1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * kernel/stop_machine.c 2 * kernel/stop_machine.c 4 * 3 * 5 * Copyright (C) 2008, 2005 IBM Corporatio 4 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell 5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Pro 6 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@ 7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> >> 8 * >> 9 * This file is released under the GPLv2 and any later version. 9 */ 10 */ 10 #include <linux/compiler.h> << 11 #include <linux/completion.h> 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 24 #include <linux/sched/wake_q.h> 25 25 26 /* 26 /* 27 * Structure to determine completion condition 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 28 * be shared by works on different cpus. 29 */ 29 */ 30 struct cpu_stop_done { 30 struct cpu_stop_done { 31 atomic_t nr_todo; 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; 32 int ret; /* collected return value */ 33 struct completion completion; 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 34 }; 35 35 36 /* the actual stopper, one per every possible 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 37 struct cpu_stopper { 38 struct task_struct *thread; 38 struct task_struct *thread; 39 39 40 raw_spinlock_t lock; 40 raw_spinlock_t lock; 41 bool enabled; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; 42 struct list_head works; /* list of pending works */ 43 43 44 struct cpu_stop_work stop_work; 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 unsigned long caller; << 46 cpu_stop_fn_t fn; << 47 }; 45 }; 48 46 49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_ 47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 50 static bool stop_machine_initialized = false; 48 static bool stop_machine_initialized = false; 51 49 52 void print_stop_info(const char *log_lvl, stru << 53 { << 54 /* << 55 * If @task is a stopper task, it cann << 56 * stable. << 57 */ << 58 struct cpu_stopper *stopper = per_cpu_ << 59 << 60 if (task != stopper->thread) << 61 return; << 62 << 63 printk("%sStopper: %pS <- %pS\n", log_ << 64 } << 65 << 66 /* static data for stop_cpus */ 50 /* static data for stop_cpus */ 67 static DEFINE_MUTEX(stop_cpus_mutex); 51 static DEFINE_MUTEX(stop_cpus_mutex); 68 static bool stop_cpus_in_progress; 52 static bool stop_cpus_in_progress; 69 53 70 static void cpu_stop_init_done(struct cpu_stop 54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 71 { 55 { 72 memset(done, 0, sizeof(*done)); 56 memset(done, 0, sizeof(*done)); 73 atomic_set(&done->nr_todo, nr_todo); 57 atomic_set(&done->nr_todo, nr_todo); 74 init_completion(&done->completion); 58 init_completion(&done->completion); 75 } 59 } 76 60 77 /* signal completion unless @done is NULL */ 61 /* signal completion unless @done is NULL */ 78 static void cpu_stop_signal_done(struct cpu_st 62 static void cpu_stop_signal_done(struct cpu_stop_done *done) 79 { 63 { 80 if (atomic_dec_and_test(&done->nr_todo 64 if (atomic_dec_and_test(&done->nr_todo)) 81 complete(&done->completion); 65 complete(&done->completion); 82 } 66 } 83 67 84 static void __cpu_stop_queue_work(struct cpu_s 68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 85 struct 69 struct cpu_stop_work *work, 86 struct 70 struct wake_q_head *wakeq) 87 { 71 { 88 list_add_tail(&work->list, &stopper->w 72 list_add_tail(&work->list, &stopper->works); 89 wake_q_add(wakeq, stopper->thread); 73 wake_q_add(wakeq, stopper->thread); 90 } 74 } 91 75 92 /* queue @work to @stopper. if offline, @work 76 /* queue @work to @stopper. if offline, @work is completed immediately */ 93 static bool cpu_stop_queue_work(unsigned int c 77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 94 { 78 { 95 struct cpu_stopper *stopper = &per_cpu 79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 96 DEFINE_WAKE_Q(wakeq); 80 DEFINE_WAKE_Q(wakeq); 97 unsigned long flags; 81 unsigned long flags; 98 bool enabled; 82 bool enabled; 99 83 100 preempt_disable(); << 101 raw_spin_lock_irqsave(&stopper->lock, 84 raw_spin_lock_irqsave(&stopper->lock, flags); 102 enabled = stopper->enabled; 85 enabled = stopper->enabled; 103 if (enabled) 86 if (enabled) 104 __cpu_stop_queue_work(stopper, 87 __cpu_stop_queue_work(stopper, work, &wakeq); 105 else if (work->done) 88 else if (work->done) 106 cpu_stop_signal_done(work->don 89 cpu_stop_signal_done(work->done); 107 raw_spin_unlock_irqrestore(&stopper->l 90 raw_spin_unlock_irqrestore(&stopper->lock, flags); 108 91 109 wake_up_q(&wakeq); 92 wake_up_q(&wakeq); 110 preempt_enable(); << 111 93 112 return enabled; 94 return enabled; 113 } 95 } 114 96 115 /** 97 /** 116 * stop_one_cpu - stop a cpu 98 * stop_one_cpu - stop a cpu 117 * @cpu: cpu to stop 99 * @cpu: cpu to stop 118 * @fn: function to execute 100 * @fn: function to execute 119 * @arg: argument to @fn 101 * @arg: argument to @fn 120 * 102 * 121 * Execute @fn(@arg) on @cpu. @fn is run in a 103 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 122 * the highest priority preempting any task on 104 * the highest priority preempting any task on the cpu and 123 * monopolizing it. This function returns aft 105 * monopolizing it. This function returns after the execution is 124 * complete. 106 * complete. 125 * 107 * 126 * This function doesn't guarantee @cpu stays 108 * This function doesn't guarantee @cpu stays online till @fn 127 * completes. If @cpu goes down in the middle 109 * completes. If @cpu goes down in the middle, execution may happen 128 * partially or fully on different cpus. @fn 110 * partially or fully on different cpus. @fn should either be ready 129 * for that or the caller should ensure that @ 111 * for that or the caller should ensure that @cpu stays online until 130 * this function completes. 112 * this function completes. 131 * 113 * 132 * CONTEXT: 114 * CONTEXT: 133 * Might sleep. 115 * Might sleep. 134 * 116 * 135 * RETURNS: 117 * RETURNS: 136 * -ENOENT if @fn(@arg) was not executed becau 118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 137 * otherwise, the return value of @fn. 119 * otherwise, the return value of @fn. 138 */ 120 */ 139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn 121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 140 { 122 { 141 struct cpu_stop_done done; 123 struct cpu_stop_done done; 142 struct cpu_stop_work work = { .fn = fn !! 124 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 143 125 144 cpu_stop_init_done(&done, 1); 126 cpu_stop_init_done(&done, 1); 145 if (!cpu_stop_queue_work(cpu, &work)) 127 if (!cpu_stop_queue_work(cpu, &work)) 146 return -ENOENT; 128 return -ENOENT; 147 /* 129 /* 148 * In case @cpu == smp_proccessor_id() 130 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 149 * cycle by doing a preemption: 131 * cycle by doing a preemption: 150 */ 132 */ 151 cond_resched(); 133 cond_resched(); 152 wait_for_completion(&done.completion); 134 wait_for_completion(&done.completion); 153 return done.ret; 135 return done.ret; 154 } 136 } 155 137 156 /* This controls the threads on each CPU. */ 138 /* This controls the threads on each CPU. */ 157 enum multi_stop_state { 139 enum multi_stop_state { 158 /* Dummy starting state for thread. */ 140 /* Dummy starting state for thread. */ 159 MULTI_STOP_NONE, 141 MULTI_STOP_NONE, 160 /* Awaiting everyone to be scheduled. 142 /* Awaiting everyone to be scheduled. */ 161 MULTI_STOP_PREPARE, 143 MULTI_STOP_PREPARE, 162 /* Disable interrupts. */ 144 /* Disable interrupts. */ 163 MULTI_STOP_DISABLE_IRQ, 145 MULTI_STOP_DISABLE_IRQ, 164 /* Run the function */ 146 /* Run the function */ 165 MULTI_STOP_RUN, 147 MULTI_STOP_RUN, 166 /* Exit */ 148 /* Exit */ 167 MULTI_STOP_EXIT, 149 MULTI_STOP_EXIT, 168 }; 150 }; 169 151 170 struct multi_stop_data { 152 struct multi_stop_data { 171 cpu_stop_fn_t fn; 153 cpu_stop_fn_t fn; 172 void *data; 154 void *data; 173 /* Like num_online_cpus(), but hotplug 155 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 174 unsigned int num_threads; 156 unsigned int num_threads; 175 const struct cpumask *active_cpus; 157 const struct cpumask *active_cpus; 176 158 177 enum multi_stop_state state; 159 enum multi_stop_state state; 178 atomic_t thread_ack; 160 atomic_t thread_ack; 179 }; 161 }; 180 162 181 static void set_state(struct multi_stop_data * 163 static void set_state(struct multi_stop_data *msdata, 182 enum multi_stop_state ne 164 enum multi_stop_state newstate) 183 { 165 { 184 /* Reset ack counter. */ 166 /* Reset ack counter. */ 185 atomic_set(&msdata->thread_ack, msdata 167 atomic_set(&msdata->thread_ack, msdata->num_threads); 186 smp_wmb(); 168 smp_wmb(); 187 WRITE_ONCE(msdata->state, newstate); !! 169 msdata->state = newstate; 188 } 170 } 189 171 190 /* Last one to ack a state moves to the next s 172 /* Last one to ack a state moves to the next state. */ 191 static void ack_state(struct multi_stop_data * 173 static void ack_state(struct multi_stop_data *msdata) 192 { 174 { 193 if (atomic_dec_and_test(&msdata->threa 175 if (atomic_dec_and_test(&msdata->thread_ack)) 194 set_state(msdata, msdata->stat 176 set_state(msdata, msdata->state + 1); 195 } 177 } 196 178 197 notrace void __weak stop_machine_yield(const s << 198 { << 199 cpu_relax(); << 200 } << 201 << 202 /* This is the cpu_stop function which stops t 179 /* This is the cpu_stop function which stops the CPU. */ 203 static int multi_cpu_stop(void *data) 180 static int multi_cpu_stop(void *data) 204 { 181 { 205 struct multi_stop_data *msdata = data; 182 struct multi_stop_data *msdata = data; 206 enum multi_stop_state newstate, cursta !! 183 enum multi_stop_state curstate = MULTI_STOP_NONE; 207 int cpu = smp_processor_id(), err = 0; 184 int cpu = smp_processor_id(), err = 0; 208 const struct cpumask *cpumask; << 209 unsigned long flags; 185 unsigned long flags; 210 bool is_active; 186 bool is_active; 211 187 212 /* 188 /* 213 * When called from stop_machine_from_ 189 * When called from stop_machine_from_inactive_cpu(), irq might 214 * already be disabled. Save the stat 190 * already be disabled. Save the state and restore it on exit. 215 */ 191 */ 216 local_save_flags(flags); 192 local_save_flags(flags); 217 193 218 if (!msdata->active_cpus) { !! 194 if (!msdata->active_cpus) 219 cpumask = cpu_online_mask; !! 195 is_active = cpu == cpumask_first(cpu_online_mask); 220 is_active = cpu == cpumask_fir !! 196 else 221 } else { !! 197 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 222 cpumask = msdata->active_cpus; << 223 is_active = cpumask_test_cpu(c << 224 } << 225 198 226 /* Simple state machine */ 199 /* Simple state machine */ 227 do { 200 do { 228 /* Chill out and ensure we re- 201 /* Chill out and ensure we re-read multi_stop_state. */ 229 stop_machine_yield(cpumask); !! 202 cpu_relax_yield(); 230 newstate = READ_ONCE(msdata->s !! 203 if (msdata->state != curstate) { 231 if (newstate != curstate) { !! 204 curstate = msdata->state; 232 curstate = newstate; << 233 switch (curstate) { 205 switch (curstate) { 234 case MULTI_STOP_DISABL 206 case MULTI_STOP_DISABLE_IRQ: 235 local_irq_disa 207 local_irq_disable(); 236 hard_irq_disab 208 hard_irq_disable(); 237 break; 209 break; 238 case MULTI_STOP_RUN: 210 case MULTI_STOP_RUN: 239 if (is_active) 211 if (is_active) 240 err = 212 err = msdata->fn(msdata->data); 241 break; 213 break; 242 default: 214 default: 243 break; 215 break; 244 } 216 } 245 ack_state(msdata); 217 ack_state(msdata); 246 } else if (curstate > MULTI_ST 218 } else if (curstate > MULTI_STOP_PREPARE) { 247 /* 219 /* 248 * At this stage all o 220 * At this stage all other CPUs we depend on must spin 249 * in the same loop. A 221 * in the same loop. Any reason for hard-lockup should 250 * be detected and rep 222 * be detected and reported on their side. 251 */ 223 */ 252 touch_nmi_watchdog(); 224 touch_nmi_watchdog(); 253 } 225 } 254 rcu_momentary_dyntick_idle(); << 255 } while (curstate != MULTI_STOP_EXIT); 226 } while (curstate != MULTI_STOP_EXIT); 256 227 257 local_irq_restore(flags); 228 local_irq_restore(flags); 258 return err; 229 return err; 259 } 230 } 260 231 261 static int cpu_stop_queue_two_works(int cpu1, 232 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 262 int cpu2, 233 int cpu2, struct cpu_stop_work *work2) 263 { 234 { 264 struct cpu_stopper *stopper1 = per_cpu 235 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 265 struct cpu_stopper *stopper2 = per_cpu 236 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 266 DEFINE_WAKE_Q(wakeq); 237 DEFINE_WAKE_Q(wakeq); 267 int err; 238 int err; 268 << 269 retry: 239 retry: 270 /* << 271 * The waking up of stopper threads ha << 272 * scheduling context as the queueing. << 273 * possibility of one of the above sto << 274 * CPU, and preempting us. This will c << 275 * stopper forever. << 276 */ << 277 preempt_disable(); << 278 raw_spin_lock_irq(&stopper1->lock); 240 raw_spin_lock_irq(&stopper1->lock); 279 raw_spin_lock_nested(&stopper2->lock, 241 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 280 242 281 if (!stopper1->enabled || !stopper2->e !! 243 err = -ENOENT; 282 err = -ENOENT; !! 244 if (!stopper1->enabled || !stopper2->enabled) 283 goto unlock; 245 goto unlock; 284 } << 285 << 286 /* 246 /* 287 * Ensure that if we race with __stop_ 247 * Ensure that if we race with __stop_cpus() the stoppers won't get 288 * queued up in reverse order leading 248 * queued up in reverse order leading to system deadlock. 289 * 249 * 290 * We can't miss stop_cpus_in_progress 250 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 291 * queued a work on cpu1 but not on cp 251 * queued a work on cpu1 but not on cpu2, we hold both locks. 292 * 252 * 293 * It can be falsely true but it is sa 253 * It can be falsely true but it is safe to spin until it is cleared, 294 * queue_stop_cpus_work() does everyth 254 * queue_stop_cpus_work() does everything under preempt_disable(). 295 */ 255 */ 296 if (unlikely(stop_cpus_in_progress)) { !! 256 err = -EDEADLK; 297 err = -EDEADLK; !! 257 if (unlikely(stop_cpus_in_progress)) 298 goto unlock; !! 258 goto unlock; 299 } << 300 259 301 err = 0; 260 err = 0; 302 __cpu_stop_queue_work(stopper1, work1, 261 __cpu_stop_queue_work(stopper1, work1, &wakeq); 303 __cpu_stop_queue_work(stopper2, work2, 262 __cpu_stop_queue_work(stopper2, work2, &wakeq); 304 !! 263 /* >> 264 * The waking up of stopper threads has to happen >> 265 * in the same scheduling context as the queueing. >> 266 * Otherwise, there is a possibility of one of the >> 267 * above stoppers being woken up by another CPU, >> 268 * and preempting us. This will cause us to n ot >> 269 * wake up the other stopper forever. >> 270 */ >> 271 preempt_disable(); 305 unlock: 272 unlock: 306 raw_spin_unlock(&stopper2->lock); 273 raw_spin_unlock(&stopper2->lock); 307 raw_spin_unlock_irq(&stopper1->lock); 274 raw_spin_unlock_irq(&stopper1->lock); 308 275 309 if (unlikely(err == -EDEADLK)) { 276 if (unlikely(err == -EDEADLK)) { 310 preempt_enable(); << 311 << 312 while (stop_cpus_in_progress) 277 while (stop_cpus_in_progress) 313 cpu_relax(); 278 cpu_relax(); 314 << 315 goto retry; 279 goto retry; 316 } 280 } 317 281 318 wake_up_q(&wakeq); !! 282 if (!err) { 319 preempt_enable(); !! 283 wake_up_q(&wakeq); >> 284 preempt_enable(); >> 285 } 320 286 321 return err; 287 return err; 322 } 288 } 323 /** 289 /** 324 * stop_two_cpus - stops two cpus 290 * stop_two_cpus - stops two cpus 325 * @cpu1: the cpu to stop 291 * @cpu1: the cpu to stop 326 * @cpu2: the other cpu to stop 292 * @cpu2: the other cpu to stop 327 * @fn: function to execute 293 * @fn: function to execute 328 * @arg: argument to @fn 294 * @arg: argument to @fn 329 * 295 * 330 * Stops both the current and specified CPU an 296 * Stops both the current and specified CPU and runs @fn on one of them. 331 * 297 * 332 * returns when both are completed. 298 * returns when both are completed. 333 */ 299 */ 334 int stop_two_cpus(unsigned int cpu1, unsigned 300 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 335 { 301 { 336 struct cpu_stop_done done; 302 struct cpu_stop_done done; 337 struct cpu_stop_work work1, work2; 303 struct cpu_stop_work work1, work2; 338 struct multi_stop_data msdata; 304 struct multi_stop_data msdata; 339 305 340 msdata = (struct multi_stop_data){ 306 msdata = (struct multi_stop_data){ 341 .fn = fn, 307 .fn = fn, 342 .data = arg, 308 .data = arg, 343 .num_threads = 2, 309 .num_threads = 2, 344 .active_cpus = cpumask_of(cpu1 310 .active_cpus = cpumask_of(cpu1), 345 }; 311 }; 346 312 347 work1 = work2 = (struct cpu_stop_work) 313 work1 = work2 = (struct cpu_stop_work){ 348 .fn = multi_cpu_stop, 314 .fn = multi_cpu_stop, 349 .arg = &msdata, 315 .arg = &msdata, 350 .done = &done, !! 316 .done = &done 351 .caller = _RET_IP_, << 352 }; 317 }; 353 318 354 cpu_stop_init_done(&done, 2); 319 cpu_stop_init_done(&done, 2); 355 set_state(&msdata, MULTI_STOP_PREPARE) 320 set_state(&msdata, MULTI_STOP_PREPARE); 356 321 357 if (cpu1 > cpu2) 322 if (cpu1 > cpu2) 358 swap(cpu1, cpu2); 323 swap(cpu1, cpu2); 359 if (cpu_stop_queue_two_works(cpu1, &wo 324 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 360 return -ENOENT; 325 return -ENOENT; 361 326 362 wait_for_completion(&done.completion); 327 wait_for_completion(&done.completion); 363 return done.ret; 328 return done.ret; 364 } 329 } 365 330 366 /** 331 /** 367 * stop_one_cpu_nowait - stop a cpu but don't 332 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 368 * @cpu: cpu to stop 333 * @cpu: cpu to stop 369 * @fn: function to execute 334 * @fn: function to execute 370 * @arg: argument to @fn 335 * @arg: argument to @fn 371 * @work_buf: pointer to cpu_stop_work structu 336 * @work_buf: pointer to cpu_stop_work structure 372 * 337 * 373 * Similar to stop_one_cpu() but doesn't wait 338 * Similar to stop_one_cpu() but doesn't wait for completion. The 374 * caller is responsible for ensuring @work_bu 339 * caller is responsible for ensuring @work_buf is currently unused 375 * and will remain untouched until stopper sta 340 * and will remain untouched until stopper starts executing @fn. 376 * 341 * 377 * CONTEXT: 342 * CONTEXT: 378 * Don't care. 343 * Don't care. 379 * 344 * 380 * RETURNS: 345 * RETURNS: 381 * true if cpu_stop_work was queued successful 346 * true if cpu_stop_work was queued successfully and @fn will be called, 382 * false otherwise. 347 * false otherwise. 383 */ 348 */ 384 bool stop_one_cpu_nowait(unsigned int cpu, cpu 349 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 385 struct cpu_stop_work * 350 struct cpu_stop_work *work_buf) 386 { 351 { 387 *work_buf = (struct cpu_stop_work){ .f !! 352 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 388 return cpu_stop_queue_work(cpu, work_b 353 return cpu_stop_queue_work(cpu, work_buf); 389 } 354 } 390 355 391 static bool queue_stop_cpus_work(const struct 356 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 392 cpu_stop_fn_t 357 cpu_stop_fn_t fn, void *arg, 393 struct cpu_st 358 struct cpu_stop_done *done) 394 { 359 { 395 struct cpu_stop_work *work; 360 struct cpu_stop_work *work; 396 unsigned int cpu; 361 unsigned int cpu; 397 bool queued = false; 362 bool queued = false; 398 363 399 /* 364 /* 400 * Disable preemption while queueing t 365 * Disable preemption while queueing to avoid getting 401 * preempted by a stopper which might 366 * preempted by a stopper which might wait for other stoppers 402 * to enter @fn which can lead to dead 367 * to enter @fn which can lead to deadlock. 403 */ 368 */ 404 preempt_disable(); 369 preempt_disable(); 405 stop_cpus_in_progress = true; 370 stop_cpus_in_progress = true; 406 barrier(); << 407 for_each_cpu(cpu, cpumask) { 371 for_each_cpu(cpu, cpumask) { 408 work = &per_cpu(cpu_stopper.st 372 work = &per_cpu(cpu_stopper.stop_work, cpu); 409 work->fn = fn; 373 work->fn = fn; 410 work->arg = arg; 374 work->arg = arg; 411 work->done = done; 375 work->done = done; 412 work->caller = _RET_IP_; << 413 if (cpu_stop_queue_work(cpu, w 376 if (cpu_stop_queue_work(cpu, work)) 414 queued = true; 377 queued = true; 415 } 378 } 416 barrier(); << 417 stop_cpus_in_progress = false; 379 stop_cpus_in_progress = false; 418 preempt_enable(); 380 preempt_enable(); 419 381 420 return queued; 382 return queued; 421 } 383 } 422 384 423 static int __stop_cpus(const struct cpumask *c 385 static int __stop_cpus(const struct cpumask *cpumask, 424 cpu_stop_fn_t fn, void 386 cpu_stop_fn_t fn, void *arg) 425 { 387 { 426 struct cpu_stop_done done; 388 struct cpu_stop_done done; 427 389 428 cpu_stop_init_done(&done, cpumask_weig 390 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 429 if (!queue_stop_cpus_work(cpumask, fn, 391 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 430 return -ENOENT; 392 return -ENOENT; 431 wait_for_completion(&done.completion); 393 wait_for_completion(&done.completion); 432 return done.ret; 394 return done.ret; 433 } 395 } 434 396 435 /** 397 /** 436 * stop_cpus - stop multiple cpus 398 * stop_cpus - stop multiple cpus 437 * @cpumask: cpus to stop 399 * @cpumask: cpus to stop 438 * @fn: function to execute 400 * @fn: function to execute 439 * @arg: argument to @fn 401 * @arg: argument to @fn 440 * 402 * 441 * Execute @fn(@arg) on online cpus in @cpumas 403 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 442 * @fn is run in a process context with the hi 404 * @fn is run in a process context with the highest priority 443 * preempting any task on the cpu and monopoli 405 * preempting any task on the cpu and monopolizing it. This function 444 * returns after all executions are complete. 406 * returns after all executions are complete. 445 * 407 * 446 * This function doesn't guarantee the cpus in 408 * This function doesn't guarantee the cpus in @cpumask stay online 447 * till @fn completes. If some cpus go down i 409 * till @fn completes. If some cpus go down in the middle, execution 448 * on the cpu may happen partially or fully on 410 * on the cpu may happen partially or fully on different cpus. @fn 449 * should either be ready for that or the call 411 * should either be ready for that or the caller should ensure that 450 * the cpus stay online until this function co 412 * the cpus stay online until this function completes. 451 * 413 * 452 * All stop_cpus() calls are serialized making 414 * All stop_cpus() calls are serialized making it safe for @fn to wait 453 * for all cpus to start executing it. 415 * for all cpus to start executing it. 454 * 416 * 455 * CONTEXT: 417 * CONTEXT: 456 * Might sleep. 418 * Might sleep. 457 * 419 * 458 * RETURNS: 420 * RETURNS: 459 * -ENOENT if @fn(@arg) was not executed at al 421 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 460 * @cpumask were offline; otherwise, 0 if all 422 * @cpumask were offline; otherwise, 0 if all executions of @fn 461 * returned 0, any non zero return value if an 423 * returned 0, any non zero return value if any returned non zero. 462 */ 424 */ 463 static int stop_cpus(const struct cpumask *cpu !! 425 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 464 { 426 { 465 int ret; 427 int ret; 466 428 467 /* static works are used, process one 429 /* static works are used, process one request at a time */ 468 mutex_lock(&stop_cpus_mutex); 430 mutex_lock(&stop_cpus_mutex); 469 ret = __stop_cpus(cpumask, fn, arg); 431 ret = __stop_cpus(cpumask, fn, arg); 470 mutex_unlock(&stop_cpus_mutex); 432 mutex_unlock(&stop_cpus_mutex); 471 return ret; 433 return ret; 472 } 434 } 473 435 >> 436 /** >> 437 * try_stop_cpus - try to stop multiple cpus >> 438 * @cpumask: cpus to stop >> 439 * @fn: function to execute >> 440 * @arg: argument to @fn >> 441 * >> 442 * Identical to stop_cpus() except that it fails with -EAGAIN if >> 443 * someone else is already using the facility. >> 444 * >> 445 * CONTEXT: >> 446 * Might sleep. >> 447 * >> 448 * RETURNS: >> 449 * -EAGAIN if someone else is already stopping cpus, -ENOENT if >> 450 * @fn(@arg) was not executed at all because all cpus in @cpumask were >> 451 * offline; otherwise, 0 if all executions of @fn returned 0, any non >> 452 * zero return value if any returned non zero. >> 453 */ >> 454 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) >> 455 { >> 456 int ret; >> 457 >> 458 /* static works are used, process one request at a time */ >> 459 if (!mutex_trylock(&stop_cpus_mutex)) >> 460 return -EAGAIN; >> 461 ret = __stop_cpus(cpumask, fn, arg); >> 462 mutex_unlock(&stop_cpus_mutex); >> 463 return ret; >> 464 } >> 465 474 static int cpu_stop_should_run(unsigned int cp 466 static int cpu_stop_should_run(unsigned int cpu) 475 { 467 { 476 struct cpu_stopper *stopper = &per_cpu 468 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 477 unsigned long flags; 469 unsigned long flags; 478 int run; 470 int run; 479 471 480 raw_spin_lock_irqsave(&stopper->lock, 472 raw_spin_lock_irqsave(&stopper->lock, flags); 481 run = !list_empty(&stopper->works); 473 run = !list_empty(&stopper->works); 482 raw_spin_unlock_irqrestore(&stopper->l 474 raw_spin_unlock_irqrestore(&stopper->lock, flags); 483 return run; 475 return run; 484 } 476 } 485 477 486 static void cpu_stopper_thread(unsigned int cp 478 static void cpu_stopper_thread(unsigned int cpu) 487 { 479 { 488 struct cpu_stopper *stopper = &per_cpu 480 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 489 struct cpu_stop_work *work; 481 struct cpu_stop_work *work; 490 482 491 repeat: 483 repeat: 492 work = NULL; 484 work = NULL; 493 raw_spin_lock_irq(&stopper->lock); 485 raw_spin_lock_irq(&stopper->lock); 494 if (!list_empty(&stopper->works)) { 486 if (!list_empty(&stopper->works)) { 495 work = list_first_entry(&stopp 487 work = list_first_entry(&stopper->works, 496 struct 488 struct cpu_stop_work, list); 497 list_del_init(&work->list); 489 list_del_init(&work->list); 498 } 490 } 499 raw_spin_unlock_irq(&stopper->lock); 491 raw_spin_unlock_irq(&stopper->lock); 500 492 501 if (work) { 493 if (work) { 502 cpu_stop_fn_t fn = work->fn; 494 cpu_stop_fn_t fn = work->fn; 503 void *arg = work->arg; 495 void *arg = work->arg; 504 struct cpu_stop_done *done = w 496 struct cpu_stop_done *done = work->done; 505 int ret; 497 int ret; 506 498 507 /* cpu stop callbacks must not 499 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 508 stopper->caller = work->caller << 509 stopper->fn = fn; << 510 preempt_count_inc(); 500 preempt_count_inc(); 511 ret = fn(arg); 501 ret = fn(arg); 512 if (done) { 502 if (done) { 513 if (ret) 503 if (ret) 514 done->ret = re 504 done->ret = ret; 515 cpu_stop_signal_done(d 505 cpu_stop_signal_done(done); 516 } 506 } 517 preempt_count_dec(); 507 preempt_count_dec(); 518 stopper->fn = NULL; << 519 stopper->caller = 0; << 520 WARN_ONCE(preempt_count(), 508 WARN_ONCE(preempt_count(), 521 "cpu_stop: %ps(%p) l !! 509 "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg); 522 goto repeat; 510 goto repeat; 523 } 511 } 524 } 512 } 525 513 526 void stop_machine_park(int cpu) 514 void stop_machine_park(int cpu) 527 { 515 { 528 struct cpu_stopper *stopper = &per_cpu 516 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 529 /* 517 /* 530 * Lockless. cpu_stopper_thread() will 518 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 531 * the pending works before it parks, 519 * the pending works before it parks, until then it is fine to queue 532 * the new works. 520 * the new works. 533 */ 521 */ 534 stopper->enabled = false; 522 stopper->enabled = false; 535 kthread_park(stopper->thread); 523 kthread_park(stopper->thread); 536 } 524 } 537 525 >> 526 extern void sched_set_stop_task(int cpu, struct task_struct *stop); >> 527 538 static void cpu_stop_create(unsigned int cpu) 528 static void cpu_stop_create(unsigned int cpu) 539 { 529 { 540 sched_set_stop_task(cpu, per_cpu(cpu_s 530 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 541 } 531 } 542 532 543 static void cpu_stop_park(unsigned int cpu) 533 static void cpu_stop_park(unsigned int cpu) 544 { 534 { 545 struct cpu_stopper *stopper = &per_cpu 535 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 546 536 547 WARN_ON(!list_empty(&stopper->works)); 537 WARN_ON(!list_empty(&stopper->works)); 548 } 538 } 549 539 550 void stop_machine_unpark(int cpu) 540 void stop_machine_unpark(int cpu) 551 { 541 { 552 struct cpu_stopper *stopper = &per_cpu 542 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 553 543 554 stopper->enabled = true; 544 stopper->enabled = true; 555 kthread_unpark(stopper->thread); 545 kthread_unpark(stopper->thread); 556 } 546 } 557 547 558 static struct smp_hotplug_thread cpu_stop_thre 548 static struct smp_hotplug_thread cpu_stop_threads = { 559 .store = &cpu_stopper 549 .store = &cpu_stopper.thread, 560 .thread_should_run = cpu_stop_sho 550 .thread_should_run = cpu_stop_should_run, 561 .thread_fn = cpu_stopper_ 551 .thread_fn = cpu_stopper_thread, 562 .thread_comm = "migration/% 552 .thread_comm = "migration/%u", 563 .create = cpu_stop_cre 553 .create = cpu_stop_create, 564 .park = cpu_stop_par 554 .park = cpu_stop_park, 565 .selfparking = true, 555 .selfparking = true, 566 }; 556 }; 567 557 568 static int __init cpu_stop_init(void) 558 static int __init cpu_stop_init(void) 569 { 559 { 570 unsigned int cpu; 560 unsigned int cpu; 571 561 572 for_each_possible_cpu(cpu) { 562 for_each_possible_cpu(cpu) { 573 struct cpu_stopper *stopper = 563 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 574 564 575 raw_spin_lock_init(&stopper->l 565 raw_spin_lock_init(&stopper->lock); 576 INIT_LIST_HEAD(&stopper->works 566 INIT_LIST_HEAD(&stopper->works); 577 } 567 } 578 568 579 BUG_ON(smpboot_register_percpu_thread( 569 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 580 stop_machine_unpark(raw_smp_processor_ 570 stop_machine_unpark(raw_smp_processor_id()); 581 stop_machine_initialized = true; 571 stop_machine_initialized = true; 582 return 0; 572 return 0; 583 } 573 } 584 early_initcall(cpu_stop_init); 574 early_initcall(cpu_stop_init); 585 575 586 int stop_machine_cpuslocked(cpu_stop_fn_t fn, 576 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 587 const struct cpuma 577 const struct cpumask *cpus) 588 { 578 { 589 struct multi_stop_data msdata = { 579 struct multi_stop_data msdata = { 590 .fn = fn, 580 .fn = fn, 591 .data = data, 581 .data = data, 592 .num_threads = num_online_cpus 582 .num_threads = num_online_cpus(), 593 .active_cpus = cpus, 583 .active_cpus = cpus, 594 }; 584 }; 595 585 596 lockdep_assert_cpus_held(); 586 lockdep_assert_cpus_held(); 597 587 598 if (!stop_machine_initialized) { 588 if (!stop_machine_initialized) { 599 /* 589 /* 600 * Handle the case where stop_ 590 * Handle the case where stop_machine() is called 601 * early in boot before stop_m 591 * early in boot before stop_machine() has been 602 * initialized. 592 * initialized. 603 */ 593 */ 604 unsigned long flags; 594 unsigned long flags; 605 int ret; 595 int ret; 606 596 607 WARN_ON_ONCE(msdata.num_thread 597 WARN_ON_ONCE(msdata.num_threads != 1); 608 598 609 local_irq_save(flags); 599 local_irq_save(flags); 610 hard_irq_disable(); 600 hard_irq_disable(); 611 ret = (*fn)(data); 601 ret = (*fn)(data); 612 local_irq_restore(flags); 602 local_irq_restore(flags); 613 603 614 return ret; 604 return ret; 615 } 605 } 616 606 617 /* Set the initial state and stop all 607 /* Set the initial state and stop all online cpus. */ 618 set_state(&msdata, MULTI_STOP_PREPARE) 608 set_state(&msdata, MULTI_STOP_PREPARE); 619 return stop_cpus(cpu_online_mask, mult 609 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 620 } 610 } 621 611 622 int stop_machine(cpu_stop_fn_t fn, void *data, 612 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 623 { 613 { 624 int ret; 614 int ret; 625 615 626 /* No CPUs can come up or down during 616 /* No CPUs can come up or down during this. */ 627 cpus_read_lock(); 617 cpus_read_lock(); 628 ret = stop_machine_cpuslocked(fn, data 618 ret = stop_machine_cpuslocked(fn, data, cpus); 629 cpus_read_unlock(); 619 cpus_read_unlock(); 630 return ret; 620 return ret; 631 } 621 } 632 EXPORT_SYMBOL_GPL(stop_machine); 622 EXPORT_SYMBOL_GPL(stop_machine); 633 << 634 #ifdef CONFIG_SCHED_SMT << 635 int stop_core_cpuslocked(unsigned int cpu, cpu << 636 { << 637 const struct cpumask *smt_mask = cpu_s << 638 << 639 struct multi_stop_data msdata = { << 640 .fn = fn, << 641 .data = data, << 642 .num_threads = cpumask_weight( << 643 .active_cpus = smt_mask, << 644 }; << 645 << 646 lockdep_assert_cpus_held(); << 647 << 648 /* Set the initial state and stop all << 649 set_state(&msdata, MULTI_STOP_PREPARE) << 650 return stop_cpus(smt_mask, multi_cpu_s << 651 } << 652 EXPORT_SYMBOL_GPL(stop_core_cpuslocked); << 653 #endif << 654 623 655 /** 624 /** 656 * stop_machine_from_inactive_cpu - stop_machi 625 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 657 * @fn: the function to run 626 * @fn: the function to run 658 * @data: the data ptr for the @fn() 627 * @data: the data ptr for the @fn() 659 * @cpus: the cpus to run the @fn() on (NULL = 628 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 660 * 629 * 661 * This is identical to stop_machine() but can 630 * This is identical to stop_machine() but can be called from a CPU which 662 * is not active. The local CPU is in the pro 631 * is not active. The local CPU is in the process of hotplug (so no other 663 * CPU hotplug can start) and not marked activ 632 * CPU hotplug can start) and not marked active and doesn't have enough 664 * context to sleep. 633 * context to sleep. 665 * 634 * 666 * This function provides stop_machine() funct 635 * This function provides stop_machine() functionality for such state by 667 * using busy-wait for synchronization and exe 636 * using busy-wait for synchronization and executing @fn directly for local 668 * CPU. 637 * CPU. 669 * 638 * 670 * CONTEXT: 639 * CONTEXT: 671 * Local CPU is inactive. Temporarily stops a 640 * Local CPU is inactive. Temporarily stops all active CPUs. 672 * 641 * 673 * RETURNS: 642 * RETURNS: 674 * 0 if all executions of @fn returned 0, any 643 * 0 if all executions of @fn returned 0, any non zero return value if any 675 * returned non zero. 644 * returned non zero. 676 */ 645 */ 677 int stop_machine_from_inactive_cpu(cpu_stop_fn 646 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 678 const struct 647 const struct cpumask *cpus) 679 { 648 { 680 struct multi_stop_data msdata = { .fn 649 struct multi_stop_data msdata = { .fn = fn, .data = data, 681 .a 650 .active_cpus = cpus }; 682 struct cpu_stop_done done; 651 struct cpu_stop_done done; 683 int ret; 652 int ret; 684 653 685 /* Local CPU must be inactive and CPU 654 /* Local CPU must be inactive and CPU hotplug in progress. */ 686 BUG_ON(cpu_active(raw_smp_processor_id 655 BUG_ON(cpu_active(raw_smp_processor_id())); 687 msdata.num_threads = num_active_cpus() 656 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 688 657 689 /* No proper task established and can' 658 /* No proper task established and can't sleep - busy wait for lock. */ 690 while (!mutex_trylock(&stop_cpus_mutex 659 while (!mutex_trylock(&stop_cpus_mutex)) 691 cpu_relax(); 660 cpu_relax(); 692 661 693 /* Schedule work on other CPUs and exe 662 /* Schedule work on other CPUs and execute directly for local CPU */ 694 set_state(&msdata, MULTI_STOP_PREPARE) 663 set_state(&msdata, MULTI_STOP_PREPARE); 695 cpu_stop_init_done(&done, num_active_c 664 cpu_stop_init_done(&done, num_active_cpus()); 696 queue_stop_cpus_work(cpu_active_mask, 665 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 697 &done); 666 &done); 698 ret = multi_cpu_stop(&msdata); 667 ret = multi_cpu_stop(&msdata); 699 668 700 /* Busy wait for completion. */ 669 /* Busy wait for completion. */ 701 while (!completion_done(&done.completi 670 while (!completion_done(&done.completion)) 702 cpu_relax(); 671 cpu_relax(); 703 672 704 mutex_unlock(&stop_cpus_mutex); 673 mutex_unlock(&stop_cpus_mutex); 705 return ret ?: done.ret; 674 return ret ?: done.ret; 706 } 675 } 707 676
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.