1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * kernel/stop_machine.c 2 * kernel/stop_machine.c 4 * 3 * 5 * Copyright (C) 2008, 2005 IBM Corporatio 4 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell 5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Pro 6 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@ 7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> >> 8 * >> 9 * This file is released under the GPLv2 and any later version. 9 */ 10 */ 10 #include <linux/compiler.h> << 11 #include <linux/completion.h> 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> << 24 #include <linux/sched/wake_q.h> << 25 23 26 /* 24 /* 27 * Structure to determine completion condition 25 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 26 * be shared by works on different cpus. 29 */ 27 */ 30 struct cpu_stop_done { 28 struct cpu_stop_done { 31 atomic_t nr_todo; 29 atomic_t nr_todo; /* nr left to execute */ >> 30 bool executed; /* actually executed? */ 32 int ret; 31 int ret; /* collected return value */ 33 struct completion completion; 32 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 33 }; 35 34 36 /* the actual stopper, one per every possible 35 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 36 struct cpu_stopper { 38 struct task_struct *thread; !! 37 spinlock_t lock; 39 << 40 raw_spinlock_t lock; << 41 bool enabled; 38 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; 39 struct list_head works; /* list of pending works */ 43 << 44 struct cpu_stop_work stop_work; << 45 unsigned long caller; << 46 cpu_stop_fn_t fn; << 47 }; 40 }; 48 41 49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_ 42 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); >> 43 static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task); 50 static bool stop_machine_initialized = false; 44 static bool stop_machine_initialized = false; 51 45 52 void print_stop_info(const char *log_lvl, stru << 53 { << 54 /* << 55 * If @task is a stopper task, it cann << 56 * stable. << 57 */ << 58 struct cpu_stopper *stopper = per_cpu_ << 59 << 60 if (task != stopper->thread) << 61 return; << 62 << 63 printk("%sStopper: %pS <- %pS\n", log_ << 64 } << 65 << 66 /* static data for stop_cpus */ << 67 static DEFINE_MUTEX(stop_cpus_mutex); << 68 static bool stop_cpus_in_progress; << 69 << 70 static void cpu_stop_init_done(struct cpu_stop 46 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 71 { 47 { 72 memset(done, 0, sizeof(*done)); 48 memset(done, 0, sizeof(*done)); 73 atomic_set(&done->nr_todo, nr_todo); 49 atomic_set(&done->nr_todo, nr_todo); 74 init_completion(&done->completion); 50 init_completion(&done->completion); 75 } 51 } 76 52 77 /* signal completion unless @done is NULL */ 53 /* signal completion unless @done is NULL */ 78 static void cpu_stop_signal_done(struct cpu_st !! 54 static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed) 79 { << 80 if (atomic_dec_and_test(&done->nr_todo << 81 complete(&done->completion); << 82 } << 83 << 84 static void __cpu_stop_queue_work(struct cpu_s << 85 struct << 86 struct << 87 { 55 { 88 list_add_tail(&work->list, &stopper->w !! 56 if (done) { 89 wake_q_add(wakeq, stopper->thread); !! 57 if (executed) >> 58 done->executed = true; >> 59 if (atomic_dec_and_test(&done->nr_todo)) >> 60 complete(&done->completion); >> 61 } 90 } 62 } 91 63 92 /* queue @work to @stopper. if offline, @work 64 /* queue @work to @stopper. if offline, @work is completed immediately */ 93 static bool cpu_stop_queue_work(unsigned int c !! 65 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 94 { 66 { 95 struct cpu_stopper *stopper = &per_cpu 67 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 96 DEFINE_WAKE_Q(wakeq); !! 68 struct task_struct *p = per_cpu(cpu_stopper_task, cpu); >> 69 97 unsigned long flags; 70 unsigned long flags; 98 bool enabled; << 99 71 100 preempt_disable(); !! 72 spin_lock_irqsave(&stopper->lock, flags); 101 raw_spin_lock_irqsave(&stopper->lock, << 102 enabled = stopper->enabled; << 103 if (enabled) << 104 __cpu_stop_queue_work(stopper, << 105 else if (work->done) << 106 cpu_stop_signal_done(work->don << 107 raw_spin_unlock_irqrestore(&stopper->l << 108 73 109 wake_up_q(&wakeq); !! 74 if (stopper->enabled) { 110 preempt_enable(); !! 75 list_add_tail(&work->list, &stopper->works); >> 76 wake_up_process(p); >> 77 } else >> 78 cpu_stop_signal_done(work->done, false); 111 79 112 return enabled; !! 80 spin_unlock_irqrestore(&stopper->lock, flags); 113 } 81 } 114 82 115 /** 83 /** 116 * stop_one_cpu - stop a cpu 84 * stop_one_cpu - stop a cpu 117 * @cpu: cpu to stop 85 * @cpu: cpu to stop 118 * @fn: function to execute 86 * @fn: function to execute 119 * @arg: argument to @fn 87 * @arg: argument to @fn 120 * 88 * 121 * Execute @fn(@arg) on @cpu. @fn is run in a 89 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 122 * the highest priority preempting any task on 90 * the highest priority preempting any task on the cpu and 123 * monopolizing it. This function returns aft 91 * monopolizing it. This function returns after the execution is 124 * complete. 92 * complete. 125 * 93 * 126 * This function doesn't guarantee @cpu stays 94 * This function doesn't guarantee @cpu stays online till @fn 127 * completes. If @cpu goes down in the middle 95 * completes. If @cpu goes down in the middle, execution may happen 128 * partially or fully on different cpus. @fn 96 * partially or fully on different cpus. @fn should either be ready 129 * for that or the caller should ensure that @ 97 * for that or the caller should ensure that @cpu stays online until 130 * this function completes. 98 * this function completes. 131 * 99 * 132 * CONTEXT: 100 * CONTEXT: 133 * Might sleep. 101 * Might sleep. 134 * 102 * 135 * RETURNS: 103 * RETURNS: 136 * -ENOENT if @fn(@arg) was not executed becau 104 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 137 * otherwise, the return value of @fn. 105 * otherwise, the return value of @fn. 138 */ 106 */ 139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn 107 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 140 { 108 { 141 struct cpu_stop_done done; 109 struct cpu_stop_done done; 142 struct cpu_stop_work work = { .fn = fn !! 110 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 143 111 144 cpu_stop_init_done(&done, 1); 112 cpu_stop_init_done(&done, 1); 145 if (!cpu_stop_queue_work(cpu, &work)) !! 113 cpu_stop_queue_work(cpu, &work); 146 return -ENOENT; << 147 /* << 148 * In case @cpu == smp_proccessor_id() << 149 * cycle by doing a preemption: << 150 */ << 151 cond_resched(); << 152 wait_for_completion(&done.completion); 114 wait_for_completion(&done.completion); 153 return done.ret; !! 115 return done.executed ? done.ret : -ENOENT; 154 } << 155 << 156 /* This controls the threads on each CPU. */ << 157 enum multi_stop_state { << 158 /* Dummy starting state for thread. */ << 159 MULTI_STOP_NONE, << 160 /* Awaiting everyone to be scheduled. << 161 MULTI_STOP_PREPARE, << 162 /* Disable interrupts. */ << 163 MULTI_STOP_DISABLE_IRQ, << 164 /* Run the function */ << 165 MULTI_STOP_RUN, << 166 /* Exit */ << 167 MULTI_STOP_EXIT, << 168 }; << 169 << 170 struct multi_stop_data { << 171 cpu_stop_fn_t fn; << 172 void *data; << 173 /* Like num_online_cpus(), but hotplug << 174 unsigned int num_threads; << 175 const struct cpumask *active_cpus; << 176 << 177 enum multi_stop_state state; << 178 atomic_t thread_ack; << 179 }; << 180 << 181 static void set_state(struct multi_stop_data * << 182 enum multi_stop_state ne << 183 { << 184 /* Reset ack counter. */ << 185 atomic_set(&msdata->thread_ack, msdata << 186 smp_wmb(); << 187 WRITE_ONCE(msdata->state, newstate); << 188 } << 189 << 190 /* Last one to ack a state moves to the next s << 191 static void ack_state(struct multi_stop_data * << 192 { << 193 if (atomic_dec_and_test(&msdata->threa << 194 set_state(msdata, msdata->stat << 195 } << 196 << 197 notrace void __weak stop_machine_yield(const s << 198 { << 199 cpu_relax(); << 200 } << 201 << 202 /* This is the cpu_stop function which stops t << 203 static int multi_cpu_stop(void *data) << 204 { << 205 struct multi_stop_data *msdata = data; << 206 enum multi_stop_state newstate, cursta << 207 int cpu = smp_processor_id(), err = 0; << 208 const struct cpumask *cpumask; << 209 unsigned long flags; << 210 bool is_active; << 211 << 212 /* << 213 * When called from stop_machine_from_ << 214 * already be disabled. Save the stat << 215 */ << 216 local_save_flags(flags); << 217 << 218 if (!msdata->active_cpus) { << 219 cpumask = cpu_online_mask; << 220 is_active = cpu == cpumask_fir << 221 } else { << 222 cpumask = msdata->active_cpus; << 223 is_active = cpumask_test_cpu(c << 224 } << 225 << 226 /* Simple state machine */ << 227 do { << 228 /* Chill out and ensure we re- << 229 stop_machine_yield(cpumask); << 230 newstate = READ_ONCE(msdata->s << 231 if (newstate != curstate) { << 232 curstate = newstate; << 233 switch (curstate) { << 234 case MULTI_STOP_DISABL << 235 local_irq_disa << 236 hard_irq_disab << 237 break; << 238 case MULTI_STOP_RUN: << 239 if (is_active) << 240 err = << 241 break; << 242 default: << 243 break; << 244 } << 245 ack_state(msdata); << 246 } else if (curstate > MULTI_ST << 247 /* << 248 * At this stage all o << 249 * in the same loop. A << 250 * be detected and rep << 251 */ << 252 touch_nmi_watchdog(); << 253 } << 254 rcu_momentary_dyntick_idle(); << 255 } while (curstate != MULTI_STOP_EXIT); << 256 << 257 local_irq_restore(flags); << 258 return err; << 259 } << 260 << 261 static int cpu_stop_queue_two_works(int cpu1, << 262 int cpu2, << 263 { << 264 struct cpu_stopper *stopper1 = per_cpu << 265 struct cpu_stopper *stopper2 = per_cpu << 266 DEFINE_WAKE_Q(wakeq); << 267 int err; << 268 << 269 retry: << 270 /* << 271 * The waking up of stopper threads ha << 272 * scheduling context as the queueing. << 273 * possibility of one of the above sto << 274 * CPU, and preempting us. This will c << 275 * stopper forever. << 276 */ << 277 preempt_disable(); << 278 raw_spin_lock_irq(&stopper1->lock); << 279 raw_spin_lock_nested(&stopper2->lock, << 280 << 281 if (!stopper1->enabled || !stopper2->e << 282 err = -ENOENT; << 283 goto unlock; << 284 } << 285 << 286 /* << 287 * Ensure that if we race with __stop_ << 288 * queued up in reverse order leading << 289 * << 290 * We can't miss stop_cpus_in_progress << 291 * queued a work on cpu1 but not on cp << 292 * << 293 * It can be falsely true but it is sa << 294 * queue_stop_cpus_work() does everyth << 295 */ << 296 if (unlikely(stop_cpus_in_progress)) { << 297 err = -EDEADLK; << 298 goto unlock; << 299 } << 300 << 301 err = 0; << 302 __cpu_stop_queue_work(stopper1, work1, << 303 __cpu_stop_queue_work(stopper2, work2, << 304 << 305 unlock: << 306 raw_spin_unlock(&stopper2->lock); << 307 raw_spin_unlock_irq(&stopper1->lock); << 308 << 309 if (unlikely(err == -EDEADLK)) { << 310 preempt_enable(); << 311 << 312 while (stop_cpus_in_progress) << 313 cpu_relax(); << 314 << 315 goto retry; << 316 } << 317 << 318 wake_up_q(&wakeq); << 319 preempt_enable(); << 320 << 321 return err; << 322 } << 323 /** << 324 * stop_two_cpus - stops two cpus << 325 * @cpu1: the cpu to stop << 326 * @cpu2: the other cpu to stop << 327 * @fn: function to execute << 328 * @arg: argument to @fn << 329 * << 330 * Stops both the current and specified CPU an << 331 * << 332 * returns when both are completed. << 333 */ << 334 int stop_two_cpus(unsigned int cpu1, unsigned << 335 { << 336 struct cpu_stop_done done; << 337 struct cpu_stop_work work1, work2; << 338 struct multi_stop_data msdata; << 339 << 340 msdata = (struct multi_stop_data){ << 341 .fn = fn, << 342 .data = arg, << 343 .num_threads = 2, << 344 .active_cpus = cpumask_of(cpu1 << 345 }; << 346 << 347 work1 = work2 = (struct cpu_stop_work) << 348 .fn = multi_cpu_stop, << 349 .arg = &msdata, << 350 .done = &done, << 351 .caller = _RET_IP_, << 352 }; << 353 << 354 cpu_stop_init_done(&done, 2); << 355 set_state(&msdata, MULTI_STOP_PREPARE) << 356 << 357 if (cpu1 > cpu2) << 358 swap(cpu1, cpu2); << 359 if (cpu_stop_queue_two_works(cpu1, &wo << 360 return -ENOENT; << 361 << 362 wait_for_completion(&done.completion); << 363 return done.ret; << 364 } 116 } 365 117 366 /** 118 /** 367 * stop_one_cpu_nowait - stop a cpu but don't 119 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 368 * @cpu: cpu to stop 120 * @cpu: cpu to stop 369 * @fn: function to execute 121 * @fn: function to execute 370 * @arg: argument to @fn 122 * @arg: argument to @fn 371 * @work_buf: pointer to cpu_stop_work structu << 372 * 123 * 373 * Similar to stop_one_cpu() but doesn't wait 124 * Similar to stop_one_cpu() but doesn't wait for completion. The 374 * caller is responsible for ensuring @work_bu 125 * caller is responsible for ensuring @work_buf is currently unused 375 * and will remain untouched until stopper sta 126 * and will remain untouched until stopper starts executing @fn. 376 * 127 * 377 * CONTEXT: 128 * CONTEXT: 378 * Don't care. 129 * Don't care. 379 * << 380 * RETURNS: << 381 * true if cpu_stop_work was queued successful << 382 * false otherwise. << 383 */ 130 */ 384 bool stop_one_cpu_nowait(unsigned int cpu, cpu !! 131 void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 385 struct cpu_stop_work * 132 struct cpu_stop_work *work_buf) 386 { 133 { 387 *work_buf = (struct cpu_stop_work){ .f !! 134 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 388 return cpu_stop_queue_work(cpu, work_b !! 135 cpu_stop_queue_work(cpu, work_buf); 389 } 136 } 390 137 391 static bool queue_stop_cpus_work(const struct !! 138 /* static data for stop_cpus */ >> 139 static DEFINE_MUTEX(stop_cpus_mutex); >> 140 static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work); >> 141 >> 142 static void queue_stop_cpus_work(const struct cpumask *cpumask, 392 cpu_stop_fn_t 143 cpu_stop_fn_t fn, void *arg, 393 struct cpu_st 144 struct cpu_stop_done *done) 394 { 145 { 395 struct cpu_stop_work *work; 146 struct cpu_stop_work *work; 396 unsigned int cpu; 147 unsigned int cpu; 397 bool queued = false; !! 148 >> 149 /* initialize works and done */ >> 150 for_each_cpu(cpu, cpumask) { >> 151 work = &per_cpu(stop_cpus_work, cpu); >> 152 work->fn = fn; >> 153 work->arg = arg; >> 154 work->done = done; >> 155 } 398 156 399 /* 157 /* 400 * Disable preemption while queueing t 158 * Disable preemption while queueing to avoid getting 401 * preempted by a stopper which might 159 * preempted by a stopper which might wait for other stoppers 402 * to enter @fn which can lead to dead 160 * to enter @fn which can lead to deadlock. 403 */ 161 */ 404 preempt_disable(); 162 preempt_disable(); 405 stop_cpus_in_progress = true; !! 163 for_each_cpu(cpu, cpumask) 406 barrier(); !! 164 cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu)); 407 for_each_cpu(cpu, cpumask) { << 408 work = &per_cpu(cpu_stopper.st << 409 work->fn = fn; << 410 work->arg = arg; << 411 work->done = done; << 412 work->caller = _RET_IP_; << 413 if (cpu_stop_queue_work(cpu, w << 414 queued = true; << 415 } << 416 barrier(); << 417 stop_cpus_in_progress = false; << 418 preempt_enable(); 165 preempt_enable(); 419 << 420 return queued; << 421 } 166 } 422 167 423 static int __stop_cpus(const struct cpumask *c 168 static int __stop_cpus(const struct cpumask *cpumask, 424 cpu_stop_fn_t fn, void 169 cpu_stop_fn_t fn, void *arg) 425 { 170 { 426 struct cpu_stop_done done; 171 struct cpu_stop_done done; 427 172 428 cpu_stop_init_done(&done, cpumask_weig 173 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 429 if (!queue_stop_cpus_work(cpumask, fn, !! 174 queue_stop_cpus_work(cpumask, fn, arg, &done); 430 return -ENOENT; << 431 wait_for_completion(&done.completion); 175 wait_for_completion(&done.completion); 432 return done.ret; !! 176 return done.executed ? done.ret : -ENOENT; 433 } 177 } 434 178 435 /** 179 /** 436 * stop_cpus - stop multiple cpus 180 * stop_cpus - stop multiple cpus 437 * @cpumask: cpus to stop 181 * @cpumask: cpus to stop 438 * @fn: function to execute 182 * @fn: function to execute 439 * @arg: argument to @fn 183 * @arg: argument to @fn 440 * 184 * 441 * Execute @fn(@arg) on online cpus in @cpumas 185 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 442 * @fn is run in a process context with the hi 186 * @fn is run in a process context with the highest priority 443 * preempting any task on the cpu and monopoli 187 * preempting any task on the cpu and monopolizing it. This function 444 * returns after all executions are complete. 188 * returns after all executions are complete. 445 * 189 * 446 * This function doesn't guarantee the cpus in 190 * This function doesn't guarantee the cpus in @cpumask stay online 447 * till @fn completes. If some cpus go down i 191 * till @fn completes. If some cpus go down in the middle, execution 448 * on the cpu may happen partially or fully on 192 * on the cpu may happen partially or fully on different cpus. @fn 449 * should either be ready for that or the call 193 * should either be ready for that or the caller should ensure that 450 * the cpus stay online until this function co 194 * the cpus stay online until this function completes. 451 * 195 * 452 * All stop_cpus() calls are serialized making 196 * All stop_cpus() calls are serialized making it safe for @fn to wait 453 * for all cpus to start executing it. 197 * for all cpus to start executing it. 454 * 198 * 455 * CONTEXT: 199 * CONTEXT: 456 * Might sleep. 200 * Might sleep. 457 * 201 * 458 * RETURNS: 202 * RETURNS: 459 * -ENOENT if @fn(@arg) was not executed at al 203 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 460 * @cpumask were offline; otherwise, 0 if all 204 * @cpumask were offline; otherwise, 0 if all executions of @fn 461 * returned 0, any non zero return value if an 205 * returned 0, any non zero return value if any returned non zero. 462 */ 206 */ 463 static int stop_cpus(const struct cpumask *cpu !! 207 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 464 { 208 { 465 int ret; 209 int ret; 466 210 467 /* static works are used, process one 211 /* static works are used, process one request at a time */ 468 mutex_lock(&stop_cpus_mutex); 212 mutex_lock(&stop_cpus_mutex); 469 ret = __stop_cpus(cpumask, fn, arg); 213 ret = __stop_cpus(cpumask, fn, arg); 470 mutex_unlock(&stop_cpus_mutex); 214 mutex_unlock(&stop_cpus_mutex); 471 return ret; 215 return ret; 472 } 216 } 473 217 >> 218 /** >> 219 * try_stop_cpus - try to stop multiple cpus >> 220 * @cpumask: cpus to stop >> 221 * @fn: function to execute >> 222 * @arg: argument to @fn >> 223 * >> 224 * Identical to stop_cpus() except that it fails with -EAGAIN if >> 225 * someone else is already using the facility. >> 226 * >> 227 * CONTEXT: >> 228 * Might sleep. >> 229 * >> 230 * RETURNS: >> 231 * -EAGAIN if someone else is already stopping cpus, -ENOENT if >> 232 * @fn(@arg) was not executed at all because all cpus in @cpumask were >> 233 * offline; otherwise, 0 if all executions of @fn returned 0, any non >> 234 * zero return value if any returned non zero. >> 235 */ >> 236 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) >> 237 { >> 238 int ret; >> 239 >> 240 /* static works are used, process one request at a time */ >> 241 if (!mutex_trylock(&stop_cpus_mutex)) >> 242 return -EAGAIN; >> 243 ret = __stop_cpus(cpumask, fn, arg); >> 244 mutex_unlock(&stop_cpus_mutex); >> 245 return ret; >> 246 } >> 247 474 static int cpu_stop_should_run(unsigned int cp 248 static int cpu_stop_should_run(unsigned int cpu) 475 { 249 { 476 struct cpu_stopper *stopper = &per_cpu 250 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 477 unsigned long flags; 251 unsigned long flags; 478 int run; 252 int run; 479 253 480 raw_spin_lock_irqsave(&stopper->lock, !! 254 spin_lock_irqsave(&stopper->lock, flags); 481 run = !list_empty(&stopper->works); 255 run = !list_empty(&stopper->works); 482 raw_spin_unlock_irqrestore(&stopper->l !! 256 spin_unlock_irqrestore(&stopper->lock, flags); 483 return run; 257 return run; 484 } 258 } 485 259 486 static void cpu_stopper_thread(unsigned int cp 260 static void cpu_stopper_thread(unsigned int cpu) 487 { 261 { 488 struct cpu_stopper *stopper = &per_cpu 262 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 489 struct cpu_stop_work *work; 263 struct cpu_stop_work *work; >> 264 int ret; 490 265 491 repeat: 266 repeat: 492 work = NULL; 267 work = NULL; 493 raw_spin_lock_irq(&stopper->lock); !! 268 spin_lock_irq(&stopper->lock); 494 if (!list_empty(&stopper->works)) { 269 if (!list_empty(&stopper->works)) { 495 work = list_first_entry(&stopp 270 work = list_first_entry(&stopper->works, 496 struct 271 struct cpu_stop_work, list); 497 list_del_init(&work->list); 272 list_del_init(&work->list); 498 } 273 } 499 raw_spin_unlock_irq(&stopper->lock); !! 274 spin_unlock_irq(&stopper->lock); 500 275 501 if (work) { 276 if (work) { 502 cpu_stop_fn_t fn = work->fn; 277 cpu_stop_fn_t fn = work->fn; 503 void *arg = work->arg; 278 void *arg = work->arg; 504 struct cpu_stop_done *done = w 279 struct cpu_stop_done *done = work->done; 505 int ret; !! 280 char ksym_buf[KSYM_NAME_LEN] __maybe_unused; >> 281 >> 282 /* cpu stop callbacks are not allowed to sleep */ >> 283 preempt_disable(); 506 284 507 /* cpu stop callbacks must not << 508 stopper->caller = work->caller << 509 stopper->fn = fn; << 510 preempt_count_inc(); << 511 ret = fn(arg); 285 ret = fn(arg); 512 if (done) { !! 286 if (ret) 513 if (ret) !! 287 done->ret = ret; 514 done->ret = re !! 288 515 cpu_stop_signal_done(d !! 289 /* restore preemption and check it's still balanced */ 516 } !! 290 preempt_enable(); 517 preempt_count_dec(); << 518 stopper->fn = NULL; << 519 stopper->caller = 0; << 520 WARN_ONCE(preempt_count(), 291 WARN_ONCE(preempt_count(), 521 "cpu_stop: %ps(%p) l !! 292 "cpu_stop: %s(%p) leaked preempt count\n", >> 293 kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, >> 294 ksym_buf), arg); >> 295 >> 296 cpu_stop_signal_done(done, true); 522 goto repeat; 297 goto repeat; 523 } 298 } 524 } 299 } 525 300 526 void stop_machine_park(int cpu) !! 301 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 527 { << 528 struct cpu_stopper *stopper = &per_cpu << 529 /* << 530 * Lockless. cpu_stopper_thread() will << 531 * the pending works before it parks, << 532 * the new works. << 533 */ << 534 stopper->enabled = false; << 535 kthread_park(stopper->thread); << 536 } << 537 302 538 static void cpu_stop_create(unsigned int cpu) 303 static void cpu_stop_create(unsigned int cpu) 539 { 304 { 540 sched_set_stop_task(cpu, per_cpu(cpu_s !! 305 sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu)); 541 } 306 } 542 307 543 static void cpu_stop_park(unsigned int cpu) 308 static void cpu_stop_park(unsigned int cpu) 544 { 309 { 545 struct cpu_stopper *stopper = &per_cpu 310 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); >> 311 struct cpu_stop_work *work; >> 312 unsigned long flags; 546 313 547 WARN_ON(!list_empty(&stopper->works)); !! 314 /* drain remaining works */ >> 315 spin_lock_irqsave(&stopper->lock, flags); >> 316 list_for_each_entry(work, &stopper->works, list) >> 317 cpu_stop_signal_done(work->done, false); >> 318 stopper->enabled = false; >> 319 spin_unlock_irqrestore(&stopper->lock, flags); 548 } 320 } 549 321 550 void stop_machine_unpark(int cpu) !! 322 static void cpu_stop_unpark(unsigned int cpu) 551 { 323 { 552 struct cpu_stopper *stopper = &per_cpu 324 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 553 325 >> 326 spin_lock_irq(&stopper->lock); 554 stopper->enabled = true; 327 stopper->enabled = true; 555 kthread_unpark(stopper->thread); !! 328 spin_unlock_irq(&stopper->lock); 556 } 329 } 557 330 558 static struct smp_hotplug_thread cpu_stop_thre 331 static struct smp_hotplug_thread cpu_stop_threads = { 559 .store = &cpu_stopper !! 332 .store = &cpu_stopper_task, 560 .thread_should_run = cpu_stop_sho 333 .thread_should_run = cpu_stop_should_run, 561 .thread_fn = cpu_stopper_ 334 .thread_fn = cpu_stopper_thread, 562 .thread_comm = "migration/% 335 .thread_comm = "migration/%u", 563 .create = cpu_stop_cre 336 .create = cpu_stop_create, >> 337 .setup = cpu_stop_unpark, 564 .park = cpu_stop_par 338 .park = cpu_stop_park, >> 339 .pre_unpark = cpu_stop_unpark, 565 .selfparking = true, 340 .selfparking = true, 566 }; 341 }; 567 342 568 static int __init cpu_stop_init(void) 343 static int __init cpu_stop_init(void) 569 { 344 { 570 unsigned int cpu; 345 unsigned int cpu; 571 346 572 for_each_possible_cpu(cpu) { 347 for_each_possible_cpu(cpu) { 573 struct cpu_stopper *stopper = 348 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 574 349 575 raw_spin_lock_init(&stopper->l !! 350 spin_lock_init(&stopper->lock); 576 INIT_LIST_HEAD(&stopper->works 351 INIT_LIST_HEAD(&stopper->works); 577 } 352 } 578 353 579 BUG_ON(smpboot_register_percpu_thread( 354 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 580 stop_machine_unpark(raw_smp_processor_ << 581 stop_machine_initialized = true; 355 stop_machine_initialized = true; 582 return 0; 356 return 0; 583 } 357 } 584 early_initcall(cpu_stop_init); 358 early_initcall(cpu_stop_init); 585 359 586 int stop_machine_cpuslocked(cpu_stop_fn_t fn, !! 360 #ifdef CONFIG_STOP_MACHINE 587 const struct cpuma !! 361 >> 362 /* This controls the threads on each CPU. */ >> 363 enum stopmachine_state { >> 364 /* Dummy starting state for thread. */ >> 365 STOPMACHINE_NONE, >> 366 /* Awaiting everyone to be scheduled. */ >> 367 STOPMACHINE_PREPARE, >> 368 /* Disable interrupts. */ >> 369 STOPMACHINE_DISABLE_IRQ, >> 370 /* Run the function */ >> 371 STOPMACHINE_RUN, >> 372 /* Exit */ >> 373 STOPMACHINE_EXIT, >> 374 }; >> 375 >> 376 struct stop_machine_data { >> 377 int (*fn)(void *); >> 378 void *data; >> 379 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ >> 380 unsigned int num_threads; >> 381 const struct cpumask *active_cpus; >> 382 >> 383 enum stopmachine_state state; >> 384 atomic_t thread_ack; >> 385 }; >> 386 >> 387 static void set_state(struct stop_machine_data *smdata, >> 388 enum stopmachine_state newstate) 588 { 389 { 589 struct multi_stop_data msdata = { !! 390 /* Reset ack counter. */ 590 .fn = fn, !! 391 atomic_set(&smdata->thread_ack, smdata->num_threads); 591 .data = data, !! 392 smp_wmb(); 592 .num_threads = num_online_cpus !! 393 smdata->state = newstate; 593 .active_cpus = cpus, !! 394 } 594 }; !! 395 >> 396 /* Last one to ack a state moves to the next state. */ >> 397 static void ack_state(struct stop_machine_data *smdata) >> 398 { >> 399 if (atomic_dec_and_test(&smdata->thread_ack)) >> 400 set_state(smdata, smdata->state + 1); >> 401 } >> 402 >> 403 /* This is the cpu_stop function which stops the CPU. */ >> 404 static int stop_machine_cpu_stop(void *data) >> 405 { >> 406 struct stop_machine_data *smdata = data; >> 407 enum stopmachine_state curstate = STOPMACHINE_NONE; >> 408 int cpu = smp_processor_id(), err = 0; >> 409 unsigned long flags; >> 410 bool is_active; >> 411 >> 412 /* >> 413 * When called from stop_machine_from_inactive_cpu(), irq might >> 414 * already be disabled. Save the state and restore it on exit. >> 415 */ >> 416 local_save_flags(flags); 595 417 596 lockdep_assert_cpus_held(); !! 418 if (!smdata->active_cpus) >> 419 is_active = cpu == cpumask_first(cpu_online_mask); >> 420 else >> 421 is_active = cpumask_test_cpu(cpu, smdata->active_cpus); >> 422 >> 423 /* Simple state machine */ >> 424 do { >> 425 /* Chill out and ensure we re-read stopmachine_state. */ >> 426 cpu_relax(); >> 427 if (smdata->state != curstate) { >> 428 curstate = smdata->state; >> 429 switch (curstate) { >> 430 case STOPMACHINE_DISABLE_IRQ: >> 431 local_irq_disable(); >> 432 hard_irq_disable(); >> 433 break; >> 434 case STOPMACHINE_RUN: >> 435 if (is_active) >> 436 err = smdata->fn(smdata->data); >> 437 break; >> 438 default: >> 439 break; >> 440 } >> 441 ack_state(smdata); >> 442 } >> 443 } while (curstate != STOPMACHINE_EXIT); >> 444 >> 445 local_irq_restore(flags); >> 446 return err; >> 447 } >> 448 >> 449 int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) >> 450 { >> 451 struct stop_machine_data smdata = { .fn = fn, .data = data, >> 452 .num_threads = num_online_cpus(), >> 453 .active_cpus = cpus }; 597 454 598 if (!stop_machine_initialized) { 455 if (!stop_machine_initialized) { 599 /* 456 /* 600 * Handle the case where stop_ 457 * Handle the case where stop_machine() is called 601 * early in boot before stop_m 458 * early in boot before stop_machine() has been 602 * initialized. 459 * initialized. 603 */ 460 */ 604 unsigned long flags; 461 unsigned long flags; 605 int ret; 462 int ret; 606 463 607 WARN_ON_ONCE(msdata.num_thread !! 464 WARN_ON_ONCE(smdata.num_threads != 1); 608 465 609 local_irq_save(flags); 466 local_irq_save(flags); 610 hard_irq_disable(); 467 hard_irq_disable(); 611 ret = (*fn)(data); 468 ret = (*fn)(data); 612 local_irq_restore(flags); 469 local_irq_restore(flags); 613 470 614 return ret; 471 return ret; 615 } 472 } 616 473 617 /* Set the initial state and stop all 474 /* Set the initial state and stop all online cpus. */ 618 set_state(&msdata, MULTI_STOP_PREPARE) !! 475 set_state(&smdata, STOPMACHINE_PREPARE); 619 return stop_cpus(cpu_online_mask, mult !! 476 return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata); 620 } 477 } 621 478 622 int stop_machine(cpu_stop_fn_t fn, void *data, !! 479 int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) 623 { 480 { 624 int ret; 481 int ret; 625 482 626 /* No CPUs can come up or down during 483 /* No CPUs can come up or down during this. */ 627 cpus_read_lock(); !! 484 get_online_cpus(); 628 ret = stop_machine_cpuslocked(fn, data !! 485 ret = __stop_machine(fn, data, cpus); 629 cpus_read_unlock(); !! 486 put_online_cpus(); 630 return ret; 487 return ret; 631 } 488 } 632 EXPORT_SYMBOL_GPL(stop_machine); 489 EXPORT_SYMBOL_GPL(stop_machine); 633 490 634 #ifdef CONFIG_SCHED_SMT << 635 int stop_core_cpuslocked(unsigned int cpu, cpu << 636 { << 637 const struct cpumask *smt_mask = cpu_s << 638 << 639 struct multi_stop_data msdata = { << 640 .fn = fn, << 641 .data = data, << 642 .num_threads = cpumask_weight( << 643 .active_cpus = smt_mask, << 644 }; << 645 << 646 lockdep_assert_cpus_held(); << 647 << 648 /* Set the initial state and stop all << 649 set_state(&msdata, MULTI_STOP_PREPARE) << 650 return stop_cpus(smt_mask, multi_cpu_s << 651 } << 652 EXPORT_SYMBOL_GPL(stop_core_cpuslocked); << 653 #endif << 654 << 655 /** 491 /** 656 * stop_machine_from_inactive_cpu - stop_machi 492 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 657 * @fn: the function to run 493 * @fn: the function to run 658 * @data: the data ptr for the @fn() 494 * @data: the data ptr for the @fn() 659 * @cpus: the cpus to run the @fn() on (NULL = 495 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 660 * 496 * 661 * This is identical to stop_machine() but can 497 * This is identical to stop_machine() but can be called from a CPU which 662 * is not active. The local CPU is in the pro 498 * is not active. The local CPU is in the process of hotplug (so no other 663 * CPU hotplug can start) and not marked activ 499 * CPU hotplug can start) and not marked active and doesn't have enough 664 * context to sleep. 500 * context to sleep. 665 * 501 * 666 * This function provides stop_machine() funct 502 * This function provides stop_machine() functionality for such state by 667 * using busy-wait for synchronization and exe 503 * using busy-wait for synchronization and executing @fn directly for local 668 * CPU. 504 * CPU. 669 * 505 * 670 * CONTEXT: 506 * CONTEXT: 671 * Local CPU is inactive. Temporarily stops a 507 * Local CPU is inactive. Temporarily stops all active CPUs. 672 * 508 * 673 * RETURNS: 509 * RETURNS: 674 * 0 if all executions of @fn returned 0, any 510 * 0 if all executions of @fn returned 0, any non zero return value if any 675 * returned non zero. 511 * returned non zero. 676 */ 512 */ 677 int stop_machine_from_inactive_cpu(cpu_stop_fn !! 513 int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data, 678 const struct 514 const struct cpumask *cpus) 679 { 515 { 680 struct multi_stop_data msdata = { .fn !! 516 struct stop_machine_data smdata = { .fn = fn, .data = data, 681 .a 517 .active_cpus = cpus }; 682 struct cpu_stop_done done; 518 struct cpu_stop_done done; 683 int ret; 519 int ret; 684 520 685 /* Local CPU must be inactive and CPU 521 /* Local CPU must be inactive and CPU hotplug in progress. */ 686 BUG_ON(cpu_active(raw_smp_processor_id 522 BUG_ON(cpu_active(raw_smp_processor_id())); 687 msdata.num_threads = num_active_cpus() !! 523 smdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 688 524 689 /* No proper task established and can' 525 /* No proper task established and can't sleep - busy wait for lock. */ 690 while (!mutex_trylock(&stop_cpus_mutex 526 while (!mutex_trylock(&stop_cpus_mutex)) 691 cpu_relax(); 527 cpu_relax(); 692 528 693 /* Schedule work on other CPUs and exe 529 /* Schedule work on other CPUs and execute directly for local CPU */ 694 set_state(&msdata, MULTI_STOP_PREPARE) !! 530 set_state(&smdata, STOPMACHINE_PREPARE); 695 cpu_stop_init_done(&done, num_active_c 531 cpu_stop_init_done(&done, num_active_cpus()); 696 queue_stop_cpus_work(cpu_active_mask, !! 532 queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata, 697 &done); 533 &done); 698 ret = multi_cpu_stop(&msdata); !! 534 ret = stop_machine_cpu_stop(&smdata); 699 535 700 /* Busy wait for completion. */ 536 /* Busy wait for completion. */ 701 while (!completion_done(&done.completi 537 while (!completion_done(&done.completion)) 702 cpu_relax(); 538 cpu_relax(); 703 539 704 mutex_unlock(&stop_cpus_mutex); 540 mutex_unlock(&stop_cpus_mutex); 705 return ret ?: done.ret; 541 return ret ?: done.ret; 706 } 542 } >> 543 >> 544 #endif /* CONFIG_STOP_MACHINE */ 707 545
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.