1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * latencytop.c: Latency display infrastructur 3 * latencytop.c: Latency display infrastructure 4 * 4 * 5 * (C) Copyright 2008 Intel Corporation 5 * (C) Copyright 2008 Intel Corporation 6 * Author: Arjan van de Ven <arjan@linux.intel 6 * Author: Arjan van de Ven <arjan@linux.intel.com> 7 */ 7 */ 8 8 9 /* 9 /* 10 * CONFIG_LATENCYTOP enables a kernel latency 10 * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is 11 * used by the "latencytop" userspace tool. Th 11 * used by the "latencytop" userspace tool. The latency that is tracked is not 12 * the 'traditional' interrupt latency (which 12 * the 'traditional' interrupt latency (which is primarily caused by something 13 * else consuming CPU), but instead, it is the 13 * else consuming CPU), but instead, it is the latency an application encounters 14 * because the kernel sleeps on its behalf for 14 * because the kernel sleeps on its behalf for various reasons. 15 * 15 * 16 * This code tracks 2 levels of statistics: 16 * This code tracks 2 levels of statistics: 17 * 1) System level latency 17 * 1) System level latency 18 * 2) Per process latency 18 * 2) Per process latency 19 * 19 * 20 * The latency is stored in fixed sized data s 20 * The latency is stored in fixed sized data structures in an accumulated form; 21 * if the "same" latency cause is hit twice, t 21 * if the "same" latency cause is hit twice, this will be tracked as one entry 22 * in the data structure. Both the count, tota 22 * in the data structure. Both the count, total accumulated latency and maximum 23 * latency are tracked in this data structure. 23 * latency are tracked in this data structure. When the fixed size structure is 24 * full, no new causes are tracked until the b 24 * full, no new causes are tracked until the buffer is flushed by writing to 25 * the /proc file; the userspace tool does thi 25 * the /proc file; the userspace tool does this on a regular basis. 26 * 26 * 27 * A latency cause is identified by a stringif 27 * A latency cause is identified by a stringified backtrace at the point that 28 * the scheduler gets invoked. The userland to 28 * the scheduler gets invoked. The userland tool will use this string to 29 * identify the cause of the latency in human 29 * identify the cause of the latency in human readable form. 30 * 30 * 31 * The information is exported via /proc/laten 31 * The information is exported via /proc/latency_stats and /proc/<pid>/latency. 32 * These files look like this: 32 * These files look like this: 33 * 33 * 34 * Latency Top version : v0.1 34 * Latency Top version : v0.1 35 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_i 35 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl 36 * | | | | 36 * | | | | 37 * | | | +----> the stringified backt 37 * | | | +----> the stringified backtrace 38 * | | +---------> The maximum latency f 38 * | | +---------> The maximum latency for this entry in microseconds 39 * | +--------------> The accumulated laten 39 * | +--------------> The accumulated latency for this entry (microseconds) 40 * +-------------------> The number of times t 40 * +-------------------> The number of times this entry is hit 41 * 41 * 42 * (note: the average latency is the accumulat 42 * (note: the average latency is the accumulated latency divided by the number 43 * of times) 43 * of times) 44 */ 44 */ 45 45 46 #include <linux/kallsyms.h> 46 #include <linux/kallsyms.h> 47 #include <linux/seq_file.h> 47 #include <linux/seq_file.h> 48 #include <linux/notifier.h> 48 #include <linux/notifier.h> 49 #include <linux/spinlock.h> 49 #include <linux/spinlock.h> 50 #include <linux/proc_fs.h> 50 #include <linux/proc_fs.h> 51 #include <linux/latencytop.h> 51 #include <linux/latencytop.h> 52 #include <linux/export.h> 52 #include <linux/export.h> 53 #include <linux/sched.h> 53 #include <linux/sched.h> 54 #include <linux/sched/debug.h> 54 #include <linux/sched/debug.h> 55 #include <linux/sched/stat.h> 55 #include <linux/sched/stat.h> 56 #include <linux/list.h> 56 #include <linux/list.h> 57 #include <linux/stacktrace.h> 57 #include <linux/stacktrace.h> 58 #include <linux/sysctl.h> 58 #include <linux/sysctl.h> 59 59 60 static DEFINE_RAW_SPINLOCK(latency_lock); 60 static DEFINE_RAW_SPINLOCK(latency_lock); 61 61 62 #define MAXLR 128 62 #define MAXLR 128 63 static struct latency_record latency_record[MA 63 static struct latency_record latency_record[MAXLR]; 64 64 65 int latencytop_enabled; 65 int latencytop_enabled; 66 66 67 #ifdef CONFIG_SYSCTL 67 #ifdef CONFIG_SYSCTL 68 static int sysctl_latencytop(const struct ctl_ !! 68 static int sysctl_latencytop(struct ctl_table *table, int write, void *buffer, 69 size_t *lenp, loff_t *ppos) 69 size_t *lenp, loff_t *ppos) 70 { 70 { 71 int err; 71 int err; 72 72 73 err = proc_dointvec(table, write, buff 73 err = proc_dointvec(table, write, buffer, lenp, ppos); 74 if (latencytop_enabled) 74 if (latencytop_enabled) 75 force_schedstat_enabled(); 75 force_schedstat_enabled(); 76 76 77 return err; 77 return err; 78 } 78 } 79 79 80 static struct ctl_table latencytop_sysctl[] = 80 static struct ctl_table latencytop_sysctl[] = { 81 { 81 { 82 .procname = "latencytop", 82 .procname = "latencytop", 83 .data = &latencytop_enab 83 .data = &latencytop_enabled, 84 .maxlen = sizeof(int), 84 .maxlen = sizeof(int), 85 .mode = 0644, 85 .mode = 0644, 86 .proc_handler = sysctl_laten 86 .proc_handler = sysctl_latencytop, 87 }, 87 }, >> 88 {} 88 }; 89 }; 89 #endif 90 #endif 90 91 91 void clear_tsk_latency_tracing(struct task_str 92 void clear_tsk_latency_tracing(struct task_struct *p) 92 { 93 { 93 unsigned long flags; 94 unsigned long flags; 94 95 95 raw_spin_lock_irqsave(&latency_lock, f 96 raw_spin_lock_irqsave(&latency_lock, flags); 96 memset(&p->latency_record, 0, sizeof(p 97 memset(&p->latency_record, 0, sizeof(p->latency_record)); 97 p->latency_record_count = 0; 98 p->latency_record_count = 0; 98 raw_spin_unlock_irqrestore(&latency_lo 99 raw_spin_unlock_irqrestore(&latency_lock, flags); 99 } 100 } 100 101 101 static void clear_global_latency_tracing(void) 102 static void clear_global_latency_tracing(void) 102 { 103 { 103 unsigned long flags; 104 unsigned long flags; 104 105 105 raw_spin_lock_irqsave(&latency_lock, f 106 raw_spin_lock_irqsave(&latency_lock, flags); 106 memset(&latency_record, 0, sizeof(late 107 memset(&latency_record, 0, sizeof(latency_record)); 107 raw_spin_unlock_irqrestore(&latency_lo 108 raw_spin_unlock_irqrestore(&latency_lock, flags); 108 } 109 } 109 110 110 static void __sched 111 static void __sched 111 account_global_scheduler_latency(struct task_s 112 account_global_scheduler_latency(struct task_struct *tsk, 112 struct latenc 113 struct latency_record *lat) 113 { 114 { 114 int firstnonnull = MAXLR; 115 int firstnonnull = MAXLR; 115 int i; 116 int i; 116 117 117 /* skip kernel threads for now */ 118 /* skip kernel threads for now */ 118 if (!tsk->mm) 119 if (!tsk->mm) 119 return; 120 return; 120 121 121 for (i = 0; i < MAXLR; i++) { 122 for (i = 0; i < MAXLR; i++) { 122 int q, same = 1; 123 int q, same = 1; 123 124 124 /* Nothing stored: */ 125 /* Nothing stored: */ 125 if (!latency_record[i].backtra 126 if (!latency_record[i].backtrace[0]) { 126 if (firstnonnull > i) 127 if (firstnonnull > i) 127 firstnonnull = 128 firstnonnull = i; 128 continue; 129 continue; 129 } 130 } 130 for (q = 0; q < LT_BACKTRACEDE 131 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 131 unsigned long record = 132 unsigned long record = lat->backtrace[q]; 132 133 133 if (latency_record[i]. 134 if (latency_record[i].backtrace[q] != record) { 134 same = 0; 135 same = 0; 135 break; 136 break; 136 } 137 } 137 138 138 /* 0 entry marks end o 139 /* 0 entry marks end of backtrace: */ 139 if (!record) 140 if (!record) 140 break; 141 break; 141 } 142 } 142 if (same) { 143 if (same) { 143 latency_record[i].coun 144 latency_record[i].count++; 144 latency_record[i].time 145 latency_record[i].time += lat->time; 145 if (lat->time > latenc 146 if (lat->time > latency_record[i].max) 146 latency_record 147 latency_record[i].max = lat->time; 147 return; 148 return; 148 } 149 } 149 } 150 } 150 151 151 i = firstnonnull; 152 i = firstnonnull; 152 if (i >= MAXLR) 153 if (i >= MAXLR) 153 return; 154 return; 154 155 155 /* Allocted a new one: */ 156 /* Allocted a new one: */ 156 memcpy(&latency_record[i], lat, sizeof 157 memcpy(&latency_record[i], lat, sizeof(struct latency_record)); 157 } 158 } 158 159 159 /** 160 /** 160 * __account_scheduler_latency - record an occ 161 * __account_scheduler_latency - record an occurred latency 161 * @tsk - the task struct of the task hitting 162 * @tsk - the task struct of the task hitting the latency 162 * @usecs - the duration of the latency in mic 163 * @usecs - the duration of the latency in microseconds 163 * @inter - 1 if the sleep was interruptible, 164 * @inter - 1 if the sleep was interruptible, 0 if uninterruptible 164 * 165 * 165 * This function is the main entry point for r 166 * This function is the main entry point for recording latency entries 166 * as called by the scheduler. 167 * as called by the scheduler. 167 * 168 * 168 * This function has a few special cases to de 169 * This function has a few special cases to deal with normal 'non-latency' 169 * sleeps: specifically, interruptible sleep l 170 * sleeps: specifically, interruptible sleep longer than 5 msec is skipped 170 * since this usually is caused by waiting for 171 * since this usually is caused by waiting for events via select() and co. 171 * 172 * 172 * Negative latencies (caused by time going ba 173 * Negative latencies (caused by time going backwards) are also explicitly 173 * skipped. 174 * skipped. 174 */ 175 */ 175 void __sched 176 void __sched 176 __account_scheduler_latency(struct task_struct 177 __account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) 177 { 178 { 178 unsigned long flags; 179 unsigned long flags; 179 int i, q; 180 int i, q; 180 struct latency_record lat; 181 struct latency_record lat; 181 182 182 /* Long interruptible waits are genera 183 /* Long interruptible waits are generally user requested... */ 183 if (inter && usecs > 5000) 184 if (inter && usecs > 5000) 184 return; 185 return; 185 186 186 /* Negative sleeps are time going back 187 /* Negative sleeps are time going backwards */ 187 /* Zero-time sleeps are non-interestin 188 /* Zero-time sleeps are non-interesting */ 188 if (usecs <= 0) 189 if (usecs <= 0) 189 return; 190 return; 190 191 191 memset(&lat, 0, sizeof(lat)); 192 memset(&lat, 0, sizeof(lat)); 192 lat.count = 1; 193 lat.count = 1; 193 lat.time = usecs; 194 lat.time = usecs; 194 lat.max = usecs; 195 lat.max = usecs; 195 196 196 stack_trace_save_tsk(tsk, lat.backtrac 197 stack_trace_save_tsk(tsk, lat.backtrace, LT_BACKTRACEDEPTH, 0); 197 198 198 raw_spin_lock_irqsave(&latency_lock, f 199 raw_spin_lock_irqsave(&latency_lock, flags); 199 200 200 account_global_scheduler_latency(tsk, 201 account_global_scheduler_latency(tsk, &lat); 201 202 202 for (i = 0; i < tsk->latency_record_co 203 for (i = 0; i < tsk->latency_record_count; i++) { 203 struct latency_record *mylat; 204 struct latency_record *mylat; 204 int same = 1; 205 int same = 1; 205 206 206 mylat = &tsk->latency_record[i 207 mylat = &tsk->latency_record[i]; 207 for (q = 0; q < LT_BACKTRACEDE 208 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 208 unsigned long record = 209 unsigned long record = lat.backtrace[q]; 209 210 210 if (mylat->backtrace[q 211 if (mylat->backtrace[q] != record) { 211 same = 0; 212 same = 0; 212 break; 213 break; 213 } 214 } 214 215 215 /* 0 entry is end of b 216 /* 0 entry is end of backtrace */ 216 if (!record) 217 if (!record) 217 break; 218 break; 218 } 219 } 219 if (same) { 220 if (same) { 220 mylat->count++; 221 mylat->count++; 221 mylat->time += lat.tim 222 mylat->time += lat.time; 222 if (lat.time > mylat-> 223 if (lat.time > mylat->max) 223 mylat->max = l 224 mylat->max = lat.time; 224 goto out_unlock; 225 goto out_unlock; 225 } 226 } 226 } 227 } 227 228 228 /* 229 /* 229 * short term hack; if we're > 32 we s 230 * short term hack; if we're > 32 we stop; future we recycle: 230 */ 231 */ 231 if (tsk->latency_record_count >= LT_SA 232 if (tsk->latency_record_count >= LT_SAVECOUNT) 232 goto out_unlock; 233 goto out_unlock; 233 234 234 /* Allocated a new one: */ 235 /* Allocated a new one: */ 235 i = tsk->latency_record_count++; 236 i = tsk->latency_record_count++; 236 memcpy(&tsk->latency_record[i], &lat, 237 memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record)); 237 238 238 out_unlock: 239 out_unlock: 239 raw_spin_unlock_irqrestore(&latency_lo 240 raw_spin_unlock_irqrestore(&latency_lock, flags); 240 } 241 } 241 242 242 static int lstats_show(struct seq_file *m, voi 243 static int lstats_show(struct seq_file *m, void *v) 243 { 244 { 244 int i; 245 int i; 245 246 246 seq_puts(m, "Latency Top version : v0. 247 seq_puts(m, "Latency Top version : v0.1\n"); 247 248 248 for (i = 0; i < MAXLR; i++) { 249 for (i = 0; i < MAXLR; i++) { 249 struct latency_record *lr = &l 250 struct latency_record *lr = &latency_record[i]; 250 251 251 if (lr->backtrace[0]) { 252 if (lr->backtrace[0]) { 252 int q; 253 int q; 253 seq_printf(m, "%i %lu 254 seq_printf(m, "%i %lu %lu", 254 lr->count, 255 lr->count, lr->time, lr->max); 255 for (q = 0; q < LT_BAC 256 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 256 unsigned long 257 unsigned long bt = lr->backtrace[q]; 257 258 258 if (!bt) 259 if (!bt) 259 break; 260 break; 260 261 261 seq_printf(m, 262 seq_printf(m, " %ps", (void *)bt); 262 } 263 } 263 seq_puts(m, "\n"); 264 seq_puts(m, "\n"); 264 } 265 } 265 } 266 } 266 return 0; 267 return 0; 267 } 268 } 268 269 269 static ssize_t 270 static ssize_t 270 lstats_write(struct file *file, const char __u 271 lstats_write(struct file *file, const char __user *buf, size_t count, 271 loff_t *offs) 272 loff_t *offs) 272 { 273 { 273 clear_global_latency_tracing(); 274 clear_global_latency_tracing(); 274 275 275 return count; 276 return count; 276 } 277 } 277 278 278 static int lstats_open(struct inode *inode, st 279 static int lstats_open(struct inode *inode, struct file *filp) 279 { 280 { 280 return single_open(filp, lstats_show, 281 return single_open(filp, lstats_show, NULL); 281 } 282 } 282 283 283 static const struct proc_ops lstats_proc_ops = 284 static const struct proc_ops lstats_proc_ops = { 284 .proc_open = lstats_open, 285 .proc_open = lstats_open, 285 .proc_read = seq_read, 286 .proc_read = seq_read, 286 .proc_write = lstats_write, 287 .proc_write = lstats_write, 287 .proc_lseek = seq_lseek, 288 .proc_lseek = seq_lseek, 288 .proc_release = single_release, 289 .proc_release = single_release, 289 }; 290 }; 290 291 291 static int __init init_lstats_procfs(void) 292 static int __init init_lstats_procfs(void) 292 { 293 { 293 proc_create("latency_stats", 0644, NUL 294 proc_create("latency_stats", 0644, NULL, &lstats_proc_ops); 294 #ifdef CONFIG_SYSCTL 295 #ifdef CONFIG_SYSCTL 295 register_sysctl_init("kernel", latency 296 register_sysctl_init("kernel", latencytop_sysctl); 296 #endif 297 #endif 297 return 0; 298 return 0; 298 } 299 } 299 device_initcall(init_lstats_procfs); 300 device_initcall(init_lstats_procfs); 300 301
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.