~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/pid.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/pid.c (Version linux-6.12-rc7) and /kernel/pid.c (Version linux-5.16.20)


  1 // SPDX-License-Identifier: GPL-2.0-only            1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*                                                  2 /*
  3  * Generic pidhash and scalable, time-bounded       3  * Generic pidhash and scalable, time-bounded PID allocator
  4  *                                                  4  *
  5  * (C) 2002-2003 Nadia Yvette Chambers, IBM         5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6  * (C) 2004 Nadia Yvette Chambers, Oracle           6  * (C) 2004 Nadia Yvette Chambers, Oracle
  7  * (C) 2002-2004 Ingo Molnar, Red Hat               7  * (C) 2002-2004 Ingo Molnar, Red Hat
  8  *                                                  8  *
  9  * pid-structures are backing objects for task      9  * pid-structures are backing objects for tasks sharing a given ID to chain
 10  * against. There is very little to them aside     10  * against. There is very little to them aside from hashing them and
 11  * parking tasks using given ID's on a list.       11  * parking tasks using given ID's on a list.
 12  *                                                 12  *
 13  * The hash is always changed with the tasklis     13  * The hash is always changed with the tasklist_lock write-acquired,
 14  * and the hash is only accessed with the task     14  * and the hash is only accessed with the tasklist_lock at least
 15  * read-acquired, so there's no additional SMP     15  * read-acquired, so there's no additional SMP locking needed here.
 16  *                                                 16  *
 17  * We have a list of bitmap pages, which bitma     17  * We have a list of bitmap pages, which bitmaps represent the PID space.
 18  * Allocating and freeing PIDs is completely l     18  * Allocating and freeing PIDs is completely lockless. The worst-case
 19  * allocation scenario when all but one out of     19  * allocation scenario when all but one out of 1 million PIDs possible are
 20  * allocated already: the scanning of 32 list      20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21  * bytes. The typical fastpath is a single suc     21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22  *                                                 22  *
 23  * Pid namespaces:                                 23  * Pid namespaces:
 24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.o     24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us     25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26  *     Many thanks to Oleg Nesterov for commen     26  *     Many thanks to Oleg Nesterov for comments and help
 27  *                                                 27  *
 28  */                                                28  */
 29                                                    29 
 30 #include <linux/mm.h>                              30 #include <linux/mm.h>
 31 #include <linux/export.h>                          31 #include <linux/export.h>
 32 #include <linux/slab.h>                            32 #include <linux/slab.h>
 33 #include <linux/init.h>                            33 #include <linux/init.h>
 34 #include <linux/rculist.h>                         34 #include <linux/rculist.h>
 35 #include <linux/memblock.h>                        35 #include <linux/memblock.h>
 36 #include <linux/pid_namespace.h>                   36 #include <linux/pid_namespace.h>
 37 #include <linux/init_task.h>                       37 #include <linux/init_task.h>
 38 #include <linux/syscalls.h>                        38 #include <linux/syscalls.h>
 39 #include <linux/proc_ns.h>                         39 #include <linux/proc_ns.h>
 40 #include <linux/refcount.h>                        40 #include <linux/refcount.h>
 41 #include <linux/anon_inodes.h>                     41 #include <linux/anon_inodes.h>
 42 #include <linux/sched/signal.h>                    42 #include <linux/sched/signal.h>
 43 #include <linux/sched/task.h>                      43 #include <linux/sched/task.h>
 44 #include <linux/idr.h>                             44 #include <linux/idr.h>
 45 #include <linux/pidfs.h>                       << 
 46 #include <net/sock.h>                              45 #include <net/sock.h>
 47 #include <uapi/linux/pidfd.h>                      46 #include <uapi/linux/pidfd.h>
 48                                                    47 
 49 struct pid init_struct_pid = {                     48 struct pid init_struct_pid = {
 50         .count          = REFCOUNT_INIT(1),        49         .count          = REFCOUNT_INIT(1),
 51         .tasks          = {                        50         .tasks          = {
 52                 { .first = NULL },                 51                 { .first = NULL },
 53                 { .first = NULL },                 52                 { .first = NULL },
 54                 { .first = NULL },                 53                 { .first = NULL },
 55         },                                         54         },
 56         .level          = 0,                       55         .level          = 0,
 57         .numbers        = { {                      56         .numbers        = { {
 58                 .nr             = 0,               57                 .nr             = 0,
 59                 .ns             = &init_pid_ns     58                 .ns             = &init_pid_ns,
 60         }, }                                       59         }, }
 61 };                                                 60 };
 62                                                    61 
 63 int pid_max = PID_MAX_DEFAULT;                     62 int pid_max = PID_MAX_DEFAULT;
 64                                                    63 
                                                   >>  64 #define RESERVED_PIDS           300
                                                   >>  65 
 65 int pid_max_min = RESERVED_PIDS + 1;               66 int pid_max_min = RESERVED_PIDS + 1;
 66 int pid_max_max = PID_MAX_LIMIT;                   67 int pid_max_max = PID_MAX_LIMIT;
 67 /*                                             << 
 68  * Pseudo filesystems start inode numbering af << 
 69  * PIDs as a natural offset.                   << 
 70  */                                            << 
 71 static u64 pidfs_ino = RESERVED_PIDS;          << 
 72                                                    68 
 73 /*                                                 69 /*
 74  * PID-map pages start out as NULL, they get a     70  * PID-map pages start out as NULL, they get allocated upon
 75  * first use and are never deallocated. This w     71  * first use and are never deallocated. This way a low pid_max
 76  * value does not cause lots of bitmaps to be      72  * value does not cause lots of bitmaps to be allocated, but
 77  * the scheme scales to up to 4 million PIDs,      73  * the scheme scales to up to 4 million PIDs, runtime.
 78  */                                                74  */
 79 struct pid_namespace init_pid_ns = {               75 struct pid_namespace init_pid_ns = {
 80         .ns.count = REFCOUNT_INIT(2),              76         .ns.count = REFCOUNT_INIT(2),
 81         .idr = IDR_INIT(init_pid_ns.idr),          77         .idr = IDR_INIT(init_pid_ns.idr),
 82         .pid_allocated = PIDNS_ADDING,             78         .pid_allocated = PIDNS_ADDING,
 83         .level = 0,                                79         .level = 0,
 84         .child_reaper = &init_task,                80         .child_reaper = &init_task,
 85         .user_ns = &init_user_ns,                  81         .user_ns = &init_user_ns,
 86         .ns.inum = PROC_PID_INIT_INO,              82         .ns.inum = PROC_PID_INIT_INO,
 87 #ifdef CONFIG_PID_NS                               83 #ifdef CONFIG_PID_NS
 88         .ns.ops = &pidns_operations,               84         .ns.ops = &pidns_operations,
 89 #endif                                             85 #endif
 90 #if defined(CONFIG_SYSCTL) && defined(CONFIG_M << 
 91         .memfd_noexec_scope = MEMFD_NOEXEC_SCO << 
 92 #endif                                         << 
 93 };                                                 86 };
 94 EXPORT_SYMBOL_GPL(init_pid_ns);                    87 EXPORT_SYMBOL_GPL(init_pid_ns);
 95                                                    88 
 96 /*                                                 89 /*
 97  * Note: disable interrupts while the pidmap_l     90  * Note: disable interrupts while the pidmap_lock is held as an
 98  * interrupt might come in and do read_lock(&t     91  * interrupt might come in and do read_lock(&tasklist_lock).
 99  *                                                 92  *
100  * If we don't disable interrupts there is a n     93  * If we don't disable interrupts there is a nasty deadlock between
101  * detach_pid()->free_pid() and another cpu th     94  * detach_pid()->free_pid() and another cpu that does
102  * spin_lock(&pidmap_lock) followed by an inte     95  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
103  * read_lock(&tasklist_lock);                      96  * read_lock(&tasklist_lock);
104  *                                                 97  *
105  * After we clean up the tasklist_lock and kno     98  * After we clean up the tasklist_lock and know there are no
106  * irq handlers that take it we can leave the      99  * irq handlers that take it we can leave the interrupts enabled.
107  * For now it is easier to be safe than to pro    100  * For now it is easier to be safe than to prove it can't happen.
108  */                                               101  */
109                                                   102 
110 static  __cacheline_aligned_in_smp DEFINE_SPIN    103 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
111                                                   104 
112 void put_pid(struct pid *pid)                     105 void put_pid(struct pid *pid)
113 {                                                 106 {
114         struct pid_namespace *ns;                 107         struct pid_namespace *ns;
115                                                   108 
116         if (!pid)                                 109         if (!pid)
117                 return;                           110                 return;
118                                                   111 
119         ns = pid->numbers[pid->level].ns;         112         ns = pid->numbers[pid->level].ns;
120         if (refcount_dec_and_test(&pid->count)    113         if (refcount_dec_and_test(&pid->count)) {
121                 kmem_cache_free(ns->pid_cachep    114                 kmem_cache_free(ns->pid_cachep, pid);
122                 put_pid_ns(ns);                   115                 put_pid_ns(ns);
123         }                                         116         }
124 }                                                 117 }
125 EXPORT_SYMBOL_GPL(put_pid);                       118 EXPORT_SYMBOL_GPL(put_pid);
126                                                   119 
127 static void delayed_put_pid(struct rcu_head *r    120 static void delayed_put_pid(struct rcu_head *rhp)
128 {                                                 121 {
129         struct pid *pid = container_of(rhp, st    122         struct pid *pid = container_of(rhp, struct pid, rcu);
130         put_pid(pid);                             123         put_pid(pid);
131 }                                                 124 }
132                                                   125 
133 void free_pid(struct pid *pid)                    126 void free_pid(struct pid *pid)
134 {                                                 127 {
135         /* We can be called with write_lock_ir    128         /* We can be called with write_lock_irq(&tasklist_lock) held */
136         int i;                                    129         int i;
137         unsigned long flags;                      130         unsigned long flags;
138                                                   131 
139         spin_lock_irqsave(&pidmap_lock, flags)    132         spin_lock_irqsave(&pidmap_lock, flags);
140         for (i = 0; i <= pid->level; i++) {       133         for (i = 0; i <= pid->level; i++) {
141                 struct upid *upid = pid->numbe    134                 struct upid *upid = pid->numbers + i;
142                 struct pid_namespace *ns = upi    135                 struct pid_namespace *ns = upid->ns;
143                 switch (--ns->pid_allocated) {    136                 switch (--ns->pid_allocated) {
144                 case 2:                           137                 case 2:
145                 case 1:                           138                 case 1:
146                         /* When all that is le    139                         /* When all that is left in the pid namespace
147                          * is the reaper wake     140                          * is the reaper wake up the reaper.  The reaper
148                          * may be sleeping in     141                          * may be sleeping in zap_pid_ns_processes().
149                          */                       142                          */
150                         wake_up_process(ns->ch    143                         wake_up_process(ns->child_reaper);
151                         break;                    144                         break;
152                 case PIDNS_ADDING:                145                 case PIDNS_ADDING:
153                         /* Handle a fork failu    146                         /* Handle a fork failure of the first process */
154                         WARN_ON(ns->child_reap    147                         WARN_ON(ns->child_reaper);
155                         ns->pid_allocated = 0;    148                         ns->pid_allocated = 0;
156                         break;                    149                         break;
157                 }                                 150                 }
158                                                   151 
159                 idr_remove(&ns->idr, upid->nr)    152                 idr_remove(&ns->idr, upid->nr);
160         }                                         153         }
161         spin_unlock_irqrestore(&pidmap_lock, f    154         spin_unlock_irqrestore(&pidmap_lock, flags);
162                                                   155 
163         call_rcu(&pid->rcu, delayed_put_pid);     156         call_rcu(&pid->rcu, delayed_put_pid);
164 }                                                 157 }
165                                                   158 
166 struct pid *alloc_pid(struct pid_namespace *ns    159 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
167                       size_t set_tid_size)        160                       size_t set_tid_size)
168 {                                                 161 {
169         struct pid *pid;                          162         struct pid *pid;
170         enum pid_type type;                       163         enum pid_type type;
171         int i, nr;                                164         int i, nr;
172         struct pid_namespace *tmp;                165         struct pid_namespace *tmp;
173         struct upid *upid;                        166         struct upid *upid;
174         int retval = -ENOMEM;                     167         int retval = -ENOMEM;
175                                                   168 
176         /*                                        169         /*
177          * set_tid_size contains the size of t    170          * set_tid_size contains the size of the set_tid array. Starting at
178          * the most nested currently active PI    171          * the most nested currently active PID namespace it tells alloc_pid()
179          * which PID to set for a process in t    172          * which PID to set for a process in that most nested PID namespace
180          * up to set_tid_size PID namespaces.     173          * up to set_tid_size PID namespaces. It does not have to set the PID
181          * for a process in all nested PID nam    174          * for a process in all nested PID namespaces but set_tid_size must
182          * never be greater than the current n    175          * never be greater than the current ns->level + 1.
183          */                                       176          */
184         if (set_tid_size > ns->level + 1)         177         if (set_tid_size > ns->level + 1)
185                 return ERR_PTR(-EINVAL);          178                 return ERR_PTR(-EINVAL);
186                                                   179 
187         pid = kmem_cache_alloc(ns->pid_cachep,    180         pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
188         if (!pid)                                 181         if (!pid)
189                 return ERR_PTR(retval);           182                 return ERR_PTR(retval);
190                                                   183 
191         tmp = ns;                                 184         tmp = ns;
192         pid->level = ns->level;                   185         pid->level = ns->level;
193                                                   186 
194         for (i = ns->level; i >= 0; i--) {        187         for (i = ns->level; i >= 0; i--) {
195                 int tid = 0;                      188                 int tid = 0;
196                                                   189 
197                 if (set_tid_size) {               190                 if (set_tid_size) {
198                         tid = set_tid[ns->leve    191                         tid = set_tid[ns->level - i];
199                                                   192 
200                         retval = -EINVAL;         193                         retval = -EINVAL;
201                         if (tid < 1 || tid >=     194                         if (tid < 1 || tid >= pid_max)
202                                 goto out_free;    195                                 goto out_free;
203                         /*                        196                         /*
204                          * Also fail if a PID     197                          * Also fail if a PID != 1 is requested and
205                          * no PID 1 exists.       198                          * no PID 1 exists.
206                          */                       199                          */
207                         if (tid != 1 && !tmp->    200                         if (tid != 1 && !tmp->child_reaper)
208                                 goto out_free;    201                                 goto out_free;
209                         retval = -EPERM;          202                         retval = -EPERM;
210                         if (!checkpoint_restor    203                         if (!checkpoint_restore_ns_capable(tmp->user_ns))
211                                 goto out_free;    204                                 goto out_free;
212                         set_tid_size--;           205                         set_tid_size--;
213                 }                                 206                 }
214                                                   207 
215                 idr_preload(GFP_KERNEL);          208                 idr_preload(GFP_KERNEL);
216                 spin_lock_irq(&pidmap_lock);      209                 spin_lock_irq(&pidmap_lock);
217                                                   210 
218                 if (tid) {                        211                 if (tid) {
219                         nr = idr_alloc(&tmp->i    212                         nr = idr_alloc(&tmp->idr, NULL, tid,
220                                        tid + 1    213                                        tid + 1, GFP_ATOMIC);
221                         /*                        214                         /*
222                          * If ENOSPC is return    215                          * If ENOSPC is returned it means that the PID is
223                          * alreay in use. Retu    216                          * alreay in use. Return EEXIST in that case.
224                          */                       217                          */
225                         if (nr == -ENOSPC)        218                         if (nr == -ENOSPC)
226                                 nr = -EEXIST;     219                                 nr = -EEXIST;
227                 } else {                          220                 } else {
228                         int pid_min = 1;          221                         int pid_min = 1;
229                         /*                        222                         /*
230                          * init really needs p    223                          * init really needs pid 1, but after reaching the
231                          * maximum wrap back t    224                          * maximum wrap back to RESERVED_PIDS
232                          */                       225                          */
233                         if (idr_get_cursor(&tm    226                         if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
234                                 pid_min = RESE    227                                 pid_min = RESERVED_PIDS;
235                                                   228 
236                         /*                        229                         /*
237                          * Store a null pointe    230                          * Store a null pointer so find_pid_ns does not find
238                          * a partially initial    231                          * a partially initialized PID (see below).
239                          */                       232                          */
240                         nr = idr_alloc_cyclic(    233                         nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
241                                                   234                                               pid_max, GFP_ATOMIC);
242                 }                                 235                 }
243                 spin_unlock_irq(&pidmap_lock);    236                 spin_unlock_irq(&pidmap_lock);
244                 idr_preload_end();                237                 idr_preload_end();
245                                                   238 
246                 if (nr < 0) {                     239                 if (nr < 0) {
247                         retval = (nr == -ENOSP    240                         retval = (nr == -ENOSPC) ? -EAGAIN : nr;
248                         goto out_free;            241                         goto out_free;
249                 }                                 242                 }
250                                                   243 
251                 pid->numbers[i].nr = nr;          244                 pid->numbers[i].nr = nr;
252                 pid->numbers[i].ns = tmp;         245                 pid->numbers[i].ns = tmp;
253                 tmp = tmp->parent;                246                 tmp = tmp->parent;
254         }                                         247         }
255                                                   248 
256         /*                                        249         /*
257          * ENOMEM is not the most obvious choi    250          * ENOMEM is not the most obvious choice especially for the case
258          * where the child subreaper has alrea    251          * where the child subreaper has already exited and the pid
259          * namespace denies the creation of an    252          * namespace denies the creation of any new processes. But ENOMEM
260          * is what we have exposed to userspac    253          * is what we have exposed to userspace for a long time and it is
261          * documented behavior for pid namespa    254          * documented behavior for pid namespaces. So we can't easily
262          * change it even if there were an err    255          * change it even if there were an error code better suited.
263          */                                       256          */
264         retval = -ENOMEM;                         257         retval = -ENOMEM;
265                                                   258 
266         get_pid_ns(ns);                           259         get_pid_ns(ns);
267         refcount_set(&pid->count, 1);             260         refcount_set(&pid->count, 1);
268         spin_lock_init(&pid->lock);               261         spin_lock_init(&pid->lock);
269         for (type = 0; type < PIDTYPE_MAX; ++t    262         for (type = 0; type < PIDTYPE_MAX; ++type)
270                 INIT_HLIST_HEAD(&pid->tasks[ty    263                 INIT_HLIST_HEAD(&pid->tasks[type]);
271                                                   264 
272         init_waitqueue_head(&pid->wait_pidfd);    265         init_waitqueue_head(&pid->wait_pidfd);
273         INIT_HLIST_HEAD(&pid->inodes);            266         INIT_HLIST_HEAD(&pid->inodes);
274                                                   267 
275         upid = pid->numbers + ns->level;          268         upid = pid->numbers + ns->level;
276         spin_lock_irq(&pidmap_lock);              269         spin_lock_irq(&pidmap_lock);
277         if (!(ns->pid_allocated & PIDNS_ADDING    270         if (!(ns->pid_allocated & PIDNS_ADDING))
278                 goto out_unlock;                  271                 goto out_unlock;
279         pid->stashed = NULL;                   << 
280         pid->ino = ++pidfs_ino;                << 
281         for ( ; upid >= pid->numbers; --upid)     272         for ( ; upid >= pid->numbers; --upid) {
282                 /* Make the PID visible to fin    273                 /* Make the PID visible to find_pid_ns. */
283                 idr_replace(&upid->ns->idr, pi    274                 idr_replace(&upid->ns->idr, pid, upid->nr);
284                 upid->ns->pid_allocated++;        275                 upid->ns->pid_allocated++;
285         }                                         276         }
286         spin_unlock_irq(&pidmap_lock);            277         spin_unlock_irq(&pidmap_lock);
287                                                   278 
288         return pid;                               279         return pid;
289                                                   280 
290 out_unlock:                                       281 out_unlock:
291         spin_unlock_irq(&pidmap_lock);            282         spin_unlock_irq(&pidmap_lock);
292         put_pid_ns(ns);                           283         put_pid_ns(ns);
293                                                   284 
294 out_free:                                         285 out_free:
295         spin_lock_irq(&pidmap_lock);              286         spin_lock_irq(&pidmap_lock);
296         while (++i <= ns->level) {                287         while (++i <= ns->level) {
297                 upid = pid->numbers + i;          288                 upid = pid->numbers + i;
298                 idr_remove(&upid->ns->idr, upi    289                 idr_remove(&upid->ns->idr, upid->nr);
299         }                                         290         }
300                                                   291 
301         /* On failure to allocate the first pi    292         /* On failure to allocate the first pid, reset the state */
302         if (ns->pid_allocated == PIDNS_ADDING)    293         if (ns->pid_allocated == PIDNS_ADDING)
303                 idr_set_cursor(&ns->idr, 0);      294                 idr_set_cursor(&ns->idr, 0);
304                                                   295 
305         spin_unlock_irq(&pidmap_lock);            296         spin_unlock_irq(&pidmap_lock);
306                                                   297 
307         kmem_cache_free(ns->pid_cachep, pid);     298         kmem_cache_free(ns->pid_cachep, pid);
308         return ERR_PTR(retval);                   299         return ERR_PTR(retval);
309 }                                                 300 }
310                                                   301 
311 void disable_pid_allocation(struct pid_namespa    302 void disable_pid_allocation(struct pid_namespace *ns)
312 {                                                 303 {
313         spin_lock_irq(&pidmap_lock);              304         spin_lock_irq(&pidmap_lock);
314         ns->pid_allocated &= ~PIDNS_ADDING;       305         ns->pid_allocated &= ~PIDNS_ADDING;
315         spin_unlock_irq(&pidmap_lock);            306         spin_unlock_irq(&pidmap_lock);
316 }                                                 307 }
317                                                   308 
318 struct pid *find_pid_ns(int nr, struct pid_nam    309 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319 {                                                 310 {
320         return idr_find(&ns->idr, nr);            311         return idr_find(&ns->idr, nr);
321 }                                                 312 }
322 EXPORT_SYMBOL_GPL(find_pid_ns);                   313 EXPORT_SYMBOL_GPL(find_pid_ns);
323                                                   314 
324 struct pid *find_vpid(int nr)                     315 struct pid *find_vpid(int nr)
325 {                                                 316 {
326         return find_pid_ns(nr, task_active_pid    317         return find_pid_ns(nr, task_active_pid_ns(current));
327 }                                                 318 }
328 EXPORT_SYMBOL_GPL(find_vpid);                     319 EXPORT_SYMBOL_GPL(find_vpid);
329                                                   320 
330 static struct pid **task_pid_ptr(struct task_s    321 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331 {                                                 322 {
332         return (type == PIDTYPE_PID) ?            323         return (type == PIDTYPE_PID) ?
333                 &task->thread_pid :               324                 &task->thread_pid :
334                 &task->signal->pids[type];        325                 &task->signal->pids[type];
335 }                                                 326 }
336                                                   327 
337 /*                                                328 /*
338  * attach_pid() must be called with the taskli    329  * attach_pid() must be called with the tasklist_lock write-held.
339  */                                               330  */
340 void attach_pid(struct task_struct *task, enum    331 void attach_pid(struct task_struct *task, enum pid_type type)
341 {                                                 332 {
342         struct pid *pid = *task_pid_ptr(task,     333         struct pid *pid = *task_pid_ptr(task, type);
343         hlist_add_head_rcu(&task->pid_links[ty    334         hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
344 }                                                 335 }
345                                                   336 
346 static void __change_pid(struct task_struct *t    337 static void __change_pid(struct task_struct *task, enum pid_type type,
347                         struct pid *new)          338                         struct pid *new)
348 {                                                 339 {
349         struct pid **pid_ptr = task_pid_ptr(ta    340         struct pid **pid_ptr = task_pid_ptr(task, type);
350         struct pid *pid;                          341         struct pid *pid;
351         int tmp;                                  342         int tmp;
352                                                   343 
353         pid = *pid_ptr;                           344         pid = *pid_ptr;
354                                                   345 
355         hlist_del_rcu(&task->pid_links[type]);    346         hlist_del_rcu(&task->pid_links[type]);
356         *pid_ptr = new;                           347         *pid_ptr = new;
357                                                   348 
358         if (type == PIDTYPE_PID) {             << 
359                 WARN_ON_ONCE(pid_has_task(pid, << 
360                 wake_up_all(&pid->wait_pidfd); << 
361         }                                      << 
362                                                << 
363         for (tmp = PIDTYPE_MAX; --tmp >= 0; )     349         for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364                 if (pid_has_task(pid, tmp))       350                 if (pid_has_task(pid, tmp))
365                         return;                   351                         return;
366                                                   352 
367         free_pid(pid);                            353         free_pid(pid);
368 }                                                 354 }
369                                                   355 
370 void detach_pid(struct task_struct *task, enum    356 void detach_pid(struct task_struct *task, enum pid_type type)
371 {                                                 357 {
372         __change_pid(task, type, NULL);           358         __change_pid(task, type, NULL);
373 }                                                 359 }
374                                                   360 
375 void change_pid(struct task_struct *task, enum    361 void change_pid(struct task_struct *task, enum pid_type type,
376                 struct pid *pid)                  362                 struct pid *pid)
377 {                                                 363 {
378         __change_pid(task, type, pid);            364         __change_pid(task, type, pid);
379         attach_pid(task, type);                   365         attach_pid(task, type);
380 }                                                 366 }
381                                                   367 
382 void exchange_tids(struct task_struct *left, s    368 void exchange_tids(struct task_struct *left, struct task_struct *right)
383 {                                                 369 {
384         struct pid *pid1 = left->thread_pid;      370         struct pid *pid1 = left->thread_pid;
385         struct pid *pid2 = right->thread_pid;     371         struct pid *pid2 = right->thread_pid;
386         struct hlist_head *head1 = &pid1->task    372         struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
387         struct hlist_head *head2 = &pid2->task    373         struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
388                                                   374 
389         /* Swap the single entry tid lists */     375         /* Swap the single entry tid lists */
390         hlists_swap_heads_rcu(head1, head2);      376         hlists_swap_heads_rcu(head1, head2);
391                                                   377 
392         /* Swap the per task_struct pid */        378         /* Swap the per task_struct pid */
393         rcu_assign_pointer(left->thread_pid, p    379         rcu_assign_pointer(left->thread_pid, pid2);
394         rcu_assign_pointer(right->thread_pid,     380         rcu_assign_pointer(right->thread_pid, pid1);
395                                                   381 
396         /* Swap the cached value */               382         /* Swap the cached value */
397         WRITE_ONCE(left->pid, pid_nr(pid2));      383         WRITE_ONCE(left->pid, pid_nr(pid2));
398         WRITE_ONCE(right->pid, pid_nr(pid1));     384         WRITE_ONCE(right->pid, pid_nr(pid1));
399 }                                                 385 }
400                                                   386 
401 /* transfer_pid is an optimization of attach_p    387 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
402 void transfer_pid(struct task_struct *old, str    388 void transfer_pid(struct task_struct *old, struct task_struct *new,
403                            enum pid_type type)    389                            enum pid_type type)
404 {                                                 390 {
405         WARN_ON_ONCE(type == PIDTYPE_PID);     !! 391         if (type == PIDTYPE_PID)
                                                   >> 392                 new->thread_pid = old->thread_pid;
406         hlist_replace_rcu(&old->pid_links[type    393         hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
407 }                                                 394 }
408                                                   395 
409 struct task_struct *pid_task(struct pid *pid,     396 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
410 {                                                 397 {
411         struct task_struct *result = NULL;        398         struct task_struct *result = NULL;
412         if (pid) {                                399         if (pid) {
413                 struct hlist_node *first;         400                 struct hlist_node *first;
414                 first = rcu_dereference_check(    401                 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
415                                                   402                                               lockdep_tasklist_lock_is_held());
416                 if (first)                        403                 if (first)
417                         result = hlist_entry(f    404                         result = hlist_entry(first, struct task_struct, pid_links[(type)]);
418         }                                         405         }
419         return result;                            406         return result;
420 }                                                 407 }
421 EXPORT_SYMBOL(pid_task);                          408 EXPORT_SYMBOL(pid_task);
422                                                   409 
423 /*                                                410 /*
424  * Must be called under rcu_read_lock().          411  * Must be called under rcu_read_lock().
425  */                                               412  */
426 struct task_struct *find_task_by_pid_ns(pid_t     413 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
427 {                                                 414 {
428         RCU_LOCKDEP_WARN(!rcu_read_lock_held()    415         RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429                          "find_task_by_pid_ns(    416                          "find_task_by_pid_ns() needs rcu_read_lock() protection");
430         return pid_task(find_pid_ns(nr, ns), P    417         return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
431 }                                                 418 }
432                                                   419 
433 struct task_struct *find_task_by_vpid(pid_t vn    420 struct task_struct *find_task_by_vpid(pid_t vnr)
434 {                                                 421 {
435         return find_task_by_pid_ns(vnr, task_a    422         return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
436 }                                                 423 }
437                                                   424 
438 struct task_struct *find_get_task_by_vpid(pid_    425 struct task_struct *find_get_task_by_vpid(pid_t nr)
439 {                                                 426 {
440         struct task_struct *task;                 427         struct task_struct *task;
441                                                   428 
442         rcu_read_lock();                          429         rcu_read_lock();
443         task = find_task_by_vpid(nr);             430         task = find_task_by_vpid(nr);
444         if (task)                                 431         if (task)
445                 get_task_struct(task);            432                 get_task_struct(task);
446         rcu_read_unlock();                        433         rcu_read_unlock();
447                                                   434 
448         return task;                              435         return task;
449 }                                                 436 }
450                                                   437 
451 struct pid *get_task_pid(struct task_struct *t    438 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
452 {                                                 439 {
453         struct pid *pid;                          440         struct pid *pid;
454         rcu_read_lock();                          441         rcu_read_lock();
455         pid = get_pid(rcu_dereference(*task_pi    442         pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
456         rcu_read_unlock();                        443         rcu_read_unlock();
457         return pid;                               444         return pid;
458 }                                                 445 }
459 EXPORT_SYMBOL_GPL(get_task_pid);                  446 EXPORT_SYMBOL_GPL(get_task_pid);
460                                                   447 
461 struct task_struct *get_pid_task(struct pid *p    448 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
462 {                                                 449 {
463         struct task_struct *result;               450         struct task_struct *result;
464         rcu_read_lock();                          451         rcu_read_lock();
465         result = pid_task(pid, type);             452         result = pid_task(pid, type);
466         if (result)                               453         if (result)
467                 get_task_struct(result);          454                 get_task_struct(result);
468         rcu_read_unlock();                        455         rcu_read_unlock();
469         return result;                            456         return result;
470 }                                                 457 }
471 EXPORT_SYMBOL_GPL(get_pid_task);                  458 EXPORT_SYMBOL_GPL(get_pid_task);
472                                                   459 
473 struct pid *find_get_pid(pid_t nr)                460 struct pid *find_get_pid(pid_t nr)
474 {                                                 461 {
475         struct pid *pid;                          462         struct pid *pid;
476                                                   463 
477         rcu_read_lock();                          464         rcu_read_lock();
478         pid = get_pid(find_vpid(nr));             465         pid = get_pid(find_vpid(nr));
479         rcu_read_unlock();                        466         rcu_read_unlock();
480                                                   467 
481         return pid;                               468         return pid;
482 }                                                 469 }
483 EXPORT_SYMBOL_GPL(find_get_pid);                  470 EXPORT_SYMBOL_GPL(find_get_pid);
484                                                   471 
485 pid_t pid_nr_ns(struct pid *pid, struct pid_na    472 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
486 {                                                 473 {
487         struct upid *upid;                        474         struct upid *upid;
488         pid_t nr = 0;                             475         pid_t nr = 0;
489                                                   476 
490         if (pid && ns->level <= pid->level) {     477         if (pid && ns->level <= pid->level) {
491                 upid = &pid->numbers[ns->level    478                 upid = &pid->numbers[ns->level];
492                 if (upid->ns == ns)               479                 if (upid->ns == ns)
493                         nr = upid->nr;            480                         nr = upid->nr;
494         }                                         481         }
495         return nr;                                482         return nr;
496 }                                                 483 }
497 EXPORT_SYMBOL_GPL(pid_nr_ns);                     484 EXPORT_SYMBOL_GPL(pid_nr_ns);
498                                                   485 
499 pid_t pid_vnr(struct pid *pid)                    486 pid_t pid_vnr(struct pid *pid)
500 {                                                 487 {
501         return pid_nr_ns(pid, task_active_pid_    488         return pid_nr_ns(pid, task_active_pid_ns(current));
502 }                                                 489 }
503 EXPORT_SYMBOL_GPL(pid_vnr);                       490 EXPORT_SYMBOL_GPL(pid_vnr);
504                                                   491 
505 pid_t __task_pid_nr_ns(struct task_struct *tas    492 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506                         struct pid_namespace *    493                         struct pid_namespace *ns)
507 {                                                 494 {
508         pid_t nr = 0;                             495         pid_t nr = 0;
509                                                   496 
510         rcu_read_lock();                          497         rcu_read_lock();
511         if (!ns)                                  498         if (!ns)
512                 ns = task_active_pid_ns(curren    499                 ns = task_active_pid_ns(current);
513         nr = pid_nr_ns(rcu_dereference(*task_p    500         nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
514         rcu_read_unlock();                        501         rcu_read_unlock();
515                                                   502 
516         return nr;                                503         return nr;
517 }                                                 504 }
518 EXPORT_SYMBOL(__task_pid_nr_ns);                  505 EXPORT_SYMBOL(__task_pid_nr_ns);
519                                                   506 
520 struct pid_namespace *task_active_pid_ns(struc    507 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
521 {                                                 508 {
522         return ns_of_pid(task_pid(tsk));          509         return ns_of_pid(task_pid(tsk));
523 }                                                 510 }
524 EXPORT_SYMBOL_GPL(task_active_pid_ns);            511 EXPORT_SYMBOL_GPL(task_active_pid_ns);
525                                                   512 
526 /*                                                513 /*
527  * Used by proc to find the first pid that is     514  * Used by proc to find the first pid that is greater than or equal to nr.
528  *                                                515  *
529  * If there is a pid at nr this function is ex    516  * If there is a pid at nr this function is exactly the same as find_pid_ns.
530  */                                               517  */
531 struct pid *find_ge_pid(int nr, struct pid_nam    518 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
532 {                                                 519 {
533         return idr_get_next(&ns->idr, &nr);       520         return idr_get_next(&ns->idr, &nr);
534 }                                                 521 }
535 EXPORT_SYMBOL_GPL(find_ge_pid);                << 
536                                                   522 
537 struct pid *pidfd_get_pid(unsigned int fd, uns    523 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
538 {                                                 524 {
539         struct fd f;                              525         struct fd f;
540         struct pid *pid;                          526         struct pid *pid;
541                                                   527 
542         f = fdget(fd);                            528         f = fdget(fd);
543         if (!fd_file(f))                       !! 529         if (!f.file)
544                 return ERR_PTR(-EBADF);           530                 return ERR_PTR(-EBADF);
545                                                   531 
546         pid = pidfd_pid(fd_file(f));           !! 532         pid = pidfd_pid(f.file);
547         if (!IS_ERR(pid)) {                       533         if (!IS_ERR(pid)) {
548                 get_pid(pid);                     534                 get_pid(pid);
549                 *flags = fd_file(f)->f_flags;  !! 535                 *flags = f.file->f_flags;
550         }                                         536         }
551                                                   537 
552         fdput(f);                                 538         fdput(f);
553         return pid;                               539         return pid;
554 }                                                 540 }
555                                                   541 
556 /**                                               542 /**
557  * pidfd_get_task() - Get the task associated     543  * pidfd_get_task() - Get the task associated with a pidfd
558  *                                                544  *
559  * @pidfd: pidfd for which to get the task        545  * @pidfd: pidfd for which to get the task
560  * @flags: flags associated with this pidfd       546  * @flags: flags associated with this pidfd
561  *                                                547  *
562  * Return the task associated with @pidfd. The    548  * Return the task associated with @pidfd. The function takes a reference on
563  * the returned task. The caller is responsibl    549  * the returned task. The caller is responsible for releasing that reference.
564  *                                                550  *
                                                   >> 551  * Currently, the process identified by @pidfd is always a thread-group leader.
                                                   >> 552  * This restriction currently exists for all aspects of pidfds including pidfd
                                                   >> 553  * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling
                                                   >> 554  * (only supports thread group leaders).
                                                   >> 555  *
565  * Return: On success, the task_struct associa    556  * Return: On success, the task_struct associated with the pidfd.
566  *         On error, a negative errno number w    557  *         On error, a negative errno number will be returned.
567  */                                               558  */
568 struct task_struct *pidfd_get_task(int pidfd,     559 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
569 {                                                 560 {
570         unsigned int f_flags;                     561         unsigned int f_flags;
571         struct pid *pid;                          562         struct pid *pid;
572         struct task_struct *task;                 563         struct task_struct *task;
573                                                   564 
574         pid = pidfd_get_pid(pidfd, &f_flags);     565         pid = pidfd_get_pid(pidfd, &f_flags);
575         if (IS_ERR(pid))                          566         if (IS_ERR(pid))
576                 return ERR_CAST(pid);             567                 return ERR_CAST(pid);
577                                                   568 
578         task = get_pid_task(pid, PIDTYPE_TGID)    569         task = get_pid_task(pid, PIDTYPE_TGID);
579         put_pid(pid);                             570         put_pid(pid);
580         if (!task)                                571         if (!task)
581                 return ERR_PTR(-ESRCH);           572                 return ERR_PTR(-ESRCH);
582                                                   573 
583         *flags = f_flags;                         574         *flags = f_flags;
584         return task;                              575         return task;
585 }                                                 576 }
586                                                   577 
587 /**                                               578 /**
588  * pidfd_create() - Create a new pid file desc    579  * pidfd_create() - Create a new pid file descriptor.
589  *                                                580  *
590  * @pid:   struct pid that the pidfd will refe    581  * @pid:   struct pid that the pidfd will reference
591  * @flags: flags to pass                          582  * @flags: flags to pass
592  *                                                583  *
593  * This creates a new pid file descriptor with    584  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
594  *                                                585  *
595  * Note, that this function can only be called    586  * Note, that this function can only be called after the fd table has
596  * been unshared to avoid leaking the pidfd to    587  * been unshared to avoid leaking the pidfd to the new process.
597  *                                                588  *
598  * This symbol should not be explicitly export    589  * This symbol should not be explicitly exported to loadable modules.
599  *                                                590  *
600  * Return: On success, a cloexec pidfd is retu    591  * Return: On success, a cloexec pidfd is returned.
601  *         On error, a negative errno number w    592  *         On error, a negative errno number will be returned.
602  */                                               593  */
603 static int pidfd_create(struct pid *pid, unsig !! 594 int pidfd_create(struct pid *pid, unsigned int flags)
604 {                                                 595 {
605         int pidfd;                             !! 596         int fd;
606         struct file *pidfd_file;               << 
607                                                   597 
608         pidfd = pidfd_prepare(pid, flags, &pid !! 598         if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
609         if (pidfd < 0)                         !! 599                 return -EINVAL;
610                 return pidfd;                  !! 600 
                                                   >> 601         if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
                                                   >> 602                 return -EINVAL;
                                                   >> 603 
                                                   >> 604         fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
                                                   >> 605                               flags | O_RDWR | O_CLOEXEC);
                                                   >> 606         if (fd < 0)
                                                   >> 607                 put_pid(pid);
611                                                   608 
612         fd_install(pidfd, pidfd_file);         !! 609         return fd;
613         return pidfd;                          << 
614 }                                                 610 }
615                                                   611 
616 /**                                               612 /**
617  * sys_pidfd_open() - Open new pid file descri !! 613  * pidfd_open() - Open new pid file descriptor.
618  *                                                614  *
619  * @pid:   pid for which to retrieve a pidfd      615  * @pid:   pid for which to retrieve a pidfd
620  * @flags: flags to pass                          616  * @flags: flags to pass
621  *                                                617  *
622  * This creates a new pid file descriptor with    618  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
623  * the task identified by @pid. Without PIDFD_ !! 619  * the process identified by @pid. Currently, the process identified by
624  * must be a thread-group leader.              !! 620  * @pid must be a thread-group leader. This restriction currently exists
                                                   >> 621  * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
                                                   >> 622  * be used with CLONE_THREAD) and pidfd polling (only supports thread group
                                                   >> 623  * leaders).
625  *                                                624  *
626  * Return: On success, a cloexec pidfd is retu    625  * Return: On success, a cloexec pidfd is returned.
627  *         On error, a negative errno number w    626  *         On error, a negative errno number will be returned.
628  */                                               627  */
629 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsign    628 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
630 {                                                 629 {
631         int fd;                                   630         int fd;
632         struct pid *p;                            631         struct pid *p;
633                                                   632 
634         if (flags & ~(PIDFD_NONBLOCK | PIDFD_T !! 633         if (flags & ~PIDFD_NONBLOCK)
635                 return -EINVAL;                   634                 return -EINVAL;
636                                                   635 
637         if (pid <= 0)                             636         if (pid <= 0)
638                 return -EINVAL;                   637                 return -EINVAL;
639                                                   638 
640         p = find_get_pid(pid);                    639         p = find_get_pid(pid);
641         if (!p)                                   640         if (!p)
642                 return -ESRCH;                    641                 return -ESRCH;
643                                                   642 
644         fd = pidfd_create(p, flags);              643         fd = pidfd_create(p, flags);
645                                                   644 
646         put_pid(p);                               645         put_pid(p);
647         return fd;                                646         return fd;
648 }                                                 647 }
649                                                   648 
650 void __init pid_idr_init(void)                    649 void __init pid_idr_init(void)
651 {                                                 650 {
652         /* Verify no one has done anything sil    651         /* Verify no one has done anything silly: */
653         BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_AD    652         BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
654                                                   653 
655         /* bump default and minimum pid_max ba    654         /* bump default and minimum pid_max based on number of cpus */
656         pid_max = min(pid_max_max, max_t(int,     655         pid_max = min(pid_max_max, max_t(int, pid_max,
657                                 PIDS_PER_CPU_D    656                                 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
658         pid_max_min = max_t(int, pid_max_min,     657         pid_max_min = max_t(int, pid_max_min,
659                                 PIDS_PER_CPU_M    658                                 PIDS_PER_CPU_MIN * num_possible_cpus());
660         pr_info("pid_max: default: %u minimum:    659         pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
661                                                   660 
662         idr_init(&init_pid_ns.idr);               661         idr_init(&init_pid_ns.idr);
663                                                   662 
664         init_pid_ns.pid_cachep = kmem_cache_cr !! 663         init_pid_ns.pid_cachep = KMEM_CACHE(pid,
665                         struct_size_t(struct p !! 664                         SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
666                         __alignof__(struct pid << 
667                         SLAB_HWCACHE_ALIGN | S << 
668                         NULL);                 << 
669 }                                                 665 }
670                                                   666 
671 static struct file *__pidfd_fget(struct task_s    667 static struct file *__pidfd_fget(struct task_struct *task, int fd)
672 {                                                 668 {
673         struct file *file;                        669         struct file *file;
674         int ret;                                  670         int ret;
675                                                   671 
676         ret = down_read_killable(&task->signal    672         ret = down_read_killable(&task->signal->exec_update_lock);
677         if (ret)                                  673         if (ret)
678                 return ERR_PTR(ret);              674                 return ERR_PTR(ret);
679                                                   675 
680         if (ptrace_may_access(task, PTRACE_MOD    676         if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
681                 file = fget_task(task, fd);       677                 file = fget_task(task, fd);
682         else                                      678         else
683                 file = ERR_PTR(-EPERM);           679                 file = ERR_PTR(-EPERM);
684                                                   680 
685         up_read(&task->signal->exec_update_loc    681         up_read(&task->signal->exec_update_lock);
686                                                   682 
687         if (!file) {                           !! 683         return file ?: ERR_PTR(-EBADF);
688                 /*                             << 
689                  * It is possible that the tar << 
690                  * either:                     << 
691                  * 1. before exit_signals(), w << 
692                  * 2. before exit_files() take << 
693                  * 3. after exit_files() relea << 
694                  *    this has PF_EXITING, sin << 
695                  *    __pidfd_fget() returns E << 
696                  * In case 3 we get EBADF, but << 
697                  * the task is currently exiti << 
698                  * struct, so we fix it up.    << 
699                  */                            << 
700                 if (task->flags & PF_EXITING)  << 
701                         file = ERR_PTR(-ESRCH) << 
702                 else                           << 
703                         file = ERR_PTR(-EBADF) << 
704         }                                      << 
705                                                << 
706         return file;                           << 
707 }                                                 684 }
708                                                   685 
709 static int pidfd_getfd(struct pid *pid, int fd    686 static int pidfd_getfd(struct pid *pid, int fd)
710 {                                                 687 {
711         struct task_struct *task;                 688         struct task_struct *task;
712         struct file *file;                        689         struct file *file;
713         int ret;                                  690         int ret;
714                                                   691 
715         task = get_pid_task(pid, PIDTYPE_PID);    692         task = get_pid_task(pid, PIDTYPE_PID);
716         if (!task)                                693         if (!task)
717                 return -ESRCH;                    694                 return -ESRCH;
718                                                   695 
719         file = __pidfd_fget(task, fd);            696         file = __pidfd_fget(task, fd);
720         put_task_struct(task);                    697         put_task_struct(task);
721         if (IS_ERR(file))                         698         if (IS_ERR(file))
722                 return PTR_ERR(file);             699                 return PTR_ERR(file);
723                                                   700 
724         ret = receive_fd(file, NULL, O_CLOEXEC !! 701         ret = receive_fd(file, O_CLOEXEC);
725         fput(file);                               702         fput(file);
726                                                   703 
727         return ret;                               704         return ret;
728 }                                                 705 }
729                                                   706 
730 /**                                               707 /**
731  * sys_pidfd_getfd() - Get a file descriptor f    708  * sys_pidfd_getfd() - Get a file descriptor from another process
732  *                                                709  *
733  * @pidfd:      the pidfd file descriptor of t    710  * @pidfd:      the pidfd file descriptor of the process
734  * @fd:         the file descriptor number to     711  * @fd:         the file descriptor number to get
735  * @flags:      flags on how to get the fd (re    712  * @flags:      flags on how to get the fd (reserved)
736  *                                                713  *
737  * This syscall gets a copy of a file descript    714  * This syscall gets a copy of a file descriptor from another process
738  * based on the pidfd, and file descriptor num    715  * based on the pidfd, and file descriptor number. It requires that
739  * the calling process has the ability to ptra    716  * the calling process has the ability to ptrace the process represented
740  * by the pidfd. The process which is having i    717  * by the pidfd. The process which is having its file descriptor copied
741  * is otherwise unaffected.                       718  * is otherwise unaffected.
742  *                                                719  *
743  * Return: On success, a cloexec file descript    720  * Return: On success, a cloexec file descriptor is returned.
744  *         On error, a negative errno number w    721  *         On error, a negative errno number will be returned.
745  */                                               722  */
746 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int,     723 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
747                 unsigned int, flags)              724                 unsigned int, flags)
748 {                                                 725 {
749         struct pid *pid;                          726         struct pid *pid;
750         struct fd f;                              727         struct fd f;
751         int ret;                                  728         int ret;
752                                                   729 
753         /* flags is currently unused - make su    730         /* flags is currently unused - make sure it's unset */
754         if (flags)                                731         if (flags)
755                 return -EINVAL;                   732                 return -EINVAL;
756                                                   733 
757         f = fdget(pidfd);                         734         f = fdget(pidfd);
758         if (!fd_file(f))                       !! 735         if (!f.file)
759                 return -EBADF;                    736                 return -EBADF;
760                                                   737 
761         pid = pidfd_pid(fd_file(f));           !! 738         pid = pidfd_pid(f.file);
762         if (IS_ERR(pid))                          739         if (IS_ERR(pid))
763                 ret = PTR_ERR(pid);               740                 ret = PTR_ERR(pid);
764         else                                      741         else
765                 ret = pidfd_getfd(pid, fd);       742                 ret = pidfd_getfd(pid, fd);
766                                                   743 
767         fdput(f);                                 744         fdput(f);
768         return ret;                               745         return ret;
769 }                                                 746 }
770                                                   747 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php