1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 4 * 5 * Earliest Deadline First (EDF) + Constant Ba 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 6 * 7 * Tasks that periodically executes their inst 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowe 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't af 11 * miss some of their deadlines), and won't affect any other task. 12 * 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@g 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <micha 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fcheccon 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 17 */ >> 18 #include "sched.h" >> 19 #include "pelt.h" 18 20 19 #include <linux/cpuset.h> !! 21 struct dl_bandwidth def_dl_bandwidth; 20 << 21 /* << 22 * Default limits for DL period; on the top en << 23 * tasks still getting ridiculously long effec << 24 * guard against timer DoS. << 25 */ << 26 static unsigned int sysctl_sched_dl_period_max << 27 static unsigned int sysctl_sched_dl_period_min << 28 #ifdef CONFIG_SYSCTL << 29 static struct ctl_table sched_dl_sysctls[] = { << 30 { << 31 .procname = "sched_deadl << 32 .data = &sysctl_sche << 33 .maxlen = sizeof(unsig << 34 .mode = 0644, << 35 .proc_handler = proc_douintv << 36 .extra1 = (void *)&sys << 37 }, << 38 { << 39 .procname = "sched_deadl << 40 .data = &sysctl_sche << 41 .maxlen = sizeof(unsig << 42 .mode = 0644, << 43 .proc_handler = proc_douintv << 44 .extra2 = (void *)&sys << 45 }, << 46 }; << 47 << 48 static int __init sched_dl_sysctl_init(void) << 49 { << 50 register_sysctl_init("kernel", sched_d << 51 return 0; << 52 } << 53 late_initcall(sched_dl_sysctl_init); << 54 #endif << 55 << 56 static bool dl_server(struct sched_dl_entity * << 57 { << 58 return dl_se->dl_server; << 59 } << 60 22 61 static inline struct task_struct *dl_task_of(s 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 62 { 24 { 63 BUG_ON(dl_server(dl_se)); << 64 return container_of(dl_se, struct task 25 return container_of(dl_se, struct task_struct, dl); 65 } 26 } 66 27 67 static inline struct rq *rq_of_dl_rq(struct dl 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 68 { 29 { 69 return container_of(dl_rq, struct rq, 30 return container_of(dl_rq, struct rq, dl); 70 } 31 } 71 32 72 static inline struct rq *rq_of_dl_se(struct sc << 73 { << 74 struct rq *rq = dl_se->rq; << 75 << 76 if (!dl_server(dl_se)) << 77 rq = task_rq(dl_task_of(dl_se) << 78 << 79 return rq; << 80 } << 81 << 82 static inline struct dl_rq *dl_rq_of_se(struct 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 83 { 34 { 84 return &rq_of_dl_se(dl_se)->dl; !! 35 struct task_struct *p = dl_task_of(dl_se); >> 36 struct rq *rq = task_rq(p); >> 37 >> 38 return &rq->dl; 85 } 39 } 86 40 87 static inline int on_dl_rq(struct sched_dl_ent 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 88 { 42 { 89 return !RB_EMPTY_NODE(&dl_se->rb_node) 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 90 } 44 } 91 45 92 #ifdef CONFIG_RT_MUTEXES << 93 static inline struct sched_dl_entity *pi_of(st << 94 { << 95 return dl_se->pi_se; << 96 } << 97 << 98 static inline bool is_dl_boosted(struct sched_ << 99 { << 100 return pi_of(dl_se) != dl_se; << 101 } << 102 #else << 103 static inline struct sched_dl_entity *pi_of(st << 104 { << 105 return dl_se; << 106 } << 107 << 108 static inline bool is_dl_boosted(struct sched_ << 109 { << 110 return false; << 111 } << 112 #endif << 113 << 114 #ifdef CONFIG_SMP 46 #ifdef CONFIG_SMP 115 static inline struct dl_bw *dl_bw_of(int i) 47 static inline struct dl_bw *dl_bw_of(int i) 116 { 48 { 117 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_ 49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 118 "sched RCU must be he 50 "sched RCU must be held"); 119 return &cpu_rq(i)->rd->dl_bw; 51 return &cpu_rq(i)->rd->dl_bw; 120 } 52 } 121 53 122 static inline int dl_bw_cpus(int i) 54 static inline int dl_bw_cpus(int i) 123 { 55 { 124 struct root_domain *rd = cpu_rq(i)->rd 56 struct root_domain *rd = cpu_rq(i)->rd; 125 int cpus; 57 int cpus; 126 58 127 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_ 59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 128 "sched RCU must be he 60 "sched RCU must be held"); 129 61 130 if (cpumask_subset(rd->span, cpu_activ 62 if (cpumask_subset(rd->span, cpu_active_mask)) 131 return cpumask_weight(rd->span 63 return cpumask_weight(rd->span); 132 64 133 cpus = 0; 65 cpus = 0; 134 66 135 for_each_cpu_and(i, rd->span, cpu_acti 67 for_each_cpu_and(i, rd->span, cpu_active_mask) 136 cpus++; 68 cpus++; 137 69 138 return cpus; 70 return cpus; 139 } 71 } 140 72 141 static inline unsigned long __dl_bw_capacity(c !! 73 static inline unsigned long __dl_bw_capacity(int i) 142 { 74 { >> 75 struct root_domain *rd = cpu_rq(i)->rd; 143 unsigned long cap = 0; 76 unsigned long cap = 0; 144 int i; << 145 77 146 for_each_cpu_and(i, mask, cpu_active_m !! 78 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 147 cap += arch_scale_cpu_capacity !! 79 "sched RCU must be held"); >> 80 >> 81 for_each_cpu_and(i, rd->span, cpu_active_mask) >> 82 cap += capacity_orig_of(i); 148 83 149 return cap; 84 return cap; 150 } 85 } 151 86 152 /* 87 /* 153 * XXX Fix: If 'rq->rd == def_root_domain' per 88 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 154 * of the CPU the task is running on rather rd 89 * of the CPU the task is running on rather rd's \Sum CPU capacity. 155 */ 90 */ 156 static inline unsigned long dl_bw_capacity(int 91 static inline unsigned long dl_bw_capacity(int i) 157 { 92 { 158 if (!sched_asym_cpucap_active() && !! 93 if (!static_branch_unlikely(&sched_asym_cpucapacity) && 159 arch_scale_cpu_capacity(i) == SCHE !! 94 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) { 160 return dl_bw_cpus(i) << SCHED_ 95 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 161 } else { 96 } else { 162 RCU_LOCKDEP_WARN(!rcu_read_loc !! 97 return __dl_bw_capacity(i); 163 "sched RCU mu << 164 << 165 return __dl_bw_capacity(cpu_rq << 166 } << 167 } << 168 << 169 static inline bool dl_bw_visited(int cpu, u64 << 170 { << 171 struct root_domain *rd = cpu_rq(cpu)-> << 172 << 173 if (rd->visit_gen == gen) << 174 return true; << 175 << 176 rd->visit_gen = gen; << 177 return false; << 178 } << 179 << 180 static inline << 181 void __dl_update(struct dl_bw *dl_b, s64 bw) << 182 { << 183 struct root_domain *rd = container_of( << 184 int i; << 185 << 186 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_ << 187 "sched RCU must be he << 188 for_each_cpu_and(i, rd->span, cpu_acti << 189 struct rq *rq = cpu_rq(i); << 190 << 191 rq->dl.extra_bw += bw; << 192 } 98 } 193 } 99 } 194 #else 100 #else 195 static inline struct dl_bw *dl_bw_of(int i) 101 static inline struct dl_bw *dl_bw_of(int i) 196 { 102 { 197 return &cpu_rq(i)->dl.dl_bw; 103 return &cpu_rq(i)->dl.dl_bw; 198 } 104 } 199 105 200 static inline int dl_bw_cpus(int i) 106 static inline int dl_bw_cpus(int i) 201 { 107 { 202 return 1; 108 return 1; 203 } 109 } 204 110 205 static inline unsigned long dl_bw_capacity(int 111 static inline unsigned long dl_bw_capacity(int i) 206 { 112 { 207 return SCHED_CAPACITY_SCALE; 113 return SCHED_CAPACITY_SCALE; 208 } 114 } 209 << 210 static inline bool dl_bw_visited(int cpu, u64 << 211 { << 212 return false; << 213 } << 214 << 215 static inline << 216 void __dl_update(struct dl_bw *dl_b, s64 bw) << 217 { << 218 struct dl_rq *dl = container_of(dl_b, << 219 << 220 dl->extra_bw += bw; << 221 } << 222 #endif 115 #endif 223 116 224 static inline 117 static inline 225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, << 226 { << 227 dl_b->total_bw -= tsk_bw; << 228 __dl_update(dl_b, (s32)tsk_bw / cpus); << 229 } << 230 << 231 static inline << 232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, << 233 { << 234 dl_b->total_bw += tsk_bw; << 235 __dl_update(dl_b, -((s32)tsk_bw / cpus << 236 } << 237 << 238 static inline bool << 239 __dl_overflow(struct dl_bw *dl_b, unsigned lon << 240 { << 241 return dl_b->bw != -1 && << 242 cap_scale(dl_b->bw, cap) < dl_b << 243 } << 244 << 245 static inline << 246 void __add_running_bw(u64 dl_bw, struct dl_rq 118 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 247 { 119 { 248 u64 old = dl_rq->running_bw; 120 u64 old = dl_rq->running_bw; 249 121 250 lockdep_assert_rq_held(rq_of_dl_rq(dl_ !! 122 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 251 dl_rq->running_bw += dl_bw; 123 dl_rq->running_bw += dl_bw; 252 SCHED_WARN_ON(dl_rq->running_bw < old) 124 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 253 SCHED_WARN_ON(dl_rq->running_bw > dl_r 125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 254 /* kick cpufreq (see the comment in ke 126 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 255 cpufreq_update_util(rq_of_dl_rq(dl_rq) 127 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 256 } 128 } 257 129 258 static inline 130 static inline 259 void __sub_running_bw(u64 dl_bw, struct dl_rq 131 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 260 { 132 { 261 u64 old = dl_rq->running_bw; 133 u64 old = dl_rq->running_bw; 262 134 263 lockdep_assert_rq_held(rq_of_dl_rq(dl_ !! 135 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 264 dl_rq->running_bw -= dl_bw; 136 dl_rq->running_bw -= dl_bw; 265 SCHED_WARN_ON(dl_rq->running_bw > old) 137 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 266 if (dl_rq->running_bw > old) 138 if (dl_rq->running_bw > old) 267 dl_rq->running_bw = 0; 139 dl_rq->running_bw = 0; 268 /* kick cpufreq (see the comment in ke 140 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 269 cpufreq_update_util(rq_of_dl_rq(dl_rq) 141 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 270 } 142 } 271 143 272 static inline 144 static inline 273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_r 145 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 274 { 146 { 275 u64 old = dl_rq->this_bw; 147 u64 old = dl_rq->this_bw; 276 148 277 lockdep_assert_rq_held(rq_of_dl_rq(dl_ !! 149 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 278 dl_rq->this_bw += dl_bw; 150 dl_rq->this_bw += dl_bw; 279 SCHED_WARN_ON(dl_rq->this_bw < old); / 151 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 280 } 152 } 281 153 282 static inline 154 static inline 283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_r 155 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 284 { 156 { 285 u64 old = dl_rq->this_bw; 157 u64 old = dl_rq->this_bw; 286 158 287 lockdep_assert_rq_held(rq_of_dl_rq(dl_ !! 159 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 288 dl_rq->this_bw -= dl_bw; 160 dl_rq->this_bw -= dl_bw; 289 SCHED_WARN_ON(dl_rq->this_bw > old); / 161 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 290 if (dl_rq->this_bw > old) 162 if (dl_rq->this_bw > old) 291 dl_rq->this_bw = 0; 163 dl_rq->this_bw = 0; 292 SCHED_WARN_ON(dl_rq->running_bw > dl_r 164 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 293 } 165 } 294 166 295 static inline 167 static inline 296 void add_rq_bw(struct sched_dl_entity *dl_se, 168 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 297 { 169 { 298 if (!dl_entity_is_special(dl_se)) 170 if (!dl_entity_is_special(dl_se)) 299 __add_rq_bw(dl_se->dl_bw, dl_r 171 __add_rq_bw(dl_se->dl_bw, dl_rq); 300 } 172 } 301 173 302 static inline 174 static inline 303 void sub_rq_bw(struct sched_dl_entity *dl_se, 175 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 304 { 176 { 305 if (!dl_entity_is_special(dl_se)) 177 if (!dl_entity_is_special(dl_se)) 306 __sub_rq_bw(dl_se->dl_bw, dl_r 178 __sub_rq_bw(dl_se->dl_bw, dl_rq); 307 } 179 } 308 180 309 static inline 181 static inline 310 void add_running_bw(struct sched_dl_entity *dl 182 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 311 { 183 { 312 if (!dl_entity_is_special(dl_se)) 184 if (!dl_entity_is_special(dl_se)) 313 __add_running_bw(dl_se->dl_bw, 185 __add_running_bw(dl_se->dl_bw, dl_rq); 314 } 186 } 315 187 316 static inline 188 static inline 317 void sub_running_bw(struct sched_dl_entity *dl 189 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 318 { 190 { 319 if (!dl_entity_is_special(dl_se)) 191 if (!dl_entity_is_special(dl_se)) 320 __sub_running_bw(dl_se->dl_bw, 192 __sub_running_bw(dl_se->dl_bw, dl_rq); 321 } 193 } 322 194 323 static void dl_rq_change_utilization(struct rq !! 195 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 324 { 196 { 325 if (dl_se->dl_non_contending) { !! 197 struct rq *rq; 326 sub_running_bw(dl_se, &rq->dl) !! 198 327 dl_se->dl_non_contending = 0; !! 199 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); >> 200 >> 201 if (task_on_rq_queued(p)) >> 202 return; 328 203 >> 204 rq = task_rq(p); >> 205 if (p->dl.dl_non_contending) { >> 206 sub_running_bw(&p->dl, &rq->dl); >> 207 p->dl.dl_non_contending = 0; 329 /* 208 /* 330 * If the timer handler is cur 209 * If the timer handler is currently running and the 331 * timer cannot be canceled, i !! 210 * timer cannot be cancelled, inactive_task_timer() 332 * will see that dl_not_conten 211 * will see that dl_not_contending is not set, and 333 * will not touch the rq's act 212 * will not touch the rq's active utilization, 334 * so we are still safe. 213 * so we are still safe. 335 */ 214 */ 336 if (hrtimer_try_to_cancel(&dl_ !! 215 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 337 if (!dl_server(dl_se)) !! 216 put_task_struct(p); 338 put_task_struc << 339 } << 340 } 217 } 341 __sub_rq_bw(dl_se->dl_bw, &rq->dl); !! 218 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 342 __add_rq_bw(new_bw, &rq->dl); 219 __add_rq_bw(new_bw, &rq->dl); 343 } 220 } 344 221 345 static void dl_change_utilization(struct task_ << 346 { << 347 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_ << 348 << 349 if (task_on_rq_queued(p)) << 350 return; << 351 << 352 dl_rq_change_utilization(task_rq(p), & << 353 } << 354 << 355 static void __dl_clear_params(struct sched_dl_ << 356 << 357 /* 222 /* 358 * The utilization of a task cannot be immedia 223 * The utilization of a task cannot be immediately removed from 359 * the rq active utilization (running_bw) when 224 * the rq active utilization (running_bw) when the task blocks. 360 * Instead, we have to wait for the so called 225 * Instead, we have to wait for the so called "0-lag time". 361 * 226 * 362 * If a task blocks before the "0-lag time", a 227 * If a task blocks before the "0-lag time", a timer (the inactive 363 * timer) is armed, and running_bw is decrease 228 * timer) is armed, and running_bw is decreased when the timer 364 * fires. 229 * fires. 365 * 230 * 366 * If the task wakes up again before the inact 231 * If the task wakes up again before the inactive timer fires, 367 * the timer is canceled, whereas if the task !! 232 * the timer is cancelled, whereas if the task wakes up after the 368 * inactive timer fired (and running_bw has be 233 * inactive timer fired (and running_bw has been decreased) the 369 * task's utilization has to be added to runni 234 * task's utilization has to be added to running_bw again. 370 * A flag in the deadline scheduling entity (d 235 * A flag in the deadline scheduling entity (dl_non_contending) 371 * is used to avoid race conditions between th 236 * is used to avoid race conditions between the inactive timer handler 372 * and task wakeups. 237 * and task wakeups. 373 * 238 * 374 * The following diagram shows how running_bw 239 * The following diagram shows how running_bw is updated. A task is 375 * "ACTIVE" when its utilization contributes t 240 * "ACTIVE" when its utilization contributes to running_bw; an 376 * "ACTIVE contending" task is in the TASK_RUN 241 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 377 * "ACTIVE non contending" task is a blocked t 242 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 378 * has not passed yet. An "INACTIVE" task is a 243 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 379 * time already passed, which does not contrib 244 * time already passed, which does not contribute to running_bw anymore. 380 * +------------- 245 * +------------------+ 381 * wakeup | ACTIVE 246 * wakeup | ACTIVE | 382 * +------------------>+ contending 247 * +------------------>+ contending | 383 * | add_running_bw | 248 * | add_running_bw | | 384 * | +----+------+- 249 * | +----+------+------+ 385 * | | ^ 250 * | | ^ 386 * | dequeue | | 251 * | dequeue | | 387 * +--------+-------+ | | 252 * +--------+-------+ | | 388 * | | t >= 0-lag | | 253 * | | t >= 0-lag | | wakeup 389 * | INACTIVE |<---------------+ | 254 * | INACTIVE |<---------------+ | 390 * | | sub_running_bw | | 255 * | | sub_running_bw | | 391 * +--------+-------+ | | 256 * +--------+-------+ | | 392 * ^ | | 257 * ^ | | 393 * | t < 0-lag | | 258 * | t < 0-lag | | 394 * | | | 259 * | | | 395 * | V | 260 * | V | 396 * | +----+------+- 261 * | +----+------+------+ 397 * | sub_running_bw | ACTIVE 262 * | sub_running_bw | ACTIVE | 398 * +-------------------+ 263 * +-------------------+ | 399 * inactive timer | non contend 264 * inactive timer | non contending | 400 * fired +------------- 265 * fired +------------------+ 401 * 266 * 402 * The task_non_contending() function is invok 267 * The task_non_contending() function is invoked when a task 403 * blocks, and checks if the 0-lag time alread 268 * blocks, and checks if the 0-lag time already passed or 404 * not (in the first case, it directly updates 269 * not (in the first case, it directly updates running_bw; 405 * in the second case, it arms the inactive ti 270 * in the second case, it arms the inactive timer). 406 * 271 * 407 * The task_contending() function is invoked w 272 * The task_contending() function is invoked when a task wakes 408 * up, and checks if the task is still in the 273 * up, and checks if the task is still in the "ACTIVE non contending" 409 * state or not (in the second case, it update 274 * state or not (in the second case, it updates running_bw). 410 */ 275 */ 411 static void task_non_contending(struct sched_d !! 276 static void task_non_contending(struct task_struct *p) 412 { 277 { >> 278 struct sched_dl_entity *dl_se = &p->dl; 413 struct hrtimer *timer = &dl_se->inacti 279 struct hrtimer *timer = &dl_se->inactive_timer; 414 struct rq *rq = rq_of_dl_se(dl_se); !! 280 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 415 struct dl_rq *dl_rq = &rq->dl; !! 281 struct rq *rq = rq_of_dl_rq(dl_rq); 416 s64 zerolag_time; 282 s64 zerolag_time; 417 283 418 /* 284 /* 419 * If this is a non-deadline task that 285 * If this is a non-deadline task that has been boosted, 420 * do nothing 286 * do nothing 421 */ 287 */ 422 if (dl_se->dl_runtime == 0) 288 if (dl_se->dl_runtime == 0) 423 return; 289 return; 424 290 425 if (dl_entity_is_special(dl_se)) 291 if (dl_entity_is_special(dl_se)) 426 return; 292 return; 427 293 428 WARN_ON(dl_se->dl_non_contending); 294 WARN_ON(dl_se->dl_non_contending); 429 295 430 zerolag_time = dl_se->deadline - 296 zerolag_time = dl_se->deadline - 431 div64_long((dl_se->runtime * 297 div64_long((dl_se->runtime * dl_se->dl_period), 432 dl_se->dl_runtime); 298 dl_se->dl_runtime); 433 299 434 /* 300 /* 435 * Using relative times instead of the 301 * Using relative times instead of the absolute "0-lag time" 436 * allows to simplify the code 302 * allows to simplify the code 437 */ 303 */ 438 zerolag_time -= rq_clock(rq); 304 zerolag_time -= rq_clock(rq); 439 305 440 /* 306 /* 441 * If the "0-lag time" already passed, 307 * If the "0-lag time" already passed, decrease the active 442 * utilization now, instead of startin 308 * utilization now, instead of starting a timer 443 */ 309 */ 444 if ((zerolag_time < 0) || hrtimer_acti 310 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 445 if (dl_server(dl_se)) { !! 311 if (dl_task(p)) 446 sub_running_bw(dl_se, 312 sub_running_bw(dl_se, dl_rq); 447 } else { !! 313 if (!dl_task(p) || p->state == TASK_DEAD) { 448 struct task_struct *p !! 314 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 449 315 450 if (dl_task(p)) !! 316 if (p->state == TASK_DEAD) 451 sub_running_bw !! 317 sub_rq_bw(&p->dl, &rq->dl); 452 !! 318 raw_spin_lock(&dl_b->lock); 453 if (!dl_task(p) || REA !! 319 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 454 struct dl_bw * !! 320 __dl_clear_params(p); 455 !! 321 raw_spin_unlock(&dl_b->lock); 456 if (READ_ONCE( << 457 sub_rq << 458 raw_spin_lock( << 459 __dl_sub(dl_b, << 460 raw_spin_unloc << 461 __dl_clear_par << 462 } << 463 } 322 } 464 323 465 return; 324 return; 466 } 325 } 467 326 468 dl_se->dl_non_contending = 1; 327 dl_se->dl_non_contending = 1; 469 if (!dl_server(dl_se)) !! 328 get_task_struct(p); 470 get_task_struct(dl_task_of(dl_ << 471 << 472 hrtimer_start(timer, ns_to_ktime(zerol 329 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 473 } 330 } 474 331 475 static void task_contending(struct sched_dl_en 332 static void task_contending(struct sched_dl_entity *dl_se, int flags) 476 { 333 { 477 struct dl_rq *dl_rq = dl_rq_of_se(dl_s 334 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 478 335 479 /* 336 /* 480 * If this is a non-deadline task that 337 * If this is a non-deadline task that has been boosted, 481 * do nothing 338 * do nothing 482 */ 339 */ 483 if (dl_se->dl_runtime == 0) 340 if (dl_se->dl_runtime == 0) 484 return; 341 return; 485 342 486 if (flags & ENQUEUE_MIGRATED) 343 if (flags & ENQUEUE_MIGRATED) 487 add_rq_bw(dl_se, dl_rq); 344 add_rq_bw(dl_se, dl_rq); 488 345 489 if (dl_se->dl_non_contending) { 346 if (dl_se->dl_non_contending) { 490 dl_se->dl_non_contending = 0; 347 dl_se->dl_non_contending = 0; 491 /* 348 /* 492 * If the timer handler is cur 349 * If the timer handler is currently running and the 493 * timer cannot be canceled, i !! 350 * timer cannot be cancelled, inactive_task_timer() 494 * will see that dl_not_conten 351 * will see that dl_not_contending is not set, and 495 * will not touch the rq's act 352 * will not touch the rq's active utilization, 496 * so we are still safe. 353 * so we are still safe. 497 */ 354 */ 498 if (hrtimer_try_to_cancel(&dl_ !! 355 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 499 if (!dl_server(dl_se)) !! 356 put_task_struct(dl_task_of(dl_se)); 500 put_task_struc << 501 } << 502 } else { 357 } else { 503 /* 358 /* 504 * Since "dl_non_contending" i 359 * Since "dl_non_contending" is not set, the 505 * task's utilization has alre 360 * task's utilization has already been removed from 506 * active utilization (either 361 * active utilization (either when the task blocked, 507 * when the "inactive timer" f 362 * when the "inactive timer" fired). 508 * So, add it back. 363 * So, add it back. 509 */ 364 */ 510 add_running_bw(dl_se, dl_rq); 365 add_running_bw(dl_se, dl_rq); 511 } 366 } 512 } 367 } 513 368 514 static inline int is_leftmost(struct sched_dl_ !! 369 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 515 { 370 { 516 return rb_first_cached(&dl_rq->root) = !! 371 struct sched_dl_entity *dl_se = &p->dl; >> 372 >> 373 return dl_rq->root.rb_leftmost == &dl_se->rb_node; 517 } 374 } 518 375 519 static void init_dl_rq_bw_ratio(struct dl_rq * 376 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 520 377 >> 378 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) >> 379 { >> 380 raw_spin_lock_init(&dl_b->dl_runtime_lock); >> 381 dl_b->dl_period = period; >> 382 dl_b->dl_runtime = runtime; >> 383 } >> 384 521 void init_dl_bw(struct dl_bw *dl_b) 385 void init_dl_bw(struct dl_bw *dl_b) 522 { 386 { 523 raw_spin_lock_init(&dl_b->lock); 387 raw_spin_lock_init(&dl_b->lock); >> 388 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 524 if (global_rt_runtime() == RUNTIME_INF 389 if (global_rt_runtime() == RUNTIME_INF) 525 dl_b->bw = -1; 390 dl_b->bw = -1; 526 else 391 else 527 dl_b->bw = to_ratio(global_rt_ 392 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); >> 393 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 528 dl_b->total_bw = 0; 394 dl_b->total_bw = 0; 529 } 395 } 530 396 531 void init_dl_rq(struct dl_rq *dl_rq) 397 void init_dl_rq(struct dl_rq *dl_rq) 532 { 398 { 533 dl_rq->root = RB_ROOT_CACHED; 399 dl_rq->root = RB_ROOT_CACHED; 534 400 535 #ifdef CONFIG_SMP 401 #ifdef CONFIG_SMP 536 /* zero means no -deadline tasks */ 402 /* zero means no -deadline tasks */ 537 dl_rq->earliest_dl.curr = dl_rq->earli 403 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 538 404 >> 405 dl_rq->dl_nr_migratory = 0; 539 dl_rq->overloaded = 0; 406 dl_rq->overloaded = 0; 540 dl_rq->pushable_dl_tasks_root = RB_ROO 407 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 541 #else 408 #else 542 init_dl_bw(&dl_rq->dl_bw); 409 init_dl_bw(&dl_rq->dl_bw); 543 #endif 410 #endif 544 411 545 dl_rq->running_bw = 0; 412 dl_rq->running_bw = 0; 546 dl_rq->this_bw = 0; 413 dl_rq->this_bw = 0; 547 init_dl_rq_bw_ratio(dl_rq); 414 init_dl_rq_bw_ratio(dl_rq); 548 } 415 } 549 416 550 #ifdef CONFIG_SMP 417 #ifdef CONFIG_SMP 551 418 552 static inline int dl_overloaded(struct rq *rq) 419 static inline int dl_overloaded(struct rq *rq) 553 { 420 { 554 return atomic_read(&rq->rd->dlo_count) 421 return atomic_read(&rq->rd->dlo_count); 555 } 422 } 556 423 557 static inline void dl_set_overload(struct rq * 424 static inline void dl_set_overload(struct rq *rq) 558 { 425 { 559 if (!rq->online) 426 if (!rq->online) 560 return; 427 return; 561 428 562 cpumask_set_cpu(rq->cpu, rq->rd->dlo_m 429 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 563 /* 430 /* 564 * Must be visible before the overload 431 * Must be visible before the overload count is 565 * set (as in sched_rt.c). 432 * set (as in sched_rt.c). 566 * 433 * 567 * Matched by the barrier in pull_dl_t 434 * Matched by the barrier in pull_dl_task(). 568 */ 435 */ 569 smp_wmb(); 436 smp_wmb(); 570 atomic_inc(&rq->rd->dlo_count); 437 atomic_inc(&rq->rd->dlo_count); 571 } 438 } 572 439 573 static inline void dl_clear_overload(struct rq 440 static inline void dl_clear_overload(struct rq *rq) 574 { 441 { 575 if (!rq->online) 442 if (!rq->online) 576 return; 443 return; 577 444 578 atomic_dec(&rq->rd->dlo_count); 445 atomic_dec(&rq->rd->dlo_count); 579 cpumask_clear_cpu(rq->cpu, rq->rd->dlo 446 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 580 } 447 } 581 448 582 #define __node_2_pdl(node) \ !! 449 static void update_dl_migration(struct dl_rq *dl_rq) 583 rb_entry((node), struct task_struct, p !! 450 { >> 451 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { >> 452 if (!dl_rq->overloaded) { >> 453 dl_set_overload(rq_of_dl_rq(dl_rq)); >> 454 dl_rq->overloaded = 1; >> 455 } >> 456 } else if (dl_rq->overloaded) { >> 457 dl_clear_overload(rq_of_dl_rq(dl_rq)); >> 458 dl_rq->overloaded = 0; >> 459 } >> 460 } 584 461 585 static inline bool __pushable_less(struct rb_n !! 462 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 586 { 463 { 587 return dl_entity_preempt(&__node_2_pdl !! 464 struct task_struct *p = dl_task_of(dl_se); >> 465 >> 466 if (p->nr_cpus_allowed > 1) >> 467 dl_rq->dl_nr_migratory++; >> 468 >> 469 update_dl_migration(dl_rq); 588 } 470 } 589 471 590 static inline int has_pushable_dl_tasks(struct !! 472 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 591 { 473 { 592 return !RB_EMPTY_ROOT(&rq->dl.pushable !! 474 struct task_struct *p = dl_task_of(dl_se); >> 475 >> 476 if (p->nr_cpus_allowed > 1) >> 477 dl_rq->dl_nr_migratory--; >> 478 >> 479 update_dl_migration(dl_rq); 593 } 480 } 594 481 595 /* 482 /* 596 * The list of pushable -deadline task is not 483 * The list of pushable -deadline task is not a plist, like in 597 * sched_rt.c, it is an rb-tree with tasks ord 484 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 598 */ 485 */ 599 static void enqueue_pushable_dl_task(struct rq 486 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 600 { 487 { 601 struct rb_node *leftmost; !! 488 struct dl_rq *dl_rq = &rq->dl; 602 !! 489 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node; 603 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushab !! 490 struct rb_node *parent = NULL; >> 491 struct task_struct *entry; >> 492 bool leftmost = true; >> 493 >> 494 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); >> 495 >> 496 while (*link) { >> 497 parent = *link; >> 498 entry = rb_entry(parent, struct task_struct, >> 499 pushable_dl_tasks); >> 500 if (dl_entity_preempt(&p->dl, &entry->dl)) >> 501 link = &parent->rb_left; >> 502 else { >> 503 link = &parent->rb_right; >> 504 leftmost = false; >> 505 } >> 506 } 604 507 605 leftmost = rb_add_cached(&p->pushable_ << 606 &rq->dl.pusha << 607 __pushable_le << 608 if (leftmost) 508 if (leftmost) 609 rq->dl.earliest_dl.next = p->d !! 509 dl_rq->earliest_dl.next = p->dl.deadline; 610 510 611 if (!rq->dl.overloaded) { !! 511 rb_link_node(&p->pushable_dl_tasks, parent, link); 612 dl_set_overload(rq); !! 512 rb_insert_color_cached(&p->pushable_dl_tasks, 613 rq->dl.overloaded = 1; !! 513 &dl_rq->pushable_dl_tasks_root, leftmost); 614 } << 615 } 514 } 616 515 617 static void dequeue_pushable_dl_task(struct rq 516 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 618 { 517 { 619 struct dl_rq *dl_rq = &rq->dl; 518 struct dl_rq *dl_rq = &rq->dl; 620 struct rb_root_cached *root = &dl_rq-> << 621 struct rb_node *leftmost; << 622 519 623 if (RB_EMPTY_NODE(&p->pushable_dl_task 520 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 624 return; 521 return; 625 522 626 leftmost = rb_erase_cached(&p->pushabl !! 523 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) { 627 if (leftmost) !! 524 struct rb_node *next_node; 628 dl_rq->earliest_dl.next = __no !! 525 >> 526 next_node = rb_next(&p->pushable_dl_tasks); >> 527 if (next_node) { >> 528 dl_rq->earliest_dl.next = rb_entry(next_node, >> 529 struct task_struct, pushable_dl_tasks)->dl.deadline; >> 530 } >> 531 } 629 532 >> 533 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 630 RB_CLEAR_NODE(&p->pushable_dl_tasks); 534 RB_CLEAR_NODE(&p->pushable_dl_tasks); >> 535 } 631 536 632 if (!has_pushable_dl_tasks(rq) && rq-> !! 537 static inline int has_pushable_dl_tasks(struct rq *rq) 633 dl_clear_overload(rq); !! 538 { 634 rq->dl.overloaded = 0; !! 539 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 635 } << 636 } 540 } 637 541 638 static int push_dl_task(struct rq *rq); 542 static int push_dl_task(struct rq *rq); 639 543 640 static inline bool need_pull_dl_task(struct rq 544 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 641 { 545 { 642 return rq->online && dl_task(prev); !! 546 return dl_task(prev); 643 } 547 } 644 548 645 static DEFINE_PER_CPU(struct balance_callback, !! 549 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 646 static DEFINE_PER_CPU(struct balance_callback, !! 550 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 647 551 648 static void push_dl_tasks(struct rq *); 552 static void push_dl_tasks(struct rq *); 649 static void pull_dl_task(struct rq *); 553 static void pull_dl_task(struct rq *); 650 554 651 static inline void deadline_queue_push_tasks(s 555 static inline void deadline_queue_push_tasks(struct rq *rq) 652 { 556 { 653 if (!has_pushable_dl_tasks(rq)) 557 if (!has_pushable_dl_tasks(rq)) 654 return; 558 return; 655 559 656 queue_balance_callback(rq, &per_cpu(dl 560 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 657 } 561 } 658 562 659 static inline void deadline_queue_pull_task(st 563 static inline void deadline_queue_pull_task(struct rq *rq) 660 { 564 { 661 queue_balance_callback(rq, &per_cpu(dl 565 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 662 } 566 } 663 567 664 static struct rq *find_lock_later_rq(struct ta 568 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 665 569 666 static struct rq *dl_task_offline_migration(st 570 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 667 { 571 { 668 struct rq *later_rq = NULL; 572 struct rq *later_rq = NULL; 669 struct dl_bw *dl_b; 573 struct dl_bw *dl_b; 670 574 671 later_rq = find_lock_later_rq(p, rq); 575 later_rq = find_lock_later_rq(p, rq); 672 if (!later_rq) { 576 if (!later_rq) { 673 int cpu; 577 int cpu; 674 578 675 /* 579 /* 676 * If we cannot preempt any rq 580 * If we cannot preempt any rq, fall back to pick any 677 * online CPU: 581 * online CPU: 678 */ 582 */ 679 cpu = cpumask_any_and(cpu_acti 583 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 680 if (cpu >= nr_cpu_ids) { 584 if (cpu >= nr_cpu_ids) { 681 /* 585 /* 682 * Failed to find any 586 * Failed to find any suitable CPU. 683 * The task will never 587 * The task will never come back! 684 */ 588 */ 685 WARN_ON_ONCE(dl_bandwi !! 589 BUG_ON(dl_bandwidth_enabled()); 686 590 687 /* 591 /* 688 * If admission contro 592 * If admission control is disabled we 689 * try a little harder 593 * try a little harder to let the task 690 * run. 594 * run. 691 */ 595 */ 692 cpu = cpumask_any(cpu_ 596 cpu = cpumask_any(cpu_active_mask); 693 } 597 } 694 later_rq = cpu_rq(cpu); 598 later_rq = cpu_rq(cpu); 695 double_lock_balance(rq, later_ 599 double_lock_balance(rq, later_rq); 696 } 600 } 697 601 698 if (p->dl.dl_non_contending || p->dl.d 602 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 699 /* 603 /* 700 * Inactive timer is armed (or 604 * Inactive timer is armed (or callback is running, but 701 * waiting for us to release r 605 * waiting for us to release rq locks). In any case, when it 702 * will fire (or continue), it 606 * will fire (or continue), it will see running_bw of this 703 * task migrated to later_rq ( 607 * task migrated to later_rq (and correctly handle it). 704 */ 608 */ 705 sub_running_bw(&p->dl, &rq->dl 609 sub_running_bw(&p->dl, &rq->dl); 706 sub_rq_bw(&p->dl, &rq->dl); 610 sub_rq_bw(&p->dl, &rq->dl); 707 611 708 add_rq_bw(&p->dl, &later_rq->d 612 add_rq_bw(&p->dl, &later_rq->dl); 709 add_running_bw(&p->dl, &later_ 613 add_running_bw(&p->dl, &later_rq->dl); 710 } else { 614 } else { 711 sub_rq_bw(&p->dl, &rq->dl); 615 sub_rq_bw(&p->dl, &rq->dl); 712 add_rq_bw(&p->dl, &later_rq->d 616 add_rq_bw(&p->dl, &later_rq->dl); 713 } 617 } 714 618 715 /* 619 /* 716 * And we finally need to fix up root_ !! 620 * And we finally need to fixup root_domain(s) bandwidth accounting, 717 * since p is still hanging out in the 621 * since p is still hanging out in the old (now moved to default) root 718 * domain. 622 * domain. 719 */ 623 */ 720 dl_b = &rq->rd->dl_bw; 624 dl_b = &rq->rd->dl_bw; 721 raw_spin_lock(&dl_b->lock); 625 raw_spin_lock(&dl_b->lock); 722 __dl_sub(dl_b, p->dl.dl_bw, cpumask_we 626 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 723 raw_spin_unlock(&dl_b->lock); 627 raw_spin_unlock(&dl_b->lock); 724 628 725 dl_b = &later_rq->rd->dl_bw; 629 dl_b = &later_rq->rd->dl_bw; 726 raw_spin_lock(&dl_b->lock); 630 raw_spin_lock(&dl_b->lock); 727 __dl_add(dl_b, p->dl.dl_bw, cpumask_we 631 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 728 raw_spin_unlock(&dl_b->lock); 632 raw_spin_unlock(&dl_b->lock); 729 633 730 set_task_cpu(p, later_rq->cpu); 634 set_task_cpu(p, later_rq->cpu); 731 double_unlock_balance(later_rq, rq); 635 double_unlock_balance(later_rq, rq); 732 636 733 return later_rq; 637 return later_rq; 734 } 638 } 735 639 736 #else 640 #else 737 641 738 static inline 642 static inline 739 void enqueue_pushable_dl_task(struct rq *rq, s 643 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 740 { 644 { 741 } 645 } 742 646 743 static inline 647 static inline 744 void dequeue_pushable_dl_task(struct rq *rq, s 648 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 745 { 649 { 746 } 650 } 747 651 748 static inline 652 static inline 749 void inc_dl_migration(struct sched_dl_entity * 653 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 750 { 654 { 751 } 655 } 752 656 753 static inline 657 static inline 754 void dec_dl_migration(struct sched_dl_entity * 658 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 755 { 659 { 756 } 660 } 757 661 >> 662 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) >> 663 { >> 664 return false; >> 665 } >> 666 >> 667 static inline void pull_dl_task(struct rq *rq) >> 668 { >> 669 } >> 670 758 static inline void deadline_queue_push_tasks(s 671 static inline void deadline_queue_push_tasks(struct rq *rq) 759 { 672 { 760 } 673 } 761 674 762 static inline void deadline_queue_pull_task(st 675 static inline void deadline_queue_pull_task(struct rq *rq) 763 { 676 { 764 } 677 } 765 #endif /* CONFIG_SMP */ 678 #endif /* CONFIG_SMP */ 766 679 767 static void << 768 enqueue_dl_entity(struct sched_dl_entity *dl_s << 769 static void enqueue_task_dl(struct rq *rq, str 680 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 770 static void dequeue_dl_entity(struct sched_dl_ !! 681 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 771 static void wakeup_preempt_dl(struct rq *rq, s !! 682 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 772 << 773 static inline void replenish_dl_new_period(str << 774 st << 775 { << 776 /* for non-boosted task, pi_of(dl_se) << 777 dl_se->deadline = rq_clock(rq) + pi_of << 778 dl_se->runtime = pi_of(dl_se)->dl_runt << 779 << 780 /* << 781 * If it is a deferred reservation, an << 782 * is not handling an starvation case, << 783 */ << 784 if (dl_se->dl_defer & !dl_se->dl_defer << 785 dl_se->dl_throttled = 1; << 786 dl_se->dl_defer_armed = 1; << 787 } << 788 } << 789 683 790 /* 684 /* 791 * We are being explicitly informed that a new 685 * We are being explicitly informed that a new instance is starting, 792 * and this means that: 686 * and this means that: 793 * - the absolute deadline of the entity has 687 * - the absolute deadline of the entity has to be placed at 794 * current time + relative deadline; 688 * current time + relative deadline; 795 * - the runtime of the entity has to be set 689 * - the runtime of the entity has to be set to the maximum value. 796 * 690 * 797 * The capability of specifying such event is 691 * The capability of specifying such event is useful whenever a -deadline 798 * entity wants to (try to!) synchronize its b 692 * entity wants to (try to!) synchronize its behaviour with the scheduler's 799 * one, and to (try to!) reconcile itself with 693 * one, and to (try to!) reconcile itself with its own scheduling 800 * parameters. 694 * parameters. 801 */ 695 */ 802 static inline void setup_new_dl_entity(struct 696 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 803 { 697 { 804 struct dl_rq *dl_rq = dl_rq_of_se(dl_s 698 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 805 struct rq *rq = rq_of_dl_rq(dl_rq); 699 struct rq *rq = rq_of_dl_rq(dl_rq); 806 700 807 WARN_ON(is_dl_boosted(dl_se)); !! 701 WARN_ON(dl_se->dl_boosted); 808 WARN_ON(dl_time_before(rq_clock(rq), d 702 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 809 703 810 /* 704 /* 811 * We are racing with the deadline tim 705 * We are racing with the deadline timer. So, do nothing because 812 * the deadline timer handler will tak 706 * the deadline timer handler will take care of properly recharging 813 * the runtime and postponing the dead 707 * the runtime and postponing the deadline 814 */ 708 */ 815 if (dl_se->dl_throttled) 709 if (dl_se->dl_throttled) 816 return; 710 return; 817 711 818 /* 712 /* 819 * We use the regular wall clock time 713 * We use the regular wall clock time to set deadlines in the 820 * future; in fact, we must consider e 714 * future; in fact, we must consider execution overheads (time 821 * spent on hardirq context, etc.). 715 * spent on hardirq context, etc.). 822 */ 716 */ 823 replenish_dl_new_period(dl_se, rq); !! 717 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; >> 718 dl_se->runtime = dl_se->dl_runtime; 824 } 719 } 825 720 826 static int start_dl_timer(struct sched_dl_enti << 827 static bool dl_entity_overflow(struct sched_dl << 828 << 829 /* 721 /* 830 * Pure Earliest Deadline First (EDF) scheduli 722 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 831 * possibility of a entity lasting more than w 723 * possibility of a entity lasting more than what it declared, and thus 832 * exhausting its runtime. 724 * exhausting its runtime. 833 * 725 * 834 * Here we are interested in making runtime ov 726 * Here we are interested in making runtime overrun possible, but we do 835 * not want a entity which is misbehaving to a 727 * not want a entity which is misbehaving to affect the scheduling of all 836 * other entities. 728 * other entities. 837 * Therefore, a budgeting strategy called Cons 729 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 838 * is used, in order to confine each entity wi 730 * is used, in order to confine each entity within its own bandwidth. 839 * 731 * 840 * This function deals exactly with that, and 732 * This function deals exactly with that, and ensures that when the runtime 841 * of a entity is replenished, its deadline is 733 * of a entity is replenished, its deadline is also postponed. That ensures 842 * the overrunning entity can't interfere with 734 * the overrunning entity can't interfere with other entity in the system and 843 * can't make them miss their deadlines. Reaso 735 * can't make them miss their deadlines. Reasons why this kind of overruns 844 * could happen are, typically, a entity volun 736 * could happen are, typically, a entity voluntarily trying to overcome its 845 * runtime, or it just underestimated it durin 737 * runtime, or it just underestimated it during sched_setattr(). 846 */ 738 */ 847 static void replenish_dl_entity(struct sched_d !! 739 static void replenish_dl_entity(struct sched_dl_entity *dl_se, >> 740 struct sched_dl_entity *pi_se) 848 { 741 { 849 struct dl_rq *dl_rq = dl_rq_of_se(dl_s 742 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 850 struct rq *rq = rq_of_dl_rq(dl_rq); 743 struct rq *rq = rq_of_dl_rq(dl_rq); 851 744 852 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime !! 745 BUG_ON(pi_se->dl_runtime <= 0); 853 746 854 /* 747 /* 855 * This could be the case for a !-dl t 748 * This could be the case for a !-dl task that is boosted. 856 * Just go with full inherited paramet 749 * Just go with full inherited parameters. 857 * << 858 * Or, it could be the case of a defer << 859 * was not able to consume its runtime << 860 * reached this point with current u > << 861 * << 862 * In both cases, set a new period. << 863 */ 750 */ 864 if (dl_se->dl_deadline == 0 || !! 751 if (dl_se->dl_deadline == 0) { 865 (dl_se->dl_defer_armed && dl_entit !! 752 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 866 dl_se->deadline = rq_clock(rq) !! 753 dl_se->runtime = pi_se->dl_runtime; 867 dl_se->runtime = pi_of(dl_se)- << 868 } 754 } 869 755 870 if (dl_se->dl_yielded && dl_se->runtim 756 if (dl_se->dl_yielded && dl_se->runtime > 0) 871 dl_se->runtime = 0; 757 dl_se->runtime = 0; 872 758 873 /* 759 /* 874 * We keep moving the deadline away un 760 * We keep moving the deadline away until we get some 875 * available runtime for the entity. T 761 * available runtime for the entity. This ensures correct 876 * handling of situations where the ru 762 * handling of situations where the runtime overrun is 877 * arbitrary large. 763 * arbitrary large. 878 */ 764 */ 879 while (dl_se->runtime <= 0) { 765 while (dl_se->runtime <= 0) { 880 dl_se->deadline += pi_of(dl_se !! 766 dl_se->deadline += pi_se->dl_period; 881 dl_se->runtime += pi_of(dl_se) !! 767 dl_se->runtime += pi_se->dl_runtime; 882 } 768 } 883 769 884 /* 770 /* 885 * At this point, the deadline really 771 * At this point, the deadline really should be "in 886 * the future" with respect to rq->clo 772 * the future" with respect to rq->clock. If it's 887 * not, we are, for some reason, laggi 773 * not, we are, for some reason, lagging too much! 888 * Anyway, after having warn userspace 774 * Anyway, after having warn userspace abut that, 889 * we still try to keep the things run 775 * we still try to keep the things running by 890 * resetting the deadline and the budg 776 * resetting the deadline and the budget of the 891 * entity. 777 * entity. 892 */ 778 */ 893 if (dl_time_before(dl_se->deadline, rq 779 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 894 printk_deferred_once("sched: D 780 printk_deferred_once("sched: DL replenish lagged too much\n"); 895 replenish_dl_new_period(dl_se, !! 781 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; >> 782 dl_se->runtime = pi_se->dl_runtime; 896 } 783 } 897 784 898 if (dl_se->dl_yielded) 785 if (dl_se->dl_yielded) 899 dl_se->dl_yielded = 0; 786 dl_se->dl_yielded = 0; 900 if (dl_se->dl_throttled) 787 if (dl_se->dl_throttled) 901 dl_se->dl_throttled = 0; 788 dl_se->dl_throttled = 0; 902 << 903 /* << 904 * If this is the replenishment of a d << 905 * clear the flag and return. << 906 */ << 907 if (dl_se->dl_defer_armed) { << 908 dl_se->dl_defer_armed = 0; << 909 return; << 910 } << 911 << 912 /* << 913 * A this point, if the deferred serve << 914 * is in the future, if it is not runn << 915 * and arm the defer timer. << 916 */ << 917 if (dl_se->dl_defer && !dl_se->dl_defe << 918 dl_time_before(rq_clock(dl_se->rq) << 919 if (!is_dl_boosted(dl_se) && d << 920 << 921 /* << 922 * Set dl_se->dl_defer << 923 * inform the start_dl << 924 * activation. << 925 */ << 926 dl_se->dl_defer_armed << 927 dl_se->dl_throttled = << 928 if (!start_dl_timer(dl << 929 /* << 930 * If for what << 931 * queued but << 932 * deferrable << 933 */ << 934 hrtimer_try_to << 935 dl_se->dl_defe << 936 dl_se->dl_thro << 937 } << 938 } << 939 } << 940 } 789 } 941 790 942 /* 791 /* 943 * Here we check if --at time t-- an entity (w 792 * Here we check if --at time t-- an entity (which is probably being 944 * [re]activated or, in general, enqueued) can 793 * [re]activated or, in general, enqueued) can use its remaining runtime 945 * and its current deadline _without_ exceedin 794 * and its current deadline _without_ exceeding the bandwidth it is 946 * assigned (function returns true if it can't 795 * assigned (function returns true if it can't). We are in fact applying 947 * one of the CBS rules: when a task wakes up, 796 * one of the CBS rules: when a task wakes up, if the residual runtime 948 * over residual deadline fits within the allo 797 * over residual deadline fits within the allocated bandwidth, then we 949 * can keep the current (absolute) deadline an 798 * can keep the current (absolute) deadline and residual budget without 950 * disrupting the schedulability of the system 799 * disrupting the schedulability of the system. Otherwise, we should 951 * refill the runtime and set the deadline a p 800 * refill the runtime and set the deadline a period in the future, 952 * because keeping the current (absolute) dead 801 * because keeping the current (absolute) deadline of the task would 953 * result in breaking guarantees promised to o 802 * result in breaking guarantees promised to other tasks (refer to 954 * Documentation/scheduler/sched-deadline.rst 803 * Documentation/scheduler/sched-deadline.rst for more information). 955 * 804 * 956 * This function returns true if: 805 * This function returns true if: 957 * 806 * 958 * runtime / (deadline - t) > dl_runtime / d 807 * runtime / (deadline - t) > dl_runtime / dl_deadline , 959 * 808 * 960 * IOW we can't recycle current parameters. 809 * IOW we can't recycle current parameters. 961 * 810 * 962 * Notice that the bandwidth check is done aga 811 * Notice that the bandwidth check is done against the deadline. For 963 * task with deadline equal to period this is 812 * task with deadline equal to period this is the same of using 964 * dl_period instead of dl_deadline in the equ 813 * dl_period instead of dl_deadline in the equation above. 965 */ 814 */ 966 static bool dl_entity_overflow(struct sched_dl !! 815 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, >> 816 struct sched_dl_entity *pi_se, u64 t) 967 { 817 { 968 u64 left, right; 818 u64 left, right; 969 819 970 /* 820 /* 971 * left and right are the two sides of 821 * left and right are the two sides of the equation above, 972 * after a bit of shuffling to use mul 822 * after a bit of shuffling to use multiplications instead 973 * of divisions. 823 * of divisions. 974 * 824 * 975 * Note that none of the time values i 825 * Note that none of the time values involved in the two 976 * multiplications are absolute: dl_de 826 * multiplications are absolute: dl_deadline and dl_runtime 977 * are the relative deadline and the m 827 * are the relative deadline and the maximum runtime of each 978 * instance, runtime is the runtime le 828 * instance, runtime is the runtime left for the last instance 979 * and (deadline - t), since t is rq-> 829 * and (deadline - t), since t is rq->clock, is the time left 980 * to the (absolute) deadline. Even if 830 * to the (absolute) deadline. Even if overflowing the u64 type 981 * is very unlikely to occur in both c 831 * is very unlikely to occur in both cases, here we scale down 982 * as we want to avoid that risk at al 832 * as we want to avoid that risk at all. Scaling down by 10 983 * means that we reduce granularity to 833 * means that we reduce granularity to 1us. We are fine with it, 984 * since this is only a true/false che 834 * since this is only a true/false check and, anyway, thinking 985 * of anything below microseconds reso 835 * of anything below microseconds resolution is actually fiction 986 * (but still we want to give the user 836 * (but still we want to give the user that illusion >;). 987 */ 837 */ 988 left = (pi_of(dl_se)->dl_deadline >> D !! 838 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 989 right = ((dl_se->deadline - t) >> DL_S 839 right = ((dl_se->deadline - t) >> DL_SCALE) * 990 (pi_of(dl_se)->dl_runtime >> D !! 840 (pi_se->dl_runtime >> DL_SCALE); 991 841 992 return dl_time_before(right, left); 842 return dl_time_before(right, left); 993 } 843 } 994 844 995 /* 845 /* 996 * Revised wakeup rule [1]: For self-suspendin 846 * Revised wakeup rule [1]: For self-suspending tasks, rather then 997 * re-initializing task's runtime and deadline 847 * re-initializing task's runtime and deadline, the revised wakeup 998 * rule adjusts the task's runtime to avoid th 848 * rule adjusts the task's runtime to avoid the task to overrun its 999 * density. 849 * density. 1000 * 850 * 1001 * Reasoning: a task may overrun the density 851 * Reasoning: a task may overrun the density if: 1002 * runtime / (deadline - t) > dl_runtime / 852 * runtime / (deadline - t) > dl_runtime / dl_deadline 1003 * 853 * 1004 * Therefore, runtime can be adjusted to: 854 * Therefore, runtime can be adjusted to: 1005 * runtime = (dl_runtime / dl_deadline) * 855 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 1006 * 856 * 1007 * In such way that runtime will be equal to 857 * In such way that runtime will be equal to the maximum density 1008 * the task can use without breaking any rule 858 * the task can use without breaking any rule. 1009 * 859 * 1010 * [1] Luca Abeni, Giuseppe Lipari, and Juri 860 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 1011 * bandwidth server revisited. SIGBED Rev. 11 861 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 1012 */ 862 */ 1013 static void 863 static void 1014 update_dl_revised_wakeup(struct sched_dl_enti 864 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 1015 { 865 { 1016 u64 laxity = dl_se->deadline - rq_clo 866 u64 laxity = dl_se->deadline - rq_clock(rq); 1017 867 1018 /* 868 /* 1019 * If the task has deadline < period, 869 * If the task has deadline < period, and the deadline is in the past, 1020 * it should already be throttled bef 870 * it should already be throttled before this check. 1021 * 871 * 1022 * See update_dl_entity() comments fo 872 * See update_dl_entity() comments for further details. 1023 */ 873 */ 1024 WARN_ON(dl_time_before(dl_se->deadlin 874 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 1025 875 1026 dl_se->runtime = (dl_se->dl_density * 876 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 1027 } 877 } 1028 878 1029 /* 879 /* 1030 * Regarding the deadline, a task with implic 880 * Regarding the deadline, a task with implicit deadline has a relative 1031 * deadline == relative period. A task with c 881 * deadline == relative period. A task with constrained deadline has a 1032 * relative deadline <= relative period. 882 * relative deadline <= relative period. 1033 * 883 * 1034 * We support constrained deadline tasks. How 884 * We support constrained deadline tasks. However, there are some restrictions 1035 * applied only for tasks which do not have a 885 * applied only for tasks which do not have an implicit deadline. See 1036 * update_dl_entity() to know more about such 886 * update_dl_entity() to know more about such restrictions. 1037 * 887 * 1038 * The dl_is_implicit() returns true if the t 888 * The dl_is_implicit() returns true if the task has an implicit deadline. 1039 */ 889 */ 1040 static inline bool dl_is_implicit(struct sche 890 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 1041 { 891 { 1042 return dl_se->dl_deadline == dl_se->d 892 return dl_se->dl_deadline == dl_se->dl_period; 1043 } 893 } 1044 894 1045 /* 895 /* 1046 * When a deadline entity is placed in the ru 896 * When a deadline entity is placed in the runqueue, its runtime and deadline 1047 * might need to be updated. This is done by 897 * might need to be updated. This is done by a CBS wake up rule. There are two 1048 * different rules: 1) the original CBS; and 898 * different rules: 1) the original CBS; and 2) the Revisited CBS. 1049 * 899 * 1050 * When the task is starting a new period, th 900 * When the task is starting a new period, the Original CBS is used. In this 1051 * case, the runtime is replenished and a new 901 * case, the runtime is replenished and a new absolute deadline is set. 1052 * 902 * 1053 * When a task is queued before the begin of 903 * When a task is queued before the begin of the next period, using the 1054 * remaining runtime and deadline could make 904 * remaining runtime and deadline could make the entity to overflow, see 1055 * dl_entity_overflow() to find more about ru 905 * dl_entity_overflow() to find more about runtime overflow. When such case 1056 * is detected, the runtime and deadline need 906 * is detected, the runtime and deadline need to be updated. 1057 * 907 * 1058 * If the task has an implicit deadline, i.e. 908 * If the task has an implicit deadline, i.e., deadline == period, the Original 1059 * CBS is applied. The runtime is replenished !! 909 * CBS is applied. the runtime is replenished and a new absolute deadline is 1060 * set, as in the previous cases. 910 * set, as in the previous cases. 1061 * 911 * 1062 * However, the Original CBS does not work pr 912 * However, the Original CBS does not work properly for tasks with 1063 * deadline < period, which are said to have 913 * deadline < period, which are said to have a constrained deadline. By 1064 * applying the Original CBS, a constrained d 914 * applying the Original CBS, a constrained deadline task would be able to run 1065 * runtime/deadline in a period. With deadlin 915 * runtime/deadline in a period. With deadline < period, the task would 1066 * overrun the runtime/period allowed bandwid 916 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1067 * 917 * 1068 * In order to prevent this misbehave, the Re 918 * In order to prevent this misbehave, the Revisited CBS is used for 1069 * constrained deadline tasks when a runtime 919 * constrained deadline tasks when a runtime overflow is detected. In the 1070 * Revisited CBS, rather than replenishing & 920 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1071 * the remaining runtime of the task is reduc 921 * the remaining runtime of the task is reduced to avoid runtime overflow. 1072 * Please refer to the comments update_dl_rev 922 * Please refer to the comments update_dl_revised_wakeup() function to find 1073 * more about the Revised CBS rule. 923 * more about the Revised CBS rule. 1074 */ 924 */ 1075 static void update_dl_entity(struct sched_dl_ !! 925 static void update_dl_entity(struct sched_dl_entity *dl_se, >> 926 struct sched_dl_entity *pi_se) 1076 { 927 { 1077 struct rq *rq = rq_of_dl_se(dl_se); !! 928 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); >> 929 struct rq *rq = rq_of_dl_rq(dl_rq); 1078 930 1079 if (dl_time_before(dl_se->deadline, r 931 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1080 dl_entity_overflow(dl_se, rq_cloc !! 932 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 1081 933 1082 if (unlikely(!dl_is_implicit( 934 if (unlikely(!dl_is_implicit(dl_se) && 1083 !dl_time_before( 935 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1084 !is_dl_boosted(d !! 936 !dl_se->dl_boosted)){ 1085 update_dl_revised_wak 937 update_dl_revised_wakeup(dl_se, rq); 1086 return; 938 return; 1087 } 939 } 1088 940 1089 replenish_dl_new_period(dl_se !! 941 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 1090 } else if (dl_server(dl_se) && dl_se- !! 942 dl_se->runtime = pi_se->dl_runtime; 1091 /* << 1092 * The server can still use i << 1093 * it left the dl_defer_runni << 1094 */ << 1095 if (!dl_se->dl_defer_running) << 1096 dl_se->dl_defer_armed << 1097 dl_se->dl_throttled = << 1098 } << 1099 } 943 } 1100 } 944 } 1101 945 1102 static inline u64 dl_next_period(struct sched 946 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1103 { 947 { 1104 return dl_se->deadline - dl_se->dl_de 948 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1105 } 949 } 1106 950 1107 /* 951 /* 1108 * If the entity depleted all its runtime, an 952 * If the entity depleted all its runtime, and if we want it to sleep 1109 * while waiting for some new execution time 953 * while waiting for some new execution time to become available, we 1110 * set the bandwidth replenishment timer to t 954 * set the bandwidth replenishment timer to the replenishment instant 1111 * and try to activate it. 955 * and try to activate it. 1112 * 956 * 1113 * Notice that it is important for the caller 957 * Notice that it is important for the caller to know if the timer 1114 * actually started or not (i.e., the repleni 958 * actually started or not (i.e., the replenishment instant is in 1115 * the future or in the past). 959 * the future or in the past). 1116 */ 960 */ 1117 static int start_dl_timer(struct sched_dl_ent !! 961 static int start_dl_timer(struct task_struct *p) 1118 { 962 { >> 963 struct sched_dl_entity *dl_se = &p->dl; 1119 struct hrtimer *timer = &dl_se->dl_ti 964 struct hrtimer *timer = &dl_se->dl_timer; 1120 struct dl_rq *dl_rq = dl_rq_of_se(dl_ !! 965 struct rq *rq = task_rq(p); 1121 struct rq *rq = rq_of_dl_rq(dl_rq); << 1122 ktime_t now, act; 966 ktime_t now, act; 1123 s64 delta; 967 s64 delta; 1124 968 1125 lockdep_assert_rq_held(rq); !! 969 lockdep_assert_held(&rq->lock); 1126 970 1127 /* 971 /* 1128 * We want the timer to fire at the d 972 * We want the timer to fire at the deadline, but considering 1129 * that it is actually coming from rq 973 * that it is actually coming from rq->clock and not from 1130 * hrtimer's time base reading. 974 * hrtimer's time base reading. 1131 * !! 975 */ 1132 * The deferred reservation will have !! 976 act = ns_to_ktime(dl_next_period(dl_se)); 1133 * (deadline - runtime). At that poin << 1134 * if the current deadline can be use << 1135 * required to avoid add too much pre << 1136 * (current u > U). << 1137 */ << 1138 if (dl_se->dl_defer_armed) { << 1139 WARN_ON_ONCE(!dl_se->dl_throt << 1140 act = ns_to_ktime(dl_se->dead << 1141 } else { << 1142 /* act = deadline - rel-deadl << 1143 act = ns_to_ktime(dl_next_per << 1144 } << 1145 << 1146 now = hrtimer_cb_get_time(timer); 977 now = hrtimer_cb_get_time(timer); 1147 delta = ktime_to_ns(now) - rq_clock(r 978 delta = ktime_to_ns(now) - rq_clock(rq); 1148 act = ktime_add_ns(act, delta); 979 act = ktime_add_ns(act, delta); 1149 980 1150 /* 981 /* 1151 * If the expiry time already passed, 982 * If the expiry time already passed, e.g., because the value 1152 * chosen as the deadline is too smal 983 * chosen as the deadline is too small, don't even try to 1153 * start the timer in the past! 984 * start the timer in the past! 1154 */ 985 */ 1155 if (ktime_us_delta(act, now) < 0) 986 if (ktime_us_delta(act, now) < 0) 1156 return 0; 987 return 0; 1157 988 1158 /* 989 /* 1159 * !enqueued will guarantee another c 990 * !enqueued will guarantee another callback; even if one is already in 1160 * progress. This ensures a balanced 991 * progress. This ensures a balanced {get,put}_task_struct(). 1161 * 992 * 1162 * The race against __run_timer() cle 993 * The race against __run_timer() clearing the enqueued state is 1163 * harmless because we're holding tas 994 * harmless because we're holding task_rq()->lock, therefore the timer 1164 * expiring after we've done the chec 995 * expiring after we've done the check will wait on its task_rq_lock() 1165 * and observe our state. 996 * and observe our state. 1166 */ 997 */ 1167 if (!hrtimer_is_queued(timer)) { 998 if (!hrtimer_is_queued(timer)) { 1168 if (!dl_server(dl_se)) !! 999 get_task_struct(p); 1169 get_task_struct(dl_ta << 1170 hrtimer_start(timer, act, HRT 1000 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1171 } 1001 } 1172 1002 1173 return 1; 1003 return 1; 1174 } 1004 } 1175 1005 1176 static void __push_dl_task(struct rq *rq, str << 1177 { << 1178 #ifdef CONFIG_SMP << 1179 /* << 1180 * Queueing this task back might have << 1181 * to kick someone away. << 1182 */ << 1183 if (has_pushable_dl_tasks(rq)) { << 1184 /* << 1185 * Nothing relies on rq->lock << 1186 * rq->lock. << 1187 */ << 1188 rq_unpin_lock(rq, rf); << 1189 push_dl_task(rq); << 1190 rq_repin_lock(rq, rf); << 1191 } << 1192 #endif << 1193 } << 1194 << 1195 /* a defer timer will not be reset if the run << 1196 static const u64 dl_server_min_res = 1 * NSEC << 1197 << 1198 static enum hrtimer_restart dl_server_timer(s << 1199 { << 1200 struct rq *rq = rq_of_dl_se(dl_se); << 1201 u64 fw; << 1202 << 1203 scoped_guard (rq_lock, rq) { << 1204 struct rq_flags *rf = &scope. << 1205 << 1206 if (!dl_se->dl_throttled || ! << 1207 return HRTIMER_NOREST << 1208 << 1209 sched_clock_tick(); << 1210 update_rq_clock(rq); << 1211 << 1212 if (!dl_se->dl_runtime) << 1213 return HRTIMER_NOREST << 1214 << 1215 if (!dl_se->server_has_tasks( << 1216 replenish_dl_entity(d << 1217 return HRTIMER_NOREST << 1218 } << 1219 << 1220 if (dl_se->dl_defer_armed) { << 1221 /* << 1222 * First check if the << 1223 * If so, it is possi << 1224 * of time. The dl_se << 1225 * forwarding the tim << 1226 */ << 1227 if (dl_time_before(rq << 1228 (d << 1229 << 1230 /* reset the << 1231 fw = dl_se->d << 1232 << 1233 hrtimer_forwa << 1234 return HRTIME << 1235 } << 1236 << 1237 dl_se->dl_defer_runni << 1238 } << 1239 << 1240 enqueue_dl_entity(dl_se, ENQU << 1241 << 1242 if (!dl_task(dl_se->rq->curr) << 1243 resched_curr(rq); << 1244 << 1245 __push_dl_task(rq, rf); << 1246 } << 1247 << 1248 return HRTIMER_NORESTART; << 1249 } << 1250 << 1251 /* 1006 /* 1252 * This is the bandwidth enforcement timer ca 1007 * This is the bandwidth enforcement timer callback. If here, we know 1253 * a task is not on its dl_rq, since the fact 1008 * a task is not on its dl_rq, since the fact that the timer was running 1254 * means the task is throttled and needs a ru 1009 * means the task is throttled and needs a runtime replenishment. 1255 * 1010 * 1256 * However, what we actually do depends on th 1011 * However, what we actually do depends on the fact the task is active, 1257 * (it is on its rq) or has been removed from 1012 * (it is on its rq) or has been removed from there by a call to 1258 * dequeue_task_dl(). In the former case we m 1013 * dequeue_task_dl(). In the former case we must issue the runtime 1259 * replenishment and add the task back to the 1014 * replenishment and add the task back to the dl_rq; in the latter, we just 1260 * do nothing but clearing dl_throttled, so t 1015 * do nothing but clearing dl_throttled, so that runtime and deadline 1261 * updating (and the queueing back to dl_rq) 1016 * updating (and the queueing back to dl_rq) will be done by the 1262 * next call to enqueue_task_dl(). 1017 * next call to enqueue_task_dl(). 1263 */ 1018 */ 1264 static enum hrtimer_restart dl_task_timer(str 1019 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1265 { 1020 { 1266 struct sched_dl_entity *dl_se = conta 1021 struct sched_dl_entity *dl_se = container_of(timer, 1267 1022 struct sched_dl_entity, 1268 1023 dl_timer); 1269 struct task_struct *p; !! 1024 struct task_struct *p = dl_task_of(dl_se); 1270 struct rq_flags rf; 1025 struct rq_flags rf; 1271 struct rq *rq; 1026 struct rq *rq; 1272 1027 1273 if (dl_server(dl_se)) << 1274 return dl_server_timer(timer, << 1275 << 1276 p = dl_task_of(dl_se); << 1277 rq = task_rq_lock(p, &rf); 1028 rq = task_rq_lock(p, &rf); 1278 1029 1279 /* 1030 /* 1280 * The task might have changed its sc 1031 * The task might have changed its scheduling policy to something 1281 * different than SCHED_DEADLINE (thr 1032 * different than SCHED_DEADLINE (through switched_from_dl()). 1282 */ 1033 */ 1283 if (!dl_task(p)) 1034 if (!dl_task(p)) 1284 goto unlock; 1035 goto unlock; 1285 1036 1286 /* 1037 /* 1287 * The task might have been boosted b 1038 * The task might have been boosted by someone else and might be in the 1288 * boosting/deboosting path, its not 1039 * boosting/deboosting path, its not throttled. 1289 */ 1040 */ 1290 if (is_dl_boosted(dl_se)) !! 1041 if (dl_se->dl_boosted) 1291 goto unlock; 1042 goto unlock; 1292 1043 1293 /* 1044 /* 1294 * Spurious timer due to start_dl_tim 1045 * Spurious timer due to start_dl_timer() race; or we already received 1295 * a replenishment from rt_mutex_setp 1046 * a replenishment from rt_mutex_setprio(). 1296 */ 1047 */ 1297 if (!dl_se->dl_throttled) 1048 if (!dl_se->dl_throttled) 1298 goto unlock; 1049 goto unlock; 1299 1050 1300 sched_clock_tick(); 1051 sched_clock_tick(); 1301 update_rq_clock(rq); 1052 update_rq_clock(rq); 1302 1053 1303 /* 1054 /* 1304 * If the throttle happened during sc 1055 * If the throttle happened during sched-out; like: 1305 * 1056 * 1306 * schedule() 1057 * schedule() 1307 * deactivate_task() 1058 * deactivate_task() 1308 * dequeue_task_dl() 1059 * dequeue_task_dl() 1309 * update_curr_dl() 1060 * update_curr_dl() 1310 * start_dl_timer() 1061 * start_dl_timer() 1311 * __dequeue_task_dl() 1062 * __dequeue_task_dl() 1312 * prev->on_rq = 0; 1063 * prev->on_rq = 0; 1313 * 1064 * 1314 * We can be both throttled and !queu 1065 * We can be both throttled and !queued. Replenish the counter 1315 * but do not enqueue -- wait for our 1066 * but do not enqueue -- wait for our wakeup to do that. 1316 */ 1067 */ 1317 if (!task_on_rq_queued(p)) { 1068 if (!task_on_rq_queued(p)) { 1318 replenish_dl_entity(dl_se); !! 1069 replenish_dl_entity(dl_se, dl_se); 1319 goto unlock; 1070 goto unlock; 1320 } 1071 } 1321 1072 1322 #ifdef CONFIG_SMP 1073 #ifdef CONFIG_SMP 1323 if (unlikely(!rq->online)) { 1074 if (unlikely(!rq->online)) { 1324 /* 1075 /* 1325 * If the runqueue is no long 1076 * If the runqueue is no longer available, migrate the 1326 * task elsewhere. This neces 1077 * task elsewhere. This necessarily changes rq. 1327 */ 1078 */ 1328 lockdep_unpin_lock(__rq_lockp !! 1079 lockdep_unpin_lock(&rq->lock, rf.cookie); 1329 rq = dl_task_offline_migratio 1080 rq = dl_task_offline_migration(rq, p); 1330 rf.cookie = lockdep_pin_lock( !! 1081 rf.cookie = lockdep_pin_lock(&rq->lock); 1331 update_rq_clock(rq); 1082 update_rq_clock(rq); 1332 1083 1333 /* 1084 /* 1334 * Now that the task has been 1085 * Now that the task has been migrated to the new RQ and we 1335 * have that locked, proceed 1086 * have that locked, proceed as normal and enqueue the task 1336 * there. 1087 * there. 1337 */ 1088 */ 1338 } 1089 } 1339 #endif 1090 #endif 1340 1091 1341 enqueue_task_dl(rq, p, ENQUEUE_REPLEN 1092 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1342 if (dl_task(rq->curr)) 1093 if (dl_task(rq->curr)) 1343 wakeup_preempt_dl(rq, p, 0); !! 1094 check_preempt_curr_dl(rq, p, 0); 1344 else 1095 else 1345 resched_curr(rq); 1096 resched_curr(rq); 1346 1097 1347 __push_dl_task(rq, &rf); !! 1098 #ifdef CONFIG_SMP >> 1099 /* >> 1100 * Queueing this task back might have overloaded rq, check if we need >> 1101 * to kick someone away. >> 1102 */ >> 1103 if (has_pushable_dl_tasks(rq)) { >> 1104 /* >> 1105 * Nothing relies on rq->lock after this, so its safe to drop >> 1106 * rq->lock. >> 1107 */ >> 1108 rq_unpin_lock(rq, &rf); >> 1109 push_dl_task(rq); >> 1110 rq_repin_lock(rq, &rf); >> 1111 } >> 1112 #endif 1348 1113 1349 unlock: 1114 unlock: 1350 task_rq_unlock(rq, p, &rf); 1115 task_rq_unlock(rq, p, &rf); 1351 1116 1352 /* 1117 /* 1353 * This can free the task_struct, inc 1118 * This can free the task_struct, including this hrtimer, do not touch 1354 * anything related to that after thi 1119 * anything related to that after this. 1355 */ 1120 */ 1356 put_task_struct(p); 1121 put_task_struct(p); 1357 1122 1358 return HRTIMER_NORESTART; 1123 return HRTIMER_NORESTART; 1359 } 1124 } 1360 1125 1361 static void init_dl_task_timer(struct sched_d !! 1126 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1362 { 1127 { 1363 struct hrtimer *timer = &dl_se->dl_ti 1128 struct hrtimer *timer = &dl_se->dl_timer; 1364 1129 1365 hrtimer_init(timer, CLOCK_MONOTONIC, 1130 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1366 timer->function = dl_task_timer; 1131 timer->function = dl_task_timer; 1367 } 1132 } 1368 1133 1369 /* 1134 /* 1370 * During the activation, CBS checks if it ca 1135 * During the activation, CBS checks if it can reuse the current task's 1371 * runtime and period. If the deadline of the 1136 * runtime and period. If the deadline of the task is in the past, CBS 1372 * cannot use the runtime, and so it replenis 1137 * cannot use the runtime, and so it replenishes the task. This rule 1373 * works fine for implicit deadline tasks (de 1138 * works fine for implicit deadline tasks (deadline == period), and the 1374 * CBS was designed for implicit deadline tas 1139 * CBS was designed for implicit deadline tasks. However, a task with 1375 * constrained deadline (deadline < period) m 1140 * constrained deadline (deadline < period) might be awakened after the 1376 * deadline, but before the next period. In t 1141 * deadline, but before the next period. In this case, replenishing the 1377 * task would allow it to run for runtime / d 1142 * task would allow it to run for runtime / deadline. As in this case 1378 * deadline < period, CBS enables a task to r 1143 * deadline < period, CBS enables a task to run for more than the 1379 * runtime / period. In a very loaded system, 1144 * runtime / period. In a very loaded system, this can cause a domino 1380 * effect, making other tasks miss their dead 1145 * effect, making other tasks miss their deadlines. 1381 * 1146 * 1382 * To avoid this problem, in the activation o 1147 * To avoid this problem, in the activation of a constrained deadline 1383 * task after the deadline but before the nex 1148 * task after the deadline but before the next period, throttle the 1384 * task and set the replenishing timer to the 1149 * task and set the replenishing timer to the begin of the next period, 1385 * unless it is boosted. 1150 * unless it is boosted. 1386 */ 1151 */ 1387 static inline void dl_check_constrained_dl(st 1152 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1388 { 1153 { 1389 struct rq *rq = rq_of_dl_se(dl_se); !! 1154 struct task_struct *p = dl_task_of(dl_se); >> 1155 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1390 1156 1391 if (dl_time_before(dl_se->deadline, r 1157 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1392 dl_time_before(rq_clock(rq), dl_n 1158 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1393 if (unlikely(is_dl_boosted(dl !! 1159 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) 1394 return; 1160 return; 1395 dl_se->dl_throttled = 1; 1161 dl_se->dl_throttled = 1; 1396 if (dl_se->runtime > 0) 1162 if (dl_se->runtime > 0) 1397 dl_se->runtime = 0; 1163 dl_se->runtime = 0; 1398 } 1164 } 1399 } 1165 } 1400 1166 1401 static 1167 static 1402 int dl_runtime_exceeded(struct sched_dl_entit 1168 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1403 { 1169 { 1404 return (dl_se->runtime <= 0); 1170 return (dl_se->runtime <= 0); 1405 } 1171 } 1406 1172 >> 1173 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); >> 1174 1407 /* 1175 /* 1408 * This function implements the GRUB accounti !! 1176 * This function implements the GRUB accounting rule: 1409 * GRUB reclaiming algorithm, the runtime is !! 1177 * according to the GRUB reclaiming algorithm, the runtime is 1410 * but as "dq = -(max{u, (Umax - Uinact - Uex !! 1178 * not decreased as "dq = -dt", but as >> 1179 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1411 * where u is the utilization of the task, Um 1180 * where u is the utilization of the task, Umax is the maximum reclaimable 1412 * utilization, Uinact is the (per-runqueue) 1181 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1413 * as the difference between the "total runqu 1182 * as the difference between the "total runqueue utilization" and the 1414 * "runqueue active utilization", and Uextra !! 1183 * runqueue active utilization, and Uextra is the (per runqueue) extra 1415 * reclaimable utilization. 1184 * reclaimable utilization. 1416 * Since rq->dl.running_bw and rq->dl.this_bw !! 1185 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1417 * by 2^BW_SHIFT, the result has to be shifte !! 1186 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1418 * Since rq->dl.bw_ratio contains 1 / Umax mu !! 1187 * BW_SHIFT. 1419 * is multiplied by rq->dl.bw_ratio and shift !! 1188 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, 1420 * Since delta is a 64 bit variable, to have !! 1189 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1421 * larger than 2^(64 - 20 - 8), which is more !! 1190 * Since delta is a 64 bit variable, to have an overflow its value 1422 * not an issue here. !! 1191 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. >> 1192 * So, overflow is not an issue here. 1423 */ 1193 */ 1424 static u64 grub_reclaim(u64 delta, struct rq 1194 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1425 { 1195 { 1426 u64 u_act; << 1427 u64 u_inact = rq->dl.this_bw - rq->dl 1196 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ >> 1197 u64 u_act; >> 1198 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1428 1199 1429 /* 1200 /* 1430 * Instead of computing max{u, (u_max !! 1201 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1431 * compare u_inact + u_extra with u_m !! 1202 * we compare u_inact + rq->dl.extra_bw with 1432 * can be larger than u_max. So, u_ma !! 1203 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1433 * negative leading to wrong results. !! 1204 * u_inact + rq->dl.extra_bw can be larger than >> 1205 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative >> 1206 * leading to wrong results) 1434 */ 1207 */ 1435 if (u_inact + rq->dl.extra_bw > rq->d !! 1208 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1436 u_act = dl_se->dl_bw; !! 1209 u_act = u_act_min; 1437 else 1210 else 1438 u_act = rq->dl.max_bw - u_ina !! 1211 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1439 1212 1440 u_act = (u_act * rq->dl.bw_ratio) >> << 1441 return (delta * u_act) >> BW_SHIFT; 1213 return (delta * u_act) >> BW_SHIFT; 1442 } 1214 } 1443 1215 1444 s64 dl_scaled_delta_exec(struct rq *rq, struc !! 1216 /* >> 1217 * Update the current task's runtime statistics (provided it is still >> 1218 * a -deadline task and has not been removed from the dl_rq). >> 1219 */ >> 1220 static void update_curr_dl(struct rq *rq) 1445 { 1221 { 1446 s64 scaled_delta_exec; !! 1222 struct task_struct *curr = rq->curr; >> 1223 struct sched_dl_entity *dl_se = &curr->dl; >> 1224 u64 delta_exec, scaled_delta_exec; >> 1225 int cpu = cpu_of(rq); >> 1226 u64 now; >> 1227 >> 1228 if (!dl_task(curr) || !on_dl_rq(dl_se)) >> 1229 return; >> 1230 >> 1231 /* >> 1232 * Consumed budget is computed considering the time as >> 1233 * observed by schedulable tasks (excluding time spent >> 1234 * in hardirq context, etc.). Deadlines are instead >> 1235 * computed using hard walltime. This seems to be the more >> 1236 * natural solution, but the full ramifications of this >> 1237 * approach need further study. >> 1238 */ >> 1239 now = rq_clock_task(rq); >> 1240 delta_exec = now - curr->se.exec_start; >> 1241 if (unlikely((s64)delta_exec <= 0)) { >> 1242 if (unlikely(dl_se->dl_yielded)) >> 1243 goto throttle; >> 1244 return; >> 1245 } >> 1246 >> 1247 schedstat_set(curr->se.statistics.exec_max, >> 1248 max(curr->se.statistics.exec_max, delta_exec)); >> 1249 >> 1250 curr->se.sum_exec_runtime += delta_exec; >> 1251 account_group_exec_runtime(curr, delta_exec); >> 1252 >> 1253 curr->se.exec_start = now; >> 1254 cgroup_account_cputime(curr, delta_exec); >> 1255 >> 1256 if (dl_entity_is_special(dl_se)) >> 1257 return; 1447 1258 1448 /* 1259 /* 1449 * For tasks that participate in GRUB 1260 * For tasks that participate in GRUB, we implement GRUB-PA: the 1450 * spare reclaimed bandwidth is used 1261 * spare reclaimed bandwidth is used to clock down frequency. 1451 * 1262 * 1452 * For the others, we still need to s 1263 * For the others, we still need to scale reservation parameters 1453 * according to current frequency and 1264 * according to current frequency and CPU maximum capacity. 1454 */ 1265 */ 1455 if (unlikely(dl_se->flags & SCHED_FLA 1266 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1456 scaled_delta_exec = grub_recl !! 1267 scaled_delta_exec = grub_reclaim(delta_exec, >> 1268 rq, >> 1269 &curr->dl); 1457 } else { 1270 } else { 1458 int cpu = cpu_of(rq); << 1459 unsigned long scale_freq = ar 1271 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1460 unsigned long scale_cpu = arc 1272 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1461 1273 1462 scaled_delta_exec = cap_scale 1274 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1463 scaled_delta_exec = cap_scale 1275 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1464 } 1276 } 1465 1277 1466 return scaled_delta_exec; << 1467 } << 1468 << 1469 static inline void << 1470 update_stats_dequeue_dl(struct dl_rq *dl_rq, << 1471 int flags); << 1472 static void update_curr_dl_se(struct rq *rq, << 1473 { << 1474 s64 scaled_delta_exec; << 1475 << 1476 if (unlikely(delta_exec <= 0)) { << 1477 if (unlikely(dl_se->dl_yielde << 1478 goto throttle; << 1479 return; << 1480 } << 1481 << 1482 if (dl_server(dl_se) && dl_se->dl_thr << 1483 return; << 1484 << 1485 if (dl_entity_is_special(dl_se)) << 1486 return; << 1487 << 1488 scaled_delta_exec = dl_scaled_delta_e << 1489 << 1490 dl_se->runtime -= scaled_delta_exec; 1278 dl_se->runtime -= scaled_delta_exec; 1491 1279 1492 /* << 1493 * The fair server can consume its ru << 1494 * running as regular CFS). << 1495 * << 1496 * If the server consumes its entire << 1497 * is not required for the current pe << 1498 * starting a new period, pushing the << 1499 */ << 1500 if (dl_se->dl_defer && dl_se->dl_thro << 1501 /* << 1502 * If the server was previous << 1503 * took place, it this point << 1504 * was able to get runtime in << 1505 * state. << 1506 */ << 1507 dl_se->dl_defer_running = 0; << 1508 << 1509 hrtimer_try_to_cancel(&dl_se- << 1510 << 1511 replenish_dl_new_period(dl_se << 1512 << 1513 /* << 1514 * Not being able to start th << 1515 * be started for whatever re << 1516 * and queue right away. Othe << 1517 * to what enqueue_dl_entity( << 1518 */ << 1519 WARN_ON_ONCE(!start_dl_timer( << 1520 << 1521 return; << 1522 } << 1523 << 1524 throttle: 1280 throttle: 1525 if (dl_runtime_exceeded(dl_se) || dl_ 1281 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1526 dl_se->dl_throttled = 1; 1282 dl_se->dl_throttled = 1; 1527 1283 1528 /* If requested, inform the u 1284 /* If requested, inform the user about runtime overruns. */ 1529 if (dl_runtime_exceeded(dl_se 1285 if (dl_runtime_exceeded(dl_se) && 1530 (dl_se->flags & SCHED_FLA 1286 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1531 dl_se->dl_overrun = 1 1287 dl_se->dl_overrun = 1; 1532 1288 1533 dequeue_dl_entity(dl_se, 0); !! 1289 __dequeue_task_dl(rq, curr, 0); 1534 if (!dl_server(dl_se)) { !! 1290 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 1535 update_stats_dequeue_ !! 1291 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1536 dequeue_pushable_dl_t << 1537 } << 1538 1292 1539 if (unlikely(is_dl_boosted(dl !! 1293 if (!is_leftmost(curr, &rq->dl)) 1540 if (dl_server(dl_se)) << 1541 enqueue_dl_en << 1542 else << 1543 enqueue_task_ << 1544 } << 1545 << 1546 if (!is_leftmost(dl_se, &rq-> << 1547 resched_curr(rq); 1294 resched_curr(rq); 1548 } 1295 } 1549 1296 1550 /* 1297 /* 1551 * The fair server (sole dl_server) d << 1552 * workload because it is running fai << 1553 */ << 1554 if (dl_se == &rq->fair_server) << 1555 return; << 1556 << 1557 #ifdef CONFIG_RT_GROUP_SCHED << 1558 /* << 1559 * Because -- for now -- we share the 1298 * Because -- for now -- we share the rt bandwidth, we need to 1560 * account our runtime there too, oth 1299 * account our runtime there too, otherwise actual rt tasks 1561 * would be able to exceed the shared 1300 * would be able to exceed the shared quota. 1562 * 1301 * 1563 * Account to the root rt group for n 1302 * Account to the root rt group for now. 1564 * 1303 * 1565 * The solution we're working towards 1304 * The solution we're working towards is having the RT groups scheduled 1566 * using deadline servers -- however 1305 * using deadline servers -- however there's a few nasties to figure 1567 * out before that can happen. 1306 * out before that can happen. 1568 */ 1307 */ 1569 if (rt_bandwidth_enabled()) { 1308 if (rt_bandwidth_enabled()) { 1570 struct rt_rq *rt_rq = &rq->rt 1309 struct rt_rq *rt_rq = &rq->rt; 1571 1310 1572 raw_spin_lock(&rt_rq->rt_runt 1311 raw_spin_lock(&rt_rq->rt_runtime_lock); 1573 /* 1312 /* 1574 * We'll let actual RT tasks 1313 * We'll let actual RT tasks worry about the overflow here, we 1575 * have our own CBS to keep u 1314 * have our own CBS to keep us inline; only account when RT 1576 * bandwidth is relevant. 1315 * bandwidth is relevant. 1577 */ 1316 */ 1578 if (sched_rt_bandwidth_accoun 1317 if (sched_rt_bandwidth_account(rt_rq)) 1579 rt_rq->rt_time += del 1318 rt_rq->rt_time += delta_exec; 1580 raw_spin_unlock(&rt_rq->rt_ru 1319 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1581 } 1320 } 1582 #endif << 1583 } << 1584 << 1585 /* << 1586 * In the non-defer mode, the idle time is no << 1587 * server provides a guarantee. << 1588 * << 1589 * If the dl_server is in defer mode, the idl << 1590 * as time available for the fair server, avo << 1591 * rt scheduler that did not consumed that ti << 1592 */ << 1593 void dl_server_update_idle_time(struct rq *rq << 1594 { << 1595 s64 delta_exec, scaled_delta_exec; << 1596 << 1597 if (!rq->fair_server.dl_defer) << 1598 return; << 1599 << 1600 /* no need to discount more */ << 1601 if (rq->fair_server.runtime < 0) << 1602 return; << 1603 << 1604 delta_exec = rq_clock_task(rq) - p->s << 1605 if (delta_exec < 0) << 1606 return; << 1607 << 1608 scaled_delta_exec = dl_scaled_delta_e << 1609 << 1610 rq->fair_server.runtime -= scaled_del << 1611 << 1612 if (rq->fair_server.runtime < 0) { << 1613 rq->fair_server.dl_defer_runn << 1614 rq->fair_server.runtime = 0; << 1615 } << 1616 << 1617 p->se.exec_start = rq_clock_task(rq); << 1618 } << 1619 << 1620 void dl_server_update(struct sched_dl_entity << 1621 { << 1622 /* 0 runtime = fair server disabled * << 1623 if (dl_se->dl_runtime) << 1624 update_curr_dl_se(dl_se->rq, << 1625 } << 1626 << 1627 void dl_server_start(struct sched_dl_entity * << 1628 { << 1629 struct rq *rq = dl_se->rq; << 1630 << 1631 /* << 1632 * XXX: the apply do not work fine at << 1633 * fair server because things are not << 1634 * this before getting generic. << 1635 */ << 1636 if (!dl_server(dl_se)) { << 1637 u64 runtime = 50 * NSEC_PER_ << 1638 u64 period = 1000 * NSEC_PER_ << 1639 << 1640 dl_server_apply_params(dl_se, << 1641 << 1642 dl_se->dl_server = 1; << 1643 dl_se->dl_defer = 1; << 1644 setup_new_dl_entity(dl_se); << 1645 } << 1646 << 1647 if (!dl_se->dl_runtime) << 1648 return; << 1649 << 1650 enqueue_dl_entity(dl_se, ENQUEUE_WAKE << 1651 if (!dl_task(dl_se->rq->curr) || dl_e << 1652 resched_curr(dl_se->rq); << 1653 } << 1654 << 1655 void dl_server_stop(struct sched_dl_entity *d << 1656 { << 1657 if (!dl_se->dl_runtime) << 1658 return; << 1659 << 1660 dequeue_dl_entity(dl_se, DEQUEUE_SLEE << 1661 hrtimer_try_to_cancel(&dl_se->dl_time << 1662 dl_se->dl_defer_armed = 0; << 1663 dl_se->dl_throttled = 0; << 1664 } << 1665 << 1666 void dl_server_init(struct sched_dl_entity *d << 1667 dl_server_has_tasks_f has << 1668 dl_server_pick_f pick_tas << 1669 { << 1670 dl_se->rq = rq; << 1671 dl_se->server_has_tasks = has_tasks; << 1672 dl_se->server_pick_task = pick_task; << 1673 } << 1674 << 1675 void __dl_server_attach_root(struct sched_dl_ << 1676 { << 1677 u64 new_bw = dl_se->dl_bw; << 1678 int cpu = cpu_of(rq); << 1679 struct dl_bw *dl_b; << 1680 << 1681 dl_b = dl_bw_of(cpu_of(rq)); << 1682 guard(raw_spinlock)(&dl_b->lock); << 1683 << 1684 if (!dl_bw_cpus(cpu)) << 1685 return; << 1686 << 1687 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu << 1688 } << 1689 << 1690 int dl_server_apply_params(struct sched_dl_en << 1691 { << 1692 u64 old_bw = init ? 0 : to_ratio(dl_s << 1693 u64 new_bw = to_ratio(period, runtime << 1694 struct rq *rq = dl_se->rq; << 1695 int cpu = cpu_of(rq); << 1696 struct dl_bw *dl_b; << 1697 unsigned long cap; << 1698 int retval = 0; << 1699 int cpus; << 1700 << 1701 dl_b = dl_bw_of(cpu); << 1702 guard(raw_spinlock)(&dl_b->lock); << 1703 << 1704 cpus = dl_bw_cpus(cpu); << 1705 cap = dl_bw_capacity(cpu); << 1706 << 1707 if (__dl_overflow(dl_b, cap, old_bw, << 1708 return -EBUSY; << 1709 << 1710 if (init) { << 1711 __add_rq_bw(new_bw, &rq->dl); << 1712 __dl_add(dl_b, new_bw, cpus); << 1713 } else { << 1714 __dl_sub(dl_b, dl_se->dl_bw, << 1715 __dl_add(dl_b, new_bw, cpus); << 1716 << 1717 dl_rq_change_utilization(rq, << 1718 } << 1719 << 1720 dl_se->dl_runtime = runtime; << 1721 dl_se->dl_deadline = period; << 1722 dl_se->dl_period = period; << 1723 << 1724 dl_se->runtime = 0; << 1725 dl_se->deadline = 0; << 1726 << 1727 dl_se->dl_bw = to_ratio(dl_se->dl_per << 1728 dl_se->dl_density = to_ratio(dl_se->d << 1729 << 1730 return retval; << 1731 } << 1732 << 1733 /* << 1734 * Update the current task's runtime statisti << 1735 * a -deadline task and has not been removed << 1736 */ << 1737 static void update_curr_dl(struct rq *rq) << 1738 { << 1739 struct task_struct *curr = rq->curr; << 1740 struct sched_dl_entity *dl_se = &curr << 1741 s64 delta_exec; << 1742 << 1743 if (!dl_task(curr) || !on_dl_rq(dl_se << 1744 return; << 1745 << 1746 /* << 1747 * Consumed budget is computed consid << 1748 * observed by schedulable tasks (exc << 1749 * in hardirq context, etc.). Deadlin << 1750 * computed using hard walltime. This << 1751 * natural solution, but the full ram << 1752 * approach need further study. << 1753 */ << 1754 delta_exec = update_curr_common(rq); << 1755 update_curr_dl_se(rq, dl_se, delta_ex << 1756 } 1321 } 1757 1322 1758 static enum hrtimer_restart inactive_task_tim 1323 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1759 { 1324 { 1760 struct sched_dl_entity *dl_se = conta 1325 struct sched_dl_entity *dl_se = container_of(timer, 1761 1326 struct sched_dl_entity, 1762 1327 inactive_timer); 1763 struct task_struct *p = NULL; !! 1328 struct task_struct *p = dl_task_of(dl_se); 1764 struct rq_flags rf; 1329 struct rq_flags rf; 1765 struct rq *rq; 1330 struct rq *rq; 1766 1331 1767 if (!dl_server(dl_se)) { !! 1332 rq = task_rq_lock(p, &rf); 1768 p = dl_task_of(dl_se); << 1769 rq = task_rq_lock(p, &rf); << 1770 } else { << 1771 rq = dl_se->rq; << 1772 rq_lock(rq, &rf); << 1773 } << 1774 1333 1775 sched_clock_tick(); 1334 sched_clock_tick(); 1776 update_rq_clock(rq); 1335 update_rq_clock(rq); 1777 1336 1778 if (dl_server(dl_se)) !! 1337 if (!dl_task(p) || p->state == TASK_DEAD) { 1779 goto no_task; << 1780 << 1781 if (!dl_task(p) || READ_ONCE(p->__sta << 1782 struct dl_bw *dl_b = dl_bw_of 1338 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1783 1339 1784 if (READ_ONCE(p->__state) == !! 1340 if (p->state == TASK_DEAD && dl_se->dl_non_contending) { 1785 sub_running_bw(&p->dl 1341 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1786 sub_rq_bw(&p->dl, dl_ 1342 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1787 dl_se->dl_non_contend 1343 dl_se->dl_non_contending = 0; 1788 } 1344 } 1789 1345 1790 raw_spin_lock(&dl_b->lock); 1346 raw_spin_lock(&dl_b->lock); 1791 __dl_sub(dl_b, p->dl.dl_bw, d 1347 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1792 raw_spin_unlock(&dl_b->lock); 1348 raw_spin_unlock(&dl_b->lock); 1793 __dl_clear_params(dl_se); !! 1349 __dl_clear_params(p); 1794 1350 1795 goto unlock; 1351 goto unlock; 1796 } 1352 } 1797 << 1798 no_task: << 1799 if (dl_se->dl_non_contending == 0) 1353 if (dl_se->dl_non_contending == 0) 1800 goto unlock; 1354 goto unlock; 1801 1355 1802 sub_running_bw(dl_se, &rq->dl); 1356 sub_running_bw(dl_se, &rq->dl); 1803 dl_se->dl_non_contending = 0; 1357 dl_se->dl_non_contending = 0; 1804 unlock: 1358 unlock: 1805 !! 1359 task_rq_unlock(rq, p, &rf); 1806 if (!dl_server(dl_se)) { !! 1360 put_task_struct(p); 1807 task_rq_unlock(rq, p, &rf); << 1808 put_task_struct(p); << 1809 } else { << 1810 rq_unlock(rq, &rf); << 1811 } << 1812 1361 1813 return HRTIMER_NORESTART; 1362 return HRTIMER_NORESTART; 1814 } 1363 } 1815 1364 1816 static void init_dl_inactive_task_timer(struc !! 1365 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1817 { 1366 { 1818 struct hrtimer *timer = &dl_se->inact 1367 struct hrtimer *timer = &dl_se->inactive_timer; 1819 1368 1820 hrtimer_init(timer, CLOCK_MONOTONIC, 1369 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1821 timer->function = inactive_task_timer 1370 timer->function = inactive_task_timer; 1822 } 1371 } 1823 1372 1824 #define __node_2_dle(node) \ << 1825 rb_entry((node), struct sched_dl_enti << 1826 << 1827 #ifdef CONFIG_SMP 1373 #ifdef CONFIG_SMP 1828 1374 1829 static void inc_dl_deadline(struct dl_rq *dl_ 1375 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1830 { 1376 { 1831 struct rq *rq = rq_of_dl_rq(dl_rq); 1377 struct rq *rq = rq_of_dl_rq(dl_rq); 1832 1378 1833 if (dl_rq->earliest_dl.curr == 0 || 1379 if (dl_rq->earliest_dl.curr == 0 || 1834 dl_time_before(deadline, dl_rq->e 1380 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1835 if (dl_rq->earliest_dl.curr = << 1836 cpupri_set(&rq->rd->c << 1837 dl_rq->earliest_dl.curr = dea 1381 dl_rq->earliest_dl.curr = deadline; 1838 cpudl_set(&rq->rd->cpudl, rq- 1382 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1839 } 1383 } 1840 } 1384 } 1841 1385 1842 static void dec_dl_deadline(struct dl_rq *dl_ 1386 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1843 { 1387 { 1844 struct rq *rq = rq_of_dl_rq(dl_rq); 1388 struct rq *rq = rq_of_dl_rq(dl_rq); 1845 1389 1846 /* 1390 /* 1847 * Since we may have removed our earl 1391 * Since we may have removed our earliest (and/or next earliest) 1848 * task we must recompute them. 1392 * task we must recompute them. 1849 */ 1393 */ 1850 if (!dl_rq->dl_nr_running) { 1394 if (!dl_rq->dl_nr_running) { 1851 dl_rq->earliest_dl.curr = 0; 1395 dl_rq->earliest_dl.curr = 0; 1852 dl_rq->earliest_dl.next = 0; 1396 dl_rq->earliest_dl.next = 0; 1853 cpudl_clear(&rq->rd->cpudl, r 1397 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1854 cpupri_set(&rq->rd->cpupri, r << 1855 } else { 1398 } else { 1856 struct rb_node *leftmost = rb !! 1399 struct rb_node *leftmost = dl_rq->root.rb_leftmost; 1857 struct sched_dl_entity *entry !! 1400 struct sched_dl_entity *entry; 1858 1401 >> 1402 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 1859 dl_rq->earliest_dl.curr = ent 1403 dl_rq->earliest_dl.curr = entry->deadline; 1860 cpudl_set(&rq->rd->cpudl, rq- 1404 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1861 } 1405 } 1862 } 1406 } 1863 1407 1864 #else 1408 #else 1865 1409 1866 static inline void inc_dl_deadline(struct dl_ 1410 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1867 static inline void dec_dl_deadline(struct dl_ 1411 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1868 1412 1869 #endif /* CONFIG_SMP */ 1413 #endif /* CONFIG_SMP */ 1870 1414 1871 static inline 1415 static inline 1872 void inc_dl_tasks(struct sched_dl_entity *dl_ 1416 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1873 { 1417 { >> 1418 int prio = dl_task_of(dl_se)->prio; 1874 u64 deadline = dl_se->deadline; 1419 u64 deadline = dl_se->deadline; 1875 1420 >> 1421 WARN_ON(!dl_prio(prio)); 1876 dl_rq->dl_nr_running++; 1422 dl_rq->dl_nr_running++; 1877 add_nr_running(rq_of_dl_rq(dl_rq), 1) 1423 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1878 1424 1879 inc_dl_deadline(dl_rq, deadline); 1425 inc_dl_deadline(dl_rq, deadline); >> 1426 inc_dl_migration(dl_se, dl_rq); 1880 } 1427 } 1881 1428 1882 static inline 1429 static inline 1883 void dec_dl_tasks(struct sched_dl_entity *dl_ 1430 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1884 { 1431 { >> 1432 int prio = dl_task_of(dl_se)->prio; >> 1433 >> 1434 WARN_ON(!dl_prio(prio)); 1885 WARN_ON(!dl_rq->dl_nr_running); 1435 WARN_ON(!dl_rq->dl_nr_running); 1886 dl_rq->dl_nr_running--; 1436 dl_rq->dl_nr_running--; 1887 sub_nr_running(rq_of_dl_rq(dl_rq), 1) 1437 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1888 1438 1889 dec_dl_deadline(dl_rq, dl_se->deadlin 1439 dec_dl_deadline(dl_rq, dl_se->deadline); 1890 } !! 1440 dec_dl_migration(dl_se, dl_rq); 1891 << 1892 static inline bool __dl_less(struct rb_node * << 1893 { << 1894 return dl_time_before(__node_2_dle(a) << 1895 } << 1896 << 1897 static __always_inline struct sched_statistic << 1898 __schedstats_from_dl_se(struct sched_dl_entit << 1899 { << 1900 if (!schedstat_enabled()) << 1901 return NULL; << 1902 << 1903 if (dl_server(dl_se)) << 1904 return NULL; << 1905 << 1906 return &dl_task_of(dl_se)->stats; << 1907 } << 1908 << 1909 static inline void << 1910 update_stats_wait_start_dl(struct dl_rq *dl_r << 1911 { << 1912 struct sched_statistics *stats = __sc << 1913 if (stats) << 1914 __update_stats_wait_start(rq_ << 1915 } << 1916 << 1917 static inline void << 1918 update_stats_wait_end_dl(struct dl_rq *dl_rq, << 1919 { << 1920 struct sched_statistics *stats = __sc << 1921 if (stats) << 1922 __update_stats_wait_end(rq_of << 1923 } << 1924 << 1925 static inline void << 1926 update_stats_enqueue_sleeper_dl(struct dl_rq << 1927 { << 1928 struct sched_statistics *stats = __sc << 1929 if (stats) << 1930 __update_stats_enqueue_sleepe << 1931 } << 1932 << 1933 static inline void << 1934 update_stats_enqueue_dl(struct dl_rq *dl_rq, << 1935 int flags) << 1936 { << 1937 if (!schedstat_enabled()) << 1938 return; << 1939 << 1940 if (flags & ENQUEUE_WAKEUP) << 1941 update_stats_enqueue_sleeper_ << 1942 } << 1943 << 1944 static inline void << 1945 update_stats_dequeue_dl(struct dl_rq *dl_rq, << 1946 int flags) << 1947 { << 1948 struct task_struct *p = dl_task_of(dl << 1949 << 1950 if (!schedstat_enabled()) << 1951 return; << 1952 << 1953 if ((flags & DEQUEUE_SLEEP)) { << 1954 unsigned int state; << 1955 << 1956 state = READ_ONCE(p->__state) << 1957 if (state & TASK_INTERRUPTIBL << 1958 __schedstat_set(p->st << 1959 rq_cl << 1960 << 1961 if (state & TASK_UNINTERRUPTI << 1962 __schedstat_set(p->st << 1963 rq_cl << 1964 } << 1965 } 1441 } 1966 1442 1967 static void __enqueue_dl_entity(struct sched_ 1443 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1968 { 1444 { 1969 struct dl_rq *dl_rq = dl_rq_of_se(dl_ 1445 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); >> 1446 struct rb_node **link = &dl_rq->root.rb_root.rb_node; >> 1447 struct rb_node *parent = NULL; >> 1448 struct sched_dl_entity *entry; >> 1449 int leftmost = 1; >> 1450 >> 1451 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); >> 1452 >> 1453 while (*link) { >> 1454 parent = *link; >> 1455 entry = rb_entry(parent, struct sched_dl_entity, rb_node); >> 1456 if (dl_time_before(dl_se->deadline, entry->deadline)) >> 1457 link = &parent->rb_left; >> 1458 else { >> 1459 link = &parent->rb_right; >> 1460 leftmost = 0; >> 1461 } >> 1462 } 1970 1463 1971 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->r !! 1464 rb_link_node(&dl_se->rb_node, parent, link); 1972 !! 1465 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost); 1973 rb_add_cached(&dl_se->rb_node, &dl_rq << 1974 1466 1975 inc_dl_tasks(dl_se, dl_rq); 1467 inc_dl_tasks(dl_se, dl_rq); 1976 } 1468 } 1977 1469 1978 static void __dequeue_dl_entity(struct sched_ 1470 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1979 { 1471 { 1980 struct dl_rq *dl_rq = dl_rq_of_se(dl_ 1472 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1981 1473 1982 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1474 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1983 return; 1475 return; 1984 1476 1985 rb_erase_cached(&dl_se->rb_node, &dl_ 1477 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1986 << 1987 RB_CLEAR_NODE(&dl_se->rb_node); 1478 RB_CLEAR_NODE(&dl_se->rb_node); 1988 1479 1989 dec_dl_tasks(dl_se, dl_rq); 1480 dec_dl_tasks(dl_se, dl_rq); 1990 } 1481 } 1991 1482 1992 static void 1483 static void 1993 enqueue_dl_entity(struct sched_dl_entity *dl_ !! 1484 enqueue_dl_entity(struct sched_dl_entity *dl_se, >> 1485 struct sched_dl_entity *pi_se, int flags) >> 1486 { >> 1487 BUG_ON(on_dl_rq(dl_se)); >> 1488 >> 1489 /* >> 1490 * If this is a wakeup or a new instance, the scheduling >> 1491 * parameters of the task might need updating. Otherwise, >> 1492 * we want a replenishment of its runtime. >> 1493 */ >> 1494 if (flags & ENQUEUE_WAKEUP) { >> 1495 task_contending(dl_se, flags); >> 1496 update_dl_entity(dl_se, pi_se); >> 1497 } else if (flags & ENQUEUE_REPLENISH) { >> 1498 replenish_dl_entity(dl_se, pi_se); >> 1499 } else if ((flags & ENQUEUE_RESTORE) && >> 1500 dl_time_before(dl_se->deadline, >> 1501 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { >> 1502 setup_new_dl_entity(dl_se); >> 1503 } >> 1504 >> 1505 __enqueue_dl_entity(dl_se); >> 1506 } >> 1507 >> 1508 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) >> 1509 { >> 1510 __dequeue_dl_entity(dl_se); >> 1511 } >> 1512 >> 1513 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1994 { 1514 { 1995 WARN_ON_ONCE(on_dl_rq(dl_se)); !! 1515 struct task_struct *pi_task = rt_mutex_get_top_task(p); >> 1516 struct sched_dl_entity *pi_se = &p->dl; 1996 1517 1997 update_stats_enqueue_dl(dl_rq_of_se(d !! 1518 /* >> 1519 * Use the scheduling parameters of the top pi-waiter task if: >> 1520 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND >> 1521 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is >> 1522 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting >> 1523 * boosted due to a SCHED_DEADLINE pi-waiter). >> 1524 * Otherwise we keep our runtime and deadline. >> 1525 */ >> 1526 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) { >> 1527 pi_se = &pi_task->dl; >> 1528 } else if (!dl_prio(p->normal_prio)) { >> 1529 /* >> 1530 * Special case in which we have a !SCHED_DEADLINE task >> 1531 * that is going to be deboosted, but exceeds its >> 1532 * runtime while doing so. No point in replenishing >> 1533 * it, as it's going to return back to its original >> 1534 * scheduling class after this. >> 1535 */ >> 1536 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); >> 1537 return; >> 1538 } 1998 1539 1999 /* 1540 /* 2000 * Check if a constrained deadline ta 1541 * Check if a constrained deadline task was activated 2001 * after the deadline but before the 1542 * after the deadline but before the next period. 2002 * If that is the case, the task will 1543 * If that is the case, the task will be throttled and 2003 * the replenishment timer will be se 1544 * the replenishment timer will be set to the next period. 2004 */ 1545 */ 2005 if (!dl_se->dl_throttled && !dl_is_im !! 1546 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 2006 dl_check_constrained_dl(dl_se !! 1547 dl_check_constrained_dl(&p->dl); 2007 1548 2008 if (flags & (ENQUEUE_RESTORE|ENQUEUE_ !! 1549 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 2009 struct dl_rq *dl_rq = dl_rq_o !! 1550 add_rq_bw(&p->dl, &rq->dl); 2010 !! 1551 add_running_bw(&p->dl, &rq->dl); 2011 add_rq_bw(dl_se, dl_rq); << 2012 add_running_bw(dl_se, dl_rq); << 2013 } 1552 } 2014 1553 2015 /* 1554 /* 2016 * If p is throttled, we do not enque 1555 * If p is throttled, we do not enqueue it. In fact, if it exhausted 2017 * its budget it needs a replenishmen 1556 * its budget it needs a replenishment and, since it now is on 2018 * its rq, the bandwidth timer callba 1557 * its rq, the bandwidth timer callback (which clearly has not 2019 * run yet) will take care of this. 1558 * run yet) will take care of this. 2020 * However, the active utilization do 1559 * However, the active utilization does not depend on the fact 2021 * that the task is on the runqueue o 1560 * that the task is on the runqueue or not (but depends on the 2022 * task's state - in GRUB parlance, " 1561 * task's state - in GRUB parlance, "inactive" vs "active contending"). 2023 * In other words, even if a task is 1562 * In other words, even if a task is throttled its utilization must 2024 * be counted in the active utilizati 1563 * be counted in the active utilization; hence, we need to call 2025 * add_running_bw(). 1564 * add_running_bw(). 2026 */ 1565 */ 2027 if (!dl_se->dl_defer && dl_se->dl_thr !! 1566 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 2028 if (flags & ENQUEUE_WAKEUP) 1567 if (flags & ENQUEUE_WAKEUP) 2029 task_contending(dl_se !! 1568 task_contending(&p->dl, flags); 2030 1569 2031 return; 1570 return; 2032 } 1571 } 2033 1572 2034 /* !! 1573 enqueue_dl_entity(&p->dl, pi_se, flags); 2035 * If this is a wakeup or a new insta << 2036 * parameters of the task might need << 2037 * we want a replenishment of its run << 2038 */ << 2039 if (flags & ENQUEUE_WAKEUP) { << 2040 task_contending(dl_se, flags) << 2041 update_dl_entity(dl_se); << 2042 } else if (flags & ENQUEUE_REPLENISH) << 2043 replenish_dl_entity(dl_se); << 2044 } else if ((flags & ENQUEUE_RESTORE) << 2045 dl_time_before(dl_se->dead << 2046 setup_new_dl_entity(dl_se); << 2047 } << 2048 << 2049 /* << 2050 * If the reservation is still thrott << 2051 * deferred task and still got to wai << 2052 */ << 2053 if (dl_se->dl_throttled && start_dl_t << 2054 return; << 2055 1574 2056 /* !! 1575 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 2057 * We're about to enqueue, make sure !! 1576 enqueue_pushable_dl_task(rq, p); 2058 * In case the timer was not started, << 2059 * has passed, mark as not throttled << 2060 * Also cancel earlier timers, since << 2061 */ << 2062 if (dl_se->dl_throttled) { << 2063 hrtimer_try_to_cancel(&dl_se- << 2064 dl_se->dl_defer_armed = 0; << 2065 dl_se->dl_throttled = 0; << 2066 } << 2067 << 2068 __enqueue_dl_entity(dl_se); << 2069 } 1577 } 2070 1578 2071 static void dequeue_dl_entity(struct sched_dl !! 1579 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2072 { 1580 { 2073 __dequeue_dl_entity(dl_se); !! 1581 dequeue_dl_entity(&p->dl); >> 1582 dequeue_pushable_dl_task(rq, p); >> 1583 } 2074 1584 2075 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIG !! 1585 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2076 struct dl_rq *dl_rq = dl_rq_o !! 1586 { >> 1587 update_curr_dl(rq); >> 1588 __dequeue_task_dl(rq, p, flags); 2077 1589 2078 sub_running_bw(dl_se, dl_rq); !! 1590 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 2079 sub_rq_bw(dl_se, dl_rq); !! 1591 sub_running_bw(&p->dl, &rq->dl); >> 1592 sub_rq_bw(&p->dl, &rq->dl); 2080 } 1593 } 2081 1594 2082 /* 1595 /* 2083 * This check allows to start the ina 1596 * This check allows to start the inactive timer (or to immediately 2084 * decrease the active utilization, i 1597 * decrease the active utilization, if needed) in two cases: 2085 * when the task blocks and when it i 1598 * when the task blocks and when it is terminating 2086 * (p->state == TASK_DEAD). We can ha 1599 * (p->state == TASK_DEAD). We can handle the two cases in the same 2087 * way, because from GRUB's point of 1600 * way, because from GRUB's point of view the same thing is happening 2088 * (the task moves from "active conte 1601 * (the task moves from "active contending" to "active non contending" 2089 * or "inactive") 1602 * or "inactive") 2090 */ 1603 */ 2091 if (flags & DEQUEUE_SLEEP) 1604 if (flags & DEQUEUE_SLEEP) 2092 task_non_contending(dl_se); !! 1605 task_non_contending(p); 2093 } << 2094 << 2095 static void enqueue_task_dl(struct rq *rq, st << 2096 { << 2097 if (is_dl_boosted(&p->dl)) { << 2098 /* << 2099 * Because of delays in the d << 2100 * thread's runtime, it might << 2101 * goes to sleep in a rt mute << 2102 * a consequence, the thread << 2103 * << 2104 * While waiting for the mute << 2105 * boosted via PI, resulting << 2106 * and boosted at the same ti << 2107 * << 2108 * In this case, the boost ov << 2109 */ << 2110 if (p->dl.dl_throttled) { << 2111 /* << 2112 * The replenish time << 2113 * problem if it fire << 2114 * are ignored in dl_ << 2115 * << 2116 * If the timer callb << 2117 * it will eventually << 2118 */ << 2119 if (hrtimer_try_to_ca << 2120 !dl_server(&p->dl << 2121 put_task_stru << 2122 p->dl.dl_throttled = << 2123 } << 2124 } else if (!dl_prio(p->normal_prio)) << 2125 /* << 2126 * Special case in which we h << 2127 * to be deboosted, but excee << 2128 * replenishing it, as it's g << 2129 * scheduling class after thi << 2130 * clear the flag, otherwise << 2131 * being boosted again with n << 2132 * the throttle. << 2133 */ << 2134 p->dl.dl_throttled = 0; << 2135 if (!(flags & ENQUEUE_REPLENI << 2136 printk_deferred_once( << 2137 << 2138 << 2139 return; << 2140 } << 2141 << 2142 check_schedstat_required(); << 2143 update_stats_wait_start_dl(dl_rq_of_s << 2144 << 2145 if (p->on_rq == TASK_ON_RQ_MIGRATING) << 2146 flags |= ENQUEUE_MIGRATING; << 2147 << 2148 enqueue_dl_entity(&p->dl, flags); << 2149 << 2150 if (dl_server(&p->dl)) << 2151 return; << 2152 << 2153 if (!task_current(rq, p) && !p->dl.dl << 2154 enqueue_pushable_dl_task(rq, << 2155 } << 2156 << 2157 static bool dequeue_task_dl(struct rq *rq, st << 2158 { << 2159 update_curr_dl(rq); << 2160 << 2161 if (p->on_rq == TASK_ON_RQ_MIGRATING) << 2162 flags |= DEQUEUE_MIGRATING; << 2163 << 2164 dequeue_dl_entity(&p->dl, flags); << 2165 if (!p->dl.dl_throttled && !dl_server << 2166 dequeue_pushable_dl_task(rq, << 2167 << 2168 return true; << 2169 } 1606 } 2170 1607 2171 /* 1608 /* 2172 * Yield task semantic for -deadline tasks is 1609 * Yield task semantic for -deadline tasks is: 2173 * 1610 * 2174 * get off from the CPU until our next inst 1611 * get off from the CPU until our next instance, with 2175 * a new runtime. This is of little use now 1612 * a new runtime. This is of little use now, since we 2176 * don't have a bandwidth reclaiming mechan 1613 * don't have a bandwidth reclaiming mechanism. Anyway, 2177 * bandwidth reclaiming is planned for the 1614 * bandwidth reclaiming is planned for the future, and 2178 * yield_task_dl will indicate that some sp 1615 * yield_task_dl will indicate that some spare budget 2179 * is available for other task instances to 1616 * is available for other task instances to use it. 2180 */ 1617 */ 2181 static void yield_task_dl(struct rq *rq) 1618 static void yield_task_dl(struct rq *rq) 2182 { 1619 { 2183 /* 1620 /* 2184 * We make the task go to sleep until 1621 * We make the task go to sleep until its current deadline by 2185 * forcing its runtime to zero. This 1622 * forcing its runtime to zero. This way, update_curr_dl() stops 2186 * it and the bandwidth timer will wa 1623 * it and the bandwidth timer will wake it up and will give it 2187 * new scheduling parameters (thanks 1624 * new scheduling parameters (thanks to dl_yielded=1). 2188 */ 1625 */ 2189 rq->curr->dl.dl_yielded = 1; 1626 rq->curr->dl.dl_yielded = 1; 2190 1627 2191 update_rq_clock(rq); 1628 update_rq_clock(rq); 2192 update_curr_dl(rq); 1629 update_curr_dl(rq); 2193 /* 1630 /* 2194 * Tell update_rq_clock() that we've 1631 * Tell update_rq_clock() that we've just updated, 2195 * so we don't do microscopic update 1632 * so we don't do microscopic update in schedule() 2196 * and double the fastpath cost. 1633 * and double the fastpath cost. 2197 */ 1634 */ 2198 rq_clock_skip_update(rq); 1635 rq_clock_skip_update(rq); 2199 } 1636 } 2200 1637 2201 #ifdef CONFIG_SMP 1638 #ifdef CONFIG_SMP 2202 1639 2203 static inline bool dl_task_is_earliest_deadli << 2204 << 2205 { << 2206 return (!rq->dl.dl_nr_running || << 2207 dl_time_before(p->dl.deadline << 2208 rq->dl.earlies << 2209 } << 2210 << 2211 static int find_later_rq(struct task_struct * 1640 static int find_later_rq(struct task_struct *task); 2212 1641 2213 static int 1642 static int 2214 select_task_rq_dl(struct task_struct *p, int !! 1643 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 2215 { 1644 { 2216 struct task_struct *curr; 1645 struct task_struct *curr; 2217 bool select_rq; 1646 bool select_rq; 2218 struct rq *rq; 1647 struct rq *rq; 2219 1648 2220 if (!(flags & WF_TTWU)) !! 1649 if (sd_flag != SD_BALANCE_WAKE) 2221 goto out; 1650 goto out; 2222 1651 2223 rq = cpu_rq(cpu); 1652 rq = cpu_rq(cpu); 2224 1653 2225 rcu_read_lock(); 1654 rcu_read_lock(); 2226 curr = READ_ONCE(rq->curr); /* unlock 1655 curr = READ_ONCE(rq->curr); /* unlocked access */ 2227 1656 2228 /* 1657 /* 2229 * If we are dealing with a -deadline 1658 * If we are dealing with a -deadline task, we must 2230 * decide where to wake it up. 1659 * decide where to wake it up. 2231 * If it has a later deadline and the 1660 * If it has a later deadline and the current task 2232 * on this rq can't move (provided th 1661 * on this rq can't move (provided the waking task 2233 * can!) we prefer to send it somewhe 1662 * can!) we prefer to send it somewhere else. On the 2234 * other hand, if it has a shorter de 1663 * other hand, if it has a shorter deadline, we 2235 * try to make it stay here, it might 1664 * try to make it stay here, it might be important. 2236 */ 1665 */ 2237 select_rq = unlikely(dl_task(curr)) & 1666 select_rq = unlikely(dl_task(curr)) && 2238 (curr->nr_cpus_allowed < 1667 (curr->nr_cpus_allowed < 2 || 2239 !dl_entity_preempt(&p->d 1668 !dl_entity_preempt(&p->dl, &curr->dl)) && 2240 p->nr_cpus_allowed > 1; 1669 p->nr_cpus_allowed > 1; 2241 1670 2242 /* 1671 /* 2243 * Take the capacity of the CPU into 1672 * Take the capacity of the CPU into account to 2244 * ensure it fits the requirement of 1673 * ensure it fits the requirement of the task. 2245 */ 1674 */ 2246 if (sched_asym_cpucap_active()) !! 1675 if (static_branch_unlikely(&sched_asym_cpucapacity)) 2247 select_rq |= !dl_task_fits_ca 1676 select_rq |= !dl_task_fits_capacity(p, cpu); 2248 1677 2249 if (select_rq) { 1678 if (select_rq) { 2250 int target = find_later_rq(p) 1679 int target = find_later_rq(p); 2251 1680 2252 if (target != -1 && 1681 if (target != -1 && 2253 dl_task_is_earliest_deadl !! 1682 (dl_time_before(p->dl.deadline, >> 1683 cpu_rq(target)->dl.earliest_dl.curr) || >> 1684 (cpu_rq(target)->dl.dl_nr_running == 0))) 2254 cpu = target; 1685 cpu = target; 2255 } 1686 } 2256 rcu_read_unlock(); 1687 rcu_read_unlock(); 2257 1688 2258 out: 1689 out: 2259 return cpu; 1690 return cpu; 2260 } 1691 } 2261 1692 2262 static void migrate_task_rq_dl(struct task_st 1693 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 2263 { 1694 { 2264 struct rq_flags rf; << 2265 struct rq *rq; 1695 struct rq *rq; 2266 1696 2267 if (READ_ONCE(p->__state) != TASK_WAK !! 1697 if (p->state != TASK_WAKING) 2268 return; 1698 return; 2269 1699 2270 rq = task_rq(p); 1700 rq = task_rq(p); 2271 /* 1701 /* 2272 * Since p->state == TASK_WAKING, set 1702 * Since p->state == TASK_WAKING, set_task_cpu() has been called 2273 * from try_to_wake_up(). Hence, p->p 1703 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 2274 * rq->lock is not... So, lock it 1704 * rq->lock is not... So, lock it 2275 */ 1705 */ 2276 rq_lock(rq, &rf); !! 1706 raw_spin_lock(&rq->lock); 2277 if (p->dl.dl_non_contending) { 1707 if (p->dl.dl_non_contending) { 2278 update_rq_clock(rq); << 2279 sub_running_bw(&p->dl, &rq->d 1708 sub_running_bw(&p->dl, &rq->dl); 2280 p->dl.dl_non_contending = 0; 1709 p->dl.dl_non_contending = 0; 2281 /* 1710 /* 2282 * If the timer handler is cu 1711 * If the timer handler is currently running and the 2283 * timer cannot be canceled, !! 1712 * timer cannot be cancelled, inactive_task_timer() 2284 * will see that dl_not_conte 1713 * will see that dl_not_contending is not set, and 2285 * will not touch the rq's ac 1714 * will not touch the rq's active utilization, 2286 * so we are still safe. 1715 * so we are still safe. 2287 */ 1716 */ 2288 if (hrtimer_try_to_cancel(&p- 1717 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2289 put_task_struct(p); 1718 put_task_struct(p); 2290 } 1719 } 2291 sub_rq_bw(&p->dl, &rq->dl); 1720 sub_rq_bw(&p->dl, &rq->dl); 2292 rq_unlock(rq, &rf); !! 1721 raw_spin_unlock(&rq->lock); 2293 } 1722 } 2294 1723 2295 static void check_preempt_equal_dl(struct rq 1724 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 2296 { 1725 { 2297 /* 1726 /* 2298 * Current can't be migrated, useless 1727 * Current can't be migrated, useless to reschedule, 2299 * let's hope p can move out. 1728 * let's hope p can move out. 2300 */ 1729 */ 2301 if (rq->curr->nr_cpus_allowed == 1 || 1730 if (rq->curr->nr_cpus_allowed == 1 || 2302 !cpudl_find(&rq->rd->cpudl, rq->c 1731 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 2303 return; 1732 return; 2304 1733 2305 /* 1734 /* 2306 * p is migratable, so let's not sche 1735 * p is migratable, so let's not schedule it and 2307 * see if it is pushed or pulled some 1736 * see if it is pushed or pulled somewhere else. 2308 */ 1737 */ 2309 if (p->nr_cpus_allowed != 1 && 1738 if (p->nr_cpus_allowed != 1 && 2310 cpudl_find(&rq->rd->cpudl, p, NUL 1739 cpudl_find(&rq->rd->cpudl, p, NULL)) 2311 return; 1740 return; 2312 1741 2313 resched_curr(rq); 1742 resched_curr(rq); 2314 } 1743 } 2315 1744 2316 static int balance_dl(struct rq *rq, struct t 1745 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2317 { 1746 { 2318 if (!on_dl_rq(&p->dl) && need_pull_dl 1747 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2319 /* 1748 /* 2320 * This is OK, because curren 1749 * This is OK, because current is on_cpu, which avoids it being 2321 * picked for load-balance an 1750 * picked for load-balance and preemption/IRQs are still 2322 * disabled avoiding further 1751 * disabled avoiding further scheduler activity on it and we've 2323 * not yet started the pickin 1752 * not yet started the picking loop. 2324 */ 1753 */ 2325 rq_unpin_lock(rq, rf); 1754 rq_unpin_lock(rq, rf); 2326 pull_dl_task(rq); 1755 pull_dl_task(rq); 2327 rq_repin_lock(rq, rf); 1756 rq_repin_lock(rq, rf); 2328 } 1757 } 2329 1758 2330 return sched_stop_runnable(rq) || sch 1759 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2331 } 1760 } 2332 #endif /* CONFIG_SMP */ 1761 #endif /* CONFIG_SMP */ 2333 1762 2334 /* 1763 /* 2335 * Only called when both the current and waki 1764 * Only called when both the current and waking task are -deadline 2336 * tasks. 1765 * tasks. 2337 */ 1766 */ 2338 static void wakeup_preempt_dl(struct rq *rq, !! 1767 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 2339 int flags) 1768 int flags) 2340 { 1769 { 2341 if (dl_entity_preempt(&p->dl, &rq->cu 1770 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 2342 resched_curr(rq); 1771 resched_curr(rq); 2343 return; 1772 return; 2344 } 1773 } 2345 1774 2346 #ifdef CONFIG_SMP 1775 #ifdef CONFIG_SMP 2347 /* 1776 /* 2348 * In the unlikely case current and p 1777 * In the unlikely case current and p have the same deadline 2349 * let us try to decide what's the be 1778 * let us try to decide what's the best thing to do... 2350 */ 1779 */ 2351 if ((p->dl.deadline == rq->curr->dl.d 1780 if ((p->dl.deadline == rq->curr->dl.deadline) && 2352 !test_tsk_need_resched(rq->curr)) 1781 !test_tsk_need_resched(rq->curr)) 2353 check_preempt_equal_dl(rq, p) 1782 check_preempt_equal_dl(rq, p); 2354 #endif /* CONFIG_SMP */ 1783 #endif /* CONFIG_SMP */ 2355 } 1784 } 2356 1785 2357 #ifdef CONFIG_SCHED_HRTICK 1786 #ifdef CONFIG_SCHED_HRTICK 2358 static void start_hrtick_dl(struct rq *rq, st !! 1787 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 2359 { 1788 { 2360 hrtick_start(rq, dl_se->runtime); !! 1789 hrtick_start(rq, p->dl.runtime); 2361 } 1790 } 2362 #else /* !CONFIG_SCHED_HRTICK */ 1791 #else /* !CONFIG_SCHED_HRTICK */ 2363 static void start_hrtick_dl(struct rq *rq, st !! 1792 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 2364 { 1793 { 2365 } 1794 } 2366 #endif 1795 #endif 2367 1796 2368 static void set_next_task_dl(struct rq *rq, s 1797 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2369 { 1798 { 2370 struct sched_dl_entity *dl_se = &p->d << 2371 struct dl_rq *dl_rq = &rq->dl; << 2372 << 2373 p->se.exec_start = rq_clock_task(rq); 1799 p->se.exec_start = rq_clock_task(rq); 2374 if (on_dl_rq(&p->dl)) << 2375 update_stats_wait_end_dl(dl_r << 2376 1800 2377 /* You can't push away the running ta 1801 /* You can't push away the running task */ 2378 dequeue_pushable_dl_task(rq, p); 1802 dequeue_pushable_dl_task(rq, p); 2379 1803 2380 if (!first) 1804 if (!first) 2381 return; 1805 return; 2382 1806 >> 1807 if (hrtick_enabled(rq)) >> 1808 start_hrtick_dl(rq, p); >> 1809 2383 if (rq->curr->sched_class != &dl_sche 1810 if (rq->curr->sched_class != &dl_sched_class) 2384 update_dl_rq_load_avg(rq_cloc 1811 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2385 1812 2386 deadline_queue_push_tasks(rq); 1813 deadline_queue_push_tasks(rq); 2387 << 2388 if (hrtick_enabled_dl(rq)) << 2389 start_hrtick_dl(rq, &p->dl); << 2390 } 1814 } 2391 1815 2392 static struct sched_dl_entity *pick_next_dl_e !! 1816 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, >> 1817 struct dl_rq *dl_rq) 2393 { 1818 { 2394 struct rb_node *left = rb_first_cache 1819 struct rb_node *left = rb_first_cached(&dl_rq->root); 2395 1820 2396 if (!left) 1821 if (!left) 2397 return NULL; 1822 return NULL; 2398 1823 2399 return __node_2_dle(left); !! 1824 return rb_entry(left, struct sched_dl_entity, rb_node); 2400 } 1825 } 2401 1826 2402 /* !! 1827 static struct task_struct *pick_next_task_dl(struct rq *rq) 2403 * __pick_next_task_dl - Helper to pick the n << 2404 * @rq: The runqueue to pick the next task fr << 2405 */ << 2406 static struct task_struct *__pick_task_dl(str << 2407 { 1828 { 2408 struct sched_dl_entity *dl_se; 1829 struct sched_dl_entity *dl_se; 2409 struct dl_rq *dl_rq = &rq->dl; 1830 struct dl_rq *dl_rq = &rq->dl; 2410 struct task_struct *p; 1831 struct task_struct *p; 2411 1832 2412 again: << 2413 if (!sched_dl_runnable(rq)) 1833 if (!sched_dl_runnable(rq)) 2414 return NULL; 1834 return NULL; 2415 1835 2416 dl_se = pick_next_dl_entity(dl_rq); !! 1836 dl_se = pick_next_dl_entity(rq, dl_rq); 2417 WARN_ON_ONCE(!dl_se); !! 1837 BUG_ON(!dl_se); 2418 !! 1838 p = dl_task_of(dl_se); 2419 if (dl_server(dl_se)) { !! 1839 set_next_task_dl(rq, p, true); 2420 p = dl_se->server_pick_task(d << 2421 if (!p) { << 2422 dl_se->dl_yielded = 1 << 2423 update_curr_dl_se(rq, << 2424 goto again; << 2425 } << 2426 rq->dl_server = dl_se; << 2427 } else { << 2428 p = dl_task_of(dl_se); << 2429 } << 2430 << 2431 return p; 1840 return p; 2432 } 1841 } 2433 1842 2434 static struct task_struct *pick_task_dl(struc !! 1843 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 2435 { 1844 { 2436 return __pick_task_dl(rq); << 2437 } << 2438 << 2439 static void put_prev_task_dl(struct rq *rq, s << 2440 { << 2441 struct sched_dl_entity *dl_se = &p->d << 2442 struct dl_rq *dl_rq = &rq->dl; << 2443 << 2444 if (on_dl_rq(&p->dl)) << 2445 update_stats_wait_start_dl(dl << 2446 << 2447 update_curr_dl(rq); 1845 update_curr_dl(rq); 2448 1846 2449 update_dl_rq_load_avg(rq_clock_pelt(r 1847 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2450 if (on_dl_rq(&p->dl) && p->nr_cpus_al 1848 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2451 enqueue_pushable_dl_task(rq, 1849 enqueue_pushable_dl_task(rq, p); 2452 } 1850 } 2453 1851 2454 /* 1852 /* 2455 * scheduler tick hitting a task of our sched 1853 * scheduler tick hitting a task of our scheduling class. 2456 * 1854 * 2457 * NOTE: This function can be called remotely 1855 * NOTE: This function can be called remotely by the tick offload that 2458 * goes along full dynticks. Therefore no loc 1856 * goes along full dynticks. Therefore no local assumption can be made 2459 * and everything must be accessed through th 1857 * and everything must be accessed through the @rq and @curr passed in 2460 * parameters. 1858 * parameters. 2461 */ 1859 */ 2462 static void task_tick_dl(struct rq *rq, struc 1860 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2463 { 1861 { 2464 update_curr_dl(rq); 1862 update_curr_dl(rq); 2465 1863 2466 update_dl_rq_load_avg(rq_clock_pelt(r 1864 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2467 /* 1865 /* 2468 * Even when we have runtime, update_ 1866 * Even when we have runtime, update_curr_dl() might have resulted in us 2469 * not being the leftmost task anymor 1867 * not being the leftmost task anymore. In that case NEED_RESCHED will 2470 * be set and schedule() will start a 1868 * be set and schedule() will start a new hrtick for the next task. 2471 */ 1869 */ 2472 if (hrtick_enabled_dl(rq) && queued & !! 1870 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 2473 is_leftmost(&p->dl, &rq->dl)) !! 1871 is_leftmost(p, &rq->dl)) 2474 start_hrtick_dl(rq, &p->dl); !! 1872 start_hrtick_dl(rq, p); 2475 } 1873 } 2476 1874 2477 static void task_fork_dl(struct task_struct * 1875 static void task_fork_dl(struct task_struct *p) 2478 { 1876 { 2479 /* 1877 /* 2480 * SCHED_DEADLINE tasks cannot fork a 1878 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2481 * sched_fork() 1879 * sched_fork() 2482 */ 1880 */ 2483 } 1881 } 2484 1882 2485 #ifdef CONFIG_SMP 1883 #ifdef CONFIG_SMP 2486 1884 2487 /* Only try algorithms three times */ 1885 /* Only try algorithms three times */ 2488 #define DL_MAX_TRIES 3 1886 #define DL_MAX_TRIES 3 2489 1887 2490 static int pick_dl_task(struct rq *rq, struct 1888 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 2491 { 1889 { 2492 if (!task_on_cpu(rq, p) && !! 1890 if (!task_running(rq, p) && 2493 cpumask_test_cpu(cpu, &p->cpus_ma !! 1891 cpumask_test_cpu(cpu, p->cpus_ptr)) 2494 return 1; 1892 return 1; 2495 return 0; 1893 return 0; 2496 } 1894 } 2497 1895 2498 /* 1896 /* 2499 * Return the earliest pushable rq's task, wh 1897 * Return the earliest pushable rq's task, which is suitable to be executed 2500 * on the CPU, NULL otherwise: 1898 * on the CPU, NULL otherwise: 2501 */ 1899 */ 2502 static struct task_struct *pick_earliest_push 1900 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2503 { 1901 { >> 1902 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; 2504 struct task_struct *p = NULL; 1903 struct task_struct *p = NULL; 2505 struct rb_node *next_node; << 2506 1904 2507 if (!has_pushable_dl_tasks(rq)) 1905 if (!has_pushable_dl_tasks(rq)) 2508 return NULL; 1906 return NULL; 2509 1907 2510 next_node = rb_first_cached(&rq->dl.p << 2511 << 2512 next_node: 1908 next_node: 2513 if (next_node) { 1909 if (next_node) { 2514 p = __node_2_pdl(next_node); !! 1910 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 2515 1911 2516 if (pick_dl_task(rq, p, cpu)) 1912 if (pick_dl_task(rq, p, cpu)) 2517 return p; 1913 return p; 2518 1914 2519 next_node = rb_next(next_node 1915 next_node = rb_next(next_node); 2520 goto next_node; 1916 goto next_node; 2521 } 1917 } 2522 1918 2523 return NULL; 1919 return NULL; 2524 } 1920 } 2525 1921 2526 static DEFINE_PER_CPU(cpumask_var_t, local_cp 1922 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2527 1923 2528 static int find_later_rq(struct task_struct * 1924 static int find_later_rq(struct task_struct *task) 2529 { 1925 { 2530 struct sched_domain *sd; 1926 struct sched_domain *sd; 2531 struct cpumask *later_mask = this_cpu 1927 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2532 int this_cpu = smp_processor_id(); 1928 int this_cpu = smp_processor_id(); 2533 int cpu = task_cpu(task); 1929 int cpu = task_cpu(task); 2534 1930 2535 /* Make sure the mask is initialized 1931 /* Make sure the mask is initialized first */ 2536 if (unlikely(!later_mask)) 1932 if (unlikely(!later_mask)) 2537 return -1; 1933 return -1; 2538 1934 2539 if (task->nr_cpus_allowed == 1) 1935 if (task->nr_cpus_allowed == 1) 2540 return -1; 1936 return -1; 2541 1937 2542 /* 1938 /* 2543 * We have to consider system topolog 1939 * We have to consider system topology and task affinity 2544 * first, then we can look for a suit 1940 * first, then we can look for a suitable CPU. 2545 */ 1941 */ 2546 if (!cpudl_find(&task_rq(task)->rd->c 1942 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2547 return -1; 1943 return -1; 2548 1944 2549 /* 1945 /* 2550 * If we are here, some targets have 1946 * If we are here, some targets have been found, including 2551 * the most suitable which is, among 1947 * the most suitable which is, among the runqueues where the 2552 * current tasks have later deadlines 1948 * current tasks have later deadlines than the task's one, the 2553 * rq with the latest possible one. 1949 * rq with the latest possible one. 2554 * 1950 * 2555 * Now we check how well this matches 1951 * Now we check how well this matches with task's 2556 * affinity and system topology. 1952 * affinity and system topology. 2557 * 1953 * 2558 * The last CPU where the task run is 1954 * The last CPU where the task run is our first 2559 * guess, since it is most likely cac 1955 * guess, since it is most likely cache-hot there. 2560 */ 1956 */ 2561 if (cpumask_test_cpu(cpu, later_mask) 1957 if (cpumask_test_cpu(cpu, later_mask)) 2562 return cpu; 1958 return cpu; 2563 /* 1959 /* 2564 * Check if this_cpu is to be skipped 1960 * Check if this_cpu is to be skipped (i.e., it is 2565 * not in the mask) or not. 1961 * not in the mask) or not. 2566 */ 1962 */ 2567 if (!cpumask_test_cpu(this_cpu, later 1963 if (!cpumask_test_cpu(this_cpu, later_mask)) 2568 this_cpu = -1; 1964 this_cpu = -1; 2569 1965 2570 rcu_read_lock(); 1966 rcu_read_lock(); 2571 for_each_domain(cpu, sd) { 1967 for_each_domain(cpu, sd) { 2572 if (sd->flags & SD_WAKE_AFFIN 1968 if (sd->flags & SD_WAKE_AFFINE) { 2573 int best_cpu; 1969 int best_cpu; 2574 1970 2575 /* 1971 /* 2576 * If possible, preem 1972 * If possible, preempting this_cpu is 2577 * cheaper than migra 1973 * cheaper than migrating. 2578 */ 1974 */ 2579 if (this_cpu != -1 && 1975 if (this_cpu != -1 && 2580 cpumask_test_cpu( 1976 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2581 rcu_read_unlo 1977 rcu_read_unlock(); 2582 return this_c 1978 return this_cpu; 2583 } 1979 } 2584 1980 2585 best_cpu = cpumask_an !! 1981 best_cpu = cpumask_first_and(later_mask, 2586 !! 1982 sched_domain_span(sd)); 2587 /* 1983 /* 2588 * Last chance: if a 1984 * Last chance: if a CPU being in both later_mask 2589 * and current sd spa 1985 * and current sd span is valid, that becomes our 2590 * choice. Of course, 1986 * choice. Of course, the latest possible CPU is 2591 * already under cons 1987 * already under consideration through later_mask. 2592 */ 1988 */ 2593 if (best_cpu < nr_cpu 1989 if (best_cpu < nr_cpu_ids) { 2594 rcu_read_unlo 1990 rcu_read_unlock(); 2595 return best_c 1991 return best_cpu; 2596 } 1992 } 2597 } 1993 } 2598 } 1994 } 2599 rcu_read_unlock(); 1995 rcu_read_unlock(); 2600 1996 2601 /* 1997 /* 2602 * At this point, all our guesses fai 1998 * At this point, all our guesses failed, we just return 2603 * 'something', and let the caller so 1999 * 'something', and let the caller sort the things out. 2604 */ 2000 */ 2605 if (this_cpu != -1) 2001 if (this_cpu != -1) 2606 return this_cpu; 2002 return this_cpu; 2607 2003 2608 cpu = cpumask_any_distribute(later_ma !! 2004 cpu = cpumask_any(later_mask); 2609 if (cpu < nr_cpu_ids) 2005 if (cpu < nr_cpu_ids) 2610 return cpu; 2006 return cpu; 2611 2007 2612 return -1; 2008 return -1; 2613 } 2009 } 2614 2010 2615 /* Locks the rq it finds */ 2011 /* Locks the rq it finds */ 2616 static struct rq *find_lock_later_rq(struct t 2012 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2617 { 2013 { 2618 struct rq *later_rq = NULL; 2014 struct rq *later_rq = NULL; 2619 int tries; 2015 int tries; 2620 int cpu; 2016 int cpu; 2621 2017 2622 for (tries = 0; tries < DL_MAX_TRIES; 2018 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2623 cpu = find_later_rq(task); 2019 cpu = find_later_rq(task); 2624 2020 2625 if ((cpu == -1) || (cpu == rq 2021 if ((cpu == -1) || (cpu == rq->cpu)) 2626 break; 2022 break; 2627 2023 2628 later_rq = cpu_rq(cpu); 2024 later_rq = cpu_rq(cpu); 2629 2025 2630 if (!dl_task_is_earliest_dead !! 2026 if (later_rq->dl.dl_nr_running && >> 2027 !dl_time_before(task->dl.deadline, >> 2028 later_rq->dl.earliest_dl.curr)) { 2631 /* 2029 /* 2632 * Target rq has task 2030 * Target rq has tasks of equal or earlier deadline, 2633 * retrying does not 2031 * retrying does not release any lock and is unlikely 2634 * to yield a differe 2032 * to yield a different result. 2635 */ 2033 */ 2636 later_rq = NULL; 2034 later_rq = NULL; 2637 break; 2035 break; 2638 } 2036 } 2639 2037 2640 /* Retry if something changed 2038 /* Retry if something changed. */ 2641 if (double_lock_balance(rq, l 2039 if (double_lock_balance(rq, later_rq)) { 2642 if (unlikely(task_rq( 2040 if (unlikely(task_rq(task) != rq || 2643 !cpumask !! 2041 !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) || 2644 task_on_ !! 2042 task_running(rq, task) || 2645 !dl_task 2043 !dl_task(task) || 2646 is_migra << 2647 !task_on 2044 !task_on_rq_queued(task))) { 2648 double_unlock 2045 double_unlock_balance(rq, later_rq); 2649 later_rq = NU 2046 later_rq = NULL; 2650 break; 2047 break; 2651 } 2048 } 2652 } 2049 } 2653 2050 2654 /* 2051 /* 2655 * If the rq we found has no 2052 * If the rq we found has no -deadline task, or 2656 * its earliest one has a lat 2053 * its earliest one has a later deadline than our 2657 * task, the rq is a good one 2054 * task, the rq is a good one. 2658 */ 2055 */ 2659 if (dl_task_is_earliest_deadl !! 2056 if (!later_rq->dl.dl_nr_running || >> 2057 dl_time_before(task->dl.deadline, >> 2058 later_rq->dl.earliest_dl.curr)) 2660 break; 2059 break; 2661 2060 2662 /* Otherwise we try again. */ 2061 /* Otherwise we try again. */ 2663 double_unlock_balance(rq, lat 2062 double_unlock_balance(rq, later_rq); 2664 later_rq = NULL; 2063 later_rq = NULL; 2665 } 2064 } 2666 2065 2667 return later_rq; 2066 return later_rq; 2668 } 2067 } 2669 2068 2670 static struct task_struct *pick_next_pushable 2069 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2671 { 2070 { 2672 struct task_struct *p; 2071 struct task_struct *p; 2673 2072 2674 if (!has_pushable_dl_tasks(rq)) 2073 if (!has_pushable_dl_tasks(rq)) 2675 return NULL; 2074 return NULL; 2676 2075 2677 p = __node_2_pdl(rb_first_cached(&rq- !! 2076 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, >> 2077 struct task_struct, pushable_dl_tasks); 2678 2078 2679 WARN_ON_ONCE(rq->cpu != task_cpu(p)); !! 2079 BUG_ON(rq->cpu != task_cpu(p)); 2680 WARN_ON_ONCE(task_current(rq, p)); !! 2080 BUG_ON(task_current(rq, p)); 2681 WARN_ON_ONCE(p->nr_cpus_allowed <= 1) !! 2081 BUG_ON(p->nr_cpus_allowed <= 1); 2682 2082 2683 WARN_ON_ONCE(!task_on_rq_queued(p)); !! 2083 BUG_ON(!task_on_rq_queued(p)); 2684 WARN_ON_ONCE(!dl_task(p)); !! 2084 BUG_ON(!dl_task(p)); 2685 2085 2686 return p; 2086 return p; 2687 } 2087 } 2688 2088 2689 /* 2089 /* 2690 * See if the non running -deadline tasks on 2090 * See if the non running -deadline tasks on this rq 2691 * can be sent to some other CPU where they c 2091 * can be sent to some other CPU where they can preempt 2692 * and start executing. 2092 * and start executing. 2693 */ 2093 */ 2694 static int push_dl_task(struct rq *rq) 2094 static int push_dl_task(struct rq *rq) 2695 { 2095 { 2696 struct task_struct *next_task; 2096 struct task_struct *next_task; 2697 struct rq *later_rq; 2097 struct rq *later_rq; 2698 int ret = 0; 2098 int ret = 0; 2699 2099 >> 2100 if (!rq->dl.overloaded) >> 2101 return 0; >> 2102 2700 next_task = pick_next_pushable_dl_tas 2103 next_task = pick_next_pushable_dl_task(rq); 2701 if (!next_task) 2104 if (!next_task) 2702 return 0; 2105 return 0; 2703 2106 2704 retry: 2107 retry: >> 2108 if (WARN_ON(next_task == rq->curr)) >> 2109 return 0; >> 2110 2705 /* 2111 /* 2706 * If next_task preempts rq->curr, an 2112 * If next_task preempts rq->curr, and rq->curr 2707 * can move away, it makes sense to j 2113 * can move away, it makes sense to just reschedule 2708 * without going further in pushing n 2114 * without going further in pushing next_task. 2709 */ 2115 */ 2710 if (dl_task(rq->curr) && 2116 if (dl_task(rq->curr) && 2711 dl_time_before(next_task->dl.dead 2117 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2712 rq->curr->nr_cpus_allowed > 1) { 2118 rq->curr->nr_cpus_allowed > 1) { 2713 resched_curr(rq); 2119 resched_curr(rq); 2714 return 0; 2120 return 0; 2715 } 2121 } 2716 2122 2717 if (is_migration_disabled(next_task)) << 2718 return 0; << 2719 << 2720 if (WARN_ON(next_task == rq->curr)) << 2721 return 0; << 2722 << 2723 /* We might release rq lock */ 2123 /* We might release rq lock */ 2724 get_task_struct(next_task); 2124 get_task_struct(next_task); 2725 2125 2726 /* Will lock the rq it'll find */ 2126 /* Will lock the rq it'll find */ 2727 later_rq = find_lock_later_rq(next_ta 2127 later_rq = find_lock_later_rq(next_task, rq); 2728 if (!later_rq) { 2128 if (!later_rq) { 2729 struct task_struct *task; 2129 struct task_struct *task; 2730 2130 2731 /* 2131 /* 2732 * We must check all this aga 2132 * We must check all this again, since 2733 * find_lock_later_rq release 2133 * find_lock_later_rq releases rq->lock and it is 2734 * then possible that next_ta 2134 * then possible that next_task has migrated. 2735 */ 2135 */ 2736 task = pick_next_pushable_dl_ 2136 task = pick_next_pushable_dl_task(rq); 2737 if (task == next_task) { 2137 if (task == next_task) { 2738 /* 2138 /* 2739 * The task is still 2139 * The task is still there. We don't try 2740 * again, some other 2140 * again, some other CPU will pull it when ready. 2741 */ 2141 */ 2742 goto out; 2142 goto out; 2743 } 2143 } 2744 2144 2745 if (!task) 2145 if (!task) 2746 /* No more tasks */ 2146 /* No more tasks */ 2747 goto out; 2147 goto out; 2748 2148 2749 put_task_struct(next_task); 2149 put_task_struct(next_task); 2750 next_task = task; 2150 next_task = task; 2751 goto retry; 2151 goto retry; 2752 } 2152 } 2753 2153 2754 deactivate_task(rq, next_task, 0); 2154 deactivate_task(rq, next_task, 0); 2755 set_task_cpu(next_task, later_rq->cpu 2155 set_task_cpu(next_task, later_rq->cpu); 2756 activate_task(later_rq, next_task, 0) !! 2156 >> 2157 /* >> 2158 * Update the later_rq clock here, because the clock is used >> 2159 * by the cpufreq_update_util() inside __add_running_bw(). >> 2160 */ >> 2161 update_rq_clock(later_rq); >> 2162 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK); 2757 ret = 1; 2163 ret = 1; 2758 2164 2759 resched_curr(later_rq); 2165 resched_curr(later_rq); 2760 2166 2761 double_unlock_balance(rq, later_rq); 2167 double_unlock_balance(rq, later_rq); 2762 2168 2763 out: 2169 out: 2764 put_task_struct(next_task); 2170 put_task_struct(next_task); 2765 2171 2766 return ret; 2172 return ret; 2767 } 2173 } 2768 2174 2769 static void push_dl_tasks(struct rq *rq) 2175 static void push_dl_tasks(struct rq *rq) 2770 { 2176 { 2771 /* push_dl_task() will return true if 2177 /* push_dl_task() will return true if it moved a -deadline task */ 2772 while (push_dl_task(rq)) 2178 while (push_dl_task(rq)) 2773 ; 2179 ; 2774 } 2180 } 2775 2181 2776 static void pull_dl_task(struct rq *this_rq) 2182 static void pull_dl_task(struct rq *this_rq) 2777 { 2183 { 2778 int this_cpu = this_rq->cpu, cpu; 2184 int this_cpu = this_rq->cpu, cpu; 2779 struct task_struct *p, *push_task; !! 2185 struct task_struct *p; 2780 bool resched = false; 2186 bool resched = false; 2781 struct rq *src_rq; 2187 struct rq *src_rq; 2782 u64 dmin = LONG_MAX; 2188 u64 dmin = LONG_MAX; 2783 2189 2784 if (likely(!dl_overloaded(this_rq))) 2190 if (likely(!dl_overloaded(this_rq))) 2785 return; 2191 return; 2786 2192 2787 /* 2193 /* 2788 * Match the barrier from dl_set_over 2194 * Match the barrier from dl_set_overloaded; this guarantees that if we 2789 * see overloaded we must also see th 2195 * see overloaded we must also see the dlo_mask bit. 2790 */ 2196 */ 2791 smp_rmb(); 2197 smp_rmb(); 2792 2198 2793 for_each_cpu(cpu, this_rq->rd->dlo_ma 2199 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2794 if (this_cpu == cpu) 2200 if (this_cpu == cpu) 2795 continue; 2201 continue; 2796 2202 2797 src_rq = cpu_rq(cpu); 2203 src_rq = cpu_rq(cpu); 2798 2204 2799 /* 2205 /* 2800 * It looks racy, and it is! !! 2206 * It looks racy, abd it is! However, as in sched_rt.c, 2801 * we are fine with this. 2207 * we are fine with this. 2802 */ 2208 */ 2803 if (this_rq->dl.dl_nr_running 2209 if (this_rq->dl.dl_nr_running && 2804 dl_time_before(this_rq->d 2210 dl_time_before(this_rq->dl.earliest_dl.curr, 2805 src_rq->dl 2211 src_rq->dl.earliest_dl.next)) 2806 continue; 2212 continue; 2807 2213 2808 /* Might drop this_rq->lock * 2214 /* Might drop this_rq->lock */ 2809 push_task = NULL; << 2810 double_lock_balance(this_rq, 2215 double_lock_balance(this_rq, src_rq); 2811 2216 2812 /* 2217 /* 2813 * If there are no more pulla 2218 * If there are no more pullable tasks on the 2814 * rq, we're done with it. 2219 * rq, we're done with it. 2815 */ 2220 */ 2816 if (src_rq->dl.dl_nr_running 2221 if (src_rq->dl.dl_nr_running <= 1) 2817 goto skip; 2222 goto skip; 2818 2223 2819 p = pick_earliest_pushable_dl 2224 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2820 2225 2821 /* 2226 /* 2822 * We found a task to be pull 2227 * We found a task to be pulled if: 2823 * - it preempts our current 2228 * - it preempts our current (if there's one), 2824 * - it will preempt the las 2229 * - it will preempt the last one we pulled (if any). 2825 */ 2230 */ 2826 if (p && dl_time_before(p->dl 2231 if (p && dl_time_before(p->dl.deadline, dmin) && 2827 dl_task_is_earliest_deadl !! 2232 (!this_rq->dl.dl_nr_running || >> 2233 dl_time_before(p->dl.deadline, >> 2234 this_rq->dl.earliest_dl.curr))) { 2828 WARN_ON(p == src_rq-> 2235 WARN_ON(p == src_rq->curr); 2829 WARN_ON(!task_on_rq_q 2236 WARN_ON(!task_on_rq_queued(p)); 2830 2237 2831 /* 2238 /* 2832 * Then we pull iff p 2239 * Then we pull iff p has actually an earlier 2833 * deadline than the 2240 * deadline than the current task of its runqueue. 2834 */ 2241 */ 2835 if (dl_time_before(p- 2242 if (dl_time_before(p->dl.deadline, 2836 sr 2243 src_rq->curr->dl.deadline)) 2837 goto skip; 2244 goto skip; 2838 2245 2839 if (is_migration_disa !! 2246 resched = true; 2840 push_task = g !! 2247 2841 } else { !! 2248 deactivate_task(src_rq, p, 0); 2842 deactivate_ta !! 2249 set_task_cpu(p, this_cpu); 2843 set_task_cpu( !! 2250 activate_task(this_rq, p, 0); 2844 activate_task !! 2251 dmin = p->dl.deadline; 2845 dmin = p->dl. << 2846 resched = tru << 2847 } << 2848 2252 2849 /* Is there any other 2253 /* Is there any other task even earlier? */ 2850 } 2254 } 2851 skip: 2255 skip: 2852 double_unlock_balance(this_rq 2256 double_unlock_balance(this_rq, src_rq); 2853 << 2854 if (push_task) { << 2855 preempt_disable(); << 2856 raw_spin_rq_unlock(th << 2857 stop_one_cpu_nowait(s << 2858 p << 2859 preempt_enable(); << 2860 raw_spin_rq_lock(this << 2861 } << 2862 } 2257 } 2863 2258 2864 if (resched) 2259 if (resched) 2865 resched_curr(this_rq); 2260 resched_curr(this_rq); 2866 } 2261 } 2867 2262 2868 /* 2263 /* 2869 * Since the task is not running and a resche 2264 * Since the task is not running and a reschedule is not going to happen 2870 * anytime soon on its runqueue, we try pushi 2265 * anytime soon on its runqueue, we try pushing it away now. 2871 */ 2266 */ 2872 static void task_woken_dl(struct rq *rq, stru 2267 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2873 { 2268 { 2874 if (!task_on_cpu(rq, p) && !! 2269 if (!task_running(rq, p) && 2875 !test_tsk_need_resched(rq->curr) 2270 !test_tsk_need_resched(rq->curr) && 2876 p->nr_cpus_allowed > 1 && 2271 p->nr_cpus_allowed > 1 && 2877 dl_task(rq->curr) && 2272 dl_task(rq->curr) && 2878 (rq->curr->nr_cpus_allowed < 2 || 2273 (rq->curr->nr_cpus_allowed < 2 || 2879 !dl_entity_preempt(&p->dl, &rq-> 2274 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2880 push_dl_tasks(rq); 2275 push_dl_tasks(rq); 2881 } 2276 } 2882 } 2277 } 2883 2278 2884 static void set_cpus_allowed_dl(struct task_s 2279 static void set_cpus_allowed_dl(struct task_struct *p, 2885 struct affini !! 2280 const struct cpumask *new_mask) 2886 { 2281 { 2887 struct root_domain *src_rd; 2282 struct root_domain *src_rd; 2888 struct rq *rq; 2283 struct rq *rq; 2889 2284 2890 WARN_ON_ONCE(!dl_task(p)); !! 2285 BUG_ON(!dl_task(p)); 2891 2286 2892 rq = task_rq(p); 2287 rq = task_rq(p); 2893 src_rd = rq->rd; 2288 src_rd = rq->rd; 2894 /* 2289 /* 2895 * Migrating a SCHED_DEADLINE task be 2290 * Migrating a SCHED_DEADLINE task between exclusive 2896 * cpusets (different root_domains) e 2291 * cpusets (different root_domains) entails a bandwidth 2897 * update. We already made space for 2292 * update. We already made space for us in the destination 2898 * domain (see cpuset_can_attach()). 2293 * domain (see cpuset_can_attach()). 2899 */ 2294 */ 2900 if (!cpumask_intersects(src_rd->span, !! 2295 if (!cpumask_intersects(src_rd->span, new_mask)) { 2901 struct dl_bw *src_dl_b; 2296 struct dl_bw *src_dl_b; 2902 2297 2903 src_dl_b = dl_bw_of(cpu_of(rq 2298 src_dl_b = dl_bw_of(cpu_of(rq)); 2904 /* 2299 /* 2905 * We now free resources of t 2300 * We now free resources of the root_domain we are migrating 2906 * off. In the worst case, sc 2301 * off. In the worst case, sched_setattr() may temporary fail 2907 * until we complete the upda 2302 * until we complete the update. 2908 */ 2303 */ 2909 raw_spin_lock(&src_dl_b->lock 2304 raw_spin_lock(&src_dl_b->lock); 2910 __dl_sub(src_dl_b, p->dl.dl_b 2305 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2911 raw_spin_unlock(&src_dl_b->lo 2306 raw_spin_unlock(&src_dl_b->lock); 2912 } 2307 } 2913 2308 2914 set_cpus_allowed_common(p, ctx); !! 2309 set_cpus_allowed_common(p, new_mask); 2915 } 2310 } 2916 2311 2917 /* Assumes rq->lock is held */ 2312 /* Assumes rq->lock is held */ 2918 static void rq_online_dl(struct rq *rq) 2313 static void rq_online_dl(struct rq *rq) 2919 { 2314 { 2920 if (rq->dl.overloaded) 2315 if (rq->dl.overloaded) 2921 dl_set_overload(rq); 2316 dl_set_overload(rq); 2922 2317 2923 cpudl_set_freecpu(&rq->rd->cpudl, rq- 2318 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2924 if (rq->dl.dl_nr_running > 0) 2319 if (rq->dl.dl_nr_running > 0) 2925 cpudl_set(&rq->rd->cpudl, rq- 2320 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2926 } 2321 } 2927 2322 2928 /* Assumes rq->lock is held */ 2323 /* Assumes rq->lock is held */ 2929 static void rq_offline_dl(struct rq *rq) 2324 static void rq_offline_dl(struct rq *rq) 2930 { 2325 { 2931 if (rq->dl.overloaded) 2326 if (rq->dl.overloaded) 2932 dl_clear_overload(rq); 2327 dl_clear_overload(rq); 2933 2328 2934 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2329 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2935 cpudl_clear_freecpu(&rq->rd->cpudl, r 2330 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2936 } 2331 } 2937 2332 2938 void __init init_sched_dl_class(void) 2333 void __init init_sched_dl_class(void) 2939 { 2334 { 2940 unsigned int i; 2335 unsigned int i; 2941 2336 2942 for_each_possible_cpu(i) 2337 for_each_possible_cpu(i) 2943 zalloc_cpumask_var_node(&per_ 2338 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2944 GFP_K 2339 GFP_KERNEL, cpu_to_node(i)); 2945 } 2340 } 2946 2341 2947 void dl_add_task_root_domain(struct task_stru 2342 void dl_add_task_root_domain(struct task_struct *p) 2948 { 2343 { 2949 struct rq_flags rf; 2344 struct rq_flags rf; 2950 struct rq *rq; 2345 struct rq *rq; 2951 struct dl_bw *dl_b; 2346 struct dl_bw *dl_b; 2952 2347 2953 raw_spin_lock_irqsave(&p->pi_lock, rf !! 2348 rq = task_rq_lock(p, &rf); 2954 if (!dl_task(p)) { !! 2349 if (!dl_task(p)) 2955 raw_spin_unlock_irqrestore(&p !! 2350 goto unlock; 2956 return; << 2957 } << 2958 << 2959 rq = __task_rq_lock(p, &rf); << 2960 2351 2961 dl_b = &rq->rd->dl_bw; 2352 dl_b = &rq->rd->dl_bw; 2962 raw_spin_lock(&dl_b->lock); 2353 raw_spin_lock(&dl_b->lock); 2963 2354 2964 __dl_add(dl_b, p->dl.dl_bw, cpumask_w 2355 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2965 2356 2966 raw_spin_unlock(&dl_b->lock); 2357 raw_spin_unlock(&dl_b->lock); 2967 2358 >> 2359 unlock: 2968 task_rq_unlock(rq, p, &rf); 2360 task_rq_unlock(rq, p, &rf); 2969 } 2361 } 2970 2362 2971 void dl_clear_root_domain(struct root_domain 2363 void dl_clear_root_domain(struct root_domain *rd) 2972 { 2364 { 2973 unsigned long flags; 2365 unsigned long flags; 2974 2366 2975 raw_spin_lock_irqsave(&rd->dl_bw.lock 2367 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2976 rd->dl_bw.total_bw = 0; 2368 rd->dl_bw.total_bw = 0; 2977 raw_spin_unlock_irqrestore(&rd->dl_bw 2369 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2978 } 2370 } 2979 2371 2980 #endif /* CONFIG_SMP */ 2372 #endif /* CONFIG_SMP */ 2981 2373 2982 static void switched_from_dl(struct rq *rq, s 2374 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2983 { 2375 { 2984 /* 2376 /* 2985 * task_non_contending() can start th 2377 * task_non_contending() can start the "inactive timer" (if the 0-lag 2986 * time is in the future). If the tas 2378 * time is in the future). If the task switches back to dl before 2987 * the "inactive timer" fires, it can 2379 * the "inactive timer" fires, it can continue to consume its current 2988 * runtime using its current deadline 2380 * runtime using its current deadline. If it stays outside of 2989 * SCHED_DEADLINE until the 0-lag tim 2381 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2990 * will reset the task parameters. 2382 * will reset the task parameters. 2991 */ 2383 */ 2992 if (task_on_rq_queued(p) && p->dl.dl_ 2384 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2993 task_non_contending(&p->dl); !! 2385 task_non_contending(p); 2994 << 2995 /* << 2996 * In case a task is setscheduled out << 2997 * keep track of that on its cpuset ( << 2998 */ << 2999 dec_dl_tasks_cs(p); << 3000 2386 3001 if (!task_on_rq_queued(p)) { 2387 if (!task_on_rq_queued(p)) { 3002 /* 2388 /* 3003 * Inactive timer is armed. H 2389 * Inactive timer is armed. However, p is leaving DEADLINE and 3004 * might migrate away from th 2390 * might migrate away from this rq while continuing to run on 3005 * some other class. We need 2391 * some other class. We need to remove its contribution from 3006 * this rq running_bw now, or 2392 * this rq running_bw now, or sub_rq_bw (below) will complain. 3007 */ 2393 */ 3008 if (p->dl.dl_non_contending) 2394 if (p->dl.dl_non_contending) 3009 sub_running_bw(&p->dl 2395 sub_running_bw(&p->dl, &rq->dl); 3010 sub_rq_bw(&p->dl, &rq->dl); 2396 sub_rq_bw(&p->dl, &rq->dl); 3011 } 2397 } 3012 2398 3013 /* 2399 /* 3014 * We cannot use inactive_task_timer( 2400 * We cannot use inactive_task_timer() to invoke sub_running_bw() 3015 * at the 0-lag time, because the tas 2401 * at the 0-lag time, because the task could have been migrated 3016 * while SCHED_OTHER in the meanwhile 2402 * while SCHED_OTHER in the meanwhile. 3017 */ 2403 */ 3018 if (p->dl.dl_non_contending) 2404 if (p->dl.dl_non_contending) 3019 p->dl.dl_non_contending = 0; 2405 p->dl.dl_non_contending = 0; 3020 2406 3021 /* 2407 /* 3022 * Since this might be the only -dead 2408 * Since this might be the only -deadline task on the rq, 3023 * this is the right place to try to 2409 * this is the right place to try to pull some other one 3024 * from an overloaded CPU, if any. 2410 * from an overloaded CPU, if any. 3025 */ 2411 */ 3026 if (!task_on_rq_queued(p) || rq->dl.d 2412 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 3027 return; 2413 return; 3028 2414 3029 deadline_queue_pull_task(rq); 2415 deadline_queue_pull_task(rq); 3030 } 2416 } 3031 2417 3032 /* 2418 /* 3033 * When switching to -deadline, we may overlo 2419 * When switching to -deadline, we may overload the rq, then 3034 * we try to push someone off, if possible. 2420 * we try to push someone off, if possible. 3035 */ 2421 */ 3036 static void switched_to_dl(struct rq *rq, str 2422 static void switched_to_dl(struct rq *rq, struct task_struct *p) 3037 { 2423 { 3038 if (hrtimer_try_to_cancel(&p->dl.inac 2424 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 3039 put_task_struct(p); 2425 put_task_struct(p); 3040 2426 3041 /* << 3042 * In case a task is setscheduled to << 3043 * track of that on its cpuset (for c << 3044 */ << 3045 inc_dl_tasks_cs(p); << 3046 << 3047 /* If p is not queued we will update 2427 /* If p is not queued we will update its parameters at next wakeup. */ 3048 if (!task_on_rq_queued(p)) { 2428 if (!task_on_rq_queued(p)) { 3049 add_rq_bw(&p->dl, &rq->dl); 2429 add_rq_bw(&p->dl, &rq->dl); 3050 2430 3051 return; 2431 return; 3052 } 2432 } 3053 2433 3054 if (rq->curr != p) { 2434 if (rq->curr != p) { 3055 #ifdef CONFIG_SMP 2435 #ifdef CONFIG_SMP 3056 if (p->nr_cpus_allowed > 1 && 2436 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 3057 deadline_queue_push_t 2437 deadline_queue_push_tasks(rq); 3058 #endif 2438 #endif 3059 if (dl_task(rq->curr)) 2439 if (dl_task(rq->curr)) 3060 wakeup_preempt_dl(rq, !! 2440 check_preempt_curr_dl(rq, p, 0); 3061 else 2441 else 3062 resched_curr(rq); 2442 resched_curr(rq); 3063 } else { << 3064 update_dl_rq_load_avg(rq_cloc << 3065 } 2443 } 3066 } 2444 } 3067 2445 3068 /* 2446 /* 3069 * If the scheduling parameters of a -deadlin 2447 * If the scheduling parameters of a -deadline task changed, 3070 * a push or pull operation might be needed. 2448 * a push or pull operation might be needed. 3071 */ 2449 */ 3072 static void prio_changed_dl(struct rq *rq, st 2450 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 3073 int oldprio) 2451 int oldprio) 3074 { 2452 { 3075 if (!task_on_rq_queued(p)) !! 2453 if (task_on_rq_queued(p) || rq->curr == p) { 3076 return; << 3077 << 3078 #ifdef CONFIG_SMP 2454 #ifdef CONFIG_SMP 3079 /* !! 2455 /* 3080 * This might be too much, but unfort !! 2456 * This might be too much, but unfortunately 3081 * we don't have the old deadline val !! 2457 * we don't have the old deadline value, and 3082 * we can't argue if the task is incr !! 2458 * we can't argue if the task is increasing 3083 * or lowering its prio, so... !! 2459 * or lowering its prio, so... 3084 */ !! 2460 */ 3085 if (!rq->dl.overloaded) !! 2461 if (!rq->dl.overloaded) 3086 deadline_queue_pull_task(rq); !! 2462 deadline_queue_pull_task(rq); 3087 2463 3088 if (task_current(rq, p)) { << 3089 /* 2464 /* 3090 * If we now have a earlier d 2465 * If we now have a earlier deadline task than p, 3091 * then reschedule, provided 2466 * then reschedule, provided p is still on this 3092 * runqueue. 2467 * runqueue. 3093 */ 2468 */ 3094 if (dl_time_before(rq->dl.ear 2469 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 3095 resched_curr(rq); 2470 resched_curr(rq); 3096 } else { !! 2471 #else 3097 /* 2472 /* 3098 * Current may not be deadlin !! 2473 * Again, we don't know if p has a earlier 3099 * have just replenished it ( !! 2474 * or later deadline, so let's blindly set a 3100 * !! 2475 * (maybe not needed) rescheduling point. 3101 * Otherwise, if p was given << 3102 */ 2476 */ 3103 if (!dl_task(rq->curr) || !! 2477 resched_curr(rq); 3104 dl_time_before(p->dl.dead !! 2478 #endif /* CONFIG_SMP */ 3105 resched_curr(rq); << 3106 } 2479 } 3107 #else << 3108 /* << 3109 * We don't know if p has a earlier o << 3110 * set a (maybe not needed) reschedul << 3111 */ << 3112 resched_curr(rq); << 3113 #endif << 3114 } << 3115 << 3116 #ifdef CONFIG_SCHED_CORE << 3117 static int task_is_throttled_dl(struct task_s << 3118 { << 3119 return p->dl.dl_throttled; << 3120 } 2480 } 3121 #endif << 3122 << 3123 DEFINE_SCHED_CLASS(dl) = { << 3124 2481 >> 2482 const struct sched_class dl_sched_class >> 2483 __attribute__((section("__dl_sched_class"))) = { 3125 .enqueue_task = enqueue_tas 2484 .enqueue_task = enqueue_task_dl, 3126 .dequeue_task = dequeue_tas 2485 .dequeue_task = dequeue_task_dl, 3127 .yield_task = yield_task_ 2486 .yield_task = yield_task_dl, 3128 2487 3129 .wakeup_preempt = wakeup_pree !! 2488 .check_preempt_curr = check_preempt_curr_dl, 3130 2489 3131 .pick_task = pick_task_d !! 2490 .pick_next_task = pick_next_task_dl, 3132 .put_prev_task = put_prev_ta 2491 .put_prev_task = put_prev_task_dl, 3133 .set_next_task = set_next_ta 2492 .set_next_task = set_next_task_dl, 3134 2493 3135 #ifdef CONFIG_SMP 2494 #ifdef CONFIG_SMP 3136 .balance = balance_dl, 2495 .balance = balance_dl, 3137 .select_task_rq = select_task 2496 .select_task_rq = select_task_rq_dl, 3138 .migrate_task_rq = migrate_tas 2497 .migrate_task_rq = migrate_task_rq_dl, 3139 .set_cpus_allowed = set_cpus_al 2498 .set_cpus_allowed = set_cpus_allowed_dl, 3140 .rq_online = rq_online_d 2499 .rq_online = rq_online_dl, 3141 .rq_offline = rq_offline_ 2500 .rq_offline = rq_offline_dl, 3142 .task_woken = task_woken_ 2501 .task_woken = task_woken_dl, 3143 .find_lock_rq = find_lock_l << 3144 #endif 2502 #endif 3145 2503 3146 .task_tick = task_tick_d 2504 .task_tick = task_tick_dl, 3147 .task_fork = task_fork_d 2505 .task_fork = task_fork_dl, 3148 2506 3149 .prio_changed = prio_change 2507 .prio_changed = prio_changed_dl, 3150 .switched_from = switched_fr 2508 .switched_from = switched_from_dl, 3151 .switched_to = switched_to 2509 .switched_to = switched_to_dl, 3152 2510 3153 .update_curr = update_curr 2511 .update_curr = update_curr_dl, 3154 #ifdef CONFIG_SCHED_CORE << 3155 .task_is_throttled = task_is_thr << 3156 #endif << 3157 }; 2512 }; 3158 2513 3159 /* Used for dl_bw check and update, used unde << 3160 static u64 dl_generation; << 3161 << 3162 int sched_dl_global_validate(void) 2514 int sched_dl_global_validate(void) 3163 { 2515 { 3164 u64 runtime = global_rt_runtime(); 2516 u64 runtime = global_rt_runtime(); 3165 u64 period = global_rt_period(); 2517 u64 period = global_rt_period(); 3166 u64 new_bw = to_ratio(period, runtime 2518 u64 new_bw = to_ratio(period, runtime); 3167 u64 gen = ++dl_generation; << 3168 struct dl_bw *dl_b; 2519 struct dl_bw *dl_b; 3169 int cpu, cpus, ret = 0; !! 2520 int cpu, ret = 0; 3170 unsigned long flags; 2521 unsigned long flags; 3171 2522 3172 /* 2523 /* 3173 * Here we want to check the bandwidt 2524 * Here we want to check the bandwidth not being set to some 3174 * value smaller than the currently a 2525 * value smaller than the currently allocated bandwidth in 3175 * any of the root_domains. 2526 * any of the root_domains. >> 2527 * >> 2528 * FIXME: Cycling on all the CPUs is overdoing, but simpler than >> 2529 * cycling on root_domains... Discussion on different/better >> 2530 * solutions is welcome! 3176 */ 2531 */ 3177 for_each_possible_cpu(cpu) { 2532 for_each_possible_cpu(cpu) { 3178 rcu_read_lock_sched(); 2533 rcu_read_lock_sched(); 3179 << 3180 if (dl_bw_visited(cpu, gen)) << 3181 goto next; << 3182 << 3183 dl_b = dl_bw_of(cpu); 2534 dl_b = dl_bw_of(cpu); 3184 cpus = dl_bw_cpus(cpu); << 3185 2535 3186 raw_spin_lock_irqsave(&dl_b-> 2536 raw_spin_lock_irqsave(&dl_b->lock, flags); 3187 if (new_bw * cpus < dl_b->tot !! 2537 if (new_bw < dl_b->total_bw) 3188 ret = -EBUSY; 2538 ret = -EBUSY; 3189 raw_spin_unlock_irqrestore(&d 2539 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3190 2540 3191 next: << 3192 rcu_read_unlock_sched(); 2541 rcu_read_unlock_sched(); 3193 2542 3194 if (ret) 2543 if (ret) 3195 break; 2544 break; 3196 } 2545 } 3197 2546 3198 return ret; 2547 return ret; 3199 } 2548 } 3200 2549 3201 static void init_dl_rq_bw_ratio(struct dl_rq 2550 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 3202 { 2551 { 3203 if (global_rt_runtime() == RUNTIME_IN 2552 if (global_rt_runtime() == RUNTIME_INF) { 3204 dl_rq->bw_ratio = 1 << RATIO_ 2553 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 3205 dl_rq->max_bw = dl_rq->extra_ !! 2554 dl_rq->extra_bw = 1 << BW_SHIFT; 3206 } else { 2555 } else { 3207 dl_rq->bw_ratio = to_ratio(gl 2556 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 3208 global_rt_period()) 2557 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 3209 dl_rq->max_bw = dl_rq->extra_ !! 2558 dl_rq->extra_bw = to_ratio(global_rt_period(), 3210 to_ratio(global_rt_pe !! 2559 global_rt_runtime()); 3211 } 2560 } 3212 } 2561 } 3213 2562 3214 void sched_dl_do_global(void) 2563 void sched_dl_do_global(void) 3215 { 2564 { 3216 u64 new_bw = -1; 2565 u64 new_bw = -1; 3217 u64 gen = ++dl_generation; << 3218 struct dl_bw *dl_b; 2566 struct dl_bw *dl_b; 3219 int cpu; 2567 int cpu; 3220 unsigned long flags; 2568 unsigned long flags; 3221 2569 >> 2570 def_dl_bandwidth.dl_period = global_rt_period(); >> 2571 def_dl_bandwidth.dl_runtime = global_rt_runtime(); >> 2572 3222 if (global_rt_runtime() != RUNTIME_IN 2573 if (global_rt_runtime() != RUNTIME_INF) 3223 new_bw = to_ratio(global_rt_p 2574 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 3224 2575 >> 2576 /* >> 2577 * FIXME: As above... >> 2578 */ 3225 for_each_possible_cpu(cpu) { 2579 for_each_possible_cpu(cpu) { 3226 rcu_read_lock_sched(); 2580 rcu_read_lock_sched(); 3227 << 3228 if (dl_bw_visited(cpu, gen)) << 3229 rcu_read_unlock_sched << 3230 continue; << 3231 } << 3232 << 3233 dl_b = dl_bw_of(cpu); 2581 dl_b = dl_bw_of(cpu); 3234 2582 3235 raw_spin_lock_irqsave(&dl_b-> 2583 raw_spin_lock_irqsave(&dl_b->lock, flags); 3236 dl_b->bw = new_bw; 2584 dl_b->bw = new_bw; 3237 raw_spin_unlock_irqrestore(&d 2585 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3238 2586 3239 rcu_read_unlock_sched(); 2587 rcu_read_unlock_sched(); 3240 init_dl_rq_bw_ratio(&cpu_rq(c 2588 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 3241 } 2589 } 3242 } 2590 } 3243 2591 3244 /* 2592 /* 3245 * We must be sure that accepting a new task 2593 * We must be sure that accepting a new task (or allowing changing the 3246 * parameters of an existing one) is consiste 2594 * parameters of an existing one) is consistent with the bandwidth 3247 * constraints. If yes, this function also ac 2595 * constraints. If yes, this function also accordingly updates the currently 3248 * allocated bandwidth to reflect the new sit 2596 * allocated bandwidth to reflect the new situation. 3249 * 2597 * 3250 * This function is called while holding p's 2598 * This function is called while holding p's rq->lock. 3251 */ 2599 */ 3252 int sched_dl_overflow(struct task_struct *p, 2600 int sched_dl_overflow(struct task_struct *p, int policy, 3253 const struct sched_attr 2601 const struct sched_attr *attr) 3254 { 2602 { 3255 u64 period = attr->sched_period ?: at 2603 u64 period = attr->sched_period ?: attr->sched_deadline; 3256 u64 runtime = attr->sched_runtime; 2604 u64 runtime = attr->sched_runtime; 3257 u64 new_bw = dl_policy(policy) ? to_r 2605 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 3258 int cpus, err = -1, cpu = task_cpu(p) 2606 int cpus, err = -1, cpu = task_cpu(p); 3259 struct dl_bw *dl_b = dl_bw_of(cpu); 2607 struct dl_bw *dl_b = dl_bw_of(cpu); 3260 unsigned long cap; 2608 unsigned long cap; 3261 2609 3262 if (attr->sched_flags & SCHED_FLAG_SU 2610 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3263 return 0; 2611 return 0; 3264 2612 3265 /* !deadline task may carry old deadl 2613 /* !deadline task may carry old deadline bandwidth */ 3266 if (new_bw == p->dl.dl_bw && task_has 2614 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 3267 return 0; 2615 return 0; 3268 2616 3269 /* 2617 /* 3270 * Either if a task, enters, leave, o 2618 * Either if a task, enters, leave, or stays -deadline but changes 3271 * its parameters, we may need to upd 2619 * its parameters, we may need to update accordingly the total 3272 * allocated bandwidth of the contain 2620 * allocated bandwidth of the container. 3273 */ 2621 */ 3274 raw_spin_lock(&dl_b->lock); 2622 raw_spin_lock(&dl_b->lock); 3275 cpus = dl_bw_cpus(cpu); 2623 cpus = dl_bw_cpus(cpu); 3276 cap = dl_bw_capacity(cpu); 2624 cap = dl_bw_capacity(cpu); 3277 2625 3278 if (dl_policy(policy) && !task_has_dl 2626 if (dl_policy(policy) && !task_has_dl_policy(p) && 3279 !__dl_overflow(dl_b, cap, 0, new_ 2627 !__dl_overflow(dl_b, cap, 0, new_bw)) { 3280 if (hrtimer_active(&p->dl.ina 2628 if (hrtimer_active(&p->dl.inactive_timer)) 3281 __dl_sub(dl_b, p->dl. 2629 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3282 __dl_add(dl_b, new_bw, cpus); 2630 __dl_add(dl_b, new_bw, cpus); 3283 err = 0; 2631 err = 0; 3284 } else if (dl_policy(policy) && task_ 2632 } else if (dl_policy(policy) && task_has_dl_policy(p) && 3285 !__dl_overflow(dl_b, cap, 2633 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 3286 /* 2634 /* 3287 * XXX this is slightly incor 2635 * XXX this is slightly incorrect: when the task 3288 * utilization decreases, we 2636 * utilization decreases, we should delay the total 3289 * utilization change until t 2637 * utilization change until the task's 0-lag point. 3290 * But this would require to 2638 * But this would require to set the task's "inactive 3291 * timer" when the task is no 2639 * timer" when the task is not inactive. 3292 */ 2640 */ 3293 __dl_sub(dl_b, p->dl.dl_bw, c 2641 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3294 __dl_add(dl_b, new_bw, cpus); 2642 __dl_add(dl_b, new_bw, cpus); 3295 dl_change_utilization(p, new_ 2643 dl_change_utilization(p, new_bw); 3296 err = 0; 2644 err = 0; 3297 } else if (!dl_policy(policy) && task 2645 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 3298 /* 2646 /* 3299 * Do not decrease the total 2647 * Do not decrease the total deadline utilization here, 3300 * switched_from_dl() will ta 2648 * switched_from_dl() will take care to do it at the correct 3301 * (0-lag) time. 2649 * (0-lag) time. 3302 */ 2650 */ 3303 err = 0; 2651 err = 0; 3304 } 2652 } 3305 raw_spin_unlock(&dl_b->lock); 2653 raw_spin_unlock(&dl_b->lock); 3306 2654 3307 return err; 2655 return err; 3308 } 2656 } 3309 2657 3310 /* 2658 /* 3311 * This function initializes the sched_dl_ent 2659 * This function initializes the sched_dl_entity of a newly becoming 3312 * SCHED_DEADLINE task. 2660 * SCHED_DEADLINE task. 3313 * 2661 * 3314 * Only the static values are considered here 2662 * Only the static values are considered here, the actual runtime and the 3315 * absolute deadline will be properly calcula 2663 * absolute deadline will be properly calculated when the task is enqueued 3316 * for the first time with its new policy. 2664 * for the first time with its new policy. 3317 */ 2665 */ 3318 void __setparam_dl(struct task_struct *p, con 2666 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3319 { 2667 { 3320 struct sched_dl_entity *dl_se = &p->d 2668 struct sched_dl_entity *dl_se = &p->dl; 3321 2669 3322 dl_se->dl_runtime = attr->sched_runti 2670 dl_se->dl_runtime = attr->sched_runtime; 3323 dl_se->dl_deadline = attr->sched_dead 2671 dl_se->dl_deadline = attr->sched_deadline; 3324 dl_se->dl_period = attr->sched_period 2672 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3325 dl_se->flags = attr->sched_flags & SC !! 2673 dl_se->flags = attr->sched_flags; 3326 dl_se->dl_bw = to_ratio(dl_se->dl_per 2674 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3327 dl_se->dl_density = to_ratio(dl_se->d 2675 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3328 } 2676 } 3329 2677 3330 void __getparam_dl(struct task_struct *p, str 2678 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3331 { 2679 { 3332 struct sched_dl_entity *dl_se = &p->d 2680 struct sched_dl_entity *dl_se = &p->dl; 3333 2681 3334 attr->sched_priority = p->rt_priority 2682 attr->sched_priority = p->rt_priority; 3335 attr->sched_runtime = dl_se->dl_runti 2683 attr->sched_runtime = dl_se->dl_runtime; 3336 attr->sched_deadline = dl_se->dl_dead 2684 attr->sched_deadline = dl_se->dl_deadline; 3337 attr->sched_period = dl_se->dl_period 2685 attr->sched_period = dl_se->dl_period; 3338 attr->sched_flags &= ~SCHED_DL_FLAGS; !! 2686 attr->sched_flags = dl_se->flags; 3339 attr->sched_flags |= dl_se->flags; << 3340 } 2687 } 3341 2688 3342 /* 2689 /* >> 2690 * Default limits for DL period; on the top end we guard against small util >> 2691 * tasks still getting rediculous long effective runtimes, on the bottom end we >> 2692 * guard against timer DoS. >> 2693 */ >> 2694 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ >> 2695 unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ >> 2696 >> 2697 /* 3343 * This function validates the new parameters 2698 * This function validates the new parameters of a -deadline task. 3344 * We ask for the deadline not being zero, an 2699 * We ask for the deadline not being zero, and greater or equal 3345 * than the runtime, as well as the period of 2700 * than the runtime, as well as the period of being zero or 3346 * greater than deadline. Furthermore, we hav 2701 * greater than deadline. Furthermore, we have to be sure that 3347 * user parameters are above the internal res 2702 * user parameters are above the internal resolution of 1us (we 3348 * check sched_runtime only since it is alway 2703 * check sched_runtime only since it is always the smaller one) and 3349 * below 2^63 ns (we have to check both sched 2704 * below 2^63 ns (we have to check both sched_deadline and 3350 * sched_period, as the latter can be zero). 2705 * sched_period, as the latter can be zero). 3351 */ 2706 */ 3352 bool __checkparam_dl(const struct sched_attr 2707 bool __checkparam_dl(const struct sched_attr *attr) 3353 { 2708 { 3354 u64 period, max, min; 2709 u64 period, max, min; 3355 2710 3356 /* special dl tasks don't actually us 2711 /* special dl tasks don't actually use any parameter */ 3357 if (attr->sched_flags & SCHED_FLAG_SU 2712 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3358 return true; 2713 return true; 3359 2714 3360 /* deadline != 0 */ 2715 /* deadline != 0 */ 3361 if (attr->sched_deadline == 0) 2716 if (attr->sched_deadline == 0) 3362 return false; 2717 return false; 3363 2718 3364 /* 2719 /* 3365 * Since we truncate DL_SCALE bits, m 2720 * Since we truncate DL_SCALE bits, make sure we're at least 3366 * that big. 2721 * that big. 3367 */ 2722 */ 3368 if (attr->sched_runtime < (1ULL << DL 2723 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3369 return false; 2724 return false; 3370 2725 3371 /* 2726 /* 3372 * Since we use the MSB for wrap-arou 2727 * Since we use the MSB for wrap-around and sign issues, make 3373 * sure it's not set (mind that perio 2728 * sure it's not set (mind that period can be equal to zero). 3374 */ 2729 */ 3375 if (attr->sched_deadline & (1ULL << 6 2730 if (attr->sched_deadline & (1ULL << 63) || 3376 attr->sched_period & (1ULL << 63) 2731 attr->sched_period & (1ULL << 63)) 3377 return false; 2732 return false; 3378 2733 3379 period = attr->sched_period; 2734 period = attr->sched_period; 3380 if (!period) 2735 if (!period) 3381 period = attr->sched_deadline 2736 period = attr->sched_deadline; 3382 2737 3383 /* runtime <= deadline <= period (if 2738 /* runtime <= deadline <= period (if period != 0) */ 3384 if (period < attr->sched_deadline || 2739 if (period < attr->sched_deadline || 3385 attr->sched_deadline < attr->sche 2740 attr->sched_deadline < attr->sched_runtime) 3386 return false; 2741 return false; 3387 2742 3388 max = (u64)READ_ONCE(sysctl_sched_dl_ 2743 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3389 min = (u64)READ_ONCE(sysctl_sched_dl_ 2744 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3390 2745 3391 if (period < min || period > max) 2746 if (period < min || period > max) 3392 return false; 2747 return false; 3393 2748 3394 return true; 2749 return true; 3395 } 2750 } 3396 2751 3397 /* 2752 /* 3398 * This function clears the sched_dl_entity s 2753 * This function clears the sched_dl_entity static params. 3399 */ 2754 */ 3400 static void __dl_clear_params(struct sched_dl !! 2755 void __dl_clear_params(struct task_struct *p) 3401 { 2756 { >> 2757 struct sched_dl_entity *dl_se = &p->dl; >> 2758 3402 dl_se->dl_runtime = 0; 2759 dl_se->dl_runtime = 0; 3403 dl_se->dl_deadline = 0; 2760 dl_se->dl_deadline = 0; 3404 dl_se->dl_period = 0; 2761 dl_se->dl_period = 0; 3405 dl_se->flags = 0; 2762 dl_se->flags = 0; 3406 dl_se->dl_bw = 0; 2763 dl_se->dl_bw = 0; 3407 dl_se->dl_density = 0; 2764 dl_se->dl_density = 0; 3408 2765 >> 2766 dl_se->dl_boosted = 0; 3409 dl_se->dl_throttled = 0; 2767 dl_se->dl_throttled = 0; 3410 dl_se->dl_yielded = 0; 2768 dl_se->dl_yielded = 0; 3411 dl_se->dl_non_contending = 0; 2769 dl_se->dl_non_contending = 0; 3412 dl_se->dl_overrun = 0; 2770 dl_se->dl_overrun = 0; 3413 dl_se->dl_server = 0; << 3414 << 3415 #ifdef CONFIG_RT_MUTEXES << 3416 dl_se->pi_se = dl_ << 3417 #endif << 3418 } << 3419 << 3420 void init_dl_entity(struct sched_dl_entity *d << 3421 { << 3422 RB_CLEAR_NODE(&dl_se->rb_node); << 3423 init_dl_task_timer(dl_se); << 3424 init_dl_inactive_task_timer(dl_se); << 3425 __dl_clear_params(dl_se); << 3426 } 2771 } 3427 2772 3428 bool dl_param_changed(struct task_struct *p, 2773 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3429 { 2774 { 3430 struct sched_dl_entity *dl_se = &p->d 2775 struct sched_dl_entity *dl_se = &p->dl; 3431 2776 3432 if (dl_se->dl_runtime != attr->sched_ 2777 if (dl_se->dl_runtime != attr->sched_runtime || 3433 dl_se->dl_deadline != attr->sched 2778 dl_se->dl_deadline != attr->sched_deadline || 3434 dl_se->dl_period != attr->sched_p 2779 dl_se->dl_period != attr->sched_period || 3435 dl_se->flags != (attr->sched_flag !! 2780 dl_se->flags != attr->sched_flags) 3436 return true; 2781 return true; 3437 2782 3438 return false; 2783 return false; 3439 } 2784 } 3440 2785 3441 #ifdef CONFIG_SMP 2786 #ifdef CONFIG_SMP >> 2787 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) >> 2788 { >> 2789 unsigned long flags, cap; >> 2790 unsigned int dest_cpu; >> 2791 struct dl_bw *dl_b; >> 2792 bool overflow; >> 2793 int ret; >> 2794 >> 2795 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); >> 2796 >> 2797 rcu_read_lock_sched(); >> 2798 dl_b = dl_bw_of(dest_cpu); >> 2799 raw_spin_lock_irqsave(&dl_b->lock, flags); >> 2800 cap = dl_bw_capacity(dest_cpu); >> 2801 overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw); >> 2802 if (overflow) { >> 2803 ret = -EBUSY; >> 2804 } else { >> 2805 /* >> 2806 * We reserve space for this task in the destination >> 2807 * root_domain, as we can't fail after this point. >> 2808 * We will free resources in the source root_domain >> 2809 * later on (see set_cpus_allowed_dl()). >> 2810 */ >> 2811 int cpus = dl_bw_cpus(dest_cpu); >> 2812 >> 2813 __dl_add(dl_b, p->dl.dl_bw, cpus); >> 2814 ret = 0; >> 2815 } >> 2816 raw_spin_unlock_irqrestore(&dl_b->lock, flags); >> 2817 rcu_read_unlock_sched(); >> 2818 >> 2819 return ret; >> 2820 } >> 2821 3442 int dl_cpuset_cpumask_can_shrink(const struct 2822 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3443 const struct 2823 const struct cpumask *trial) 3444 { 2824 { 3445 unsigned long flags, cap; !! 2825 int ret = 1, trial_cpus; 3446 struct dl_bw *cur_dl_b; 2826 struct dl_bw *cur_dl_b; 3447 int ret = 1; !! 2827 unsigned long flags; 3448 2828 3449 rcu_read_lock_sched(); 2829 rcu_read_lock_sched(); 3450 cur_dl_b = dl_bw_of(cpumask_any(cur)) 2830 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3451 cap = __dl_bw_capacity(trial); !! 2831 trial_cpus = cpumask_weight(trial); >> 2832 3452 raw_spin_lock_irqsave(&cur_dl_b->lock 2833 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3453 if (__dl_overflow(cur_dl_b, cap, 0, 0 !! 2834 if (cur_dl_b->bw != -1 && >> 2835 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 3454 ret = 0; 2836 ret = 0; 3455 raw_spin_unlock_irqrestore(&cur_dl_b- 2837 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3456 rcu_read_unlock_sched(); 2838 rcu_read_unlock_sched(); 3457 2839 3458 return ret; 2840 return ret; 3459 } 2841 } 3460 2842 3461 enum dl_bw_request { !! 2843 bool dl_cpu_busy(unsigned int cpu) 3462 dl_bw_req_check_overflow = 0, << 3463 dl_bw_req_alloc, << 3464 dl_bw_req_free << 3465 }; << 3466 << 3467 static int dl_bw_manage(enum dl_bw_request re << 3468 { 2844 { 3469 unsigned long flags; !! 2845 unsigned long flags, cap; 3470 struct dl_bw *dl_b; 2846 struct dl_bw *dl_b; 3471 bool overflow = 0; !! 2847 bool overflow; 3472 2848 3473 rcu_read_lock_sched(); 2849 rcu_read_lock_sched(); 3474 dl_b = dl_bw_of(cpu); 2850 dl_b = dl_bw_of(cpu); 3475 raw_spin_lock_irqsave(&dl_b->lock, fl 2851 raw_spin_lock_irqsave(&dl_b->lock, flags); 3476 !! 2852 cap = dl_bw_capacity(cpu); 3477 if (req == dl_bw_req_free) { !! 2853 overflow = __dl_overflow(dl_b, cap, 0, 0); 3478 __dl_sub(dl_b, dl_bw, dl_bw_c << 3479 } else { << 3480 unsigned long cap = dl_bw_cap << 3481 << 3482 overflow = __dl_overflow(dl_b << 3483 << 3484 if (req == dl_bw_req_alloc && << 3485 /* << 3486 * We reserve space i << 3487 * root_domain, as we << 3488 * We will free resou << 3489 * later on (see set_ << 3490 */ << 3491 __dl_add(dl_b, dl_bw, << 3492 } << 3493 } << 3494 << 3495 raw_spin_unlock_irqrestore(&dl_b->loc 2854 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3496 rcu_read_unlock_sched(); 2855 rcu_read_unlock_sched(); 3497 2856 3498 return overflow ? -EBUSY : 0; !! 2857 return overflow; 3499 } << 3500 << 3501 int dl_bw_check_overflow(int cpu) << 3502 { << 3503 return dl_bw_manage(dl_bw_req_check_o << 3504 } << 3505 << 3506 int dl_bw_alloc(int cpu, u64 dl_bw) << 3507 { << 3508 return dl_bw_manage(dl_bw_req_alloc, << 3509 } << 3510 << 3511 void dl_bw_free(int cpu, u64 dl_bw) << 3512 { << 3513 dl_bw_manage(dl_bw_req_free, cpu, dl_ << 3514 } 2858 } 3515 #endif 2859 #endif 3516 2860 3517 #ifdef CONFIG_SCHED_DEBUG 2861 #ifdef CONFIG_SCHED_DEBUG 3518 void print_dl_stats(struct seq_file *m, int c 2862 void print_dl_stats(struct seq_file *m, int cpu) 3519 { 2863 { 3520 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl) 2864 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3521 } 2865 } 3522 #endif /* CONFIG_SCHED_DEBUG */ 2866 #endif /* CONFIG_SCHED_DEBUG */ 3523 2867
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.