1 // SPDX-License-Identifier: GPL-2.0+ 1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 2 /* 3 * Read-Copy Update mechanism for mutual exclu 3 * Read-Copy Update mechanism for mutual exclusion 4 * 4 * 5 * Copyright IBM Corporation, 2001 5 * Copyright IBM Corporation, 2001 6 * 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.co 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfulli 8 * Manfred Spraul <manfred@colorfullife.com> 9 * 9 * 10 * Based on the original work by Paul McKenney 10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 11 * and inputs from Rusty Russell, Andrea Arcan 11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 12 * Papers: 12 * Papers: 13 * http://www.rdrop.com/users/paulmck/paper/rc 13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 14 * http://lse.sourceforge.net/locking/rclock_O 14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 15 * 15 * 16 * For detailed explanation of Read-Copy Updat 16 * For detailed explanation of Read-Copy Update mechanism see - 17 * http://lse.sourceforge.net/loc 17 * http://lse.sourceforge.net/locking/rcupdate.html 18 * 18 * 19 */ 19 */ 20 #include <linux/types.h> 20 #include <linux/types.h> 21 #include <linux/kernel.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 24 #include <linux/smp.h> 25 #include <linux/interrupt.h> 25 #include <linux/interrupt.h> 26 #include <linux/sched/signal.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/debug.h> 27 #include <linux/sched/debug.h> 28 #include <linux/torture.h> << 29 #include <linux/atomic.h> 28 #include <linux/atomic.h> 30 #include <linux/bitops.h> 29 #include <linux/bitops.h> 31 #include <linux/percpu.h> 30 #include <linux/percpu.h> 32 #include <linux/notifier.h> 31 #include <linux/notifier.h> 33 #include <linux/cpu.h> 32 #include <linux/cpu.h> 34 #include <linux/mutex.h> 33 #include <linux/mutex.h> 35 #include <linux/export.h> 34 #include <linux/export.h> 36 #include <linux/hardirq.h> 35 #include <linux/hardirq.h> 37 #include <linux/delay.h> 36 #include <linux/delay.h> 38 #include <linux/moduleparam.h> 37 #include <linux/moduleparam.h> 39 #include <linux/kthread.h> 38 #include <linux/kthread.h> 40 #include <linux/tick.h> 39 #include <linux/tick.h> 41 #include <linux/rcupdate_wait.h> 40 #include <linux/rcupdate_wait.h> 42 #include <linux/sched/isolation.h> 41 #include <linux/sched/isolation.h> 43 #include <linux/kprobes.h> 42 #include <linux/kprobes.h> 44 #include <linux/slab.h> 43 #include <linux/slab.h> 45 #include <linux/irq_work.h> << 46 #include <linux/rcupdate_trace.h> << 47 44 48 #define CREATE_TRACE_POINTS 45 #define CREATE_TRACE_POINTS 49 46 50 #include "rcu.h" 47 #include "rcu.h" 51 48 52 #ifdef MODULE_PARAM_PREFIX 49 #ifdef MODULE_PARAM_PREFIX 53 #undef MODULE_PARAM_PREFIX 50 #undef MODULE_PARAM_PREFIX 54 #endif 51 #endif 55 #define MODULE_PARAM_PREFIX "rcupdate." 52 #define MODULE_PARAM_PREFIX "rcupdate." 56 53 57 #ifndef CONFIG_TINY_RCU 54 #ifndef CONFIG_TINY_RCU 58 module_param(rcu_expedited, int, 0444); !! 55 module_param(rcu_expedited, int, 0); 59 module_param(rcu_normal, int, 0444); !! 56 module_param(rcu_normal, int, 0); 60 static int rcu_normal_after_boot = IS_ENABLED( !! 57 static int rcu_normal_after_boot; 61 #if !defined(CONFIG_PREEMPT_RT) || defined(CON !! 58 module_param(rcu_normal_after_boot, int, 0); 62 module_param(rcu_normal_after_boot, int, 0444) << 63 #endif << 64 #endif /* #ifndef CONFIG_TINY_RCU */ 59 #endif /* #ifndef CONFIG_TINY_RCU */ 65 60 66 #ifdef CONFIG_DEBUG_LOCK_ALLOC 61 #ifdef CONFIG_DEBUG_LOCK_ALLOC 67 /** 62 /** 68 * rcu_read_lock_held_common() - might we be i 63 * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section? 69 * @ret: Best guess answer if lockdep c 64 * @ret: Best guess answer if lockdep cannot be relied on 70 * 65 * 71 * Returns true if lockdep must be ignored, in !! 66 * Returns true if lockdep must be ignored, in which case *ret contains 72 * the best guess described below. Otherwise 67 * the best guess described below. Otherwise returns false, in which 73 * case ``*ret`` tells the caller nothing and !! 68 * case *ret tells the caller nothing and the caller should instead 74 * consult lockdep. 69 * consult lockdep. 75 * 70 * 76 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set !! 71 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an 77 * RCU-sched read-side critical section. In a 72 * RCU-sched read-side critical section. In absence of 78 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we ar 73 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 79 * critical section unless it can prove otherw 74 * critical section unless it can prove otherwise. Note that disabling 80 * of preemption (including disabling irqs) co 75 * of preemption (including disabling irqs) counts as an RCU-sched 81 * read-side critical section. This is useful 76 * read-side critical section. This is useful for debug checks in functions 82 * that required that they be called within an 77 * that required that they be called within an RCU-sched read-side 83 * critical section. 78 * critical section. 84 * 79 * 85 * Check debug_lockdep_rcu_enabled() to preven 80 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 86 * and while lockdep is disabled. 81 * and while lockdep is disabled. 87 * 82 * 88 * Note that if the CPU is in the idle loop fr 83 * Note that if the CPU is in the idle loop from an RCU point of view (ie: 89 * that we are in the section between ct_idle_ !! 84 * that we are in the section between rcu_idle_enter() and rcu_idle_exit()) 90 * then rcu_read_lock_held() sets ``*ret`` to !! 85 * then rcu_read_lock_held() sets *ret to false even if the CPU did an 91 * rcu_read_lock(). The reason for this is th 86 * rcu_read_lock(). The reason for this is that RCU ignores CPUs that are 92 * in such a section, considering these as in 87 * in such a section, considering these as in extended quiescent state, 93 * so such a CPU is effectively never in an RC 88 * so such a CPU is effectively never in an RCU read-side critical section 94 * regardless of what RCU primitives it invoke 89 * regardless of what RCU primitives it invokes. This state of affairs is 95 * required --- we need to keep an RCU-free wi 90 * required --- we need to keep an RCU-free window in idle where the CPU may 96 * possibly enter into low power mode. This wa 91 * possibly enter into low power mode. This way we can notice an extended 97 * quiescent state to other CPUs that started 92 * quiescent state to other CPUs that started a grace period. Otherwise 98 * we would delay any grace period as long as 93 * we would delay any grace period as long as we run in the idle task. 99 * 94 * 100 * Similarly, we avoid claiming an RCU read lo 95 * Similarly, we avoid claiming an RCU read lock held if the current 101 * CPU is offline. 96 * CPU is offline. 102 */ 97 */ 103 static bool rcu_read_lock_held_common(bool *re 98 static bool rcu_read_lock_held_common(bool *ret) 104 { 99 { 105 if (!debug_lockdep_rcu_enabled()) { 100 if (!debug_lockdep_rcu_enabled()) { 106 *ret = true; !! 101 *ret = 1; 107 return true; 102 return true; 108 } 103 } 109 if (!rcu_is_watching()) { 104 if (!rcu_is_watching()) { 110 *ret = false; !! 105 *ret = 0; 111 return true; 106 return true; 112 } 107 } 113 if (!rcu_lockdep_current_cpu_online()) 108 if (!rcu_lockdep_current_cpu_online()) { 114 *ret = false; !! 109 *ret = 0; 115 return true; 110 return true; 116 } 111 } 117 return false; 112 return false; 118 } 113 } 119 114 120 int rcu_read_lock_sched_held(void) 115 int rcu_read_lock_sched_held(void) 121 { 116 { 122 bool ret; 117 bool ret; 123 118 124 if (rcu_read_lock_held_common(&ret)) 119 if (rcu_read_lock_held_common(&ret)) 125 return ret; 120 return ret; 126 return lock_is_held(&rcu_sched_lock_ma 121 return lock_is_held(&rcu_sched_lock_map) || !preemptible(); 127 } 122 } 128 EXPORT_SYMBOL(rcu_read_lock_sched_held); 123 EXPORT_SYMBOL(rcu_read_lock_sched_held); 129 #endif 124 #endif 130 125 131 #ifndef CONFIG_TINY_RCU 126 #ifndef CONFIG_TINY_RCU 132 127 133 /* 128 /* 134 * Should expedited grace-period primitives al 129 * Should expedited grace-period primitives always fall back to their 135 * non-expedited counterparts? Intended for u 130 * non-expedited counterparts? Intended for use within RCU. Note 136 * that if the user specifies both rcu_expedit 131 * that if the user specifies both rcu_expedited and rcu_normal, then 137 * rcu_normal wins. (Except during the time p 132 * rcu_normal wins. (Except during the time period during boot from 138 * when the first task is spawned until the rc 133 * when the first task is spawned until the rcu_set_runtime_mode() 139 * core_initcall() is invoked, at which point 134 * core_initcall() is invoked, at which point everything is expedited.) 140 */ 135 */ 141 bool rcu_gp_is_normal(void) 136 bool rcu_gp_is_normal(void) 142 { 137 { 143 return READ_ONCE(rcu_normal) && 138 return READ_ONCE(rcu_normal) && 144 rcu_scheduler_active != RCU_SCH 139 rcu_scheduler_active != RCU_SCHEDULER_INIT; 145 } 140 } 146 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 141 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 147 142 148 static atomic_t rcu_async_hurry_nesting = ATOM << 149 /* << 150 * Should call_rcu() callbacks be processed wi << 151 * they OK being executed with arbitrary delay << 152 */ << 153 bool rcu_async_should_hurry(void) << 154 { << 155 return !IS_ENABLED(CONFIG_RCU_LAZY) || << 156 atomic_read(&rcu_async_hurry_ne << 157 } << 158 EXPORT_SYMBOL_GPL(rcu_async_should_hurry); << 159 << 160 /** << 161 * rcu_async_hurry - Make future async RCU cal << 162 * << 163 * After a call to this function, future calls << 164 * will be processed in a timely fashion. << 165 */ << 166 void rcu_async_hurry(void) << 167 { << 168 if (IS_ENABLED(CONFIG_RCU_LAZY)) << 169 atomic_inc(&rcu_async_hurry_ne << 170 } << 171 EXPORT_SYMBOL_GPL(rcu_async_hurry); << 172 << 173 /** << 174 * rcu_async_relax - Make future async RCU cal << 175 * << 176 * After a call to this function, future calls << 177 * will be processed in a lazy fashion. << 178 */ << 179 void rcu_async_relax(void) << 180 { << 181 if (IS_ENABLED(CONFIG_RCU_LAZY)) << 182 atomic_dec(&rcu_async_hurry_ne << 183 } << 184 EXPORT_SYMBOL_GPL(rcu_async_relax); << 185 << 186 static atomic_t rcu_expedited_nesting = ATOMIC 143 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); >> 144 187 /* 145 /* 188 * Should normal grace-period primitives be ex 146 * Should normal grace-period primitives be expedited? Intended for 189 * use within RCU. Note that this function ta 147 * use within RCU. Note that this function takes the rcu_expedited 190 * sysfs/boot variable and rcu_scheduler_activ 148 * sysfs/boot variable and rcu_scheduler_active into account as well 191 * as the rcu_expedite_gp() nesting. So loopi 149 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp() 192 * until rcu_gp_is_expedited() returns false i 150 * until rcu_gp_is_expedited() returns false is a -really- bad idea. 193 */ 151 */ 194 bool rcu_gp_is_expedited(void) 152 bool rcu_gp_is_expedited(void) 195 { 153 { 196 return rcu_expedited || atomic_read(&r 154 return rcu_expedited || atomic_read(&rcu_expedited_nesting); 197 } 155 } 198 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 156 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 199 157 200 /** 158 /** 201 * rcu_expedite_gp - Expedite future RCU grace 159 * rcu_expedite_gp - Expedite future RCU grace periods 202 * 160 * 203 * After a call to this function, future calls 161 * After a call to this function, future calls to synchronize_rcu() and 204 * friends act as the corresponding synchroniz 162 * friends act as the corresponding synchronize_rcu_expedited() function 205 * had instead been called. 163 * had instead been called. 206 */ 164 */ 207 void rcu_expedite_gp(void) 165 void rcu_expedite_gp(void) 208 { 166 { 209 atomic_inc(&rcu_expedited_nesting); 167 atomic_inc(&rcu_expedited_nesting); 210 } 168 } 211 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 169 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 212 170 213 /** 171 /** 214 * rcu_unexpedite_gp - Cancel prior rcu_expedi 172 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 215 * 173 * 216 * Undo a prior call to rcu_expedite_gp(). If 174 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 217 * rcu_expedite_gp() are undone by a subsequen 175 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 218 * and if the rcu_expedited sysfs/boot paramet 176 * and if the rcu_expedited sysfs/boot parameter is not set, then all 219 * subsequent calls to synchronize_rcu() and f 177 * subsequent calls to synchronize_rcu() and friends will return to 220 * their normal non-expedited behavior. 178 * their normal non-expedited behavior. 221 */ 179 */ 222 void rcu_unexpedite_gp(void) 180 void rcu_unexpedite_gp(void) 223 { 181 { 224 atomic_dec(&rcu_expedited_nesting); 182 atomic_dec(&rcu_expedited_nesting); 225 } 183 } 226 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 184 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 227 185 228 static bool rcu_boot_ended __read_mostly; << 229 << 230 /* 186 /* 231 * Inform RCU of the end of the in-kernel boot 187 * Inform RCU of the end of the in-kernel boot sequence. 232 */ 188 */ 233 void rcu_end_inkernel_boot(void) 189 void rcu_end_inkernel_boot(void) 234 { 190 { 235 rcu_unexpedite_gp(); 191 rcu_unexpedite_gp(); 236 rcu_async_relax(); << 237 if (rcu_normal_after_boot) 192 if (rcu_normal_after_boot) 238 WRITE_ONCE(rcu_normal, 1); 193 WRITE_ONCE(rcu_normal, 1); 239 rcu_boot_ended = true; << 240 } 194 } 241 195 242 /* << 243 * Let rcutorture know when it is OK to turn i << 244 */ << 245 bool rcu_inkernel_boot_has_ended(void) << 246 { << 247 return rcu_boot_ended; << 248 } << 249 EXPORT_SYMBOL_GPL(rcu_inkernel_boot_has_ended) << 250 << 251 #endif /* #ifndef CONFIG_TINY_RCU */ 196 #endif /* #ifndef CONFIG_TINY_RCU */ 252 197 253 /* 198 /* 254 * Test each non-SRCU synchronous grace-period 199 * Test each non-SRCU synchronous grace-period wait API. This is 255 * useful just after a change in mode for thes 200 * useful just after a change in mode for these primitives, and 256 * during early boot. 201 * during early boot. 257 */ 202 */ 258 void rcu_test_sync_prims(void) 203 void rcu_test_sync_prims(void) 259 { 204 { 260 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 205 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 261 return; 206 return; 262 pr_info("Running RCU synchronous self << 263 synchronize_rcu(); 207 synchronize_rcu(); 264 synchronize_rcu_expedited(); 208 synchronize_rcu_expedited(); 265 } 209 } 266 210 267 #if !defined(CONFIG_TINY_RCU) !! 211 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) 268 212 269 /* 213 /* 270 * Switch to run-time mode once RCU has fully 214 * Switch to run-time mode once RCU has fully initialized. 271 */ 215 */ 272 static int __init rcu_set_runtime_mode(void) 216 static int __init rcu_set_runtime_mode(void) 273 { 217 { 274 rcu_test_sync_prims(); 218 rcu_test_sync_prims(); 275 rcu_scheduler_active = RCU_SCHEDULER_R 219 rcu_scheduler_active = RCU_SCHEDULER_RUNNING; 276 kfree_rcu_scheduler_running(); 220 kfree_rcu_scheduler_running(); 277 rcu_test_sync_prims(); 221 rcu_test_sync_prims(); 278 return 0; 222 return 0; 279 } 223 } 280 core_initcall(rcu_set_runtime_mode); 224 core_initcall(rcu_set_runtime_mode); 281 225 282 #endif /* #if !defined(CONFIG_TINY_RCU) */ !! 226 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */ 283 227 284 #ifdef CONFIG_DEBUG_LOCK_ALLOC 228 #ifdef CONFIG_DEBUG_LOCK_ALLOC 285 static struct lock_class_key rcu_lock_key; 229 static struct lock_class_key rcu_lock_key; 286 struct lockdep_map rcu_lock_map = { !! 230 struct lockdep_map rcu_lock_map = 287 .name = "rcu_read_lock", !! 231 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 288 .key = &rcu_lock_key, << 289 .wait_type_outer = LD_WAIT_FREE, << 290 .wait_type_inner = LD_WAIT_CONFIG, /* << 291 }; << 292 EXPORT_SYMBOL_GPL(rcu_lock_map); 232 EXPORT_SYMBOL_GPL(rcu_lock_map); 293 233 294 static struct lock_class_key rcu_bh_lock_key; 234 static struct lock_class_key rcu_bh_lock_key; 295 struct lockdep_map rcu_bh_lock_map = { !! 235 struct lockdep_map rcu_bh_lock_map = 296 .name = "rcu_read_lock_bh", !! 236 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); 297 .key = &rcu_bh_lock_key, << 298 .wait_type_outer = LD_WAIT_FREE, << 299 .wait_type_inner = LD_WAIT_CONFIG, /* << 300 }; << 301 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 237 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 302 238 303 static struct lock_class_key rcu_sched_lock_ke 239 static struct lock_class_key rcu_sched_lock_key; 304 struct lockdep_map rcu_sched_lock_map = { !! 240 struct lockdep_map rcu_sched_lock_map = 305 .name = "rcu_read_lock_sched", !! 241 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); 306 .key = &rcu_sched_lock_key, << 307 .wait_type_outer = LD_WAIT_FREE, << 308 .wait_type_inner = LD_WAIT_SPIN, << 309 }; << 310 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 242 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 311 243 312 // Tell lockdep when RCU callbacks are being i << 313 static struct lock_class_key rcu_callback_key; 244 static struct lock_class_key rcu_callback_key; 314 struct lockdep_map rcu_callback_map = 245 struct lockdep_map rcu_callback_map = 315 STATIC_LOCKDEP_MAP_INIT("rcu_callback" 246 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 316 EXPORT_SYMBOL_GPL(rcu_callback_map); 247 EXPORT_SYMBOL_GPL(rcu_callback_map); 317 248 318 noinstr int notrace debug_lockdep_rcu_enabled( !! 249 int notrace debug_lockdep_rcu_enabled(void) 319 { 250 { 320 return rcu_scheduler_active != RCU_SCH !! 251 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks && 321 current->lockdep_recursion == 0 252 current->lockdep_recursion == 0; 322 } 253 } 323 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 254 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); >> 255 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled); 324 256 325 /** 257 /** 326 * rcu_read_lock_held() - might we be in RCU r 258 * rcu_read_lock_held() - might we be in RCU read-side critical section? 327 * 259 * 328 * If CONFIG_DEBUG_LOCK_ALLOC is selected, ret 260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 329 * read-side critical section. In absence of 261 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 330 * this assumes we are in an RCU read-side cri 262 * this assumes we are in an RCU read-side critical section unless it can 331 * prove otherwise. This is useful for debug 263 * prove otherwise. This is useful for debug checks in functions that 332 * require that they be called within an RCU r 264 * require that they be called within an RCU read-side critical section. 333 * 265 * 334 * Checks debug_lockdep_rcu_enabled() to preve 266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 335 * and while lockdep is disabled. 267 * and while lockdep is disabled. 336 * 268 * 337 * Note that rcu_read_lock() and the matching 269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 338 * occur in the same context, for example, it 270 * occur in the same context, for example, it is illegal to invoke 339 * rcu_read_unlock() in process context if the 271 * rcu_read_unlock() in process context if the matching rcu_read_lock() 340 * was invoked from within an irq handler. 272 * was invoked from within an irq handler. 341 * 273 * 342 * Note that rcu_read_lock() is disallowed if 274 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 343 * offline from an RCU perspective, so check f 275 * offline from an RCU perspective, so check for those as well. 344 */ 276 */ 345 int rcu_read_lock_held(void) 277 int rcu_read_lock_held(void) 346 { 278 { 347 bool ret; 279 bool ret; 348 280 349 if (rcu_read_lock_held_common(&ret)) 281 if (rcu_read_lock_held_common(&ret)) 350 return ret; 282 return ret; 351 return lock_is_held(&rcu_lock_map); 283 return lock_is_held(&rcu_lock_map); 352 } 284 } 353 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 285 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 354 286 355 /** 287 /** 356 * rcu_read_lock_bh_held() - might we be in RC 288 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 357 * 289 * 358 * Check for bottom half being disabled, which 290 * Check for bottom half being disabled, which covers both the 359 * CONFIG_PROVE_RCU and not cases. Note that 291 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 360 * rcu_read_lock_bh(), but then later enables 292 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 361 * will show the situation. This is useful fo 293 * will show the situation. This is useful for debug checks in functions 362 * that require that they be called within an 294 * that require that they be called within an RCU read-side critical 363 * section. 295 * section. 364 * 296 * 365 * Check debug_lockdep_rcu_enabled() to preven 297 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 366 * 298 * 367 * Note that rcu_read_lock_bh() is disallowed 299 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or 368 * offline from an RCU perspective, so check f 300 * offline from an RCU perspective, so check for those as well. 369 */ 301 */ 370 int rcu_read_lock_bh_held(void) 302 int rcu_read_lock_bh_held(void) 371 { 303 { 372 bool ret; 304 bool ret; 373 305 374 if (rcu_read_lock_held_common(&ret)) 306 if (rcu_read_lock_held_common(&ret)) 375 return ret; 307 return ret; 376 return in_softirq() || irqs_disabled() 308 return in_softirq() || irqs_disabled(); 377 } 309 } 378 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 310 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 379 311 380 int rcu_read_lock_any_held(void) 312 int rcu_read_lock_any_held(void) 381 { 313 { 382 bool ret; 314 bool ret; 383 315 384 if (rcu_read_lock_held_common(&ret)) 316 if (rcu_read_lock_held_common(&ret)) 385 return ret; 317 return ret; 386 if (lock_is_held(&rcu_lock_map) || 318 if (lock_is_held(&rcu_lock_map) || 387 lock_is_held(&rcu_bh_lock_map) || 319 lock_is_held(&rcu_bh_lock_map) || 388 lock_is_held(&rcu_sched_lock_map)) 320 lock_is_held(&rcu_sched_lock_map)) 389 return 1; 321 return 1; 390 return !preemptible(); 322 return !preemptible(); 391 } 323 } 392 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held); 324 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held); 393 325 394 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 326 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 395 327 396 /** 328 /** 397 * wakeme_after_rcu() - Callback function to a 329 * wakeme_after_rcu() - Callback function to awaken a task after grace period 398 * @head: Pointer to rcu_head member within rc 330 * @head: Pointer to rcu_head member within rcu_synchronize structure 399 * 331 * 400 * Awaken the corresponding task now that a gr 332 * Awaken the corresponding task now that a grace period has elapsed. 401 */ 333 */ 402 void wakeme_after_rcu(struct rcu_head *head) 334 void wakeme_after_rcu(struct rcu_head *head) 403 { 335 { 404 struct rcu_synchronize *rcu; 336 struct rcu_synchronize *rcu; 405 337 406 rcu = container_of(head, struct rcu_sy 338 rcu = container_of(head, struct rcu_synchronize, head); 407 complete(&rcu->completion); 339 complete(&rcu->completion); 408 } 340 } 409 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 341 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 410 342 411 void __wait_rcu_gp(bool checktiny, unsigned in !! 343 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 412 struct rcu_synchronize *rs_ 344 struct rcu_synchronize *rs_array) 413 { 345 { 414 int i; 346 int i; 415 int j; 347 int j; 416 348 417 /* Initialize and register callbacks f 349 /* Initialize and register callbacks for each crcu_array element. */ 418 for (i = 0; i < n; i++) { 350 for (i = 0; i < n; i++) { 419 if (checktiny && 351 if (checktiny && 420 (crcu_array[i] == call_rcu 352 (crcu_array[i] == call_rcu)) { 421 might_sleep(); 353 might_sleep(); 422 continue; 354 continue; 423 } 355 } >> 356 init_rcu_head_on_stack(&rs_array[i].head); >> 357 init_completion(&rs_array[i].completion); 424 for (j = 0; j < i; j++) 358 for (j = 0; j < i; j++) 425 if (crcu_array[j] == c 359 if (crcu_array[j] == crcu_array[i]) 426 break; 360 break; 427 if (j == i) { !! 361 if (j == i) 428 init_rcu_head_on_stack << 429 init_completion(&rs_ar << 430 (crcu_array[i])(&rs_ar 362 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 431 } << 432 } 363 } 433 364 434 /* Wait for all callbacks to be invoke 365 /* Wait for all callbacks to be invoked. */ 435 for (i = 0; i < n; i++) { 366 for (i = 0; i < n; i++) { 436 if (checktiny && 367 if (checktiny && 437 (crcu_array[i] == call_rcu 368 (crcu_array[i] == call_rcu)) 438 continue; 369 continue; 439 for (j = 0; j < i; j++) 370 for (j = 0; j < i; j++) 440 if (crcu_array[j] == c 371 if (crcu_array[j] == crcu_array[i]) 441 break; 372 break; 442 if (j == i) { !! 373 if (j == i) 443 wait_for_completion_st !! 374 wait_for_completion(&rs_array[i].completion); 444 destroy_rcu_head_on_st !! 375 destroy_rcu_head_on_stack(&rs_array[i].head); 445 } << 446 } 376 } 447 } 377 } 448 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 378 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 449 379 450 void finish_rcuwait(struct rcuwait *w) << 451 { << 452 rcu_assign_pointer(w->task, NULL); << 453 __set_current_state(TASK_RUNNING); << 454 } << 455 EXPORT_SYMBOL_GPL(finish_rcuwait); << 456 << 457 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 380 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 458 void init_rcu_head(struct rcu_head *head) 381 void init_rcu_head(struct rcu_head *head) 459 { 382 { 460 debug_object_init(head, &rcuhead_debug 383 debug_object_init(head, &rcuhead_debug_descr); 461 } 384 } 462 EXPORT_SYMBOL_GPL(init_rcu_head); 385 EXPORT_SYMBOL_GPL(init_rcu_head); 463 386 464 void destroy_rcu_head(struct rcu_head *head) 387 void destroy_rcu_head(struct rcu_head *head) 465 { 388 { 466 debug_object_free(head, &rcuhead_debug 389 debug_object_free(head, &rcuhead_debug_descr); 467 } 390 } 468 EXPORT_SYMBOL_GPL(destroy_rcu_head); 391 EXPORT_SYMBOL_GPL(destroy_rcu_head); 469 392 470 static bool rcuhead_is_static_object(void *add 393 static bool rcuhead_is_static_object(void *addr) 471 { 394 { 472 return true; 395 return true; 473 } 396 } 474 397 475 /** 398 /** 476 * init_rcu_head_on_stack() - initialize on-st 399 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 477 * @head: pointer to rcu_head structure to be 400 * @head: pointer to rcu_head structure to be initialized 478 * 401 * 479 * This function informs debugobjects of a new 402 * This function informs debugobjects of a new rcu_head structure that 480 * has been allocated as an auto variable on t 403 * has been allocated as an auto variable on the stack. This function 481 * is not required for rcu_head structures tha 404 * is not required for rcu_head structures that are statically defined or 482 * that are dynamically allocated on the heap. 405 * that are dynamically allocated on the heap. This function has no 483 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD k 406 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 484 */ 407 */ 485 void init_rcu_head_on_stack(struct rcu_head *h 408 void init_rcu_head_on_stack(struct rcu_head *head) 486 { 409 { 487 debug_object_init_on_stack(head, &rcuh 410 debug_object_init_on_stack(head, &rcuhead_debug_descr); 488 } 411 } 489 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 412 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 490 413 491 /** 414 /** 492 * destroy_rcu_head_on_stack() - destroy on-st 415 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 493 * @head: pointer to rcu_head structure to be 416 * @head: pointer to rcu_head structure to be initialized 494 * 417 * 495 * This function informs debugobjects that an 418 * This function informs debugobjects that an on-stack rcu_head structure 496 * is about to go out of scope. As with init_ 419 * is about to go out of scope. As with init_rcu_head_on_stack(), this 497 * function is not required for rcu_head struc 420 * function is not required for rcu_head structures that are statically 498 * defined or that are dynamically allocated o 421 * defined or that are dynamically allocated on the heap. Also as with 499 * init_rcu_head_on_stack(), this function has 422 * init_rcu_head_on_stack(), this function has no effect for 500 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel build 423 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 501 */ 424 */ 502 void destroy_rcu_head_on_stack(struct rcu_head 425 void destroy_rcu_head_on_stack(struct rcu_head *head) 503 { 426 { 504 debug_object_free(head, &rcuhead_debug 427 debug_object_free(head, &rcuhead_debug_descr); 505 } 428 } 506 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 429 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 507 430 508 const struct debug_obj_descr rcuhead_debug_des !! 431 struct debug_obj_descr rcuhead_debug_descr = { 509 .name = "rcu_head", 432 .name = "rcu_head", 510 .is_static_object = rcuhead_is_static_ 433 .is_static_object = rcuhead_is_static_object, 511 }; 434 }; 512 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 435 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 513 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 436 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 514 437 515 #if defined(CONFIG_TREE_RCU) || defined(CONFIG 438 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_RCU_TRACE) 516 void do_trace_rcu_torture_read(const char *rcu 439 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 517 unsigned long s 440 unsigned long secs, 518 unsigned long c 441 unsigned long c_old, unsigned long c) 519 { 442 { 520 trace_rcu_torture_read(rcutorturename, 443 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 521 } 444 } 522 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 445 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 523 #else 446 #else 524 #define do_trace_rcu_torture_read(rcutorturena 447 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 525 do { } while (0) 448 do { } while (0) 526 #endif 449 #endif 527 450 528 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_ !! 451 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST) 529 /* Get rcutorture access to sched_setaffinity( 452 /* Get rcutorture access to sched_setaffinity(). */ 530 long torture_sched_setaffinity(pid_t pid, cons !! 453 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 531 { 454 { 532 int ret; 455 int ret; 533 456 534 ret = sched_setaffinity(pid, in_mask); 457 ret = sched_setaffinity(pid, in_mask); 535 WARN_ONCE(ret, "%s: sched_setaffinity( !! 458 WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret); 536 return ret; 459 return ret; 537 } 460 } 538 EXPORT_SYMBOL_GPL(torture_sched_setaffinity); !! 461 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity); 539 #endif 462 #endif 540 463 541 int rcu_cpu_stall_notifiers __read_mostly; // << 542 EXPORT_SYMBOL_GPL(rcu_cpu_stall_notifiers); << 543 << 544 #ifdef CONFIG_RCU_STALL_COMMON 464 #ifdef CONFIG_RCU_STALL_COMMON 545 int rcu_cpu_stall_ftrace_dump __read_mostly; 465 int rcu_cpu_stall_ftrace_dump __read_mostly; 546 module_param(rcu_cpu_stall_ftrace_dump, int, 0 466 module_param(rcu_cpu_stall_ftrace_dump, int, 0644); 547 #ifdef CONFIG_RCU_CPU_STALL_NOTIFIER !! 467 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ 548 module_param(rcu_cpu_stall_notifiers, int, 044 << 549 #endif // #ifdef CONFIG_RCU_CPU_STALL_NOTIFIER << 550 int rcu_cpu_stall_suppress __read_mostly; // ! << 551 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); 468 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); 552 module_param(rcu_cpu_stall_suppress, int, 0644 469 module_param(rcu_cpu_stall_suppress, int, 0644); 553 int rcu_cpu_stall_timeout __read_mostly = CONF 470 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 554 module_param(rcu_cpu_stall_timeout, int, 0644) 471 module_param(rcu_cpu_stall_timeout, int, 0644); 555 int rcu_exp_cpu_stall_timeout __read_mostly = << 556 module_param(rcu_exp_cpu_stall_timeout, int, 0 << 557 int rcu_cpu_stall_cputime __read_mostly = IS_E << 558 module_param(rcu_cpu_stall_cputime, int, 0644) << 559 bool rcu_exp_stall_task_details __read_mostly; << 560 module_param(rcu_exp_stall_task_details, bool, << 561 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 472 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 562 473 563 // Suppress boot-time RCU CPU stall warnings a !! 474 #ifdef CONFIG_TASKS_RCU 564 // warnings. Also used by rcutorture even if << 565 int rcu_cpu_stall_suppress_at_boot __read_most << 566 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_bo << 567 module_param(rcu_cpu_stall_suppress_at_boot, i << 568 475 569 /** !! 476 /* 570 * get_completed_synchronize_rcu - Return a pr !! 477 * Simple variant of RCU whose quiescent states are voluntary context 571 * !! 478 * switch, cond_resched_rcu_qs(), user-space execution, and idle. 572 * Returns a value that will always be treated !! 479 * As such, grace periods can take one good long time. There are no 573 * poll_state_synchronize_rcu() as a cookie wh !! 480 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 574 * completed. !! 481 * because this implementation is intended to get the system into a safe >> 482 * state for some of the manipulations involved in tracing and the like. >> 483 * Finally, this implementation does not support high call_rcu_tasks() >> 484 * rates from multiple CPUs. If this is required, per-CPU callback lists >> 485 * will be needed. >> 486 */ >> 487 >> 488 /* Global list of callbacks and associated lock. */ >> 489 static struct rcu_head *rcu_tasks_cbs_head; >> 490 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; >> 491 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); >> 492 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); >> 493 >> 494 /* Track exiting tasks in order to allow them to be waited for. */ >> 495 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); >> 496 >> 497 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ >> 498 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) >> 499 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; >> 500 module_param(rcu_task_stall_timeout, int, 0644); >> 501 >> 502 static struct task_struct *rcu_tasks_kthread_ptr; >> 503 >> 504 /** >> 505 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period >> 506 * @rhp: structure to be used for queueing the RCU updates. >> 507 * @func: actual callback function to be invoked after the grace period >> 508 * >> 509 * The callback function will be invoked some time after a full grace >> 510 * period elapses, in other words after all currently executing RCU >> 511 * read-side critical sections have completed. call_rcu_tasks() assumes >> 512 * that the read-side critical sections end at a voluntary context >> 513 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, >> 514 * or transition to usermode execution. As such, there are no read-side >> 515 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because >> 516 * this primitive is intended to determine that all tasks have passed >> 517 * through a safe state, not so much for data-strcuture synchronization. >> 518 * >> 519 * See the description of call_rcu() for more detailed information on >> 520 * memory ordering guarantees. >> 521 */ >> 522 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) >> 523 { >> 524 unsigned long flags; >> 525 bool needwake; >> 526 >> 527 rhp->next = NULL; >> 528 rhp->func = func; >> 529 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); >> 530 needwake = !rcu_tasks_cbs_head; >> 531 *rcu_tasks_cbs_tail = rhp; >> 532 rcu_tasks_cbs_tail = &rhp->next; >> 533 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); >> 534 /* We can't create the thread unless interrupts are enabled. */ >> 535 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) >> 536 wake_up(&rcu_tasks_cbs_wq); >> 537 } >> 538 EXPORT_SYMBOL_GPL(call_rcu_tasks); >> 539 >> 540 /** >> 541 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. >> 542 * >> 543 * Control will return to the caller some time after a full rcu-tasks >> 544 * grace period has elapsed, in other words after all currently >> 545 * executing rcu-tasks read-side critical sections have elapsed. These >> 546 * read-side critical sections are delimited by calls to schedule(), >> 547 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls >> 548 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). >> 549 * >> 550 * This is a very specialized primitive, intended only for a few uses in >> 551 * tracing and other situations requiring manipulation of function >> 552 * preambles and profiling hooks. The synchronize_rcu_tasks() function >> 553 * is not (yet) intended for heavy use from multiple CPUs. >> 554 * >> 555 * Note that this guarantee implies further memory-ordering guarantees. >> 556 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, >> 557 * each CPU is guaranteed to have executed a full memory barrier since the >> 558 * end of its last RCU-tasks read-side critical section whose beginning >> 559 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU >> 560 * having an RCU-tasks read-side critical section that extends beyond >> 561 * the return from synchronize_rcu_tasks() is guaranteed to have executed >> 562 * a full memory barrier after the beginning of synchronize_rcu_tasks() >> 563 * and before the beginning of that RCU-tasks read-side critical section. >> 564 * Note that these guarantees include CPUs that are offline, idle, or >> 565 * executing in user mode, as well as CPUs that are executing in the kernel. >> 566 * >> 567 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned >> 568 * to its caller on CPU B, then both CPU A and CPU B are guaranteed >> 569 * to have executed a full memory barrier during the execution of >> 570 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU >> 571 * (but again only if the system has more than one CPU). >> 572 */ >> 573 void synchronize_rcu_tasks(void) >> 574 { >> 575 /* Complain if the scheduler has not started. */ >> 576 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, >> 577 "synchronize_rcu_tasks called too soon"); >> 578 >> 579 /* Wait for the grace period. */ >> 580 wait_rcu_gp(call_rcu_tasks); >> 581 } >> 582 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); >> 583 >> 584 /** >> 585 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. >> 586 * >> 587 * Although the current implementation is guaranteed to wait, it is not >> 588 * obligated to, for example, if there are no pending callbacks. >> 589 */ >> 590 void rcu_barrier_tasks(void) >> 591 { >> 592 /* There is only one callback queue, so this is easy. ;-) */ >> 593 synchronize_rcu_tasks(); >> 594 } >> 595 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); >> 596 >> 597 /* See if tasks are still holding out, complain if so. */ >> 598 static void check_holdout_task(struct task_struct *t, >> 599 bool needreport, bool *firstreport) >> 600 { >> 601 int cpu; >> 602 >> 603 if (!READ_ONCE(t->rcu_tasks_holdout) || >> 604 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || >> 605 !READ_ONCE(t->on_rq) || >> 606 (IS_ENABLED(CONFIG_NO_HZ_FULL) && >> 607 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { >> 608 WRITE_ONCE(t->rcu_tasks_holdout, false); >> 609 list_del_init(&t->rcu_tasks_holdout_list); >> 610 put_task_struct(t); >> 611 return; >> 612 } >> 613 rcu_request_urgent_qs_task(t); >> 614 if (!needreport) >> 615 return; >> 616 if (*firstreport) { >> 617 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); >> 618 *firstreport = false; >> 619 } >> 620 cpu = task_cpu(t); >> 621 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", >> 622 t, ".I"[is_idle_task(t)], >> 623 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], >> 624 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, >> 625 t->rcu_tasks_idle_cpu, cpu); >> 626 sched_show_task(t); >> 627 } >> 628 >> 629 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ >> 630 static int __noreturn rcu_tasks_kthread(void *arg) >> 631 { >> 632 unsigned long flags; >> 633 struct task_struct *g, *t; >> 634 unsigned long lastreport; >> 635 struct rcu_head *list; >> 636 struct rcu_head *next; >> 637 LIST_HEAD(rcu_tasks_holdouts); >> 638 int fract; >> 639 >> 640 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ >> 641 housekeeping_affine(current, HK_FLAG_RCU); >> 642 >> 643 /* >> 644 * Each pass through the following loop makes one check for >> 645 * newly arrived callbacks, and, if there are some, waits for >> 646 * one RCU-tasks grace period and then invokes the callbacks. >> 647 * This loop is terminated by the system going down. ;-) >> 648 */ >> 649 for (;;) { >> 650 >> 651 /* Pick up any new callbacks. */ >> 652 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); >> 653 list = rcu_tasks_cbs_head; >> 654 rcu_tasks_cbs_head = NULL; >> 655 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; >> 656 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); >> 657 >> 658 /* If there were none, wait a bit and start over. */ >> 659 if (!list) { >> 660 wait_event_interruptible(rcu_tasks_cbs_wq, >> 661 rcu_tasks_cbs_head); >> 662 if (!rcu_tasks_cbs_head) { >> 663 WARN_ON(signal_pending(current)); >> 664 schedule_timeout_interruptible(HZ/10); >> 665 } >> 666 continue; >> 667 } >> 668 >> 669 /* >> 670 * Wait for all pre-existing t->on_rq and t->nvcsw >> 671 * transitions to complete. Invoking synchronize_rcu() >> 672 * suffices because all these transitions occur with >> 673 * interrupts disabled. Without this synchronize_rcu(), >> 674 * a read-side critical section that started before the >> 675 * grace period might be incorrectly seen as having started >> 676 * after the grace period. >> 677 * >> 678 * This synchronize_rcu() also dispenses with the >> 679 * need for a memory barrier on the first store to >> 680 * ->rcu_tasks_holdout, as it forces the store to happen >> 681 * after the beginning of the grace period. >> 682 */ >> 683 synchronize_rcu(); >> 684 >> 685 /* >> 686 * There were callbacks, so we need to wait for an >> 687 * RCU-tasks grace period. Start off by scanning >> 688 * the task list for tasks that are not already >> 689 * voluntarily blocked. Mark these tasks and make >> 690 * a list of them in rcu_tasks_holdouts. >> 691 */ >> 692 rcu_read_lock(); >> 693 for_each_process_thread(g, t) { >> 694 if (t != current && READ_ONCE(t->on_rq) && >> 695 !is_idle_task(t)) { >> 696 get_task_struct(t); >> 697 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); >> 698 WRITE_ONCE(t->rcu_tasks_holdout, true); >> 699 list_add(&t->rcu_tasks_holdout_list, >> 700 &rcu_tasks_holdouts); >> 701 } >> 702 } >> 703 rcu_read_unlock(); >> 704 >> 705 /* >> 706 * Wait for tasks that are in the process of exiting. >> 707 * This does only part of the job, ensuring that all >> 708 * tasks that were previously exiting reach the point >> 709 * where they have disabled preemption, allowing the >> 710 * later synchronize_rcu() to finish the job. >> 711 */ >> 712 synchronize_srcu(&tasks_rcu_exit_srcu); >> 713 >> 714 /* >> 715 * Each pass through the following loop scans the list >> 716 * of holdout tasks, removing any that are no longer >> 717 * holdouts. When the list is empty, we are done. >> 718 */ >> 719 lastreport = jiffies; >> 720 >> 721 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ >> 722 fract = 10; >> 723 >> 724 for (;;) { >> 725 bool firstreport; >> 726 bool needreport; >> 727 int rtst; >> 728 struct task_struct *t1; >> 729 >> 730 if (list_empty(&rcu_tasks_holdouts)) >> 731 break; >> 732 >> 733 /* Slowly back off waiting for holdouts */ >> 734 schedule_timeout_interruptible(HZ/fract); >> 735 >> 736 if (fract > 1) >> 737 fract--; >> 738 >> 739 rtst = READ_ONCE(rcu_task_stall_timeout); >> 740 needreport = rtst > 0 && >> 741 time_after(jiffies, lastreport + rtst); >> 742 if (needreport) >> 743 lastreport = jiffies; >> 744 firstreport = true; >> 745 WARN_ON(signal_pending(current)); >> 746 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, >> 747 rcu_tasks_holdout_list) { >> 748 check_holdout_task(t, needreport, &firstreport); >> 749 cond_resched(); >> 750 } >> 751 } >> 752 >> 753 /* >> 754 * Because ->on_rq and ->nvcsw are not guaranteed >> 755 * to have a full memory barriers prior to them in the >> 756 * schedule() path, memory reordering on other CPUs could >> 757 * cause their RCU-tasks read-side critical sections to >> 758 * extend past the end of the grace period. However, >> 759 * because these ->nvcsw updates are carried out with >> 760 * interrupts disabled, we can use synchronize_rcu() >> 761 * to force the needed ordering on all such CPUs. >> 762 * >> 763 * This synchronize_rcu() also confines all >> 764 * ->rcu_tasks_holdout accesses to be within the grace >> 765 * period, avoiding the need for memory barriers for >> 766 * ->rcu_tasks_holdout accesses. >> 767 * >> 768 * In addition, this synchronize_rcu() waits for exiting >> 769 * tasks to complete their final preempt_disable() region >> 770 * of execution, cleaning up after the synchronize_srcu() >> 771 * above. >> 772 */ >> 773 synchronize_rcu(); >> 774 >> 775 /* Invoke the callbacks. */ >> 776 while (list) { >> 777 next = list->next; >> 778 local_bh_disable(); >> 779 list->func(list); >> 780 local_bh_enable(); >> 781 list = next; >> 782 cond_resched(); >> 783 } >> 784 /* Paranoid sleep to keep this from entering a tight loop */ >> 785 schedule_timeout_uninterruptible(HZ/10); >> 786 } >> 787 } >> 788 >> 789 /* Spawn rcu_tasks_kthread() at core_initcall() time. */ >> 790 static int __init rcu_spawn_tasks_kthread(void) >> 791 { >> 792 struct task_struct *t; >> 793 >> 794 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); >> 795 if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__)) >> 796 return 0; >> 797 smp_mb(); /* Ensure others see full kthread. */ >> 798 WRITE_ONCE(rcu_tasks_kthread_ptr, t); >> 799 return 0; >> 800 } >> 801 core_initcall(rcu_spawn_tasks_kthread); >> 802 >> 803 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ >> 804 void exit_tasks_rcu_start(void) >> 805 { >> 806 preempt_disable(); >> 807 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); >> 808 preempt_enable(); >> 809 } >> 810 >> 811 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ >> 812 void exit_tasks_rcu_finish(void) >> 813 { >> 814 preempt_disable(); >> 815 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); >> 816 preempt_enable(); >> 817 } >> 818 >> 819 #endif /* #ifdef CONFIG_TASKS_RCU */ >> 820 >> 821 #ifndef CONFIG_TINY_RCU >> 822 >> 823 /* >> 824 * Print any non-default Tasks RCU settings. 575 */ 825 */ 576 unsigned long get_completed_synchronize_rcu(vo !! 826 static void __init rcu_tasks_bootup_oddness(void) 577 { 827 { 578 return RCU_GET_STATE_COMPLETED; !! 828 #ifdef CONFIG_TASKS_RCU >> 829 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) >> 830 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); >> 831 else >> 832 pr_info("\tTasks RCU enabled.\n"); >> 833 #endif /* #ifdef CONFIG_TASKS_RCU */ 579 } 834 } 580 EXPORT_SYMBOL_GPL(get_completed_synchronize_rc !! 835 >> 836 #endif /* #ifndef CONFIG_TINY_RCU */ 581 837 582 #ifdef CONFIG_PROVE_RCU 838 #ifdef CONFIG_PROVE_RCU 583 839 584 /* 840 /* 585 * Early boot self test parameters. 841 * Early boot self test parameters. 586 */ 842 */ 587 static bool rcu_self_test; 843 static bool rcu_self_test; 588 module_param(rcu_self_test, bool, 0444); 844 module_param(rcu_self_test, bool, 0444); 589 845 590 static int rcu_self_test_counter; 846 static int rcu_self_test_counter; 591 847 592 static void test_callback(struct rcu_head *r) 848 static void test_callback(struct rcu_head *r) 593 { 849 { 594 rcu_self_test_counter++; 850 rcu_self_test_counter++; 595 pr_info("RCU test callback executed %d 851 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 596 } 852 } 597 853 598 DEFINE_STATIC_SRCU(early_srcu); 854 DEFINE_STATIC_SRCU(early_srcu); 599 static unsigned long early_srcu_cookie; << 600 855 601 struct early_boot_kfree_rcu { 856 struct early_boot_kfree_rcu { 602 struct rcu_head rh; 857 struct rcu_head rh; 603 }; 858 }; 604 859 605 static void early_boot_test_call_rcu(void) 860 static void early_boot_test_call_rcu(void) 606 { 861 { 607 static struct rcu_head head; 862 static struct rcu_head head; 608 int idx; << 609 static struct rcu_head shead; 863 static struct rcu_head shead; 610 struct early_boot_kfree_rcu *rhp; 864 struct early_boot_kfree_rcu *rhp; 611 865 612 idx = srcu_down_read(&early_srcu); << 613 srcu_up_read(&early_srcu, idx); << 614 call_rcu(&head, test_callback); 866 call_rcu(&head, test_callback); 615 early_srcu_cookie = start_poll_synchro !! 867 if (IS_ENABLED(CONFIG_SRCU)) 616 call_srcu(&early_srcu, &shead, test_ca !! 868 call_srcu(&early_srcu, &shead, test_callback); 617 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL 869 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL); 618 if (!WARN_ON_ONCE(!rhp)) 870 if (!WARN_ON_ONCE(!rhp)) 619 kfree_rcu(rhp, rh); 871 kfree_rcu(rhp, rh); 620 } 872 } 621 873 622 void rcu_early_boot_tests(void) 874 void rcu_early_boot_tests(void) 623 { 875 { 624 pr_info("Running RCU self tests\n"); 876 pr_info("Running RCU self tests\n"); 625 877 626 if (rcu_self_test) 878 if (rcu_self_test) 627 early_boot_test_call_rcu(); 879 early_boot_test_call_rcu(); 628 rcu_test_sync_prims(); 880 rcu_test_sync_prims(); 629 } 881 } 630 882 631 static int rcu_verify_early_boot_tests(void) 883 static int rcu_verify_early_boot_tests(void) 632 { 884 { 633 int ret = 0; 885 int ret = 0; 634 int early_boot_test_counter = 0; 886 int early_boot_test_counter = 0; 635 887 636 if (rcu_self_test) { 888 if (rcu_self_test) { 637 early_boot_test_counter++; 889 early_boot_test_counter++; 638 rcu_barrier(); 890 rcu_barrier(); 639 early_boot_test_counter++; !! 891 if (IS_ENABLED(CONFIG_SRCU)) { 640 srcu_barrier(&early_srcu); !! 892 early_boot_test_counter++; 641 WARN_ON_ONCE(!poll_state_synch !! 893 srcu_barrier(&early_srcu); 642 cleanup_srcu_struct(&early_src !! 894 } 643 } 895 } 644 if (rcu_self_test_counter != early_boo 896 if (rcu_self_test_counter != early_boot_test_counter) { 645 WARN_ON(1); 897 WARN_ON(1); 646 ret = -1; 898 ret = -1; 647 } 899 } 648 900 649 return ret; 901 return ret; 650 } 902 } 651 late_initcall(rcu_verify_early_boot_tests); 903 late_initcall(rcu_verify_early_boot_tests); 652 #else 904 #else 653 void rcu_early_boot_tests(void) {} 905 void rcu_early_boot_tests(void) {} 654 #endif /* CONFIG_PROVE_RCU */ 906 #endif /* CONFIG_PROVE_RCU */ 655 << 656 #include "tasks.h" << 657 907 658 #ifndef CONFIG_TINY_RCU 908 #ifndef CONFIG_TINY_RCU 659 909 660 /* 910 /* 661 * Print any significant non-default boot-time 911 * Print any significant non-default boot-time settings. 662 */ 912 */ 663 void __init rcupdate_announce_bootup_oddness(v 913 void __init rcupdate_announce_bootup_oddness(void) 664 { 914 { 665 if (rcu_normal) 915 if (rcu_normal) 666 pr_info("\tNo expedited grace 916 pr_info("\tNo expedited grace period (rcu_normal).\n"); 667 else if (rcu_normal_after_boot) 917 else if (rcu_normal_after_boot) 668 pr_info("\tNo expedited grace 918 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n"); 669 else if (rcu_expedited) 919 else if (rcu_expedited) 670 pr_info("\tAll grace periods a 920 pr_info("\tAll grace periods are expedited (rcu_expedited).\n"); 671 if (rcu_cpu_stall_suppress) 921 if (rcu_cpu_stall_suppress) 672 pr_info("\tRCU CPU stall warni 922 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n"); 673 if (rcu_cpu_stall_timeout != CONFIG_RC 923 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT) 674 pr_info("\tRCU CPU stall warni 924 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout); 675 rcu_tasks_bootup_oddness(); 925 rcu_tasks_bootup_oddness(); 676 } 926 } 677 927 678 #endif /* #ifndef CONFIG_TINY_RCU */ 928 #endif /* #ifndef CONFIG_TINY_RCU */ 679 929
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.