1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * Generic pidhash and scalable, time-bounded 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 8 * 9 * pid-structures are backing objects for task 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 11 * parking tasks using given ID's on a list. 12 * 12 * 13 * The hash is always changed with the tasklis 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the task 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 16 * 17 * We have a list of bitmap pages, which bitma 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely l 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single suc 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 22 * 23 * Pid namespaces: 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.o 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for commen 26 * Many thanks to Oleg Nesterov for comments and help 27 * 27 * 28 */ 28 */ 29 29 30 #include <linux/mm.h> 30 #include <linux/mm.h> 31 #include <linux/export.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> << 46 #include <net/sock.h> 45 #include <net/sock.h> 47 #include <uapi/linux/pidfd.h> 46 #include <uapi/linux/pidfd.h> 48 47 49 struct pid init_struct_pid = { 48 struct pid init_struct_pid = { 50 .count = REFCOUNT_INIT(1), 49 .count = REFCOUNT_INIT(1), 51 .tasks = { 50 .tasks = { 52 { .first = NULL }, 51 { .first = NULL }, 53 { .first = NULL }, 52 { .first = NULL }, 54 { .first = NULL }, 53 { .first = NULL }, 55 }, 54 }, 56 .level = 0, 55 .level = 0, 57 .numbers = { { 56 .numbers = { { 58 .nr = 0, 57 .nr = 0, 59 .ns = &init_pid_ns 58 .ns = &init_pid_ns, 60 }, } 59 }, } 61 }; 60 }; 62 61 63 int pid_max = PID_MAX_DEFAULT; 62 int pid_max = PID_MAX_DEFAULT; 64 63 >> 64 #define RESERVED_PIDS 300 >> 65 65 int pid_max_min = RESERVED_PIDS + 1; 66 int pid_max_min = RESERVED_PIDS + 1; 66 int pid_max_max = PID_MAX_LIMIT; 67 int pid_max_max = PID_MAX_LIMIT; 67 /* << 68 * Pseudo filesystems start inode numbering af << 69 * PIDs as a natural offset. << 70 */ << 71 static u64 pidfs_ino = RESERVED_PIDS; << 72 68 73 /* 69 /* 74 * PID-map pages start out as NULL, they get a 70 * PID-map pages start out as NULL, they get allocated upon 75 * first use and are never deallocated. This w 71 * first use and are never deallocated. This way a low pid_max 76 * value does not cause lots of bitmaps to be 72 * value does not cause lots of bitmaps to be allocated, but 77 * the scheme scales to up to 4 million PIDs, 73 * the scheme scales to up to 4 million PIDs, runtime. 78 */ 74 */ 79 struct pid_namespace init_pid_ns = { 75 struct pid_namespace init_pid_ns = { 80 .ns.count = REFCOUNT_INIT(2), 76 .ns.count = REFCOUNT_INIT(2), 81 .idr = IDR_INIT(init_pid_ns.idr), 77 .idr = IDR_INIT(init_pid_ns.idr), 82 .pid_allocated = PIDNS_ADDING, 78 .pid_allocated = PIDNS_ADDING, 83 .level = 0, 79 .level = 0, 84 .child_reaper = &init_task, 80 .child_reaper = &init_task, 85 .user_ns = &init_user_ns, 81 .user_ns = &init_user_ns, 86 .ns.inum = PROC_PID_INIT_INO, 82 .ns.inum = PROC_PID_INIT_INO, 87 #ifdef CONFIG_PID_NS 83 #ifdef CONFIG_PID_NS 88 .ns.ops = &pidns_operations, 84 .ns.ops = &pidns_operations, 89 #endif 85 #endif 90 #if defined(CONFIG_SYSCTL) && defined(CONFIG_M << 91 .memfd_noexec_scope = MEMFD_NOEXEC_SCO << 92 #endif << 93 }; 86 }; 94 EXPORT_SYMBOL_GPL(init_pid_ns); 87 EXPORT_SYMBOL_GPL(init_pid_ns); 95 88 96 /* 89 /* 97 * Note: disable interrupts while the pidmap_l 90 * Note: disable interrupts while the pidmap_lock is held as an 98 * interrupt might come in and do read_lock(&t 91 * interrupt might come in and do read_lock(&tasklist_lock). 99 * 92 * 100 * If we don't disable interrupts there is a n 93 * If we don't disable interrupts there is a nasty deadlock between 101 * detach_pid()->free_pid() and another cpu th 94 * detach_pid()->free_pid() and another cpu that does 102 * spin_lock(&pidmap_lock) followed by an inte 95 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 103 * read_lock(&tasklist_lock); 96 * read_lock(&tasklist_lock); 104 * 97 * 105 * After we clean up the tasklist_lock and kno 98 * After we clean up the tasklist_lock and know there are no 106 * irq handlers that take it we can leave the 99 * irq handlers that take it we can leave the interrupts enabled. 107 * For now it is easier to be safe than to pro 100 * For now it is easier to be safe than to prove it can't happen. 108 */ 101 */ 109 102 110 static __cacheline_aligned_in_smp DEFINE_SPIN 103 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 111 104 112 void put_pid(struct pid *pid) 105 void put_pid(struct pid *pid) 113 { 106 { 114 struct pid_namespace *ns; 107 struct pid_namespace *ns; 115 108 116 if (!pid) 109 if (!pid) 117 return; 110 return; 118 111 119 ns = pid->numbers[pid->level].ns; 112 ns = pid->numbers[pid->level].ns; 120 if (refcount_dec_and_test(&pid->count) 113 if (refcount_dec_and_test(&pid->count)) { 121 kmem_cache_free(ns->pid_cachep 114 kmem_cache_free(ns->pid_cachep, pid); 122 put_pid_ns(ns); 115 put_pid_ns(ns); 123 } 116 } 124 } 117 } 125 EXPORT_SYMBOL_GPL(put_pid); 118 EXPORT_SYMBOL_GPL(put_pid); 126 119 127 static void delayed_put_pid(struct rcu_head *r 120 static void delayed_put_pid(struct rcu_head *rhp) 128 { 121 { 129 struct pid *pid = container_of(rhp, st 122 struct pid *pid = container_of(rhp, struct pid, rcu); 130 put_pid(pid); 123 put_pid(pid); 131 } 124 } 132 125 133 void free_pid(struct pid *pid) 126 void free_pid(struct pid *pid) 134 { 127 { 135 /* We can be called with write_lock_ir 128 /* We can be called with write_lock_irq(&tasklist_lock) held */ 136 int i; 129 int i; 137 unsigned long flags; 130 unsigned long flags; 138 131 139 spin_lock_irqsave(&pidmap_lock, flags) 132 spin_lock_irqsave(&pidmap_lock, flags); 140 for (i = 0; i <= pid->level; i++) { 133 for (i = 0; i <= pid->level; i++) { 141 struct upid *upid = pid->numbe 134 struct upid *upid = pid->numbers + i; 142 struct pid_namespace *ns = upi 135 struct pid_namespace *ns = upid->ns; 143 switch (--ns->pid_allocated) { 136 switch (--ns->pid_allocated) { 144 case 2: 137 case 2: 145 case 1: 138 case 1: 146 /* When all that is le 139 /* When all that is left in the pid namespace 147 * is the reaper wake 140 * is the reaper wake up the reaper. The reaper 148 * may be sleeping in 141 * may be sleeping in zap_pid_ns_processes(). 149 */ 142 */ 150 wake_up_process(ns->ch 143 wake_up_process(ns->child_reaper); 151 break; 144 break; 152 case PIDNS_ADDING: 145 case PIDNS_ADDING: 153 /* Handle a fork failu 146 /* Handle a fork failure of the first process */ 154 WARN_ON(ns->child_reap 147 WARN_ON(ns->child_reaper); 155 ns->pid_allocated = 0; 148 ns->pid_allocated = 0; 156 break; 149 break; 157 } 150 } 158 151 159 idr_remove(&ns->idr, upid->nr) 152 idr_remove(&ns->idr, upid->nr); 160 } 153 } 161 spin_unlock_irqrestore(&pidmap_lock, f 154 spin_unlock_irqrestore(&pidmap_lock, flags); 162 155 163 call_rcu(&pid->rcu, delayed_put_pid); 156 call_rcu(&pid->rcu, delayed_put_pid); 164 } 157 } 165 158 166 struct pid *alloc_pid(struct pid_namespace *ns 159 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 167 size_t set_tid_size) 160 size_t set_tid_size) 168 { 161 { 169 struct pid *pid; 162 struct pid *pid; 170 enum pid_type type; 163 enum pid_type type; 171 int i, nr; 164 int i, nr; 172 struct pid_namespace *tmp; 165 struct pid_namespace *tmp; 173 struct upid *upid; 166 struct upid *upid; 174 int retval = -ENOMEM; 167 int retval = -ENOMEM; 175 168 176 /* 169 /* 177 * set_tid_size contains the size of t 170 * set_tid_size contains the size of the set_tid array. Starting at 178 * the most nested currently active PI 171 * the most nested currently active PID namespace it tells alloc_pid() 179 * which PID to set for a process in t 172 * which PID to set for a process in that most nested PID namespace 180 * up to set_tid_size PID namespaces. 173 * up to set_tid_size PID namespaces. It does not have to set the PID 181 * for a process in all nested PID nam 174 * for a process in all nested PID namespaces but set_tid_size must 182 * never be greater than the current n 175 * never be greater than the current ns->level + 1. 183 */ 176 */ 184 if (set_tid_size > ns->level + 1) 177 if (set_tid_size > ns->level + 1) 185 return ERR_PTR(-EINVAL); 178 return ERR_PTR(-EINVAL); 186 179 187 pid = kmem_cache_alloc(ns->pid_cachep, 180 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 188 if (!pid) 181 if (!pid) 189 return ERR_PTR(retval); 182 return ERR_PTR(retval); 190 183 191 tmp = ns; 184 tmp = ns; 192 pid->level = ns->level; 185 pid->level = ns->level; 193 186 194 for (i = ns->level; i >= 0; i--) { 187 for (i = ns->level; i >= 0; i--) { 195 int tid = 0; 188 int tid = 0; 196 189 197 if (set_tid_size) { 190 if (set_tid_size) { 198 tid = set_tid[ns->leve 191 tid = set_tid[ns->level - i]; 199 192 200 retval = -EINVAL; 193 retval = -EINVAL; 201 if (tid < 1 || tid >= 194 if (tid < 1 || tid >= pid_max) 202 goto out_free; 195 goto out_free; 203 /* 196 /* 204 * Also fail if a PID 197 * Also fail if a PID != 1 is requested and 205 * no PID 1 exists. 198 * no PID 1 exists. 206 */ 199 */ 207 if (tid != 1 && !tmp-> 200 if (tid != 1 && !tmp->child_reaper) 208 goto out_free; 201 goto out_free; 209 retval = -EPERM; 202 retval = -EPERM; 210 if (!checkpoint_restor 203 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 211 goto out_free; 204 goto out_free; 212 set_tid_size--; 205 set_tid_size--; 213 } 206 } 214 207 215 idr_preload(GFP_KERNEL); 208 idr_preload(GFP_KERNEL); 216 spin_lock_irq(&pidmap_lock); 209 spin_lock_irq(&pidmap_lock); 217 210 218 if (tid) { 211 if (tid) { 219 nr = idr_alloc(&tmp->i 212 nr = idr_alloc(&tmp->idr, NULL, tid, 220 tid + 1 213 tid + 1, GFP_ATOMIC); 221 /* 214 /* 222 * If ENOSPC is return 215 * If ENOSPC is returned it means that the PID is 223 * alreay in use. Retu 216 * alreay in use. Return EEXIST in that case. 224 */ 217 */ 225 if (nr == -ENOSPC) 218 if (nr == -ENOSPC) 226 nr = -EEXIST; 219 nr = -EEXIST; 227 } else { 220 } else { 228 int pid_min = 1; 221 int pid_min = 1; 229 /* 222 /* 230 * init really needs p 223 * init really needs pid 1, but after reaching the 231 * maximum wrap back t 224 * maximum wrap back to RESERVED_PIDS 232 */ 225 */ 233 if (idr_get_cursor(&tm 226 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 234 pid_min = RESE 227 pid_min = RESERVED_PIDS; 235 228 236 /* 229 /* 237 * Store a null pointe 230 * Store a null pointer so find_pid_ns does not find 238 * a partially initial 231 * a partially initialized PID (see below). 239 */ 232 */ 240 nr = idr_alloc_cyclic( 233 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 241 234 pid_max, GFP_ATOMIC); 242 } 235 } 243 spin_unlock_irq(&pidmap_lock); 236 spin_unlock_irq(&pidmap_lock); 244 idr_preload_end(); 237 idr_preload_end(); 245 238 246 if (nr < 0) { 239 if (nr < 0) { 247 retval = (nr == -ENOSP 240 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 248 goto out_free; 241 goto out_free; 249 } 242 } 250 243 251 pid->numbers[i].nr = nr; 244 pid->numbers[i].nr = nr; 252 pid->numbers[i].ns = tmp; 245 pid->numbers[i].ns = tmp; 253 tmp = tmp->parent; 246 tmp = tmp->parent; 254 } 247 } 255 248 256 /* 249 /* 257 * ENOMEM is not the most obvious choi 250 * ENOMEM is not the most obvious choice especially for the case 258 * where the child subreaper has alrea 251 * where the child subreaper has already exited and the pid 259 * namespace denies the creation of an 252 * namespace denies the creation of any new processes. But ENOMEM 260 * is what we have exposed to userspac 253 * is what we have exposed to userspace for a long time and it is 261 * documented behavior for pid namespa 254 * documented behavior for pid namespaces. So we can't easily 262 * change it even if there were an err 255 * change it even if there were an error code better suited. 263 */ 256 */ 264 retval = -ENOMEM; 257 retval = -ENOMEM; 265 258 266 get_pid_ns(ns); 259 get_pid_ns(ns); 267 refcount_set(&pid->count, 1); 260 refcount_set(&pid->count, 1); 268 spin_lock_init(&pid->lock); 261 spin_lock_init(&pid->lock); 269 for (type = 0; type < PIDTYPE_MAX; ++t 262 for (type = 0; type < PIDTYPE_MAX; ++type) 270 INIT_HLIST_HEAD(&pid->tasks[ty 263 INIT_HLIST_HEAD(&pid->tasks[type]); 271 264 272 init_waitqueue_head(&pid->wait_pidfd); 265 init_waitqueue_head(&pid->wait_pidfd); 273 INIT_HLIST_HEAD(&pid->inodes); 266 INIT_HLIST_HEAD(&pid->inodes); 274 267 275 upid = pid->numbers + ns->level; 268 upid = pid->numbers + ns->level; 276 spin_lock_irq(&pidmap_lock); 269 spin_lock_irq(&pidmap_lock); 277 if (!(ns->pid_allocated & PIDNS_ADDING 270 if (!(ns->pid_allocated & PIDNS_ADDING)) 278 goto out_unlock; 271 goto out_unlock; 279 pid->stashed = NULL; << 280 pid->ino = ++pidfs_ino; << 281 for ( ; upid >= pid->numbers; --upid) 272 for ( ; upid >= pid->numbers; --upid) { 282 /* Make the PID visible to fin 273 /* Make the PID visible to find_pid_ns. */ 283 idr_replace(&upid->ns->idr, pi 274 idr_replace(&upid->ns->idr, pid, upid->nr); 284 upid->ns->pid_allocated++; 275 upid->ns->pid_allocated++; 285 } 276 } 286 spin_unlock_irq(&pidmap_lock); 277 spin_unlock_irq(&pidmap_lock); 287 278 288 return pid; 279 return pid; 289 280 290 out_unlock: 281 out_unlock: 291 spin_unlock_irq(&pidmap_lock); 282 spin_unlock_irq(&pidmap_lock); 292 put_pid_ns(ns); 283 put_pid_ns(ns); 293 284 294 out_free: 285 out_free: 295 spin_lock_irq(&pidmap_lock); 286 spin_lock_irq(&pidmap_lock); 296 while (++i <= ns->level) { 287 while (++i <= ns->level) { 297 upid = pid->numbers + i; 288 upid = pid->numbers + i; 298 idr_remove(&upid->ns->idr, upi 289 idr_remove(&upid->ns->idr, upid->nr); 299 } 290 } 300 291 301 /* On failure to allocate the first pi 292 /* On failure to allocate the first pid, reset the state */ 302 if (ns->pid_allocated == PIDNS_ADDING) 293 if (ns->pid_allocated == PIDNS_ADDING) 303 idr_set_cursor(&ns->idr, 0); 294 idr_set_cursor(&ns->idr, 0); 304 295 305 spin_unlock_irq(&pidmap_lock); 296 spin_unlock_irq(&pidmap_lock); 306 297 307 kmem_cache_free(ns->pid_cachep, pid); 298 kmem_cache_free(ns->pid_cachep, pid); 308 return ERR_PTR(retval); 299 return ERR_PTR(retval); 309 } 300 } 310 301 311 void disable_pid_allocation(struct pid_namespa 302 void disable_pid_allocation(struct pid_namespace *ns) 312 { 303 { 313 spin_lock_irq(&pidmap_lock); 304 spin_lock_irq(&pidmap_lock); 314 ns->pid_allocated &= ~PIDNS_ADDING; 305 ns->pid_allocated &= ~PIDNS_ADDING; 315 spin_unlock_irq(&pidmap_lock); 306 spin_unlock_irq(&pidmap_lock); 316 } 307 } 317 308 318 struct pid *find_pid_ns(int nr, struct pid_nam 309 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 319 { 310 { 320 return idr_find(&ns->idr, nr); 311 return idr_find(&ns->idr, nr); 321 } 312 } 322 EXPORT_SYMBOL_GPL(find_pid_ns); 313 EXPORT_SYMBOL_GPL(find_pid_ns); 323 314 324 struct pid *find_vpid(int nr) 315 struct pid *find_vpid(int nr) 325 { 316 { 326 return find_pid_ns(nr, task_active_pid 317 return find_pid_ns(nr, task_active_pid_ns(current)); 327 } 318 } 328 EXPORT_SYMBOL_GPL(find_vpid); 319 EXPORT_SYMBOL_GPL(find_vpid); 329 320 330 static struct pid **task_pid_ptr(struct task_s 321 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 331 { 322 { 332 return (type == PIDTYPE_PID) ? 323 return (type == PIDTYPE_PID) ? 333 &task->thread_pid : 324 &task->thread_pid : 334 &task->signal->pids[type]; 325 &task->signal->pids[type]; 335 } 326 } 336 327 337 /* 328 /* 338 * attach_pid() must be called with the taskli 329 * attach_pid() must be called with the tasklist_lock write-held. 339 */ 330 */ 340 void attach_pid(struct task_struct *task, enum 331 void attach_pid(struct task_struct *task, enum pid_type type) 341 { 332 { 342 struct pid *pid = *task_pid_ptr(task, 333 struct pid *pid = *task_pid_ptr(task, type); 343 hlist_add_head_rcu(&task->pid_links[ty 334 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 344 } 335 } 345 336 346 static void __change_pid(struct task_struct *t 337 static void __change_pid(struct task_struct *task, enum pid_type type, 347 struct pid *new) 338 struct pid *new) 348 { 339 { 349 struct pid **pid_ptr = task_pid_ptr(ta 340 struct pid **pid_ptr = task_pid_ptr(task, type); 350 struct pid *pid; 341 struct pid *pid; 351 int tmp; 342 int tmp; 352 343 353 pid = *pid_ptr; 344 pid = *pid_ptr; 354 345 355 hlist_del_rcu(&task->pid_links[type]); 346 hlist_del_rcu(&task->pid_links[type]); 356 *pid_ptr = new; 347 *pid_ptr = new; 357 348 358 if (type == PIDTYPE_PID) { << 359 WARN_ON_ONCE(pid_has_task(pid, << 360 wake_up_all(&pid->wait_pidfd); << 361 } << 362 << 363 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 349 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 364 if (pid_has_task(pid, tmp)) 350 if (pid_has_task(pid, tmp)) 365 return; 351 return; 366 352 367 free_pid(pid); 353 free_pid(pid); 368 } 354 } 369 355 370 void detach_pid(struct task_struct *task, enum 356 void detach_pid(struct task_struct *task, enum pid_type type) 371 { 357 { 372 __change_pid(task, type, NULL); 358 __change_pid(task, type, NULL); 373 } 359 } 374 360 375 void change_pid(struct task_struct *task, enum 361 void change_pid(struct task_struct *task, enum pid_type type, 376 struct pid *pid) 362 struct pid *pid) 377 { 363 { 378 __change_pid(task, type, pid); 364 __change_pid(task, type, pid); 379 attach_pid(task, type); 365 attach_pid(task, type); 380 } 366 } 381 367 382 void exchange_tids(struct task_struct *left, s 368 void exchange_tids(struct task_struct *left, struct task_struct *right) 383 { 369 { 384 struct pid *pid1 = left->thread_pid; 370 struct pid *pid1 = left->thread_pid; 385 struct pid *pid2 = right->thread_pid; 371 struct pid *pid2 = right->thread_pid; 386 struct hlist_head *head1 = &pid1->task 372 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 387 struct hlist_head *head2 = &pid2->task 373 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 388 374 389 /* Swap the single entry tid lists */ 375 /* Swap the single entry tid lists */ 390 hlists_swap_heads_rcu(head1, head2); 376 hlists_swap_heads_rcu(head1, head2); 391 377 392 /* Swap the per task_struct pid */ 378 /* Swap the per task_struct pid */ 393 rcu_assign_pointer(left->thread_pid, p 379 rcu_assign_pointer(left->thread_pid, pid2); 394 rcu_assign_pointer(right->thread_pid, 380 rcu_assign_pointer(right->thread_pid, pid1); 395 381 396 /* Swap the cached value */ 382 /* Swap the cached value */ 397 WRITE_ONCE(left->pid, pid_nr(pid2)); 383 WRITE_ONCE(left->pid, pid_nr(pid2)); 398 WRITE_ONCE(right->pid, pid_nr(pid1)); 384 WRITE_ONCE(right->pid, pid_nr(pid1)); 399 } 385 } 400 386 401 /* transfer_pid is an optimization of attach_p 387 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 402 void transfer_pid(struct task_struct *old, str 388 void transfer_pid(struct task_struct *old, struct task_struct *new, 403 enum pid_type type) 389 enum pid_type type) 404 { 390 { 405 WARN_ON_ONCE(type == PIDTYPE_PID); !! 391 if (type == PIDTYPE_PID) >> 392 new->thread_pid = old->thread_pid; 406 hlist_replace_rcu(&old->pid_links[type 393 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 407 } 394 } 408 395 409 struct task_struct *pid_task(struct pid *pid, 396 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 410 { 397 { 411 struct task_struct *result = NULL; 398 struct task_struct *result = NULL; 412 if (pid) { 399 if (pid) { 413 struct hlist_node *first; 400 struct hlist_node *first; 414 first = rcu_dereference_check( 401 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 415 402 lockdep_tasklist_lock_is_held()); 416 if (first) 403 if (first) 417 result = hlist_entry(f 404 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 418 } 405 } 419 return result; 406 return result; 420 } 407 } 421 EXPORT_SYMBOL(pid_task); 408 EXPORT_SYMBOL(pid_task); 422 409 423 /* 410 /* 424 * Must be called under rcu_read_lock(). 411 * Must be called under rcu_read_lock(). 425 */ 412 */ 426 struct task_struct *find_task_by_pid_ns(pid_t 413 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 427 { 414 { 428 RCU_LOCKDEP_WARN(!rcu_read_lock_held() 415 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 429 "find_task_by_pid_ns( 416 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 430 return pid_task(find_pid_ns(nr, ns), P 417 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 431 } 418 } 432 419 433 struct task_struct *find_task_by_vpid(pid_t vn 420 struct task_struct *find_task_by_vpid(pid_t vnr) 434 { 421 { 435 return find_task_by_pid_ns(vnr, task_a 422 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 436 } 423 } 437 424 438 struct task_struct *find_get_task_by_vpid(pid_ 425 struct task_struct *find_get_task_by_vpid(pid_t nr) 439 { 426 { 440 struct task_struct *task; 427 struct task_struct *task; 441 428 442 rcu_read_lock(); 429 rcu_read_lock(); 443 task = find_task_by_vpid(nr); 430 task = find_task_by_vpid(nr); 444 if (task) 431 if (task) 445 get_task_struct(task); 432 get_task_struct(task); 446 rcu_read_unlock(); 433 rcu_read_unlock(); 447 434 448 return task; 435 return task; 449 } 436 } 450 437 451 struct pid *get_task_pid(struct task_struct *t 438 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 452 { 439 { 453 struct pid *pid; 440 struct pid *pid; 454 rcu_read_lock(); 441 rcu_read_lock(); 455 pid = get_pid(rcu_dereference(*task_pi 442 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 456 rcu_read_unlock(); 443 rcu_read_unlock(); 457 return pid; 444 return pid; 458 } 445 } 459 EXPORT_SYMBOL_GPL(get_task_pid); 446 EXPORT_SYMBOL_GPL(get_task_pid); 460 447 461 struct task_struct *get_pid_task(struct pid *p 448 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 462 { 449 { 463 struct task_struct *result; 450 struct task_struct *result; 464 rcu_read_lock(); 451 rcu_read_lock(); 465 result = pid_task(pid, type); 452 result = pid_task(pid, type); 466 if (result) 453 if (result) 467 get_task_struct(result); 454 get_task_struct(result); 468 rcu_read_unlock(); 455 rcu_read_unlock(); 469 return result; 456 return result; 470 } 457 } 471 EXPORT_SYMBOL_GPL(get_pid_task); 458 EXPORT_SYMBOL_GPL(get_pid_task); 472 459 473 struct pid *find_get_pid(pid_t nr) 460 struct pid *find_get_pid(pid_t nr) 474 { 461 { 475 struct pid *pid; 462 struct pid *pid; 476 463 477 rcu_read_lock(); 464 rcu_read_lock(); 478 pid = get_pid(find_vpid(nr)); 465 pid = get_pid(find_vpid(nr)); 479 rcu_read_unlock(); 466 rcu_read_unlock(); 480 467 481 return pid; 468 return pid; 482 } 469 } 483 EXPORT_SYMBOL_GPL(find_get_pid); 470 EXPORT_SYMBOL_GPL(find_get_pid); 484 471 485 pid_t pid_nr_ns(struct pid *pid, struct pid_na 472 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 486 { 473 { 487 struct upid *upid; 474 struct upid *upid; 488 pid_t nr = 0; 475 pid_t nr = 0; 489 476 490 if (pid && ns->level <= pid->level) { 477 if (pid && ns->level <= pid->level) { 491 upid = &pid->numbers[ns->level 478 upid = &pid->numbers[ns->level]; 492 if (upid->ns == ns) 479 if (upid->ns == ns) 493 nr = upid->nr; 480 nr = upid->nr; 494 } 481 } 495 return nr; 482 return nr; 496 } 483 } 497 EXPORT_SYMBOL_GPL(pid_nr_ns); 484 EXPORT_SYMBOL_GPL(pid_nr_ns); 498 485 499 pid_t pid_vnr(struct pid *pid) 486 pid_t pid_vnr(struct pid *pid) 500 { 487 { 501 return pid_nr_ns(pid, task_active_pid_ 488 return pid_nr_ns(pid, task_active_pid_ns(current)); 502 } 489 } 503 EXPORT_SYMBOL_GPL(pid_vnr); 490 EXPORT_SYMBOL_GPL(pid_vnr); 504 491 505 pid_t __task_pid_nr_ns(struct task_struct *tas 492 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 506 struct pid_namespace * 493 struct pid_namespace *ns) 507 { 494 { 508 pid_t nr = 0; 495 pid_t nr = 0; 509 496 510 rcu_read_lock(); 497 rcu_read_lock(); 511 if (!ns) 498 if (!ns) 512 ns = task_active_pid_ns(curren 499 ns = task_active_pid_ns(current); 513 nr = pid_nr_ns(rcu_dereference(*task_p 500 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 514 rcu_read_unlock(); 501 rcu_read_unlock(); 515 502 516 return nr; 503 return nr; 517 } 504 } 518 EXPORT_SYMBOL(__task_pid_nr_ns); 505 EXPORT_SYMBOL(__task_pid_nr_ns); 519 506 520 struct pid_namespace *task_active_pid_ns(struc 507 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 521 { 508 { 522 return ns_of_pid(task_pid(tsk)); 509 return ns_of_pid(task_pid(tsk)); 523 } 510 } 524 EXPORT_SYMBOL_GPL(task_active_pid_ns); 511 EXPORT_SYMBOL_GPL(task_active_pid_ns); 525 512 526 /* 513 /* 527 * Used by proc to find the first pid that is 514 * Used by proc to find the first pid that is greater than or equal to nr. 528 * 515 * 529 * If there is a pid at nr this function is ex 516 * If there is a pid at nr this function is exactly the same as find_pid_ns. 530 */ 517 */ 531 struct pid *find_ge_pid(int nr, struct pid_nam 518 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 532 { 519 { 533 return idr_get_next(&ns->idr, &nr); 520 return idr_get_next(&ns->idr, &nr); 534 } 521 } 535 EXPORT_SYMBOL_GPL(find_ge_pid); << 536 522 537 struct pid *pidfd_get_pid(unsigned int fd, uns 523 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 538 { 524 { 539 struct fd f; 525 struct fd f; 540 struct pid *pid; 526 struct pid *pid; 541 527 542 f = fdget(fd); 528 f = fdget(fd); 543 if (!fd_file(f)) !! 529 if (!f.file) 544 return ERR_PTR(-EBADF); 530 return ERR_PTR(-EBADF); 545 531 546 pid = pidfd_pid(fd_file(f)); !! 532 pid = pidfd_pid(f.file); 547 if (!IS_ERR(pid)) { 533 if (!IS_ERR(pid)) { 548 get_pid(pid); 534 get_pid(pid); 549 *flags = fd_file(f)->f_flags; !! 535 *flags = f.file->f_flags; 550 } 536 } 551 537 552 fdput(f); 538 fdput(f); 553 return pid; 539 return pid; 554 } 540 } 555 541 556 /** 542 /** 557 * pidfd_get_task() - Get the task associated 543 * pidfd_get_task() - Get the task associated with a pidfd 558 * 544 * 559 * @pidfd: pidfd for which to get the task 545 * @pidfd: pidfd for which to get the task 560 * @flags: flags associated with this pidfd 546 * @flags: flags associated with this pidfd 561 * 547 * 562 * Return the task associated with @pidfd. The 548 * Return the task associated with @pidfd. The function takes a reference on 563 * the returned task. The caller is responsibl 549 * the returned task. The caller is responsible for releasing that reference. 564 * 550 * >> 551 * Currently, the process identified by @pidfd is always a thread-group leader. >> 552 * This restriction currently exists for all aspects of pidfds including pidfd >> 553 * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling >> 554 * (only supports thread group leaders). >> 555 * 565 * Return: On success, the task_struct associa 556 * Return: On success, the task_struct associated with the pidfd. 566 * On error, a negative errno number w 557 * On error, a negative errno number will be returned. 567 */ 558 */ 568 struct task_struct *pidfd_get_task(int pidfd, 559 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 569 { 560 { 570 unsigned int f_flags; 561 unsigned int f_flags; 571 struct pid *pid; 562 struct pid *pid; 572 struct task_struct *task; 563 struct task_struct *task; 573 564 574 pid = pidfd_get_pid(pidfd, &f_flags); 565 pid = pidfd_get_pid(pidfd, &f_flags); 575 if (IS_ERR(pid)) 566 if (IS_ERR(pid)) 576 return ERR_CAST(pid); 567 return ERR_CAST(pid); 577 568 578 task = get_pid_task(pid, PIDTYPE_TGID) 569 task = get_pid_task(pid, PIDTYPE_TGID); 579 put_pid(pid); 570 put_pid(pid); 580 if (!task) 571 if (!task) 581 return ERR_PTR(-ESRCH); 572 return ERR_PTR(-ESRCH); 582 573 583 *flags = f_flags; 574 *flags = f_flags; 584 return task; 575 return task; 585 } 576 } 586 577 587 /** 578 /** 588 * pidfd_create() - Create a new pid file desc 579 * pidfd_create() - Create a new pid file descriptor. 589 * 580 * 590 * @pid: struct pid that the pidfd will refe 581 * @pid: struct pid that the pidfd will reference 591 * @flags: flags to pass 582 * @flags: flags to pass 592 * 583 * 593 * This creates a new pid file descriptor with 584 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 594 * 585 * 595 * Note, that this function can only be called 586 * Note, that this function can only be called after the fd table has 596 * been unshared to avoid leaking the pidfd to 587 * been unshared to avoid leaking the pidfd to the new process. 597 * 588 * 598 * This symbol should not be explicitly export 589 * This symbol should not be explicitly exported to loadable modules. 599 * 590 * 600 * Return: On success, a cloexec pidfd is retu 591 * Return: On success, a cloexec pidfd is returned. 601 * On error, a negative errno number w 592 * On error, a negative errno number will be returned. 602 */ 593 */ 603 static int pidfd_create(struct pid *pid, unsig !! 594 int pidfd_create(struct pid *pid, unsigned int flags) 604 { 595 { 605 int pidfd; !! 596 int fd; 606 struct file *pidfd_file; << 607 597 608 pidfd = pidfd_prepare(pid, flags, &pid !! 598 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 609 if (pidfd < 0) !! 599 return -EINVAL; 610 return pidfd; !! 600 >> 601 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) >> 602 return -EINVAL; >> 603 >> 604 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), >> 605 flags | O_RDWR | O_CLOEXEC); >> 606 if (fd < 0) >> 607 put_pid(pid); 611 608 612 fd_install(pidfd, pidfd_file); !! 609 return fd; 613 return pidfd; << 614 } 610 } 615 611 616 /** 612 /** 617 * sys_pidfd_open() - Open new pid file descri !! 613 * pidfd_open() - Open new pid file descriptor. 618 * 614 * 619 * @pid: pid for which to retrieve a pidfd 615 * @pid: pid for which to retrieve a pidfd 620 * @flags: flags to pass 616 * @flags: flags to pass 621 * 617 * 622 * This creates a new pid file descriptor with 618 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 623 * the task identified by @pid. Without PIDFD_ !! 619 * the process identified by @pid. Currently, the process identified by 624 * must be a thread-group leader. !! 620 * @pid must be a thread-group leader. This restriction currently exists >> 621 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot >> 622 * be used with CLONE_THREAD) and pidfd polling (only supports thread group >> 623 * leaders). 625 * 624 * 626 * Return: On success, a cloexec pidfd is retu 625 * Return: On success, a cloexec pidfd is returned. 627 * On error, a negative errno number w 626 * On error, a negative errno number will be returned. 628 */ 627 */ 629 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsign 628 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 630 { 629 { 631 int fd; 630 int fd; 632 struct pid *p; 631 struct pid *p; 633 632 634 if (flags & ~(PIDFD_NONBLOCK | PIDFD_T !! 633 if (flags & ~PIDFD_NONBLOCK) 635 return -EINVAL; 634 return -EINVAL; 636 635 637 if (pid <= 0) 636 if (pid <= 0) 638 return -EINVAL; 637 return -EINVAL; 639 638 640 p = find_get_pid(pid); 639 p = find_get_pid(pid); 641 if (!p) 640 if (!p) 642 return -ESRCH; 641 return -ESRCH; 643 642 644 fd = pidfd_create(p, flags); 643 fd = pidfd_create(p, flags); 645 644 646 put_pid(p); 645 put_pid(p); 647 return fd; 646 return fd; 648 } 647 } 649 648 650 void __init pid_idr_init(void) 649 void __init pid_idr_init(void) 651 { 650 { 652 /* Verify no one has done anything sil 651 /* Verify no one has done anything silly: */ 653 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_AD 652 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 654 653 655 /* bump default and minimum pid_max ba 654 /* bump default and minimum pid_max based on number of cpus */ 656 pid_max = min(pid_max_max, max_t(int, 655 pid_max = min(pid_max_max, max_t(int, pid_max, 657 PIDS_PER_CPU_D 656 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 658 pid_max_min = max_t(int, pid_max_min, 657 pid_max_min = max_t(int, pid_max_min, 659 PIDS_PER_CPU_M 658 PIDS_PER_CPU_MIN * num_possible_cpus()); 660 pr_info("pid_max: default: %u minimum: 659 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 661 660 662 idr_init(&init_pid_ns.idr); 661 idr_init(&init_pid_ns.idr); 663 662 664 init_pid_ns.pid_cachep = kmem_cache_cr !! 663 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 665 struct_size_t(struct p !! 664 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 666 __alignof__(struct pid << 667 SLAB_HWCACHE_ALIGN | S << 668 NULL); << 669 } 665 } 670 666 671 static struct file *__pidfd_fget(struct task_s 667 static struct file *__pidfd_fget(struct task_struct *task, int fd) 672 { 668 { 673 struct file *file; 669 struct file *file; 674 int ret; 670 int ret; 675 671 676 ret = down_read_killable(&task->signal 672 ret = down_read_killable(&task->signal->exec_update_lock); 677 if (ret) 673 if (ret) 678 return ERR_PTR(ret); 674 return ERR_PTR(ret); 679 675 680 if (ptrace_may_access(task, PTRACE_MOD 676 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 681 file = fget_task(task, fd); 677 file = fget_task(task, fd); 682 else 678 else 683 file = ERR_PTR(-EPERM); 679 file = ERR_PTR(-EPERM); 684 680 685 up_read(&task->signal->exec_update_loc 681 up_read(&task->signal->exec_update_lock); 686 682 687 if (!file) { !! 683 return file ?: ERR_PTR(-EBADF); 688 /* << 689 * It is possible that the tar << 690 * either: << 691 * 1. before exit_signals(), w << 692 * 2. before exit_files() take << 693 * 3. after exit_files() relea << 694 * this has PF_EXITING, sin << 695 * __pidfd_fget() returns E << 696 * In case 3 we get EBADF, but << 697 * the task is currently exiti << 698 * struct, so we fix it up. << 699 */ << 700 if (task->flags & PF_EXITING) << 701 file = ERR_PTR(-ESRCH) << 702 else << 703 file = ERR_PTR(-EBADF) << 704 } << 705 << 706 return file; << 707 } 684 } 708 685 709 static int pidfd_getfd(struct pid *pid, int fd 686 static int pidfd_getfd(struct pid *pid, int fd) 710 { 687 { 711 struct task_struct *task; 688 struct task_struct *task; 712 struct file *file; 689 struct file *file; 713 int ret; 690 int ret; 714 691 715 task = get_pid_task(pid, PIDTYPE_PID); 692 task = get_pid_task(pid, PIDTYPE_PID); 716 if (!task) 693 if (!task) 717 return -ESRCH; 694 return -ESRCH; 718 695 719 file = __pidfd_fget(task, fd); 696 file = __pidfd_fget(task, fd); 720 put_task_struct(task); 697 put_task_struct(task); 721 if (IS_ERR(file)) 698 if (IS_ERR(file)) 722 return PTR_ERR(file); 699 return PTR_ERR(file); 723 700 724 ret = receive_fd(file, NULL, O_CLOEXEC !! 701 ret = receive_fd(file, O_CLOEXEC); 725 fput(file); 702 fput(file); 726 703 727 return ret; 704 return ret; 728 } 705 } 729 706 730 /** 707 /** 731 * sys_pidfd_getfd() - Get a file descriptor f 708 * sys_pidfd_getfd() - Get a file descriptor from another process 732 * 709 * 733 * @pidfd: the pidfd file descriptor of t 710 * @pidfd: the pidfd file descriptor of the process 734 * @fd: the file descriptor number to 711 * @fd: the file descriptor number to get 735 * @flags: flags on how to get the fd (re 712 * @flags: flags on how to get the fd (reserved) 736 * 713 * 737 * This syscall gets a copy of a file descript 714 * This syscall gets a copy of a file descriptor from another process 738 * based on the pidfd, and file descriptor num 715 * based on the pidfd, and file descriptor number. It requires that 739 * the calling process has the ability to ptra 716 * the calling process has the ability to ptrace the process represented 740 * by the pidfd. The process which is having i 717 * by the pidfd. The process which is having its file descriptor copied 741 * is otherwise unaffected. 718 * is otherwise unaffected. 742 * 719 * 743 * Return: On success, a cloexec file descript 720 * Return: On success, a cloexec file descriptor is returned. 744 * On error, a negative errno number w 721 * On error, a negative errno number will be returned. 745 */ 722 */ 746 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, 723 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 747 unsigned int, flags) 724 unsigned int, flags) 748 { 725 { 749 struct pid *pid; 726 struct pid *pid; 750 struct fd f; 727 struct fd f; 751 int ret; 728 int ret; 752 729 753 /* flags is currently unused - make su 730 /* flags is currently unused - make sure it's unset */ 754 if (flags) 731 if (flags) 755 return -EINVAL; 732 return -EINVAL; 756 733 757 f = fdget(pidfd); 734 f = fdget(pidfd); 758 if (!fd_file(f)) !! 735 if (!f.file) 759 return -EBADF; 736 return -EBADF; 760 737 761 pid = pidfd_pid(fd_file(f)); !! 738 pid = pidfd_pid(f.file); 762 if (IS_ERR(pid)) 739 if (IS_ERR(pid)) 763 ret = PTR_ERR(pid); 740 ret = PTR_ERR(pid); 764 else 741 else 765 ret = pidfd_getfd(pid, fd); 742 ret = pidfd_getfd(pid, fd); 766 743 767 fdput(f); 744 fdput(f); 768 return ret; 745 return ret; 769 } 746 } 770 747
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.