1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * Pid namespaces 3 * Pid namespaces 4 * 4 * 5 * Authors: 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.o 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for commen 8 * Many thanks to Oleg Nesterov for comments and help 9 * 9 * 10 */ 10 */ 11 11 12 #include <linux/pid.h> 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 25 #include <linux/idr.h> 26 #include <uapi/linux/wait.h> << 27 #include "pid_sysctl.h" << 28 26 29 static DEFINE_MUTEX(pid_caches_mutex); 27 static DEFINE_MUTEX(pid_caches_mutex); 30 static struct kmem_cache *pid_ns_cachep; 28 static struct kmem_cache *pid_ns_cachep; 31 /* Write once array, filled from the beginning 29 /* Write once array, filled from the beginning. */ 32 static struct kmem_cache *pid_cache[MAX_PID_NS 30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 33 31 34 /* 32 /* 35 * creates the kmem cache to allocate pids fro 33 * creates the kmem cache to allocate pids from. 36 * @level: pid namespace level 34 * @level: pid namespace level 37 */ 35 */ 38 36 39 static struct kmem_cache *create_pid_cachep(un 37 static struct kmem_cache *create_pid_cachep(unsigned int level) 40 { 38 { 41 /* Level 0 is init_pid_ns.pid_cachep * 39 /* Level 0 is init_pid_ns.pid_cachep */ 42 struct kmem_cache **pkc = &pid_cache[l 40 struct kmem_cache **pkc = &pid_cache[level - 1]; 43 struct kmem_cache *kc; 41 struct kmem_cache *kc; 44 char name[4 + 10 + 1]; 42 char name[4 + 10 + 1]; 45 unsigned int len; 43 unsigned int len; 46 44 47 kc = READ_ONCE(*pkc); 45 kc = READ_ONCE(*pkc); 48 if (kc) 46 if (kc) 49 return kc; 47 return kc; 50 48 51 snprintf(name, sizeof(name), "pid_%u", 49 snprintf(name, sizeof(name), "pid_%u", level + 1); 52 len = struct_size_t(struct pid, number !! 50 len = sizeof(struct pid) + level * sizeof(struct upid); 53 mutex_lock(&pid_caches_mutex); 51 mutex_lock(&pid_caches_mutex); 54 /* Name collision forces to do allocat 52 /* Name collision forces to do allocation under mutex. */ 55 if (!*pkc) 53 if (!*pkc) 56 *pkc = kmem_cache_create(name, !! 54 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0); 57 SLAB_ << 58 mutex_unlock(&pid_caches_mutex); 55 mutex_unlock(&pid_caches_mutex); 59 /* current can fail, but someone else 56 /* current can fail, but someone else can succeed. */ 60 return READ_ONCE(*pkc); 57 return READ_ONCE(*pkc); 61 } 58 } 62 59 63 static struct ucounts *inc_pid_namespaces(stru 60 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 64 { 61 { 65 return inc_ucount(ns, current_euid(), 62 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 66 } 63 } 67 64 68 static void dec_pid_namespaces(struct ucounts 65 static void dec_pid_namespaces(struct ucounts *ucounts) 69 { 66 { 70 dec_ucount(ucounts, UCOUNT_PID_NAMESPA 67 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 71 } 68 } 72 69 73 static struct pid_namespace *create_pid_namesp 70 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 74 struct pid_namespace *parent_pid_ns) 71 struct pid_namespace *parent_pid_ns) 75 { 72 { 76 struct pid_namespace *ns; 73 struct pid_namespace *ns; 77 unsigned int level = parent_pid_ns->le 74 unsigned int level = parent_pid_ns->level + 1; 78 struct ucounts *ucounts; 75 struct ucounts *ucounts; 79 int err; 76 int err; 80 77 81 err = -EINVAL; 78 err = -EINVAL; 82 if (!in_userns(parent_pid_ns->user_ns, 79 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 83 goto out; 80 goto out; 84 81 85 err = -ENOSPC; 82 err = -ENOSPC; 86 if (level > MAX_PID_NS_LEVEL) 83 if (level > MAX_PID_NS_LEVEL) 87 goto out; 84 goto out; 88 ucounts = inc_pid_namespaces(user_ns); 85 ucounts = inc_pid_namespaces(user_ns); 89 if (!ucounts) 86 if (!ucounts) 90 goto out; 87 goto out; 91 88 92 err = -ENOMEM; 89 err = -ENOMEM; 93 ns = kmem_cache_zalloc(pid_ns_cachep, 90 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 94 if (ns == NULL) 91 if (ns == NULL) 95 goto out_dec; 92 goto out_dec; 96 93 97 idr_init(&ns->idr); 94 idr_init(&ns->idr); 98 95 99 ns->pid_cachep = create_pid_cachep(lev 96 ns->pid_cachep = create_pid_cachep(level); 100 if (ns->pid_cachep == NULL) 97 if (ns->pid_cachep == NULL) 101 goto out_free_idr; 98 goto out_free_idr; 102 99 103 err = ns_alloc_inum(&ns->ns); 100 err = ns_alloc_inum(&ns->ns); 104 if (err) 101 if (err) 105 goto out_free_idr; 102 goto out_free_idr; 106 ns->ns.ops = &pidns_operations; 103 ns->ns.ops = &pidns_operations; 107 104 108 refcount_set(&ns->ns.count, 1); !! 105 kref_init(&ns->kref); 109 ns->level = level; 106 ns->level = level; 110 ns->parent = get_pid_ns(parent_pid_ns) 107 ns->parent = get_pid_ns(parent_pid_ns); 111 ns->user_ns = get_user_ns(user_ns); 108 ns->user_ns = get_user_ns(user_ns); 112 ns->ucounts = ucounts; 109 ns->ucounts = ucounts; 113 ns->pid_allocated = PIDNS_ADDING; 110 ns->pid_allocated = PIDNS_ADDING; 114 #if defined(CONFIG_SYSCTL) && defined(CONFIG_M !! 111 115 ns->memfd_noexec_scope = pidns_memfd_n << 116 #endif << 117 return ns; 112 return ns; 118 113 119 out_free_idr: 114 out_free_idr: 120 idr_destroy(&ns->idr); 115 idr_destroy(&ns->idr); 121 kmem_cache_free(pid_ns_cachep, ns); 116 kmem_cache_free(pid_ns_cachep, ns); 122 out_dec: 117 out_dec: 123 dec_pid_namespaces(ucounts); 118 dec_pid_namespaces(ucounts); 124 out: 119 out: 125 return ERR_PTR(err); 120 return ERR_PTR(err); 126 } 121 } 127 122 128 static void delayed_free_pidns(struct rcu_head 123 static void delayed_free_pidns(struct rcu_head *p) 129 { 124 { 130 struct pid_namespace *ns = container_o 125 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 131 126 132 dec_pid_namespaces(ns->ucounts); 127 dec_pid_namespaces(ns->ucounts); 133 put_user_ns(ns->user_ns); 128 put_user_ns(ns->user_ns); 134 129 135 kmem_cache_free(pid_ns_cachep, ns); 130 kmem_cache_free(pid_ns_cachep, ns); 136 } 131 } 137 132 138 static void destroy_pid_namespace(struct pid_n 133 static void destroy_pid_namespace(struct pid_namespace *ns) 139 { 134 { 140 ns_free_inum(&ns->ns); 135 ns_free_inum(&ns->ns); 141 136 142 idr_destroy(&ns->idr); 137 idr_destroy(&ns->idr); 143 call_rcu(&ns->rcu, delayed_free_pidns) 138 call_rcu(&ns->rcu, delayed_free_pidns); 144 } 139 } 145 140 146 struct pid_namespace *copy_pid_ns(unsigned lon 141 struct pid_namespace *copy_pid_ns(unsigned long flags, 147 struct user_namespace *user_ns, struct 142 struct user_namespace *user_ns, struct pid_namespace *old_ns) 148 { 143 { 149 if (!(flags & CLONE_NEWPID)) 144 if (!(flags & CLONE_NEWPID)) 150 return get_pid_ns(old_ns); 145 return get_pid_ns(old_ns); 151 if (task_active_pid_ns(current) != old 146 if (task_active_pid_ns(current) != old_ns) 152 return ERR_PTR(-EINVAL); 147 return ERR_PTR(-EINVAL); 153 return create_pid_namespace(user_ns, o 148 return create_pid_namespace(user_ns, old_ns); 154 } 149 } 155 150 >> 151 static void free_pid_ns(struct kref *kref) >> 152 { >> 153 struct pid_namespace *ns; >> 154 >> 155 ns = container_of(kref, struct pid_namespace, kref); >> 156 destroy_pid_namespace(ns); >> 157 } >> 158 156 void put_pid_ns(struct pid_namespace *ns) 159 void put_pid_ns(struct pid_namespace *ns) 157 { 160 { 158 struct pid_namespace *parent; 161 struct pid_namespace *parent; 159 162 160 while (ns != &init_pid_ns) { 163 while (ns != &init_pid_ns) { 161 parent = ns->parent; 164 parent = ns->parent; 162 if (!refcount_dec_and_test(&ns !! 165 if (!kref_put(&ns->kref, free_pid_ns)) 163 break; 166 break; 164 destroy_pid_namespace(ns); << 165 ns = parent; 167 ns = parent; 166 } 168 } 167 } 169 } 168 EXPORT_SYMBOL_GPL(put_pid_ns); 170 EXPORT_SYMBOL_GPL(put_pid_ns); 169 171 170 void zap_pid_ns_processes(struct pid_namespace 172 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 171 { 173 { 172 int nr; 174 int nr; 173 int rc; 175 int rc; 174 struct task_struct *task, *me = curren 176 struct task_struct *task, *me = current; 175 int init_pids = thread_group_leader(me 177 int init_pids = thread_group_leader(me) ? 1 : 2; 176 struct pid *pid; 178 struct pid *pid; 177 179 178 /* Don't allow any more processes into 180 /* Don't allow any more processes into the pid namespace */ 179 disable_pid_allocation(pid_ns); 181 disable_pid_allocation(pid_ns); 180 182 181 /* 183 /* 182 * Ignore SIGCHLD causing any terminat 184 * Ignore SIGCHLD causing any terminated children to autoreap. 183 * This speeds up the namespace shutdo 185 * This speeds up the namespace shutdown, plus see the comment 184 * below. 186 * below. 185 */ 187 */ 186 spin_lock_irq(&me->sighand->siglock); 188 spin_lock_irq(&me->sighand->siglock); 187 me->sighand->action[SIGCHLD - 1].sa.sa 189 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 188 spin_unlock_irq(&me->sighand->siglock) 190 spin_unlock_irq(&me->sighand->siglock); 189 191 190 /* 192 /* 191 * The last thread in the cgroup-init 193 * The last thread in the cgroup-init thread group is terminating. 192 * Find remaining pid_ts in the namesp 194 * Find remaining pid_ts in the namespace, signal and wait for them 193 * to exit. 195 * to exit. 194 * 196 * 195 * Note: This signals each threads in 197 * Note: This signals each threads in the namespace - even those that 196 * belong to the same thread gr 198 * belong to the same thread group, To avoid this, we would have 197 * to walk the entire tasklist 199 * to walk the entire tasklist looking a processes in this 198 * namespace, but that could be 200 * namespace, but that could be unnecessarily expensive if the 199 * pid namespace has just a few 201 * pid namespace has just a few processes. Or we need to 200 * maintain a tasklist for each 202 * maintain a tasklist for each pid namespace. 201 * 203 * 202 */ 204 */ 203 rcu_read_lock(); 205 rcu_read_lock(); 204 read_lock(&tasklist_lock); 206 read_lock(&tasklist_lock); 205 nr = 2; 207 nr = 2; 206 idr_for_each_entry_continue(&pid_ns->i 208 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 207 task = pid_task(pid, PIDTYPE_P 209 task = pid_task(pid, PIDTYPE_PID); 208 if (task && !__fatal_signal_pe 210 if (task && !__fatal_signal_pending(task)) 209 group_send_sig_info(SI 211 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 210 } 212 } 211 read_unlock(&tasklist_lock); 213 read_unlock(&tasklist_lock); 212 rcu_read_unlock(); 214 rcu_read_unlock(); 213 215 214 /* 216 /* 215 * Reap the EXIT_ZOMBIE children we ha 217 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 216 * kernel_wait4() will also block unti 218 * kernel_wait4() will also block until our children traced from the 217 * parent namespace are detached and b 219 * parent namespace are detached and become EXIT_DEAD. 218 */ 220 */ 219 do { 221 do { 220 clear_thread_flag(TIF_SIGPENDI 222 clear_thread_flag(TIF_SIGPENDING); 221 clear_thread_flag(TIF_NOTIFY_S << 222 rc = kernel_wait4(-1, NULL, __ 223 rc = kernel_wait4(-1, NULL, __WALL, NULL); 223 } while (rc != -ECHILD); 224 } while (rc != -ECHILD); 224 225 225 /* 226 /* 226 * kernel_wait4() misses EXIT_DEAD chi 227 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE 227 * process whose parents processes are 228 * process whose parents processes are outside of the pid 228 * namespace. Such processes are crea 229 * namespace. Such processes are created with setns()+fork(). 229 * 230 * 230 * If those EXIT_ZOMBIE processes are 231 * If those EXIT_ZOMBIE processes are not reaped by their 231 * parents before their parents exit, 232 * parents before their parents exit, they will be reparented 232 * to pid_ns->child_reaper. Thus pidn 233 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to 233 * stay valid until they all go away. 234 * stay valid until they all go away. 234 * 235 * 235 * The code relies on the pid_ns->chil !! 236 * The code relies on the the pid_ns->child_reaper ignoring 236 * SIGCHILD to cause those EXIT_ZOMBIE 237 * SIGCHILD to cause those EXIT_ZOMBIE processes to be 237 * autoreaped if reparented. 238 * autoreaped if reparented. 238 * 239 * 239 * Semantically it is also desirable t 240 * Semantically it is also desirable to wait for EXIT_ZOMBIE 240 * processes before allowing the child 241 * processes before allowing the child_reaper to be reaped, as 241 * that gives the invariant that when 242 * that gives the invariant that when the init process of a 242 * pid namespace is reaped all of the 243 * pid namespace is reaped all of the processes in the pid 243 * namespace are gone. 244 * namespace are gone. 244 * 245 * 245 * Once all of the other tasks are gon 246 * Once all of the other tasks are gone from the pid_namespace 246 * free_pid() will awaken this task. 247 * free_pid() will awaken this task. 247 */ 248 */ 248 for (;;) { 249 for (;;) { 249 set_current_state(TASK_INTERRU 250 set_current_state(TASK_INTERRUPTIBLE); 250 if (pid_ns->pid_allocated == i 251 if (pid_ns->pid_allocated == init_pids) 251 break; 252 break; 252 schedule(); 253 schedule(); 253 } 254 } 254 __set_current_state(TASK_RUNNING); 255 __set_current_state(TASK_RUNNING); 255 256 256 if (pid_ns->reboot) 257 if (pid_ns->reboot) 257 current->signal->group_exit_co 258 current->signal->group_exit_code = pid_ns->reboot; 258 259 259 acct_exit_ns(pid_ns); 260 acct_exit_ns(pid_ns); 260 return; 261 return; 261 } 262 } 262 263 263 #ifdef CONFIG_CHECKPOINT_RESTORE 264 #ifdef CONFIG_CHECKPOINT_RESTORE 264 static int pid_ns_ctl_handler(const struct ctl !! 265 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 265 void *buffer, size_t *lenp, lo 266 void *buffer, size_t *lenp, loff_t *ppos) 266 { 267 { 267 struct pid_namespace *pid_ns = task_ac 268 struct pid_namespace *pid_ns = task_active_pid_ns(current); 268 struct ctl_table tmp = *table; 269 struct ctl_table tmp = *table; 269 int ret, next; 270 int ret, next; 270 271 271 if (write && !checkpoint_restore_ns_ca !! 272 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 272 return -EPERM; 273 return -EPERM; 273 274 >> 275 /* >> 276 * Writing directly to ns' last_pid field is OK, since this field >> 277 * is volatile in a living namespace anyway and a code writing to >> 278 * it should synchronize its usage with external means. >> 279 */ >> 280 274 next = idr_get_cursor(&pid_ns->idr) - 281 next = idr_get_cursor(&pid_ns->idr) - 1; 275 282 276 tmp.data = &next; 283 tmp.data = &next; 277 ret = proc_dointvec_minmax(&tmp, write 284 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 278 if (!ret && write) 285 if (!ret && write) 279 idr_set_cursor(&pid_ns->idr, n 286 idr_set_cursor(&pid_ns->idr, next + 1); 280 287 281 return ret; 288 return ret; 282 } 289 } 283 290 284 extern int pid_max; 291 extern int pid_max; 285 static struct ctl_table pid_ns_ctl_table[] = { 292 static struct ctl_table pid_ns_ctl_table[] = { 286 { 293 { 287 .procname = "ns_last_pid", 294 .procname = "ns_last_pid", 288 .maxlen = sizeof(int), 295 .maxlen = sizeof(int), 289 .mode = 0666, /* permissions a 296 .mode = 0666, /* permissions are checked in the handler */ 290 .proc_handler = pid_ns_ctl_han 297 .proc_handler = pid_ns_ctl_handler, 291 .extra1 = SYSCTL_ZERO, 298 .extra1 = SYSCTL_ZERO, 292 .extra2 = &pid_max, 299 .extra2 = &pid_max, 293 }, 300 }, >> 301 { } 294 }; 302 }; >> 303 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 295 #endif /* CONFIG_CHECKPOINT_RESTORE */ 304 #endif /* CONFIG_CHECKPOINT_RESTORE */ 296 305 297 int reboot_pid_ns(struct pid_namespace *pid_ns 306 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 298 { 307 { 299 if (pid_ns == &init_pid_ns) 308 if (pid_ns == &init_pid_ns) 300 return 0; 309 return 0; 301 310 302 switch (cmd) { 311 switch (cmd) { 303 case LINUX_REBOOT_CMD_RESTART2: 312 case LINUX_REBOOT_CMD_RESTART2: 304 case LINUX_REBOOT_CMD_RESTART: 313 case LINUX_REBOOT_CMD_RESTART: 305 pid_ns->reboot = SIGHUP; 314 pid_ns->reboot = SIGHUP; 306 break; 315 break; 307 316 308 case LINUX_REBOOT_CMD_POWER_OFF: 317 case LINUX_REBOOT_CMD_POWER_OFF: 309 case LINUX_REBOOT_CMD_HALT: 318 case LINUX_REBOOT_CMD_HALT: 310 pid_ns->reboot = SIGINT; 319 pid_ns->reboot = SIGINT; 311 break; 320 break; 312 default: 321 default: 313 return -EINVAL; 322 return -EINVAL; 314 } 323 } 315 324 316 read_lock(&tasklist_lock); 325 read_lock(&tasklist_lock); 317 send_sig(SIGKILL, pid_ns->child_reaper 326 send_sig(SIGKILL, pid_ns->child_reaper, 1); 318 read_unlock(&tasklist_lock); 327 read_unlock(&tasklist_lock); 319 328 320 do_exit(0); 329 do_exit(0); 321 330 322 /* Not reached */ 331 /* Not reached */ 323 return 0; 332 return 0; 324 } 333 } 325 334 326 static inline struct pid_namespace *to_pid_ns( 335 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 327 { 336 { 328 return container_of(ns, struct pid_nam 337 return container_of(ns, struct pid_namespace, ns); 329 } 338 } 330 339 331 static struct ns_common *pidns_get(struct task 340 static struct ns_common *pidns_get(struct task_struct *task) 332 { 341 { 333 struct pid_namespace *ns; 342 struct pid_namespace *ns; 334 343 335 rcu_read_lock(); 344 rcu_read_lock(); 336 ns = task_active_pid_ns(task); 345 ns = task_active_pid_ns(task); 337 if (ns) 346 if (ns) 338 get_pid_ns(ns); 347 get_pid_ns(ns); 339 rcu_read_unlock(); 348 rcu_read_unlock(); 340 349 341 return ns ? &ns->ns : NULL; 350 return ns ? &ns->ns : NULL; 342 } 351 } 343 352 344 static struct ns_common *pidns_for_children_ge 353 static struct ns_common *pidns_for_children_get(struct task_struct *task) 345 { 354 { 346 struct pid_namespace *ns = NULL; 355 struct pid_namespace *ns = NULL; 347 356 348 task_lock(task); 357 task_lock(task); 349 if (task->nsproxy) { 358 if (task->nsproxy) { 350 ns = task->nsproxy->pid_ns_for 359 ns = task->nsproxy->pid_ns_for_children; 351 get_pid_ns(ns); 360 get_pid_ns(ns); 352 } 361 } 353 task_unlock(task); 362 task_unlock(task); 354 363 355 if (ns) { 364 if (ns) { 356 read_lock(&tasklist_lock); 365 read_lock(&tasklist_lock); 357 if (!ns->child_reaper) { 366 if (!ns->child_reaper) { 358 put_pid_ns(ns); 367 put_pid_ns(ns); 359 ns = NULL; 368 ns = NULL; 360 } 369 } 361 read_unlock(&tasklist_lock); 370 read_unlock(&tasklist_lock); 362 } 371 } 363 372 364 return ns ? &ns->ns : NULL; 373 return ns ? &ns->ns : NULL; 365 } 374 } 366 375 367 static void pidns_put(struct ns_common *ns) 376 static void pidns_put(struct ns_common *ns) 368 { 377 { 369 put_pid_ns(to_pid_ns(ns)); 378 put_pid_ns(to_pid_ns(ns)); 370 } 379 } 371 380 372 static int pidns_install(struct nsset *nsset, 381 static int pidns_install(struct nsset *nsset, struct ns_common *ns) 373 { 382 { 374 struct nsproxy *nsproxy = nsset->nspro 383 struct nsproxy *nsproxy = nsset->nsproxy; 375 struct pid_namespace *active = task_ac 384 struct pid_namespace *active = task_active_pid_ns(current); 376 struct pid_namespace *ancestor, *new = 385 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 377 386 378 if (!ns_capable(new->user_ns, CAP_SYS_ 387 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 379 !ns_capable(nsset->cred->user_ns, 388 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 380 return -EPERM; 389 return -EPERM; 381 390 382 /* 391 /* 383 * Only allow entering the current act 392 * Only allow entering the current active pid namespace 384 * or a child of the current active pi 393 * or a child of the current active pid namespace. 385 * 394 * 386 * This is required for fork to return 395 * This is required for fork to return a usable pid value and 387 * this maintains the property that pr 396 * this maintains the property that processes and their 388 * children can not escape their curre 397 * children can not escape their current pid namespace. 389 */ 398 */ 390 if (new->level < active->level) 399 if (new->level < active->level) 391 return -EINVAL; 400 return -EINVAL; 392 401 393 ancestor = new; 402 ancestor = new; 394 while (ancestor->level > active->level 403 while (ancestor->level > active->level) 395 ancestor = ancestor->parent; 404 ancestor = ancestor->parent; 396 if (ancestor != active) 405 if (ancestor != active) 397 return -EINVAL; 406 return -EINVAL; 398 407 399 put_pid_ns(nsproxy->pid_ns_for_childre 408 put_pid_ns(nsproxy->pid_ns_for_children); 400 nsproxy->pid_ns_for_children = get_pid 409 nsproxy->pid_ns_for_children = get_pid_ns(new); 401 return 0; 410 return 0; 402 } 411 } 403 412 404 static struct ns_common *pidns_get_parent(stru 413 static struct ns_common *pidns_get_parent(struct ns_common *ns) 405 { 414 { 406 struct pid_namespace *active = task_ac 415 struct pid_namespace *active = task_active_pid_ns(current); 407 struct pid_namespace *pid_ns, *p; 416 struct pid_namespace *pid_ns, *p; 408 417 409 /* See if the parent is in the current 418 /* See if the parent is in the current namespace */ 410 pid_ns = p = to_pid_ns(ns)->parent; 419 pid_ns = p = to_pid_ns(ns)->parent; 411 for (;;) { 420 for (;;) { 412 if (!p) 421 if (!p) 413 return ERR_PTR(-EPERM) 422 return ERR_PTR(-EPERM); 414 if (p == active) 423 if (p == active) 415 break; 424 break; 416 p = p->parent; 425 p = p->parent; 417 } 426 } 418 427 419 return &get_pid_ns(pid_ns)->ns; 428 return &get_pid_ns(pid_ns)->ns; 420 } 429 } 421 430 422 static struct user_namespace *pidns_owner(stru 431 static struct user_namespace *pidns_owner(struct ns_common *ns) 423 { 432 { 424 return to_pid_ns(ns)->user_ns; 433 return to_pid_ns(ns)->user_ns; 425 } 434 } 426 435 427 const struct proc_ns_operations pidns_operatio 436 const struct proc_ns_operations pidns_operations = { 428 .name = "pid", 437 .name = "pid", 429 .type = CLONE_NEWPID, 438 .type = CLONE_NEWPID, 430 .get = pidns_get, 439 .get = pidns_get, 431 .put = pidns_put, 440 .put = pidns_put, 432 .install = pidns_install, 441 .install = pidns_install, 433 .owner = pidns_owner, 442 .owner = pidns_owner, 434 .get_parent = pidns_get_parent, 443 .get_parent = pidns_get_parent, 435 }; 444 }; 436 445 437 const struct proc_ns_operations pidns_for_chil 446 const struct proc_ns_operations pidns_for_children_operations = { 438 .name = "pid_for_children", 447 .name = "pid_for_children", 439 .real_ns_name = "pid", 448 .real_ns_name = "pid", 440 .type = CLONE_NEWPID, 449 .type = CLONE_NEWPID, 441 .get = pidns_for_children_g 450 .get = pidns_for_children_get, 442 .put = pidns_put, 451 .put = pidns_put, 443 .install = pidns_install, 452 .install = pidns_install, 444 .owner = pidns_owner, 453 .owner = pidns_owner, 445 .get_parent = pidns_get_parent, 454 .get_parent = pidns_get_parent, 446 }; 455 }; 447 456 448 static __init int pid_namespaces_init(void) 457 static __init int pid_namespaces_init(void) 449 { 458 { 450 pid_ns_cachep = KMEM_CACHE(pid_namespa !! 459 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 451 460 452 #ifdef CONFIG_CHECKPOINT_RESTORE 461 #ifdef CONFIG_CHECKPOINT_RESTORE 453 register_sysctl_init("kernel", pid_ns_ !! 462 register_sysctl_paths(kern_path, pid_ns_ctl_table); 454 #endif 463 #endif 455 << 456 register_pid_ns_sysctl_table_vm(); << 457 return 0; 464 return 0; 458 } 465 } 459 466 460 __initcall(pid_namespaces_init); 467 __initcall(pid_namespaces_init); 461 468
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.