1 // SPDX-License-Identifier: GPL-2.0+ << 2 /* 1 /* 3 * Read-Copy Update mechanism for mutual exclu 2 * Read-Copy Update mechanism for mutual exclusion 4 * 3 * >> 4 * This program is free software; you can redistribute it and/or modify >> 5 * it under the terms of the GNU General Public License as published by >> 6 * the Free Software Foundation; either version 2 of the License, or >> 7 * (at your option) any later version. >> 8 * >> 9 * This program is distributed in the hope that it will be useful, >> 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of >> 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the >> 12 * GNU General Public License for more details. >> 13 * >> 14 * You should have received a copy of the GNU General Public License >> 15 * along with this program; if not, you can access it online at >> 16 * http://www.gnu.org/licenses/gpl-2.0.html. >> 17 * 5 * Copyright IBM Corporation, 2001 18 * Copyright IBM Corporation, 2001 6 * 19 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.co 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfulli 21 * Manfred Spraul <manfred@colorfullife.com> 9 * 22 * 10 * Based on the original work by Paul McKenney !! 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 11 * and inputs from Rusty Russell, Andrea Arcan 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 12 * Papers: 25 * Papers: 13 * http://www.rdrop.com/users/paulmck/paper/rc 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 14 * http://lse.sourceforge.net/locking/rclock_O 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 15 * 28 * 16 * For detailed explanation of Read-Copy Updat 29 * For detailed explanation of Read-Copy Update mechanism see - 17 * http://lse.sourceforge.net/loc 30 * http://lse.sourceforge.net/locking/rcupdate.html 18 * 31 * 19 */ 32 */ 20 #include <linux/types.h> 33 #include <linux/types.h> 21 #include <linux/kernel.h> 34 #include <linux/kernel.h> 22 #include <linux/init.h> 35 #include <linux/init.h> 23 #include <linux/spinlock.h> 36 #include <linux/spinlock.h> 24 #include <linux/smp.h> 37 #include <linux/smp.h> 25 #include <linux/interrupt.h> 38 #include <linux/interrupt.h> 26 #include <linux/sched/signal.h> 39 #include <linux/sched/signal.h> 27 #include <linux/sched/debug.h> 40 #include <linux/sched/debug.h> 28 #include <linux/torture.h> << 29 #include <linux/atomic.h> 41 #include <linux/atomic.h> 30 #include <linux/bitops.h> 42 #include <linux/bitops.h> 31 #include <linux/percpu.h> 43 #include <linux/percpu.h> 32 #include <linux/notifier.h> 44 #include <linux/notifier.h> 33 #include <linux/cpu.h> 45 #include <linux/cpu.h> 34 #include <linux/mutex.h> 46 #include <linux/mutex.h> 35 #include <linux/export.h> 47 #include <linux/export.h> 36 #include <linux/hardirq.h> 48 #include <linux/hardirq.h> 37 #include <linux/delay.h> 49 #include <linux/delay.h> 38 #include <linux/moduleparam.h> 50 #include <linux/moduleparam.h> 39 #include <linux/kthread.h> 51 #include <linux/kthread.h> 40 #include <linux/tick.h> 52 #include <linux/tick.h> 41 #include <linux/rcupdate_wait.h> 53 #include <linux/rcupdate_wait.h> 42 #include <linux/sched/isolation.h> 54 #include <linux/sched/isolation.h> 43 #include <linux/kprobes.h> << 44 #include <linux/slab.h> << 45 #include <linux/irq_work.h> << 46 #include <linux/rcupdate_trace.h> << 47 55 48 #define CREATE_TRACE_POINTS 56 #define CREATE_TRACE_POINTS 49 57 50 #include "rcu.h" 58 #include "rcu.h" 51 59 52 #ifdef MODULE_PARAM_PREFIX 60 #ifdef MODULE_PARAM_PREFIX 53 #undef MODULE_PARAM_PREFIX 61 #undef MODULE_PARAM_PREFIX 54 #endif 62 #endif 55 #define MODULE_PARAM_PREFIX "rcupdate." 63 #define MODULE_PARAM_PREFIX "rcupdate." 56 64 57 #ifndef CONFIG_TINY_RCU 65 #ifndef CONFIG_TINY_RCU 58 module_param(rcu_expedited, int, 0444); !! 66 extern int rcu_expedited; /* from sysctl */ 59 module_param(rcu_normal, int, 0444); !! 67 module_param(rcu_expedited, int, 0); 60 static int rcu_normal_after_boot = IS_ENABLED( !! 68 extern int rcu_normal; /* from sysctl */ 61 #if !defined(CONFIG_PREEMPT_RT) || defined(CON !! 69 module_param(rcu_normal, int, 0); 62 module_param(rcu_normal_after_boot, int, 0444) !! 70 static int rcu_normal_after_boot; 63 #endif !! 71 module_param(rcu_normal_after_boot, int, 0); 64 #endif /* #ifndef CONFIG_TINY_RCU */ 72 #endif /* #ifndef CONFIG_TINY_RCU */ 65 73 66 #ifdef CONFIG_DEBUG_LOCK_ALLOC 74 #ifdef CONFIG_DEBUG_LOCK_ALLOC 67 /** 75 /** 68 * rcu_read_lock_held_common() - might we be i !! 76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 69 * @ret: Best guess answer if lockdep c << 70 * << 71 * Returns true if lockdep must be ignored, in << 72 * the best guess described below. Otherwise << 73 * case ``*ret`` tells the caller nothing and << 74 * consult lockdep. << 75 * 77 * 76 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set !! 78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 77 * RCU-sched read-side critical section. In a 79 * RCU-sched read-side critical section. In absence of 78 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we ar 80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 79 * critical section unless it can prove otherw 81 * critical section unless it can prove otherwise. Note that disabling 80 * of preemption (including disabling irqs) co 82 * of preemption (including disabling irqs) counts as an RCU-sched 81 * read-side critical section. This is useful 83 * read-side critical section. This is useful for debug checks in functions 82 * that required that they be called within an 84 * that required that they be called within an RCU-sched read-side 83 * critical section. 85 * critical section. 84 * 86 * 85 * Check debug_lockdep_rcu_enabled() to preven 87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 86 * and while lockdep is disabled. 88 * and while lockdep is disabled. 87 * 89 * 88 * Note that if the CPU is in the idle loop fr !! 90 * Note that if the CPU is in the idle loop from an RCU point of 89 * that we are in the section between ct_idle_ !! 91 * view (ie: that we are in the section between rcu_idle_enter() and 90 * then rcu_read_lock_held() sets ``*ret`` to !! 92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 91 * rcu_read_lock(). The reason for this is th !! 93 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 92 * in such a section, considering these as in !! 94 * that are in such a section, considering these as in extended quiescent 93 * so such a CPU is effectively never in an RC !! 95 * state, so such a CPU is effectively never in an RCU read-side critical 94 * regardless of what RCU primitives it invoke !! 96 * section regardless of what RCU primitives it invokes. This state of 95 * required --- we need to keep an RCU-free wi !! 97 * affairs is required --- we need to keep an RCU-free window in idle 96 * possibly enter into low power mode. This wa !! 98 * where the CPU may possibly enter into low power mode. This way we can 97 * quiescent state to other CPUs that started !! 99 * notice an extended quiescent state to other CPUs that started a grace 98 * we would delay any grace period as long as !! 100 * period. Otherwise we would delay any grace period as long as we run in >> 101 * the idle task. 99 * 102 * 100 * Similarly, we avoid claiming an RCU read lo !! 103 * Similarly, we avoid claiming an SRCU read lock held if the current 101 * CPU is offline. 104 * CPU is offline. 102 */ 105 */ 103 static bool rcu_read_lock_held_common(bool *re << 104 { << 105 if (!debug_lockdep_rcu_enabled()) { << 106 *ret = true; << 107 return true; << 108 } << 109 if (!rcu_is_watching()) { << 110 *ret = false; << 111 return true; << 112 } << 113 if (!rcu_lockdep_current_cpu_online()) << 114 *ret = false; << 115 return true; << 116 } << 117 return false; << 118 } << 119 << 120 int rcu_read_lock_sched_held(void) 106 int rcu_read_lock_sched_held(void) 121 { 107 { 122 bool ret; !! 108 int lockdep_opinion = 0; 123 109 124 if (rcu_read_lock_held_common(&ret)) !! 110 if (!debug_lockdep_rcu_enabled()) 125 return ret; !! 111 return 1; 126 return lock_is_held(&rcu_sched_lock_ma !! 112 if (!rcu_is_watching()) >> 113 return 0; >> 114 if (!rcu_lockdep_current_cpu_online()) >> 115 return 0; >> 116 if (debug_locks) >> 117 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); >> 118 return lockdep_opinion || !preemptible(); 127 } 119 } 128 EXPORT_SYMBOL(rcu_read_lock_sched_held); 120 EXPORT_SYMBOL(rcu_read_lock_sched_held); 129 #endif 121 #endif 130 122 131 #ifndef CONFIG_TINY_RCU 123 #ifndef CONFIG_TINY_RCU 132 124 133 /* 125 /* 134 * Should expedited grace-period primitives al 126 * Should expedited grace-period primitives always fall back to their 135 * non-expedited counterparts? Intended for u 127 * non-expedited counterparts? Intended for use within RCU. Note 136 * that if the user specifies both rcu_expedit 128 * that if the user specifies both rcu_expedited and rcu_normal, then 137 * rcu_normal wins. (Except during the time p 129 * rcu_normal wins. (Except during the time period during boot from 138 * when the first task is spawned until the rc 130 * when the first task is spawned until the rcu_set_runtime_mode() 139 * core_initcall() is invoked, at which point 131 * core_initcall() is invoked, at which point everything is expedited.) 140 */ 132 */ 141 bool rcu_gp_is_normal(void) 133 bool rcu_gp_is_normal(void) 142 { 134 { 143 return READ_ONCE(rcu_normal) && 135 return READ_ONCE(rcu_normal) && 144 rcu_scheduler_active != RCU_SCH 136 rcu_scheduler_active != RCU_SCHEDULER_INIT; 145 } 137 } 146 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 138 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 147 139 148 static atomic_t rcu_async_hurry_nesting = ATOM << 149 /* << 150 * Should call_rcu() callbacks be processed wi << 151 * they OK being executed with arbitrary delay << 152 */ << 153 bool rcu_async_should_hurry(void) << 154 { << 155 return !IS_ENABLED(CONFIG_RCU_LAZY) || << 156 atomic_read(&rcu_async_hurry_ne << 157 } << 158 EXPORT_SYMBOL_GPL(rcu_async_should_hurry); << 159 << 160 /** << 161 * rcu_async_hurry - Make future async RCU cal << 162 * << 163 * After a call to this function, future calls << 164 * will be processed in a timely fashion. << 165 */ << 166 void rcu_async_hurry(void) << 167 { << 168 if (IS_ENABLED(CONFIG_RCU_LAZY)) << 169 atomic_inc(&rcu_async_hurry_ne << 170 } << 171 EXPORT_SYMBOL_GPL(rcu_async_hurry); << 172 << 173 /** << 174 * rcu_async_relax - Make future async RCU cal << 175 * << 176 * After a call to this function, future calls << 177 * will be processed in a lazy fashion. << 178 */ << 179 void rcu_async_relax(void) << 180 { << 181 if (IS_ENABLED(CONFIG_RCU_LAZY)) << 182 atomic_dec(&rcu_async_hurry_ne << 183 } << 184 EXPORT_SYMBOL_GPL(rcu_async_relax); << 185 << 186 static atomic_t rcu_expedited_nesting = ATOMIC 140 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); >> 141 187 /* 142 /* 188 * Should normal grace-period primitives be ex 143 * Should normal grace-period primitives be expedited? Intended for 189 * use within RCU. Note that this function ta 144 * use within RCU. Note that this function takes the rcu_expedited 190 * sysfs/boot variable and rcu_scheduler_activ 145 * sysfs/boot variable and rcu_scheduler_active into account as well 191 * as the rcu_expedite_gp() nesting. So loopi 146 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp() 192 * until rcu_gp_is_expedited() returns false i 147 * until rcu_gp_is_expedited() returns false is a -really- bad idea. 193 */ 148 */ 194 bool rcu_gp_is_expedited(void) 149 bool rcu_gp_is_expedited(void) 195 { 150 { 196 return rcu_expedited || atomic_read(&r !! 151 return rcu_expedited || atomic_read(&rcu_expedited_nesting) || >> 152 rcu_scheduler_active == RCU_SCHEDULER_INIT; 197 } 153 } 198 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 154 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 199 155 200 /** 156 /** 201 * rcu_expedite_gp - Expedite future RCU grace 157 * rcu_expedite_gp - Expedite future RCU grace periods 202 * 158 * 203 * After a call to this function, future calls 159 * After a call to this function, future calls to synchronize_rcu() and 204 * friends act as the corresponding synchroniz 160 * friends act as the corresponding synchronize_rcu_expedited() function 205 * had instead been called. 161 * had instead been called. 206 */ 162 */ 207 void rcu_expedite_gp(void) 163 void rcu_expedite_gp(void) 208 { 164 { 209 atomic_inc(&rcu_expedited_nesting); 165 atomic_inc(&rcu_expedited_nesting); 210 } 166 } 211 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 167 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 212 168 213 /** 169 /** 214 * rcu_unexpedite_gp - Cancel prior rcu_expedi 170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 215 * 171 * 216 * Undo a prior call to rcu_expedite_gp(). If 172 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 217 * rcu_expedite_gp() are undone by a subsequen 173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 218 * and if the rcu_expedited sysfs/boot paramet 174 * and if the rcu_expedited sysfs/boot parameter is not set, then all 219 * subsequent calls to synchronize_rcu() and f 175 * subsequent calls to synchronize_rcu() and friends will return to 220 * their normal non-expedited behavior. 176 * their normal non-expedited behavior. 221 */ 177 */ 222 void rcu_unexpedite_gp(void) 178 void rcu_unexpedite_gp(void) 223 { 179 { 224 atomic_dec(&rcu_expedited_nesting); 180 atomic_dec(&rcu_expedited_nesting); 225 } 181 } 226 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 182 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 227 183 228 static bool rcu_boot_ended __read_mostly; << 229 << 230 /* 184 /* 231 * Inform RCU of the end of the in-kernel boot 185 * Inform RCU of the end of the in-kernel boot sequence. 232 */ 186 */ 233 void rcu_end_inkernel_boot(void) 187 void rcu_end_inkernel_boot(void) 234 { 188 { 235 rcu_unexpedite_gp(); 189 rcu_unexpedite_gp(); 236 rcu_async_relax(); << 237 if (rcu_normal_after_boot) 190 if (rcu_normal_after_boot) 238 WRITE_ONCE(rcu_normal, 1); 191 WRITE_ONCE(rcu_normal, 1); 239 rcu_boot_ended = true; << 240 } << 241 << 242 /* << 243 * Let rcutorture know when it is OK to turn i << 244 */ << 245 bool rcu_inkernel_boot_has_ended(void) << 246 { << 247 return rcu_boot_ended; << 248 } 192 } 249 EXPORT_SYMBOL_GPL(rcu_inkernel_boot_has_ended) << 250 193 251 #endif /* #ifndef CONFIG_TINY_RCU */ 194 #endif /* #ifndef CONFIG_TINY_RCU */ 252 195 253 /* 196 /* 254 * Test each non-SRCU synchronous grace-period 197 * Test each non-SRCU synchronous grace-period wait API. This is 255 * useful just after a change in mode for thes 198 * useful just after a change in mode for these primitives, and 256 * during early boot. 199 * during early boot. 257 */ 200 */ 258 void rcu_test_sync_prims(void) 201 void rcu_test_sync_prims(void) 259 { 202 { 260 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 203 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 261 return; 204 return; 262 pr_info("Running RCU synchronous self << 263 synchronize_rcu(); 205 synchronize_rcu(); >> 206 synchronize_rcu_bh(); >> 207 synchronize_sched(); 264 synchronize_rcu_expedited(); 208 synchronize_rcu_expedited(); >> 209 synchronize_rcu_bh_expedited(); >> 210 synchronize_sched_expedited(); 265 } 211 } 266 212 267 #if !defined(CONFIG_TINY_RCU) !! 213 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) 268 214 269 /* 215 /* 270 * Switch to run-time mode once RCU has fully 216 * Switch to run-time mode once RCU has fully initialized. 271 */ 217 */ 272 static int __init rcu_set_runtime_mode(void) 218 static int __init rcu_set_runtime_mode(void) 273 { 219 { 274 rcu_test_sync_prims(); 220 rcu_test_sync_prims(); 275 rcu_scheduler_active = RCU_SCHEDULER_R 221 rcu_scheduler_active = RCU_SCHEDULER_RUNNING; 276 kfree_rcu_scheduler_running(); << 277 rcu_test_sync_prims(); 222 rcu_test_sync_prims(); 278 return 0; 223 return 0; 279 } 224 } 280 core_initcall(rcu_set_runtime_mode); 225 core_initcall(rcu_set_runtime_mode); 281 226 282 #endif /* #if !defined(CONFIG_TINY_RCU) */ !! 227 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */ 283 228 284 #ifdef CONFIG_DEBUG_LOCK_ALLOC 229 #ifdef CONFIG_DEBUG_LOCK_ALLOC 285 static struct lock_class_key rcu_lock_key; 230 static struct lock_class_key rcu_lock_key; 286 struct lockdep_map rcu_lock_map = { !! 231 struct lockdep_map rcu_lock_map = 287 .name = "rcu_read_lock", !! 232 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 288 .key = &rcu_lock_key, << 289 .wait_type_outer = LD_WAIT_FREE, << 290 .wait_type_inner = LD_WAIT_CONFIG, /* << 291 }; << 292 EXPORT_SYMBOL_GPL(rcu_lock_map); 233 EXPORT_SYMBOL_GPL(rcu_lock_map); 293 234 294 static struct lock_class_key rcu_bh_lock_key; 235 static struct lock_class_key rcu_bh_lock_key; 295 struct lockdep_map rcu_bh_lock_map = { !! 236 struct lockdep_map rcu_bh_lock_map = 296 .name = "rcu_read_lock_bh", !! 237 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 297 .key = &rcu_bh_lock_key, << 298 .wait_type_outer = LD_WAIT_FREE, << 299 .wait_type_inner = LD_WAIT_CONFIG, /* << 300 }; << 301 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 238 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 302 239 303 static struct lock_class_key rcu_sched_lock_ke 240 static struct lock_class_key rcu_sched_lock_key; 304 struct lockdep_map rcu_sched_lock_map = { !! 241 struct lockdep_map rcu_sched_lock_map = 305 .name = "rcu_read_lock_sched", !! 242 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 306 .key = &rcu_sched_lock_key, << 307 .wait_type_outer = LD_WAIT_FREE, << 308 .wait_type_inner = LD_WAIT_SPIN, << 309 }; << 310 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 243 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 311 244 312 // Tell lockdep when RCU callbacks are being i << 313 static struct lock_class_key rcu_callback_key; 245 static struct lock_class_key rcu_callback_key; 314 struct lockdep_map rcu_callback_map = 246 struct lockdep_map rcu_callback_map = 315 STATIC_LOCKDEP_MAP_INIT("rcu_callback" 247 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 316 EXPORT_SYMBOL_GPL(rcu_callback_map); 248 EXPORT_SYMBOL_GPL(rcu_callback_map); 317 249 318 noinstr int notrace debug_lockdep_rcu_enabled( !! 250 int notrace debug_lockdep_rcu_enabled(void) 319 { 251 { 320 return rcu_scheduler_active != RCU_SCH !! 252 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks && 321 current->lockdep_recursion == 0 253 current->lockdep_recursion == 0; 322 } 254 } 323 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 255 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 324 256 325 /** 257 /** 326 * rcu_read_lock_held() - might we be in RCU r 258 * rcu_read_lock_held() - might we be in RCU read-side critical section? 327 * 259 * 328 * If CONFIG_DEBUG_LOCK_ALLOC is selected, ret 260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 329 * read-side critical section. In absence of 261 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 330 * this assumes we are in an RCU read-side cri 262 * this assumes we are in an RCU read-side critical section unless it can 331 * prove otherwise. This is useful for debug 263 * prove otherwise. This is useful for debug checks in functions that 332 * require that they be called within an RCU r 264 * require that they be called within an RCU read-side critical section. 333 * 265 * 334 * Checks debug_lockdep_rcu_enabled() to preve 266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 335 * and while lockdep is disabled. 267 * and while lockdep is disabled. 336 * 268 * 337 * Note that rcu_read_lock() and the matching 269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 338 * occur in the same context, for example, it 270 * occur in the same context, for example, it is illegal to invoke 339 * rcu_read_unlock() in process context if the 271 * rcu_read_unlock() in process context if the matching rcu_read_lock() 340 * was invoked from within an irq handler. 272 * was invoked from within an irq handler. 341 * 273 * 342 * Note that rcu_read_lock() is disallowed if 274 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 343 * offline from an RCU perspective, so check f 275 * offline from an RCU perspective, so check for those as well. 344 */ 276 */ 345 int rcu_read_lock_held(void) 277 int rcu_read_lock_held(void) 346 { 278 { 347 bool ret; !! 279 if (!debug_lockdep_rcu_enabled()) 348 !! 280 return 1; 349 if (rcu_read_lock_held_common(&ret)) !! 281 if (!rcu_is_watching()) 350 return ret; !! 282 return 0; >> 283 if (!rcu_lockdep_current_cpu_online()) >> 284 return 0; 351 return lock_is_held(&rcu_lock_map); 285 return lock_is_held(&rcu_lock_map); 352 } 286 } 353 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 287 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 354 288 355 /** 289 /** 356 * rcu_read_lock_bh_held() - might we be in RC 290 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 357 * 291 * 358 * Check for bottom half being disabled, which 292 * Check for bottom half being disabled, which covers both the 359 * CONFIG_PROVE_RCU and not cases. Note that 293 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 360 * rcu_read_lock_bh(), but then later enables 294 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 361 * will show the situation. This is useful fo 295 * will show the situation. This is useful for debug checks in functions 362 * that require that they be called within an 296 * that require that they be called within an RCU read-side critical 363 * section. 297 * section. 364 * 298 * 365 * Check debug_lockdep_rcu_enabled() to preven 299 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 366 * 300 * 367 * Note that rcu_read_lock_bh() is disallowed !! 301 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 368 * offline from an RCU perspective, so check f 302 * offline from an RCU perspective, so check for those as well. 369 */ 303 */ 370 int rcu_read_lock_bh_held(void) 304 int rcu_read_lock_bh_held(void) 371 { 305 { 372 bool ret; !! 306 if (!debug_lockdep_rcu_enabled()) 373 !! 307 return 1; 374 if (rcu_read_lock_held_common(&ret)) !! 308 if (!rcu_is_watching()) 375 return ret; !! 309 return 0; >> 310 if (!rcu_lockdep_current_cpu_online()) >> 311 return 0; 376 return in_softirq() || irqs_disabled() 312 return in_softirq() || irqs_disabled(); 377 } 313 } 378 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 314 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 379 315 380 int rcu_read_lock_any_held(void) << 381 { << 382 bool ret; << 383 << 384 if (rcu_read_lock_held_common(&ret)) << 385 return ret; << 386 if (lock_is_held(&rcu_lock_map) || << 387 lock_is_held(&rcu_bh_lock_map) || << 388 lock_is_held(&rcu_sched_lock_map)) << 389 return 1; << 390 return !preemptible(); << 391 } << 392 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held); << 393 << 394 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 316 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 395 317 396 /** 318 /** 397 * wakeme_after_rcu() - Callback function to a 319 * wakeme_after_rcu() - Callback function to awaken a task after grace period 398 * @head: Pointer to rcu_head member within rc 320 * @head: Pointer to rcu_head member within rcu_synchronize structure 399 * 321 * 400 * Awaken the corresponding task now that a gr 322 * Awaken the corresponding task now that a grace period has elapsed. 401 */ 323 */ 402 void wakeme_after_rcu(struct rcu_head *head) 324 void wakeme_after_rcu(struct rcu_head *head) 403 { 325 { 404 struct rcu_synchronize *rcu; 326 struct rcu_synchronize *rcu; 405 327 406 rcu = container_of(head, struct rcu_sy 328 rcu = container_of(head, struct rcu_synchronize, head); 407 complete(&rcu->completion); 329 complete(&rcu->completion); 408 } 330 } 409 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 331 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 410 332 411 void __wait_rcu_gp(bool checktiny, unsigned in !! 333 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 412 struct rcu_synchronize *rs_ 334 struct rcu_synchronize *rs_array) 413 { 335 { 414 int i; 336 int i; 415 int j; 337 int j; 416 338 417 /* Initialize and register callbacks f !! 339 /* Initialize and register callbacks for each flavor specified. */ 418 for (i = 0; i < n; i++) { 340 for (i = 0; i < n; i++) { 419 if (checktiny && 341 if (checktiny && 420 (crcu_array[i] == call_rcu !! 342 (crcu_array[i] == call_rcu || >> 343 crcu_array[i] == call_rcu_bh)) { 421 might_sleep(); 344 might_sleep(); 422 continue; 345 continue; 423 } 346 } >> 347 init_rcu_head_on_stack(&rs_array[i].head); >> 348 init_completion(&rs_array[i].completion); 424 for (j = 0; j < i; j++) 349 for (j = 0; j < i; j++) 425 if (crcu_array[j] == c 350 if (crcu_array[j] == crcu_array[i]) 426 break; 351 break; 427 if (j == i) { !! 352 if (j == i) 428 init_rcu_head_on_stack << 429 init_completion(&rs_ar << 430 (crcu_array[i])(&rs_ar 353 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 431 } << 432 } 354 } 433 355 434 /* Wait for all callbacks to be invoke 356 /* Wait for all callbacks to be invoked. */ 435 for (i = 0; i < n; i++) { 357 for (i = 0; i < n; i++) { 436 if (checktiny && 358 if (checktiny && 437 (crcu_array[i] == call_rcu !! 359 (crcu_array[i] == call_rcu || >> 360 crcu_array[i] == call_rcu_bh)) 438 continue; 361 continue; 439 for (j = 0; j < i; j++) 362 for (j = 0; j < i; j++) 440 if (crcu_array[j] == c 363 if (crcu_array[j] == crcu_array[i]) 441 break; 364 break; 442 if (j == i) { !! 365 if (j == i) 443 wait_for_completion_st !! 366 wait_for_completion(&rs_array[i].completion); 444 destroy_rcu_head_on_st !! 367 destroy_rcu_head_on_stack(&rs_array[i].head); 445 } << 446 } 368 } 447 } 369 } 448 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 370 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 449 371 450 void finish_rcuwait(struct rcuwait *w) << 451 { << 452 rcu_assign_pointer(w->task, NULL); << 453 __set_current_state(TASK_RUNNING); << 454 } << 455 EXPORT_SYMBOL_GPL(finish_rcuwait); << 456 << 457 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 372 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 458 void init_rcu_head(struct rcu_head *head) 373 void init_rcu_head(struct rcu_head *head) 459 { 374 { 460 debug_object_init(head, &rcuhead_debug 375 debug_object_init(head, &rcuhead_debug_descr); 461 } 376 } 462 EXPORT_SYMBOL_GPL(init_rcu_head); 377 EXPORT_SYMBOL_GPL(init_rcu_head); 463 378 464 void destroy_rcu_head(struct rcu_head *head) 379 void destroy_rcu_head(struct rcu_head *head) 465 { 380 { 466 debug_object_free(head, &rcuhead_debug 381 debug_object_free(head, &rcuhead_debug_descr); 467 } 382 } 468 EXPORT_SYMBOL_GPL(destroy_rcu_head); 383 EXPORT_SYMBOL_GPL(destroy_rcu_head); 469 384 470 static bool rcuhead_is_static_object(void *add 385 static bool rcuhead_is_static_object(void *addr) 471 { 386 { 472 return true; 387 return true; 473 } 388 } 474 389 475 /** 390 /** 476 * init_rcu_head_on_stack() - initialize on-st 391 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 477 * @head: pointer to rcu_head structure to be 392 * @head: pointer to rcu_head structure to be initialized 478 * 393 * 479 * This function informs debugobjects of a new 394 * This function informs debugobjects of a new rcu_head structure that 480 * has been allocated as an auto variable on t 395 * has been allocated as an auto variable on the stack. This function 481 * is not required for rcu_head structures tha 396 * is not required for rcu_head structures that are statically defined or 482 * that are dynamically allocated on the heap. 397 * that are dynamically allocated on the heap. This function has no 483 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD k 398 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 484 */ 399 */ 485 void init_rcu_head_on_stack(struct rcu_head *h 400 void init_rcu_head_on_stack(struct rcu_head *head) 486 { 401 { 487 debug_object_init_on_stack(head, &rcuh 402 debug_object_init_on_stack(head, &rcuhead_debug_descr); 488 } 403 } 489 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 404 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 490 405 491 /** 406 /** 492 * destroy_rcu_head_on_stack() - destroy on-st 407 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 493 * @head: pointer to rcu_head structure to be 408 * @head: pointer to rcu_head structure to be initialized 494 * 409 * 495 * This function informs debugobjects that an 410 * This function informs debugobjects that an on-stack rcu_head structure 496 * is about to go out of scope. As with init_ 411 * is about to go out of scope. As with init_rcu_head_on_stack(), this 497 * function is not required for rcu_head struc 412 * function is not required for rcu_head structures that are statically 498 * defined or that are dynamically allocated o 413 * defined or that are dynamically allocated on the heap. Also as with 499 * init_rcu_head_on_stack(), this function has 414 * init_rcu_head_on_stack(), this function has no effect for 500 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel build 415 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 501 */ 416 */ 502 void destroy_rcu_head_on_stack(struct rcu_head 417 void destroy_rcu_head_on_stack(struct rcu_head *head) 503 { 418 { 504 debug_object_free(head, &rcuhead_debug 419 debug_object_free(head, &rcuhead_debug_descr); 505 } 420 } 506 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 421 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 507 422 508 const struct debug_obj_descr rcuhead_debug_des !! 423 struct debug_obj_descr rcuhead_debug_descr = { 509 .name = "rcu_head", 424 .name = "rcu_head", 510 .is_static_object = rcuhead_is_static_ 425 .is_static_object = rcuhead_is_static_object, 511 }; 426 }; 512 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 427 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 513 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 428 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 514 429 515 #if defined(CONFIG_TREE_RCU) || defined(CONFIG !! 430 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) 516 void do_trace_rcu_torture_read(const char *rcu 431 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 517 unsigned long s 432 unsigned long secs, 518 unsigned long c 433 unsigned long c_old, unsigned long c) 519 { 434 { 520 trace_rcu_torture_read(rcutorturename, 435 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 521 } 436 } 522 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 437 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 523 #else 438 #else 524 #define do_trace_rcu_torture_read(rcutorturena 439 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 525 do { } while (0) 440 do { } while (0) 526 #endif 441 #endif 527 442 528 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_ !! 443 #ifdef CONFIG_RCU_STALL_COMMON 529 /* Get rcutorture access to sched_setaffinity( << 530 long torture_sched_setaffinity(pid_t pid, cons << 531 { << 532 int ret; << 533 444 534 ret = sched_setaffinity(pid, in_mask); !! 445 #ifdef CONFIG_PROVE_RCU 535 WARN_ONCE(ret, "%s: sched_setaffinity( !! 446 #define RCU_STALL_DELAY_DELTA (5 * HZ) 536 return ret; !! 447 #else 537 } !! 448 #define RCU_STALL_DELAY_DELTA 0 538 EXPORT_SYMBOL_GPL(torture_sched_setaffinity); << 539 #endif 449 #endif 540 450 541 int rcu_cpu_stall_notifiers __read_mostly; // !! 451 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 542 EXPORT_SYMBOL_GPL(rcu_cpu_stall_notifiers); << 543 << 544 #ifdef CONFIG_RCU_STALL_COMMON << 545 int rcu_cpu_stall_ftrace_dump __read_mostly; << 546 module_param(rcu_cpu_stall_ftrace_dump, int, 0 << 547 #ifdef CONFIG_RCU_CPU_STALL_NOTIFIER << 548 module_param(rcu_cpu_stall_notifiers, int, 044 << 549 #endif // #ifdef CONFIG_RCU_CPU_STALL_NOTIFIER << 550 int rcu_cpu_stall_suppress __read_mostly; // ! << 551 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); 452 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); >> 453 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; >> 454 552 module_param(rcu_cpu_stall_suppress, int, 0644 455 module_param(rcu_cpu_stall_suppress, int, 0644); 553 int rcu_cpu_stall_timeout __read_mostly = CONF << 554 module_param(rcu_cpu_stall_timeout, int, 0644) 456 module_param(rcu_cpu_stall_timeout, int, 0644); 555 int rcu_exp_cpu_stall_timeout __read_mostly = !! 457 556 module_param(rcu_exp_cpu_stall_timeout, int, 0 !! 458 int rcu_jiffies_till_stall_check(void) 557 int rcu_cpu_stall_cputime __read_mostly = IS_E !! 459 { 558 module_param(rcu_cpu_stall_cputime, int, 0644) !! 460 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); 559 bool rcu_exp_stall_task_details __read_mostly; !! 461 560 module_param(rcu_exp_stall_task_details, bool, !! 462 /* >> 463 * Limit check must be consistent with the Kconfig limits >> 464 * for CONFIG_RCU_CPU_STALL_TIMEOUT. >> 465 */ >> 466 if (till_stall_check < 3) { >> 467 WRITE_ONCE(rcu_cpu_stall_timeout, 3); >> 468 till_stall_check = 3; >> 469 } else if (till_stall_check > 300) { >> 470 WRITE_ONCE(rcu_cpu_stall_timeout, 300); >> 471 till_stall_check = 300; >> 472 } >> 473 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; >> 474 } >> 475 >> 476 void rcu_sysrq_start(void) >> 477 { >> 478 if (!rcu_cpu_stall_suppress) >> 479 rcu_cpu_stall_suppress = 2; >> 480 } >> 481 >> 482 void rcu_sysrq_end(void) >> 483 { >> 484 if (rcu_cpu_stall_suppress == 2) >> 485 rcu_cpu_stall_suppress = 0; >> 486 } >> 487 >> 488 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) >> 489 { >> 490 rcu_cpu_stall_suppress = 1; >> 491 return NOTIFY_DONE; >> 492 } >> 493 >> 494 static struct notifier_block rcu_panic_block = { >> 495 .notifier_call = rcu_panic, >> 496 }; >> 497 >> 498 static int __init check_cpu_stall_init(void) >> 499 { >> 500 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); >> 501 return 0; >> 502 } >> 503 early_initcall(check_cpu_stall_init); >> 504 561 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 505 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 562 506 563 // Suppress boot-time RCU CPU stall warnings a !! 507 #ifdef CONFIG_TASKS_RCU 564 // warnings. Also used by rcutorture even if << 565 int rcu_cpu_stall_suppress_at_boot __read_most << 566 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_bo << 567 module_param(rcu_cpu_stall_suppress_at_boot, i << 568 508 569 /** !! 509 /* 570 * get_completed_synchronize_rcu - Return a pr !! 510 * Simple variant of RCU whose quiescent states are voluntary context switch, 571 * !! 511 * user-space execution, and idle. As such, grace periods can take one good 572 * Returns a value that will always be treated !! 512 * long time. There are no read-side primitives similar to rcu_read_lock() 573 * poll_state_synchronize_rcu() as a cookie wh !! 513 * and rcu_read_unlock() because this implementation is intended to get 574 * completed. !! 514 * the system into a safe state for some of the manipulations involved in >> 515 * tracing and the like. Finally, this implementation does not support >> 516 * high call_rcu_tasks() rates from multiple CPUs. If this is required, >> 517 * per-CPU callback lists will be needed. >> 518 */ >> 519 >> 520 /* Global list of callbacks and associated lock. */ >> 521 static struct rcu_head *rcu_tasks_cbs_head; >> 522 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; >> 523 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); >> 524 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); >> 525 >> 526 /* Track exiting tasks in order to allow them to be waited for. */ >> 527 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); >> 528 >> 529 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ >> 530 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) >> 531 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; >> 532 module_param(rcu_task_stall_timeout, int, 0644); >> 533 >> 534 static struct task_struct *rcu_tasks_kthread_ptr; >> 535 >> 536 /** >> 537 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period >> 538 * @rhp: structure to be used for queueing the RCU updates. >> 539 * @func: actual callback function to be invoked after the grace period >> 540 * >> 541 * The callback function will be invoked some time after a full grace >> 542 * period elapses, in other words after all currently executing RCU >> 543 * read-side critical sections have completed. call_rcu_tasks() assumes >> 544 * that the read-side critical sections end at a voluntary context >> 545 * switch (not a preemption!), entry into idle, or transition to usermode >> 546 * execution. As such, there are no read-side primitives analogous to >> 547 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended >> 548 * to determine that all tasks have passed through a safe state, not so >> 549 * much for data-strcuture synchronization. >> 550 * >> 551 * See the description of call_rcu() for more detailed information on >> 552 * memory ordering guarantees. >> 553 */ >> 554 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) >> 555 { >> 556 unsigned long flags; >> 557 bool needwake; >> 558 >> 559 rhp->next = NULL; >> 560 rhp->func = func; >> 561 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); >> 562 needwake = !rcu_tasks_cbs_head; >> 563 *rcu_tasks_cbs_tail = rhp; >> 564 rcu_tasks_cbs_tail = &rhp->next; >> 565 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); >> 566 /* We can't create the thread unless interrupts are enabled. */ >> 567 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) >> 568 wake_up(&rcu_tasks_cbs_wq); >> 569 } >> 570 EXPORT_SYMBOL_GPL(call_rcu_tasks); >> 571 >> 572 /** >> 573 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. >> 574 * >> 575 * Control will return to the caller some time after a full rcu-tasks >> 576 * grace period has elapsed, in other words after all currently >> 577 * executing rcu-tasks read-side critical sections have elapsed. These >> 578 * read-side critical sections are delimited by calls to schedule(), >> 579 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls >> 580 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). >> 581 * >> 582 * This is a very specialized primitive, intended only for a few uses in >> 583 * tracing and other situations requiring manipulation of function >> 584 * preambles and profiling hooks. The synchronize_rcu_tasks() function >> 585 * is not (yet) intended for heavy use from multiple CPUs. >> 586 * >> 587 * Note that this guarantee implies further memory-ordering guarantees. >> 588 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, >> 589 * each CPU is guaranteed to have executed a full memory barrier since the >> 590 * end of its last RCU-tasks read-side critical section whose beginning >> 591 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU >> 592 * having an RCU-tasks read-side critical section that extends beyond >> 593 * the return from synchronize_rcu_tasks() is guaranteed to have executed >> 594 * a full memory barrier after the beginning of synchronize_rcu_tasks() >> 595 * and before the beginning of that RCU-tasks read-side critical section. >> 596 * Note that these guarantees include CPUs that are offline, idle, or >> 597 * executing in user mode, as well as CPUs that are executing in the kernel. >> 598 * >> 599 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned >> 600 * to its caller on CPU B, then both CPU A and CPU B are guaranteed >> 601 * to have executed a full memory barrier during the execution of >> 602 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU >> 603 * (but again only if the system has more than one CPU). >> 604 */ >> 605 void synchronize_rcu_tasks(void) >> 606 { >> 607 /* Complain if the scheduler has not started. */ >> 608 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, >> 609 "synchronize_rcu_tasks called too soon"); >> 610 >> 611 /* Wait for the grace period. */ >> 612 wait_rcu_gp(call_rcu_tasks); >> 613 } >> 614 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); >> 615 >> 616 /** >> 617 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. >> 618 * >> 619 * Although the current implementation is guaranteed to wait, it is not >> 620 * obligated to, for example, if there are no pending callbacks. >> 621 */ >> 622 void rcu_barrier_tasks(void) >> 623 { >> 624 /* There is only one callback queue, so this is easy. ;-) */ >> 625 synchronize_rcu_tasks(); >> 626 } >> 627 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); >> 628 >> 629 /* See if tasks are still holding out, complain if so. */ >> 630 static void check_holdout_task(struct task_struct *t, >> 631 bool needreport, bool *firstreport) >> 632 { >> 633 int cpu; >> 634 >> 635 if (!READ_ONCE(t->rcu_tasks_holdout) || >> 636 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || >> 637 !READ_ONCE(t->on_rq) || >> 638 (IS_ENABLED(CONFIG_NO_HZ_FULL) && >> 639 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { >> 640 WRITE_ONCE(t->rcu_tasks_holdout, false); >> 641 list_del_init(&t->rcu_tasks_holdout_list); >> 642 put_task_struct(t); >> 643 return; >> 644 } >> 645 rcu_request_urgent_qs_task(t); >> 646 if (!needreport) >> 647 return; >> 648 if (*firstreport) { >> 649 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); >> 650 *firstreport = false; >> 651 } >> 652 cpu = task_cpu(t); >> 653 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", >> 654 t, ".I"[is_idle_task(t)], >> 655 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], >> 656 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, >> 657 t->rcu_tasks_idle_cpu, cpu); >> 658 sched_show_task(t); >> 659 } >> 660 >> 661 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ >> 662 static int __noreturn rcu_tasks_kthread(void *arg) >> 663 { >> 664 unsigned long flags; >> 665 struct task_struct *g, *t; >> 666 unsigned long lastreport; >> 667 struct rcu_head *list; >> 668 struct rcu_head *next; >> 669 LIST_HEAD(rcu_tasks_holdouts); >> 670 >> 671 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ >> 672 housekeeping_affine(current, HK_FLAG_RCU); >> 673 >> 674 /* >> 675 * Each pass through the following loop makes one check for >> 676 * newly arrived callbacks, and, if there are some, waits for >> 677 * one RCU-tasks grace period and then invokes the callbacks. >> 678 * This loop is terminated by the system going down. ;-) >> 679 */ >> 680 for (;;) { >> 681 >> 682 /* Pick up any new callbacks. */ >> 683 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); >> 684 list = rcu_tasks_cbs_head; >> 685 rcu_tasks_cbs_head = NULL; >> 686 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; >> 687 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); >> 688 >> 689 /* If there were none, wait a bit and start over. */ >> 690 if (!list) { >> 691 wait_event_interruptible(rcu_tasks_cbs_wq, >> 692 rcu_tasks_cbs_head); >> 693 if (!rcu_tasks_cbs_head) { >> 694 WARN_ON(signal_pending(current)); >> 695 schedule_timeout_interruptible(HZ/10); >> 696 } >> 697 continue; >> 698 } >> 699 >> 700 /* >> 701 * Wait for all pre-existing t->on_rq and t->nvcsw >> 702 * transitions to complete. Invoking synchronize_sched() >> 703 * suffices because all these transitions occur with >> 704 * interrupts disabled. Without this synchronize_sched(), >> 705 * a read-side critical section that started before the >> 706 * grace period might be incorrectly seen as having started >> 707 * after the grace period. >> 708 * >> 709 * This synchronize_sched() also dispenses with the >> 710 * need for a memory barrier on the first store to >> 711 * ->rcu_tasks_holdout, as it forces the store to happen >> 712 * after the beginning of the grace period. >> 713 */ >> 714 synchronize_sched(); >> 715 >> 716 /* >> 717 * There were callbacks, so we need to wait for an >> 718 * RCU-tasks grace period. Start off by scanning >> 719 * the task list for tasks that are not already >> 720 * voluntarily blocked. Mark these tasks and make >> 721 * a list of them in rcu_tasks_holdouts. >> 722 */ >> 723 rcu_read_lock(); >> 724 for_each_process_thread(g, t) { >> 725 if (t != current && READ_ONCE(t->on_rq) && >> 726 !is_idle_task(t)) { >> 727 get_task_struct(t); >> 728 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); >> 729 WRITE_ONCE(t->rcu_tasks_holdout, true); >> 730 list_add(&t->rcu_tasks_holdout_list, >> 731 &rcu_tasks_holdouts); >> 732 } >> 733 } >> 734 rcu_read_unlock(); >> 735 >> 736 /* >> 737 * Wait for tasks that are in the process of exiting. >> 738 * This does only part of the job, ensuring that all >> 739 * tasks that were previously exiting reach the point >> 740 * where they have disabled preemption, allowing the >> 741 * later synchronize_sched() to finish the job. >> 742 */ >> 743 synchronize_srcu(&tasks_rcu_exit_srcu); >> 744 >> 745 /* >> 746 * Each pass through the following loop scans the list >> 747 * of holdout tasks, removing any that are no longer >> 748 * holdouts. When the list is empty, we are done. >> 749 */ >> 750 lastreport = jiffies; >> 751 while (!list_empty(&rcu_tasks_holdouts)) { >> 752 bool firstreport; >> 753 bool needreport; >> 754 int rtst; >> 755 struct task_struct *t1; >> 756 >> 757 schedule_timeout_interruptible(HZ); >> 758 rtst = READ_ONCE(rcu_task_stall_timeout); >> 759 needreport = rtst > 0 && >> 760 time_after(jiffies, lastreport + rtst); >> 761 if (needreport) >> 762 lastreport = jiffies; >> 763 firstreport = true; >> 764 WARN_ON(signal_pending(current)); >> 765 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, >> 766 rcu_tasks_holdout_list) { >> 767 check_holdout_task(t, needreport, &firstreport); >> 768 cond_resched(); >> 769 } >> 770 } >> 771 >> 772 /* >> 773 * Because ->on_rq and ->nvcsw are not guaranteed >> 774 * to have a full memory barriers prior to them in the >> 775 * schedule() path, memory reordering on other CPUs could >> 776 * cause their RCU-tasks read-side critical sections to >> 777 * extend past the end of the grace period. However, >> 778 * because these ->nvcsw updates are carried out with >> 779 * interrupts disabled, we can use synchronize_sched() >> 780 * to force the needed ordering on all such CPUs. >> 781 * >> 782 * This synchronize_sched() also confines all >> 783 * ->rcu_tasks_holdout accesses to be within the grace >> 784 * period, avoiding the need for memory barriers for >> 785 * ->rcu_tasks_holdout accesses. >> 786 * >> 787 * In addition, this synchronize_sched() waits for exiting >> 788 * tasks to complete their final preempt_disable() region >> 789 * of execution, cleaning up after the synchronize_srcu() >> 790 * above. >> 791 */ >> 792 synchronize_sched(); >> 793 >> 794 /* Invoke the callbacks. */ >> 795 while (list) { >> 796 next = list->next; >> 797 local_bh_disable(); >> 798 list->func(list); >> 799 local_bh_enable(); >> 800 list = next; >> 801 cond_resched(); >> 802 } >> 803 schedule_timeout_uninterruptible(HZ/10); >> 804 } >> 805 } >> 806 >> 807 /* Spawn rcu_tasks_kthread() at core_initcall() time. */ >> 808 static int __init rcu_spawn_tasks_kthread(void) >> 809 { >> 810 struct task_struct *t; >> 811 >> 812 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); >> 813 BUG_ON(IS_ERR(t)); >> 814 smp_mb(); /* Ensure others see full kthread. */ >> 815 WRITE_ONCE(rcu_tasks_kthread_ptr, t); >> 816 return 0; >> 817 } >> 818 core_initcall(rcu_spawn_tasks_kthread); >> 819 >> 820 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ >> 821 void exit_tasks_rcu_start(void) >> 822 { >> 823 preempt_disable(); >> 824 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); >> 825 preempt_enable(); >> 826 } >> 827 >> 828 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ >> 829 void exit_tasks_rcu_finish(void) >> 830 { >> 831 preempt_disable(); >> 832 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); >> 833 preempt_enable(); >> 834 } >> 835 >> 836 #endif /* #ifdef CONFIG_TASKS_RCU */ >> 837 >> 838 #ifndef CONFIG_TINY_RCU >> 839 >> 840 /* >> 841 * Print any non-default Tasks RCU settings. 575 */ 842 */ 576 unsigned long get_completed_synchronize_rcu(vo !! 843 static void __init rcu_tasks_bootup_oddness(void) 577 { 844 { 578 return RCU_GET_STATE_COMPLETED; !! 845 #ifdef CONFIG_TASKS_RCU >> 846 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) >> 847 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); >> 848 else >> 849 pr_info("\tTasks RCU enabled.\n"); >> 850 #endif /* #ifdef CONFIG_TASKS_RCU */ 579 } 851 } 580 EXPORT_SYMBOL_GPL(get_completed_synchronize_rc !! 852 >> 853 #endif /* #ifndef CONFIG_TINY_RCU */ 581 854 582 #ifdef CONFIG_PROVE_RCU 855 #ifdef CONFIG_PROVE_RCU 583 856 584 /* 857 /* 585 * Early boot self test parameters. !! 858 * Early boot self test parameters, one for each flavor 586 */ 859 */ 587 static bool rcu_self_test; 860 static bool rcu_self_test; >> 861 static bool rcu_self_test_bh; >> 862 static bool rcu_self_test_sched; >> 863 588 module_param(rcu_self_test, bool, 0444); 864 module_param(rcu_self_test, bool, 0444); >> 865 module_param(rcu_self_test_bh, bool, 0444); >> 866 module_param(rcu_self_test_sched, bool, 0444); 589 867 590 static int rcu_self_test_counter; 868 static int rcu_self_test_counter; 591 869 592 static void test_callback(struct rcu_head *r) 870 static void test_callback(struct rcu_head *r) 593 { 871 { 594 rcu_self_test_counter++; 872 rcu_self_test_counter++; 595 pr_info("RCU test callback executed %d 873 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 596 } 874 } 597 875 598 DEFINE_STATIC_SRCU(early_srcu); << 599 static unsigned long early_srcu_cookie; << 600 << 601 struct early_boot_kfree_rcu { << 602 struct rcu_head rh; << 603 }; << 604 << 605 static void early_boot_test_call_rcu(void) 876 static void early_boot_test_call_rcu(void) 606 { 877 { 607 static struct rcu_head head; 878 static struct rcu_head head; 608 int idx; << 609 static struct rcu_head shead; << 610 struct early_boot_kfree_rcu *rhp; << 611 879 612 idx = srcu_down_read(&early_srcu); << 613 srcu_up_read(&early_srcu, idx); << 614 call_rcu(&head, test_callback); 880 call_rcu(&head, test_callback); 615 early_srcu_cookie = start_poll_synchro !! 881 } 616 call_srcu(&early_srcu, &shead, test_ca !! 882 617 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL !! 883 static void early_boot_test_call_rcu_bh(void) 618 if (!WARN_ON_ONCE(!rhp)) !! 884 { 619 kfree_rcu(rhp, rh); !! 885 static struct rcu_head head; >> 886 >> 887 call_rcu_bh(&head, test_callback); >> 888 } >> 889 >> 890 static void early_boot_test_call_rcu_sched(void) >> 891 { >> 892 static struct rcu_head head; >> 893 >> 894 call_rcu_sched(&head, test_callback); 620 } 895 } 621 896 622 void rcu_early_boot_tests(void) 897 void rcu_early_boot_tests(void) 623 { 898 { 624 pr_info("Running RCU self tests\n"); 899 pr_info("Running RCU self tests\n"); 625 900 626 if (rcu_self_test) 901 if (rcu_self_test) 627 early_boot_test_call_rcu(); 902 early_boot_test_call_rcu(); >> 903 if (rcu_self_test_bh) >> 904 early_boot_test_call_rcu_bh(); >> 905 if (rcu_self_test_sched) >> 906 early_boot_test_call_rcu_sched(); 628 rcu_test_sync_prims(); 907 rcu_test_sync_prims(); 629 } 908 } 630 909 631 static int rcu_verify_early_boot_tests(void) 910 static int rcu_verify_early_boot_tests(void) 632 { 911 { 633 int ret = 0; 912 int ret = 0; 634 int early_boot_test_counter = 0; 913 int early_boot_test_counter = 0; 635 914 636 if (rcu_self_test) { 915 if (rcu_self_test) { 637 early_boot_test_counter++; 916 early_boot_test_counter++; 638 rcu_barrier(); 917 rcu_barrier(); >> 918 } >> 919 if (rcu_self_test_bh) { 639 early_boot_test_counter++; 920 early_boot_test_counter++; 640 srcu_barrier(&early_srcu); !! 921 rcu_barrier_bh(); 641 WARN_ON_ONCE(!poll_state_synch << 642 cleanup_srcu_struct(&early_src << 643 } 922 } >> 923 if (rcu_self_test_sched) { >> 924 early_boot_test_counter++; >> 925 rcu_barrier_sched(); >> 926 } >> 927 644 if (rcu_self_test_counter != early_boo 928 if (rcu_self_test_counter != early_boot_test_counter) { 645 WARN_ON(1); 929 WARN_ON(1); 646 ret = -1; 930 ret = -1; 647 } 931 } 648 932 649 return ret; 933 return ret; 650 } 934 } 651 late_initcall(rcu_verify_early_boot_tests); 935 late_initcall(rcu_verify_early_boot_tests); 652 #else 936 #else 653 void rcu_early_boot_tests(void) {} 937 void rcu_early_boot_tests(void) {} 654 #endif /* CONFIG_PROVE_RCU */ 938 #endif /* CONFIG_PROVE_RCU */ 655 << 656 #include "tasks.h" << 657 939 658 #ifndef CONFIG_TINY_RCU 940 #ifndef CONFIG_TINY_RCU 659 941 660 /* 942 /* 661 * Print any significant non-default boot-time 943 * Print any significant non-default boot-time settings. 662 */ 944 */ 663 void __init rcupdate_announce_bootup_oddness(v 945 void __init rcupdate_announce_bootup_oddness(void) 664 { 946 { 665 if (rcu_normal) 947 if (rcu_normal) 666 pr_info("\tNo expedited grace 948 pr_info("\tNo expedited grace period (rcu_normal).\n"); 667 else if (rcu_normal_after_boot) 949 else if (rcu_normal_after_boot) 668 pr_info("\tNo expedited grace 950 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n"); 669 else if (rcu_expedited) 951 else if (rcu_expedited) 670 pr_info("\tAll grace periods a 952 pr_info("\tAll grace periods are expedited (rcu_expedited).\n"); 671 if (rcu_cpu_stall_suppress) 953 if (rcu_cpu_stall_suppress) 672 pr_info("\tRCU CPU stall warni 954 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n"); 673 if (rcu_cpu_stall_timeout != CONFIG_RC 955 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT) 674 pr_info("\tRCU CPU stall warni 956 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout); 675 rcu_tasks_bootup_oddness(); 957 rcu_tasks_bootup_oddness(); 676 } 958 } 677 959 678 #endif /* #ifndef CONFIG_TINY_RCU */ 960 #endif /* #ifndef CONFIG_TINY_RCU */ 679 961
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.