1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 4 * 5 * Earliest Deadline First (EDF) + Constant Ba 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 6 * 7 * Tasks that periodically executes their inst 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowe 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't af 11 * miss some of their deadlines), and won't affect any other task. 12 * 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@g 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <micha 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fcheccon 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 17 */ 18 18 19 #include <linux/cpuset.h> 19 #include <linux/cpuset.h> 20 20 21 /* 21 /* 22 * Default limits for DL period; on the top en 22 * Default limits for DL period; on the top end we guard against small util 23 * tasks still getting ridiculously long effec 23 * tasks still getting ridiculously long effective runtimes, on the bottom end we 24 * guard against timer DoS. 24 * guard against timer DoS. 25 */ 25 */ 26 static unsigned int sysctl_sched_dl_period_max 26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 27 static unsigned int sysctl_sched_dl_period_min 27 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 28 #ifdef CONFIG_SYSCTL 28 #ifdef CONFIG_SYSCTL 29 static struct ctl_table sched_dl_sysctls[] = { 29 static struct ctl_table sched_dl_sysctls[] = { 30 { 30 { 31 .procname = "sched_deadl 31 .procname = "sched_deadline_period_max_us", 32 .data = &sysctl_sche 32 .data = &sysctl_sched_dl_period_max, 33 .maxlen = sizeof(unsig 33 .maxlen = sizeof(unsigned int), 34 .mode = 0644, 34 .mode = 0644, 35 .proc_handler = proc_douintv 35 .proc_handler = proc_douintvec_minmax, 36 .extra1 = (void *)&sys 36 .extra1 = (void *)&sysctl_sched_dl_period_min, 37 }, 37 }, 38 { 38 { 39 .procname = "sched_deadl 39 .procname = "sched_deadline_period_min_us", 40 .data = &sysctl_sche 40 .data = &sysctl_sched_dl_period_min, 41 .maxlen = sizeof(unsig 41 .maxlen = sizeof(unsigned int), 42 .mode = 0644, 42 .mode = 0644, 43 .proc_handler = proc_douintv 43 .proc_handler = proc_douintvec_minmax, 44 .extra2 = (void *)&sys 44 .extra2 = (void *)&sysctl_sched_dl_period_max, 45 }, 45 }, >> 46 {} 46 }; 47 }; 47 48 48 static int __init sched_dl_sysctl_init(void) 49 static int __init sched_dl_sysctl_init(void) 49 { 50 { 50 register_sysctl_init("kernel", sched_d 51 register_sysctl_init("kernel", sched_dl_sysctls); 51 return 0; 52 return 0; 52 } 53 } 53 late_initcall(sched_dl_sysctl_init); 54 late_initcall(sched_dl_sysctl_init); 54 #endif 55 #endif 55 56 56 static bool dl_server(struct sched_dl_entity * << 57 { << 58 return dl_se->dl_server; << 59 } << 60 << 61 static inline struct task_struct *dl_task_of(s 57 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 62 { 58 { 63 BUG_ON(dl_server(dl_se)); << 64 return container_of(dl_se, struct task 59 return container_of(dl_se, struct task_struct, dl); 65 } 60 } 66 61 67 static inline struct rq *rq_of_dl_rq(struct dl 62 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 68 { 63 { 69 return container_of(dl_rq, struct rq, 64 return container_of(dl_rq, struct rq, dl); 70 } 65 } 71 66 72 static inline struct rq *rq_of_dl_se(struct sc << 73 { << 74 struct rq *rq = dl_se->rq; << 75 << 76 if (!dl_server(dl_se)) << 77 rq = task_rq(dl_task_of(dl_se) << 78 << 79 return rq; << 80 } << 81 << 82 static inline struct dl_rq *dl_rq_of_se(struct 67 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 83 { 68 { 84 return &rq_of_dl_se(dl_se)->dl; !! 69 struct task_struct *p = dl_task_of(dl_se); >> 70 struct rq *rq = task_rq(p); >> 71 >> 72 return &rq->dl; 85 } 73 } 86 74 87 static inline int on_dl_rq(struct sched_dl_ent 75 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 88 { 76 { 89 return !RB_EMPTY_NODE(&dl_se->rb_node) 77 return !RB_EMPTY_NODE(&dl_se->rb_node); 90 } 78 } 91 79 92 #ifdef CONFIG_RT_MUTEXES 80 #ifdef CONFIG_RT_MUTEXES 93 static inline struct sched_dl_entity *pi_of(st 81 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 94 { 82 { 95 return dl_se->pi_se; 83 return dl_se->pi_se; 96 } 84 } 97 85 98 static inline bool is_dl_boosted(struct sched_ 86 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 99 { 87 { 100 return pi_of(dl_se) != dl_se; 88 return pi_of(dl_se) != dl_se; 101 } 89 } 102 #else 90 #else 103 static inline struct sched_dl_entity *pi_of(st 91 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 104 { 92 { 105 return dl_se; 93 return dl_se; 106 } 94 } 107 95 108 static inline bool is_dl_boosted(struct sched_ 96 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 109 { 97 { 110 return false; 98 return false; 111 } 99 } 112 #endif 100 #endif 113 101 114 #ifdef CONFIG_SMP 102 #ifdef CONFIG_SMP 115 static inline struct dl_bw *dl_bw_of(int i) 103 static inline struct dl_bw *dl_bw_of(int i) 116 { 104 { 117 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_ 105 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 118 "sched RCU must be he 106 "sched RCU must be held"); 119 return &cpu_rq(i)->rd->dl_bw; 107 return &cpu_rq(i)->rd->dl_bw; 120 } 108 } 121 109 122 static inline int dl_bw_cpus(int i) 110 static inline int dl_bw_cpus(int i) 123 { 111 { 124 struct root_domain *rd = cpu_rq(i)->rd 112 struct root_domain *rd = cpu_rq(i)->rd; 125 int cpus; 113 int cpus; 126 114 127 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_ 115 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 128 "sched RCU must be he 116 "sched RCU must be held"); 129 117 130 if (cpumask_subset(rd->span, cpu_activ 118 if (cpumask_subset(rd->span, cpu_active_mask)) 131 return cpumask_weight(rd->span 119 return cpumask_weight(rd->span); 132 120 133 cpus = 0; 121 cpus = 0; 134 122 135 for_each_cpu_and(i, rd->span, cpu_acti 123 for_each_cpu_and(i, rd->span, cpu_active_mask) 136 cpus++; 124 cpus++; 137 125 138 return cpus; 126 return cpus; 139 } 127 } 140 128 141 static inline unsigned long __dl_bw_capacity(c 129 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 142 { 130 { 143 unsigned long cap = 0; 131 unsigned long cap = 0; 144 int i; 132 int i; 145 133 146 for_each_cpu_and(i, mask, cpu_active_m 134 for_each_cpu_and(i, mask, cpu_active_mask) 147 cap += arch_scale_cpu_capacity !! 135 cap += capacity_orig_of(i); 148 136 149 return cap; 137 return cap; 150 } 138 } 151 139 152 /* 140 /* 153 * XXX Fix: If 'rq->rd == def_root_domain' per 141 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 154 * of the CPU the task is running on rather rd 142 * of the CPU the task is running on rather rd's \Sum CPU capacity. 155 */ 143 */ 156 static inline unsigned long dl_bw_capacity(int 144 static inline unsigned long dl_bw_capacity(int i) 157 { 145 { 158 if (!sched_asym_cpucap_active() && 146 if (!sched_asym_cpucap_active() && 159 arch_scale_cpu_capacity(i) == SCHE !! 147 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) { 160 return dl_bw_cpus(i) << SCHED_ 148 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 161 } else { 149 } else { 162 RCU_LOCKDEP_WARN(!rcu_read_loc 150 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 163 "sched RCU mu 151 "sched RCU must be held"); 164 152 165 return __dl_bw_capacity(cpu_rq 153 return __dl_bw_capacity(cpu_rq(i)->rd->span); 166 } 154 } 167 } 155 } 168 156 169 static inline bool dl_bw_visited(int cpu, u64 157 static inline bool dl_bw_visited(int cpu, u64 gen) 170 { 158 { 171 struct root_domain *rd = cpu_rq(cpu)-> 159 struct root_domain *rd = cpu_rq(cpu)->rd; 172 160 173 if (rd->visit_gen == gen) 161 if (rd->visit_gen == gen) 174 return true; 162 return true; 175 163 176 rd->visit_gen = gen; 164 rd->visit_gen = gen; 177 return false; 165 return false; 178 } 166 } 179 167 180 static inline 168 static inline 181 void __dl_update(struct dl_bw *dl_b, s64 bw) 169 void __dl_update(struct dl_bw *dl_b, s64 bw) 182 { 170 { 183 struct root_domain *rd = container_of( 171 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 184 int i; 172 int i; 185 173 186 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_ 174 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 187 "sched RCU must be he 175 "sched RCU must be held"); 188 for_each_cpu_and(i, rd->span, cpu_acti 176 for_each_cpu_and(i, rd->span, cpu_active_mask) { 189 struct rq *rq = cpu_rq(i); 177 struct rq *rq = cpu_rq(i); 190 178 191 rq->dl.extra_bw += bw; 179 rq->dl.extra_bw += bw; 192 } 180 } 193 } 181 } 194 #else 182 #else 195 static inline struct dl_bw *dl_bw_of(int i) 183 static inline struct dl_bw *dl_bw_of(int i) 196 { 184 { 197 return &cpu_rq(i)->dl.dl_bw; 185 return &cpu_rq(i)->dl.dl_bw; 198 } 186 } 199 187 200 static inline int dl_bw_cpus(int i) 188 static inline int dl_bw_cpus(int i) 201 { 189 { 202 return 1; 190 return 1; 203 } 191 } 204 192 205 static inline unsigned long dl_bw_capacity(int 193 static inline unsigned long dl_bw_capacity(int i) 206 { 194 { 207 return SCHED_CAPACITY_SCALE; 195 return SCHED_CAPACITY_SCALE; 208 } 196 } 209 197 210 static inline bool dl_bw_visited(int cpu, u64 198 static inline bool dl_bw_visited(int cpu, u64 gen) 211 { 199 { 212 return false; 200 return false; 213 } 201 } 214 202 215 static inline 203 static inline 216 void __dl_update(struct dl_bw *dl_b, s64 bw) 204 void __dl_update(struct dl_bw *dl_b, s64 bw) 217 { 205 { 218 struct dl_rq *dl = container_of(dl_b, 206 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 219 207 220 dl->extra_bw += bw; 208 dl->extra_bw += bw; 221 } 209 } 222 #endif 210 #endif 223 211 224 static inline 212 static inline 225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, 213 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 226 { 214 { 227 dl_b->total_bw -= tsk_bw; 215 dl_b->total_bw -= tsk_bw; 228 __dl_update(dl_b, (s32)tsk_bw / cpus); 216 __dl_update(dl_b, (s32)tsk_bw / cpus); 229 } 217 } 230 218 231 static inline 219 static inline 232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, 220 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 233 { 221 { 234 dl_b->total_bw += tsk_bw; 222 dl_b->total_bw += tsk_bw; 235 __dl_update(dl_b, -((s32)tsk_bw / cpus 223 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 236 } 224 } 237 225 238 static inline bool 226 static inline bool 239 __dl_overflow(struct dl_bw *dl_b, unsigned lon 227 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 240 { 228 { 241 return dl_b->bw != -1 && 229 return dl_b->bw != -1 && 242 cap_scale(dl_b->bw, cap) < dl_b 230 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 243 } 231 } 244 232 245 static inline 233 static inline 246 void __add_running_bw(u64 dl_bw, struct dl_rq 234 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 247 { 235 { 248 u64 old = dl_rq->running_bw; 236 u64 old = dl_rq->running_bw; 249 237 250 lockdep_assert_rq_held(rq_of_dl_rq(dl_ 238 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 251 dl_rq->running_bw += dl_bw; 239 dl_rq->running_bw += dl_bw; 252 SCHED_WARN_ON(dl_rq->running_bw < old) 240 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 253 SCHED_WARN_ON(dl_rq->running_bw > dl_r 241 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 254 /* kick cpufreq (see the comment in ke 242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 255 cpufreq_update_util(rq_of_dl_rq(dl_rq) 243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 256 } 244 } 257 245 258 static inline 246 static inline 259 void __sub_running_bw(u64 dl_bw, struct dl_rq 247 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 260 { 248 { 261 u64 old = dl_rq->running_bw; 249 u64 old = dl_rq->running_bw; 262 250 263 lockdep_assert_rq_held(rq_of_dl_rq(dl_ 251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 264 dl_rq->running_bw -= dl_bw; 252 dl_rq->running_bw -= dl_bw; 265 SCHED_WARN_ON(dl_rq->running_bw > old) 253 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 266 if (dl_rq->running_bw > old) 254 if (dl_rq->running_bw > old) 267 dl_rq->running_bw = 0; 255 dl_rq->running_bw = 0; 268 /* kick cpufreq (see the comment in ke 256 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 269 cpufreq_update_util(rq_of_dl_rq(dl_rq) 257 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 270 } 258 } 271 259 272 static inline 260 static inline 273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_r 261 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 274 { 262 { 275 u64 old = dl_rq->this_bw; 263 u64 old = dl_rq->this_bw; 276 264 277 lockdep_assert_rq_held(rq_of_dl_rq(dl_ 265 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 278 dl_rq->this_bw += dl_bw; 266 dl_rq->this_bw += dl_bw; 279 SCHED_WARN_ON(dl_rq->this_bw < old); / 267 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 280 } 268 } 281 269 282 static inline 270 static inline 283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_r 271 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 284 { 272 { 285 u64 old = dl_rq->this_bw; 273 u64 old = dl_rq->this_bw; 286 274 287 lockdep_assert_rq_held(rq_of_dl_rq(dl_ 275 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 288 dl_rq->this_bw -= dl_bw; 276 dl_rq->this_bw -= dl_bw; 289 SCHED_WARN_ON(dl_rq->this_bw > old); / 277 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 290 if (dl_rq->this_bw > old) 278 if (dl_rq->this_bw > old) 291 dl_rq->this_bw = 0; 279 dl_rq->this_bw = 0; 292 SCHED_WARN_ON(dl_rq->running_bw > dl_r 280 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 293 } 281 } 294 282 295 static inline 283 static inline 296 void add_rq_bw(struct sched_dl_entity *dl_se, 284 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 297 { 285 { 298 if (!dl_entity_is_special(dl_se)) 286 if (!dl_entity_is_special(dl_se)) 299 __add_rq_bw(dl_se->dl_bw, dl_r 287 __add_rq_bw(dl_se->dl_bw, dl_rq); 300 } 288 } 301 289 302 static inline 290 static inline 303 void sub_rq_bw(struct sched_dl_entity *dl_se, 291 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 304 { 292 { 305 if (!dl_entity_is_special(dl_se)) 293 if (!dl_entity_is_special(dl_se)) 306 __sub_rq_bw(dl_se->dl_bw, dl_r 294 __sub_rq_bw(dl_se->dl_bw, dl_rq); 307 } 295 } 308 296 309 static inline 297 static inline 310 void add_running_bw(struct sched_dl_entity *dl 298 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 311 { 299 { 312 if (!dl_entity_is_special(dl_se)) 300 if (!dl_entity_is_special(dl_se)) 313 __add_running_bw(dl_se->dl_bw, 301 __add_running_bw(dl_se->dl_bw, dl_rq); 314 } 302 } 315 303 316 static inline 304 static inline 317 void sub_running_bw(struct sched_dl_entity *dl 305 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 318 { 306 { 319 if (!dl_entity_is_special(dl_se)) 307 if (!dl_entity_is_special(dl_se)) 320 __sub_running_bw(dl_se->dl_bw, 308 __sub_running_bw(dl_se->dl_bw, dl_rq); 321 } 309 } 322 310 323 static void dl_rq_change_utilization(struct rq !! 311 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 324 { 312 { 325 if (dl_se->dl_non_contending) { !! 313 struct rq *rq; 326 sub_running_bw(dl_se, &rq->dl) !! 314 327 dl_se->dl_non_contending = 0; !! 315 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); >> 316 >> 317 if (task_on_rq_queued(p)) >> 318 return; 328 319 >> 320 rq = task_rq(p); >> 321 if (p->dl.dl_non_contending) { >> 322 sub_running_bw(&p->dl, &rq->dl); >> 323 p->dl.dl_non_contending = 0; 329 /* 324 /* 330 * If the timer handler is cur 325 * If the timer handler is currently running and the 331 * timer cannot be canceled, i 326 * timer cannot be canceled, inactive_task_timer() 332 * will see that dl_not_conten 327 * will see that dl_not_contending is not set, and 333 * will not touch the rq's act 328 * will not touch the rq's active utilization, 334 * so we are still safe. 329 * so we are still safe. 335 */ 330 */ 336 if (hrtimer_try_to_cancel(&dl_ !! 331 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 337 if (!dl_server(dl_se)) !! 332 put_task_struct(p); 338 put_task_struc << 339 } << 340 } 333 } 341 __sub_rq_bw(dl_se->dl_bw, &rq->dl); !! 334 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 342 __add_rq_bw(new_bw, &rq->dl); 335 __add_rq_bw(new_bw, &rq->dl); 343 } 336 } 344 337 345 static void dl_change_utilization(struct task_ << 346 { << 347 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_ << 348 << 349 if (task_on_rq_queued(p)) << 350 return; << 351 << 352 dl_rq_change_utilization(task_rq(p), & << 353 } << 354 << 355 static void __dl_clear_params(struct sched_dl_ << 356 << 357 /* 338 /* 358 * The utilization of a task cannot be immedia 339 * The utilization of a task cannot be immediately removed from 359 * the rq active utilization (running_bw) when 340 * the rq active utilization (running_bw) when the task blocks. 360 * Instead, we have to wait for the so called 341 * Instead, we have to wait for the so called "0-lag time". 361 * 342 * 362 * If a task blocks before the "0-lag time", a 343 * If a task blocks before the "0-lag time", a timer (the inactive 363 * timer) is armed, and running_bw is decrease 344 * timer) is armed, and running_bw is decreased when the timer 364 * fires. 345 * fires. 365 * 346 * 366 * If the task wakes up again before the inact 347 * If the task wakes up again before the inactive timer fires, 367 * the timer is canceled, whereas if the task 348 * the timer is canceled, whereas if the task wakes up after the 368 * inactive timer fired (and running_bw has be 349 * inactive timer fired (and running_bw has been decreased) the 369 * task's utilization has to be added to runni 350 * task's utilization has to be added to running_bw again. 370 * A flag in the deadline scheduling entity (d 351 * A flag in the deadline scheduling entity (dl_non_contending) 371 * is used to avoid race conditions between th 352 * is used to avoid race conditions between the inactive timer handler 372 * and task wakeups. 353 * and task wakeups. 373 * 354 * 374 * The following diagram shows how running_bw 355 * The following diagram shows how running_bw is updated. A task is 375 * "ACTIVE" when its utilization contributes t 356 * "ACTIVE" when its utilization contributes to running_bw; an 376 * "ACTIVE contending" task is in the TASK_RUN 357 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 377 * "ACTIVE non contending" task is a blocked t 358 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 378 * has not passed yet. An "INACTIVE" task is a 359 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 379 * time already passed, which does not contrib 360 * time already passed, which does not contribute to running_bw anymore. 380 * +------------- 361 * +------------------+ 381 * wakeup | ACTIVE 362 * wakeup | ACTIVE | 382 * +------------------>+ contending 363 * +------------------>+ contending | 383 * | add_running_bw | 364 * | add_running_bw | | 384 * | +----+------+- 365 * | +----+------+------+ 385 * | | ^ 366 * | | ^ 386 * | dequeue | | 367 * | dequeue | | 387 * +--------+-------+ | | 368 * +--------+-------+ | | 388 * | | t >= 0-lag | | 369 * | | t >= 0-lag | | wakeup 389 * | INACTIVE |<---------------+ | 370 * | INACTIVE |<---------------+ | 390 * | | sub_running_bw | | 371 * | | sub_running_bw | | 391 * +--------+-------+ | | 372 * +--------+-------+ | | 392 * ^ | | 373 * ^ | | 393 * | t < 0-lag | | 374 * | t < 0-lag | | 394 * | | | 375 * | | | 395 * | V | 376 * | V | 396 * | +----+------+- 377 * | +----+------+------+ 397 * | sub_running_bw | ACTIVE 378 * | sub_running_bw | ACTIVE | 398 * +-------------------+ 379 * +-------------------+ | 399 * inactive timer | non contend 380 * inactive timer | non contending | 400 * fired +------------- 381 * fired +------------------+ 401 * 382 * 402 * The task_non_contending() function is invok 383 * The task_non_contending() function is invoked when a task 403 * blocks, and checks if the 0-lag time alread 384 * blocks, and checks if the 0-lag time already passed or 404 * not (in the first case, it directly updates 385 * not (in the first case, it directly updates running_bw; 405 * in the second case, it arms the inactive ti 386 * in the second case, it arms the inactive timer). 406 * 387 * 407 * The task_contending() function is invoked w 388 * The task_contending() function is invoked when a task wakes 408 * up, and checks if the task is still in the 389 * up, and checks if the task is still in the "ACTIVE non contending" 409 * state or not (in the second case, it update 390 * state or not (in the second case, it updates running_bw). 410 */ 391 */ 411 static void task_non_contending(struct sched_d !! 392 static void task_non_contending(struct task_struct *p) 412 { 393 { >> 394 struct sched_dl_entity *dl_se = &p->dl; 413 struct hrtimer *timer = &dl_se->inacti 395 struct hrtimer *timer = &dl_se->inactive_timer; 414 struct rq *rq = rq_of_dl_se(dl_se); !! 396 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 415 struct dl_rq *dl_rq = &rq->dl; !! 397 struct rq *rq = rq_of_dl_rq(dl_rq); 416 s64 zerolag_time; 398 s64 zerolag_time; 417 399 418 /* 400 /* 419 * If this is a non-deadline task that 401 * If this is a non-deadline task that has been boosted, 420 * do nothing 402 * do nothing 421 */ 403 */ 422 if (dl_se->dl_runtime == 0) 404 if (dl_se->dl_runtime == 0) 423 return; 405 return; 424 406 425 if (dl_entity_is_special(dl_se)) 407 if (dl_entity_is_special(dl_se)) 426 return; 408 return; 427 409 428 WARN_ON(dl_se->dl_non_contending); 410 WARN_ON(dl_se->dl_non_contending); 429 411 430 zerolag_time = dl_se->deadline - 412 zerolag_time = dl_se->deadline - 431 div64_long((dl_se->runtime * 413 div64_long((dl_se->runtime * dl_se->dl_period), 432 dl_se->dl_runtime); 414 dl_se->dl_runtime); 433 415 434 /* 416 /* 435 * Using relative times instead of the 417 * Using relative times instead of the absolute "0-lag time" 436 * allows to simplify the code 418 * allows to simplify the code 437 */ 419 */ 438 zerolag_time -= rq_clock(rq); 420 zerolag_time -= rq_clock(rq); 439 421 440 /* 422 /* 441 * If the "0-lag time" already passed, 423 * If the "0-lag time" already passed, decrease the active 442 * utilization now, instead of startin 424 * utilization now, instead of starting a timer 443 */ 425 */ 444 if ((zerolag_time < 0) || hrtimer_acti 426 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 445 if (dl_server(dl_se)) { !! 427 if (dl_task(p)) 446 sub_running_bw(dl_se, 428 sub_running_bw(dl_se, dl_rq); 447 } else { !! 429 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 448 struct task_struct *p !! 430 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 449 << 450 if (dl_task(p)) << 451 sub_running_bw << 452 431 453 if (!dl_task(p) || REA !! 432 if (READ_ONCE(p->__state) == TASK_DEAD) 454 struct dl_bw * !! 433 sub_rq_bw(&p->dl, &rq->dl); 455 !! 434 raw_spin_lock(&dl_b->lock); 456 if (READ_ONCE( !! 435 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 457 sub_rq !! 436 raw_spin_unlock(&dl_b->lock); 458 raw_spin_lock( !! 437 __dl_clear_params(p); 459 __dl_sub(dl_b, << 460 raw_spin_unloc << 461 __dl_clear_par << 462 } << 463 } 438 } 464 439 465 return; 440 return; 466 } 441 } 467 442 468 dl_se->dl_non_contending = 1; 443 dl_se->dl_non_contending = 1; 469 if (!dl_server(dl_se)) !! 444 get_task_struct(p); 470 get_task_struct(dl_task_of(dl_ << 471 << 472 hrtimer_start(timer, ns_to_ktime(zerol 445 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 473 } 446 } 474 447 475 static void task_contending(struct sched_dl_en 448 static void task_contending(struct sched_dl_entity *dl_se, int flags) 476 { 449 { 477 struct dl_rq *dl_rq = dl_rq_of_se(dl_s 450 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 478 451 479 /* 452 /* 480 * If this is a non-deadline task that 453 * If this is a non-deadline task that has been boosted, 481 * do nothing 454 * do nothing 482 */ 455 */ 483 if (dl_se->dl_runtime == 0) 456 if (dl_se->dl_runtime == 0) 484 return; 457 return; 485 458 486 if (flags & ENQUEUE_MIGRATED) 459 if (flags & ENQUEUE_MIGRATED) 487 add_rq_bw(dl_se, dl_rq); 460 add_rq_bw(dl_se, dl_rq); 488 461 489 if (dl_se->dl_non_contending) { 462 if (dl_se->dl_non_contending) { 490 dl_se->dl_non_contending = 0; 463 dl_se->dl_non_contending = 0; 491 /* 464 /* 492 * If the timer handler is cur 465 * If the timer handler is currently running and the 493 * timer cannot be canceled, i 466 * timer cannot be canceled, inactive_task_timer() 494 * will see that dl_not_conten 467 * will see that dl_not_contending is not set, and 495 * will not touch the rq's act 468 * will not touch the rq's active utilization, 496 * so we are still safe. 469 * so we are still safe. 497 */ 470 */ 498 if (hrtimer_try_to_cancel(&dl_ !! 471 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 499 if (!dl_server(dl_se)) !! 472 put_task_struct(dl_task_of(dl_se)); 500 put_task_struc << 501 } << 502 } else { 473 } else { 503 /* 474 /* 504 * Since "dl_non_contending" i 475 * Since "dl_non_contending" is not set, the 505 * task's utilization has alre 476 * task's utilization has already been removed from 506 * active utilization (either 477 * active utilization (either when the task blocked, 507 * when the "inactive timer" f 478 * when the "inactive timer" fired). 508 * So, add it back. 479 * So, add it back. 509 */ 480 */ 510 add_running_bw(dl_se, dl_rq); 481 add_running_bw(dl_se, dl_rq); 511 } 482 } 512 } 483 } 513 484 514 static inline int is_leftmost(struct sched_dl_ !! 485 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 515 { 486 { >> 487 struct sched_dl_entity *dl_se = &p->dl; >> 488 516 return rb_first_cached(&dl_rq->root) = 489 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 517 } 490 } 518 491 519 static void init_dl_rq_bw_ratio(struct dl_rq * 492 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 520 493 >> 494 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) >> 495 { >> 496 raw_spin_lock_init(&dl_b->dl_runtime_lock); >> 497 dl_b->dl_period = period; >> 498 dl_b->dl_runtime = runtime; >> 499 } >> 500 521 void init_dl_bw(struct dl_bw *dl_b) 501 void init_dl_bw(struct dl_bw *dl_b) 522 { 502 { 523 raw_spin_lock_init(&dl_b->lock); 503 raw_spin_lock_init(&dl_b->lock); 524 if (global_rt_runtime() == RUNTIME_INF 504 if (global_rt_runtime() == RUNTIME_INF) 525 dl_b->bw = -1; 505 dl_b->bw = -1; 526 else 506 else 527 dl_b->bw = to_ratio(global_rt_ 507 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 528 dl_b->total_bw = 0; 508 dl_b->total_bw = 0; 529 } 509 } 530 510 531 void init_dl_rq(struct dl_rq *dl_rq) 511 void init_dl_rq(struct dl_rq *dl_rq) 532 { 512 { 533 dl_rq->root = RB_ROOT_CACHED; 513 dl_rq->root = RB_ROOT_CACHED; 534 514 535 #ifdef CONFIG_SMP 515 #ifdef CONFIG_SMP 536 /* zero means no -deadline tasks */ 516 /* zero means no -deadline tasks */ 537 dl_rq->earliest_dl.curr = dl_rq->earli 517 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 538 518 >> 519 dl_rq->dl_nr_migratory = 0; 539 dl_rq->overloaded = 0; 520 dl_rq->overloaded = 0; 540 dl_rq->pushable_dl_tasks_root = RB_ROO 521 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 541 #else 522 #else 542 init_dl_bw(&dl_rq->dl_bw); 523 init_dl_bw(&dl_rq->dl_bw); 543 #endif 524 #endif 544 525 545 dl_rq->running_bw = 0; 526 dl_rq->running_bw = 0; 546 dl_rq->this_bw = 0; 527 dl_rq->this_bw = 0; 547 init_dl_rq_bw_ratio(dl_rq); 528 init_dl_rq_bw_ratio(dl_rq); 548 } 529 } 549 530 550 #ifdef CONFIG_SMP 531 #ifdef CONFIG_SMP 551 532 552 static inline int dl_overloaded(struct rq *rq) 533 static inline int dl_overloaded(struct rq *rq) 553 { 534 { 554 return atomic_read(&rq->rd->dlo_count) 535 return atomic_read(&rq->rd->dlo_count); 555 } 536 } 556 537 557 static inline void dl_set_overload(struct rq * 538 static inline void dl_set_overload(struct rq *rq) 558 { 539 { 559 if (!rq->online) 540 if (!rq->online) 560 return; 541 return; 561 542 562 cpumask_set_cpu(rq->cpu, rq->rd->dlo_m 543 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 563 /* 544 /* 564 * Must be visible before the overload 545 * Must be visible before the overload count is 565 * set (as in sched_rt.c). 546 * set (as in sched_rt.c). 566 * 547 * 567 * Matched by the barrier in pull_dl_t 548 * Matched by the barrier in pull_dl_task(). 568 */ 549 */ 569 smp_wmb(); 550 smp_wmb(); 570 atomic_inc(&rq->rd->dlo_count); 551 atomic_inc(&rq->rd->dlo_count); 571 } 552 } 572 553 573 static inline void dl_clear_overload(struct rq 554 static inline void dl_clear_overload(struct rq *rq) 574 { 555 { 575 if (!rq->online) 556 if (!rq->online) 576 return; 557 return; 577 558 578 atomic_dec(&rq->rd->dlo_count); 559 atomic_dec(&rq->rd->dlo_count); 579 cpumask_clear_cpu(rq->cpu, rq->rd->dlo 560 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 580 } 561 } 581 562 >> 563 static void update_dl_migration(struct dl_rq *dl_rq) >> 564 { >> 565 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { >> 566 if (!dl_rq->overloaded) { >> 567 dl_set_overload(rq_of_dl_rq(dl_rq)); >> 568 dl_rq->overloaded = 1; >> 569 } >> 570 } else if (dl_rq->overloaded) { >> 571 dl_clear_overload(rq_of_dl_rq(dl_rq)); >> 572 dl_rq->overloaded = 0; >> 573 } >> 574 } >> 575 >> 576 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) >> 577 { >> 578 struct task_struct *p = dl_task_of(dl_se); >> 579 >> 580 if (p->nr_cpus_allowed > 1) >> 581 dl_rq->dl_nr_migratory++; >> 582 >> 583 update_dl_migration(dl_rq); >> 584 } >> 585 >> 586 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) >> 587 { >> 588 struct task_struct *p = dl_task_of(dl_se); >> 589 >> 590 if (p->nr_cpus_allowed > 1) >> 591 dl_rq->dl_nr_migratory--; >> 592 >> 593 update_dl_migration(dl_rq); >> 594 } >> 595 582 #define __node_2_pdl(node) \ 596 #define __node_2_pdl(node) \ 583 rb_entry((node), struct task_struct, p 597 rb_entry((node), struct task_struct, pushable_dl_tasks) 584 598 585 static inline bool __pushable_less(struct rb_n 599 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 586 { 600 { 587 return dl_entity_preempt(&__node_2_pdl 601 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 588 } 602 } 589 603 590 static inline int has_pushable_dl_tasks(struct << 591 { << 592 return !RB_EMPTY_ROOT(&rq->dl.pushable << 593 } << 594 << 595 /* 604 /* 596 * The list of pushable -deadline task is not 605 * The list of pushable -deadline task is not a plist, like in 597 * sched_rt.c, it is an rb-tree with tasks ord 606 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 598 */ 607 */ 599 static void enqueue_pushable_dl_task(struct rq 608 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 600 { 609 { 601 struct rb_node *leftmost; 610 struct rb_node *leftmost; 602 611 603 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushab 612 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 604 613 605 leftmost = rb_add_cached(&p->pushable_ 614 leftmost = rb_add_cached(&p->pushable_dl_tasks, 606 &rq->dl.pusha 615 &rq->dl.pushable_dl_tasks_root, 607 __pushable_le 616 __pushable_less); 608 if (leftmost) 617 if (leftmost) 609 rq->dl.earliest_dl.next = p->d 618 rq->dl.earliest_dl.next = p->dl.deadline; 610 << 611 if (!rq->dl.overloaded) { << 612 dl_set_overload(rq); << 613 rq->dl.overloaded = 1; << 614 } << 615 } 619 } 616 620 617 static void dequeue_pushable_dl_task(struct rq 621 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 618 { 622 { 619 struct dl_rq *dl_rq = &rq->dl; 623 struct dl_rq *dl_rq = &rq->dl; 620 struct rb_root_cached *root = &dl_rq-> 624 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 621 struct rb_node *leftmost; 625 struct rb_node *leftmost; 622 626 623 if (RB_EMPTY_NODE(&p->pushable_dl_task 627 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 624 return; 628 return; 625 629 626 leftmost = rb_erase_cached(&p->pushabl 630 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 627 if (leftmost) 631 if (leftmost) 628 dl_rq->earliest_dl.next = __no 632 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 629 633 630 RB_CLEAR_NODE(&p->pushable_dl_tasks); 634 RB_CLEAR_NODE(&p->pushable_dl_tasks); >> 635 } 631 636 632 if (!has_pushable_dl_tasks(rq) && rq-> !! 637 static inline int has_pushable_dl_tasks(struct rq *rq) 633 dl_clear_overload(rq); !! 638 { 634 rq->dl.overloaded = 0; !! 639 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 635 } << 636 } 640 } 637 641 638 static int push_dl_task(struct rq *rq); 642 static int push_dl_task(struct rq *rq); 639 643 640 static inline bool need_pull_dl_task(struct rq 644 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 641 { 645 { 642 return rq->online && dl_task(prev); 646 return rq->online && dl_task(prev); 643 } 647 } 644 648 645 static DEFINE_PER_CPU(struct balance_callback, 649 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 646 static DEFINE_PER_CPU(struct balance_callback, 650 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 647 651 648 static void push_dl_tasks(struct rq *); 652 static void push_dl_tasks(struct rq *); 649 static void pull_dl_task(struct rq *); 653 static void pull_dl_task(struct rq *); 650 654 651 static inline void deadline_queue_push_tasks(s 655 static inline void deadline_queue_push_tasks(struct rq *rq) 652 { 656 { 653 if (!has_pushable_dl_tasks(rq)) 657 if (!has_pushable_dl_tasks(rq)) 654 return; 658 return; 655 659 656 queue_balance_callback(rq, &per_cpu(dl 660 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 657 } 661 } 658 662 659 static inline void deadline_queue_pull_task(st 663 static inline void deadline_queue_pull_task(struct rq *rq) 660 { 664 { 661 queue_balance_callback(rq, &per_cpu(dl 665 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 662 } 666 } 663 667 664 static struct rq *find_lock_later_rq(struct ta 668 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 665 669 666 static struct rq *dl_task_offline_migration(st 670 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 667 { 671 { 668 struct rq *later_rq = NULL; 672 struct rq *later_rq = NULL; 669 struct dl_bw *dl_b; 673 struct dl_bw *dl_b; 670 674 671 later_rq = find_lock_later_rq(p, rq); 675 later_rq = find_lock_later_rq(p, rq); 672 if (!later_rq) { 676 if (!later_rq) { 673 int cpu; 677 int cpu; 674 678 675 /* 679 /* 676 * If we cannot preempt any rq 680 * If we cannot preempt any rq, fall back to pick any 677 * online CPU: 681 * online CPU: 678 */ 682 */ 679 cpu = cpumask_any_and(cpu_acti 683 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 680 if (cpu >= nr_cpu_ids) { 684 if (cpu >= nr_cpu_ids) { 681 /* 685 /* 682 * Failed to find any 686 * Failed to find any suitable CPU. 683 * The task will never 687 * The task will never come back! 684 */ 688 */ 685 WARN_ON_ONCE(dl_bandwi 689 WARN_ON_ONCE(dl_bandwidth_enabled()); 686 690 687 /* 691 /* 688 * If admission contro 692 * If admission control is disabled we 689 * try a little harder 693 * try a little harder to let the task 690 * run. 694 * run. 691 */ 695 */ 692 cpu = cpumask_any(cpu_ 696 cpu = cpumask_any(cpu_active_mask); 693 } 697 } 694 later_rq = cpu_rq(cpu); 698 later_rq = cpu_rq(cpu); 695 double_lock_balance(rq, later_ 699 double_lock_balance(rq, later_rq); 696 } 700 } 697 701 698 if (p->dl.dl_non_contending || p->dl.d 702 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 699 /* 703 /* 700 * Inactive timer is armed (or 704 * Inactive timer is armed (or callback is running, but 701 * waiting for us to release r 705 * waiting for us to release rq locks). In any case, when it 702 * will fire (or continue), it 706 * will fire (or continue), it will see running_bw of this 703 * task migrated to later_rq ( 707 * task migrated to later_rq (and correctly handle it). 704 */ 708 */ 705 sub_running_bw(&p->dl, &rq->dl 709 sub_running_bw(&p->dl, &rq->dl); 706 sub_rq_bw(&p->dl, &rq->dl); 710 sub_rq_bw(&p->dl, &rq->dl); 707 711 708 add_rq_bw(&p->dl, &later_rq->d 712 add_rq_bw(&p->dl, &later_rq->dl); 709 add_running_bw(&p->dl, &later_ 713 add_running_bw(&p->dl, &later_rq->dl); 710 } else { 714 } else { 711 sub_rq_bw(&p->dl, &rq->dl); 715 sub_rq_bw(&p->dl, &rq->dl); 712 add_rq_bw(&p->dl, &later_rq->d 716 add_rq_bw(&p->dl, &later_rq->dl); 713 } 717 } 714 718 715 /* 719 /* 716 * And we finally need to fix up root_ !! 720 * And we finally need to fixup root_domain(s) bandwidth accounting, 717 * since p is still hanging out in the 721 * since p is still hanging out in the old (now moved to default) root 718 * domain. 722 * domain. 719 */ 723 */ 720 dl_b = &rq->rd->dl_bw; 724 dl_b = &rq->rd->dl_bw; 721 raw_spin_lock(&dl_b->lock); 725 raw_spin_lock(&dl_b->lock); 722 __dl_sub(dl_b, p->dl.dl_bw, cpumask_we 726 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 723 raw_spin_unlock(&dl_b->lock); 727 raw_spin_unlock(&dl_b->lock); 724 728 725 dl_b = &later_rq->rd->dl_bw; 729 dl_b = &later_rq->rd->dl_bw; 726 raw_spin_lock(&dl_b->lock); 730 raw_spin_lock(&dl_b->lock); 727 __dl_add(dl_b, p->dl.dl_bw, cpumask_we 731 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 728 raw_spin_unlock(&dl_b->lock); 732 raw_spin_unlock(&dl_b->lock); 729 733 730 set_task_cpu(p, later_rq->cpu); 734 set_task_cpu(p, later_rq->cpu); 731 double_unlock_balance(later_rq, rq); 735 double_unlock_balance(later_rq, rq); 732 736 733 return later_rq; 737 return later_rq; 734 } 738 } 735 739 736 #else 740 #else 737 741 738 static inline 742 static inline 739 void enqueue_pushable_dl_task(struct rq *rq, s 743 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 740 { 744 { 741 } 745 } 742 746 743 static inline 747 static inline 744 void dequeue_pushable_dl_task(struct rq *rq, s 748 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 745 { 749 { 746 } 750 } 747 751 748 static inline 752 static inline 749 void inc_dl_migration(struct sched_dl_entity * 753 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 750 { 754 { 751 } 755 } 752 756 753 static inline 757 static inline 754 void dec_dl_migration(struct sched_dl_entity * 758 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 755 { 759 { 756 } 760 } 757 761 758 static inline void deadline_queue_push_tasks(s 762 static inline void deadline_queue_push_tasks(struct rq *rq) 759 { 763 { 760 } 764 } 761 765 762 static inline void deadline_queue_pull_task(st 766 static inline void deadline_queue_pull_task(struct rq *rq) 763 { 767 { 764 } 768 } 765 #endif /* CONFIG_SMP */ 769 #endif /* CONFIG_SMP */ 766 770 767 static void << 768 enqueue_dl_entity(struct sched_dl_entity *dl_s << 769 static void enqueue_task_dl(struct rq *rq, str 771 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 770 static void dequeue_dl_entity(struct sched_dl_ !! 772 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 771 static void wakeup_preempt_dl(struct rq *rq, s !! 773 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 772 774 773 static inline void replenish_dl_new_period(str 775 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 774 st 776 struct rq *rq) 775 { 777 { 776 /* for non-boosted task, pi_of(dl_se) 778 /* for non-boosted task, pi_of(dl_se) == dl_se */ 777 dl_se->deadline = rq_clock(rq) + pi_of 779 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 778 dl_se->runtime = pi_of(dl_se)->dl_runt 780 dl_se->runtime = pi_of(dl_se)->dl_runtime; 779 << 780 /* << 781 * If it is a deferred reservation, an << 782 * is not handling an starvation case, << 783 */ << 784 if (dl_se->dl_defer & !dl_se->dl_defer << 785 dl_se->dl_throttled = 1; << 786 dl_se->dl_defer_armed = 1; << 787 } << 788 } 781 } 789 782 790 /* 783 /* 791 * We are being explicitly informed that a new 784 * We are being explicitly informed that a new instance is starting, 792 * and this means that: 785 * and this means that: 793 * - the absolute deadline of the entity has 786 * - the absolute deadline of the entity has to be placed at 794 * current time + relative deadline; 787 * current time + relative deadline; 795 * - the runtime of the entity has to be set 788 * - the runtime of the entity has to be set to the maximum value. 796 * 789 * 797 * The capability of specifying such event is 790 * The capability of specifying such event is useful whenever a -deadline 798 * entity wants to (try to!) synchronize its b 791 * entity wants to (try to!) synchronize its behaviour with the scheduler's 799 * one, and to (try to!) reconcile itself with 792 * one, and to (try to!) reconcile itself with its own scheduling 800 * parameters. 793 * parameters. 801 */ 794 */ 802 static inline void setup_new_dl_entity(struct 795 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 803 { 796 { 804 struct dl_rq *dl_rq = dl_rq_of_se(dl_s 797 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 805 struct rq *rq = rq_of_dl_rq(dl_rq); 798 struct rq *rq = rq_of_dl_rq(dl_rq); 806 799 807 WARN_ON(is_dl_boosted(dl_se)); 800 WARN_ON(is_dl_boosted(dl_se)); 808 WARN_ON(dl_time_before(rq_clock(rq), d 801 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 809 802 810 /* 803 /* 811 * We are racing with the deadline tim 804 * We are racing with the deadline timer. So, do nothing because 812 * the deadline timer handler will tak 805 * the deadline timer handler will take care of properly recharging 813 * the runtime and postponing the dead 806 * the runtime and postponing the deadline 814 */ 807 */ 815 if (dl_se->dl_throttled) 808 if (dl_se->dl_throttled) 816 return; 809 return; 817 810 818 /* 811 /* 819 * We use the regular wall clock time 812 * We use the regular wall clock time to set deadlines in the 820 * future; in fact, we must consider e 813 * future; in fact, we must consider execution overheads (time 821 * spent on hardirq context, etc.). 814 * spent on hardirq context, etc.). 822 */ 815 */ 823 replenish_dl_new_period(dl_se, rq); 816 replenish_dl_new_period(dl_se, rq); 824 } 817 } 825 818 826 static int start_dl_timer(struct sched_dl_enti << 827 static bool dl_entity_overflow(struct sched_dl << 828 << 829 /* 819 /* 830 * Pure Earliest Deadline First (EDF) scheduli 820 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 831 * possibility of a entity lasting more than w 821 * possibility of a entity lasting more than what it declared, and thus 832 * exhausting its runtime. 822 * exhausting its runtime. 833 * 823 * 834 * Here we are interested in making runtime ov 824 * Here we are interested in making runtime overrun possible, but we do 835 * not want a entity which is misbehaving to a 825 * not want a entity which is misbehaving to affect the scheduling of all 836 * other entities. 826 * other entities. 837 * Therefore, a budgeting strategy called Cons 827 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 838 * is used, in order to confine each entity wi 828 * is used, in order to confine each entity within its own bandwidth. 839 * 829 * 840 * This function deals exactly with that, and 830 * This function deals exactly with that, and ensures that when the runtime 841 * of a entity is replenished, its deadline is 831 * of a entity is replenished, its deadline is also postponed. That ensures 842 * the overrunning entity can't interfere with 832 * the overrunning entity can't interfere with other entity in the system and 843 * can't make them miss their deadlines. Reaso 833 * can't make them miss their deadlines. Reasons why this kind of overruns 844 * could happen are, typically, a entity volun 834 * could happen are, typically, a entity voluntarily trying to overcome its 845 * runtime, or it just underestimated it durin 835 * runtime, or it just underestimated it during sched_setattr(). 846 */ 836 */ 847 static void replenish_dl_entity(struct sched_d 837 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 848 { 838 { 849 struct dl_rq *dl_rq = dl_rq_of_se(dl_s 839 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 850 struct rq *rq = rq_of_dl_rq(dl_rq); 840 struct rq *rq = rq_of_dl_rq(dl_rq); 851 841 852 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime 842 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 853 843 854 /* 844 /* 855 * This could be the case for a !-dl t 845 * This could be the case for a !-dl task that is boosted. 856 * Just go with full inherited paramet 846 * Just go with full inherited parameters. 857 * << 858 * Or, it could be the case of a defer << 859 * was not able to consume its runtime << 860 * reached this point with current u > << 861 * << 862 * In both cases, set a new period. << 863 */ 847 */ 864 if (dl_se->dl_deadline == 0 || !! 848 if (dl_se->dl_deadline == 0) 865 (dl_se->dl_defer_armed && dl_entit !! 849 replenish_dl_new_period(dl_se, rq); 866 dl_se->deadline = rq_clock(rq) << 867 dl_se->runtime = pi_of(dl_se)- << 868 } << 869 850 870 if (dl_se->dl_yielded && dl_se->runtim 851 if (dl_se->dl_yielded && dl_se->runtime > 0) 871 dl_se->runtime = 0; 852 dl_se->runtime = 0; 872 853 873 /* 854 /* 874 * We keep moving the deadline away un 855 * We keep moving the deadline away until we get some 875 * available runtime for the entity. T 856 * available runtime for the entity. This ensures correct 876 * handling of situations where the ru 857 * handling of situations where the runtime overrun is 877 * arbitrary large. 858 * arbitrary large. 878 */ 859 */ 879 while (dl_se->runtime <= 0) { 860 while (dl_se->runtime <= 0) { 880 dl_se->deadline += pi_of(dl_se 861 dl_se->deadline += pi_of(dl_se)->dl_period; 881 dl_se->runtime += pi_of(dl_se) 862 dl_se->runtime += pi_of(dl_se)->dl_runtime; 882 } 863 } 883 864 884 /* 865 /* 885 * At this point, the deadline really 866 * At this point, the deadline really should be "in 886 * the future" with respect to rq->clo 867 * the future" with respect to rq->clock. If it's 887 * not, we are, for some reason, laggi 868 * not, we are, for some reason, lagging too much! 888 * Anyway, after having warn userspace 869 * Anyway, after having warn userspace abut that, 889 * we still try to keep the things run 870 * we still try to keep the things running by 890 * resetting the deadline and the budg 871 * resetting the deadline and the budget of the 891 * entity. 872 * entity. 892 */ 873 */ 893 if (dl_time_before(dl_se->deadline, rq 874 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 894 printk_deferred_once("sched: D 875 printk_deferred_once("sched: DL replenish lagged too much\n"); 895 replenish_dl_new_period(dl_se, 876 replenish_dl_new_period(dl_se, rq); 896 } 877 } 897 878 898 if (dl_se->dl_yielded) 879 if (dl_se->dl_yielded) 899 dl_se->dl_yielded = 0; 880 dl_se->dl_yielded = 0; 900 if (dl_se->dl_throttled) 881 if (dl_se->dl_throttled) 901 dl_se->dl_throttled = 0; 882 dl_se->dl_throttled = 0; 902 << 903 /* << 904 * If this is the replenishment of a d << 905 * clear the flag and return. << 906 */ << 907 if (dl_se->dl_defer_armed) { << 908 dl_se->dl_defer_armed = 0; << 909 return; << 910 } << 911 << 912 /* << 913 * A this point, if the deferred serve << 914 * is in the future, if it is not runn << 915 * and arm the defer timer. << 916 */ << 917 if (dl_se->dl_defer && !dl_se->dl_defe << 918 dl_time_before(rq_clock(dl_se->rq) << 919 if (!is_dl_boosted(dl_se) && d << 920 << 921 /* << 922 * Set dl_se->dl_defer << 923 * inform the start_dl << 924 * activation. << 925 */ << 926 dl_se->dl_defer_armed << 927 dl_se->dl_throttled = << 928 if (!start_dl_timer(dl << 929 /* << 930 * If for what << 931 * queued but << 932 * deferrable << 933 */ << 934 hrtimer_try_to << 935 dl_se->dl_defe << 936 dl_se->dl_thro << 937 } << 938 } << 939 } << 940 } 883 } 941 884 942 /* 885 /* 943 * Here we check if --at time t-- an entity (w 886 * Here we check if --at time t-- an entity (which is probably being 944 * [re]activated or, in general, enqueued) can 887 * [re]activated or, in general, enqueued) can use its remaining runtime 945 * and its current deadline _without_ exceedin 888 * and its current deadline _without_ exceeding the bandwidth it is 946 * assigned (function returns true if it can't 889 * assigned (function returns true if it can't). We are in fact applying 947 * one of the CBS rules: when a task wakes up, 890 * one of the CBS rules: when a task wakes up, if the residual runtime 948 * over residual deadline fits within the allo 891 * over residual deadline fits within the allocated bandwidth, then we 949 * can keep the current (absolute) deadline an 892 * can keep the current (absolute) deadline and residual budget without 950 * disrupting the schedulability of the system 893 * disrupting the schedulability of the system. Otherwise, we should 951 * refill the runtime and set the deadline a p 894 * refill the runtime and set the deadline a period in the future, 952 * because keeping the current (absolute) dead 895 * because keeping the current (absolute) deadline of the task would 953 * result in breaking guarantees promised to o 896 * result in breaking guarantees promised to other tasks (refer to 954 * Documentation/scheduler/sched-deadline.rst 897 * Documentation/scheduler/sched-deadline.rst for more information). 955 * 898 * 956 * This function returns true if: 899 * This function returns true if: 957 * 900 * 958 * runtime / (deadline - t) > dl_runtime / d 901 * runtime / (deadline - t) > dl_runtime / dl_deadline , 959 * 902 * 960 * IOW we can't recycle current parameters. 903 * IOW we can't recycle current parameters. 961 * 904 * 962 * Notice that the bandwidth check is done aga 905 * Notice that the bandwidth check is done against the deadline. For 963 * task with deadline equal to period this is 906 * task with deadline equal to period this is the same of using 964 * dl_period instead of dl_deadline in the equ 907 * dl_period instead of dl_deadline in the equation above. 965 */ 908 */ 966 static bool dl_entity_overflow(struct sched_dl 909 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 967 { 910 { 968 u64 left, right; 911 u64 left, right; 969 912 970 /* 913 /* 971 * left and right are the two sides of 914 * left and right are the two sides of the equation above, 972 * after a bit of shuffling to use mul 915 * after a bit of shuffling to use multiplications instead 973 * of divisions. 916 * of divisions. 974 * 917 * 975 * Note that none of the time values i 918 * Note that none of the time values involved in the two 976 * multiplications are absolute: dl_de 919 * multiplications are absolute: dl_deadline and dl_runtime 977 * are the relative deadline and the m 920 * are the relative deadline and the maximum runtime of each 978 * instance, runtime is the runtime le 921 * instance, runtime is the runtime left for the last instance 979 * and (deadline - t), since t is rq-> 922 * and (deadline - t), since t is rq->clock, is the time left 980 * to the (absolute) deadline. Even if 923 * to the (absolute) deadline. Even if overflowing the u64 type 981 * is very unlikely to occur in both c 924 * is very unlikely to occur in both cases, here we scale down 982 * as we want to avoid that risk at al 925 * as we want to avoid that risk at all. Scaling down by 10 983 * means that we reduce granularity to 926 * means that we reduce granularity to 1us. We are fine with it, 984 * since this is only a true/false che 927 * since this is only a true/false check and, anyway, thinking 985 * of anything below microseconds reso 928 * of anything below microseconds resolution is actually fiction 986 * (but still we want to give the user 929 * (but still we want to give the user that illusion >;). 987 */ 930 */ 988 left = (pi_of(dl_se)->dl_deadline >> D 931 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 989 right = ((dl_se->deadline - t) >> DL_S 932 right = ((dl_se->deadline - t) >> DL_SCALE) * 990 (pi_of(dl_se)->dl_runtime >> D 933 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 991 934 992 return dl_time_before(right, left); 935 return dl_time_before(right, left); 993 } 936 } 994 937 995 /* 938 /* 996 * Revised wakeup rule [1]: For self-suspendin 939 * Revised wakeup rule [1]: For self-suspending tasks, rather then 997 * re-initializing task's runtime and deadline 940 * re-initializing task's runtime and deadline, the revised wakeup 998 * rule adjusts the task's runtime to avoid th 941 * rule adjusts the task's runtime to avoid the task to overrun its 999 * density. 942 * density. 1000 * 943 * 1001 * Reasoning: a task may overrun the density 944 * Reasoning: a task may overrun the density if: 1002 * runtime / (deadline - t) > dl_runtime / 945 * runtime / (deadline - t) > dl_runtime / dl_deadline 1003 * 946 * 1004 * Therefore, runtime can be adjusted to: 947 * Therefore, runtime can be adjusted to: 1005 * runtime = (dl_runtime / dl_deadline) * 948 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 1006 * 949 * 1007 * In such way that runtime will be equal to 950 * In such way that runtime will be equal to the maximum density 1008 * the task can use without breaking any rule 951 * the task can use without breaking any rule. 1009 * 952 * 1010 * [1] Luca Abeni, Giuseppe Lipari, and Juri 953 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 1011 * bandwidth server revisited. SIGBED Rev. 11 954 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 1012 */ 955 */ 1013 static void 956 static void 1014 update_dl_revised_wakeup(struct sched_dl_enti 957 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 1015 { 958 { 1016 u64 laxity = dl_se->deadline - rq_clo 959 u64 laxity = dl_se->deadline - rq_clock(rq); 1017 960 1018 /* 961 /* 1019 * If the task has deadline < period, 962 * If the task has deadline < period, and the deadline is in the past, 1020 * it should already be throttled bef 963 * it should already be throttled before this check. 1021 * 964 * 1022 * See update_dl_entity() comments fo 965 * See update_dl_entity() comments for further details. 1023 */ 966 */ 1024 WARN_ON(dl_time_before(dl_se->deadlin 967 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 1025 968 1026 dl_se->runtime = (dl_se->dl_density * 969 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 1027 } 970 } 1028 971 1029 /* 972 /* 1030 * Regarding the deadline, a task with implic 973 * Regarding the deadline, a task with implicit deadline has a relative 1031 * deadline == relative period. A task with c 974 * deadline == relative period. A task with constrained deadline has a 1032 * relative deadline <= relative period. 975 * relative deadline <= relative period. 1033 * 976 * 1034 * We support constrained deadline tasks. How 977 * We support constrained deadline tasks. However, there are some restrictions 1035 * applied only for tasks which do not have a 978 * applied only for tasks which do not have an implicit deadline. See 1036 * update_dl_entity() to know more about such 979 * update_dl_entity() to know more about such restrictions. 1037 * 980 * 1038 * The dl_is_implicit() returns true if the t 981 * The dl_is_implicit() returns true if the task has an implicit deadline. 1039 */ 982 */ 1040 static inline bool dl_is_implicit(struct sche 983 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 1041 { 984 { 1042 return dl_se->dl_deadline == dl_se->d 985 return dl_se->dl_deadline == dl_se->dl_period; 1043 } 986 } 1044 987 1045 /* 988 /* 1046 * When a deadline entity is placed in the ru 989 * When a deadline entity is placed in the runqueue, its runtime and deadline 1047 * might need to be updated. This is done by 990 * might need to be updated. This is done by a CBS wake up rule. There are two 1048 * different rules: 1) the original CBS; and 991 * different rules: 1) the original CBS; and 2) the Revisited CBS. 1049 * 992 * 1050 * When the task is starting a new period, th 993 * When the task is starting a new period, the Original CBS is used. In this 1051 * case, the runtime is replenished and a new 994 * case, the runtime is replenished and a new absolute deadline is set. 1052 * 995 * 1053 * When a task is queued before the begin of 996 * When a task is queued before the begin of the next period, using the 1054 * remaining runtime and deadline could make 997 * remaining runtime and deadline could make the entity to overflow, see 1055 * dl_entity_overflow() to find more about ru 998 * dl_entity_overflow() to find more about runtime overflow. When such case 1056 * is detected, the runtime and deadline need 999 * is detected, the runtime and deadline need to be updated. 1057 * 1000 * 1058 * If the task has an implicit deadline, i.e. 1001 * If the task has an implicit deadline, i.e., deadline == period, the Original 1059 * CBS is applied. The runtime is replenished !! 1002 * CBS is applied. the runtime is replenished and a new absolute deadline is 1060 * set, as in the previous cases. 1003 * set, as in the previous cases. 1061 * 1004 * 1062 * However, the Original CBS does not work pr 1005 * However, the Original CBS does not work properly for tasks with 1063 * deadline < period, which are said to have 1006 * deadline < period, which are said to have a constrained deadline. By 1064 * applying the Original CBS, a constrained d 1007 * applying the Original CBS, a constrained deadline task would be able to run 1065 * runtime/deadline in a period. With deadlin 1008 * runtime/deadline in a period. With deadline < period, the task would 1066 * overrun the runtime/period allowed bandwid 1009 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1067 * 1010 * 1068 * In order to prevent this misbehave, the Re 1011 * In order to prevent this misbehave, the Revisited CBS is used for 1069 * constrained deadline tasks when a runtime 1012 * constrained deadline tasks when a runtime overflow is detected. In the 1070 * Revisited CBS, rather than replenishing & 1013 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1071 * the remaining runtime of the task is reduc 1014 * the remaining runtime of the task is reduced to avoid runtime overflow. 1072 * Please refer to the comments update_dl_rev 1015 * Please refer to the comments update_dl_revised_wakeup() function to find 1073 * more about the Revised CBS rule. 1016 * more about the Revised CBS rule. 1074 */ 1017 */ 1075 static void update_dl_entity(struct sched_dl_ 1018 static void update_dl_entity(struct sched_dl_entity *dl_se) 1076 { 1019 { 1077 struct rq *rq = rq_of_dl_se(dl_se); !! 1020 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); >> 1021 struct rq *rq = rq_of_dl_rq(dl_rq); 1078 1022 1079 if (dl_time_before(dl_se->deadline, r 1023 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1080 dl_entity_overflow(dl_se, rq_cloc 1024 dl_entity_overflow(dl_se, rq_clock(rq))) { 1081 1025 1082 if (unlikely(!dl_is_implicit( 1026 if (unlikely(!dl_is_implicit(dl_se) && 1083 !dl_time_before( 1027 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1084 !is_dl_boosted(d 1028 !is_dl_boosted(dl_se))) { 1085 update_dl_revised_wak 1029 update_dl_revised_wakeup(dl_se, rq); 1086 return; 1030 return; 1087 } 1031 } 1088 1032 1089 replenish_dl_new_period(dl_se 1033 replenish_dl_new_period(dl_se, rq); 1090 } else if (dl_server(dl_se) && dl_se- << 1091 /* << 1092 * The server can still use i << 1093 * it left the dl_defer_runni << 1094 */ << 1095 if (!dl_se->dl_defer_running) << 1096 dl_se->dl_defer_armed << 1097 dl_se->dl_throttled = << 1098 } << 1099 } 1034 } 1100 } 1035 } 1101 1036 1102 static inline u64 dl_next_period(struct sched 1037 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1103 { 1038 { 1104 return dl_se->deadline - dl_se->dl_de 1039 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1105 } 1040 } 1106 1041 1107 /* 1042 /* 1108 * If the entity depleted all its runtime, an 1043 * If the entity depleted all its runtime, and if we want it to sleep 1109 * while waiting for some new execution time 1044 * while waiting for some new execution time to become available, we 1110 * set the bandwidth replenishment timer to t 1045 * set the bandwidth replenishment timer to the replenishment instant 1111 * and try to activate it. 1046 * and try to activate it. 1112 * 1047 * 1113 * Notice that it is important for the caller 1048 * Notice that it is important for the caller to know if the timer 1114 * actually started or not (i.e., the repleni 1049 * actually started or not (i.e., the replenishment instant is in 1115 * the future or in the past). 1050 * the future or in the past). 1116 */ 1051 */ 1117 static int start_dl_timer(struct sched_dl_ent !! 1052 static int start_dl_timer(struct task_struct *p) 1118 { 1053 { >> 1054 struct sched_dl_entity *dl_se = &p->dl; 1119 struct hrtimer *timer = &dl_se->dl_ti 1055 struct hrtimer *timer = &dl_se->dl_timer; 1120 struct dl_rq *dl_rq = dl_rq_of_se(dl_ !! 1056 struct rq *rq = task_rq(p); 1121 struct rq *rq = rq_of_dl_rq(dl_rq); << 1122 ktime_t now, act; 1057 ktime_t now, act; 1123 s64 delta; 1058 s64 delta; 1124 1059 1125 lockdep_assert_rq_held(rq); 1060 lockdep_assert_rq_held(rq); 1126 1061 1127 /* 1062 /* 1128 * We want the timer to fire at the d 1063 * We want the timer to fire at the deadline, but considering 1129 * that it is actually coming from rq 1064 * that it is actually coming from rq->clock and not from 1130 * hrtimer's time base reading. 1065 * hrtimer's time base reading. 1131 * !! 1066 */ 1132 * The deferred reservation will have !! 1067 act = ns_to_ktime(dl_next_period(dl_se)); 1133 * (deadline - runtime). At that poin << 1134 * if the current deadline can be use << 1135 * required to avoid add too much pre << 1136 * (current u > U). << 1137 */ << 1138 if (dl_se->dl_defer_armed) { << 1139 WARN_ON_ONCE(!dl_se->dl_throt << 1140 act = ns_to_ktime(dl_se->dead << 1141 } else { << 1142 /* act = deadline - rel-deadl << 1143 act = ns_to_ktime(dl_next_per << 1144 } << 1145 << 1146 now = hrtimer_cb_get_time(timer); 1068 now = hrtimer_cb_get_time(timer); 1147 delta = ktime_to_ns(now) - rq_clock(r 1069 delta = ktime_to_ns(now) - rq_clock(rq); 1148 act = ktime_add_ns(act, delta); 1070 act = ktime_add_ns(act, delta); 1149 1071 1150 /* 1072 /* 1151 * If the expiry time already passed, 1073 * If the expiry time already passed, e.g., because the value 1152 * chosen as the deadline is too smal 1074 * chosen as the deadline is too small, don't even try to 1153 * start the timer in the past! 1075 * start the timer in the past! 1154 */ 1076 */ 1155 if (ktime_us_delta(act, now) < 0) 1077 if (ktime_us_delta(act, now) < 0) 1156 return 0; 1078 return 0; 1157 1079 1158 /* 1080 /* 1159 * !enqueued will guarantee another c 1081 * !enqueued will guarantee another callback; even if one is already in 1160 * progress. This ensures a balanced 1082 * progress. This ensures a balanced {get,put}_task_struct(). 1161 * 1083 * 1162 * The race against __run_timer() cle 1084 * The race against __run_timer() clearing the enqueued state is 1163 * harmless because we're holding tas 1085 * harmless because we're holding task_rq()->lock, therefore the timer 1164 * expiring after we've done the chec 1086 * expiring after we've done the check will wait on its task_rq_lock() 1165 * and observe our state. 1087 * and observe our state. 1166 */ 1088 */ 1167 if (!hrtimer_is_queued(timer)) { 1089 if (!hrtimer_is_queued(timer)) { 1168 if (!dl_server(dl_se)) !! 1090 get_task_struct(p); 1169 get_task_struct(dl_ta << 1170 hrtimer_start(timer, act, HRT 1091 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1171 } 1092 } 1172 1093 1173 return 1; 1094 return 1; 1174 } 1095 } 1175 1096 1176 static void __push_dl_task(struct rq *rq, str << 1177 { << 1178 #ifdef CONFIG_SMP << 1179 /* << 1180 * Queueing this task back might have << 1181 * to kick someone away. << 1182 */ << 1183 if (has_pushable_dl_tasks(rq)) { << 1184 /* << 1185 * Nothing relies on rq->lock << 1186 * rq->lock. << 1187 */ << 1188 rq_unpin_lock(rq, rf); << 1189 push_dl_task(rq); << 1190 rq_repin_lock(rq, rf); << 1191 } << 1192 #endif << 1193 } << 1194 << 1195 /* a defer timer will not be reset if the run << 1196 static const u64 dl_server_min_res = 1 * NSEC << 1197 << 1198 static enum hrtimer_restart dl_server_timer(s << 1199 { << 1200 struct rq *rq = rq_of_dl_se(dl_se); << 1201 u64 fw; << 1202 << 1203 scoped_guard (rq_lock, rq) { << 1204 struct rq_flags *rf = &scope. << 1205 << 1206 if (!dl_se->dl_throttled || ! << 1207 return HRTIMER_NOREST << 1208 << 1209 sched_clock_tick(); << 1210 update_rq_clock(rq); << 1211 << 1212 if (!dl_se->dl_runtime) << 1213 return HRTIMER_NOREST << 1214 << 1215 if (!dl_se->server_has_tasks( << 1216 replenish_dl_entity(d << 1217 return HRTIMER_NOREST << 1218 } << 1219 << 1220 if (dl_se->dl_defer_armed) { << 1221 /* << 1222 * First check if the << 1223 * If so, it is possi << 1224 * of time. The dl_se << 1225 * forwarding the tim << 1226 */ << 1227 if (dl_time_before(rq << 1228 (d << 1229 << 1230 /* reset the << 1231 fw = dl_se->d << 1232 << 1233 hrtimer_forwa << 1234 return HRTIME << 1235 } << 1236 << 1237 dl_se->dl_defer_runni << 1238 } << 1239 << 1240 enqueue_dl_entity(dl_se, ENQU << 1241 << 1242 if (!dl_task(dl_se->rq->curr) << 1243 resched_curr(rq); << 1244 << 1245 __push_dl_task(rq, rf); << 1246 } << 1247 << 1248 return HRTIMER_NORESTART; << 1249 } << 1250 << 1251 /* 1097 /* 1252 * This is the bandwidth enforcement timer ca 1098 * This is the bandwidth enforcement timer callback. If here, we know 1253 * a task is not on its dl_rq, since the fact 1099 * a task is not on its dl_rq, since the fact that the timer was running 1254 * means the task is throttled and needs a ru 1100 * means the task is throttled and needs a runtime replenishment. 1255 * 1101 * 1256 * However, what we actually do depends on th 1102 * However, what we actually do depends on the fact the task is active, 1257 * (it is on its rq) or has been removed from 1103 * (it is on its rq) or has been removed from there by a call to 1258 * dequeue_task_dl(). In the former case we m 1104 * dequeue_task_dl(). In the former case we must issue the runtime 1259 * replenishment and add the task back to the 1105 * replenishment and add the task back to the dl_rq; in the latter, we just 1260 * do nothing but clearing dl_throttled, so t 1106 * do nothing but clearing dl_throttled, so that runtime and deadline 1261 * updating (and the queueing back to dl_rq) 1107 * updating (and the queueing back to dl_rq) will be done by the 1262 * next call to enqueue_task_dl(). 1108 * next call to enqueue_task_dl(). 1263 */ 1109 */ 1264 static enum hrtimer_restart dl_task_timer(str 1110 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1265 { 1111 { 1266 struct sched_dl_entity *dl_se = conta 1112 struct sched_dl_entity *dl_se = container_of(timer, 1267 1113 struct sched_dl_entity, 1268 1114 dl_timer); 1269 struct task_struct *p; !! 1115 struct task_struct *p = dl_task_of(dl_se); 1270 struct rq_flags rf; 1116 struct rq_flags rf; 1271 struct rq *rq; 1117 struct rq *rq; 1272 1118 1273 if (dl_server(dl_se)) << 1274 return dl_server_timer(timer, << 1275 << 1276 p = dl_task_of(dl_se); << 1277 rq = task_rq_lock(p, &rf); 1119 rq = task_rq_lock(p, &rf); 1278 1120 1279 /* 1121 /* 1280 * The task might have changed its sc 1122 * The task might have changed its scheduling policy to something 1281 * different than SCHED_DEADLINE (thr 1123 * different than SCHED_DEADLINE (through switched_from_dl()). 1282 */ 1124 */ 1283 if (!dl_task(p)) 1125 if (!dl_task(p)) 1284 goto unlock; 1126 goto unlock; 1285 1127 1286 /* 1128 /* 1287 * The task might have been boosted b 1129 * The task might have been boosted by someone else and might be in the 1288 * boosting/deboosting path, its not 1130 * boosting/deboosting path, its not throttled. 1289 */ 1131 */ 1290 if (is_dl_boosted(dl_se)) 1132 if (is_dl_boosted(dl_se)) 1291 goto unlock; 1133 goto unlock; 1292 1134 1293 /* 1135 /* 1294 * Spurious timer due to start_dl_tim 1136 * Spurious timer due to start_dl_timer() race; or we already received 1295 * a replenishment from rt_mutex_setp 1137 * a replenishment from rt_mutex_setprio(). 1296 */ 1138 */ 1297 if (!dl_se->dl_throttled) 1139 if (!dl_se->dl_throttled) 1298 goto unlock; 1140 goto unlock; 1299 1141 1300 sched_clock_tick(); 1142 sched_clock_tick(); 1301 update_rq_clock(rq); 1143 update_rq_clock(rq); 1302 1144 1303 /* 1145 /* 1304 * If the throttle happened during sc 1146 * If the throttle happened during sched-out; like: 1305 * 1147 * 1306 * schedule() 1148 * schedule() 1307 * deactivate_task() 1149 * deactivate_task() 1308 * dequeue_task_dl() 1150 * dequeue_task_dl() 1309 * update_curr_dl() 1151 * update_curr_dl() 1310 * start_dl_timer() 1152 * start_dl_timer() 1311 * __dequeue_task_dl() 1153 * __dequeue_task_dl() 1312 * prev->on_rq = 0; 1154 * prev->on_rq = 0; 1313 * 1155 * 1314 * We can be both throttled and !queu 1156 * We can be both throttled and !queued. Replenish the counter 1315 * but do not enqueue -- wait for our 1157 * but do not enqueue -- wait for our wakeup to do that. 1316 */ 1158 */ 1317 if (!task_on_rq_queued(p)) { 1159 if (!task_on_rq_queued(p)) { 1318 replenish_dl_entity(dl_se); 1160 replenish_dl_entity(dl_se); 1319 goto unlock; 1161 goto unlock; 1320 } 1162 } 1321 1163 1322 #ifdef CONFIG_SMP 1164 #ifdef CONFIG_SMP 1323 if (unlikely(!rq->online)) { 1165 if (unlikely(!rq->online)) { 1324 /* 1166 /* 1325 * If the runqueue is no long 1167 * If the runqueue is no longer available, migrate the 1326 * task elsewhere. This neces 1168 * task elsewhere. This necessarily changes rq. 1327 */ 1169 */ 1328 lockdep_unpin_lock(__rq_lockp 1170 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1329 rq = dl_task_offline_migratio 1171 rq = dl_task_offline_migration(rq, p); 1330 rf.cookie = lockdep_pin_lock( 1172 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1331 update_rq_clock(rq); 1173 update_rq_clock(rq); 1332 1174 1333 /* 1175 /* 1334 * Now that the task has been 1176 * Now that the task has been migrated to the new RQ and we 1335 * have that locked, proceed 1177 * have that locked, proceed as normal and enqueue the task 1336 * there. 1178 * there. 1337 */ 1179 */ 1338 } 1180 } 1339 #endif 1181 #endif 1340 1182 1341 enqueue_task_dl(rq, p, ENQUEUE_REPLEN 1183 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1342 if (dl_task(rq->curr)) 1184 if (dl_task(rq->curr)) 1343 wakeup_preempt_dl(rq, p, 0); !! 1185 check_preempt_curr_dl(rq, p, 0); 1344 else 1186 else 1345 resched_curr(rq); 1187 resched_curr(rq); 1346 1188 1347 __push_dl_task(rq, &rf); !! 1189 #ifdef CONFIG_SMP >> 1190 /* >> 1191 * Queueing this task back might have overloaded rq, check if we need >> 1192 * to kick someone away. >> 1193 */ >> 1194 if (has_pushable_dl_tasks(rq)) { >> 1195 /* >> 1196 * Nothing relies on rq->lock after this, so its safe to drop >> 1197 * rq->lock. >> 1198 */ >> 1199 rq_unpin_lock(rq, &rf); >> 1200 push_dl_task(rq); >> 1201 rq_repin_lock(rq, &rf); >> 1202 } >> 1203 #endif 1348 1204 1349 unlock: 1205 unlock: 1350 task_rq_unlock(rq, p, &rf); 1206 task_rq_unlock(rq, p, &rf); 1351 1207 1352 /* 1208 /* 1353 * This can free the task_struct, inc 1209 * This can free the task_struct, including this hrtimer, do not touch 1354 * anything related to that after thi 1210 * anything related to that after this. 1355 */ 1211 */ 1356 put_task_struct(p); 1212 put_task_struct(p); 1357 1213 1358 return HRTIMER_NORESTART; 1214 return HRTIMER_NORESTART; 1359 } 1215 } 1360 1216 1361 static void init_dl_task_timer(struct sched_d !! 1217 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1362 { 1218 { 1363 struct hrtimer *timer = &dl_se->dl_ti 1219 struct hrtimer *timer = &dl_se->dl_timer; 1364 1220 1365 hrtimer_init(timer, CLOCK_MONOTONIC, 1221 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1366 timer->function = dl_task_timer; 1222 timer->function = dl_task_timer; 1367 } 1223 } 1368 1224 1369 /* 1225 /* 1370 * During the activation, CBS checks if it ca 1226 * During the activation, CBS checks if it can reuse the current task's 1371 * runtime and period. If the deadline of the 1227 * runtime and period. If the deadline of the task is in the past, CBS 1372 * cannot use the runtime, and so it replenis 1228 * cannot use the runtime, and so it replenishes the task. This rule 1373 * works fine for implicit deadline tasks (de 1229 * works fine for implicit deadline tasks (deadline == period), and the 1374 * CBS was designed for implicit deadline tas 1230 * CBS was designed for implicit deadline tasks. However, a task with 1375 * constrained deadline (deadline < period) m 1231 * constrained deadline (deadline < period) might be awakened after the 1376 * deadline, but before the next period. In t 1232 * deadline, but before the next period. In this case, replenishing the 1377 * task would allow it to run for runtime / d 1233 * task would allow it to run for runtime / deadline. As in this case 1378 * deadline < period, CBS enables a task to r 1234 * deadline < period, CBS enables a task to run for more than the 1379 * runtime / period. In a very loaded system, 1235 * runtime / period. In a very loaded system, this can cause a domino 1380 * effect, making other tasks miss their dead 1236 * effect, making other tasks miss their deadlines. 1381 * 1237 * 1382 * To avoid this problem, in the activation o 1238 * To avoid this problem, in the activation of a constrained deadline 1383 * task after the deadline but before the nex 1239 * task after the deadline but before the next period, throttle the 1384 * task and set the replenishing timer to the 1240 * task and set the replenishing timer to the begin of the next period, 1385 * unless it is boosted. 1241 * unless it is boosted. 1386 */ 1242 */ 1387 static inline void dl_check_constrained_dl(st 1243 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1388 { 1244 { 1389 struct rq *rq = rq_of_dl_se(dl_se); !! 1245 struct task_struct *p = dl_task_of(dl_se); >> 1246 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1390 1247 1391 if (dl_time_before(dl_se->deadline, r 1248 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1392 dl_time_before(rq_clock(rq), dl_n 1249 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1393 if (unlikely(is_dl_boosted(dl !! 1250 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p))) 1394 return; 1251 return; 1395 dl_se->dl_throttled = 1; 1252 dl_se->dl_throttled = 1; 1396 if (dl_se->runtime > 0) 1253 if (dl_se->runtime > 0) 1397 dl_se->runtime = 0; 1254 dl_se->runtime = 0; 1398 } 1255 } 1399 } 1256 } 1400 1257 1401 static 1258 static 1402 int dl_runtime_exceeded(struct sched_dl_entit 1259 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1403 { 1260 { 1404 return (dl_se->runtime <= 0); 1261 return (dl_se->runtime <= 0); 1405 } 1262 } 1406 1263 1407 /* 1264 /* 1408 * This function implements the GRUB accounti !! 1265 * This function implements the GRUB accounting rule: 1409 * GRUB reclaiming algorithm, the runtime is !! 1266 * according to the GRUB reclaiming algorithm, the runtime is 1410 * but as "dq = -(max{u, (Umax - Uinact - Uex !! 1267 * not decreased as "dq = -dt", but as >> 1268 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1411 * where u is the utilization of the task, Um 1269 * where u is the utilization of the task, Umax is the maximum reclaimable 1412 * utilization, Uinact is the (per-runqueue) 1270 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1413 * as the difference between the "total runqu 1271 * as the difference between the "total runqueue utilization" and the 1414 * "runqueue active utilization", and Uextra !! 1272 * runqueue active utilization, and Uextra is the (per runqueue) extra 1415 * reclaimable utilization. 1273 * reclaimable utilization. 1416 * Since rq->dl.running_bw and rq->dl.this_bw !! 1274 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1417 * by 2^BW_SHIFT, the result has to be shifte !! 1275 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1418 * Since rq->dl.bw_ratio contains 1 / Umax mu !! 1276 * BW_SHIFT. 1419 * is multiplied by rq->dl.bw_ratio and shift !! 1277 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, 1420 * Since delta is a 64 bit variable, to have !! 1278 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1421 * larger than 2^(64 - 20 - 8), which is more !! 1279 * Since delta is a 64 bit variable, to have an overflow its value 1422 * not an issue here. !! 1280 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. >> 1281 * So, overflow is not an issue here. 1423 */ 1282 */ 1424 static u64 grub_reclaim(u64 delta, struct rq 1283 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1425 { 1284 { 1426 u64 u_act; << 1427 u64 u_inact = rq->dl.this_bw - rq->dl 1285 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ >> 1286 u64 u_act; >> 1287 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1428 1288 1429 /* 1289 /* 1430 * Instead of computing max{u, (u_max !! 1290 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1431 * compare u_inact + u_extra with u_m !! 1291 * we compare u_inact + rq->dl.extra_bw with 1432 * can be larger than u_max. So, u_ma !! 1292 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1433 * negative leading to wrong results. !! 1293 * u_inact + rq->dl.extra_bw can be larger than >> 1294 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative >> 1295 * leading to wrong results) 1434 */ 1296 */ 1435 if (u_inact + rq->dl.extra_bw > rq->d !! 1297 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1436 u_act = dl_se->dl_bw; !! 1298 u_act = u_act_min; 1437 else 1299 else 1438 u_act = rq->dl.max_bw - u_ina !! 1300 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1439 1301 1440 u_act = (u_act * rq->dl.bw_ratio) >> << 1441 return (delta * u_act) >> BW_SHIFT; 1302 return (delta * u_act) >> BW_SHIFT; 1442 } 1303 } 1443 1304 1444 s64 dl_scaled_delta_exec(struct rq *rq, struc !! 1305 /* >> 1306 * Update the current task's runtime statistics (provided it is still >> 1307 * a -deadline task and has not been removed from the dl_rq). >> 1308 */ >> 1309 static void update_curr_dl(struct rq *rq) 1445 { 1310 { 1446 s64 scaled_delta_exec; !! 1311 struct task_struct *curr = rq->curr; >> 1312 struct sched_dl_entity *dl_se = &curr->dl; >> 1313 u64 delta_exec, scaled_delta_exec; >> 1314 int cpu = cpu_of(rq); >> 1315 u64 now; >> 1316 >> 1317 if (!dl_task(curr) || !on_dl_rq(dl_se)) >> 1318 return; >> 1319 >> 1320 /* >> 1321 * Consumed budget is computed considering the time as >> 1322 * observed by schedulable tasks (excluding time spent >> 1323 * in hardirq context, etc.). Deadlines are instead >> 1324 * computed using hard walltime. This seems to be the more >> 1325 * natural solution, but the full ramifications of this >> 1326 * approach need further study. >> 1327 */ >> 1328 now = rq_clock_task(rq); >> 1329 delta_exec = now - curr->se.exec_start; >> 1330 if (unlikely((s64)delta_exec <= 0)) { >> 1331 if (unlikely(dl_se->dl_yielded)) >> 1332 goto throttle; >> 1333 return; >> 1334 } >> 1335 >> 1336 schedstat_set(curr->stats.exec_max, >> 1337 max(curr->stats.exec_max, delta_exec)); >> 1338 >> 1339 trace_sched_stat_runtime(curr, delta_exec, 0); >> 1340 >> 1341 update_current_exec_runtime(curr, now, delta_exec); >> 1342 >> 1343 if (dl_entity_is_special(dl_se)) >> 1344 return; 1447 1345 1448 /* 1346 /* 1449 * For tasks that participate in GRUB 1347 * For tasks that participate in GRUB, we implement GRUB-PA: the 1450 * spare reclaimed bandwidth is used 1348 * spare reclaimed bandwidth is used to clock down frequency. 1451 * 1349 * 1452 * For the others, we still need to s 1350 * For the others, we still need to scale reservation parameters 1453 * according to current frequency and 1351 * according to current frequency and CPU maximum capacity. 1454 */ 1352 */ 1455 if (unlikely(dl_se->flags & SCHED_FLA 1353 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1456 scaled_delta_exec = grub_recl !! 1354 scaled_delta_exec = grub_reclaim(delta_exec, >> 1355 rq, >> 1356 &curr->dl); 1457 } else { 1357 } else { 1458 int cpu = cpu_of(rq); << 1459 unsigned long scale_freq = ar 1358 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1460 unsigned long scale_cpu = arc 1359 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1461 1360 1462 scaled_delta_exec = cap_scale 1361 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1463 scaled_delta_exec = cap_scale 1362 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1464 } 1363 } 1465 1364 1466 return scaled_delta_exec; << 1467 } << 1468 << 1469 static inline void << 1470 update_stats_dequeue_dl(struct dl_rq *dl_rq, << 1471 int flags); << 1472 static void update_curr_dl_se(struct rq *rq, << 1473 { << 1474 s64 scaled_delta_exec; << 1475 << 1476 if (unlikely(delta_exec <= 0)) { << 1477 if (unlikely(dl_se->dl_yielde << 1478 goto throttle; << 1479 return; << 1480 } << 1481 << 1482 if (dl_server(dl_se) && dl_se->dl_thr << 1483 return; << 1484 << 1485 if (dl_entity_is_special(dl_se)) << 1486 return; << 1487 << 1488 scaled_delta_exec = dl_scaled_delta_e << 1489 << 1490 dl_se->runtime -= scaled_delta_exec; 1365 dl_se->runtime -= scaled_delta_exec; 1491 1366 1492 /* << 1493 * The fair server can consume its ru << 1494 * running as regular CFS). << 1495 * << 1496 * If the server consumes its entire << 1497 * is not required for the current pe << 1498 * starting a new period, pushing the << 1499 */ << 1500 if (dl_se->dl_defer && dl_se->dl_thro << 1501 /* << 1502 * If the server was previous << 1503 * took place, it this point << 1504 * was able to get runtime in << 1505 * state. << 1506 */ << 1507 dl_se->dl_defer_running = 0; << 1508 << 1509 hrtimer_try_to_cancel(&dl_se- << 1510 << 1511 replenish_dl_new_period(dl_se << 1512 << 1513 /* << 1514 * Not being able to start th << 1515 * be started for whatever re << 1516 * and queue right away. Othe << 1517 * to what enqueue_dl_entity( << 1518 */ << 1519 WARN_ON_ONCE(!start_dl_timer( << 1520 << 1521 return; << 1522 } << 1523 << 1524 throttle: 1367 throttle: 1525 if (dl_runtime_exceeded(dl_se) || dl_ 1368 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1526 dl_se->dl_throttled = 1; 1369 dl_se->dl_throttled = 1; 1527 1370 1528 /* If requested, inform the u 1371 /* If requested, inform the user about runtime overruns. */ 1529 if (dl_runtime_exceeded(dl_se 1372 if (dl_runtime_exceeded(dl_se) && 1530 (dl_se->flags & SCHED_FLA 1373 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1531 dl_se->dl_overrun = 1 1374 dl_se->dl_overrun = 1; 1532 1375 1533 dequeue_dl_entity(dl_se, 0); !! 1376 __dequeue_task_dl(rq, curr, 0); 1534 if (!dl_server(dl_se)) { !! 1377 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr))) 1535 update_stats_dequeue_ !! 1378 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1536 dequeue_pushable_dl_t << 1537 } << 1538 << 1539 if (unlikely(is_dl_boosted(dl << 1540 if (dl_server(dl_se)) << 1541 enqueue_dl_en << 1542 else << 1543 enqueue_task_ << 1544 } << 1545 1379 1546 if (!is_leftmost(dl_se, &rq-> !! 1380 if (!is_leftmost(curr, &rq->dl)) 1547 resched_curr(rq); 1381 resched_curr(rq); 1548 } 1382 } 1549 1383 1550 /* 1384 /* 1551 * The fair server (sole dl_server) d << 1552 * workload because it is running fai << 1553 */ << 1554 if (dl_se == &rq->fair_server) << 1555 return; << 1556 << 1557 #ifdef CONFIG_RT_GROUP_SCHED << 1558 /* << 1559 * Because -- for now -- we share the 1385 * Because -- for now -- we share the rt bandwidth, we need to 1560 * account our runtime there too, oth 1386 * account our runtime there too, otherwise actual rt tasks 1561 * would be able to exceed the shared 1387 * would be able to exceed the shared quota. 1562 * 1388 * 1563 * Account to the root rt group for n 1389 * Account to the root rt group for now. 1564 * 1390 * 1565 * The solution we're working towards 1391 * The solution we're working towards is having the RT groups scheduled 1566 * using deadline servers -- however 1392 * using deadline servers -- however there's a few nasties to figure 1567 * out before that can happen. 1393 * out before that can happen. 1568 */ 1394 */ 1569 if (rt_bandwidth_enabled()) { 1395 if (rt_bandwidth_enabled()) { 1570 struct rt_rq *rt_rq = &rq->rt 1396 struct rt_rq *rt_rq = &rq->rt; 1571 1397 1572 raw_spin_lock(&rt_rq->rt_runt 1398 raw_spin_lock(&rt_rq->rt_runtime_lock); 1573 /* 1399 /* 1574 * We'll let actual RT tasks 1400 * We'll let actual RT tasks worry about the overflow here, we 1575 * have our own CBS to keep u 1401 * have our own CBS to keep us inline; only account when RT 1576 * bandwidth is relevant. 1402 * bandwidth is relevant. 1577 */ 1403 */ 1578 if (sched_rt_bandwidth_accoun 1404 if (sched_rt_bandwidth_account(rt_rq)) 1579 rt_rq->rt_time += del 1405 rt_rq->rt_time += delta_exec; 1580 raw_spin_unlock(&rt_rq->rt_ru 1406 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1581 } 1407 } 1582 #endif << 1583 } << 1584 << 1585 /* << 1586 * In the non-defer mode, the idle time is no << 1587 * server provides a guarantee. << 1588 * << 1589 * If the dl_server is in defer mode, the idl << 1590 * as time available for the fair server, avo << 1591 * rt scheduler that did not consumed that ti << 1592 */ << 1593 void dl_server_update_idle_time(struct rq *rq << 1594 { << 1595 s64 delta_exec, scaled_delta_exec; << 1596 << 1597 if (!rq->fair_server.dl_defer) << 1598 return; << 1599 << 1600 /* no need to discount more */ << 1601 if (rq->fair_server.runtime < 0) << 1602 return; << 1603 << 1604 delta_exec = rq_clock_task(rq) - p->s << 1605 if (delta_exec < 0) << 1606 return; << 1607 << 1608 scaled_delta_exec = dl_scaled_delta_e << 1609 << 1610 rq->fair_server.runtime -= scaled_del << 1611 << 1612 if (rq->fair_server.runtime < 0) { << 1613 rq->fair_server.dl_defer_runn << 1614 rq->fair_server.runtime = 0; << 1615 } << 1616 << 1617 p->se.exec_start = rq_clock_task(rq); << 1618 } << 1619 << 1620 void dl_server_update(struct sched_dl_entity << 1621 { << 1622 /* 0 runtime = fair server disabled * << 1623 if (dl_se->dl_runtime) << 1624 update_curr_dl_se(dl_se->rq, << 1625 } << 1626 << 1627 void dl_server_start(struct sched_dl_entity * << 1628 { << 1629 struct rq *rq = dl_se->rq; << 1630 << 1631 /* << 1632 * XXX: the apply do not work fine at << 1633 * fair server because things are not << 1634 * this before getting generic. << 1635 */ << 1636 if (!dl_server(dl_se)) { << 1637 u64 runtime = 50 * NSEC_PER_ << 1638 u64 period = 1000 * NSEC_PER_ << 1639 << 1640 dl_server_apply_params(dl_se, << 1641 << 1642 dl_se->dl_server = 1; << 1643 dl_se->dl_defer = 1; << 1644 setup_new_dl_entity(dl_se); << 1645 } << 1646 << 1647 if (!dl_se->dl_runtime) << 1648 return; << 1649 << 1650 enqueue_dl_entity(dl_se, ENQUEUE_WAKE << 1651 if (!dl_task(dl_se->rq->curr) || dl_e << 1652 resched_curr(dl_se->rq); << 1653 } << 1654 << 1655 void dl_server_stop(struct sched_dl_entity *d << 1656 { << 1657 if (!dl_se->dl_runtime) << 1658 return; << 1659 << 1660 dequeue_dl_entity(dl_se, DEQUEUE_SLEE << 1661 hrtimer_try_to_cancel(&dl_se->dl_time << 1662 dl_se->dl_defer_armed = 0; << 1663 dl_se->dl_throttled = 0; << 1664 } << 1665 << 1666 void dl_server_init(struct sched_dl_entity *d << 1667 dl_server_has_tasks_f has << 1668 dl_server_pick_f pick_tas << 1669 { << 1670 dl_se->rq = rq; << 1671 dl_se->server_has_tasks = has_tasks; << 1672 dl_se->server_pick_task = pick_task; << 1673 } << 1674 << 1675 void __dl_server_attach_root(struct sched_dl_ << 1676 { << 1677 u64 new_bw = dl_se->dl_bw; << 1678 int cpu = cpu_of(rq); << 1679 struct dl_bw *dl_b; << 1680 << 1681 dl_b = dl_bw_of(cpu_of(rq)); << 1682 guard(raw_spinlock)(&dl_b->lock); << 1683 << 1684 if (!dl_bw_cpus(cpu)) << 1685 return; << 1686 << 1687 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu << 1688 } << 1689 << 1690 int dl_server_apply_params(struct sched_dl_en << 1691 { << 1692 u64 old_bw = init ? 0 : to_ratio(dl_s << 1693 u64 new_bw = to_ratio(period, runtime << 1694 struct rq *rq = dl_se->rq; << 1695 int cpu = cpu_of(rq); << 1696 struct dl_bw *dl_b; << 1697 unsigned long cap; << 1698 int retval = 0; << 1699 int cpus; << 1700 << 1701 dl_b = dl_bw_of(cpu); << 1702 guard(raw_spinlock)(&dl_b->lock); << 1703 << 1704 cpus = dl_bw_cpus(cpu); << 1705 cap = dl_bw_capacity(cpu); << 1706 << 1707 if (__dl_overflow(dl_b, cap, old_bw, << 1708 return -EBUSY; << 1709 << 1710 if (init) { << 1711 __add_rq_bw(new_bw, &rq->dl); << 1712 __dl_add(dl_b, new_bw, cpus); << 1713 } else { << 1714 __dl_sub(dl_b, dl_se->dl_bw, << 1715 __dl_add(dl_b, new_bw, cpus); << 1716 << 1717 dl_rq_change_utilization(rq, << 1718 } << 1719 << 1720 dl_se->dl_runtime = runtime; << 1721 dl_se->dl_deadline = period; << 1722 dl_se->dl_period = period; << 1723 << 1724 dl_se->runtime = 0; << 1725 dl_se->deadline = 0; << 1726 << 1727 dl_se->dl_bw = to_ratio(dl_se->dl_per << 1728 dl_se->dl_density = to_ratio(dl_se->d << 1729 << 1730 return retval; << 1731 } << 1732 << 1733 /* << 1734 * Update the current task's runtime statisti << 1735 * a -deadline task and has not been removed << 1736 */ << 1737 static void update_curr_dl(struct rq *rq) << 1738 { << 1739 struct task_struct *curr = rq->curr; << 1740 struct sched_dl_entity *dl_se = &curr << 1741 s64 delta_exec; << 1742 << 1743 if (!dl_task(curr) || !on_dl_rq(dl_se << 1744 return; << 1745 << 1746 /* << 1747 * Consumed budget is computed consid << 1748 * observed by schedulable tasks (exc << 1749 * in hardirq context, etc.). Deadlin << 1750 * computed using hard walltime. This << 1751 * natural solution, but the full ram << 1752 * approach need further study. << 1753 */ << 1754 delta_exec = update_curr_common(rq); << 1755 update_curr_dl_se(rq, dl_se, delta_ex << 1756 } 1408 } 1757 1409 1758 static enum hrtimer_restart inactive_task_tim 1410 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1759 { 1411 { 1760 struct sched_dl_entity *dl_se = conta 1412 struct sched_dl_entity *dl_se = container_of(timer, 1761 1413 struct sched_dl_entity, 1762 1414 inactive_timer); 1763 struct task_struct *p = NULL; !! 1415 struct task_struct *p = dl_task_of(dl_se); 1764 struct rq_flags rf; 1416 struct rq_flags rf; 1765 struct rq *rq; 1417 struct rq *rq; 1766 1418 1767 if (!dl_server(dl_se)) { !! 1419 rq = task_rq_lock(p, &rf); 1768 p = dl_task_of(dl_se); << 1769 rq = task_rq_lock(p, &rf); << 1770 } else { << 1771 rq = dl_se->rq; << 1772 rq_lock(rq, &rf); << 1773 } << 1774 1420 1775 sched_clock_tick(); 1421 sched_clock_tick(); 1776 update_rq_clock(rq); 1422 update_rq_clock(rq); 1777 1423 1778 if (dl_server(dl_se)) << 1779 goto no_task; << 1780 << 1781 if (!dl_task(p) || READ_ONCE(p->__sta 1424 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1782 struct dl_bw *dl_b = dl_bw_of 1425 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1783 1426 1784 if (READ_ONCE(p->__state) == 1427 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1785 sub_running_bw(&p->dl 1428 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1786 sub_rq_bw(&p->dl, dl_ 1429 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1787 dl_se->dl_non_contend 1430 dl_se->dl_non_contending = 0; 1788 } 1431 } 1789 1432 1790 raw_spin_lock(&dl_b->lock); 1433 raw_spin_lock(&dl_b->lock); 1791 __dl_sub(dl_b, p->dl.dl_bw, d 1434 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1792 raw_spin_unlock(&dl_b->lock); 1435 raw_spin_unlock(&dl_b->lock); 1793 __dl_clear_params(dl_se); !! 1436 __dl_clear_params(p); 1794 1437 1795 goto unlock; 1438 goto unlock; 1796 } 1439 } 1797 << 1798 no_task: << 1799 if (dl_se->dl_non_contending == 0) 1440 if (dl_se->dl_non_contending == 0) 1800 goto unlock; 1441 goto unlock; 1801 1442 1802 sub_running_bw(dl_se, &rq->dl); 1443 sub_running_bw(dl_se, &rq->dl); 1803 dl_se->dl_non_contending = 0; 1444 dl_se->dl_non_contending = 0; 1804 unlock: 1445 unlock: 1805 !! 1446 task_rq_unlock(rq, p, &rf); 1806 if (!dl_server(dl_se)) { !! 1447 put_task_struct(p); 1807 task_rq_unlock(rq, p, &rf); << 1808 put_task_struct(p); << 1809 } else { << 1810 rq_unlock(rq, &rf); << 1811 } << 1812 1448 1813 return HRTIMER_NORESTART; 1449 return HRTIMER_NORESTART; 1814 } 1450 } 1815 1451 1816 static void init_dl_inactive_task_timer(struc !! 1452 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1817 { 1453 { 1818 struct hrtimer *timer = &dl_se->inact 1454 struct hrtimer *timer = &dl_se->inactive_timer; 1819 1455 1820 hrtimer_init(timer, CLOCK_MONOTONIC, 1456 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1821 timer->function = inactive_task_timer 1457 timer->function = inactive_task_timer; 1822 } 1458 } 1823 1459 1824 #define __node_2_dle(node) \ 1460 #define __node_2_dle(node) \ 1825 rb_entry((node), struct sched_dl_enti 1461 rb_entry((node), struct sched_dl_entity, rb_node) 1826 1462 1827 #ifdef CONFIG_SMP 1463 #ifdef CONFIG_SMP 1828 1464 1829 static void inc_dl_deadline(struct dl_rq *dl_ 1465 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1830 { 1466 { 1831 struct rq *rq = rq_of_dl_rq(dl_rq); 1467 struct rq *rq = rq_of_dl_rq(dl_rq); 1832 1468 1833 if (dl_rq->earliest_dl.curr == 0 || 1469 if (dl_rq->earliest_dl.curr == 0 || 1834 dl_time_before(deadline, dl_rq->e 1470 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1835 if (dl_rq->earliest_dl.curr = 1471 if (dl_rq->earliest_dl.curr == 0) 1836 cpupri_set(&rq->rd->c 1472 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1837 dl_rq->earliest_dl.curr = dea 1473 dl_rq->earliest_dl.curr = deadline; 1838 cpudl_set(&rq->rd->cpudl, rq- 1474 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1839 } 1475 } 1840 } 1476 } 1841 1477 1842 static void dec_dl_deadline(struct dl_rq *dl_ 1478 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1843 { 1479 { 1844 struct rq *rq = rq_of_dl_rq(dl_rq); 1480 struct rq *rq = rq_of_dl_rq(dl_rq); 1845 1481 1846 /* 1482 /* 1847 * Since we may have removed our earl 1483 * Since we may have removed our earliest (and/or next earliest) 1848 * task we must recompute them. 1484 * task we must recompute them. 1849 */ 1485 */ 1850 if (!dl_rq->dl_nr_running) { 1486 if (!dl_rq->dl_nr_running) { 1851 dl_rq->earliest_dl.curr = 0; 1487 dl_rq->earliest_dl.curr = 0; 1852 dl_rq->earliest_dl.next = 0; 1488 dl_rq->earliest_dl.next = 0; 1853 cpudl_clear(&rq->rd->cpudl, r 1489 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1854 cpupri_set(&rq->rd->cpupri, r 1490 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1855 } else { 1491 } else { 1856 struct rb_node *leftmost = rb 1492 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1857 struct sched_dl_entity *entry 1493 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1858 1494 1859 dl_rq->earliest_dl.curr = ent 1495 dl_rq->earliest_dl.curr = entry->deadline; 1860 cpudl_set(&rq->rd->cpudl, rq- 1496 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1861 } 1497 } 1862 } 1498 } 1863 1499 1864 #else 1500 #else 1865 1501 1866 static inline void inc_dl_deadline(struct dl_ 1502 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1867 static inline void dec_dl_deadline(struct dl_ 1503 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1868 1504 1869 #endif /* CONFIG_SMP */ 1505 #endif /* CONFIG_SMP */ 1870 1506 1871 static inline 1507 static inline 1872 void inc_dl_tasks(struct sched_dl_entity *dl_ 1508 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1873 { 1509 { >> 1510 int prio = dl_task_of(dl_se)->prio; 1874 u64 deadline = dl_se->deadline; 1511 u64 deadline = dl_se->deadline; 1875 1512 >> 1513 WARN_ON(!dl_prio(prio)); 1876 dl_rq->dl_nr_running++; 1514 dl_rq->dl_nr_running++; 1877 add_nr_running(rq_of_dl_rq(dl_rq), 1) 1515 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1878 1516 1879 inc_dl_deadline(dl_rq, deadline); 1517 inc_dl_deadline(dl_rq, deadline); >> 1518 inc_dl_migration(dl_se, dl_rq); 1880 } 1519 } 1881 1520 1882 static inline 1521 static inline 1883 void dec_dl_tasks(struct sched_dl_entity *dl_ 1522 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1884 { 1523 { >> 1524 int prio = dl_task_of(dl_se)->prio; >> 1525 >> 1526 WARN_ON(!dl_prio(prio)); 1885 WARN_ON(!dl_rq->dl_nr_running); 1527 WARN_ON(!dl_rq->dl_nr_running); 1886 dl_rq->dl_nr_running--; 1528 dl_rq->dl_nr_running--; 1887 sub_nr_running(rq_of_dl_rq(dl_rq), 1) 1529 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1888 1530 1889 dec_dl_deadline(dl_rq, dl_se->deadlin 1531 dec_dl_deadline(dl_rq, dl_se->deadline); >> 1532 dec_dl_migration(dl_se, dl_rq); 1890 } 1533 } 1891 1534 1892 static inline bool __dl_less(struct rb_node * 1535 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1893 { 1536 { 1894 return dl_time_before(__node_2_dle(a) 1537 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1895 } 1538 } 1896 1539 1897 static __always_inline struct sched_statistic !! 1540 static inline struct sched_statistics * 1898 __schedstats_from_dl_se(struct sched_dl_entit 1541 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1899 { 1542 { 1900 if (!schedstat_enabled()) << 1901 return NULL; << 1902 << 1903 if (dl_server(dl_se)) << 1904 return NULL; << 1905 << 1906 return &dl_task_of(dl_se)->stats; 1543 return &dl_task_of(dl_se)->stats; 1907 } 1544 } 1908 1545 1909 static inline void 1546 static inline void 1910 update_stats_wait_start_dl(struct dl_rq *dl_r 1547 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1911 { 1548 { 1912 struct sched_statistics *stats = __sc !! 1549 struct sched_statistics *stats; 1913 if (stats) !! 1550 1914 __update_stats_wait_start(rq_ !! 1551 if (!schedstat_enabled()) >> 1552 return; >> 1553 >> 1554 stats = __schedstats_from_dl_se(dl_se); >> 1555 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1915 } 1556 } 1916 1557 1917 static inline void 1558 static inline void 1918 update_stats_wait_end_dl(struct dl_rq *dl_rq, 1559 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1919 { 1560 { 1920 struct sched_statistics *stats = __sc !! 1561 struct sched_statistics *stats; 1921 if (stats) !! 1562 1922 __update_stats_wait_end(rq_of !! 1563 if (!schedstat_enabled()) >> 1564 return; >> 1565 >> 1566 stats = __schedstats_from_dl_se(dl_se); >> 1567 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1923 } 1568 } 1924 1569 1925 static inline void 1570 static inline void 1926 update_stats_enqueue_sleeper_dl(struct dl_rq 1571 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1927 { 1572 { 1928 struct sched_statistics *stats = __sc !! 1573 struct sched_statistics *stats; 1929 if (stats) !! 1574 1930 __update_stats_enqueue_sleepe !! 1575 if (!schedstat_enabled()) >> 1576 return; >> 1577 >> 1578 stats = __schedstats_from_dl_se(dl_se); >> 1579 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1931 } 1580 } 1932 1581 1933 static inline void 1582 static inline void 1934 update_stats_enqueue_dl(struct dl_rq *dl_rq, 1583 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1935 int flags) 1584 int flags) 1936 { 1585 { 1937 if (!schedstat_enabled()) 1586 if (!schedstat_enabled()) 1938 return; 1587 return; 1939 1588 1940 if (flags & ENQUEUE_WAKEUP) 1589 if (flags & ENQUEUE_WAKEUP) 1941 update_stats_enqueue_sleeper_ 1590 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1942 } 1591 } 1943 1592 1944 static inline void 1593 static inline void 1945 update_stats_dequeue_dl(struct dl_rq *dl_rq, 1594 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1946 int flags) 1595 int flags) 1947 { 1596 { 1948 struct task_struct *p = dl_task_of(dl 1597 struct task_struct *p = dl_task_of(dl_se); 1949 1598 1950 if (!schedstat_enabled()) 1599 if (!schedstat_enabled()) 1951 return; 1600 return; 1952 1601 1953 if ((flags & DEQUEUE_SLEEP)) { 1602 if ((flags & DEQUEUE_SLEEP)) { 1954 unsigned int state; 1603 unsigned int state; 1955 1604 1956 state = READ_ONCE(p->__state) 1605 state = READ_ONCE(p->__state); 1957 if (state & TASK_INTERRUPTIBL 1606 if (state & TASK_INTERRUPTIBLE) 1958 __schedstat_set(p->st 1607 __schedstat_set(p->stats.sleep_start, 1959 rq_cl 1608 rq_clock(rq_of_dl_rq(dl_rq))); 1960 1609 1961 if (state & TASK_UNINTERRUPTI 1610 if (state & TASK_UNINTERRUPTIBLE) 1962 __schedstat_set(p->st 1611 __schedstat_set(p->stats.block_start, 1963 rq_cl 1612 rq_clock(rq_of_dl_rq(dl_rq))); 1964 } 1613 } 1965 } 1614 } 1966 1615 1967 static void __enqueue_dl_entity(struct sched_ 1616 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1968 { 1617 { 1969 struct dl_rq *dl_rq = dl_rq_of_se(dl_ 1618 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1970 1619 1971 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->r 1620 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1972 1621 1973 rb_add_cached(&dl_se->rb_node, &dl_rq 1622 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1974 1623 1975 inc_dl_tasks(dl_se, dl_rq); 1624 inc_dl_tasks(dl_se, dl_rq); 1976 } 1625 } 1977 1626 1978 static void __dequeue_dl_entity(struct sched_ 1627 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1979 { 1628 { 1980 struct dl_rq *dl_rq = dl_rq_of_se(dl_ 1629 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1981 1630 1982 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1631 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1983 return; 1632 return; 1984 1633 1985 rb_erase_cached(&dl_se->rb_node, &dl_ 1634 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1986 1635 1987 RB_CLEAR_NODE(&dl_se->rb_node); 1636 RB_CLEAR_NODE(&dl_se->rb_node); 1988 1637 1989 dec_dl_tasks(dl_se, dl_rq); 1638 dec_dl_tasks(dl_se, dl_rq); 1990 } 1639 } 1991 1640 1992 static void 1641 static void 1993 enqueue_dl_entity(struct sched_dl_entity *dl_ 1642 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1994 { 1643 { 1995 WARN_ON_ONCE(on_dl_rq(dl_se)); 1644 WARN_ON_ONCE(on_dl_rq(dl_se)); 1996 1645 1997 update_stats_enqueue_dl(dl_rq_of_se(d 1646 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1998 1647 1999 /* 1648 /* 2000 * Check if a constrained deadline ta << 2001 * after the deadline but before the << 2002 * If that is the case, the task will << 2003 * the replenishment timer will be se << 2004 */ << 2005 if (!dl_se->dl_throttled && !dl_is_im << 2006 dl_check_constrained_dl(dl_se << 2007 << 2008 if (flags & (ENQUEUE_RESTORE|ENQUEUE_ << 2009 struct dl_rq *dl_rq = dl_rq_o << 2010 << 2011 add_rq_bw(dl_se, dl_rq); << 2012 add_running_bw(dl_se, dl_rq); << 2013 } << 2014 << 2015 /* << 2016 * If p is throttled, we do not enque << 2017 * its budget it needs a replenishmen << 2018 * its rq, the bandwidth timer callba << 2019 * run yet) will take care of this. << 2020 * However, the active utilization do << 2021 * that the task is on the runqueue o << 2022 * task's state - in GRUB parlance, " << 2023 * In other words, even if a task is << 2024 * be counted in the active utilizati << 2025 * add_running_bw(). << 2026 */ << 2027 if (!dl_se->dl_defer && dl_se->dl_thr << 2028 if (flags & ENQUEUE_WAKEUP) << 2029 task_contending(dl_se << 2030 << 2031 return; << 2032 } << 2033 << 2034 /* << 2035 * If this is a wakeup or a new insta 1649 * If this is a wakeup or a new instance, the scheduling 2036 * parameters of the task might need 1650 * parameters of the task might need updating. Otherwise, 2037 * we want a replenishment of its run 1651 * we want a replenishment of its runtime. 2038 */ 1652 */ 2039 if (flags & ENQUEUE_WAKEUP) { 1653 if (flags & ENQUEUE_WAKEUP) { 2040 task_contending(dl_se, flags) 1654 task_contending(dl_se, flags); 2041 update_dl_entity(dl_se); 1655 update_dl_entity(dl_se); 2042 } else if (flags & ENQUEUE_REPLENISH) 1656 } else if (flags & ENQUEUE_REPLENISH) { 2043 replenish_dl_entity(dl_se); 1657 replenish_dl_entity(dl_se); 2044 } else if ((flags & ENQUEUE_RESTORE) 1658 } else if ((flags & ENQUEUE_RESTORE) && 2045 dl_time_before(dl_se->dead !! 1659 dl_time_before(dl_se->deadline, >> 1660 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 2046 setup_new_dl_entity(dl_se); 1661 setup_new_dl_entity(dl_se); 2047 } 1662 } 2048 1663 2049 /* << 2050 * If the reservation is still thrott << 2051 * deferred task and still got to wai << 2052 */ << 2053 if (dl_se->dl_throttled && start_dl_t << 2054 return; << 2055 << 2056 /* << 2057 * We're about to enqueue, make sure << 2058 * In case the timer was not started, << 2059 * has passed, mark as not throttled << 2060 * Also cancel earlier timers, since << 2061 */ << 2062 if (dl_se->dl_throttled) { << 2063 hrtimer_try_to_cancel(&dl_se- << 2064 dl_se->dl_defer_armed = 0; << 2065 dl_se->dl_throttled = 0; << 2066 } << 2067 << 2068 __enqueue_dl_entity(dl_se); 1664 __enqueue_dl_entity(dl_se); 2069 } 1665 } 2070 1666 2071 static void dequeue_dl_entity(struct sched_dl !! 1667 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 2072 { 1668 { 2073 __dequeue_dl_entity(dl_se); 1669 __dequeue_dl_entity(dl_se); 2074 << 2075 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIG << 2076 struct dl_rq *dl_rq = dl_rq_o << 2077 << 2078 sub_running_bw(dl_se, dl_rq); << 2079 sub_rq_bw(dl_se, dl_rq); << 2080 } << 2081 << 2082 /* << 2083 * This check allows to start the ina << 2084 * decrease the active utilization, i << 2085 * when the task blocks and when it i << 2086 * (p->state == TASK_DEAD). We can ha << 2087 * way, because from GRUB's point of << 2088 * (the task moves from "active conte << 2089 * or "inactive") << 2090 */ << 2091 if (flags & DEQUEUE_SLEEP) << 2092 task_non_contending(dl_se); << 2093 } 1670 } 2094 1671 2095 static void enqueue_task_dl(struct rq *rq, st 1672 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2096 { 1673 { 2097 if (is_dl_boosted(&p->dl)) { 1674 if (is_dl_boosted(&p->dl)) { 2098 /* 1675 /* 2099 * Because of delays in the d 1676 * Because of delays in the detection of the overrun of a 2100 * thread's runtime, it might 1677 * thread's runtime, it might be the case that a thread 2101 * goes to sleep in a rt mute 1678 * goes to sleep in a rt mutex with negative runtime. As 2102 * a consequence, the thread 1679 * a consequence, the thread will be throttled. 2103 * 1680 * 2104 * While waiting for the mute 1681 * While waiting for the mutex, this thread can also be 2105 * boosted via PI, resulting 1682 * boosted via PI, resulting in a thread that is throttled 2106 * and boosted at the same ti 1683 * and boosted at the same time. 2107 * 1684 * 2108 * In this case, the boost ov 1685 * In this case, the boost overrides the throttle. 2109 */ 1686 */ 2110 if (p->dl.dl_throttled) { 1687 if (p->dl.dl_throttled) { 2111 /* 1688 /* 2112 * The replenish time 1689 * The replenish timer needs to be canceled. No 2113 * problem if it fire 1690 * problem if it fires concurrently: boosted threads 2114 * are ignored in dl_ 1691 * are ignored in dl_task_timer(). 2115 * << 2116 * If the timer callb << 2117 * it will eventually << 2118 */ 1692 */ 2119 if (hrtimer_try_to_ca !! 1693 hrtimer_try_to_cancel(&p->dl.dl_timer); 2120 !dl_server(&p->dl << 2121 put_task_stru << 2122 p->dl.dl_throttled = 1694 p->dl.dl_throttled = 0; 2123 } 1695 } 2124 } else if (!dl_prio(p->normal_prio)) 1696 } else if (!dl_prio(p->normal_prio)) { 2125 /* 1697 /* 2126 * Special case in which we h 1698 * Special case in which we have a !SCHED_DEADLINE task that is going 2127 * to be deboosted, but excee 1699 * to be deboosted, but exceeds its runtime while doing so. No point in 2128 * replenishing it, as it's g 1700 * replenishing it, as it's going to return back to its original 2129 * scheduling class after thi 1701 * scheduling class after this. If it has been throttled, we need to 2130 * clear the flag, otherwise 1702 * clear the flag, otherwise the task may wake up as throttled after 2131 * being boosted again with n 1703 * being boosted again with no means to replenish the runtime and clear 2132 * the throttle. 1704 * the throttle. 2133 */ 1705 */ 2134 p->dl.dl_throttled = 0; 1706 p->dl.dl_throttled = 0; 2135 if (!(flags & ENQUEUE_REPLENI 1707 if (!(flags & ENQUEUE_REPLENISH)) 2136 printk_deferred_once( 1708 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 2137 1709 task_pid_nr(p)); 2138 1710 2139 return; 1711 return; 2140 } 1712 } 2141 1713 2142 check_schedstat_required(); !! 1714 /* 2143 update_stats_wait_start_dl(dl_rq_of_s !! 1715 * Check if a constrained deadline task was activated >> 1716 * after the deadline but before the next period. >> 1717 * If that is the case, the task will be throttled and >> 1718 * the replenishment timer will be set to the next period. >> 1719 */ >> 1720 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) >> 1721 dl_check_constrained_dl(&p->dl); 2144 1722 2145 if (p->on_rq == TASK_ON_RQ_MIGRATING) !! 1723 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 2146 flags |= ENQUEUE_MIGRATING; !! 1724 add_rq_bw(&p->dl, &rq->dl); >> 1725 add_running_bw(&p->dl, &rq->dl); >> 1726 } 2147 1727 2148 enqueue_dl_entity(&p->dl, flags); !! 1728 /* >> 1729 * If p is throttled, we do not enqueue it. In fact, if it exhausted >> 1730 * its budget it needs a replenishment and, since it now is on >> 1731 * its rq, the bandwidth timer callback (which clearly has not >> 1732 * run yet) will take care of this. >> 1733 * However, the active utilization does not depend on the fact >> 1734 * that the task is on the runqueue or not (but depends on the >> 1735 * task's state - in GRUB parlance, "inactive" vs "active contending"). >> 1736 * In other words, even if a task is throttled its utilization must >> 1737 * be counted in the active utilization; hence, we need to call >> 1738 * add_running_bw(). >> 1739 */ >> 1740 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { >> 1741 if (flags & ENQUEUE_WAKEUP) >> 1742 task_contending(&p->dl, flags); 2149 1743 2150 if (dl_server(&p->dl)) << 2151 return; 1744 return; >> 1745 } >> 1746 >> 1747 check_schedstat_required(); >> 1748 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); >> 1749 >> 1750 enqueue_dl_entity(&p->dl, flags); 2152 1751 2153 if (!task_current(rq, p) && !p->dl.dl !! 1752 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 2154 enqueue_pushable_dl_task(rq, 1753 enqueue_pushable_dl_task(rq, p); 2155 } 1754 } 2156 1755 2157 static bool dequeue_task_dl(struct rq *rq, st !! 1756 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2158 { 1757 { 2159 update_curr_dl(rq); !! 1758 update_stats_dequeue_dl(&rq->dl, &p->dl, flags); >> 1759 dequeue_dl_entity(&p->dl); >> 1760 dequeue_pushable_dl_task(rq, p); >> 1761 } 2160 1762 2161 if (p->on_rq == TASK_ON_RQ_MIGRATING) !! 1763 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2162 flags |= DEQUEUE_MIGRATING; !! 1764 { >> 1765 update_curr_dl(rq); >> 1766 __dequeue_task_dl(rq, p, flags); 2163 1767 2164 dequeue_dl_entity(&p->dl, flags); !! 1768 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 2165 if (!p->dl.dl_throttled && !dl_server !! 1769 sub_running_bw(&p->dl, &rq->dl); 2166 dequeue_pushable_dl_task(rq, !! 1770 sub_rq_bw(&p->dl, &rq->dl); >> 1771 } 2167 1772 2168 return true; !! 1773 /* >> 1774 * This check allows to start the inactive timer (or to immediately >> 1775 * decrease the active utilization, if needed) in two cases: >> 1776 * when the task blocks and when it is terminating >> 1777 * (p->state == TASK_DEAD). We can handle the two cases in the same >> 1778 * way, because from GRUB's point of view the same thing is happening >> 1779 * (the task moves from "active contending" to "active non contending" >> 1780 * or "inactive") >> 1781 */ >> 1782 if (flags & DEQUEUE_SLEEP) >> 1783 task_non_contending(p); 2169 } 1784 } 2170 1785 2171 /* 1786 /* 2172 * Yield task semantic for -deadline tasks is 1787 * Yield task semantic for -deadline tasks is: 2173 * 1788 * 2174 * get off from the CPU until our next inst 1789 * get off from the CPU until our next instance, with 2175 * a new runtime. This is of little use now 1790 * a new runtime. This is of little use now, since we 2176 * don't have a bandwidth reclaiming mechan 1791 * don't have a bandwidth reclaiming mechanism. Anyway, 2177 * bandwidth reclaiming is planned for the 1792 * bandwidth reclaiming is planned for the future, and 2178 * yield_task_dl will indicate that some sp 1793 * yield_task_dl will indicate that some spare budget 2179 * is available for other task instances to 1794 * is available for other task instances to use it. 2180 */ 1795 */ 2181 static void yield_task_dl(struct rq *rq) 1796 static void yield_task_dl(struct rq *rq) 2182 { 1797 { 2183 /* 1798 /* 2184 * We make the task go to sleep until 1799 * We make the task go to sleep until its current deadline by 2185 * forcing its runtime to zero. This 1800 * forcing its runtime to zero. This way, update_curr_dl() stops 2186 * it and the bandwidth timer will wa 1801 * it and the bandwidth timer will wake it up and will give it 2187 * new scheduling parameters (thanks 1802 * new scheduling parameters (thanks to dl_yielded=1). 2188 */ 1803 */ 2189 rq->curr->dl.dl_yielded = 1; 1804 rq->curr->dl.dl_yielded = 1; 2190 1805 2191 update_rq_clock(rq); 1806 update_rq_clock(rq); 2192 update_curr_dl(rq); 1807 update_curr_dl(rq); 2193 /* 1808 /* 2194 * Tell update_rq_clock() that we've 1809 * Tell update_rq_clock() that we've just updated, 2195 * so we don't do microscopic update 1810 * so we don't do microscopic update in schedule() 2196 * and double the fastpath cost. 1811 * and double the fastpath cost. 2197 */ 1812 */ 2198 rq_clock_skip_update(rq); 1813 rq_clock_skip_update(rq); 2199 } 1814 } 2200 1815 2201 #ifdef CONFIG_SMP 1816 #ifdef CONFIG_SMP 2202 1817 2203 static inline bool dl_task_is_earliest_deadli 1818 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 2204 1819 struct rq *rq) 2205 { 1820 { 2206 return (!rq->dl.dl_nr_running || 1821 return (!rq->dl.dl_nr_running || 2207 dl_time_before(p->dl.deadline 1822 dl_time_before(p->dl.deadline, 2208 rq->dl.earlies 1823 rq->dl.earliest_dl.curr)); 2209 } 1824 } 2210 1825 2211 static int find_later_rq(struct task_struct * 1826 static int find_later_rq(struct task_struct *task); 2212 1827 2213 static int 1828 static int 2214 select_task_rq_dl(struct task_struct *p, int 1829 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 2215 { 1830 { 2216 struct task_struct *curr; 1831 struct task_struct *curr; 2217 bool select_rq; 1832 bool select_rq; 2218 struct rq *rq; 1833 struct rq *rq; 2219 1834 2220 if (!(flags & WF_TTWU)) 1835 if (!(flags & WF_TTWU)) 2221 goto out; 1836 goto out; 2222 1837 2223 rq = cpu_rq(cpu); 1838 rq = cpu_rq(cpu); 2224 1839 2225 rcu_read_lock(); 1840 rcu_read_lock(); 2226 curr = READ_ONCE(rq->curr); /* unlock 1841 curr = READ_ONCE(rq->curr); /* unlocked access */ 2227 1842 2228 /* 1843 /* 2229 * If we are dealing with a -deadline 1844 * If we are dealing with a -deadline task, we must 2230 * decide where to wake it up. 1845 * decide where to wake it up. 2231 * If it has a later deadline and the 1846 * If it has a later deadline and the current task 2232 * on this rq can't move (provided th 1847 * on this rq can't move (provided the waking task 2233 * can!) we prefer to send it somewhe 1848 * can!) we prefer to send it somewhere else. On the 2234 * other hand, if it has a shorter de 1849 * other hand, if it has a shorter deadline, we 2235 * try to make it stay here, it might 1850 * try to make it stay here, it might be important. 2236 */ 1851 */ 2237 select_rq = unlikely(dl_task(curr)) & 1852 select_rq = unlikely(dl_task(curr)) && 2238 (curr->nr_cpus_allowed < 1853 (curr->nr_cpus_allowed < 2 || 2239 !dl_entity_preempt(&p->d 1854 !dl_entity_preempt(&p->dl, &curr->dl)) && 2240 p->nr_cpus_allowed > 1; 1855 p->nr_cpus_allowed > 1; 2241 1856 2242 /* 1857 /* 2243 * Take the capacity of the CPU into 1858 * Take the capacity of the CPU into account to 2244 * ensure it fits the requirement of 1859 * ensure it fits the requirement of the task. 2245 */ 1860 */ 2246 if (sched_asym_cpucap_active()) 1861 if (sched_asym_cpucap_active()) 2247 select_rq |= !dl_task_fits_ca 1862 select_rq |= !dl_task_fits_capacity(p, cpu); 2248 1863 2249 if (select_rq) { 1864 if (select_rq) { 2250 int target = find_later_rq(p) 1865 int target = find_later_rq(p); 2251 1866 2252 if (target != -1 && 1867 if (target != -1 && 2253 dl_task_is_earliest_deadl 1868 dl_task_is_earliest_deadline(p, cpu_rq(target))) 2254 cpu = target; 1869 cpu = target; 2255 } 1870 } 2256 rcu_read_unlock(); 1871 rcu_read_unlock(); 2257 1872 2258 out: 1873 out: 2259 return cpu; 1874 return cpu; 2260 } 1875 } 2261 1876 2262 static void migrate_task_rq_dl(struct task_st 1877 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 2263 { 1878 { 2264 struct rq_flags rf; 1879 struct rq_flags rf; 2265 struct rq *rq; 1880 struct rq *rq; 2266 1881 2267 if (READ_ONCE(p->__state) != TASK_WAK 1882 if (READ_ONCE(p->__state) != TASK_WAKING) 2268 return; 1883 return; 2269 1884 2270 rq = task_rq(p); 1885 rq = task_rq(p); 2271 /* 1886 /* 2272 * Since p->state == TASK_WAKING, set 1887 * Since p->state == TASK_WAKING, set_task_cpu() has been called 2273 * from try_to_wake_up(). Hence, p->p 1888 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 2274 * rq->lock is not... So, lock it 1889 * rq->lock is not... So, lock it 2275 */ 1890 */ 2276 rq_lock(rq, &rf); 1891 rq_lock(rq, &rf); 2277 if (p->dl.dl_non_contending) { 1892 if (p->dl.dl_non_contending) { 2278 update_rq_clock(rq); 1893 update_rq_clock(rq); 2279 sub_running_bw(&p->dl, &rq->d 1894 sub_running_bw(&p->dl, &rq->dl); 2280 p->dl.dl_non_contending = 0; 1895 p->dl.dl_non_contending = 0; 2281 /* 1896 /* 2282 * If the timer handler is cu 1897 * If the timer handler is currently running and the 2283 * timer cannot be canceled, 1898 * timer cannot be canceled, inactive_task_timer() 2284 * will see that dl_not_conte 1899 * will see that dl_not_contending is not set, and 2285 * will not touch the rq's ac 1900 * will not touch the rq's active utilization, 2286 * so we are still safe. 1901 * so we are still safe. 2287 */ 1902 */ 2288 if (hrtimer_try_to_cancel(&p- 1903 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2289 put_task_struct(p); 1904 put_task_struct(p); 2290 } 1905 } 2291 sub_rq_bw(&p->dl, &rq->dl); 1906 sub_rq_bw(&p->dl, &rq->dl); 2292 rq_unlock(rq, &rf); 1907 rq_unlock(rq, &rf); 2293 } 1908 } 2294 1909 2295 static void check_preempt_equal_dl(struct rq 1910 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 2296 { 1911 { 2297 /* 1912 /* 2298 * Current can't be migrated, useless 1913 * Current can't be migrated, useless to reschedule, 2299 * let's hope p can move out. 1914 * let's hope p can move out. 2300 */ 1915 */ 2301 if (rq->curr->nr_cpus_allowed == 1 || 1916 if (rq->curr->nr_cpus_allowed == 1 || 2302 !cpudl_find(&rq->rd->cpudl, rq->c 1917 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 2303 return; 1918 return; 2304 1919 2305 /* 1920 /* 2306 * p is migratable, so let's not sche 1921 * p is migratable, so let's not schedule it and 2307 * see if it is pushed or pulled some 1922 * see if it is pushed or pulled somewhere else. 2308 */ 1923 */ 2309 if (p->nr_cpus_allowed != 1 && 1924 if (p->nr_cpus_allowed != 1 && 2310 cpudl_find(&rq->rd->cpudl, p, NUL 1925 cpudl_find(&rq->rd->cpudl, p, NULL)) 2311 return; 1926 return; 2312 1927 2313 resched_curr(rq); 1928 resched_curr(rq); 2314 } 1929 } 2315 1930 2316 static int balance_dl(struct rq *rq, struct t 1931 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2317 { 1932 { 2318 if (!on_dl_rq(&p->dl) && need_pull_dl 1933 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2319 /* 1934 /* 2320 * This is OK, because curren 1935 * This is OK, because current is on_cpu, which avoids it being 2321 * picked for load-balance an 1936 * picked for load-balance and preemption/IRQs are still 2322 * disabled avoiding further 1937 * disabled avoiding further scheduler activity on it and we've 2323 * not yet started the pickin 1938 * not yet started the picking loop. 2324 */ 1939 */ 2325 rq_unpin_lock(rq, rf); 1940 rq_unpin_lock(rq, rf); 2326 pull_dl_task(rq); 1941 pull_dl_task(rq); 2327 rq_repin_lock(rq, rf); 1942 rq_repin_lock(rq, rf); 2328 } 1943 } 2329 1944 2330 return sched_stop_runnable(rq) || sch 1945 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2331 } 1946 } 2332 #endif /* CONFIG_SMP */ 1947 #endif /* CONFIG_SMP */ 2333 1948 2334 /* 1949 /* 2335 * Only called when both the current and waki 1950 * Only called when both the current and waking task are -deadline 2336 * tasks. 1951 * tasks. 2337 */ 1952 */ 2338 static void wakeup_preempt_dl(struct rq *rq, !! 1953 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 2339 int flags) 1954 int flags) 2340 { 1955 { 2341 if (dl_entity_preempt(&p->dl, &rq->cu 1956 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 2342 resched_curr(rq); 1957 resched_curr(rq); 2343 return; 1958 return; 2344 } 1959 } 2345 1960 2346 #ifdef CONFIG_SMP 1961 #ifdef CONFIG_SMP 2347 /* 1962 /* 2348 * In the unlikely case current and p 1963 * In the unlikely case current and p have the same deadline 2349 * let us try to decide what's the be 1964 * let us try to decide what's the best thing to do... 2350 */ 1965 */ 2351 if ((p->dl.deadline == rq->curr->dl.d 1966 if ((p->dl.deadline == rq->curr->dl.deadline) && 2352 !test_tsk_need_resched(rq->curr)) 1967 !test_tsk_need_resched(rq->curr)) 2353 check_preempt_equal_dl(rq, p) 1968 check_preempt_equal_dl(rq, p); 2354 #endif /* CONFIG_SMP */ 1969 #endif /* CONFIG_SMP */ 2355 } 1970 } 2356 1971 2357 #ifdef CONFIG_SCHED_HRTICK 1972 #ifdef CONFIG_SCHED_HRTICK 2358 static void start_hrtick_dl(struct rq *rq, st !! 1973 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 2359 { 1974 { 2360 hrtick_start(rq, dl_se->runtime); !! 1975 hrtick_start(rq, p->dl.runtime); 2361 } 1976 } 2362 #else /* !CONFIG_SCHED_HRTICK */ 1977 #else /* !CONFIG_SCHED_HRTICK */ 2363 static void start_hrtick_dl(struct rq *rq, st !! 1978 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 2364 { 1979 { 2365 } 1980 } 2366 #endif 1981 #endif 2367 1982 2368 static void set_next_task_dl(struct rq *rq, s 1983 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2369 { 1984 { 2370 struct sched_dl_entity *dl_se = &p->d 1985 struct sched_dl_entity *dl_se = &p->dl; 2371 struct dl_rq *dl_rq = &rq->dl; 1986 struct dl_rq *dl_rq = &rq->dl; 2372 1987 2373 p->se.exec_start = rq_clock_task(rq); 1988 p->se.exec_start = rq_clock_task(rq); 2374 if (on_dl_rq(&p->dl)) 1989 if (on_dl_rq(&p->dl)) 2375 update_stats_wait_end_dl(dl_r 1990 update_stats_wait_end_dl(dl_rq, dl_se); 2376 1991 2377 /* You can't push away the running ta 1992 /* You can't push away the running task */ 2378 dequeue_pushable_dl_task(rq, p); 1993 dequeue_pushable_dl_task(rq, p); 2379 1994 2380 if (!first) 1995 if (!first) 2381 return; 1996 return; 2382 1997 >> 1998 if (hrtick_enabled_dl(rq)) >> 1999 start_hrtick_dl(rq, p); >> 2000 2383 if (rq->curr->sched_class != &dl_sche 2001 if (rq->curr->sched_class != &dl_sched_class) 2384 update_dl_rq_load_avg(rq_cloc 2002 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2385 2003 2386 deadline_queue_push_tasks(rq); 2004 deadline_queue_push_tasks(rq); 2387 << 2388 if (hrtick_enabled_dl(rq)) << 2389 start_hrtick_dl(rq, &p->dl); << 2390 } 2005 } 2391 2006 2392 static struct sched_dl_entity *pick_next_dl_e 2007 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2393 { 2008 { 2394 struct rb_node *left = rb_first_cache 2009 struct rb_node *left = rb_first_cached(&dl_rq->root); 2395 2010 2396 if (!left) 2011 if (!left) 2397 return NULL; 2012 return NULL; 2398 2013 2399 return __node_2_dle(left); 2014 return __node_2_dle(left); 2400 } 2015 } 2401 2016 2402 /* !! 2017 static struct task_struct *pick_task_dl(struct rq *rq) 2403 * __pick_next_task_dl - Helper to pick the n << 2404 * @rq: The runqueue to pick the next task fr << 2405 */ << 2406 static struct task_struct *__pick_task_dl(str << 2407 { 2018 { 2408 struct sched_dl_entity *dl_se; 2019 struct sched_dl_entity *dl_se; 2409 struct dl_rq *dl_rq = &rq->dl; 2020 struct dl_rq *dl_rq = &rq->dl; 2410 struct task_struct *p; 2021 struct task_struct *p; 2411 2022 2412 again: << 2413 if (!sched_dl_runnable(rq)) 2023 if (!sched_dl_runnable(rq)) 2414 return NULL; 2024 return NULL; 2415 2025 2416 dl_se = pick_next_dl_entity(dl_rq); 2026 dl_se = pick_next_dl_entity(dl_rq); 2417 WARN_ON_ONCE(!dl_se); 2027 WARN_ON_ONCE(!dl_se); 2418 !! 2028 p = dl_task_of(dl_se); 2419 if (dl_server(dl_se)) { << 2420 p = dl_se->server_pick_task(d << 2421 if (!p) { << 2422 dl_se->dl_yielded = 1 << 2423 update_curr_dl_se(rq, << 2424 goto again; << 2425 } << 2426 rq->dl_server = dl_se; << 2427 } else { << 2428 p = dl_task_of(dl_se); << 2429 } << 2430 2029 2431 return p; 2030 return p; 2432 } 2031 } 2433 2032 2434 static struct task_struct *pick_task_dl(struc !! 2033 static struct task_struct *pick_next_task_dl(struct rq *rq) 2435 { 2034 { 2436 return __pick_task_dl(rq); !! 2035 struct task_struct *p; >> 2036 >> 2037 p = pick_task_dl(rq); >> 2038 if (p) >> 2039 set_next_task_dl(rq, p, true); >> 2040 >> 2041 return p; 2437 } 2042 } 2438 2043 2439 static void put_prev_task_dl(struct rq *rq, s !! 2044 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 2440 { 2045 { 2441 struct sched_dl_entity *dl_se = &p->d 2046 struct sched_dl_entity *dl_se = &p->dl; 2442 struct dl_rq *dl_rq = &rq->dl; 2047 struct dl_rq *dl_rq = &rq->dl; 2443 2048 2444 if (on_dl_rq(&p->dl)) 2049 if (on_dl_rq(&p->dl)) 2445 update_stats_wait_start_dl(dl 2050 update_stats_wait_start_dl(dl_rq, dl_se); 2446 2051 2447 update_curr_dl(rq); 2052 update_curr_dl(rq); 2448 2053 2449 update_dl_rq_load_avg(rq_clock_pelt(r 2054 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2450 if (on_dl_rq(&p->dl) && p->nr_cpus_al 2055 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2451 enqueue_pushable_dl_task(rq, 2056 enqueue_pushable_dl_task(rq, p); 2452 } 2057 } 2453 2058 2454 /* 2059 /* 2455 * scheduler tick hitting a task of our sched 2060 * scheduler tick hitting a task of our scheduling class. 2456 * 2061 * 2457 * NOTE: This function can be called remotely 2062 * NOTE: This function can be called remotely by the tick offload that 2458 * goes along full dynticks. Therefore no loc 2063 * goes along full dynticks. Therefore no local assumption can be made 2459 * and everything must be accessed through th 2064 * and everything must be accessed through the @rq and @curr passed in 2460 * parameters. 2065 * parameters. 2461 */ 2066 */ 2462 static void task_tick_dl(struct rq *rq, struc 2067 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2463 { 2068 { 2464 update_curr_dl(rq); 2069 update_curr_dl(rq); 2465 2070 2466 update_dl_rq_load_avg(rq_clock_pelt(r 2071 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2467 /* 2072 /* 2468 * Even when we have runtime, update_ 2073 * Even when we have runtime, update_curr_dl() might have resulted in us 2469 * not being the leftmost task anymor 2074 * not being the leftmost task anymore. In that case NEED_RESCHED will 2470 * be set and schedule() will start a 2075 * be set and schedule() will start a new hrtick for the next task. 2471 */ 2076 */ 2472 if (hrtick_enabled_dl(rq) && queued & 2077 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2473 is_leftmost(&p->dl, &rq->dl)) !! 2078 is_leftmost(p, &rq->dl)) 2474 start_hrtick_dl(rq, &p->dl); !! 2079 start_hrtick_dl(rq, p); 2475 } 2080 } 2476 2081 2477 static void task_fork_dl(struct task_struct * 2082 static void task_fork_dl(struct task_struct *p) 2478 { 2083 { 2479 /* 2084 /* 2480 * SCHED_DEADLINE tasks cannot fork a 2085 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2481 * sched_fork() 2086 * sched_fork() 2482 */ 2087 */ 2483 } 2088 } 2484 2089 2485 #ifdef CONFIG_SMP 2090 #ifdef CONFIG_SMP 2486 2091 2487 /* Only try algorithms three times */ 2092 /* Only try algorithms three times */ 2488 #define DL_MAX_TRIES 3 2093 #define DL_MAX_TRIES 3 2489 2094 2490 static int pick_dl_task(struct rq *rq, struct 2095 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 2491 { 2096 { 2492 if (!task_on_cpu(rq, p) && 2097 if (!task_on_cpu(rq, p) && 2493 cpumask_test_cpu(cpu, &p->cpus_ma 2098 cpumask_test_cpu(cpu, &p->cpus_mask)) 2494 return 1; 2099 return 1; 2495 return 0; 2100 return 0; 2496 } 2101 } 2497 2102 2498 /* 2103 /* 2499 * Return the earliest pushable rq's task, wh 2104 * Return the earliest pushable rq's task, which is suitable to be executed 2500 * on the CPU, NULL otherwise: 2105 * on the CPU, NULL otherwise: 2501 */ 2106 */ 2502 static struct task_struct *pick_earliest_push 2107 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2503 { 2108 { 2504 struct task_struct *p = NULL; 2109 struct task_struct *p = NULL; 2505 struct rb_node *next_node; 2110 struct rb_node *next_node; 2506 2111 2507 if (!has_pushable_dl_tasks(rq)) 2112 if (!has_pushable_dl_tasks(rq)) 2508 return NULL; 2113 return NULL; 2509 2114 2510 next_node = rb_first_cached(&rq->dl.p 2115 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2511 2116 2512 next_node: 2117 next_node: 2513 if (next_node) { 2118 if (next_node) { 2514 p = __node_2_pdl(next_node); 2119 p = __node_2_pdl(next_node); 2515 2120 2516 if (pick_dl_task(rq, p, cpu)) 2121 if (pick_dl_task(rq, p, cpu)) 2517 return p; 2122 return p; 2518 2123 2519 next_node = rb_next(next_node 2124 next_node = rb_next(next_node); 2520 goto next_node; 2125 goto next_node; 2521 } 2126 } 2522 2127 2523 return NULL; 2128 return NULL; 2524 } 2129 } 2525 2130 2526 static DEFINE_PER_CPU(cpumask_var_t, local_cp 2131 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2527 2132 2528 static int find_later_rq(struct task_struct * 2133 static int find_later_rq(struct task_struct *task) 2529 { 2134 { 2530 struct sched_domain *sd; 2135 struct sched_domain *sd; 2531 struct cpumask *later_mask = this_cpu 2136 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2532 int this_cpu = smp_processor_id(); 2137 int this_cpu = smp_processor_id(); 2533 int cpu = task_cpu(task); 2138 int cpu = task_cpu(task); 2534 2139 2535 /* Make sure the mask is initialized 2140 /* Make sure the mask is initialized first */ 2536 if (unlikely(!later_mask)) 2141 if (unlikely(!later_mask)) 2537 return -1; 2142 return -1; 2538 2143 2539 if (task->nr_cpus_allowed == 1) 2144 if (task->nr_cpus_allowed == 1) 2540 return -1; 2145 return -1; 2541 2146 2542 /* 2147 /* 2543 * We have to consider system topolog 2148 * We have to consider system topology and task affinity 2544 * first, then we can look for a suit 2149 * first, then we can look for a suitable CPU. 2545 */ 2150 */ 2546 if (!cpudl_find(&task_rq(task)->rd->c 2151 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2547 return -1; 2152 return -1; 2548 2153 2549 /* 2154 /* 2550 * If we are here, some targets have 2155 * If we are here, some targets have been found, including 2551 * the most suitable which is, among 2156 * the most suitable which is, among the runqueues where the 2552 * current tasks have later deadlines 2157 * current tasks have later deadlines than the task's one, the 2553 * rq with the latest possible one. 2158 * rq with the latest possible one. 2554 * 2159 * 2555 * Now we check how well this matches 2160 * Now we check how well this matches with task's 2556 * affinity and system topology. 2161 * affinity and system topology. 2557 * 2162 * 2558 * The last CPU where the task run is 2163 * The last CPU where the task run is our first 2559 * guess, since it is most likely cac 2164 * guess, since it is most likely cache-hot there. 2560 */ 2165 */ 2561 if (cpumask_test_cpu(cpu, later_mask) 2166 if (cpumask_test_cpu(cpu, later_mask)) 2562 return cpu; 2167 return cpu; 2563 /* 2168 /* 2564 * Check if this_cpu is to be skipped 2169 * Check if this_cpu is to be skipped (i.e., it is 2565 * not in the mask) or not. 2170 * not in the mask) or not. 2566 */ 2171 */ 2567 if (!cpumask_test_cpu(this_cpu, later 2172 if (!cpumask_test_cpu(this_cpu, later_mask)) 2568 this_cpu = -1; 2173 this_cpu = -1; 2569 2174 2570 rcu_read_lock(); 2175 rcu_read_lock(); 2571 for_each_domain(cpu, sd) { 2176 for_each_domain(cpu, sd) { 2572 if (sd->flags & SD_WAKE_AFFIN 2177 if (sd->flags & SD_WAKE_AFFINE) { 2573 int best_cpu; 2178 int best_cpu; 2574 2179 2575 /* 2180 /* 2576 * If possible, preem 2181 * If possible, preempting this_cpu is 2577 * cheaper than migra 2182 * cheaper than migrating. 2578 */ 2183 */ 2579 if (this_cpu != -1 && 2184 if (this_cpu != -1 && 2580 cpumask_test_cpu( 2185 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2581 rcu_read_unlo 2186 rcu_read_unlock(); 2582 return this_c 2187 return this_cpu; 2583 } 2188 } 2584 2189 2585 best_cpu = cpumask_an 2190 best_cpu = cpumask_any_and_distribute(later_mask, 2586 2191 sched_domain_span(sd)); 2587 /* 2192 /* 2588 * Last chance: if a 2193 * Last chance: if a CPU being in both later_mask 2589 * and current sd spa 2194 * and current sd span is valid, that becomes our 2590 * choice. Of course, 2195 * choice. Of course, the latest possible CPU is 2591 * already under cons 2196 * already under consideration through later_mask. 2592 */ 2197 */ 2593 if (best_cpu < nr_cpu 2198 if (best_cpu < nr_cpu_ids) { 2594 rcu_read_unlo 2199 rcu_read_unlock(); 2595 return best_c 2200 return best_cpu; 2596 } 2201 } 2597 } 2202 } 2598 } 2203 } 2599 rcu_read_unlock(); 2204 rcu_read_unlock(); 2600 2205 2601 /* 2206 /* 2602 * At this point, all our guesses fai 2207 * At this point, all our guesses failed, we just return 2603 * 'something', and let the caller so 2208 * 'something', and let the caller sort the things out. 2604 */ 2209 */ 2605 if (this_cpu != -1) 2210 if (this_cpu != -1) 2606 return this_cpu; 2211 return this_cpu; 2607 2212 2608 cpu = cpumask_any_distribute(later_ma 2213 cpu = cpumask_any_distribute(later_mask); 2609 if (cpu < nr_cpu_ids) 2214 if (cpu < nr_cpu_ids) 2610 return cpu; 2215 return cpu; 2611 2216 2612 return -1; 2217 return -1; 2613 } 2218 } 2614 2219 2615 /* Locks the rq it finds */ 2220 /* Locks the rq it finds */ 2616 static struct rq *find_lock_later_rq(struct t 2221 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2617 { 2222 { 2618 struct rq *later_rq = NULL; 2223 struct rq *later_rq = NULL; 2619 int tries; 2224 int tries; 2620 int cpu; 2225 int cpu; 2621 2226 2622 for (tries = 0; tries < DL_MAX_TRIES; 2227 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2623 cpu = find_later_rq(task); 2228 cpu = find_later_rq(task); 2624 2229 2625 if ((cpu == -1) || (cpu == rq 2230 if ((cpu == -1) || (cpu == rq->cpu)) 2626 break; 2231 break; 2627 2232 2628 later_rq = cpu_rq(cpu); 2233 later_rq = cpu_rq(cpu); 2629 2234 2630 if (!dl_task_is_earliest_dead 2235 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2631 /* 2236 /* 2632 * Target rq has task 2237 * Target rq has tasks of equal or earlier deadline, 2633 * retrying does not 2238 * retrying does not release any lock and is unlikely 2634 * to yield a differe 2239 * to yield a different result. 2635 */ 2240 */ 2636 later_rq = NULL; 2241 later_rq = NULL; 2637 break; 2242 break; 2638 } 2243 } 2639 2244 2640 /* Retry if something changed 2245 /* Retry if something changed. */ 2641 if (double_lock_balance(rq, l 2246 if (double_lock_balance(rq, later_rq)) { 2642 if (unlikely(task_rq( 2247 if (unlikely(task_rq(task) != rq || 2643 !cpumask 2248 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2644 task_on_ 2249 task_on_cpu(rq, task) || 2645 !dl_task 2250 !dl_task(task) || 2646 is_migra 2251 is_migration_disabled(task) || 2647 !task_on 2252 !task_on_rq_queued(task))) { 2648 double_unlock 2253 double_unlock_balance(rq, later_rq); 2649 later_rq = NU 2254 later_rq = NULL; 2650 break; 2255 break; 2651 } 2256 } 2652 } 2257 } 2653 2258 2654 /* 2259 /* 2655 * If the rq we found has no 2260 * If the rq we found has no -deadline task, or 2656 * its earliest one has a lat 2261 * its earliest one has a later deadline than our 2657 * task, the rq is a good one 2262 * task, the rq is a good one. 2658 */ 2263 */ 2659 if (dl_task_is_earliest_deadl 2264 if (dl_task_is_earliest_deadline(task, later_rq)) 2660 break; 2265 break; 2661 2266 2662 /* Otherwise we try again. */ 2267 /* Otherwise we try again. */ 2663 double_unlock_balance(rq, lat 2268 double_unlock_balance(rq, later_rq); 2664 later_rq = NULL; 2269 later_rq = NULL; 2665 } 2270 } 2666 2271 2667 return later_rq; 2272 return later_rq; 2668 } 2273 } 2669 2274 2670 static struct task_struct *pick_next_pushable 2275 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2671 { 2276 { 2672 struct task_struct *p; 2277 struct task_struct *p; 2673 2278 2674 if (!has_pushable_dl_tasks(rq)) 2279 if (!has_pushable_dl_tasks(rq)) 2675 return NULL; 2280 return NULL; 2676 2281 2677 p = __node_2_pdl(rb_first_cached(&rq- 2282 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2678 2283 2679 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2284 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2680 WARN_ON_ONCE(task_current(rq, p)); 2285 WARN_ON_ONCE(task_current(rq, p)); 2681 WARN_ON_ONCE(p->nr_cpus_allowed <= 1) 2286 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2682 2287 2683 WARN_ON_ONCE(!task_on_rq_queued(p)); 2288 WARN_ON_ONCE(!task_on_rq_queued(p)); 2684 WARN_ON_ONCE(!dl_task(p)); 2289 WARN_ON_ONCE(!dl_task(p)); 2685 2290 2686 return p; 2291 return p; 2687 } 2292 } 2688 2293 2689 /* 2294 /* 2690 * See if the non running -deadline tasks on 2295 * See if the non running -deadline tasks on this rq 2691 * can be sent to some other CPU where they c 2296 * can be sent to some other CPU where they can preempt 2692 * and start executing. 2297 * and start executing. 2693 */ 2298 */ 2694 static int push_dl_task(struct rq *rq) 2299 static int push_dl_task(struct rq *rq) 2695 { 2300 { 2696 struct task_struct *next_task; 2301 struct task_struct *next_task; 2697 struct rq *later_rq; 2302 struct rq *later_rq; 2698 int ret = 0; 2303 int ret = 0; 2699 2304 >> 2305 if (!rq->dl.overloaded) >> 2306 return 0; >> 2307 2700 next_task = pick_next_pushable_dl_tas 2308 next_task = pick_next_pushable_dl_task(rq); 2701 if (!next_task) 2309 if (!next_task) 2702 return 0; 2310 return 0; 2703 2311 2704 retry: 2312 retry: 2705 /* 2313 /* 2706 * If next_task preempts rq->curr, an 2314 * If next_task preempts rq->curr, and rq->curr 2707 * can move away, it makes sense to j 2315 * can move away, it makes sense to just reschedule 2708 * without going further in pushing n 2316 * without going further in pushing next_task. 2709 */ 2317 */ 2710 if (dl_task(rq->curr) && 2318 if (dl_task(rq->curr) && 2711 dl_time_before(next_task->dl.dead 2319 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2712 rq->curr->nr_cpus_allowed > 1) { 2320 rq->curr->nr_cpus_allowed > 1) { 2713 resched_curr(rq); 2321 resched_curr(rq); 2714 return 0; 2322 return 0; 2715 } 2323 } 2716 2324 2717 if (is_migration_disabled(next_task)) 2325 if (is_migration_disabled(next_task)) 2718 return 0; 2326 return 0; 2719 2327 2720 if (WARN_ON(next_task == rq->curr)) 2328 if (WARN_ON(next_task == rq->curr)) 2721 return 0; 2329 return 0; 2722 2330 2723 /* We might release rq lock */ 2331 /* We might release rq lock */ 2724 get_task_struct(next_task); 2332 get_task_struct(next_task); 2725 2333 2726 /* Will lock the rq it'll find */ 2334 /* Will lock the rq it'll find */ 2727 later_rq = find_lock_later_rq(next_ta 2335 later_rq = find_lock_later_rq(next_task, rq); 2728 if (!later_rq) { 2336 if (!later_rq) { 2729 struct task_struct *task; 2337 struct task_struct *task; 2730 2338 2731 /* 2339 /* 2732 * We must check all this aga 2340 * We must check all this again, since 2733 * find_lock_later_rq release 2341 * find_lock_later_rq releases rq->lock and it is 2734 * then possible that next_ta 2342 * then possible that next_task has migrated. 2735 */ 2343 */ 2736 task = pick_next_pushable_dl_ 2344 task = pick_next_pushable_dl_task(rq); 2737 if (task == next_task) { 2345 if (task == next_task) { 2738 /* 2346 /* 2739 * The task is still 2347 * The task is still there. We don't try 2740 * again, some other 2348 * again, some other CPU will pull it when ready. 2741 */ 2349 */ 2742 goto out; 2350 goto out; 2743 } 2351 } 2744 2352 2745 if (!task) 2353 if (!task) 2746 /* No more tasks */ 2354 /* No more tasks */ 2747 goto out; 2355 goto out; 2748 2356 2749 put_task_struct(next_task); 2357 put_task_struct(next_task); 2750 next_task = task; 2358 next_task = task; 2751 goto retry; 2359 goto retry; 2752 } 2360 } 2753 2361 2754 deactivate_task(rq, next_task, 0); 2362 deactivate_task(rq, next_task, 0); 2755 set_task_cpu(next_task, later_rq->cpu 2363 set_task_cpu(next_task, later_rq->cpu); 2756 activate_task(later_rq, next_task, 0) 2364 activate_task(later_rq, next_task, 0); 2757 ret = 1; 2365 ret = 1; 2758 2366 2759 resched_curr(later_rq); 2367 resched_curr(later_rq); 2760 2368 2761 double_unlock_balance(rq, later_rq); 2369 double_unlock_balance(rq, later_rq); 2762 2370 2763 out: 2371 out: 2764 put_task_struct(next_task); 2372 put_task_struct(next_task); 2765 2373 2766 return ret; 2374 return ret; 2767 } 2375 } 2768 2376 2769 static void push_dl_tasks(struct rq *rq) 2377 static void push_dl_tasks(struct rq *rq) 2770 { 2378 { 2771 /* push_dl_task() will return true if 2379 /* push_dl_task() will return true if it moved a -deadline task */ 2772 while (push_dl_task(rq)) 2380 while (push_dl_task(rq)) 2773 ; 2381 ; 2774 } 2382 } 2775 2383 2776 static void pull_dl_task(struct rq *this_rq) 2384 static void pull_dl_task(struct rq *this_rq) 2777 { 2385 { 2778 int this_cpu = this_rq->cpu, cpu; 2386 int this_cpu = this_rq->cpu, cpu; 2779 struct task_struct *p, *push_task; 2387 struct task_struct *p, *push_task; 2780 bool resched = false; 2388 bool resched = false; 2781 struct rq *src_rq; 2389 struct rq *src_rq; 2782 u64 dmin = LONG_MAX; 2390 u64 dmin = LONG_MAX; 2783 2391 2784 if (likely(!dl_overloaded(this_rq))) 2392 if (likely(!dl_overloaded(this_rq))) 2785 return; 2393 return; 2786 2394 2787 /* 2395 /* 2788 * Match the barrier from dl_set_over 2396 * Match the barrier from dl_set_overloaded; this guarantees that if we 2789 * see overloaded we must also see th 2397 * see overloaded we must also see the dlo_mask bit. 2790 */ 2398 */ 2791 smp_rmb(); 2399 smp_rmb(); 2792 2400 2793 for_each_cpu(cpu, this_rq->rd->dlo_ma 2401 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2794 if (this_cpu == cpu) 2402 if (this_cpu == cpu) 2795 continue; 2403 continue; 2796 2404 2797 src_rq = cpu_rq(cpu); 2405 src_rq = cpu_rq(cpu); 2798 2406 2799 /* 2407 /* 2800 * It looks racy, and it is! !! 2408 * It looks racy, abd it is! However, as in sched_rt.c, 2801 * we are fine with this. 2409 * we are fine with this. 2802 */ 2410 */ 2803 if (this_rq->dl.dl_nr_running 2411 if (this_rq->dl.dl_nr_running && 2804 dl_time_before(this_rq->d 2412 dl_time_before(this_rq->dl.earliest_dl.curr, 2805 src_rq->dl 2413 src_rq->dl.earliest_dl.next)) 2806 continue; 2414 continue; 2807 2415 2808 /* Might drop this_rq->lock * 2416 /* Might drop this_rq->lock */ 2809 push_task = NULL; 2417 push_task = NULL; 2810 double_lock_balance(this_rq, 2418 double_lock_balance(this_rq, src_rq); 2811 2419 2812 /* 2420 /* 2813 * If there are no more pulla 2421 * If there are no more pullable tasks on the 2814 * rq, we're done with it. 2422 * rq, we're done with it. 2815 */ 2423 */ 2816 if (src_rq->dl.dl_nr_running 2424 if (src_rq->dl.dl_nr_running <= 1) 2817 goto skip; 2425 goto skip; 2818 2426 2819 p = pick_earliest_pushable_dl 2427 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2820 2428 2821 /* 2429 /* 2822 * We found a task to be pull 2430 * We found a task to be pulled if: 2823 * - it preempts our current 2431 * - it preempts our current (if there's one), 2824 * - it will preempt the las 2432 * - it will preempt the last one we pulled (if any). 2825 */ 2433 */ 2826 if (p && dl_time_before(p->dl 2434 if (p && dl_time_before(p->dl.deadline, dmin) && 2827 dl_task_is_earliest_deadl 2435 dl_task_is_earliest_deadline(p, this_rq)) { 2828 WARN_ON(p == src_rq-> 2436 WARN_ON(p == src_rq->curr); 2829 WARN_ON(!task_on_rq_q 2437 WARN_ON(!task_on_rq_queued(p)); 2830 2438 2831 /* 2439 /* 2832 * Then we pull iff p 2440 * Then we pull iff p has actually an earlier 2833 * deadline than the 2441 * deadline than the current task of its runqueue. 2834 */ 2442 */ 2835 if (dl_time_before(p- 2443 if (dl_time_before(p->dl.deadline, 2836 sr 2444 src_rq->curr->dl.deadline)) 2837 goto skip; 2445 goto skip; 2838 2446 2839 if (is_migration_disa 2447 if (is_migration_disabled(p)) { 2840 push_task = g 2448 push_task = get_push_task(src_rq); 2841 } else { 2449 } else { 2842 deactivate_ta 2450 deactivate_task(src_rq, p, 0); 2843 set_task_cpu( 2451 set_task_cpu(p, this_cpu); 2844 activate_task 2452 activate_task(this_rq, p, 0); 2845 dmin = p->dl. 2453 dmin = p->dl.deadline; 2846 resched = tru 2454 resched = true; 2847 } 2455 } 2848 2456 2849 /* Is there any other 2457 /* Is there any other task even earlier? */ 2850 } 2458 } 2851 skip: 2459 skip: 2852 double_unlock_balance(this_rq 2460 double_unlock_balance(this_rq, src_rq); 2853 2461 2854 if (push_task) { 2462 if (push_task) { 2855 preempt_disable(); 2463 preempt_disable(); 2856 raw_spin_rq_unlock(th 2464 raw_spin_rq_unlock(this_rq); 2857 stop_one_cpu_nowait(s 2465 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2858 p 2466 push_task, &src_rq->push_work); 2859 preempt_enable(); 2467 preempt_enable(); 2860 raw_spin_rq_lock(this 2468 raw_spin_rq_lock(this_rq); 2861 } 2469 } 2862 } 2470 } 2863 2471 2864 if (resched) 2472 if (resched) 2865 resched_curr(this_rq); 2473 resched_curr(this_rq); 2866 } 2474 } 2867 2475 2868 /* 2476 /* 2869 * Since the task is not running and a resche 2477 * Since the task is not running and a reschedule is not going to happen 2870 * anytime soon on its runqueue, we try pushi 2478 * anytime soon on its runqueue, we try pushing it away now. 2871 */ 2479 */ 2872 static void task_woken_dl(struct rq *rq, stru 2480 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2873 { 2481 { 2874 if (!task_on_cpu(rq, p) && 2482 if (!task_on_cpu(rq, p) && 2875 !test_tsk_need_resched(rq->curr) 2483 !test_tsk_need_resched(rq->curr) && 2876 p->nr_cpus_allowed > 1 && 2484 p->nr_cpus_allowed > 1 && 2877 dl_task(rq->curr) && 2485 dl_task(rq->curr) && 2878 (rq->curr->nr_cpus_allowed < 2 || 2486 (rq->curr->nr_cpus_allowed < 2 || 2879 !dl_entity_preempt(&p->dl, &rq-> 2487 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2880 push_dl_tasks(rq); 2488 push_dl_tasks(rq); 2881 } 2489 } 2882 } 2490 } 2883 2491 2884 static void set_cpus_allowed_dl(struct task_s 2492 static void set_cpus_allowed_dl(struct task_struct *p, 2885 struct affini !! 2493 const struct cpumask *new_mask, >> 2494 u32 flags) 2886 { 2495 { 2887 struct root_domain *src_rd; 2496 struct root_domain *src_rd; 2888 struct rq *rq; 2497 struct rq *rq; 2889 2498 2890 WARN_ON_ONCE(!dl_task(p)); 2499 WARN_ON_ONCE(!dl_task(p)); 2891 2500 2892 rq = task_rq(p); 2501 rq = task_rq(p); 2893 src_rd = rq->rd; 2502 src_rd = rq->rd; 2894 /* 2503 /* 2895 * Migrating a SCHED_DEADLINE task be 2504 * Migrating a SCHED_DEADLINE task between exclusive 2896 * cpusets (different root_domains) e 2505 * cpusets (different root_domains) entails a bandwidth 2897 * update. We already made space for 2506 * update. We already made space for us in the destination 2898 * domain (see cpuset_can_attach()). 2507 * domain (see cpuset_can_attach()). 2899 */ 2508 */ 2900 if (!cpumask_intersects(src_rd->span, !! 2509 if (!cpumask_intersects(src_rd->span, new_mask)) { 2901 struct dl_bw *src_dl_b; 2510 struct dl_bw *src_dl_b; 2902 2511 2903 src_dl_b = dl_bw_of(cpu_of(rq 2512 src_dl_b = dl_bw_of(cpu_of(rq)); 2904 /* 2513 /* 2905 * We now free resources of t 2514 * We now free resources of the root_domain we are migrating 2906 * off. In the worst case, sc 2515 * off. In the worst case, sched_setattr() may temporary fail 2907 * until we complete the upda 2516 * until we complete the update. 2908 */ 2517 */ 2909 raw_spin_lock(&src_dl_b->lock 2518 raw_spin_lock(&src_dl_b->lock); 2910 __dl_sub(src_dl_b, p->dl.dl_b 2519 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2911 raw_spin_unlock(&src_dl_b->lo 2520 raw_spin_unlock(&src_dl_b->lock); 2912 } 2521 } 2913 2522 2914 set_cpus_allowed_common(p, ctx); !! 2523 set_cpus_allowed_common(p, new_mask, flags); 2915 } 2524 } 2916 2525 2917 /* Assumes rq->lock is held */ 2526 /* Assumes rq->lock is held */ 2918 static void rq_online_dl(struct rq *rq) 2527 static void rq_online_dl(struct rq *rq) 2919 { 2528 { 2920 if (rq->dl.overloaded) 2529 if (rq->dl.overloaded) 2921 dl_set_overload(rq); 2530 dl_set_overload(rq); 2922 2531 2923 cpudl_set_freecpu(&rq->rd->cpudl, rq- 2532 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2924 if (rq->dl.dl_nr_running > 0) 2533 if (rq->dl.dl_nr_running > 0) 2925 cpudl_set(&rq->rd->cpudl, rq- 2534 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2926 } 2535 } 2927 2536 2928 /* Assumes rq->lock is held */ 2537 /* Assumes rq->lock is held */ 2929 static void rq_offline_dl(struct rq *rq) 2538 static void rq_offline_dl(struct rq *rq) 2930 { 2539 { 2931 if (rq->dl.overloaded) 2540 if (rq->dl.overloaded) 2932 dl_clear_overload(rq); 2541 dl_clear_overload(rq); 2933 2542 2934 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2543 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2935 cpudl_clear_freecpu(&rq->rd->cpudl, r 2544 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2936 } 2545 } 2937 2546 2938 void __init init_sched_dl_class(void) 2547 void __init init_sched_dl_class(void) 2939 { 2548 { 2940 unsigned int i; 2549 unsigned int i; 2941 2550 2942 for_each_possible_cpu(i) 2551 for_each_possible_cpu(i) 2943 zalloc_cpumask_var_node(&per_ 2552 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2944 GFP_K 2553 GFP_KERNEL, cpu_to_node(i)); 2945 } 2554 } 2946 2555 2947 void dl_add_task_root_domain(struct task_stru 2556 void dl_add_task_root_domain(struct task_struct *p) 2948 { 2557 { 2949 struct rq_flags rf; 2558 struct rq_flags rf; 2950 struct rq *rq; 2559 struct rq *rq; 2951 struct dl_bw *dl_b; 2560 struct dl_bw *dl_b; 2952 2561 2953 raw_spin_lock_irqsave(&p->pi_lock, rf 2562 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2954 if (!dl_task(p)) { 2563 if (!dl_task(p)) { 2955 raw_spin_unlock_irqrestore(&p 2564 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2956 return; 2565 return; 2957 } 2566 } 2958 2567 2959 rq = __task_rq_lock(p, &rf); 2568 rq = __task_rq_lock(p, &rf); 2960 2569 2961 dl_b = &rq->rd->dl_bw; 2570 dl_b = &rq->rd->dl_bw; 2962 raw_spin_lock(&dl_b->lock); 2571 raw_spin_lock(&dl_b->lock); 2963 2572 2964 __dl_add(dl_b, p->dl.dl_bw, cpumask_w 2573 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2965 2574 2966 raw_spin_unlock(&dl_b->lock); 2575 raw_spin_unlock(&dl_b->lock); 2967 2576 2968 task_rq_unlock(rq, p, &rf); 2577 task_rq_unlock(rq, p, &rf); 2969 } 2578 } 2970 2579 2971 void dl_clear_root_domain(struct root_domain 2580 void dl_clear_root_domain(struct root_domain *rd) 2972 { 2581 { 2973 unsigned long flags; 2582 unsigned long flags; 2974 2583 2975 raw_spin_lock_irqsave(&rd->dl_bw.lock 2584 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2976 rd->dl_bw.total_bw = 0; 2585 rd->dl_bw.total_bw = 0; 2977 raw_spin_unlock_irqrestore(&rd->dl_bw 2586 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2978 } 2587 } 2979 2588 2980 #endif /* CONFIG_SMP */ 2589 #endif /* CONFIG_SMP */ 2981 2590 2982 static void switched_from_dl(struct rq *rq, s 2591 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2983 { 2592 { 2984 /* 2593 /* 2985 * task_non_contending() can start th 2594 * task_non_contending() can start the "inactive timer" (if the 0-lag 2986 * time is in the future). If the tas 2595 * time is in the future). If the task switches back to dl before 2987 * the "inactive timer" fires, it can 2596 * the "inactive timer" fires, it can continue to consume its current 2988 * runtime using its current deadline 2597 * runtime using its current deadline. If it stays outside of 2989 * SCHED_DEADLINE until the 0-lag tim 2598 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2990 * will reset the task parameters. 2599 * will reset the task parameters. 2991 */ 2600 */ 2992 if (task_on_rq_queued(p) && p->dl.dl_ 2601 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2993 task_non_contending(&p->dl); !! 2602 task_non_contending(p); 2994 2603 2995 /* 2604 /* 2996 * In case a task is setscheduled out 2605 * In case a task is setscheduled out from SCHED_DEADLINE we need to 2997 * keep track of that on its cpuset ( 2606 * keep track of that on its cpuset (for correct bandwidth tracking). 2998 */ 2607 */ 2999 dec_dl_tasks_cs(p); 2608 dec_dl_tasks_cs(p); 3000 2609 3001 if (!task_on_rq_queued(p)) { 2610 if (!task_on_rq_queued(p)) { 3002 /* 2611 /* 3003 * Inactive timer is armed. H 2612 * Inactive timer is armed. However, p is leaving DEADLINE and 3004 * might migrate away from th 2613 * might migrate away from this rq while continuing to run on 3005 * some other class. We need 2614 * some other class. We need to remove its contribution from 3006 * this rq running_bw now, or 2615 * this rq running_bw now, or sub_rq_bw (below) will complain. 3007 */ 2616 */ 3008 if (p->dl.dl_non_contending) 2617 if (p->dl.dl_non_contending) 3009 sub_running_bw(&p->dl 2618 sub_running_bw(&p->dl, &rq->dl); 3010 sub_rq_bw(&p->dl, &rq->dl); 2619 sub_rq_bw(&p->dl, &rq->dl); 3011 } 2620 } 3012 2621 3013 /* 2622 /* 3014 * We cannot use inactive_task_timer( 2623 * We cannot use inactive_task_timer() to invoke sub_running_bw() 3015 * at the 0-lag time, because the tas 2624 * at the 0-lag time, because the task could have been migrated 3016 * while SCHED_OTHER in the meanwhile 2625 * while SCHED_OTHER in the meanwhile. 3017 */ 2626 */ 3018 if (p->dl.dl_non_contending) 2627 if (p->dl.dl_non_contending) 3019 p->dl.dl_non_contending = 0; 2628 p->dl.dl_non_contending = 0; 3020 2629 3021 /* 2630 /* 3022 * Since this might be the only -dead 2631 * Since this might be the only -deadline task on the rq, 3023 * this is the right place to try to 2632 * this is the right place to try to pull some other one 3024 * from an overloaded CPU, if any. 2633 * from an overloaded CPU, if any. 3025 */ 2634 */ 3026 if (!task_on_rq_queued(p) || rq->dl.d 2635 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 3027 return; 2636 return; 3028 2637 3029 deadline_queue_pull_task(rq); 2638 deadline_queue_pull_task(rq); 3030 } 2639 } 3031 2640 3032 /* 2641 /* 3033 * When switching to -deadline, we may overlo 2642 * When switching to -deadline, we may overload the rq, then 3034 * we try to push someone off, if possible. 2643 * we try to push someone off, if possible. 3035 */ 2644 */ 3036 static void switched_to_dl(struct rq *rq, str 2645 static void switched_to_dl(struct rq *rq, struct task_struct *p) 3037 { 2646 { 3038 if (hrtimer_try_to_cancel(&p->dl.inac 2647 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 3039 put_task_struct(p); 2648 put_task_struct(p); 3040 2649 3041 /* 2650 /* 3042 * In case a task is setscheduled to 2651 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 3043 * track of that on its cpuset (for c 2652 * track of that on its cpuset (for correct bandwidth tracking). 3044 */ 2653 */ 3045 inc_dl_tasks_cs(p); 2654 inc_dl_tasks_cs(p); 3046 2655 3047 /* If p is not queued we will update 2656 /* If p is not queued we will update its parameters at next wakeup. */ 3048 if (!task_on_rq_queued(p)) { 2657 if (!task_on_rq_queued(p)) { 3049 add_rq_bw(&p->dl, &rq->dl); 2658 add_rq_bw(&p->dl, &rq->dl); 3050 2659 3051 return; 2660 return; 3052 } 2661 } 3053 2662 3054 if (rq->curr != p) { 2663 if (rq->curr != p) { 3055 #ifdef CONFIG_SMP 2664 #ifdef CONFIG_SMP 3056 if (p->nr_cpus_allowed > 1 && 2665 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 3057 deadline_queue_push_t 2666 deadline_queue_push_tasks(rq); 3058 #endif 2667 #endif 3059 if (dl_task(rq->curr)) 2668 if (dl_task(rq->curr)) 3060 wakeup_preempt_dl(rq, !! 2669 check_preempt_curr_dl(rq, p, 0); 3061 else 2670 else 3062 resched_curr(rq); 2671 resched_curr(rq); 3063 } else { 2672 } else { 3064 update_dl_rq_load_avg(rq_cloc 2673 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 3065 } 2674 } 3066 } 2675 } 3067 2676 3068 /* 2677 /* 3069 * If the scheduling parameters of a -deadlin 2678 * If the scheduling parameters of a -deadline task changed, 3070 * a push or pull operation might be needed. 2679 * a push or pull operation might be needed. 3071 */ 2680 */ 3072 static void prio_changed_dl(struct rq *rq, st 2681 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 3073 int oldprio) 2682 int oldprio) 3074 { 2683 { 3075 if (!task_on_rq_queued(p)) !! 2684 if (task_on_rq_queued(p) || task_current(rq, p)) { 3076 return; << 3077 << 3078 #ifdef CONFIG_SMP 2685 #ifdef CONFIG_SMP 3079 /* !! 2686 /* 3080 * This might be too much, but unfort !! 2687 * This might be too much, but unfortunately 3081 * we don't have the old deadline val !! 2688 * we don't have the old deadline value, and 3082 * we can't argue if the task is incr !! 2689 * we can't argue if the task is increasing 3083 * or lowering its prio, so... !! 2690 * or lowering its prio, so... 3084 */ !! 2691 */ 3085 if (!rq->dl.overloaded) !! 2692 if (!rq->dl.overloaded) 3086 deadline_queue_pull_task(rq); !! 2693 deadline_queue_pull_task(rq); 3087 2694 3088 if (task_current(rq, p)) { << 3089 /* 2695 /* 3090 * If we now have a earlier d 2696 * If we now have a earlier deadline task than p, 3091 * then reschedule, provided 2697 * then reschedule, provided p is still on this 3092 * runqueue. 2698 * runqueue. 3093 */ 2699 */ 3094 if (dl_time_before(rq->dl.ear 2700 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 3095 resched_curr(rq); 2701 resched_curr(rq); 3096 } else { !! 2702 #else 3097 /* 2703 /* 3098 * Current may not be deadlin !! 2704 * Again, we don't know if p has a earlier 3099 * have just replenished it ( !! 2705 * or later deadline, so let's blindly set a 3100 * !! 2706 * (maybe not needed) rescheduling point. 3101 * Otherwise, if p was given << 3102 */ 2707 */ 3103 if (!dl_task(rq->curr) || !! 2708 resched_curr(rq); 3104 dl_time_before(p->dl.dead !! 2709 #endif /* CONFIG_SMP */ 3105 resched_curr(rq); << 3106 } 2710 } 3107 #else << 3108 /* << 3109 * We don't know if p has a earlier o << 3110 * set a (maybe not needed) reschedul << 3111 */ << 3112 resched_curr(rq); << 3113 #endif << 3114 } << 3115 << 3116 #ifdef CONFIG_SCHED_CORE << 3117 static int task_is_throttled_dl(struct task_s << 3118 { << 3119 return p->dl.dl_throttled; << 3120 } 2711 } 3121 #endif << 3122 2712 3123 DEFINE_SCHED_CLASS(dl) = { 2713 DEFINE_SCHED_CLASS(dl) = { 3124 2714 3125 .enqueue_task = enqueue_tas 2715 .enqueue_task = enqueue_task_dl, 3126 .dequeue_task = dequeue_tas 2716 .dequeue_task = dequeue_task_dl, 3127 .yield_task = yield_task_ 2717 .yield_task = yield_task_dl, 3128 2718 3129 .wakeup_preempt = wakeup_pree !! 2719 .check_preempt_curr = check_preempt_curr_dl, 3130 2720 3131 .pick_task = pick_task_d !! 2721 .pick_next_task = pick_next_task_dl, 3132 .put_prev_task = put_prev_ta 2722 .put_prev_task = put_prev_task_dl, 3133 .set_next_task = set_next_ta 2723 .set_next_task = set_next_task_dl, 3134 2724 3135 #ifdef CONFIG_SMP 2725 #ifdef CONFIG_SMP 3136 .balance = balance_dl, 2726 .balance = balance_dl, >> 2727 .pick_task = pick_task_dl, 3137 .select_task_rq = select_task 2728 .select_task_rq = select_task_rq_dl, 3138 .migrate_task_rq = migrate_tas 2729 .migrate_task_rq = migrate_task_rq_dl, 3139 .set_cpus_allowed = set_cpus_al 2730 .set_cpus_allowed = set_cpus_allowed_dl, 3140 .rq_online = rq_online_d 2731 .rq_online = rq_online_dl, 3141 .rq_offline = rq_offline_ 2732 .rq_offline = rq_offline_dl, 3142 .task_woken = task_woken_ 2733 .task_woken = task_woken_dl, 3143 .find_lock_rq = find_lock_l 2734 .find_lock_rq = find_lock_later_rq, 3144 #endif 2735 #endif 3145 2736 3146 .task_tick = task_tick_d 2737 .task_tick = task_tick_dl, 3147 .task_fork = task_fork_d 2738 .task_fork = task_fork_dl, 3148 2739 3149 .prio_changed = prio_change 2740 .prio_changed = prio_changed_dl, 3150 .switched_from = switched_fr 2741 .switched_from = switched_from_dl, 3151 .switched_to = switched_to 2742 .switched_to = switched_to_dl, 3152 2743 3153 .update_curr = update_curr 2744 .update_curr = update_curr_dl, 3154 #ifdef CONFIG_SCHED_CORE << 3155 .task_is_throttled = task_is_thr << 3156 #endif << 3157 }; 2745 }; 3158 2746 3159 /* Used for dl_bw check and update, used unde 2747 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */ 3160 static u64 dl_generation; 2748 static u64 dl_generation; 3161 2749 3162 int sched_dl_global_validate(void) 2750 int sched_dl_global_validate(void) 3163 { 2751 { 3164 u64 runtime = global_rt_runtime(); 2752 u64 runtime = global_rt_runtime(); 3165 u64 period = global_rt_period(); 2753 u64 period = global_rt_period(); 3166 u64 new_bw = to_ratio(period, runtime 2754 u64 new_bw = to_ratio(period, runtime); 3167 u64 gen = ++dl_generation; 2755 u64 gen = ++dl_generation; 3168 struct dl_bw *dl_b; 2756 struct dl_bw *dl_b; 3169 int cpu, cpus, ret = 0; 2757 int cpu, cpus, ret = 0; 3170 unsigned long flags; 2758 unsigned long flags; 3171 2759 3172 /* 2760 /* 3173 * Here we want to check the bandwidt 2761 * Here we want to check the bandwidth not being set to some 3174 * value smaller than the currently a 2762 * value smaller than the currently allocated bandwidth in 3175 * any of the root_domains. 2763 * any of the root_domains. 3176 */ 2764 */ 3177 for_each_possible_cpu(cpu) { 2765 for_each_possible_cpu(cpu) { 3178 rcu_read_lock_sched(); 2766 rcu_read_lock_sched(); 3179 2767 3180 if (dl_bw_visited(cpu, gen)) 2768 if (dl_bw_visited(cpu, gen)) 3181 goto next; 2769 goto next; 3182 2770 3183 dl_b = dl_bw_of(cpu); 2771 dl_b = dl_bw_of(cpu); 3184 cpus = dl_bw_cpus(cpu); 2772 cpus = dl_bw_cpus(cpu); 3185 2773 3186 raw_spin_lock_irqsave(&dl_b-> 2774 raw_spin_lock_irqsave(&dl_b->lock, flags); 3187 if (new_bw * cpus < dl_b->tot 2775 if (new_bw * cpus < dl_b->total_bw) 3188 ret = -EBUSY; 2776 ret = -EBUSY; 3189 raw_spin_unlock_irqrestore(&d 2777 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3190 2778 3191 next: 2779 next: 3192 rcu_read_unlock_sched(); 2780 rcu_read_unlock_sched(); 3193 2781 3194 if (ret) 2782 if (ret) 3195 break; 2783 break; 3196 } 2784 } 3197 2785 3198 return ret; 2786 return ret; 3199 } 2787 } 3200 2788 3201 static void init_dl_rq_bw_ratio(struct dl_rq 2789 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 3202 { 2790 { 3203 if (global_rt_runtime() == RUNTIME_IN 2791 if (global_rt_runtime() == RUNTIME_INF) { 3204 dl_rq->bw_ratio = 1 << RATIO_ 2792 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 3205 dl_rq->max_bw = dl_rq->extra_ !! 2793 dl_rq->extra_bw = 1 << BW_SHIFT; 3206 } else { 2794 } else { 3207 dl_rq->bw_ratio = to_ratio(gl 2795 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 3208 global_rt_period()) 2796 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 3209 dl_rq->max_bw = dl_rq->extra_ !! 2797 dl_rq->extra_bw = to_ratio(global_rt_period(), 3210 to_ratio(global_rt_pe !! 2798 global_rt_runtime()); 3211 } 2799 } 3212 } 2800 } 3213 2801 3214 void sched_dl_do_global(void) 2802 void sched_dl_do_global(void) 3215 { 2803 { 3216 u64 new_bw = -1; 2804 u64 new_bw = -1; 3217 u64 gen = ++dl_generation; 2805 u64 gen = ++dl_generation; 3218 struct dl_bw *dl_b; 2806 struct dl_bw *dl_b; 3219 int cpu; 2807 int cpu; 3220 unsigned long flags; 2808 unsigned long flags; 3221 2809 3222 if (global_rt_runtime() != RUNTIME_IN 2810 if (global_rt_runtime() != RUNTIME_INF) 3223 new_bw = to_ratio(global_rt_p 2811 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 3224 2812 3225 for_each_possible_cpu(cpu) { 2813 for_each_possible_cpu(cpu) { 3226 rcu_read_lock_sched(); 2814 rcu_read_lock_sched(); 3227 2815 3228 if (dl_bw_visited(cpu, gen)) 2816 if (dl_bw_visited(cpu, gen)) { 3229 rcu_read_unlock_sched 2817 rcu_read_unlock_sched(); 3230 continue; 2818 continue; 3231 } 2819 } 3232 2820 3233 dl_b = dl_bw_of(cpu); 2821 dl_b = dl_bw_of(cpu); 3234 2822 3235 raw_spin_lock_irqsave(&dl_b-> 2823 raw_spin_lock_irqsave(&dl_b->lock, flags); 3236 dl_b->bw = new_bw; 2824 dl_b->bw = new_bw; 3237 raw_spin_unlock_irqrestore(&d 2825 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3238 2826 3239 rcu_read_unlock_sched(); 2827 rcu_read_unlock_sched(); 3240 init_dl_rq_bw_ratio(&cpu_rq(c 2828 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 3241 } 2829 } 3242 } 2830 } 3243 2831 3244 /* 2832 /* 3245 * We must be sure that accepting a new task 2833 * We must be sure that accepting a new task (or allowing changing the 3246 * parameters of an existing one) is consiste 2834 * parameters of an existing one) is consistent with the bandwidth 3247 * constraints. If yes, this function also ac 2835 * constraints. If yes, this function also accordingly updates the currently 3248 * allocated bandwidth to reflect the new sit 2836 * allocated bandwidth to reflect the new situation. 3249 * 2837 * 3250 * This function is called while holding p's 2838 * This function is called while holding p's rq->lock. 3251 */ 2839 */ 3252 int sched_dl_overflow(struct task_struct *p, 2840 int sched_dl_overflow(struct task_struct *p, int policy, 3253 const struct sched_attr 2841 const struct sched_attr *attr) 3254 { 2842 { 3255 u64 period = attr->sched_period ?: at 2843 u64 period = attr->sched_period ?: attr->sched_deadline; 3256 u64 runtime = attr->sched_runtime; 2844 u64 runtime = attr->sched_runtime; 3257 u64 new_bw = dl_policy(policy) ? to_r 2845 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 3258 int cpus, err = -1, cpu = task_cpu(p) 2846 int cpus, err = -1, cpu = task_cpu(p); 3259 struct dl_bw *dl_b = dl_bw_of(cpu); 2847 struct dl_bw *dl_b = dl_bw_of(cpu); 3260 unsigned long cap; 2848 unsigned long cap; 3261 2849 3262 if (attr->sched_flags & SCHED_FLAG_SU 2850 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3263 return 0; 2851 return 0; 3264 2852 3265 /* !deadline task may carry old deadl 2853 /* !deadline task may carry old deadline bandwidth */ 3266 if (new_bw == p->dl.dl_bw && task_has 2854 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 3267 return 0; 2855 return 0; 3268 2856 3269 /* 2857 /* 3270 * Either if a task, enters, leave, o 2858 * Either if a task, enters, leave, or stays -deadline but changes 3271 * its parameters, we may need to upd 2859 * its parameters, we may need to update accordingly the total 3272 * allocated bandwidth of the contain 2860 * allocated bandwidth of the container. 3273 */ 2861 */ 3274 raw_spin_lock(&dl_b->lock); 2862 raw_spin_lock(&dl_b->lock); 3275 cpus = dl_bw_cpus(cpu); 2863 cpus = dl_bw_cpus(cpu); 3276 cap = dl_bw_capacity(cpu); 2864 cap = dl_bw_capacity(cpu); 3277 2865 3278 if (dl_policy(policy) && !task_has_dl 2866 if (dl_policy(policy) && !task_has_dl_policy(p) && 3279 !__dl_overflow(dl_b, cap, 0, new_ 2867 !__dl_overflow(dl_b, cap, 0, new_bw)) { 3280 if (hrtimer_active(&p->dl.ina 2868 if (hrtimer_active(&p->dl.inactive_timer)) 3281 __dl_sub(dl_b, p->dl. 2869 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3282 __dl_add(dl_b, new_bw, cpus); 2870 __dl_add(dl_b, new_bw, cpus); 3283 err = 0; 2871 err = 0; 3284 } else if (dl_policy(policy) && task_ 2872 } else if (dl_policy(policy) && task_has_dl_policy(p) && 3285 !__dl_overflow(dl_b, cap, 2873 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 3286 /* 2874 /* 3287 * XXX this is slightly incor 2875 * XXX this is slightly incorrect: when the task 3288 * utilization decreases, we 2876 * utilization decreases, we should delay the total 3289 * utilization change until t 2877 * utilization change until the task's 0-lag point. 3290 * But this would require to 2878 * But this would require to set the task's "inactive 3291 * timer" when the task is no 2879 * timer" when the task is not inactive. 3292 */ 2880 */ 3293 __dl_sub(dl_b, p->dl.dl_bw, c 2881 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3294 __dl_add(dl_b, new_bw, cpus); 2882 __dl_add(dl_b, new_bw, cpus); 3295 dl_change_utilization(p, new_ 2883 dl_change_utilization(p, new_bw); 3296 err = 0; 2884 err = 0; 3297 } else if (!dl_policy(policy) && task 2885 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 3298 /* 2886 /* 3299 * Do not decrease the total 2887 * Do not decrease the total deadline utilization here, 3300 * switched_from_dl() will ta 2888 * switched_from_dl() will take care to do it at the correct 3301 * (0-lag) time. 2889 * (0-lag) time. 3302 */ 2890 */ 3303 err = 0; 2891 err = 0; 3304 } 2892 } 3305 raw_spin_unlock(&dl_b->lock); 2893 raw_spin_unlock(&dl_b->lock); 3306 2894 3307 return err; 2895 return err; 3308 } 2896 } 3309 2897 3310 /* 2898 /* 3311 * This function initializes the sched_dl_ent 2899 * This function initializes the sched_dl_entity of a newly becoming 3312 * SCHED_DEADLINE task. 2900 * SCHED_DEADLINE task. 3313 * 2901 * 3314 * Only the static values are considered here 2902 * Only the static values are considered here, the actual runtime and the 3315 * absolute deadline will be properly calcula 2903 * absolute deadline will be properly calculated when the task is enqueued 3316 * for the first time with its new policy. 2904 * for the first time with its new policy. 3317 */ 2905 */ 3318 void __setparam_dl(struct task_struct *p, con 2906 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3319 { 2907 { 3320 struct sched_dl_entity *dl_se = &p->d 2908 struct sched_dl_entity *dl_se = &p->dl; 3321 2909 3322 dl_se->dl_runtime = attr->sched_runti 2910 dl_se->dl_runtime = attr->sched_runtime; 3323 dl_se->dl_deadline = attr->sched_dead 2911 dl_se->dl_deadline = attr->sched_deadline; 3324 dl_se->dl_period = attr->sched_period 2912 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3325 dl_se->flags = attr->sched_flags & SC 2913 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 3326 dl_se->dl_bw = to_ratio(dl_se->dl_per 2914 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3327 dl_se->dl_density = to_ratio(dl_se->d 2915 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3328 } 2916 } 3329 2917 3330 void __getparam_dl(struct task_struct *p, str 2918 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3331 { 2919 { 3332 struct sched_dl_entity *dl_se = &p->d 2920 struct sched_dl_entity *dl_se = &p->dl; 3333 2921 3334 attr->sched_priority = p->rt_priority 2922 attr->sched_priority = p->rt_priority; 3335 attr->sched_runtime = dl_se->dl_runti 2923 attr->sched_runtime = dl_se->dl_runtime; 3336 attr->sched_deadline = dl_se->dl_dead 2924 attr->sched_deadline = dl_se->dl_deadline; 3337 attr->sched_period = dl_se->dl_period 2925 attr->sched_period = dl_se->dl_period; 3338 attr->sched_flags &= ~SCHED_DL_FLAGS; 2926 attr->sched_flags &= ~SCHED_DL_FLAGS; 3339 attr->sched_flags |= dl_se->flags; 2927 attr->sched_flags |= dl_se->flags; 3340 } 2928 } 3341 2929 3342 /* 2930 /* 3343 * This function validates the new parameters 2931 * This function validates the new parameters of a -deadline task. 3344 * We ask for the deadline not being zero, an 2932 * We ask for the deadline not being zero, and greater or equal 3345 * than the runtime, as well as the period of 2933 * than the runtime, as well as the period of being zero or 3346 * greater than deadline. Furthermore, we hav 2934 * greater than deadline. Furthermore, we have to be sure that 3347 * user parameters are above the internal res 2935 * user parameters are above the internal resolution of 1us (we 3348 * check sched_runtime only since it is alway 2936 * check sched_runtime only since it is always the smaller one) and 3349 * below 2^63 ns (we have to check both sched 2937 * below 2^63 ns (we have to check both sched_deadline and 3350 * sched_period, as the latter can be zero). 2938 * sched_period, as the latter can be zero). 3351 */ 2939 */ 3352 bool __checkparam_dl(const struct sched_attr 2940 bool __checkparam_dl(const struct sched_attr *attr) 3353 { 2941 { 3354 u64 period, max, min; 2942 u64 period, max, min; 3355 2943 3356 /* special dl tasks don't actually us 2944 /* special dl tasks don't actually use any parameter */ 3357 if (attr->sched_flags & SCHED_FLAG_SU 2945 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3358 return true; 2946 return true; 3359 2947 3360 /* deadline != 0 */ 2948 /* deadline != 0 */ 3361 if (attr->sched_deadline == 0) 2949 if (attr->sched_deadline == 0) 3362 return false; 2950 return false; 3363 2951 3364 /* 2952 /* 3365 * Since we truncate DL_SCALE bits, m 2953 * Since we truncate DL_SCALE bits, make sure we're at least 3366 * that big. 2954 * that big. 3367 */ 2955 */ 3368 if (attr->sched_runtime < (1ULL << DL 2956 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3369 return false; 2957 return false; 3370 2958 3371 /* 2959 /* 3372 * Since we use the MSB for wrap-arou 2960 * Since we use the MSB for wrap-around and sign issues, make 3373 * sure it's not set (mind that perio 2961 * sure it's not set (mind that period can be equal to zero). 3374 */ 2962 */ 3375 if (attr->sched_deadline & (1ULL << 6 2963 if (attr->sched_deadline & (1ULL << 63) || 3376 attr->sched_period & (1ULL << 63) 2964 attr->sched_period & (1ULL << 63)) 3377 return false; 2965 return false; 3378 2966 3379 period = attr->sched_period; 2967 period = attr->sched_period; 3380 if (!period) 2968 if (!period) 3381 period = attr->sched_deadline 2969 period = attr->sched_deadline; 3382 2970 3383 /* runtime <= deadline <= period (if 2971 /* runtime <= deadline <= period (if period != 0) */ 3384 if (period < attr->sched_deadline || 2972 if (period < attr->sched_deadline || 3385 attr->sched_deadline < attr->sche 2973 attr->sched_deadline < attr->sched_runtime) 3386 return false; 2974 return false; 3387 2975 3388 max = (u64)READ_ONCE(sysctl_sched_dl_ 2976 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3389 min = (u64)READ_ONCE(sysctl_sched_dl_ 2977 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3390 2978 3391 if (period < min || period > max) 2979 if (period < min || period > max) 3392 return false; 2980 return false; 3393 2981 3394 return true; 2982 return true; 3395 } 2983 } 3396 2984 3397 /* 2985 /* 3398 * This function clears the sched_dl_entity s 2986 * This function clears the sched_dl_entity static params. 3399 */ 2987 */ 3400 static void __dl_clear_params(struct sched_dl !! 2988 void __dl_clear_params(struct task_struct *p) 3401 { 2989 { >> 2990 struct sched_dl_entity *dl_se = &p->dl; >> 2991 3402 dl_se->dl_runtime = 0; 2992 dl_se->dl_runtime = 0; 3403 dl_se->dl_deadline = 0; 2993 dl_se->dl_deadline = 0; 3404 dl_se->dl_period = 0; 2994 dl_se->dl_period = 0; 3405 dl_se->flags = 0; 2995 dl_se->flags = 0; 3406 dl_se->dl_bw = 0; 2996 dl_se->dl_bw = 0; 3407 dl_se->dl_density = 0; 2997 dl_se->dl_density = 0; 3408 2998 3409 dl_se->dl_throttled = 0; 2999 dl_se->dl_throttled = 0; 3410 dl_se->dl_yielded = 0; 3000 dl_se->dl_yielded = 0; 3411 dl_se->dl_non_contending = 0; 3001 dl_se->dl_non_contending = 0; 3412 dl_se->dl_overrun = 0; 3002 dl_se->dl_overrun = 0; 3413 dl_se->dl_server = 0; << 3414 3003 3415 #ifdef CONFIG_RT_MUTEXES 3004 #ifdef CONFIG_RT_MUTEXES 3416 dl_se->pi_se = dl_ 3005 dl_se->pi_se = dl_se; 3417 #endif 3006 #endif 3418 } << 3419 << 3420 void init_dl_entity(struct sched_dl_entity *d << 3421 { << 3422 RB_CLEAR_NODE(&dl_se->rb_node); << 3423 init_dl_task_timer(dl_se); << 3424 init_dl_inactive_task_timer(dl_se); << 3425 __dl_clear_params(dl_se); << 3426 } 3007 } 3427 3008 3428 bool dl_param_changed(struct task_struct *p, 3009 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3429 { 3010 { 3430 struct sched_dl_entity *dl_se = &p->d 3011 struct sched_dl_entity *dl_se = &p->dl; 3431 3012 3432 if (dl_se->dl_runtime != attr->sched_ 3013 if (dl_se->dl_runtime != attr->sched_runtime || 3433 dl_se->dl_deadline != attr->sched 3014 dl_se->dl_deadline != attr->sched_deadline || 3434 dl_se->dl_period != attr->sched_p 3015 dl_se->dl_period != attr->sched_period || 3435 dl_se->flags != (attr->sched_flag 3016 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3436 return true; 3017 return true; 3437 3018 3438 return false; 3019 return false; 3439 } 3020 } 3440 3021 3441 #ifdef CONFIG_SMP 3022 #ifdef CONFIG_SMP 3442 int dl_cpuset_cpumask_can_shrink(const struct 3023 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3443 const struct 3024 const struct cpumask *trial) 3444 { 3025 { 3445 unsigned long flags, cap; 3026 unsigned long flags, cap; 3446 struct dl_bw *cur_dl_b; 3027 struct dl_bw *cur_dl_b; 3447 int ret = 1; 3028 int ret = 1; 3448 3029 3449 rcu_read_lock_sched(); 3030 rcu_read_lock_sched(); 3450 cur_dl_b = dl_bw_of(cpumask_any(cur)) 3031 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3451 cap = __dl_bw_capacity(trial); 3032 cap = __dl_bw_capacity(trial); 3452 raw_spin_lock_irqsave(&cur_dl_b->lock 3033 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3453 if (__dl_overflow(cur_dl_b, cap, 0, 0 3034 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3454 ret = 0; 3035 ret = 0; 3455 raw_spin_unlock_irqrestore(&cur_dl_b- 3036 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3456 rcu_read_unlock_sched(); 3037 rcu_read_unlock_sched(); 3457 3038 3458 return ret; 3039 return ret; 3459 } 3040 } 3460 3041 3461 enum dl_bw_request { 3042 enum dl_bw_request { 3462 dl_bw_req_check_overflow = 0, 3043 dl_bw_req_check_overflow = 0, 3463 dl_bw_req_alloc, 3044 dl_bw_req_alloc, 3464 dl_bw_req_free 3045 dl_bw_req_free 3465 }; 3046 }; 3466 3047 3467 static int dl_bw_manage(enum dl_bw_request re 3048 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3468 { 3049 { 3469 unsigned long flags; 3050 unsigned long flags; 3470 struct dl_bw *dl_b; 3051 struct dl_bw *dl_b; 3471 bool overflow = 0; 3052 bool overflow = 0; 3472 3053 3473 rcu_read_lock_sched(); 3054 rcu_read_lock_sched(); 3474 dl_b = dl_bw_of(cpu); 3055 dl_b = dl_bw_of(cpu); 3475 raw_spin_lock_irqsave(&dl_b->lock, fl 3056 raw_spin_lock_irqsave(&dl_b->lock, flags); 3476 3057 3477 if (req == dl_bw_req_free) { 3058 if (req == dl_bw_req_free) { 3478 __dl_sub(dl_b, dl_bw, dl_bw_c 3059 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3479 } else { 3060 } else { 3480 unsigned long cap = dl_bw_cap 3061 unsigned long cap = dl_bw_capacity(cpu); 3481 3062 3482 overflow = __dl_overflow(dl_b 3063 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3483 3064 3484 if (req == dl_bw_req_alloc && 3065 if (req == dl_bw_req_alloc && !overflow) { 3485 /* 3066 /* 3486 * We reserve space i 3067 * We reserve space in the destination 3487 * root_domain, as we 3068 * root_domain, as we can't fail after this point. 3488 * We will free resou 3069 * We will free resources in the source root_domain 3489 * later on (see set_ 3070 * later on (see set_cpus_allowed_dl()). 3490 */ 3071 */ 3491 __dl_add(dl_b, dl_bw, 3072 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3492 } 3073 } 3493 } 3074 } 3494 3075 3495 raw_spin_unlock_irqrestore(&dl_b->loc 3076 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3496 rcu_read_unlock_sched(); 3077 rcu_read_unlock_sched(); 3497 3078 3498 return overflow ? -EBUSY : 0; 3079 return overflow ? -EBUSY : 0; 3499 } 3080 } 3500 3081 3501 int dl_bw_check_overflow(int cpu) 3082 int dl_bw_check_overflow(int cpu) 3502 { 3083 { 3503 return dl_bw_manage(dl_bw_req_check_o 3084 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0); 3504 } 3085 } 3505 3086 3506 int dl_bw_alloc(int cpu, u64 dl_bw) 3087 int dl_bw_alloc(int cpu, u64 dl_bw) 3507 { 3088 { 3508 return dl_bw_manage(dl_bw_req_alloc, 3089 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3509 } 3090 } 3510 3091 3511 void dl_bw_free(int cpu, u64 dl_bw) 3092 void dl_bw_free(int cpu, u64 dl_bw) 3512 { 3093 { 3513 dl_bw_manage(dl_bw_req_free, cpu, dl_ 3094 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3514 } 3095 } 3515 #endif 3096 #endif 3516 3097 3517 #ifdef CONFIG_SCHED_DEBUG 3098 #ifdef CONFIG_SCHED_DEBUG 3518 void print_dl_stats(struct seq_file *m, int c 3099 void print_dl_stats(struct seq_file *m, int cpu) 3519 { 3100 { 3520 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl) 3101 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3521 } 3102 } 3522 #endif /* CONFIG_SCHED_DEBUG */ 3103 #endif /* CONFIG_SCHED_DEBUG */ 3523 3104
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.