1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * Generic pidhash and scalable, time-bounded 2 * Generic pidhash and scalable, time-bounded PID allocator 4 * 3 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM !! 4 * (C) 2002 William Irwin, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle !! 5 * (C) 2002 Ingo Molnar, Red Hat 7 * (C) 2002-2004 Ingo Molnar, Red Hat << 8 * 6 * 9 * pid-structures are backing objects for task 7 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside 8 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 9 * parking tasks using given ID's on a list. 12 * 10 * 13 * The hash is always changed with the tasklis 11 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the task 12 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP 13 * read-acquired, so there's no additional SMP locking needed here. 16 * 14 * 17 * We have a list of bitmap pages, which bitma 15 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely l 16 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 17 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list 18 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single suc 19 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * << 23 * Pid namespaces: << 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.o << 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us << 26 * Many thanks to Oleg Nesterov for commen << 27 * << 28 */ 20 */ 29 21 30 #include <linux/mm.h> 22 #include <linux/mm.h> 31 #include <linux/export.h> !! 23 #include <linux/module.h> 32 #include <linux/slab.h> 24 #include <linux/slab.h> 33 #include <linux/init.h> 25 #include <linux/init.h> 34 #include <linux/rculist.h> !! 26 #include <linux/bootmem.h> 35 #include <linux/memblock.h> !! 27 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> !! 28 37 #include <linux/init_task.h> !! 29 #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) 38 #include <linux/syscalls.h> !! 30 static struct list_head *pid_hash[PIDTYPE_MAX]; 39 #include <linux/proc_ns.h> !! 31 static int pidhash_shift; 40 #include <linux/refcount.h> << 41 #include <linux/anon_inodes.h> << 42 #include <linux/sched/signal.h> << 43 #include <linux/sched/task.h> << 44 #include <linux/idr.h> << 45 #include <linux/pidfs.h> << 46 #include <net/sock.h> << 47 #include <uapi/linux/pidfd.h> << 48 << 49 struct pid init_struct_pid = { << 50 .count = REFCOUNT_INIT(1), << 51 .tasks = { << 52 { .first = NULL }, << 53 { .first = NULL }, << 54 { .first = NULL }, << 55 }, << 56 .level = 0, << 57 .numbers = { { << 58 .nr = 0, << 59 .ns = &init_pid_ns << 60 }, } << 61 }; << 62 32 63 int pid_max = PID_MAX_DEFAULT; 33 int pid_max = PID_MAX_DEFAULT; >> 34 int last_pid; 64 35 65 int pid_max_min = RESERVED_PIDS + 1; !! 36 #define RESERVED_PIDS 300 66 int pid_max_max = PID_MAX_LIMIT; !! 37 67 /* !! 38 #define PIDMAP_ENTRIES (PID_MAX_LIMIT/PAGE_SIZE/8) 68 * Pseudo filesystems start inode numbering af !! 39 #define BITS_PER_PAGE (PAGE_SIZE*8) 69 * PIDs as a natural offset. !! 40 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 70 */ << 71 static u64 pidfs_ino = RESERVED_PIDS; << 72 41 73 /* 42 /* 74 * PID-map pages start out as NULL, they get a 43 * PID-map pages start out as NULL, they get allocated upon 75 * first use and are never deallocated. This w 44 * first use and are never deallocated. This way a low pid_max 76 * value does not cause lots of bitmaps to be 45 * value does not cause lots of bitmaps to be allocated, but 77 * the scheme scales to up to 4 million PIDs, 46 * the scheme scales to up to 4 million PIDs, runtime. 78 */ 47 */ 79 struct pid_namespace init_pid_ns = { !! 48 typedef struct pidmap { 80 .ns.count = REFCOUNT_INIT(2), !! 49 atomic_t nr_free; 81 .idr = IDR_INIT(init_pid_ns.idr), !! 50 void *page; 82 .pid_allocated = PIDNS_ADDING, !! 51 } pidmap_t; 83 .level = 0, << 84 .child_reaper = &init_task, << 85 .user_ns = &init_user_ns, << 86 .ns.inum = PROC_PID_INIT_INO, << 87 #ifdef CONFIG_PID_NS << 88 .ns.ops = &pidns_operations, << 89 #endif << 90 #if defined(CONFIG_SYSCTL) && defined(CONFIG_M << 91 .memfd_noexec_scope = MEMFD_NOEXEC_SCO << 92 #endif << 93 }; << 94 EXPORT_SYMBOL_GPL(init_pid_ns); << 95 52 96 /* !! 53 static pidmap_t pidmap_array[PIDMAP_ENTRIES] = 97 * Note: disable interrupts while the pidmap_l !! 54 { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; 98 * interrupt might come in and do read_lock(&t << 99 * << 100 * If we don't disable interrupts there is a n << 101 * detach_pid()->free_pid() and another cpu th << 102 * spin_lock(&pidmap_lock) followed by an inte << 103 * read_lock(&tasklist_lock); << 104 * << 105 * After we clean up the tasklist_lock and kno << 106 * irq handlers that take it we can leave the << 107 * For now it is easier to be safe than to pro << 108 */ << 109 55 110 static __cacheline_aligned_in_smp DEFINE_SPIN !! 56 static pidmap_t *map_limit = pidmap_array + PIDMAP_ENTRIES; 111 57 112 void put_pid(struct pid *pid) !! 58 static spinlock_t pidmap_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; 113 { << 114 struct pid_namespace *ns; << 115 59 116 if (!pid) !! 60 inline void free_pidmap(int pid) 117 return; << 118 << 119 ns = pid->numbers[pid->level].ns; << 120 if (refcount_dec_and_test(&pid->count) << 121 kmem_cache_free(ns->pid_cachep << 122 put_pid_ns(ns); << 123 } << 124 } << 125 EXPORT_SYMBOL_GPL(put_pid); << 126 << 127 static void delayed_put_pid(struct rcu_head *r << 128 { << 129 struct pid *pid = container_of(rhp, st << 130 put_pid(pid); << 131 } << 132 << 133 void free_pid(struct pid *pid) << 134 { 61 { 135 /* We can be called with write_lock_ir !! 62 pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; 136 int i; !! 63 int offset = pid & BITS_PER_PAGE_MASK; 137 unsigned long flags; << 138 << 139 spin_lock_irqsave(&pidmap_lock, flags) << 140 for (i = 0; i <= pid->level; i++) { << 141 struct upid *upid = pid->numbe << 142 struct pid_namespace *ns = upi << 143 switch (--ns->pid_allocated) { << 144 case 2: << 145 case 1: << 146 /* When all that is le << 147 * is the reaper wake << 148 * may be sleeping in << 149 */ << 150 wake_up_process(ns->ch << 151 break; << 152 case PIDNS_ADDING: << 153 /* Handle a fork failu << 154 WARN_ON(ns->child_reap << 155 ns->pid_allocated = 0; << 156 break; << 157 } << 158 64 159 idr_remove(&ns->idr, upid->nr) !! 65 clear_bit(offset, map->page); 160 } !! 66 atomic_inc(&map->nr_free); 161 spin_unlock_irqrestore(&pidmap_lock, f << 162 << 163 call_rcu(&pid->rcu, delayed_put_pid); << 164 } 67 } 165 68 166 struct pid *alloc_pid(struct pid_namespace *ns !! 69 /* 167 size_t set_tid_size) !! 70 * Here we search for the next map that has free bits left. >> 71 * Normally the next map has free PIDs. >> 72 */ >> 73 static inline pidmap_t *next_free_map(pidmap_t *map, int *max_steps) 168 { 74 { 169 struct pid *pid; !! 75 while (--*max_steps) { 170 enum pid_type type; !! 76 if (++map == map_limit) 171 int i, nr; !! 77 map = pidmap_array; 172 struct pid_namespace *tmp; !! 78 if (unlikely(!map->page)) { 173 struct upid *upid; !! 79 unsigned long page = get_zeroed_page(GFP_KERNEL); 174 int retval = -ENOMEM; << 175 << 176 /* << 177 * set_tid_size contains the size of t << 178 * the most nested currently active PI << 179 * which PID to set for a process in t << 180 * up to set_tid_size PID namespaces. << 181 * for a process in all nested PID nam << 182 * never be greater than the current n << 183 */ << 184 if (set_tid_size > ns->level + 1) << 185 return ERR_PTR(-EINVAL); << 186 << 187 pid = kmem_cache_alloc(ns->pid_cachep, << 188 if (!pid) << 189 return ERR_PTR(retval); << 190 << 191 tmp = ns; << 192 pid->level = ns->level; << 193 << 194 for (i = ns->level; i >= 0; i--) { << 195 int tid = 0; << 196 << 197 if (set_tid_size) { << 198 tid = set_tid[ns->leve << 199 << 200 retval = -EINVAL; << 201 if (tid < 1 || tid >= << 202 goto out_free; << 203 /* << 204 * Also fail if a PID << 205 * no PID 1 exists. << 206 */ << 207 if (tid != 1 && !tmp-> << 208 goto out_free; << 209 retval = -EPERM; << 210 if (!checkpoint_restor << 211 goto out_free; << 212 set_tid_size--; << 213 } << 214 << 215 idr_preload(GFP_KERNEL); << 216 spin_lock_irq(&pidmap_lock); << 217 << 218 if (tid) { << 219 nr = idr_alloc(&tmp->i << 220 tid + 1 << 221 /* 80 /* 222 * If ENOSPC is return !! 81 * Free the page if someone raced with us 223 * alreay in use. Retu !! 82 * installing it: 224 */ 83 */ 225 if (nr == -ENOSPC) !! 84 spin_lock(&pidmap_lock); 226 nr = -EEXIST; !! 85 if (map->page) 227 } else { !! 86 free_page(page); 228 int pid_min = 1; !! 87 else 229 /* !! 88 map->page = (void *)page; 230 * init really needs p !! 89 spin_unlock(&pidmap_lock); 231 * maximum wrap back t << 232 */ << 233 if (idr_get_cursor(&tm << 234 pid_min = RESE << 235 << 236 /* << 237 * Store a null pointe << 238 * a partially initial << 239 */ << 240 nr = idr_alloc_cyclic( << 241 << 242 } << 243 spin_unlock_irq(&pidmap_lock); << 244 idr_preload_end(); << 245 90 246 if (nr < 0) { !! 91 if (!map->page) 247 retval = (nr == -ENOSP !! 92 break; 248 goto out_free; << 249 } 93 } 250 !! 94 if (atomic_read(&map->nr_free)) 251 pid->numbers[i].nr = nr; !! 95 return map; 252 pid->numbers[i].ns = tmp; << 253 tmp = tmp->parent; << 254 } 96 } 255 !! 97 return NULL; 256 /* << 257 * ENOMEM is not the most obvious choi << 258 * where the child subreaper has alrea << 259 * namespace denies the creation of an << 260 * is what we have exposed to userspac << 261 * documented behavior for pid namespa << 262 * change it even if there were an err << 263 */ << 264 retval = -ENOMEM; << 265 << 266 get_pid_ns(ns); << 267 refcount_set(&pid->count, 1); << 268 spin_lock_init(&pid->lock); << 269 for (type = 0; type < PIDTYPE_MAX; ++t << 270 INIT_HLIST_HEAD(&pid->tasks[ty << 271 << 272 init_waitqueue_head(&pid->wait_pidfd); << 273 INIT_HLIST_HEAD(&pid->inodes); << 274 << 275 upid = pid->numbers + ns->level; << 276 spin_lock_irq(&pidmap_lock); << 277 if (!(ns->pid_allocated & PIDNS_ADDING << 278 goto out_unlock; << 279 pid->stashed = NULL; << 280 pid->ino = ++pidfs_ino; << 281 for ( ; upid >= pid->numbers; --upid) << 282 /* Make the PID visible to fin << 283 idr_replace(&upid->ns->idr, pi << 284 upid->ns->pid_allocated++; << 285 } << 286 spin_unlock_irq(&pidmap_lock); << 287 << 288 return pid; << 289 << 290 out_unlock: << 291 spin_unlock_irq(&pidmap_lock); << 292 put_pid_ns(ns); << 293 << 294 out_free: << 295 spin_lock_irq(&pidmap_lock); << 296 while (++i <= ns->level) { << 297 upid = pid->numbers + i; << 298 idr_remove(&upid->ns->idr, upi << 299 } << 300 << 301 /* On failure to allocate the first pi << 302 if (ns->pid_allocated == PIDNS_ADDING) << 303 idr_set_cursor(&ns->idr, 0); << 304 << 305 spin_unlock_irq(&pidmap_lock); << 306 << 307 kmem_cache_free(ns->pid_cachep, pid); << 308 return ERR_PTR(retval); << 309 } << 310 << 311 void disable_pid_allocation(struct pid_namespa << 312 { << 313 spin_lock_irq(&pidmap_lock); << 314 ns->pid_allocated &= ~PIDNS_ADDING; << 315 spin_unlock_irq(&pidmap_lock); << 316 } 98 } 317 99 318 struct pid *find_pid_ns(int nr, struct pid_nam !! 100 int alloc_pidmap(void) 319 { 101 { 320 return idr_find(&ns->idr, nr); !! 102 int pid, offset, max_steps = PIDMAP_ENTRIES + 1; 321 } !! 103 pidmap_t *map; 322 EXPORT_SYMBOL_GPL(find_pid_ns); << 323 104 324 struct pid *find_vpid(int nr) !! 105 pid = last_pid + 1; 325 { !! 106 if (pid >= pid_max) 326 return find_pid_ns(nr, task_active_pid !! 107 pid = RESERVED_PIDS; 327 } << 328 EXPORT_SYMBOL_GPL(find_vpid); << 329 108 330 static struct pid **task_pid_ptr(struct task_s !! 109 offset = pid & BITS_PER_PAGE_MASK; 331 { !! 110 map = pidmap_array + pid / BITS_PER_PAGE; 332 return (type == PIDTYPE_PID) ? << 333 &task->thread_pid : << 334 &task->signal->pids[type]; << 335 } << 336 111 337 /* !! 112 if (likely(map->page && !test_and_set_bit(offset, map->page))) { 338 * attach_pid() must be called with the taskli !! 113 /* 339 */ !! 114 * There is a small window for last_pid updates to race, 340 void attach_pid(struct task_struct *task, enum !! 115 * but in that case the next allocation will go into the 341 { !! 116 * slowpath and that fixes things up. 342 struct pid *pid = *task_pid_ptr(task, !! 117 */ 343 hlist_add_head_rcu(&task->pid_links[ty !! 118 return_pid: 344 } !! 119 atomic_dec(&map->nr_free); 345 !! 120 last_pid = pid; 346 static void __change_pid(struct task_struct *t !! 121 return pid; 347 struct pid *new) << 348 { << 349 struct pid **pid_ptr = task_pid_ptr(ta << 350 struct pid *pid; << 351 int tmp; << 352 << 353 pid = *pid_ptr; << 354 << 355 hlist_del_rcu(&task->pid_links[type]); << 356 *pid_ptr = new; << 357 << 358 if (type == PIDTYPE_PID) { << 359 WARN_ON_ONCE(pid_has_task(pid, << 360 wake_up_all(&pid->wait_pidfd); << 361 } 122 } 362 !! 123 363 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) !! 124 if (!offset || !atomic_read(&map->nr_free)) { 364 if (pid_has_task(pid, tmp)) !! 125 next_map: 365 return; !! 126 map = next_free_map(map, &max_steps); 366 !! 127 if (!map) 367 free_pid(pid); !! 128 goto failure; 368 } !! 129 offset = 0; 369 << 370 void detach_pid(struct task_struct *task, enum << 371 { << 372 __change_pid(task, type, NULL); << 373 } << 374 << 375 void change_pid(struct task_struct *task, enum << 376 struct pid *pid) << 377 { << 378 __change_pid(task, type, pid); << 379 attach_pid(task, type); << 380 } << 381 << 382 void exchange_tids(struct task_struct *left, s << 383 { << 384 struct pid *pid1 = left->thread_pid; << 385 struct pid *pid2 = right->thread_pid; << 386 struct hlist_head *head1 = &pid1->task << 387 struct hlist_head *head2 = &pid2->task << 388 << 389 /* Swap the single entry tid lists */ << 390 hlists_swap_heads_rcu(head1, head2); << 391 << 392 /* Swap the per task_struct pid */ << 393 rcu_assign_pointer(left->thread_pid, p << 394 rcu_assign_pointer(right->thread_pid, << 395 << 396 /* Swap the cached value */ << 397 WRITE_ONCE(left->pid, pid_nr(pid2)); << 398 WRITE_ONCE(right->pid, pid_nr(pid1)); << 399 } << 400 << 401 /* transfer_pid is an optimization of attach_p << 402 void transfer_pid(struct task_struct *old, str << 403 enum pid_type type) << 404 { << 405 WARN_ON_ONCE(type == PIDTYPE_PID); << 406 hlist_replace_rcu(&old->pid_links[type << 407 } << 408 << 409 struct task_struct *pid_task(struct pid *pid, << 410 { << 411 struct task_struct *result = NULL; << 412 if (pid) { << 413 struct hlist_node *first; << 414 first = rcu_dereference_check( << 415 << 416 if (first) << 417 result = hlist_entry(f << 418 } 130 } 419 return result; !! 131 /* 420 } !! 132 * Find the next zero bit: 421 EXPORT_SYMBOL(pid_task); !! 133 */ 422 !! 134 scan_more: 423 /* !! 135 offset = find_next_zero_bit(map->page, BITS_PER_PAGE, offset); 424 * Must be called under rcu_read_lock(). !! 136 if (offset >= BITS_PER_PAGE) 425 */ !! 137 goto next_map; 426 struct task_struct *find_task_by_pid_ns(pid_t !! 138 if (test_and_set_bit(offset, map->page)) 427 { !! 139 goto scan_more; 428 RCU_LOCKDEP_WARN(!rcu_read_lock_held() << 429 "find_task_by_pid_ns( << 430 return pid_task(find_pid_ns(nr, ns), P << 431 } << 432 << 433 struct task_struct *find_task_by_vpid(pid_t vn << 434 { << 435 return find_task_by_pid_ns(vnr, task_a << 436 } << 437 << 438 struct task_struct *find_get_task_by_vpid(pid_ << 439 { << 440 struct task_struct *task; << 441 << 442 rcu_read_lock(); << 443 task = find_task_by_vpid(nr); << 444 if (task) << 445 get_task_struct(task); << 446 rcu_read_unlock(); << 447 140 448 return task; !! 141 /* we got the PID: */ 449 } !! 142 pid = (map - pidmap_array) * BITS_PER_PAGE + offset; >> 143 goto return_pid; 450 144 451 struct pid *get_task_pid(struct task_struct *t !! 145 failure: 452 { !! 146 return -1; 453 struct pid *pid; << 454 rcu_read_lock(); << 455 pid = get_pid(rcu_dereference(*task_pi << 456 rcu_read_unlock(); << 457 return pid; << 458 } << 459 EXPORT_SYMBOL_GPL(get_task_pid); << 460 << 461 struct task_struct *get_pid_task(struct pid *p << 462 { << 463 struct task_struct *result; << 464 rcu_read_lock(); << 465 result = pid_task(pid, type); << 466 if (result) << 467 get_task_struct(result); << 468 rcu_read_unlock(); << 469 return result; << 470 } 147 } 471 EXPORT_SYMBOL_GPL(get_pid_task); << 472 148 473 struct pid *find_get_pid(pid_t nr) !! 149 inline struct pid *find_pid(enum pid_type type, int nr) 474 { 150 { >> 151 struct list_head *elem, *bucket = &pid_hash[type][pid_hashfn(nr)]; 475 struct pid *pid; 152 struct pid *pid; 476 153 477 rcu_read_lock(); !! 154 __list_for_each(elem, bucket) { 478 pid = get_pid(find_vpid(nr)); !! 155 pid = list_entry(elem, struct pid, hash_chain); 479 rcu_read_unlock(); !! 156 if (pid->nr == nr) 480 !! 157 return pid; 481 return pid; << 482 } << 483 EXPORT_SYMBOL_GPL(find_get_pid); << 484 << 485 pid_t pid_nr_ns(struct pid *pid, struct pid_na << 486 { << 487 struct upid *upid; << 488 pid_t nr = 0; << 489 << 490 if (pid && ns->level <= pid->level) { << 491 upid = &pid->numbers[ns->level << 492 if (upid->ns == ns) << 493 nr = upid->nr; << 494 } 158 } 495 return nr; !! 159 return NULL; 496 } << 497 EXPORT_SYMBOL_GPL(pid_nr_ns); << 498 << 499 pid_t pid_vnr(struct pid *pid) << 500 { << 501 return pid_nr_ns(pid, task_active_pid_ << 502 } << 503 EXPORT_SYMBOL_GPL(pid_vnr); << 504 << 505 pid_t __task_pid_nr_ns(struct task_struct *tas << 506 struct pid_namespace * << 507 { << 508 pid_t nr = 0; << 509 << 510 rcu_read_lock(); << 511 if (!ns) << 512 ns = task_active_pid_ns(curren << 513 nr = pid_nr_ns(rcu_dereference(*task_p << 514 rcu_read_unlock(); << 515 << 516 return nr; << 517 } << 518 EXPORT_SYMBOL(__task_pid_nr_ns); << 519 << 520 struct pid_namespace *task_active_pid_ns(struc << 521 { << 522 return ns_of_pid(task_pid(tsk)); << 523 } 160 } 524 EXPORT_SYMBOL_GPL(task_active_pid_ns); << 525 161 526 /* !! 162 void link_pid(task_t *task, struct pid_link *link, struct pid *pid) 527 * Used by proc to find the first pid that is << 528 * << 529 * If there is a pid at nr this function is ex << 530 */ << 531 struct pid *find_ge_pid(int nr, struct pid_nam << 532 { 163 { 533 return idr_get_next(&ns->idr, &nr); !! 164 atomic_inc(&pid->count); >> 165 list_add_tail(&link->pid_chain, &pid->task_list); >> 166 link->pidptr = pid; 534 } 167 } 535 EXPORT_SYMBOL_GPL(find_ge_pid); << 536 168 537 struct pid *pidfd_get_pid(unsigned int fd, uns !! 169 int attach_pid(task_t *task, enum pid_type type, int nr) 538 { 170 { 539 struct fd f; !! 171 struct pid *pid = find_pid(type, nr); 540 struct pid *pid; << 541 172 542 f = fdget(fd); !! 173 if (pid) 543 if (!fd_file(f)) !! 174 atomic_inc(&pid->count); 544 return ERR_PTR(-EBADF); !! 175 else { 545 !! 176 pid = &task->pids[type].pid; 546 pid = pidfd_pid(fd_file(f)); !! 177 pid->nr = nr; 547 if (!IS_ERR(pid)) { !! 178 atomic_set(&pid->count, 1); 548 get_pid(pid); !! 179 INIT_LIST_HEAD(&pid->task_list); 549 *flags = fd_file(f)->f_flags; !! 180 pid->task = task; >> 181 get_task_struct(task); >> 182 list_add(&pid->hash_chain, &pid_hash[type][pid_hashfn(nr)]); 550 } 183 } >> 184 list_add_tail(&task->pids[type].pid_chain, &pid->task_list); >> 185 task->pids[type].pidptr = pid; 551 186 552 fdput(f); !! 187 return 0; 553 return pid; << 554 } 188 } 555 189 556 /** !! 190 static inline int __detach_pid(task_t *task, enum pid_type type) 557 * pidfd_get_task() - Get the task associated << 558 * << 559 * @pidfd: pidfd for which to get the task << 560 * @flags: flags associated with this pidfd << 561 * << 562 * Return the task associated with @pidfd. The << 563 * the returned task. The caller is responsibl << 564 * << 565 * Return: On success, the task_struct associa << 566 * On error, a negative errno number w << 567 */ << 568 struct task_struct *pidfd_get_task(int pidfd, << 569 { 191 { 570 unsigned int f_flags; !! 192 struct pid_link *link = task->pids + type; 571 struct pid *pid; !! 193 struct pid *pid = link->pidptr; 572 struct task_struct *task; !! 194 int nr; 573 195 574 pid = pidfd_get_pid(pidfd, &f_flags); !! 196 list_del(&link->pid_chain); 575 if (IS_ERR(pid)) !! 197 if (!atomic_dec_and_test(&pid->count)) 576 return ERR_CAST(pid); !! 198 return 0; 577 199 578 task = get_pid_task(pid, PIDTYPE_TGID) !! 200 nr = pid->nr; 579 put_pid(pid); !! 201 list_del(&pid->hash_chain); 580 if (!task) !! 202 put_task_struct(pid->task); 581 return ERR_PTR(-ESRCH); << 582 203 583 *flags = f_flags; !! 204 return nr; 584 return task; << 585 } 205 } 586 206 587 /** !! 207 static void _detach_pid(task_t *task, enum pid_type type) 588 * pidfd_create() - Create a new pid file desc << 589 * << 590 * @pid: struct pid that the pidfd will refe << 591 * @flags: flags to pass << 592 * << 593 * This creates a new pid file descriptor with << 594 * << 595 * Note, that this function can only be called << 596 * been unshared to avoid leaking the pidfd to << 597 * << 598 * This symbol should not be explicitly export << 599 * << 600 * Return: On success, a cloexec pidfd is retu << 601 * On error, a negative errno number w << 602 */ << 603 static int pidfd_create(struct pid *pid, unsig << 604 { 208 { 605 int pidfd; !! 209 __detach_pid(task, type); 606 struct file *pidfd_file; << 607 << 608 pidfd = pidfd_prepare(pid, flags, &pid << 609 if (pidfd < 0) << 610 return pidfd; << 611 << 612 fd_install(pidfd, pidfd_file); << 613 return pidfd; << 614 } 210 } 615 211 616 /** !! 212 void detach_pid(task_t *task, enum pid_type type) 617 * sys_pidfd_open() - Open new pid file descri << 618 * << 619 * @pid: pid for which to retrieve a pidfd << 620 * @flags: flags to pass << 621 * << 622 * This creates a new pid file descriptor with << 623 * the task identified by @pid. Without PIDFD_ << 624 * must be a thread-group leader. << 625 * << 626 * Return: On success, a cloexec pidfd is retu << 627 * On error, a negative errno number w << 628 */ << 629 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsign << 630 { 213 { 631 int fd; !! 214 int nr = __detach_pid(task, type); 632 struct pid *p; << 633 << 634 if (flags & ~(PIDFD_NONBLOCK | PIDFD_T << 635 return -EINVAL; << 636 << 637 if (pid <= 0) << 638 return -EINVAL; << 639 215 640 p = find_get_pid(pid); !! 216 if (!nr) 641 if (!p) !! 217 return; 642 return -ESRCH; << 643 << 644 fd = pidfd_create(p, flags); << 645 218 646 put_pid(p); !! 219 for (type = 0; type < PIDTYPE_MAX; ++type) 647 return fd; !! 220 if (find_pid(type, nr)) >> 221 return; >> 222 free_pidmap(nr); 648 } 223 } 649 224 650 void __init pid_idr_init(void) !! 225 task_t *find_task_by_pid(int nr) 651 { 226 { 652 /* Verify no one has done anything sil !! 227 struct pid *pid = find_pid(PIDTYPE_PID, nr); 653 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_AD << 654 << 655 /* bump default and minimum pid_max ba << 656 pid_max = min(pid_max_max, max_t(int, << 657 PIDS_PER_CPU_D << 658 pid_max_min = max_t(int, pid_max_min, << 659 PIDS_PER_CPU_M << 660 pr_info("pid_max: default: %u minimum: << 661 << 662 idr_init(&init_pid_ns.idr); << 663 228 664 init_pid_ns.pid_cachep = kmem_cache_cr !! 229 if (!pid) 665 struct_size_t(struct p !! 230 return NULL; 666 __alignof__(struct pid !! 231 return pid_task(pid->task_list.next, PIDTYPE_PID); 667 SLAB_HWCACHE_ALIGN | S << 668 NULL); << 669 } 232 } 670 233 671 static struct file *__pidfd_fget(struct task_s !! 234 EXPORT_SYMBOL(find_task_by_pid); 672 { << 673 struct file *file; << 674 int ret; << 675 << 676 ret = down_read_killable(&task->signal << 677 if (ret) << 678 return ERR_PTR(ret); << 679 235 680 if (ptrace_may_access(task, PTRACE_MOD !! 236 /* 681 file = fget_task(task, fd); !! 237 * This function switches the PIDs if a non-leader thread calls 682 else !! 238 * sys_execve() - this must be done without releasing the PID. 683 file = ERR_PTR(-EPERM); !! 239 * (which a detach_pid() would eventually do.) 684 !! 240 */ 685 up_read(&task->signal->exec_update_loc !! 241 void switch_exec_pids(task_t *leader, task_t *thread) >> 242 { >> 243 _detach_pid(leader, PIDTYPE_PID); >> 244 _detach_pid(leader, PIDTYPE_TGID); >> 245 _detach_pid(leader, PIDTYPE_PGID); >> 246 _detach_pid(leader, PIDTYPE_SID); >> 247 >> 248 _detach_pid(thread, PIDTYPE_PID); >> 249 _detach_pid(thread, PIDTYPE_TGID); >> 250 >> 251 leader->pid = leader->tgid = thread->pid; >> 252 thread->pid = thread->tgid; >> 253 >> 254 attach_pid(thread, PIDTYPE_PID, thread->pid); >> 255 attach_pid(thread, PIDTYPE_TGID, thread->tgid); >> 256 attach_pid(thread, PIDTYPE_PGID, leader->__pgrp); >> 257 attach_pid(thread, PIDTYPE_SID, thread->session); >> 258 list_add_tail(&thread->tasks, &init_task.tasks); >> 259 >> 260 attach_pid(leader, PIDTYPE_PID, leader->pid); >> 261 attach_pid(leader, PIDTYPE_TGID, leader->tgid); >> 262 attach_pid(leader, PIDTYPE_PGID, leader->__pgrp); >> 263 attach_pid(leader, PIDTYPE_SID, leader->session); >> 264 } 686 265 687 if (!file) { !! 266 /* 688 /* !! 267 * The pid hash table is scaled according to the amount of memory in the 689 * It is possible that the tar !! 268 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 690 * either: !! 269 * more. 691 * 1. before exit_signals(), w !! 270 */ 692 * 2. before exit_files() take !! 271 void __init pidhash_init(void) 693 * 3. after exit_files() relea !! 272 { 694 * this has PF_EXITING, sin !! 273 int i, j, pidhash_size; 695 * __pidfd_fget() returns E !! 274 unsigned long megabytes = max_pfn >> (20 - PAGE_SHIFT); 696 * In case 3 we get EBADF, but !! 275 697 * the task is currently exiti !! 276 pidhash_shift = max(4, fls(megabytes * 4)); 698 * struct, so we fix it up. !! 277 pidhash_shift = min(12, pidhash_shift); 699 */ !! 278 pidhash_size = 1 << pidhash_shift; 700 if (task->flags & PF_EXITING) !! 279 701 file = ERR_PTR(-ESRCH) !! 280 printk("PID hash table entries: %d (order %d: %Zd bytes)\n", 702 else !! 281 pidhash_size, pidhash_shift, 703 file = ERR_PTR(-EBADF) !! 282 pidhash_size * sizeof(struct list_head)); >> 283 >> 284 for (i = 0; i < PIDTYPE_MAX; i++) { >> 285 pid_hash[i] = alloc_bootmem(pidhash_size * >> 286 sizeof(struct list_head)); >> 287 if (!pid_hash[i]) >> 288 panic("Could not alloc pidhash!\n"); >> 289 for (j = 0; j < pidhash_size; j++) >> 290 INIT_LIST_HEAD(&pid_hash[i][j]); 704 } 291 } 705 << 706 return file; << 707 } 292 } 708 293 709 static int pidfd_getfd(struct pid *pid, int fd !! 294 void __init pidmap_init(void) 710 { 295 { 711 struct task_struct *task; !! 296 int i; 712 struct file *file; << 713 int ret; << 714 << 715 task = get_pid_task(pid, PIDTYPE_PID); << 716 if (!task) << 717 return -ESRCH; << 718 << 719 file = __pidfd_fget(task, fd); << 720 put_task_struct(task); << 721 if (IS_ERR(file)) << 722 return PTR_ERR(file); << 723 << 724 ret = receive_fd(file, NULL, O_CLOEXEC << 725 fput(file); << 726 << 727 return ret; << 728 } << 729 297 730 /** !! 298 pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); 731 * sys_pidfd_getfd() - Get a file descriptor f !! 299 set_bit(0, pidmap_array->page); 732 * !! 300 atomic_dec(&pidmap_array->nr_free); 733 * @pidfd: the pidfd file descriptor of t << 734 * @fd: the file descriptor number to << 735 * @flags: flags on how to get the fd (re << 736 * << 737 * This syscall gets a copy of a file descript << 738 * based on the pidfd, and file descriptor num << 739 * the calling process has the ability to ptra << 740 * by the pidfd. The process which is having i << 741 * is otherwise unaffected. << 742 * << 743 * Return: On success, a cloexec file descript << 744 * On error, a negative errno number w << 745 */ << 746 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, << 747 unsigned int, flags) << 748 { << 749 struct pid *pid; << 750 struct fd f; << 751 int ret; << 752 301 753 /* flags is currently unused - make su !! 302 /* 754 if (flags) !! 303 * Allocate PID 0, and hash it via all PID types: 755 return -EINVAL; !! 304 */ 756 << 757 f = fdget(pidfd); << 758 if (!fd_file(f)) << 759 return -EBADF; << 760 << 761 pid = pidfd_pid(fd_file(f)); << 762 if (IS_ERR(pid)) << 763 ret = PTR_ERR(pid); << 764 else << 765 ret = pidfd_getfd(pid, fd); << 766 305 767 fdput(f); !! 306 for (i = 0; i < PIDTYPE_MAX; i++) 768 return ret; !! 307 attach_pid(current, i, 0); 769 } 308 } 770 309
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.