency (which 16 * the 'traditional' interrupt latency (which is primarily caused by something 13 * else consuming CPU), but instead, it is the 17 * else consuming CPU), but instead, it is the latency an application encounters 14 * because the kernel sleeps on its behalf for 18 * because the kernel sleeps on its behalf for various reasons. 15 * 19 * 16 * This code tracks 2 levels of statistics: 20 * This code tracks 2 levels of statistics: 17 * 1) System level latency 21 * 1) System level latency 18 * 2) Per process latency 22 * 2) Per process latency 19 * 23 * 20 * The latency is stored in fixed sized data s 24 * The latency is stored in fixed sized data structures in an accumulated form; 21 * if the "same" latency cause is hit twice, t 25 * if the "same" latency cause is hit twice, this will be tracked as one entry 22 * in the data structure. Both the count, tota 26 * in the data structure. Both the count, total accumulated latency and maximum 23 * latency are tracked in this data structure. 27 * latency are tracked in this data structure. When the fixed size structure is 24 * full, no new causes are tracked until the b 28 * full, no new causes are tracked until the buffer is flushed by writing to 25 * the /proc file; the userspace tool does thi 29 * the /proc file; the userspace tool does this on a regular basis. 26 * 30 * 27 * A latency cause is identified by a stringif 31 * A latency cause is identified by a stringified backtrace at the point that 28 * the scheduler gets invoked. The userland to 32 * the scheduler gets invoked. The userland tool will use this string to 29 * identify the cause of the latency in human 33 * identify the cause of the latency in human readable form. 30 * 34 * 31 * The information is exported via /proc/laten 35 * The information is exported via /proc/latency_stats and /proc/<pid>/latency. 32 * These files look like this: 36 * These files look like this: 33 * 37 * 34 * Latency Top version : v0.1 38 * Latency Top version : v0.1 35 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_i 39 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl 36 * | | | | 40 * | | | | 37 * | | | +----> the stringified backt 41 * | | | +----> the stringified backtrace 38 * | | +---------> The maximum latency f 42 * | | +---------> The maximum latency for this entry in microseconds 39 * | +--------------> The accumulated laten 43 * | +--------------> The accumulated latency for this entry (microseconds) 40 * +-------------------> The number of times t 44 * +-------------------> The number of times this entry is hit 41 * 45 * 42 * (note: the average latency is the accumulat 46 * (note: the average latency is the accumulated latency divided by the number 43 * of times) 47 * of times) 44 */ 48 */ 45 49 46 #include <linux/kallsyms.h> 50 #include <linux/kallsyms.h> 47 #include <linux/seq_file.h> 51 #include <linux/seq_file.h> 48 #include <linux/notifier.h> 52 #include <linux/notifier.h> 49 #include <linux/spinlock.h> 53 #include <linux/spinlock.h> 50 #include <linux/proc_fs.h> 54 #include <linux/proc_fs.h> 51 #include <linux/latencytop.h> 55 #include <linux/latencytop.h> 52 #include <linux/export.h> 56 #include <linux/export.h> 53 #include <linux/sched.h> 57 #include <linux/sched.h> 54 #include <linux/sched/debug.h> 58 #include <linux/sched/debug.h> 55 #include <linux/sched/stat.h> 59 #include <linux/sched/stat.h> 56 #include <linux/list.h> 60 #include <linux/list.h> 57 #include <linux/stacktrace.h> 61 #include <linux/stacktrace.h> 58 #include <linux/sysctl.h> << 59 62 60 static DEFINE_RAW_SPINLOCK(latency_lock); 63 static DEFINE_RAW_SPINLOCK(latency_lock); 61 64 62 #define MAXLR 128 65 #define MAXLR 128 63 static struct latency_record latency_record[MA 66 static struct latency_record latency_record[MAXLR]; 64 67 65 int latencytop_enabled; 68 int latencytop_enabled; 66 69 67 #ifdef CONFIG_SYSCTL !! 70 void clear_all_latency_tracing(struct task_struct *p) 68 static int sysctl_latencytop(const struct ctl_ << 69 size_t *lenp, loff_t *ppos) << 70 { << 71 int err; << 72 << 73 err = proc_dointvec(table, write, buff << 74 if (latencytop_enabled) << 75 force_schedstat_enabled(); << 76 << 77 return err; << 78 } << 79 << 80 static struct ctl_table latencytop_sysctl[] = << 81 { << 82 .procname = "latencytop", << 83 .data = &latencytop_enab << 84 .maxlen = sizeof(int), << 85 .mode = 0644, << 86 .proc_handler = sysctl_laten << 87 }, << 88 }; << 89 #endif << 90 << 91 void clear_tsk_latency_tracing(struct task_str << 92 { 71 { 93 unsigned long flags; 72 unsigned long flags; 94 73 >> 74 if (!latencytop_enabled) >> 75 return; >> 76 95 raw_spin_lock_irqsave(&latency_lock, f 77 raw_spin_lock_irqsave(&latency_lock, flags); 96 memset(&p->latency_record, 0, sizeof(p 78 memset(&p->latency_record, 0, sizeof(p->latency_record)); 97 p->latency_record_count = 0; 79 p->latency_record_count = 0; 98 raw_spin_unlock_irqrestore(&latency_lo 80 raw_spin_unlock_irqrestore(&latency_lock, flags); 99 } 81 } 100 82 101 static void clear_global_latency_tracing(void) 83 static void clear_global_latency_tracing(void) 102 { 84 { 103 unsigned long flags; 85 unsigned long flags; 104 86 105 raw_spin_lock_irqsave(&latency_lock, f 87 raw_spin_lock_irqsave(&latency_lock, flags); 106 memset(&latency_record, 0, sizeof(late 88 memset(&latency_record, 0, sizeof(latency_record)); 107 raw_spin_unlock_irqrestore(&latency_lo 89 raw_spin_unlock_irqrestore(&latency_lock, flags); 108 } 90 } 109 91 110 static void __sched 92 static void __sched 111 account_global_scheduler_latency(struct task_s 93 account_global_scheduler_latency(struct task_struct *tsk, 112 struct latenc 94 struct latency_record *lat) 113 { 95 { 114 int firstnonnull = MAXLR; !! 96 int firstnonnull = MAXLR + 1; 115 int i; 97 int i; 116 98 >> 99 if (!latencytop_enabled) >> 100 return; >> 101 117 /* skip kernel threads for now */ 102 /* skip kernel threads for now */ 118 if (!tsk->mm) 103 if (!tsk->mm) 119 return; 104 return; 120 105 121 for (i = 0; i < MAXLR; i++) { 106 for (i = 0; i < MAXLR; i++) { 122 int q, same = 1; 107 int q, same = 1; 123 108 124 /* Nothing stored: */ 109 /* Nothing stored: */ 125 if (!latency_record[i].backtra 110 if (!latency_record[i].backtrace[0]) { 126 if (firstnonnull > i) 111 if (firstnonnull > i) 127 firstnonnull = 112 firstnonnull = i; 128 continue; 113 continue; 129 } 114 } 130 for (q = 0; q < LT_BACKTRACEDE 115 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 131 unsigned long record = 116 unsigned long record = lat->backtrace[q]; 132 117 133 if (latency_record[i]. 118 if (latency_record[i].backtrace[q] != record) { 134 same = 0; 119 same = 0; 135 break; 120 break; 136 } 121 } 137 122 138 /* 0 entry marks end o !! 123 /* 0 and ULONG_MAX entries mean end of backtrace: */ 139 if (!record) !! 124 if (record == 0 || record == ULONG_MAX) 140 break; 125 break; 141 } 126 } 142 if (same) { 127 if (same) { 143 latency_record[i].coun 128 latency_record[i].count++; 144 latency_record[i].time 129 latency_record[i].time += lat->time; 145 if (lat->time > latenc 130 if (lat->time > latency_record[i].max) 146 latency_record 131 latency_record[i].max = lat->time; 147 return; 132 return; 148 } 133 } 149 } 134 } 150 135 151 i = firstnonnull; 136 i = firstnonnull; 152 if (i >= MAXLR) !! 137 if (i >= MAXLR - 1) 153 return; 138 return; 154 139 155 /* Allocted a new one: */ 140 /* Allocted a new one: */ 156 memcpy(&latency_record[i], lat, sizeof 141 memcpy(&latency_record[i], lat, sizeof(struct latency_record)); 157 } 142 } 158 143 >> 144 /* >> 145 * Iterator to store a backtrace into a latency record entry >> 146 */ >> 147 static inline void store_stacktrace(struct task_struct *tsk, >> 148 struct latency_record *lat) >> 149 { >> 150 struct stack_trace trace; >> 151 >> 152 memset(&trace, 0, sizeof(trace)); >> 153 trace.max_entries = LT_BACKTRACEDEPTH; >> 154 trace.entries = &lat->backtrace[0]; >> 155 save_stack_trace_tsk(tsk, &trace); >> 156 } >> 157 159 /** 158 /** 160 * __account_scheduler_latency - record an occ 159 * __account_scheduler_latency - record an occurred latency 161 * @tsk - the task struct of the task hitting 160 * @tsk - the task struct of the task hitting the latency 162 * @usecs - the duration of the latency in mic 161 * @usecs - the duration of the latency in microseconds 163 * @inter - 1 if the sleep was interruptible, 162 * @inter - 1 if the sleep was interruptible, 0 if uninterruptible 164 * 163 * 165 * This function is the main entry point for r 164 * This function is the main entry point for recording latency entries 166 * as called by the scheduler. 165 * as called by the scheduler. 167 * 166 * 168 * This function has a few special cases to de 167 * This function has a few special cases to deal with normal 'non-latency' 169 * sleeps: specifically, interruptible sleep l 168 * sleeps: specifically, interruptible sleep longer than 5 msec is skipped 170 * since this usually is caused by waiting for 169 * since this usually is caused by waiting for events via select() and co. 171 * 170 * 172 * Negative latencies (caused by time going ba 171 * Negative latencies (caused by time going backwards) are also explicitly 173 * skipped. 172 * skipped. 174 */ 173 */ 175 void __sched 174 void __sched 176 __account_scheduler_latency(struct task_struct 175 __account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) 177 { 176 { 178 unsigned long flags; 177 unsigned long flags; 179 int i, q; 178 int i, q; 180 struct latency_record lat; 179 struct latency_record lat; 181 180 182 /* Long interruptible waits are genera 181 /* Long interruptible waits are generally user requested... */ 183 if (inter && usecs > 5000) 182 if (inter && usecs > 5000) 184 return; 183 return; 185 184 186 /* Negative sleeps are time going back 185 /* Negative sleeps are time going backwards */ 187 /* Zero-time sleeps are non-interestin 186 /* Zero-time sleeps are non-interesting */ 188 if (usecs <= 0) 187 if (usecs <= 0) 189 return; 188 return; 190 189 191 memset(&lat, 0, sizeof(lat)); 190 memset(&lat, 0, sizeof(lat)); 192 lat.count = 1; 191 lat.count = 1; 193 lat.time = usecs; 192 lat.time = usecs; 194 lat.max = usecs; 193 lat.max = usecs; 195 !! 194 store_stacktrace(tsk, &lat); 196 stack_trace_save_tsk(tsk, lat.backtrac << 197 195 198 raw_spin_lock_irqsave(&latency_lock, f 196 raw_spin_lock_irqsave(&latency_lock, flags); 199 197 200 account_global_scheduler_latency(tsk, 198 account_global_scheduler_latency(tsk, &lat); 201 199 202 for (i = 0; i < tsk->latency_record_co 200 for (i = 0; i < tsk->latency_record_count; i++) { 203 struct latency_record *mylat; 201 struct latency_record *mylat; 204 int same = 1; 202 int same = 1; 205 203 206 mylat = &tsk->latency_record[i 204 mylat = &tsk->latency_record[i]; 207 for (q = 0; q < LT_BACKTRACEDE 205 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 208 unsigned long record = 206 unsigned long record = lat.backtrace[q]; 209 207 210 if (mylat->backtrace[q 208 if (mylat->backtrace[q] != record) { 211 same = 0; 209 same = 0; 212 break; 210 break; 213 } 211 } 214 212 215 /* 0 entry is end of b !! 213 /* 0 and ULONG_MAX entries mean end of backtrace: */ 216 if (!record) !! 214 if (record == 0 || record == ULONG_MAX) 217 break; 215 break; 218 } 216 } 219 if (same) { 217 if (same) { 220 mylat->count++; 218 mylat->count++; 221 mylat->time += lat.tim 219 mylat->time += lat.time; 222 if (lat.time > mylat-> 220 if (lat.time > mylat->max) 223 mylat->max = l 221 mylat->max = lat.time; 224 goto out_unlock; 222 goto out_unlock; 225 } 223 } 226 } 224 } 227 225 228 /* 226 /* 229 * short term hack; if we're > 32 we s 227 * short term hack; if we're > 32 we stop; future we recycle: 230 */ 228 */ 231 if (tsk->latency_record_count >= LT_SA 229 if (tsk->latency_record_count >= LT_SAVECOUNT) 232 goto out_unlock; 230 goto out_unlock; 233 231 234 /* Allocated a new one: */ 232 /* Allocated a new one: */ 235 i = tsk->latency_record_count++; 233 i = tsk->latency_record_count++; 236 memcpy(&tsk->latency_record[i], &lat, 234 memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record)); 237 235 238 out_unlock: 236 out_unlock: 239 raw_spin_unlock_irqrestore(&latency_lo 237 raw_spin_unlock_irqrestore(&latency_lock, flags); 240 } 238 } 241 239 242 static int lstats_show(struct seq_file *m, voi 240 static int lstats_show(struct seq_file *m, void *v) 243 { 241 { 244 int i; 242 int i; 245 243 246 seq_puts(m, "Latency Top version : v0. 244 seq_puts(m, "Latency Top version : v0.1\n"); 247 245 248 for (i = 0; i < MAXLR; i++) { 246 for (i = 0; i < MAXLR; i++) { 249 struct latency_record *lr = &l 247 struct latency_record *lr = &latency_record[i]; 250 248 251 if (lr->backtrace[0]) { 249 if (lr->backtrace[0]) { 252 int q; 250 int q; 253 seq_printf(m, "%i %lu 251 seq_printf(m, "%i %lu %lu", 254 lr->count, 252 lr->count, lr->time, lr->max); 255 for (q = 0; q < LT_BAC 253 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 256 unsigned long 254 unsigned long bt = lr->backtrace[q]; 257 << 258 if (!bt) 255 if (!bt) 259 break; 256 break; 260 !! 257 if (bt == ULONG_MAX) >> 258 break; 261 seq_printf(m, 259 seq_printf(m, " %ps", (void *)bt); 262 } 260 } 263 seq_puts(m, "\n"); 261 seq_puts(m, "\n"); 264 } 262 } 265 } 263 } 266 return 0; 264 return 0; 267 } 265 } 268 266 269 static ssize_t 267 static ssize_t 270 lstats_write(struct file *file, const char __u 268 lstats_write(struct file *file, const char __user *buf, size_t count, 271 loff_t *offs) 269 loff_t *offs) 272 { 270 { 273 clear_global_latency_tracing(); 271 clear_global_latency_tracing(); 274 272 275 return count; 273 return count; 276 } 274 } 277 275 278 static int lstats_open(struct inode *inode, st 276 static int lstats_open(struct inode *inode, struct file *filp) 279 { 277 { 280 return single_open(filp, lstats_show, 278 return single_open(filp, lstats_show, NULL); 281 } 279 } 282 280 283 static const struct proc_ops lstats_proc_ops = !! 281 static const struct file_operations lstats_fops = { 284 .proc_open = lstats_open, !! 282 .open = lstats_open, 285 .proc_read = seq_read, !! 283 .read = seq_read, 286 .proc_write = lstats_write, !! 284 .write = lstats_write, 287 .proc_lseek = seq_lseek, !! 285 .llseek = seq_lseek, 288 .proc_release = single_release, !! 286 .release = single_release, 289 }; 287 }; 290 288 291 static int __init init_lstats_procfs(void) 289 static int __init init_lstats_procfs(void) 292 { 290 { 293 proc_create("latency_stats", 0644, NUL !! 291 proc_create("latency_stats", 0644, NULL, &lstats_fops); 294 #ifdef CONFIG_SYSCTL << 295 register_sysctl_init("kernel", latency << 296 #endif << 297 return 0; 292 return 0; >> 293 } >> 294 >> 295 int sysctl_latencytop(struct ctl_table *table, int write, >> 296 void __user *buffer, size_t *lenp, loff_t *ppos) >> 297 { >> 298 int err; >> 299 >> 300 err = proc_dointvec(table, write, buffer, lenp, ppos); >> 301 if (latencytop_enabled) >> 302 force_schedstat_enabled(); >> 303 >> 304 return err; 298 } 305 } 299 device_initcall(init_lstats_procfs); 306 device_initcall(init_lstats_procfs); 300 307
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.