~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/pid_namespace.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/pid_namespace.c (Version linux-6.12-rc7) and /kernel/pid_namespace.c (Version linux-5.12.19)


  1 // SPDX-License-Identifier: GPL-2.0-only            1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*                                                  2 /*
  3  * Pid namespaces                                   3  * Pid namespaces
  4  *                                                  4  *
  5  * Authors:                                         5  * Authors:
  6  *    (C) 2007 Pavel Emelyanov <xemul@openvz.o      6  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  7  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us      7  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  8  *     Many thanks to Oleg Nesterov for commen      8  *     Many thanks to Oleg Nesterov for comments and help
  9  *                                                  9  *
 10  */                                                10  */
 11                                                    11 
 12 #include <linux/pid.h>                             12 #include <linux/pid.h>
 13 #include <linux/pid_namespace.h>                   13 #include <linux/pid_namespace.h>
 14 #include <linux/user_namespace.h>                  14 #include <linux/user_namespace.h>
 15 #include <linux/syscalls.h>                        15 #include <linux/syscalls.h>
 16 #include <linux/cred.h>                            16 #include <linux/cred.h>
 17 #include <linux/err.h>                             17 #include <linux/err.h>
 18 #include <linux/acct.h>                            18 #include <linux/acct.h>
 19 #include <linux/slab.h>                            19 #include <linux/slab.h>
 20 #include <linux/proc_ns.h>                         20 #include <linux/proc_ns.h>
 21 #include <linux/reboot.h>                          21 #include <linux/reboot.h>
 22 #include <linux/export.h>                          22 #include <linux/export.h>
 23 #include <linux/sched/task.h>                      23 #include <linux/sched/task.h>
 24 #include <linux/sched/signal.h>                    24 #include <linux/sched/signal.h>
 25 #include <linux/idr.h>                             25 #include <linux/idr.h>
 26 #include <uapi/linux/wait.h>                   << 
 27 #include "pid_sysctl.h"                        << 
 28                                                    26 
 29 static DEFINE_MUTEX(pid_caches_mutex);             27 static DEFINE_MUTEX(pid_caches_mutex);
 30 static struct kmem_cache *pid_ns_cachep;           28 static struct kmem_cache *pid_ns_cachep;
 31 /* Write once array, filled from the beginning     29 /* Write once array, filled from the beginning. */
 32 static struct kmem_cache *pid_cache[MAX_PID_NS     30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
 33                                                    31 
 34 /*                                                 32 /*
 35  * creates the kmem cache to allocate pids fro     33  * creates the kmem cache to allocate pids from.
 36  * @level: pid namespace level                     34  * @level: pid namespace level
 37  */                                                35  */
 38                                                    36 
 39 static struct kmem_cache *create_pid_cachep(un     37 static struct kmem_cache *create_pid_cachep(unsigned int level)
 40 {                                                  38 {
 41         /* Level 0 is init_pid_ns.pid_cachep *     39         /* Level 0 is init_pid_ns.pid_cachep */
 42         struct kmem_cache **pkc = &pid_cache[l     40         struct kmem_cache **pkc = &pid_cache[level - 1];
 43         struct kmem_cache *kc;                     41         struct kmem_cache *kc;
 44         char name[4 + 10 + 1];                     42         char name[4 + 10 + 1];
 45         unsigned int len;                          43         unsigned int len;
 46                                                    44 
 47         kc = READ_ONCE(*pkc);                      45         kc = READ_ONCE(*pkc);
 48         if (kc)                                    46         if (kc)
 49                 return kc;                         47                 return kc;
 50                                                    48 
 51         snprintf(name, sizeof(name), "pid_%u",     49         snprintf(name, sizeof(name), "pid_%u", level + 1);
 52         len = struct_size_t(struct pid, number !!  50         len = sizeof(struct pid) + level * sizeof(struct upid);
 53         mutex_lock(&pid_caches_mutex);             51         mutex_lock(&pid_caches_mutex);
 54         /* Name collision forces to do allocat     52         /* Name collision forces to do allocation under mutex. */
 55         if (!*pkc)                                 53         if (!*pkc)
 56                 *pkc = kmem_cache_create(name, !!  54                 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
 57                                          SLAB_ << 
 58         mutex_unlock(&pid_caches_mutex);           55         mutex_unlock(&pid_caches_mutex);
 59         /* current can fail, but someone else      56         /* current can fail, but someone else can succeed. */
 60         return READ_ONCE(*pkc);                    57         return READ_ONCE(*pkc);
 61 }                                                  58 }
 62                                                    59 
 63 static struct ucounts *inc_pid_namespaces(stru     60 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 64 {                                                  61 {
 65         return inc_ucount(ns, current_euid(),      62         return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 66 }                                                  63 }
 67                                                    64 
 68 static void dec_pid_namespaces(struct ucounts      65 static void dec_pid_namespaces(struct ucounts *ucounts)
 69 {                                                  66 {
 70         dec_ucount(ucounts, UCOUNT_PID_NAMESPA     67         dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 71 }                                                  68 }
 72                                                    69 
 73 static struct pid_namespace *create_pid_namesp     70 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 74         struct pid_namespace *parent_pid_ns)       71         struct pid_namespace *parent_pid_ns)
 75 {                                                  72 {
 76         struct pid_namespace *ns;                  73         struct pid_namespace *ns;
 77         unsigned int level = parent_pid_ns->le     74         unsigned int level = parent_pid_ns->level + 1;
 78         struct ucounts *ucounts;                   75         struct ucounts *ucounts;
 79         int err;                                   76         int err;
 80                                                    77 
 81         err = -EINVAL;                             78         err = -EINVAL;
 82         if (!in_userns(parent_pid_ns->user_ns,     79         if (!in_userns(parent_pid_ns->user_ns, user_ns))
 83                 goto out;                          80                 goto out;
 84                                                    81 
 85         err = -ENOSPC;                             82         err = -ENOSPC;
 86         if (level > MAX_PID_NS_LEVEL)              83         if (level > MAX_PID_NS_LEVEL)
 87                 goto out;                          84                 goto out;
 88         ucounts = inc_pid_namespaces(user_ns);     85         ucounts = inc_pid_namespaces(user_ns);
 89         if (!ucounts)                              86         if (!ucounts)
 90                 goto out;                          87                 goto out;
 91                                                    88 
 92         err = -ENOMEM;                             89         err = -ENOMEM;
 93         ns = kmem_cache_zalloc(pid_ns_cachep,      90         ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 94         if (ns == NULL)                            91         if (ns == NULL)
 95                 goto out_dec;                      92                 goto out_dec;
 96                                                    93 
 97         idr_init(&ns->idr);                        94         idr_init(&ns->idr);
 98                                                    95 
 99         ns->pid_cachep = create_pid_cachep(lev     96         ns->pid_cachep = create_pid_cachep(level);
100         if (ns->pid_cachep == NULL)                97         if (ns->pid_cachep == NULL)
101                 goto out_free_idr;                 98                 goto out_free_idr;
102                                                    99 
103         err = ns_alloc_inum(&ns->ns);             100         err = ns_alloc_inum(&ns->ns);
104         if (err)                                  101         if (err)
105                 goto out_free_idr;                102                 goto out_free_idr;
106         ns->ns.ops = &pidns_operations;           103         ns->ns.ops = &pidns_operations;
107                                                   104 
108         refcount_set(&ns->ns.count, 1);           105         refcount_set(&ns->ns.count, 1);
109         ns->level = level;                        106         ns->level = level;
110         ns->parent = get_pid_ns(parent_pid_ns)    107         ns->parent = get_pid_ns(parent_pid_ns);
111         ns->user_ns = get_user_ns(user_ns);       108         ns->user_ns = get_user_ns(user_ns);
112         ns->ucounts = ucounts;                    109         ns->ucounts = ucounts;
113         ns->pid_allocated = PIDNS_ADDING;         110         ns->pid_allocated = PIDNS_ADDING;
114 #if defined(CONFIG_SYSCTL) && defined(CONFIG_M !! 111 
115         ns->memfd_noexec_scope = pidns_memfd_n << 
116 #endif                                         << 
117         return ns;                                112         return ns;
118                                                   113 
119 out_free_idr:                                     114 out_free_idr:
120         idr_destroy(&ns->idr);                    115         idr_destroy(&ns->idr);
121         kmem_cache_free(pid_ns_cachep, ns);       116         kmem_cache_free(pid_ns_cachep, ns);
122 out_dec:                                          117 out_dec:
123         dec_pid_namespaces(ucounts);              118         dec_pid_namespaces(ucounts);
124 out:                                              119 out:
125         return ERR_PTR(err);                      120         return ERR_PTR(err);
126 }                                                 121 }
127                                                   122 
128 static void delayed_free_pidns(struct rcu_head    123 static void delayed_free_pidns(struct rcu_head *p)
129 {                                                 124 {
130         struct pid_namespace *ns = container_o    125         struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
131                                                   126 
132         dec_pid_namespaces(ns->ucounts);          127         dec_pid_namespaces(ns->ucounts);
133         put_user_ns(ns->user_ns);                 128         put_user_ns(ns->user_ns);
134                                                   129 
135         kmem_cache_free(pid_ns_cachep, ns);       130         kmem_cache_free(pid_ns_cachep, ns);
136 }                                                 131 }
137                                                   132 
138 static void destroy_pid_namespace(struct pid_n    133 static void destroy_pid_namespace(struct pid_namespace *ns)
139 {                                                 134 {
140         ns_free_inum(&ns->ns);                    135         ns_free_inum(&ns->ns);
141                                                   136 
142         idr_destroy(&ns->idr);                    137         idr_destroy(&ns->idr);
143         call_rcu(&ns->rcu, delayed_free_pidns)    138         call_rcu(&ns->rcu, delayed_free_pidns);
144 }                                                 139 }
145                                                   140 
146 struct pid_namespace *copy_pid_ns(unsigned lon    141 struct pid_namespace *copy_pid_ns(unsigned long flags,
147         struct user_namespace *user_ns, struct    142         struct user_namespace *user_ns, struct pid_namespace *old_ns)
148 {                                                 143 {
149         if (!(flags & CLONE_NEWPID))              144         if (!(flags & CLONE_NEWPID))
150                 return get_pid_ns(old_ns);        145                 return get_pid_ns(old_ns);
151         if (task_active_pid_ns(current) != old    146         if (task_active_pid_ns(current) != old_ns)
152                 return ERR_PTR(-EINVAL);          147                 return ERR_PTR(-EINVAL);
153         return create_pid_namespace(user_ns, o    148         return create_pid_namespace(user_ns, old_ns);
154 }                                                 149 }
155                                                   150 
156 void put_pid_ns(struct pid_namespace *ns)         151 void put_pid_ns(struct pid_namespace *ns)
157 {                                                 152 {
158         struct pid_namespace *parent;             153         struct pid_namespace *parent;
159                                                   154 
160         while (ns != &init_pid_ns) {              155         while (ns != &init_pid_ns) {
161                 parent = ns->parent;              156                 parent = ns->parent;
162                 if (!refcount_dec_and_test(&ns    157                 if (!refcount_dec_and_test(&ns->ns.count))
163                         break;                    158                         break;
164                 destroy_pid_namespace(ns);        159                 destroy_pid_namespace(ns);
165                 ns = parent;                      160                 ns = parent;
166         }                                         161         }
167 }                                                 162 }
168 EXPORT_SYMBOL_GPL(put_pid_ns);                    163 EXPORT_SYMBOL_GPL(put_pid_ns);
169                                                   164 
170 void zap_pid_ns_processes(struct pid_namespace    165 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
171 {                                                 166 {
172         int nr;                                   167         int nr;
173         int rc;                                   168         int rc;
174         struct task_struct *task, *me = curren    169         struct task_struct *task, *me = current;
175         int init_pids = thread_group_leader(me    170         int init_pids = thread_group_leader(me) ? 1 : 2;
176         struct pid *pid;                          171         struct pid *pid;
177                                                   172 
178         /* Don't allow any more processes into    173         /* Don't allow any more processes into the pid namespace */
179         disable_pid_allocation(pid_ns);           174         disable_pid_allocation(pid_ns);
180                                                   175 
181         /*                                        176         /*
182          * Ignore SIGCHLD causing any terminat    177          * Ignore SIGCHLD causing any terminated children to autoreap.
183          * This speeds up the namespace shutdo    178          * This speeds up the namespace shutdown, plus see the comment
184          * below.                                 179          * below.
185          */                                       180          */
186         spin_lock_irq(&me->sighand->siglock);     181         spin_lock_irq(&me->sighand->siglock);
187         me->sighand->action[SIGCHLD - 1].sa.sa    182         me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
188         spin_unlock_irq(&me->sighand->siglock)    183         spin_unlock_irq(&me->sighand->siglock);
189                                                   184 
190         /*                                        185         /*
191          * The last thread in the cgroup-init     186          * The last thread in the cgroup-init thread group is terminating.
192          * Find remaining pid_ts in the namesp    187          * Find remaining pid_ts in the namespace, signal and wait for them
193          * to exit.                               188          * to exit.
194          *                                        189          *
195          * Note:  This signals each threads in    190          * Note:  This signals each threads in the namespace - even those that
196          *        belong to the same thread gr    191          *        belong to the same thread group, To avoid this, we would have
197          *        to walk the entire tasklist     192          *        to walk the entire tasklist looking a processes in this
198          *        namespace, but that could be    193          *        namespace, but that could be unnecessarily expensive if the
199          *        pid namespace has just a few    194          *        pid namespace has just a few processes. Or we need to
200          *        maintain a tasklist for each    195          *        maintain a tasklist for each pid namespace.
201          *                                        196          *
202          */                                       197          */
203         rcu_read_lock();                          198         rcu_read_lock();
204         read_lock(&tasklist_lock);                199         read_lock(&tasklist_lock);
205         nr = 2;                                   200         nr = 2;
206         idr_for_each_entry_continue(&pid_ns->i    201         idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
207                 task = pid_task(pid, PIDTYPE_P    202                 task = pid_task(pid, PIDTYPE_PID);
208                 if (task && !__fatal_signal_pe    203                 if (task && !__fatal_signal_pending(task))
209                         group_send_sig_info(SI    204                         group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
210         }                                         205         }
211         read_unlock(&tasklist_lock);              206         read_unlock(&tasklist_lock);
212         rcu_read_unlock();                        207         rcu_read_unlock();
213                                                   208 
214         /*                                        209         /*
215          * Reap the EXIT_ZOMBIE children we ha    210          * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
216          * kernel_wait4() will also block unti    211          * kernel_wait4() will also block until our children traced from the
217          * parent namespace are detached and b    212          * parent namespace are detached and become EXIT_DEAD.
218          */                                       213          */
219         do {                                      214         do {
220                 clear_thread_flag(TIF_SIGPENDI    215                 clear_thread_flag(TIF_SIGPENDING);
221                 clear_thread_flag(TIF_NOTIFY_S << 
222                 rc = kernel_wait4(-1, NULL, __    216                 rc = kernel_wait4(-1, NULL, __WALL, NULL);
223         } while (rc != -ECHILD);                  217         } while (rc != -ECHILD);
224                                                   218 
225         /*                                        219         /*
226          * kernel_wait4() misses EXIT_DEAD chi    220          * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
227          * process whose parents processes are    221          * process whose parents processes are outside of the pid
228          * namespace.  Such processes are crea    222          * namespace.  Such processes are created with setns()+fork().
229          *                                        223          *
230          * If those EXIT_ZOMBIE processes are     224          * If those EXIT_ZOMBIE processes are not reaped by their
231          * parents before their parents exit,     225          * parents before their parents exit, they will be reparented
232          * to pid_ns->child_reaper.  Thus pidn    226          * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
233          * stay valid until they all go away.     227          * stay valid until they all go away.
234          *                                        228          *
235          * The code relies on the pid_ns->chil    229          * The code relies on the pid_ns->child_reaper ignoring
236          * SIGCHILD to cause those EXIT_ZOMBIE    230          * SIGCHILD to cause those EXIT_ZOMBIE processes to be
237          * autoreaped if reparented.              231          * autoreaped if reparented.
238          *                                        232          *
239          * Semantically it is also desirable t    233          * Semantically it is also desirable to wait for EXIT_ZOMBIE
240          * processes before allowing the child    234          * processes before allowing the child_reaper to be reaped, as
241          * that gives the invariant that when     235          * that gives the invariant that when the init process of a
242          * pid namespace is reaped all of the     236          * pid namespace is reaped all of the processes in the pid
243          * namespace are gone.                    237          * namespace are gone.
244          *                                        238          *
245          * Once all of the other tasks are gon    239          * Once all of the other tasks are gone from the pid_namespace
246          * free_pid() will awaken this task.      240          * free_pid() will awaken this task.
247          */                                       241          */
248         for (;;) {                                242         for (;;) {
249                 set_current_state(TASK_INTERRU    243                 set_current_state(TASK_INTERRUPTIBLE);
250                 if (pid_ns->pid_allocated == i    244                 if (pid_ns->pid_allocated == init_pids)
251                         break;                    245                         break;
252                 schedule();                       246                 schedule();
253         }                                         247         }
254         __set_current_state(TASK_RUNNING);        248         __set_current_state(TASK_RUNNING);
255                                                   249 
256         if (pid_ns->reboot)                       250         if (pid_ns->reboot)
257                 current->signal->group_exit_co    251                 current->signal->group_exit_code = pid_ns->reboot;
258                                                   252 
259         acct_exit_ns(pid_ns);                     253         acct_exit_ns(pid_ns);
260         return;                                   254         return;
261 }                                                 255 }
262                                                   256 
263 #ifdef CONFIG_CHECKPOINT_RESTORE                  257 #ifdef CONFIG_CHECKPOINT_RESTORE
264 static int pid_ns_ctl_handler(const struct ctl !! 258 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
265                 void *buffer, size_t *lenp, lo    259                 void *buffer, size_t *lenp, loff_t *ppos)
266 {                                                 260 {
267         struct pid_namespace *pid_ns = task_ac    261         struct pid_namespace *pid_ns = task_active_pid_ns(current);
268         struct ctl_table tmp = *table;            262         struct ctl_table tmp = *table;
269         int ret, next;                            263         int ret, next;
270                                                   264 
271         if (write && !checkpoint_restore_ns_ca    265         if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
272                 return -EPERM;                    266                 return -EPERM;
273                                                   267 
                                                   >> 268         /*
                                                   >> 269          * Writing directly to ns' last_pid field is OK, since this field
                                                   >> 270          * is volatile in a living namespace anyway and a code writing to
                                                   >> 271          * it should synchronize its usage with external means.
                                                   >> 272          */
                                                   >> 273 
274         next = idr_get_cursor(&pid_ns->idr) -     274         next = idr_get_cursor(&pid_ns->idr) - 1;
275                                                   275 
276         tmp.data = &next;                         276         tmp.data = &next;
277         ret = proc_dointvec_minmax(&tmp, write    277         ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
278         if (!ret && write)                        278         if (!ret && write)
279                 idr_set_cursor(&pid_ns->idr, n    279                 idr_set_cursor(&pid_ns->idr, next + 1);
280                                                   280 
281         return ret;                               281         return ret;
282 }                                                 282 }
283                                                   283 
284 extern int pid_max;                               284 extern int pid_max;
285 static struct ctl_table pid_ns_ctl_table[] = {    285 static struct ctl_table pid_ns_ctl_table[] = {
286         {                                         286         {
287                 .procname = "ns_last_pid",        287                 .procname = "ns_last_pid",
288                 .maxlen = sizeof(int),            288                 .maxlen = sizeof(int),
289                 .mode = 0666, /* permissions a    289                 .mode = 0666, /* permissions are checked in the handler */
290                 .proc_handler = pid_ns_ctl_han    290                 .proc_handler = pid_ns_ctl_handler,
291                 .extra1 = SYSCTL_ZERO,            291                 .extra1 = SYSCTL_ZERO,
292                 .extra2 = &pid_max,               292                 .extra2 = &pid_max,
293         },                                        293         },
                                                   >> 294         { }
294 };                                                295 };
                                                   >> 296 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
295 #endif  /* CONFIG_CHECKPOINT_RESTORE */           297 #endif  /* CONFIG_CHECKPOINT_RESTORE */
296                                                   298 
297 int reboot_pid_ns(struct pid_namespace *pid_ns    299 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
298 {                                                 300 {
299         if (pid_ns == &init_pid_ns)               301         if (pid_ns == &init_pid_ns)
300                 return 0;                         302                 return 0;
301                                                   303 
302         switch (cmd) {                            304         switch (cmd) {
303         case LINUX_REBOOT_CMD_RESTART2:           305         case LINUX_REBOOT_CMD_RESTART2:
304         case LINUX_REBOOT_CMD_RESTART:            306         case LINUX_REBOOT_CMD_RESTART:
305                 pid_ns->reboot = SIGHUP;          307                 pid_ns->reboot = SIGHUP;
306                 break;                            308                 break;
307                                                   309 
308         case LINUX_REBOOT_CMD_POWER_OFF:          310         case LINUX_REBOOT_CMD_POWER_OFF:
309         case LINUX_REBOOT_CMD_HALT:               311         case LINUX_REBOOT_CMD_HALT:
310                 pid_ns->reboot = SIGINT;          312                 pid_ns->reboot = SIGINT;
311                 break;                            313                 break;
312         default:                                  314         default:
313                 return -EINVAL;                   315                 return -EINVAL;
314         }                                         316         }
315                                                   317 
316         read_lock(&tasklist_lock);                318         read_lock(&tasklist_lock);
317         send_sig(SIGKILL, pid_ns->child_reaper    319         send_sig(SIGKILL, pid_ns->child_reaper, 1);
318         read_unlock(&tasklist_lock);              320         read_unlock(&tasklist_lock);
319                                                   321 
320         do_exit(0);                               322         do_exit(0);
321                                                   323 
322         /* Not reached */                         324         /* Not reached */
323         return 0;                                 325         return 0;
324 }                                                 326 }
325                                                   327 
326 static inline struct pid_namespace *to_pid_ns(    328 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
327 {                                                 329 {
328         return container_of(ns, struct pid_nam    330         return container_of(ns, struct pid_namespace, ns);
329 }                                                 331 }
330                                                   332 
331 static struct ns_common *pidns_get(struct task    333 static struct ns_common *pidns_get(struct task_struct *task)
332 {                                                 334 {
333         struct pid_namespace *ns;                 335         struct pid_namespace *ns;
334                                                   336 
335         rcu_read_lock();                          337         rcu_read_lock();
336         ns = task_active_pid_ns(task);            338         ns = task_active_pid_ns(task);
337         if (ns)                                   339         if (ns)
338                 get_pid_ns(ns);                   340                 get_pid_ns(ns);
339         rcu_read_unlock();                        341         rcu_read_unlock();
340                                                   342 
341         return ns ? &ns->ns : NULL;               343         return ns ? &ns->ns : NULL;
342 }                                                 344 }
343                                                   345 
344 static struct ns_common *pidns_for_children_ge    346 static struct ns_common *pidns_for_children_get(struct task_struct *task)
345 {                                                 347 {
346         struct pid_namespace *ns = NULL;          348         struct pid_namespace *ns = NULL;
347                                                   349 
348         task_lock(task);                          350         task_lock(task);
349         if (task->nsproxy) {                      351         if (task->nsproxy) {
350                 ns = task->nsproxy->pid_ns_for    352                 ns = task->nsproxy->pid_ns_for_children;
351                 get_pid_ns(ns);                   353                 get_pid_ns(ns);
352         }                                         354         }
353         task_unlock(task);                        355         task_unlock(task);
354                                                   356 
355         if (ns) {                                 357         if (ns) {
356                 read_lock(&tasklist_lock);        358                 read_lock(&tasklist_lock);
357                 if (!ns->child_reaper) {          359                 if (!ns->child_reaper) {
358                         put_pid_ns(ns);           360                         put_pid_ns(ns);
359                         ns = NULL;                361                         ns = NULL;
360                 }                                 362                 }
361                 read_unlock(&tasklist_lock);      363                 read_unlock(&tasklist_lock);
362         }                                         364         }
363                                                   365 
364         return ns ? &ns->ns : NULL;               366         return ns ? &ns->ns : NULL;
365 }                                                 367 }
366                                                   368 
367 static void pidns_put(struct ns_common *ns)       369 static void pidns_put(struct ns_common *ns)
368 {                                                 370 {
369         put_pid_ns(to_pid_ns(ns));                371         put_pid_ns(to_pid_ns(ns));
370 }                                                 372 }
371                                                   373 
372 static int pidns_install(struct nsset *nsset,     374 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
373 {                                                 375 {
374         struct nsproxy *nsproxy = nsset->nspro    376         struct nsproxy *nsproxy = nsset->nsproxy;
375         struct pid_namespace *active = task_ac    377         struct pid_namespace *active = task_active_pid_ns(current);
376         struct pid_namespace *ancestor, *new =    378         struct pid_namespace *ancestor, *new = to_pid_ns(ns);
377                                                   379 
378         if (!ns_capable(new->user_ns, CAP_SYS_    380         if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
379             !ns_capable(nsset->cred->user_ns,     381             !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
380                 return -EPERM;                    382                 return -EPERM;
381                                                   383 
382         /*                                        384         /*
383          * Only allow entering the current act    385          * Only allow entering the current active pid namespace
384          * or a child of the current active pi    386          * or a child of the current active pid namespace.
385          *                                        387          *
386          * This is required for fork to return    388          * This is required for fork to return a usable pid value and
387          * this maintains the property that pr    389          * this maintains the property that processes and their
388          * children can not escape their curre    390          * children can not escape their current pid namespace.
389          */                                       391          */
390         if (new->level < active->level)           392         if (new->level < active->level)
391                 return -EINVAL;                   393                 return -EINVAL;
392                                                   394 
393         ancestor = new;                           395         ancestor = new;
394         while (ancestor->level > active->level    396         while (ancestor->level > active->level)
395                 ancestor = ancestor->parent;      397                 ancestor = ancestor->parent;
396         if (ancestor != active)                   398         if (ancestor != active)
397                 return -EINVAL;                   399                 return -EINVAL;
398                                                   400 
399         put_pid_ns(nsproxy->pid_ns_for_childre    401         put_pid_ns(nsproxy->pid_ns_for_children);
400         nsproxy->pid_ns_for_children = get_pid    402         nsproxy->pid_ns_for_children = get_pid_ns(new);
401         return 0;                                 403         return 0;
402 }                                                 404 }
403                                                   405 
404 static struct ns_common *pidns_get_parent(stru    406 static struct ns_common *pidns_get_parent(struct ns_common *ns)
405 {                                                 407 {
406         struct pid_namespace *active = task_ac    408         struct pid_namespace *active = task_active_pid_ns(current);
407         struct pid_namespace *pid_ns, *p;         409         struct pid_namespace *pid_ns, *p;
408                                                   410 
409         /* See if the parent is in the current    411         /* See if the parent is in the current namespace */
410         pid_ns = p = to_pid_ns(ns)->parent;       412         pid_ns = p = to_pid_ns(ns)->parent;
411         for (;;) {                                413         for (;;) {
412                 if (!p)                           414                 if (!p)
413                         return ERR_PTR(-EPERM)    415                         return ERR_PTR(-EPERM);
414                 if (p == active)                  416                 if (p == active)
415                         break;                    417                         break;
416                 p = p->parent;                    418                 p = p->parent;
417         }                                         419         }
418                                                   420 
419         return &get_pid_ns(pid_ns)->ns;           421         return &get_pid_ns(pid_ns)->ns;
420 }                                                 422 }
421                                                   423 
422 static struct user_namespace *pidns_owner(stru    424 static struct user_namespace *pidns_owner(struct ns_common *ns)
423 {                                                 425 {
424         return to_pid_ns(ns)->user_ns;            426         return to_pid_ns(ns)->user_ns;
425 }                                                 427 }
426                                                   428 
427 const struct proc_ns_operations pidns_operatio    429 const struct proc_ns_operations pidns_operations = {
428         .name           = "pid",                  430         .name           = "pid",
429         .type           = CLONE_NEWPID,           431         .type           = CLONE_NEWPID,
430         .get            = pidns_get,              432         .get            = pidns_get,
431         .put            = pidns_put,              433         .put            = pidns_put,
432         .install        = pidns_install,          434         .install        = pidns_install,
433         .owner          = pidns_owner,            435         .owner          = pidns_owner,
434         .get_parent     = pidns_get_parent,       436         .get_parent     = pidns_get_parent,
435 };                                                437 };
436                                                   438 
437 const struct proc_ns_operations pidns_for_chil    439 const struct proc_ns_operations pidns_for_children_operations = {
438         .name           = "pid_for_children",     440         .name           = "pid_for_children",
439         .real_ns_name   = "pid",                  441         .real_ns_name   = "pid",
440         .type           = CLONE_NEWPID,           442         .type           = CLONE_NEWPID,
441         .get            = pidns_for_children_g    443         .get            = pidns_for_children_get,
442         .put            = pidns_put,              444         .put            = pidns_put,
443         .install        = pidns_install,          445         .install        = pidns_install,
444         .owner          = pidns_owner,            446         .owner          = pidns_owner,
445         .get_parent     = pidns_get_parent,       447         .get_parent     = pidns_get_parent,
446 };                                                448 };
447                                                   449 
448 static __init int pid_namespaces_init(void)       450 static __init int pid_namespaces_init(void)
449 {                                                 451 {
450         pid_ns_cachep = KMEM_CACHE(pid_namespa !! 452         pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
451                                                   453 
452 #ifdef CONFIG_CHECKPOINT_RESTORE                  454 #ifdef CONFIG_CHECKPOINT_RESTORE
453         register_sysctl_init("kernel", pid_ns_ !! 455         register_sysctl_paths(kern_path, pid_ns_ctl_table);
454 #endif                                            456 #endif
455                                                << 
456         register_pid_ns_sysctl_table_vm();     << 
457         return 0;                                 457         return 0;
458 }                                                 458 }
459                                                   459 
460 __initcall(pid_namespaces_init);                  460 __initcall(pid_namespaces_init);
461                                                   461 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php