1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * Common SMP CPU bringup/teardown functions 3 * Common SMP CPU bringup/teardown functions 4 */ 4 */ 5 #include <linux/cpu.h> 5 #include <linux/cpu.h> 6 #include <linux/err.h> 6 #include <linux/err.h> 7 #include <linux/smp.h> 7 #include <linux/smp.h> 8 #include <linux/delay.h> 8 #include <linux/delay.h> 9 #include <linux/init.h> 9 #include <linux/init.h> 10 #include <linux/list.h> 10 #include <linux/list.h> 11 #include <linux/slab.h> 11 #include <linux/slab.h> 12 #include <linux/sched.h> 12 #include <linux/sched.h> 13 #include <linux/sched/task.h> 13 #include <linux/sched/task.h> 14 #include <linux/export.h> 14 #include <linux/export.h> 15 #include <linux/percpu.h> 15 #include <linux/percpu.h> 16 #include <linux/kthread.h> 16 #include <linux/kthread.h> 17 #include <linux/smpboot.h> 17 #include <linux/smpboot.h> 18 18 19 #include "smpboot.h" 19 #include "smpboot.h" 20 20 21 #ifdef CONFIG_SMP 21 #ifdef CONFIG_SMP 22 22 23 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD 23 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD 24 /* 24 /* 25 * For the hotplug case we keep the task struc 25 * For the hotplug case we keep the task structs around and reuse 26 * them. 26 * them. 27 */ 27 */ 28 static DEFINE_PER_CPU(struct task_struct *, id 28 static DEFINE_PER_CPU(struct task_struct *, idle_threads); 29 29 30 struct task_struct *idle_thread_get(unsigned i 30 struct task_struct *idle_thread_get(unsigned int cpu) 31 { 31 { 32 struct task_struct *tsk = per_cpu(idle 32 struct task_struct *tsk = per_cpu(idle_threads, cpu); 33 33 34 if (!tsk) 34 if (!tsk) 35 return ERR_PTR(-ENOMEM); 35 return ERR_PTR(-ENOMEM); 36 return tsk; 36 return tsk; 37 } 37 } 38 38 39 void __init idle_thread_set_boot_cpu(void) 39 void __init idle_thread_set_boot_cpu(void) 40 { 40 { 41 per_cpu(idle_threads, smp_processor_id 41 per_cpu(idle_threads, smp_processor_id()) = current; 42 } 42 } 43 43 44 /** 44 /** 45 * idle_init - Initialize the idle thread for 45 * idle_init - Initialize the idle thread for a cpu 46 * @cpu: The cpu for which the idle thr 46 * @cpu: The cpu for which the idle thread should be initialized 47 * 47 * 48 * Creates the thread if it does not exist. 48 * Creates the thread if it does not exist. 49 */ 49 */ 50 static __always_inline void idle_init(unsigned 50 static __always_inline void idle_init(unsigned int cpu) 51 { 51 { 52 struct task_struct *tsk = per_cpu(idle 52 struct task_struct *tsk = per_cpu(idle_threads, cpu); 53 53 54 if (!tsk) { 54 if (!tsk) { 55 tsk = fork_idle(cpu); 55 tsk = fork_idle(cpu); 56 if (IS_ERR(tsk)) 56 if (IS_ERR(tsk)) 57 pr_err("SMP: fork_idle 57 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); 58 else 58 else 59 per_cpu(idle_threads, 59 per_cpu(idle_threads, cpu) = tsk; 60 } 60 } 61 } 61 } 62 62 63 /** 63 /** 64 * idle_threads_init - Initialize idle threads 64 * idle_threads_init - Initialize idle threads for all cpus 65 */ 65 */ 66 void __init idle_threads_init(void) 66 void __init idle_threads_init(void) 67 { 67 { 68 unsigned int cpu, boot_cpu; 68 unsigned int cpu, boot_cpu; 69 69 70 boot_cpu = smp_processor_id(); 70 boot_cpu = smp_processor_id(); 71 71 72 for_each_possible_cpu(cpu) { 72 for_each_possible_cpu(cpu) { 73 if (cpu != boot_cpu) 73 if (cpu != boot_cpu) 74 idle_init(cpu); 74 idle_init(cpu); 75 } 75 } 76 } 76 } 77 #endif 77 #endif 78 78 79 #endif /* #ifdef CONFIG_SMP */ 79 #endif /* #ifdef CONFIG_SMP */ 80 80 81 static LIST_HEAD(hotplug_threads); 81 static LIST_HEAD(hotplug_threads); 82 static DEFINE_MUTEX(smpboot_threads_lock); 82 static DEFINE_MUTEX(smpboot_threads_lock); 83 83 84 struct smpboot_thread_data { 84 struct smpboot_thread_data { 85 unsigned int cpu; 85 unsigned int cpu; 86 unsigned int status 86 unsigned int status; 87 struct smp_hotplug_thread *ht; 87 struct smp_hotplug_thread *ht; 88 }; 88 }; 89 89 90 enum { 90 enum { 91 HP_THREAD_NONE = 0, 91 HP_THREAD_NONE = 0, 92 HP_THREAD_ACTIVE, 92 HP_THREAD_ACTIVE, 93 HP_THREAD_PARKED, 93 HP_THREAD_PARKED, 94 }; 94 }; 95 95 96 /** 96 /** 97 * smpboot_thread_fn - percpu hotplug thread l 97 * smpboot_thread_fn - percpu hotplug thread loop function 98 * @data: thread data pointer 98 * @data: thread data pointer 99 * 99 * 100 * Checks for thread stop and park conditions. 100 * Checks for thread stop and park conditions. Calls the necessary 101 * setup, cleanup, park and unpark functions f 101 * setup, cleanup, park and unpark functions for the registered 102 * thread. 102 * thread. 103 * 103 * 104 * Returns 1 when the thread should exit, 0 ot 104 * Returns 1 when the thread should exit, 0 otherwise. 105 */ 105 */ 106 static int smpboot_thread_fn(void *data) 106 static int smpboot_thread_fn(void *data) 107 { 107 { 108 struct smpboot_thread_data *td = data; 108 struct smpboot_thread_data *td = data; 109 struct smp_hotplug_thread *ht = td->ht 109 struct smp_hotplug_thread *ht = td->ht; 110 110 111 while (1) { 111 while (1) { 112 set_current_state(TASK_INTERRU 112 set_current_state(TASK_INTERRUPTIBLE); 113 preempt_disable(); 113 preempt_disable(); 114 if (kthread_should_stop()) { 114 if (kthread_should_stop()) { 115 __set_current_state(TA 115 __set_current_state(TASK_RUNNING); 116 preempt_enable(); 116 preempt_enable(); 117 /* cleanup must mirror 117 /* cleanup must mirror setup */ 118 if (ht->cleanup && td- 118 if (ht->cleanup && td->status != HP_THREAD_NONE) 119 ht->cleanup(td 119 ht->cleanup(td->cpu, cpu_online(td->cpu)); 120 kfree(td); 120 kfree(td); 121 return 0; 121 return 0; 122 } 122 } 123 123 124 if (kthread_should_park()) { 124 if (kthread_should_park()) { 125 __set_current_state(TA 125 __set_current_state(TASK_RUNNING); 126 preempt_enable(); 126 preempt_enable(); 127 if (ht->park && td->st 127 if (ht->park && td->status == HP_THREAD_ACTIVE) { 128 BUG_ON(td->cpu 128 BUG_ON(td->cpu != smp_processor_id()); 129 ht->park(td->c 129 ht->park(td->cpu); 130 td->status = H 130 td->status = HP_THREAD_PARKED; 131 } 131 } 132 kthread_parkme(); 132 kthread_parkme(); 133 /* We might have been 133 /* We might have been woken for stop */ 134 continue; 134 continue; 135 } 135 } 136 136 137 BUG_ON(td->cpu != smp_processo 137 BUG_ON(td->cpu != smp_processor_id()); 138 138 139 /* Check for state change setu 139 /* Check for state change setup */ 140 switch (td->status) { 140 switch (td->status) { 141 case HP_THREAD_NONE: 141 case HP_THREAD_NONE: 142 __set_current_state(TA 142 __set_current_state(TASK_RUNNING); 143 preempt_enable(); 143 preempt_enable(); 144 if (ht->setup) 144 if (ht->setup) 145 ht->setup(td-> 145 ht->setup(td->cpu); 146 td->status = HP_THREAD 146 td->status = HP_THREAD_ACTIVE; 147 continue; 147 continue; 148 148 149 case HP_THREAD_PARKED: 149 case HP_THREAD_PARKED: 150 __set_current_state(TA 150 __set_current_state(TASK_RUNNING); 151 preempt_enable(); 151 preempt_enable(); 152 if (ht->unpark) 152 if (ht->unpark) 153 ht->unpark(td- 153 ht->unpark(td->cpu); 154 td->status = HP_THREAD 154 td->status = HP_THREAD_ACTIVE; 155 continue; 155 continue; 156 } 156 } 157 157 158 if (!ht->thread_should_run(td- 158 if (!ht->thread_should_run(td->cpu)) { 159 preempt_enable_no_resc 159 preempt_enable_no_resched(); 160 schedule(); 160 schedule(); 161 } else { 161 } else { 162 __set_current_state(TA 162 __set_current_state(TASK_RUNNING); 163 preempt_enable(); 163 preempt_enable(); 164 ht->thread_fn(td->cpu) 164 ht->thread_fn(td->cpu); 165 } 165 } 166 } 166 } 167 } 167 } 168 168 169 static int 169 static int 170 __smpboot_create_thread(struct smp_hotplug_thr 170 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 171 { 171 { 172 struct task_struct *tsk = *per_cpu_ptr 172 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 173 struct smpboot_thread_data *td; 173 struct smpboot_thread_data *td; 174 174 175 if (tsk) 175 if (tsk) 176 return 0; 176 return 0; 177 177 178 td = kzalloc_node(sizeof(*td), GFP_KER 178 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); 179 if (!td) 179 if (!td) 180 return -ENOMEM; 180 return -ENOMEM; 181 td->cpu = cpu; 181 td->cpu = cpu; 182 td->ht = ht; 182 td->ht = ht; 183 183 184 tsk = kthread_create_on_cpu(smpboot_th 184 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, 185 ht->thread 185 ht->thread_comm); 186 if (IS_ERR(tsk)) { 186 if (IS_ERR(tsk)) { 187 kfree(td); 187 kfree(td); 188 return PTR_ERR(tsk); 188 return PTR_ERR(tsk); 189 } 189 } 190 kthread_set_per_cpu(tsk, cpu); 190 kthread_set_per_cpu(tsk, cpu); 191 /* 191 /* 192 * Park the thread so that it could st 192 * Park the thread so that it could start right on the CPU 193 * when it is available. 193 * when it is available. 194 */ 194 */ 195 kthread_park(tsk); 195 kthread_park(tsk); 196 get_task_struct(tsk); 196 get_task_struct(tsk); 197 *per_cpu_ptr(ht->store, cpu) = tsk; 197 *per_cpu_ptr(ht->store, cpu) = tsk; 198 if (ht->create) { 198 if (ht->create) { 199 /* 199 /* 200 * Make sure that the task has 200 * Make sure that the task has actually scheduled out 201 * into park position, before 201 * into park position, before calling the create 202 * callback. At least the migr 202 * callback. At least the migration thread callback 203 * requires that the task is o 203 * requires that the task is off the runqueue. 204 */ 204 */ 205 if (!wait_task_inactive(tsk, T 205 if (!wait_task_inactive(tsk, TASK_PARKED)) 206 WARN_ON(1); 206 WARN_ON(1); 207 else 207 else 208 ht->create(cpu); 208 ht->create(cpu); 209 } 209 } 210 return 0; 210 return 0; 211 } 211 } 212 212 213 int smpboot_create_threads(unsigned int cpu) 213 int smpboot_create_threads(unsigned int cpu) 214 { 214 { 215 struct smp_hotplug_thread *cur; 215 struct smp_hotplug_thread *cur; 216 int ret = 0; 216 int ret = 0; 217 217 218 mutex_lock(&smpboot_threads_lock); 218 mutex_lock(&smpboot_threads_lock); 219 list_for_each_entry(cur, &hotplug_thre 219 list_for_each_entry(cur, &hotplug_threads, list) { 220 ret = __smpboot_create_thread( 220 ret = __smpboot_create_thread(cur, cpu); 221 if (ret) 221 if (ret) 222 break; 222 break; 223 } 223 } 224 mutex_unlock(&smpboot_threads_lock); 224 mutex_unlock(&smpboot_threads_lock); 225 return ret; 225 return ret; 226 } 226 } 227 227 228 static void smpboot_unpark_thread(struct smp_h 228 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 229 { 229 { 230 struct task_struct *tsk = *per_cpu_ptr 230 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 231 231 232 if (!ht->selfparking) 232 if (!ht->selfparking) 233 kthread_unpark(tsk); 233 kthread_unpark(tsk); 234 } 234 } 235 235 236 int smpboot_unpark_threads(unsigned int cpu) 236 int smpboot_unpark_threads(unsigned int cpu) 237 { 237 { 238 struct smp_hotplug_thread *cur; 238 struct smp_hotplug_thread *cur; 239 239 240 mutex_lock(&smpboot_threads_lock); 240 mutex_lock(&smpboot_threads_lock); 241 list_for_each_entry(cur, &hotplug_thre 241 list_for_each_entry(cur, &hotplug_threads, list) 242 smpboot_unpark_thread(cur, cpu 242 smpboot_unpark_thread(cur, cpu); 243 mutex_unlock(&smpboot_threads_lock); 243 mutex_unlock(&smpboot_threads_lock); 244 return 0; 244 return 0; 245 } 245 } 246 246 247 static void smpboot_park_thread(struct smp_hot 247 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 248 { 248 { 249 struct task_struct *tsk = *per_cpu_ptr 249 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 250 250 251 if (tsk && !ht->selfparking) 251 if (tsk && !ht->selfparking) 252 kthread_park(tsk); 252 kthread_park(tsk); 253 } 253 } 254 254 255 int smpboot_park_threads(unsigned int cpu) 255 int smpboot_park_threads(unsigned int cpu) 256 { 256 { 257 struct smp_hotplug_thread *cur; 257 struct smp_hotplug_thread *cur; 258 258 259 mutex_lock(&smpboot_threads_lock); 259 mutex_lock(&smpboot_threads_lock); 260 list_for_each_entry_reverse(cur, &hotp 260 list_for_each_entry_reverse(cur, &hotplug_threads, list) 261 smpboot_park_thread(cur, cpu); 261 smpboot_park_thread(cur, cpu); 262 mutex_unlock(&smpboot_threads_lock); 262 mutex_unlock(&smpboot_threads_lock); 263 return 0; 263 return 0; 264 } 264 } 265 265 266 static void smpboot_destroy_threads(struct smp 266 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) 267 { 267 { 268 unsigned int cpu; 268 unsigned int cpu; 269 269 270 /* We need to destroy also the parked 270 /* We need to destroy also the parked threads of offline cpus */ 271 for_each_possible_cpu(cpu) { 271 for_each_possible_cpu(cpu) { 272 struct task_struct *tsk = *per 272 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 273 273 274 if (tsk) { 274 if (tsk) { 275 kthread_stop_put(tsk); !! 275 kthread_stop(tsk); >> 276 put_task_struct(tsk); 276 *per_cpu_ptr(ht->store 277 *per_cpu_ptr(ht->store, cpu) = NULL; 277 } 278 } 278 } 279 } 279 } 280 } 280 281 281 /** 282 /** 282 * smpboot_register_percpu_thread - Register a 283 * smpboot_register_percpu_thread - Register a per_cpu thread related 283 * to 284 * to hotplug 284 * @plug_thread: Hotplug thread descrip 285 * @plug_thread: Hotplug thread descriptor 285 * 286 * 286 * Creates and starts the threads on all onlin 287 * Creates and starts the threads on all online cpus. 287 */ 288 */ 288 int smpboot_register_percpu_thread(struct smp_ 289 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread) 289 { 290 { 290 unsigned int cpu; 291 unsigned int cpu; 291 int ret = 0; 292 int ret = 0; 292 293 293 cpus_read_lock(); 294 cpus_read_lock(); 294 mutex_lock(&smpboot_threads_lock); 295 mutex_lock(&smpboot_threads_lock); 295 for_each_online_cpu(cpu) { 296 for_each_online_cpu(cpu) { 296 ret = __smpboot_create_thread( 297 ret = __smpboot_create_thread(plug_thread, cpu); 297 if (ret) { 298 if (ret) { 298 smpboot_destroy_thread 299 smpboot_destroy_threads(plug_thread); 299 goto out; 300 goto out; 300 } 301 } 301 smpboot_unpark_thread(plug_thr 302 smpboot_unpark_thread(plug_thread, cpu); 302 } 303 } 303 list_add(&plug_thread->list, &hotplug_ 304 list_add(&plug_thread->list, &hotplug_threads); 304 out: 305 out: 305 mutex_unlock(&smpboot_threads_lock); 306 mutex_unlock(&smpboot_threads_lock); 306 cpus_read_unlock(); 307 cpus_read_unlock(); 307 return ret; 308 return ret; 308 } 309 } 309 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thre 310 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread); 310 311 311 /** 312 /** 312 * smpboot_unregister_percpu_thread - Unregist 313 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug 313 * @plug_thread: Hotplug thread descrip 314 * @plug_thread: Hotplug thread descriptor 314 * 315 * 315 * Stops all threads on all possible cpus. 316 * Stops all threads on all possible cpus. 316 */ 317 */ 317 void smpboot_unregister_percpu_thread(struct s 318 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) 318 { 319 { 319 cpus_read_lock(); 320 cpus_read_lock(); 320 mutex_lock(&smpboot_threads_lock); 321 mutex_lock(&smpboot_threads_lock); 321 list_del(&plug_thread->list); 322 list_del(&plug_thread->list); 322 smpboot_destroy_threads(plug_thread); 323 smpboot_destroy_threads(plug_thread); 323 mutex_unlock(&smpboot_threads_lock); 324 mutex_unlock(&smpboot_threads_lock); 324 cpus_read_unlock(); 325 cpus_read_unlock(); 325 } 326 } 326 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_th 327 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); >> 328 >> 329 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); >> 330 >> 331 /* >> 332 * Called to poll specified CPU's state, for example, when waiting for >> 333 * a CPU to come online. >> 334 */ >> 335 int cpu_report_state(int cpu) >> 336 { >> 337 return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); >> 338 } >> 339 >> 340 /* >> 341 * If CPU has died properly, set its state to CPU_UP_PREPARE and >> 342 * return success. Otherwise, return -EBUSY if the CPU died after >> 343 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN >> 344 * if cpu_wait_death() timed out and the CPU still hasn't gotten around >> 345 * to dying. In the latter two cases, the CPU might not be set up >> 346 * properly, but it is up to the arch-specific code to decide. >> 347 * Finally, -EIO indicates an unanticipated problem. >> 348 * >> 349 * Note that it is permissible to omit this call entirely, as is >> 350 * done in architectures that do no CPU-hotplug error checking. >> 351 */ >> 352 int cpu_check_up_prepare(int cpu) >> 353 { >> 354 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { >> 355 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); >> 356 return 0; >> 357 } >> 358 >> 359 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { >> 360 >> 361 case CPU_POST_DEAD: >> 362 >> 363 /* The CPU died properly, so just start it up again. */ >> 364 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); >> 365 return 0; >> 366 >> 367 case CPU_DEAD_FROZEN: >> 368 >> 369 /* >> 370 * Timeout during CPU death, so let caller know. >> 371 * The outgoing CPU completed its processing, but after >> 372 * cpu_wait_death() timed out and reported the error. The >> 373 * caller is free to proceed, in which case the state >> 374 * will be reset properly by cpu_set_state_online(). >> 375 * Proceeding despite this -EBUSY return makes sense >> 376 * for systems where the outgoing CPUs take themselves >> 377 * offline, with no post-death manipulation required from >> 378 * a surviving CPU. >> 379 */ >> 380 return -EBUSY; >> 381 >> 382 case CPU_BROKEN: >> 383 >> 384 /* >> 385 * The most likely reason we got here is that there was >> 386 * a timeout during CPU death, and the outgoing CPU never >> 387 * did complete its processing. This could happen on >> 388 * a virtualized system if the outgoing VCPU gets preempted >> 389 * for more than five seconds, and the user attempts to >> 390 * immediately online that same CPU. Trying again later >> 391 * might return -EBUSY above, hence -EAGAIN. >> 392 */ >> 393 return -EAGAIN; >> 394 >> 395 default: >> 396 >> 397 /* Should not happen. Famous last words. */ >> 398 return -EIO; >> 399 } >> 400 } >> 401 >> 402 /* >> 403 * Mark the specified CPU online. >> 404 * >> 405 * Note that it is permissible to omit this call entirely, as is >> 406 * done in architectures that do no CPU-hotplug error checking. >> 407 */ >> 408 void cpu_set_state_online(int cpu) >> 409 { >> 410 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); >> 411 } >> 412 >> 413 #ifdef CONFIG_HOTPLUG_CPU >> 414 >> 415 /* >> 416 * Wait for the specified CPU to exit the idle loop and die. >> 417 */ >> 418 bool cpu_wait_death(unsigned int cpu, int seconds) >> 419 { >> 420 int jf_left = seconds * HZ; >> 421 int oldstate; >> 422 bool ret = true; >> 423 int sleep_jf = 1; >> 424 >> 425 might_sleep(); >> 426 >> 427 /* The outgoing CPU will normally get done quite quickly. */ >> 428 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) >> 429 goto update_state; >> 430 udelay(5); >> 431 >> 432 /* But if the outgoing CPU dawdles, wait increasingly long times. */ >> 433 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { >> 434 schedule_timeout_uninterruptible(sleep_jf); >> 435 jf_left -= sleep_jf; >> 436 if (jf_left <= 0) >> 437 break; >> 438 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); >> 439 } >> 440 update_state: >> 441 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); >> 442 if (oldstate == CPU_DEAD) { >> 443 /* Outgoing CPU died normally, update state. */ >> 444 smp_mb(); /* atomic_read() before update. */ >> 445 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); >> 446 } else { >> 447 /* Outgoing CPU still hasn't died, set state accordingly. */ >> 448 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), >> 449 oldstate, CPU_BROKEN) != oldstate) >> 450 goto update_state; >> 451 ret = false; >> 452 } >> 453 return ret; >> 454 } >> 455 >> 456 /* >> 457 * Called by the outgoing CPU to report its successful death. Return >> 458 * false if this report follows the surviving CPU's timing out. >> 459 * >> 460 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU >> 461 * timed out. This approach allows architectures to omit calls to >> 462 * cpu_check_up_prepare() and cpu_set_state_online() without defeating >> 463 * the next cpu_wait_death()'s polling loop. >> 464 */ >> 465 bool cpu_report_death(void) >> 466 { >> 467 int oldstate; >> 468 int newstate; >> 469 int cpu = smp_processor_id(); >> 470 >> 471 do { >> 472 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); >> 473 if (oldstate != CPU_BROKEN) >> 474 newstate = CPU_DEAD; >> 475 else >> 476 newstate = CPU_DEAD_FROZEN; >> 477 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), >> 478 oldstate, newstate) != oldstate); >> 479 return newstate == CPU_DEAD; >> 480 } >> 481 >> 482 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 327 483
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.