1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * Pid namespaces 3 * Pid namespaces 4 * 4 * 5 * Authors: 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.o 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for commen 8 * Many thanks to Oleg Nesterov for comments and help 9 * 9 * 10 */ 10 */ 11 11 12 #include <linux/pid.h> 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 25 #include <linux/idr.h> 26 #include <uapi/linux/wait.h> << 27 #include "pid_sysctl.h" << 28 26 29 static DEFINE_MUTEX(pid_caches_mutex); 27 static DEFINE_MUTEX(pid_caches_mutex); 30 static struct kmem_cache *pid_ns_cachep; 28 static struct kmem_cache *pid_ns_cachep; 31 /* Write once array, filled from the beginning 29 /* Write once array, filled from the beginning. */ 32 static struct kmem_cache *pid_cache[MAX_PID_NS 30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 33 31 34 /* 32 /* 35 * creates the kmem cache to allocate pids fro 33 * creates the kmem cache to allocate pids from. 36 * @level: pid namespace level 34 * @level: pid namespace level 37 */ 35 */ 38 36 39 static struct kmem_cache *create_pid_cachep(un 37 static struct kmem_cache *create_pid_cachep(unsigned int level) 40 { 38 { 41 /* Level 0 is init_pid_ns.pid_cachep * 39 /* Level 0 is init_pid_ns.pid_cachep */ 42 struct kmem_cache **pkc = &pid_cache[l 40 struct kmem_cache **pkc = &pid_cache[level - 1]; 43 struct kmem_cache *kc; 41 struct kmem_cache *kc; 44 char name[4 + 10 + 1]; 42 char name[4 + 10 + 1]; 45 unsigned int len; 43 unsigned int len; 46 44 47 kc = READ_ONCE(*pkc); 45 kc = READ_ONCE(*pkc); 48 if (kc) 46 if (kc) 49 return kc; 47 return kc; 50 48 51 snprintf(name, sizeof(name), "pid_%u", 49 snprintf(name, sizeof(name), "pid_%u", level + 1); 52 len = struct_size_t(struct pid, number !! 50 len = sizeof(struct pid) + level * sizeof(struct upid); 53 mutex_lock(&pid_caches_mutex); 51 mutex_lock(&pid_caches_mutex); 54 /* Name collision forces to do allocat 52 /* Name collision forces to do allocation under mutex. */ 55 if (!*pkc) 53 if (!*pkc) 56 *pkc = kmem_cache_create(name, 54 *pkc = kmem_cache_create(name, len, 0, 57 SLAB_ !! 55 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 0); 58 mutex_unlock(&pid_caches_mutex); 56 mutex_unlock(&pid_caches_mutex); 59 /* current can fail, but someone else 57 /* current can fail, but someone else can succeed. */ 60 return READ_ONCE(*pkc); 58 return READ_ONCE(*pkc); 61 } 59 } 62 60 63 static struct ucounts *inc_pid_namespaces(stru 61 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 64 { 62 { 65 return inc_ucount(ns, current_euid(), 63 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 66 } 64 } 67 65 68 static void dec_pid_namespaces(struct ucounts 66 static void dec_pid_namespaces(struct ucounts *ucounts) 69 { 67 { 70 dec_ucount(ucounts, UCOUNT_PID_NAMESPA 68 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 71 } 69 } 72 70 73 static struct pid_namespace *create_pid_namesp 71 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 74 struct pid_namespace *parent_pid_ns) 72 struct pid_namespace *parent_pid_ns) 75 { 73 { 76 struct pid_namespace *ns; 74 struct pid_namespace *ns; 77 unsigned int level = parent_pid_ns->le 75 unsigned int level = parent_pid_ns->level + 1; 78 struct ucounts *ucounts; 76 struct ucounts *ucounts; 79 int err; 77 int err; 80 78 81 err = -EINVAL; 79 err = -EINVAL; 82 if (!in_userns(parent_pid_ns->user_ns, 80 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 83 goto out; 81 goto out; 84 82 85 err = -ENOSPC; 83 err = -ENOSPC; 86 if (level > MAX_PID_NS_LEVEL) 84 if (level > MAX_PID_NS_LEVEL) 87 goto out; 85 goto out; 88 ucounts = inc_pid_namespaces(user_ns); 86 ucounts = inc_pid_namespaces(user_ns); 89 if (!ucounts) 87 if (!ucounts) 90 goto out; 88 goto out; 91 89 92 err = -ENOMEM; 90 err = -ENOMEM; 93 ns = kmem_cache_zalloc(pid_ns_cachep, 91 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 94 if (ns == NULL) 92 if (ns == NULL) 95 goto out_dec; 93 goto out_dec; 96 94 97 idr_init(&ns->idr); 95 idr_init(&ns->idr); 98 96 99 ns->pid_cachep = create_pid_cachep(lev 97 ns->pid_cachep = create_pid_cachep(level); 100 if (ns->pid_cachep == NULL) 98 if (ns->pid_cachep == NULL) 101 goto out_free_idr; 99 goto out_free_idr; 102 100 103 err = ns_alloc_inum(&ns->ns); 101 err = ns_alloc_inum(&ns->ns); 104 if (err) 102 if (err) 105 goto out_free_idr; 103 goto out_free_idr; 106 ns->ns.ops = &pidns_operations; 104 ns->ns.ops = &pidns_operations; 107 105 108 refcount_set(&ns->ns.count, 1); 106 refcount_set(&ns->ns.count, 1); 109 ns->level = level; 107 ns->level = level; 110 ns->parent = get_pid_ns(parent_pid_ns) 108 ns->parent = get_pid_ns(parent_pid_ns); 111 ns->user_ns = get_user_ns(user_ns); 109 ns->user_ns = get_user_ns(user_ns); 112 ns->ucounts = ucounts; 110 ns->ucounts = ucounts; 113 ns->pid_allocated = PIDNS_ADDING; 111 ns->pid_allocated = PIDNS_ADDING; 114 #if defined(CONFIG_SYSCTL) && defined(CONFIG_M !! 112 115 ns->memfd_noexec_scope = pidns_memfd_n << 116 #endif << 117 return ns; 113 return ns; 118 114 119 out_free_idr: 115 out_free_idr: 120 idr_destroy(&ns->idr); 116 idr_destroy(&ns->idr); 121 kmem_cache_free(pid_ns_cachep, ns); 117 kmem_cache_free(pid_ns_cachep, ns); 122 out_dec: 118 out_dec: 123 dec_pid_namespaces(ucounts); 119 dec_pid_namespaces(ucounts); 124 out: 120 out: 125 return ERR_PTR(err); 121 return ERR_PTR(err); 126 } 122 } 127 123 128 static void delayed_free_pidns(struct rcu_head 124 static void delayed_free_pidns(struct rcu_head *p) 129 { 125 { 130 struct pid_namespace *ns = container_o 126 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 131 127 132 dec_pid_namespaces(ns->ucounts); 128 dec_pid_namespaces(ns->ucounts); 133 put_user_ns(ns->user_ns); 129 put_user_ns(ns->user_ns); 134 130 135 kmem_cache_free(pid_ns_cachep, ns); 131 kmem_cache_free(pid_ns_cachep, ns); 136 } 132 } 137 133 138 static void destroy_pid_namespace(struct pid_n 134 static void destroy_pid_namespace(struct pid_namespace *ns) 139 { 135 { 140 ns_free_inum(&ns->ns); 136 ns_free_inum(&ns->ns); 141 137 142 idr_destroy(&ns->idr); 138 idr_destroy(&ns->idr); 143 call_rcu(&ns->rcu, delayed_free_pidns) 139 call_rcu(&ns->rcu, delayed_free_pidns); 144 } 140 } 145 141 146 struct pid_namespace *copy_pid_ns(unsigned lon 142 struct pid_namespace *copy_pid_ns(unsigned long flags, 147 struct user_namespace *user_ns, struct 143 struct user_namespace *user_ns, struct pid_namespace *old_ns) 148 { 144 { 149 if (!(flags & CLONE_NEWPID)) 145 if (!(flags & CLONE_NEWPID)) 150 return get_pid_ns(old_ns); 146 return get_pid_ns(old_ns); 151 if (task_active_pid_ns(current) != old 147 if (task_active_pid_ns(current) != old_ns) 152 return ERR_PTR(-EINVAL); 148 return ERR_PTR(-EINVAL); 153 return create_pid_namespace(user_ns, o 149 return create_pid_namespace(user_ns, old_ns); 154 } 150 } 155 151 156 void put_pid_ns(struct pid_namespace *ns) 152 void put_pid_ns(struct pid_namespace *ns) 157 { 153 { 158 struct pid_namespace *parent; 154 struct pid_namespace *parent; 159 155 160 while (ns != &init_pid_ns) { 156 while (ns != &init_pid_ns) { 161 parent = ns->parent; 157 parent = ns->parent; 162 if (!refcount_dec_and_test(&ns 158 if (!refcount_dec_and_test(&ns->ns.count)) 163 break; 159 break; 164 destroy_pid_namespace(ns); 160 destroy_pid_namespace(ns); 165 ns = parent; 161 ns = parent; 166 } 162 } 167 } 163 } 168 EXPORT_SYMBOL_GPL(put_pid_ns); 164 EXPORT_SYMBOL_GPL(put_pid_ns); 169 165 170 void zap_pid_ns_processes(struct pid_namespace 166 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 171 { 167 { 172 int nr; 168 int nr; 173 int rc; 169 int rc; 174 struct task_struct *task, *me = curren 170 struct task_struct *task, *me = current; 175 int init_pids = thread_group_leader(me 171 int init_pids = thread_group_leader(me) ? 1 : 2; 176 struct pid *pid; 172 struct pid *pid; 177 173 178 /* Don't allow any more processes into 174 /* Don't allow any more processes into the pid namespace */ 179 disable_pid_allocation(pid_ns); 175 disable_pid_allocation(pid_ns); 180 176 181 /* 177 /* 182 * Ignore SIGCHLD causing any terminat 178 * Ignore SIGCHLD causing any terminated children to autoreap. 183 * This speeds up the namespace shutdo 179 * This speeds up the namespace shutdown, plus see the comment 184 * below. 180 * below. 185 */ 181 */ 186 spin_lock_irq(&me->sighand->siglock); 182 spin_lock_irq(&me->sighand->siglock); 187 me->sighand->action[SIGCHLD - 1].sa.sa 183 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 188 spin_unlock_irq(&me->sighand->siglock) 184 spin_unlock_irq(&me->sighand->siglock); 189 185 190 /* 186 /* 191 * The last thread in the cgroup-init 187 * The last thread in the cgroup-init thread group is terminating. 192 * Find remaining pid_ts in the namesp 188 * Find remaining pid_ts in the namespace, signal and wait for them 193 * to exit. 189 * to exit. 194 * 190 * 195 * Note: This signals each threads in 191 * Note: This signals each threads in the namespace - even those that 196 * belong to the same thread gr 192 * belong to the same thread group, To avoid this, we would have 197 * to walk the entire tasklist 193 * to walk the entire tasklist looking a processes in this 198 * namespace, but that could be 194 * namespace, but that could be unnecessarily expensive if the 199 * pid namespace has just a few 195 * pid namespace has just a few processes. Or we need to 200 * maintain a tasklist for each 196 * maintain a tasklist for each pid namespace. 201 * 197 * 202 */ 198 */ 203 rcu_read_lock(); 199 rcu_read_lock(); 204 read_lock(&tasklist_lock); 200 read_lock(&tasklist_lock); 205 nr = 2; 201 nr = 2; 206 idr_for_each_entry_continue(&pid_ns->i 202 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 207 task = pid_task(pid, PIDTYPE_P 203 task = pid_task(pid, PIDTYPE_PID); 208 if (task && !__fatal_signal_pe 204 if (task && !__fatal_signal_pending(task)) 209 group_send_sig_info(SI 205 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 210 } 206 } 211 read_unlock(&tasklist_lock); 207 read_unlock(&tasklist_lock); 212 rcu_read_unlock(); 208 rcu_read_unlock(); 213 209 214 /* 210 /* 215 * Reap the EXIT_ZOMBIE children we ha 211 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 216 * kernel_wait4() will also block unti 212 * kernel_wait4() will also block until our children traced from the 217 * parent namespace are detached and b 213 * parent namespace are detached and become EXIT_DEAD. 218 */ 214 */ 219 do { 215 do { 220 clear_thread_flag(TIF_SIGPENDI 216 clear_thread_flag(TIF_SIGPENDING); 221 clear_thread_flag(TIF_NOTIFY_S << 222 rc = kernel_wait4(-1, NULL, __ 217 rc = kernel_wait4(-1, NULL, __WALL, NULL); 223 } while (rc != -ECHILD); 218 } while (rc != -ECHILD); 224 219 225 /* 220 /* 226 * kernel_wait4() misses EXIT_DEAD chi 221 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE 227 * process whose parents processes are 222 * process whose parents processes are outside of the pid 228 * namespace. Such processes are crea 223 * namespace. Such processes are created with setns()+fork(). 229 * 224 * 230 * If those EXIT_ZOMBIE processes are 225 * If those EXIT_ZOMBIE processes are not reaped by their 231 * parents before their parents exit, 226 * parents before their parents exit, they will be reparented 232 * to pid_ns->child_reaper. Thus pidn 227 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to 233 * stay valid until they all go away. 228 * stay valid until they all go away. 234 * 229 * 235 * The code relies on the pid_ns->chil 230 * The code relies on the pid_ns->child_reaper ignoring 236 * SIGCHILD to cause those EXIT_ZOMBIE 231 * SIGCHILD to cause those EXIT_ZOMBIE processes to be 237 * autoreaped if reparented. 232 * autoreaped if reparented. 238 * 233 * 239 * Semantically it is also desirable t 234 * Semantically it is also desirable to wait for EXIT_ZOMBIE 240 * processes before allowing the child 235 * processes before allowing the child_reaper to be reaped, as 241 * that gives the invariant that when 236 * that gives the invariant that when the init process of a 242 * pid namespace is reaped all of the 237 * pid namespace is reaped all of the processes in the pid 243 * namespace are gone. 238 * namespace are gone. 244 * 239 * 245 * Once all of the other tasks are gon 240 * Once all of the other tasks are gone from the pid_namespace 246 * free_pid() will awaken this task. 241 * free_pid() will awaken this task. 247 */ 242 */ 248 for (;;) { 243 for (;;) { 249 set_current_state(TASK_INTERRU 244 set_current_state(TASK_INTERRUPTIBLE); 250 if (pid_ns->pid_allocated == i 245 if (pid_ns->pid_allocated == init_pids) 251 break; 246 break; 252 schedule(); 247 schedule(); 253 } 248 } 254 __set_current_state(TASK_RUNNING); 249 __set_current_state(TASK_RUNNING); 255 250 256 if (pid_ns->reboot) 251 if (pid_ns->reboot) 257 current->signal->group_exit_co 252 current->signal->group_exit_code = pid_ns->reboot; 258 253 259 acct_exit_ns(pid_ns); 254 acct_exit_ns(pid_ns); 260 return; 255 return; 261 } 256 } 262 257 263 #ifdef CONFIG_CHECKPOINT_RESTORE 258 #ifdef CONFIG_CHECKPOINT_RESTORE 264 static int pid_ns_ctl_handler(const struct ctl !! 259 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 265 void *buffer, size_t *lenp, lo 260 void *buffer, size_t *lenp, loff_t *ppos) 266 { 261 { 267 struct pid_namespace *pid_ns = task_ac 262 struct pid_namespace *pid_ns = task_active_pid_ns(current); 268 struct ctl_table tmp = *table; 263 struct ctl_table tmp = *table; 269 int ret, next; 264 int ret, next; 270 265 271 if (write && !checkpoint_restore_ns_ca 266 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) 272 return -EPERM; 267 return -EPERM; 273 268 >> 269 /* >> 270 * Writing directly to ns' last_pid field is OK, since this field >> 271 * is volatile in a living namespace anyway and a code writing to >> 272 * it should synchronize its usage with external means. >> 273 */ >> 274 274 next = idr_get_cursor(&pid_ns->idr) - 275 next = idr_get_cursor(&pid_ns->idr) - 1; 275 276 276 tmp.data = &next; 277 tmp.data = &next; 277 ret = proc_dointvec_minmax(&tmp, write 278 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 278 if (!ret && write) 279 if (!ret && write) 279 idr_set_cursor(&pid_ns->idr, n 280 idr_set_cursor(&pid_ns->idr, next + 1); 280 281 281 return ret; 282 return ret; 282 } 283 } 283 284 284 extern int pid_max; 285 extern int pid_max; 285 static struct ctl_table pid_ns_ctl_table[] = { 286 static struct ctl_table pid_ns_ctl_table[] = { 286 { 287 { 287 .procname = "ns_last_pid", 288 .procname = "ns_last_pid", 288 .maxlen = sizeof(int), 289 .maxlen = sizeof(int), 289 .mode = 0666, /* permissions a 290 .mode = 0666, /* permissions are checked in the handler */ 290 .proc_handler = pid_ns_ctl_han 291 .proc_handler = pid_ns_ctl_handler, 291 .extra1 = SYSCTL_ZERO, 292 .extra1 = SYSCTL_ZERO, 292 .extra2 = &pid_max, 293 .extra2 = &pid_max, 293 }, 294 }, >> 295 { } 294 }; 296 }; >> 297 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 295 #endif /* CONFIG_CHECKPOINT_RESTORE */ 298 #endif /* CONFIG_CHECKPOINT_RESTORE */ 296 299 297 int reboot_pid_ns(struct pid_namespace *pid_ns 300 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 298 { 301 { 299 if (pid_ns == &init_pid_ns) 302 if (pid_ns == &init_pid_ns) 300 return 0; 303 return 0; 301 304 302 switch (cmd) { 305 switch (cmd) { 303 case LINUX_REBOOT_CMD_RESTART2: 306 case LINUX_REBOOT_CMD_RESTART2: 304 case LINUX_REBOOT_CMD_RESTART: 307 case LINUX_REBOOT_CMD_RESTART: 305 pid_ns->reboot = SIGHUP; 308 pid_ns->reboot = SIGHUP; 306 break; 309 break; 307 310 308 case LINUX_REBOOT_CMD_POWER_OFF: 311 case LINUX_REBOOT_CMD_POWER_OFF: 309 case LINUX_REBOOT_CMD_HALT: 312 case LINUX_REBOOT_CMD_HALT: 310 pid_ns->reboot = SIGINT; 313 pid_ns->reboot = SIGINT; 311 break; 314 break; 312 default: 315 default: 313 return -EINVAL; 316 return -EINVAL; 314 } 317 } 315 318 316 read_lock(&tasklist_lock); 319 read_lock(&tasklist_lock); 317 send_sig(SIGKILL, pid_ns->child_reaper 320 send_sig(SIGKILL, pid_ns->child_reaper, 1); 318 read_unlock(&tasklist_lock); 321 read_unlock(&tasklist_lock); 319 322 320 do_exit(0); 323 do_exit(0); 321 324 322 /* Not reached */ 325 /* Not reached */ 323 return 0; 326 return 0; 324 } 327 } 325 328 326 static inline struct pid_namespace *to_pid_ns( 329 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 327 { 330 { 328 return container_of(ns, struct pid_nam 331 return container_of(ns, struct pid_namespace, ns); 329 } 332 } 330 333 331 static struct ns_common *pidns_get(struct task 334 static struct ns_common *pidns_get(struct task_struct *task) 332 { 335 { 333 struct pid_namespace *ns; 336 struct pid_namespace *ns; 334 337 335 rcu_read_lock(); 338 rcu_read_lock(); 336 ns = task_active_pid_ns(task); 339 ns = task_active_pid_ns(task); 337 if (ns) 340 if (ns) 338 get_pid_ns(ns); 341 get_pid_ns(ns); 339 rcu_read_unlock(); 342 rcu_read_unlock(); 340 343 341 return ns ? &ns->ns : NULL; 344 return ns ? &ns->ns : NULL; 342 } 345 } 343 346 344 static struct ns_common *pidns_for_children_ge 347 static struct ns_common *pidns_for_children_get(struct task_struct *task) 345 { 348 { 346 struct pid_namespace *ns = NULL; 349 struct pid_namespace *ns = NULL; 347 350 348 task_lock(task); 351 task_lock(task); 349 if (task->nsproxy) { 352 if (task->nsproxy) { 350 ns = task->nsproxy->pid_ns_for 353 ns = task->nsproxy->pid_ns_for_children; 351 get_pid_ns(ns); 354 get_pid_ns(ns); 352 } 355 } 353 task_unlock(task); 356 task_unlock(task); 354 357 355 if (ns) { 358 if (ns) { 356 read_lock(&tasklist_lock); 359 read_lock(&tasklist_lock); 357 if (!ns->child_reaper) { 360 if (!ns->child_reaper) { 358 put_pid_ns(ns); 361 put_pid_ns(ns); 359 ns = NULL; 362 ns = NULL; 360 } 363 } 361 read_unlock(&tasklist_lock); 364 read_unlock(&tasklist_lock); 362 } 365 } 363 366 364 return ns ? &ns->ns : NULL; 367 return ns ? &ns->ns : NULL; 365 } 368 } 366 369 367 static void pidns_put(struct ns_common *ns) 370 static void pidns_put(struct ns_common *ns) 368 { 371 { 369 put_pid_ns(to_pid_ns(ns)); 372 put_pid_ns(to_pid_ns(ns)); 370 } 373 } 371 374 372 static int pidns_install(struct nsset *nsset, 375 static int pidns_install(struct nsset *nsset, struct ns_common *ns) 373 { 376 { 374 struct nsproxy *nsproxy = nsset->nspro 377 struct nsproxy *nsproxy = nsset->nsproxy; 375 struct pid_namespace *active = task_ac 378 struct pid_namespace *active = task_active_pid_ns(current); 376 struct pid_namespace *ancestor, *new = 379 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 377 380 378 if (!ns_capable(new->user_ns, CAP_SYS_ 381 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 379 !ns_capable(nsset->cred->user_ns, 382 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 380 return -EPERM; 383 return -EPERM; 381 384 382 /* 385 /* 383 * Only allow entering the current act 386 * Only allow entering the current active pid namespace 384 * or a child of the current active pi 387 * or a child of the current active pid namespace. 385 * 388 * 386 * This is required for fork to return 389 * This is required for fork to return a usable pid value and 387 * this maintains the property that pr 390 * this maintains the property that processes and their 388 * children can not escape their curre 391 * children can not escape their current pid namespace. 389 */ 392 */ 390 if (new->level < active->level) 393 if (new->level < active->level) 391 return -EINVAL; 394 return -EINVAL; 392 395 393 ancestor = new; 396 ancestor = new; 394 while (ancestor->level > active->level 397 while (ancestor->level > active->level) 395 ancestor = ancestor->parent; 398 ancestor = ancestor->parent; 396 if (ancestor != active) 399 if (ancestor != active) 397 return -EINVAL; 400 return -EINVAL; 398 401 399 put_pid_ns(nsproxy->pid_ns_for_childre 402 put_pid_ns(nsproxy->pid_ns_for_children); 400 nsproxy->pid_ns_for_children = get_pid 403 nsproxy->pid_ns_for_children = get_pid_ns(new); 401 return 0; 404 return 0; 402 } 405 } 403 406 404 static struct ns_common *pidns_get_parent(stru 407 static struct ns_common *pidns_get_parent(struct ns_common *ns) 405 { 408 { 406 struct pid_namespace *active = task_ac 409 struct pid_namespace *active = task_active_pid_ns(current); 407 struct pid_namespace *pid_ns, *p; 410 struct pid_namespace *pid_ns, *p; 408 411 409 /* See if the parent is in the current 412 /* See if the parent is in the current namespace */ 410 pid_ns = p = to_pid_ns(ns)->parent; 413 pid_ns = p = to_pid_ns(ns)->parent; 411 for (;;) { 414 for (;;) { 412 if (!p) 415 if (!p) 413 return ERR_PTR(-EPERM) 416 return ERR_PTR(-EPERM); 414 if (p == active) 417 if (p == active) 415 break; 418 break; 416 p = p->parent; 419 p = p->parent; 417 } 420 } 418 421 419 return &get_pid_ns(pid_ns)->ns; 422 return &get_pid_ns(pid_ns)->ns; 420 } 423 } 421 424 422 static struct user_namespace *pidns_owner(stru 425 static struct user_namespace *pidns_owner(struct ns_common *ns) 423 { 426 { 424 return to_pid_ns(ns)->user_ns; 427 return to_pid_ns(ns)->user_ns; 425 } 428 } 426 429 427 const struct proc_ns_operations pidns_operatio 430 const struct proc_ns_operations pidns_operations = { 428 .name = "pid", 431 .name = "pid", 429 .type = CLONE_NEWPID, 432 .type = CLONE_NEWPID, 430 .get = pidns_get, 433 .get = pidns_get, 431 .put = pidns_put, 434 .put = pidns_put, 432 .install = pidns_install, 435 .install = pidns_install, 433 .owner = pidns_owner, 436 .owner = pidns_owner, 434 .get_parent = pidns_get_parent, 437 .get_parent = pidns_get_parent, 435 }; 438 }; 436 439 437 const struct proc_ns_operations pidns_for_chil 440 const struct proc_ns_operations pidns_for_children_operations = { 438 .name = "pid_for_children", 441 .name = "pid_for_children", 439 .real_ns_name = "pid", 442 .real_ns_name = "pid", 440 .type = CLONE_NEWPID, 443 .type = CLONE_NEWPID, 441 .get = pidns_for_children_g 444 .get = pidns_for_children_get, 442 .put = pidns_put, 445 .put = pidns_put, 443 .install = pidns_install, 446 .install = pidns_install, 444 .owner = pidns_owner, 447 .owner = pidns_owner, 445 .get_parent = pidns_get_parent, 448 .get_parent = pidns_get_parent, 446 }; 449 }; 447 450 448 static __init int pid_namespaces_init(void) 451 static __init int pid_namespaces_init(void) 449 { 452 { 450 pid_ns_cachep = KMEM_CACHE(pid_namespa 453 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT); 451 454 452 #ifdef CONFIG_CHECKPOINT_RESTORE 455 #ifdef CONFIG_CHECKPOINT_RESTORE 453 register_sysctl_init("kernel", pid_ns_ !! 456 register_sysctl_paths(kern_path, pid_ns_ctl_table); 454 #endif 457 #endif 455 << 456 register_pid_ns_sysctl_table_vm(); << 457 return 0; 458 return 0; 458 } 459 } 459 460 460 __initcall(pid_namespaces_init); 461 __initcall(pid_namespaces_init); 461 462
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.