1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * kernel/stop_machine.c 2 * kernel/stop_machine.c 4 * 3 * 5 * Copyright (C) 2008, 2005 IBM Corporatio 4 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell 5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Pro 6 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@ 7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> >> 8 * >> 9 * This file is released under the GPLv2 and any later version. 9 */ 10 */ 10 #include <linux/compiler.h> << 11 #include <linux/completion.h> 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> << 25 24 26 /* 25 /* 27 * Structure to determine completion condition 26 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 27 * be shared by works on different cpus. 29 */ 28 */ 30 struct cpu_stop_done { 29 struct cpu_stop_done { 31 atomic_t nr_todo; 30 atomic_t nr_todo; /* nr left to execute */ 32 int ret; 31 int ret; /* collected return value */ 33 struct completion completion; 32 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 33 }; 35 34 36 /* the actual stopper, one per every possible 35 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 36 struct cpu_stopper { 38 struct task_struct *thread; 37 struct task_struct *thread; 39 38 40 raw_spinlock_t lock; !! 39 spinlock_t lock; 41 bool enabled; 40 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; 41 struct list_head works; /* list of pending works */ 43 42 44 struct cpu_stop_work stop_work; 43 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 unsigned long caller; << 46 cpu_stop_fn_t fn; << 47 }; 44 }; 48 45 49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_ 46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 50 static bool stop_machine_initialized = false; 47 static bool stop_machine_initialized = false; 51 48 52 void print_stop_info(const char *log_lvl, stru << 53 { << 54 /* << 55 * If @task is a stopper task, it cann << 56 * stable. << 57 */ << 58 struct cpu_stopper *stopper = per_cpu_ << 59 << 60 if (task != stopper->thread) << 61 return; << 62 << 63 printk("%sStopper: %pS <- %pS\n", log_ << 64 } << 65 << 66 /* static data for stop_cpus */ 49 /* static data for stop_cpus */ 67 static DEFINE_MUTEX(stop_cpus_mutex); 50 static DEFINE_MUTEX(stop_cpus_mutex); 68 static bool stop_cpus_in_progress; 51 static bool stop_cpus_in_progress; 69 52 70 static void cpu_stop_init_done(struct cpu_stop 53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 71 { 54 { 72 memset(done, 0, sizeof(*done)); 55 memset(done, 0, sizeof(*done)); 73 atomic_set(&done->nr_todo, nr_todo); 56 atomic_set(&done->nr_todo, nr_todo); 74 init_completion(&done->completion); 57 init_completion(&done->completion); 75 } 58 } 76 59 77 /* signal completion unless @done is NULL */ 60 /* signal completion unless @done is NULL */ 78 static void cpu_stop_signal_done(struct cpu_st 61 static void cpu_stop_signal_done(struct cpu_stop_done *done) 79 { 62 { 80 if (atomic_dec_and_test(&done->nr_todo 63 if (atomic_dec_and_test(&done->nr_todo)) 81 complete(&done->completion); 64 complete(&done->completion); 82 } 65 } 83 66 84 static void __cpu_stop_queue_work(struct cpu_s 67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 85 struct !! 68 struct cpu_stop_work *work) 86 struct << 87 { 69 { 88 list_add_tail(&work->list, &stopper->w 70 list_add_tail(&work->list, &stopper->works); 89 wake_q_add(wakeq, stopper->thread); !! 71 wake_up_process(stopper->thread); 90 } 72 } 91 73 92 /* queue @work to @stopper. if offline, @work 74 /* queue @work to @stopper. if offline, @work is completed immediately */ 93 static bool cpu_stop_queue_work(unsigned int c 75 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 94 { 76 { 95 struct cpu_stopper *stopper = &per_cpu 77 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 96 DEFINE_WAKE_Q(wakeq); << 97 unsigned long flags; 78 unsigned long flags; 98 bool enabled; 79 bool enabled; 99 80 100 preempt_disable(); !! 81 spin_lock_irqsave(&stopper->lock, flags); 101 raw_spin_lock_irqsave(&stopper->lock, << 102 enabled = stopper->enabled; 82 enabled = stopper->enabled; 103 if (enabled) 83 if (enabled) 104 __cpu_stop_queue_work(stopper, !! 84 __cpu_stop_queue_work(stopper, work); 105 else if (work->done) 85 else if (work->done) 106 cpu_stop_signal_done(work->don 86 cpu_stop_signal_done(work->done); 107 raw_spin_unlock_irqrestore(&stopper->l !! 87 spin_unlock_irqrestore(&stopper->lock, flags); 108 << 109 wake_up_q(&wakeq); << 110 preempt_enable(); << 111 88 112 return enabled; 89 return enabled; 113 } 90 } 114 91 115 /** 92 /** 116 * stop_one_cpu - stop a cpu 93 * stop_one_cpu - stop a cpu 117 * @cpu: cpu to stop 94 * @cpu: cpu to stop 118 * @fn: function to execute 95 * @fn: function to execute 119 * @arg: argument to @fn 96 * @arg: argument to @fn 120 * 97 * 121 * Execute @fn(@arg) on @cpu. @fn is run in a 98 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 122 * the highest priority preempting any task on 99 * the highest priority preempting any task on the cpu and 123 * monopolizing it. This function returns aft 100 * monopolizing it. This function returns after the execution is 124 * complete. 101 * complete. 125 * 102 * 126 * This function doesn't guarantee @cpu stays 103 * This function doesn't guarantee @cpu stays online till @fn 127 * completes. If @cpu goes down in the middle 104 * completes. If @cpu goes down in the middle, execution may happen 128 * partially or fully on different cpus. @fn 105 * partially or fully on different cpus. @fn should either be ready 129 * for that or the caller should ensure that @ 106 * for that or the caller should ensure that @cpu stays online until 130 * this function completes. 107 * this function completes. 131 * 108 * 132 * CONTEXT: 109 * CONTEXT: 133 * Might sleep. 110 * Might sleep. 134 * 111 * 135 * RETURNS: 112 * RETURNS: 136 * -ENOENT if @fn(@arg) was not executed becau 113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 137 * otherwise, the return value of @fn. 114 * otherwise, the return value of @fn. 138 */ 115 */ 139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn 116 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 140 { 117 { 141 struct cpu_stop_done done; 118 struct cpu_stop_done done; 142 struct cpu_stop_work work = { .fn = fn !! 119 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 143 120 144 cpu_stop_init_done(&done, 1); 121 cpu_stop_init_done(&done, 1); 145 if (!cpu_stop_queue_work(cpu, &work)) 122 if (!cpu_stop_queue_work(cpu, &work)) 146 return -ENOENT; 123 return -ENOENT; 147 /* 124 /* 148 * In case @cpu == smp_proccessor_id() 125 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 149 * cycle by doing a preemption: 126 * cycle by doing a preemption: 150 */ 127 */ 151 cond_resched(); 128 cond_resched(); 152 wait_for_completion(&done.completion); 129 wait_for_completion(&done.completion); 153 return done.ret; 130 return done.ret; 154 } 131 } 155 132 156 /* This controls the threads on each CPU. */ 133 /* This controls the threads on each CPU. */ 157 enum multi_stop_state { 134 enum multi_stop_state { 158 /* Dummy starting state for thread. */ 135 /* Dummy starting state for thread. */ 159 MULTI_STOP_NONE, 136 MULTI_STOP_NONE, 160 /* Awaiting everyone to be scheduled. 137 /* Awaiting everyone to be scheduled. */ 161 MULTI_STOP_PREPARE, 138 MULTI_STOP_PREPARE, 162 /* Disable interrupts. */ 139 /* Disable interrupts. */ 163 MULTI_STOP_DISABLE_IRQ, 140 MULTI_STOP_DISABLE_IRQ, 164 /* Run the function */ 141 /* Run the function */ 165 MULTI_STOP_RUN, 142 MULTI_STOP_RUN, 166 /* Exit */ 143 /* Exit */ 167 MULTI_STOP_EXIT, 144 MULTI_STOP_EXIT, 168 }; 145 }; 169 146 170 struct multi_stop_data { 147 struct multi_stop_data { 171 cpu_stop_fn_t fn; 148 cpu_stop_fn_t fn; 172 void *data; 149 void *data; 173 /* Like num_online_cpus(), but hotplug 150 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 174 unsigned int num_threads; 151 unsigned int num_threads; 175 const struct cpumask *active_cpus; 152 const struct cpumask *active_cpus; 176 153 177 enum multi_stop_state state; 154 enum multi_stop_state state; 178 atomic_t thread_ack; 155 atomic_t thread_ack; 179 }; 156 }; 180 157 181 static void set_state(struct multi_stop_data * 158 static void set_state(struct multi_stop_data *msdata, 182 enum multi_stop_state ne 159 enum multi_stop_state newstate) 183 { 160 { 184 /* Reset ack counter. */ 161 /* Reset ack counter. */ 185 atomic_set(&msdata->thread_ack, msdata 162 atomic_set(&msdata->thread_ack, msdata->num_threads); 186 smp_wmb(); 163 smp_wmb(); 187 WRITE_ONCE(msdata->state, newstate); !! 164 msdata->state = newstate; 188 } 165 } 189 166 190 /* Last one to ack a state moves to the next s 167 /* Last one to ack a state moves to the next state. */ 191 static void ack_state(struct multi_stop_data * 168 static void ack_state(struct multi_stop_data *msdata) 192 { 169 { 193 if (atomic_dec_and_test(&msdata->threa 170 if (atomic_dec_and_test(&msdata->thread_ack)) 194 set_state(msdata, msdata->stat 171 set_state(msdata, msdata->state + 1); 195 } 172 } 196 173 197 notrace void __weak stop_machine_yield(const s << 198 { << 199 cpu_relax(); << 200 } << 201 << 202 /* This is the cpu_stop function which stops t 174 /* This is the cpu_stop function which stops the CPU. */ 203 static int multi_cpu_stop(void *data) 175 static int multi_cpu_stop(void *data) 204 { 176 { 205 struct multi_stop_data *msdata = data; 177 struct multi_stop_data *msdata = data; 206 enum multi_stop_state newstate, cursta !! 178 enum multi_stop_state curstate = MULTI_STOP_NONE; 207 int cpu = smp_processor_id(), err = 0; 179 int cpu = smp_processor_id(), err = 0; 208 const struct cpumask *cpumask; << 209 unsigned long flags; 180 unsigned long flags; 210 bool is_active; 181 bool is_active; 211 182 212 /* 183 /* 213 * When called from stop_machine_from_ 184 * When called from stop_machine_from_inactive_cpu(), irq might 214 * already be disabled. Save the stat 185 * already be disabled. Save the state and restore it on exit. 215 */ 186 */ 216 local_save_flags(flags); 187 local_save_flags(flags); 217 188 218 if (!msdata->active_cpus) { !! 189 if (!msdata->active_cpus) 219 cpumask = cpu_online_mask; !! 190 is_active = cpu == cpumask_first(cpu_online_mask); 220 is_active = cpu == cpumask_fir !! 191 else 221 } else { !! 192 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 222 cpumask = msdata->active_cpus; << 223 is_active = cpumask_test_cpu(c << 224 } << 225 193 226 /* Simple state machine */ 194 /* Simple state machine */ 227 do { 195 do { 228 /* Chill out and ensure we re- 196 /* Chill out and ensure we re-read multi_stop_state. */ 229 stop_machine_yield(cpumask); !! 197 cpu_relax_yield(); 230 newstate = READ_ONCE(msdata->s !! 198 if (msdata->state != curstate) { 231 if (newstate != curstate) { !! 199 curstate = msdata->state; 232 curstate = newstate; << 233 switch (curstate) { 200 switch (curstate) { 234 case MULTI_STOP_DISABL 201 case MULTI_STOP_DISABLE_IRQ: 235 local_irq_disa 202 local_irq_disable(); 236 hard_irq_disab 203 hard_irq_disable(); 237 break; 204 break; 238 case MULTI_STOP_RUN: 205 case MULTI_STOP_RUN: 239 if (is_active) 206 if (is_active) 240 err = 207 err = msdata->fn(msdata->data); 241 break; 208 break; 242 default: 209 default: 243 break; 210 break; 244 } 211 } 245 ack_state(msdata); 212 ack_state(msdata); 246 } else if (curstate > MULTI_ST 213 } else if (curstate > MULTI_STOP_PREPARE) { 247 /* 214 /* 248 * At this stage all o 215 * At this stage all other CPUs we depend on must spin 249 * in the same loop. A 216 * in the same loop. Any reason for hard-lockup should 250 * be detected and rep 217 * be detected and reported on their side. 251 */ 218 */ 252 touch_nmi_watchdog(); 219 touch_nmi_watchdog(); 253 } 220 } 254 rcu_momentary_dyntick_idle(); << 255 } while (curstate != MULTI_STOP_EXIT); 221 } while (curstate != MULTI_STOP_EXIT); 256 222 257 local_irq_restore(flags); 223 local_irq_restore(flags); 258 return err; 224 return err; 259 } 225 } 260 226 261 static int cpu_stop_queue_two_works(int cpu1, 227 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 262 int cpu2, 228 int cpu2, struct cpu_stop_work *work2) 263 { 229 { 264 struct cpu_stopper *stopper1 = per_cpu 230 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 265 struct cpu_stopper *stopper2 = per_cpu 231 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 266 DEFINE_WAKE_Q(wakeq); << 267 int err; 232 int err; 268 << 269 retry: 233 retry: 270 /* !! 234 spin_lock_irq(&stopper1->lock); 271 * The waking up of stopper threads ha !! 235 spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 272 * scheduling context as the queueing. << 273 * possibility of one of the above sto << 274 * CPU, and preempting us. This will c << 275 * stopper forever. << 276 */ << 277 preempt_disable(); << 278 raw_spin_lock_irq(&stopper1->lock); << 279 raw_spin_lock_nested(&stopper2->lock, << 280 236 281 if (!stopper1->enabled || !stopper2->e !! 237 err = -ENOENT; 282 err = -ENOENT; !! 238 if (!stopper1->enabled || !stopper2->enabled) 283 goto unlock; 239 goto unlock; 284 } << 285 << 286 /* 240 /* 287 * Ensure that if we race with __stop_ 241 * Ensure that if we race with __stop_cpus() the stoppers won't get 288 * queued up in reverse order leading 242 * queued up in reverse order leading to system deadlock. 289 * 243 * 290 * We can't miss stop_cpus_in_progress 244 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 291 * queued a work on cpu1 but not on cp 245 * queued a work on cpu1 but not on cpu2, we hold both locks. 292 * 246 * 293 * It can be falsely true but it is sa 247 * It can be falsely true but it is safe to spin until it is cleared, 294 * queue_stop_cpus_work() does everyth 248 * queue_stop_cpus_work() does everything under preempt_disable(). 295 */ 249 */ 296 if (unlikely(stop_cpus_in_progress)) { !! 250 err = -EDEADLK; 297 err = -EDEADLK; !! 251 if (unlikely(stop_cpus_in_progress)) 298 goto unlock; !! 252 goto unlock; 299 } << 300 253 301 err = 0; 254 err = 0; 302 __cpu_stop_queue_work(stopper1, work1, !! 255 __cpu_stop_queue_work(stopper1, work1); 303 __cpu_stop_queue_work(stopper2, work2, !! 256 __cpu_stop_queue_work(stopper2, work2); 304 << 305 unlock: 257 unlock: 306 raw_spin_unlock(&stopper2->lock); !! 258 spin_unlock(&stopper2->lock); 307 raw_spin_unlock_irq(&stopper1->lock); !! 259 spin_unlock_irq(&stopper1->lock); 308 260 309 if (unlikely(err == -EDEADLK)) { 261 if (unlikely(err == -EDEADLK)) { 310 preempt_enable(); << 311 << 312 while (stop_cpus_in_progress) 262 while (stop_cpus_in_progress) 313 cpu_relax(); 263 cpu_relax(); 314 << 315 goto retry; 264 goto retry; 316 } 265 } 317 << 318 wake_up_q(&wakeq); << 319 preempt_enable(); << 320 << 321 return err; 266 return err; 322 } 267 } 323 /** 268 /** 324 * stop_two_cpus - stops two cpus 269 * stop_two_cpus - stops two cpus 325 * @cpu1: the cpu to stop 270 * @cpu1: the cpu to stop 326 * @cpu2: the other cpu to stop 271 * @cpu2: the other cpu to stop 327 * @fn: function to execute 272 * @fn: function to execute 328 * @arg: argument to @fn 273 * @arg: argument to @fn 329 * 274 * 330 * Stops both the current and specified CPU an 275 * Stops both the current and specified CPU and runs @fn on one of them. 331 * 276 * 332 * returns when both are completed. 277 * returns when both are completed. 333 */ 278 */ 334 int stop_two_cpus(unsigned int cpu1, unsigned 279 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 335 { 280 { 336 struct cpu_stop_done done; 281 struct cpu_stop_done done; 337 struct cpu_stop_work work1, work2; 282 struct cpu_stop_work work1, work2; 338 struct multi_stop_data msdata; 283 struct multi_stop_data msdata; 339 284 340 msdata = (struct multi_stop_data){ 285 msdata = (struct multi_stop_data){ 341 .fn = fn, 286 .fn = fn, 342 .data = arg, 287 .data = arg, 343 .num_threads = 2, 288 .num_threads = 2, 344 .active_cpus = cpumask_of(cpu1 289 .active_cpus = cpumask_of(cpu1), 345 }; 290 }; 346 291 347 work1 = work2 = (struct cpu_stop_work) 292 work1 = work2 = (struct cpu_stop_work){ 348 .fn = multi_cpu_stop, 293 .fn = multi_cpu_stop, 349 .arg = &msdata, 294 .arg = &msdata, 350 .done = &done, !! 295 .done = &done 351 .caller = _RET_IP_, << 352 }; 296 }; 353 297 354 cpu_stop_init_done(&done, 2); 298 cpu_stop_init_done(&done, 2); 355 set_state(&msdata, MULTI_STOP_PREPARE) 299 set_state(&msdata, MULTI_STOP_PREPARE); 356 300 357 if (cpu1 > cpu2) 301 if (cpu1 > cpu2) 358 swap(cpu1, cpu2); 302 swap(cpu1, cpu2); 359 if (cpu_stop_queue_two_works(cpu1, &wo 303 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 360 return -ENOENT; 304 return -ENOENT; 361 305 362 wait_for_completion(&done.completion); 306 wait_for_completion(&done.completion); 363 return done.ret; 307 return done.ret; 364 } 308 } 365 309 366 /** 310 /** 367 * stop_one_cpu_nowait - stop a cpu but don't 311 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 368 * @cpu: cpu to stop 312 * @cpu: cpu to stop 369 * @fn: function to execute 313 * @fn: function to execute 370 * @arg: argument to @fn 314 * @arg: argument to @fn 371 * @work_buf: pointer to cpu_stop_work structu 315 * @work_buf: pointer to cpu_stop_work structure 372 * 316 * 373 * Similar to stop_one_cpu() but doesn't wait 317 * Similar to stop_one_cpu() but doesn't wait for completion. The 374 * caller is responsible for ensuring @work_bu 318 * caller is responsible for ensuring @work_buf is currently unused 375 * and will remain untouched until stopper sta 319 * and will remain untouched until stopper starts executing @fn. 376 * 320 * 377 * CONTEXT: 321 * CONTEXT: 378 * Don't care. 322 * Don't care. 379 * 323 * 380 * RETURNS: 324 * RETURNS: 381 * true if cpu_stop_work was queued successful 325 * true if cpu_stop_work was queued successfully and @fn will be called, 382 * false otherwise. 326 * false otherwise. 383 */ 327 */ 384 bool stop_one_cpu_nowait(unsigned int cpu, cpu 328 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 385 struct cpu_stop_work * 329 struct cpu_stop_work *work_buf) 386 { 330 { 387 *work_buf = (struct cpu_stop_work){ .f !! 331 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 388 return cpu_stop_queue_work(cpu, work_b 332 return cpu_stop_queue_work(cpu, work_buf); 389 } 333 } 390 334 391 static bool queue_stop_cpus_work(const struct 335 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 392 cpu_stop_fn_t 336 cpu_stop_fn_t fn, void *arg, 393 struct cpu_st 337 struct cpu_stop_done *done) 394 { 338 { 395 struct cpu_stop_work *work; 339 struct cpu_stop_work *work; 396 unsigned int cpu; 340 unsigned int cpu; 397 bool queued = false; 341 bool queued = false; 398 342 399 /* 343 /* 400 * Disable preemption while queueing t 344 * Disable preemption while queueing to avoid getting 401 * preempted by a stopper which might 345 * preempted by a stopper which might wait for other stoppers 402 * to enter @fn which can lead to dead 346 * to enter @fn which can lead to deadlock. 403 */ 347 */ 404 preempt_disable(); 348 preempt_disable(); 405 stop_cpus_in_progress = true; 349 stop_cpus_in_progress = true; 406 barrier(); << 407 for_each_cpu(cpu, cpumask) { 350 for_each_cpu(cpu, cpumask) { 408 work = &per_cpu(cpu_stopper.st 351 work = &per_cpu(cpu_stopper.stop_work, cpu); 409 work->fn = fn; 352 work->fn = fn; 410 work->arg = arg; 353 work->arg = arg; 411 work->done = done; 354 work->done = done; 412 work->caller = _RET_IP_; << 413 if (cpu_stop_queue_work(cpu, w 355 if (cpu_stop_queue_work(cpu, work)) 414 queued = true; 356 queued = true; 415 } 357 } 416 barrier(); << 417 stop_cpus_in_progress = false; 358 stop_cpus_in_progress = false; 418 preempt_enable(); 359 preempt_enable(); 419 360 420 return queued; 361 return queued; 421 } 362 } 422 363 423 static int __stop_cpus(const struct cpumask *c 364 static int __stop_cpus(const struct cpumask *cpumask, 424 cpu_stop_fn_t fn, void 365 cpu_stop_fn_t fn, void *arg) 425 { 366 { 426 struct cpu_stop_done done; 367 struct cpu_stop_done done; 427 368 428 cpu_stop_init_done(&done, cpumask_weig 369 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 429 if (!queue_stop_cpus_work(cpumask, fn, 370 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 430 return -ENOENT; 371 return -ENOENT; 431 wait_for_completion(&done.completion); 372 wait_for_completion(&done.completion); 432 return done.ret; 373 return done.ret; 433 } 374 } 434 375 435 /** 376 /** 436 * stop_cpus - stop multiple cpus 377 * stop_cpus - stop multiple cpus 437 * @cpumask: cpus to stop 378 * @cpumask: cpus to stop 438 * @fn: function to execute 379 * @fn: function to execute 439 * @arg: argument to @fn 380 * @arg: argument to @fn 440 * 381 * 441 * Execute @fn(@arg) on online cpus in @cpumas 382 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 442 * @fn is run in a process context with the hi 383 * @fn is run in a process context with the highest priority 443 * preempting any task on the cpu and monopoli 384 * preempting any task on the cpu and monopolizing it. This function 444 * returns after all executions are complete. 385 * returns after all executions are complete. 445 * 386 * 446 * This function doesn't guarantee the cpus in 387 * This function doesn't guarantee the cpus in @cpumask stay online 447 * till @fn completes. If some cpus go down i 388 * till @fn completes. If some cpus go down in the middle, execution 448 * on the cpu may happen partially or fully on 389 * on the cpu may happen partially or fully on different cpus. @fn 449 * should either be ready for that or the call 390 * should either be ready for that or the caller should ensure that 450 * the cpus stay online until this function co 391 * the cpus stay online until this function completes. 451 * 392 * 452 * All stop_cpus() calls are serialized making 393 * All stop_cpus() calls are serialized making it safe for @fn to wait 453 * for all cpus to start executing it. 394 * for all cpus to start executing it. 454 * 395 * 455 * CONTEXT: 396 * CONTEXT: 456 * Might sleep. 397 * Might sleep. 457 * 398 * 458 * RETURNS: 399 * RETURNS: 459 * -ENOENT if @fn(@arg) was not executed at al 400 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 460 * @cpumask were offline; otherwise, 0 if all 401 * @cpumask were offline; otherwise, 0 if all executions of @fn 461 * returned 0, any non zero return value if an 402 * returned 0, any non zero return value if any returned non zero. 462 */ 403 */ 463 static int stop_cpus(const struct cpumask *cpu !! 404 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 464 { 405 { 465 int ret; 406 int ret; 466 407 467 /* static works are used, process one 408 /* static works are used, process one request at a time */ 468 mutex_lock(&stop_cpus_mutex); 409 mutex_lock(&stop_cpus_mutex); 469 ret = __stop_cpus(cpumask, fn, arg); 410 ret = __stop_cpus(cpumask, fn, arg); 470 mutex_unlock(&stop_cpus_mutex); 411 mutex_unlock(&stop_cpus_mutex); 471 return ret; 412 return ret; 472 } 413 } 473 414 >> 415 /** >> 416 * try_stop_cpus - try to stop multiple cpus >> 417 * @cpumask: cpus to stop >> 418 * @fn: function to execute >> 419 * @arg: argument to @fn >> 420 * >> 421 * Identical to stop_cpus() except that it fails with -EAGAIN if >> 422 * someone else is already using the facility. >> 423 * >> 424 * CONTEXT: >> 425 * Might sleep. >> 426 * >> 427 * RETURNS: >> 428 * -EAGAIN if someone else is already stopping cpus, -ENOENT if >> 429 * @fn(@arg) was not executed at all because all cpus in @cpumask were >> 430 * offline; otherwise, 0 if all executions of @fn returned 0, any non >> 431 * zero return value if any returned non zero. >> 432 */ >> 433 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) >> 434 { >> 435 int ret; >> 436 >> 437 /* static works are used, process one request at a time */ >> 438 if (!mutex_trylock(&stop_cpus_mutex)) >> 439 return -EAGAIN; >> 440 ret = __stop_cpus(cpumask, fn, arg); >> 441 mutex_unlock(&stop_cpus_mutex); >> 442 return ret; >> 443 } >> 444 474 static int cpu_stop_should_run(unsigned int cp 445 static int cpu_stop_should_run(unsigned int cpu) 475 { 446 { 476 struct cpu_stopper *stopper = &per_cpu 447 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 477 unsigned long flags; 448 unsigned long flags; 478 int run; 449 int run; 479 450 480 raw_spin_lock_irqsave(&stopper->lock, !! 451 spin_lock_irqsave(&stopper->lock, flags); 481 run = !list_empty(&stopper->works); 452 run = !list_empty(&stopper->works); 482 raw_spin_unlock_irqrestore(&stopper->l !! 453 spin_unlock_irqrestore(&stopper->lock, flags); 483 return run; 454 return run; 484 } 455 } 485 456 486 static void cpu_stopper_thread(unsigned int cp 457 static void cpu_stopper_thread(unsigned int cpu) 487 { 458 { 488 struct cpu_stopper *stopper = &per_cpu 459 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 489 struct cpu_stop_work *work; 460 struct cpu_stop_work *work; 490 461 491 repeat: 462 repeat: 492 work = NULL; 463 work = NULL; 493 raw_spin_lock_irq(&stopper->lock); !! 464 spin_lock_irq(&stopper->lock); 494 if (!list_empty(&stopper->works)) { 465 if (!list_empty(&stopper->works)) { 495 work = list_first_entry(&stopp 466 work = list_first_entry(&stopper->works, 496 struct 467 struct cpu_stop_work, list); 497 list_del_init(&work->list); 468 list_del_init(&work->list); 498 } 469 } 499 raw_spin_unlock_irq(&stopper->lock); !! 470 spin_unlock_irq(&stopper->lock); 500 471 501 if (work) { 472 if (work) { 502 cpu_stop_fn_t fn = work->fn; 473 cpu_stop_fn_t fn = work->fn; 503 void *arg = work->arg; 474 void *arg = work->arg; 504 struct cpu_stop_done *done = w 475 struct cpu_stop_done *done = work->done; 505 int ret; 476 int ret; 506 477 507 /* cpu stop callbacks must not 478 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 508 stopper->caller = work->caller << 509 stopper->fn = fn; << 510 preempt_count_inc(); 479 preempt_count_inc(); 511 ret = fn(arg); 480 ret = fn(arg); 512 if (done) { 481 if (done) { 513 if (ret) 482 if (ret) 514 done->ret = re 483 done->ret = ret; 515 cpu_stop_signal_done(d 484 cpu_stop_signal_done(done); 516 } 485 } 517 preempt_count_dec(); 486 preempt_count_dec(); 518 stopper->fn = NULL; << 519 stopper->caller = 0; << 520 WARN_ONCE(preempt_count(), 487 WARN_ONCE(preempt_count(), 521 "cpu_stop: %ps(%p) l !! 488 "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg); 522 goto repeat; 489 goto repeat; 523 } 490 } 524 } 491 } 525 492 526 void stop_machine_park(int cpu) 493 void stop_machine_park(int cpu) 527 { 494 { 528 struct cpu_stopper *stopper = &per_cpu 495 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 529 /* 496 /* 530 * Lockless. cpu_stopper_thread() will 497 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 531 * the pending works before it parks, 498 * the pending works before it parks, until then it is fine to queue 532 * the new works. 499 * the new works. 533 */ 500 */ 534 stopper->enabled = false; 501 stopper->enabled = false; 535 kthread_park(stopper->thread); 502 kthread_park(stopper->thread); 536 } 503 } 537 504 >> 505 extern void sched_set_stop_task(int cpu, struct task_struct *stop); >> 506 538 static void cpu_stop_create(unsigned int cpu) 507 static void cpu_stop_create(unsigned int cpu) 539 { 508 { 540 sched_set_stop_task(cpu, per_cpu(cpu_s 509 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 541 } 510 } 542 511 543 static void cpu_stop_park(unsigned int cpu) 512 static void cpu_stop_park(unsigned int cpu) 544 { 513 { 545 struct cpu_stopper *stopper = &per_cpu 514 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 546 515 547 WARN_ON(!list_empty(&stopper->works)); 516 WARN_ON(!list_empty(&stopper->works)); 548 } 517 } 549 518 550 void stop_machine_unpark(int cpu) 519 void stop_machine_unpark(int cpu) 551 { 520 { 552 struct cpu_stopper *stopper = &per_cpu 521 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 553 522 554 stopper->enabled = true; 523 stopper->enabled = true; 555 kthread_unpark(stopper->thread); 524 kthread_unpark(stopper->thread); 556 } 525 } 557 526 558 static struct smp_hotplug_thread cpu_stop_thre 527 static struct smp_hotplug_thread cpu_stop_threads = { 559 .store = &cpu_stopper 528 .store = &cpu_stopper.thread, 560 .thread_should_run = cpu_stop_sho 529 .thread_should_run = cpu_stop_should_run, 561 .thread_fn = cpu_stopper_ 530 .thread_fn = cpu_stopper_thread, 562 .thread_comm = "migration/% 531 .thread_comm = "migration/%u", 563 .create = cpu_stop_cre 532 .create = cpu_stop_create, 564 .park = cpu_stop_par 533 .park = cpu_stop_park, 565 .selfparking = true, 534 .selfparking = true, 566 }; 535 }; 567 536 568 static int __init cpu_stop_init(void) 537 static int __init cpu_stop_init(void) 569 { 538 { 570 unsigned int cpu; 539 unsigned int cpu; 571 540 572 for_each_possible_cpu(cpu) { 541 for_each_possible_cpu(cpu) { 573 struct cpu_stopper *stopper = 542 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 574 543 575 raw_spin_lock_init(&stopper->l !! 544 spin_lock_init(&stopper->lock); 576 INIT_LIST_HEAD(&stopper->works 545 INIT_LIST_HEAD(&stopper->works); 577 } 546 } 578 547 579 BUG_ON(smpboot_register_percpu_thread( 548 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 580 stop_machine_unpark(raw_smp_processor_ 549 stop_machine_unpark(raw_smp_processor_id()); 581 stop_machine_initialized = true; 550 stop_machine_initialized = true; 582 return 0; 551 return 0; 583 } 552 } 584 early_initcall(cpu_stop_init); 553 early_initcall(cpu_stop_init); 585 554 586 int stop_machine_cpuslocked(cpu_stop_fn_t fn, !! 555 static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 587 const struct cpuma << 588 { 556 { 589 struct multi_stop_data msdata = { 557 struct multi_stop_data msdata = { 590 .fn = fn, 558 .fn = fn, 591 .data = data, 559 .data = data, 592 .num_threads = num_online_cpus 560 .num_threads = num_online_cpus(), 593 .active_cpus = cpus, 561 .active_cpus = cpus, 594 }; 562 }; 595 563 596 lockdep_assert_cpus_held(); << 597 << 598 if (!stop_machine_initialized) { 564 if (!stop_machine_initialized) { 599 /* 565 /* 600 * Handle the case where stop_ 566 * Handle the case where stop_machine() is called 601 * early in boot before stop_m 567 * early in boot before stop_machine() has been 602 * initialized. 568 * initialized. 603 */ 569 */ 604 unsigned long flags; 570 unsigned long flags; 605 int ret; 571 int ret; 606 572 607 WARN_ON_ONCE(msdata.num_thread 573 WARN_ON_ONCE(msdata.num_threads != 1); 608 574 609 local_irq_save(flags); 575 local_irq_save(flags); 610 hard_irq_disable(); 576 hard_irq_disable(); 611 ret = (*fn)(data); 577 ret = (*fn)(data); 612 local_irq_restore(flags); 578 local_irq_restore(flags); 613 579 614 return ret; 580 return ret; 615 } 581 } 616 582 617 /* Set the initial state and stop all 583 /* Set the initial state and stop all online cpus. */ 618 set_state(&msdata, MULTI_STOP_PREPARE) 584 set_state(&msdata, MULTI_STOP_PREPARE); 619 return stop_cpus(cpu_online_mask, mult 585 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 620 } 586 } 621 587 622 int stop_machine(cpu_stop_fn_t fn, void *data, 588 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 623 { 589 { 624 int ret; 590 int ret; 625 591 626 /* No CPUs can come up or down during 592 /* No CPUs can come up or down during this. */ 627 cpus_read_lock(); !! 593 get_online_cpus(); 628 ret = stop_machine_cpuslocked(fn, data !! 594 ret = __stop_machine(fn, data, cpus); 629 cpus_read_unlock(); !! 595 put_online_cpus(); 630 return ret; 596 return ret; 631 } 597 } 632 EXPORT_SYMBOL_GPL(stop_machine); 598 EXPORT_SYMBOL_GPL(stop_machine); 633 << 634 #ifdef CONFIG_SCHED_SMT << 635 int stop_core_cpuslocked(unsigned int cpu, cpu << 636 { << 637 const struct cpumask *smt_mask = cpu_s << 638 << 639 struct multi_stop_data msdata = { << 640 .fn = fn, << 641 .data = data, << 642 .num_threads = cpumask_weight( << 643 .active_cpus = smt_mask, << 644 }; << 645 << 646 lockdep_assert_cpus_held(); << 647 << 648 /* Set the initial state and stop all << 649 set_state(&msdata, MULTI_STOP_PREPARE) << 650 return stop_cpus(smt_mask, multi_cpu_s << 651 } << 652 EXPORT_SYMBOL_GPL(stop_core_cpuslocked); << 653 #endif << 654 599 655 /** 600 /** 656 * stop_machine_from_inactive_cpu - stop_machi 601 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 657 * @fn: the function to run 602 * @fn: the function to run 658 * @data: the data ptr for the @fn() 603 * @data: the data ptr for the @fn() 659 * @cpus: the cpus to run the @fn() on (NULL = 604 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 660 * 605 * 661 * This is identical to stop_machine() but can 606 * This is identical to stop_machine() but can be called from a CPU which 662 * is not active. The local CPU is in the pro 607 * is not active. The local CPU is in the process of hotplug (so no other 663 * CPU hotplug can start) and not marked activ 608 * CPU hotplug can start) and not marked active and doesn't have enough 664 * context to sleep. 609 * context to sleep. 665 * 610 * 666 * This function provides stop_machine() funct 611 * This function provides stop_machine() functionality for such state by 667 * using busy-wait for synchronization and exe 612 * using busy-wait for synchronization and executing @fn directly for local 668 * CPU. 613 * CPU. 669 * 614 * 670 * CONTEXT: 615 * CONTEXT: 671 * Local CPU is inactive. Temporarily stops a 616 * Local CPU is inactive. Temporarily stops all active CPUs. 672 * 617 * 673 * RETURNS: 618 * RETURNS: 674 * 0 if all executions of @fn returned 0, any 619 * 0 if all executions of @fn returned 0, any non zero return value if any 675 * returned non zero. 620 * returned non zero. 676 */ 621 */ 677 int stop_machine_from_inactive_cpu(cpu_stop_fn 622 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 678 const struct 623 const struct cpumask *cpus) 679 { 624 { 680 struct multi_stop_data msdata = { .fn 625 struct multi_stop_data msdata = { .fn = fn, .data = data, 681 .a 626 .active_cpus = cpus }; 682 struct cpu_stop_done done; 627 struct cpu_stop_done done; 683 int ret; 628 int ret; 684 629 685 /* Local CPU must be inactive and CPU 630 /* Local CPU must be inactive and CPU hotplug in progress. */ 686 BUG_ON(cpu_active(raw_smp_processor_id 631 BUG_ON(cpu_active(raw_smp_processor_id())); 687 msdata.num_threads = num_active_cpus() 632 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 688 633 689 /* No proper task established and can' 634 /* No proper task established and can't sleep - busy wait for lock. */ 690 while (!mutex_trylock(&stop_cpus_mutex 635 while (!mutex_trylock(&stop_cpus_mutex)) 691 cpu_relax(); 636 cpu_relax(); 692 637 693 /* Schedule work on other CPUs and exe 638 /* Schedule work on other CPUs and execute directly for local CPU */ 694 set_state(&msdata, MULTI_STOP_PREPARE) 639 set_state(&msdata, MULTI_STOP_PREPARE); 695 cpu_stop_init_done(&done, num_active_c 640 cpu_stop_init_done(&done, num_active_cpus()); 696 queue_stop_cpus_work(cpu_active_mask, 641 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 697 &done); 642 &done); 698 ret = multi_cpu_stop(&msdata); 643 ret = multi_cpu_stop(&msdata); 699 644 700 /* Busy wait for completion. */ 645 /* Busy wait for completion. */ 701 while (!completion_done(&done.completi 646 while (!completion_done(&done.completion)) 702 cpu_relax(); 647 cpu_relax(); 703 648 704 mutex_unlock(&stop_cpus_mutex); 649 mutex_unlock(&stop_cpus_mutex); 705 return ret ?: done.ret; 650 return ret ?: done.ret; 706 } 651 } 707 652
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.