1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * kernel/stop_machine.c 3 * kernel/stop_machine.c 4 * 4 * 5 * Copyright (C) 2008, 2005 IBM Corporatio 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell 6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Pro 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@ 8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 9 */ 9 */ 10 #include <linux/compiler.h> 10 #include <linux/compiler.h> 11 #include <linux/completion.h> 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 24 #include <linux/sched/wake_q.h> 25 25 26 /* 26 /* 27 * Structure to determine completion condition 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 28 * be shared by works on different cpus. 29 */ 29 */ 30 struct cpu_stop_done { 30 struct cpu_stop_done { 31 atomic_t nr_todo; 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; 32 int ret; /* collected return value */ 33 struct completion completion; 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 34 }; 35 35 36 /* the actual stopper, one per every possible 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 37 struct cpu_stopper { 38 struct task_struct *thread; 38 struct task_struct *thread; 39 39 40 raw_spinlock_t lock; 40 raw_spinlock_t lock; 41 bool enabled; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; 42 struct list_head works; /* list of pending works */ 43 43 44 struct cpu_stop_work stop_work; 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 unsigned long caller; 45 unsigned long caller; 46 cpu_stop_fn_t fn; 46 cpu_stop_fn_t fn; 47 }; 47 }; 48 48 49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_ 49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 50 static bool stop_machine_initialized = false; 50 static bool stop_machine_initialized = false; 51 51 52 void print_stop_info(const char *log_lvl, stru 52 void print_stop_info(const char *log_lvl, struct task_struct *task) 53 { 53 { 54 /* 54 /* 55 * If @task is a stopper task, it cann 55 * If @task is a stopper task, it cannot migrate and task_cpu() is 56 * stable. 56 * stable. 57 */ 57 */ 58 struct cpu_stopper *stopper = per_cpu_ 58 struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task)); 59 59 60 if (task != stopper->thread) 60 if (task != stopper->thread) 61 return; 61 return; 62 62 63 printk("%sStopper: %pS <- %pS\n", log_ 63 printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller); 64 } 64 } 65 65 66 /* static data for stop_cpus */ 66 /* static data for stop_cpus */ 67 static DEFINE_MUTEX(stop_cpus_mutex); 67 static DEFINE_MUTEX(stop_cpus_mutex); 68 static bool stop_cpus_in_progress; 68 static bool stop_cpus_in_progress; 69 69 70 static void cpu_stop_init_done(struct cpu_stop 70 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 71 { 71 { 72 memset(done, 0, sizeof(*done)); 72 memset(done, 0, sizeof(*done)); 73 atomic_set(&done->nr_todo, nr_todo); 73 atomic_set(&done->nr_todo, nr_todo); 74 init_completion(&done->completion); 74 init_completion(&done->completion); 75 } 75 } 76 76 77 /* signal completion unless @done is NULL */ 77 /* signal completion unless @done is NULL */ 78 static void cpu_stop_signal_done(struct cpu_st 78 static void cpu_stop_signal_done(struct cpu_stop_done *done) 79 { 79 { 80 if (atomic_dec_and_test(&done->nr_todo 80 if (atomic_dec_and_test(&done->nr_todo)) 81 complete(&done->completion); 81 complete(&done->completion); 82 } 82 } 83 83 84 static void __cpu_stop_queue_work(struct cpu_s 84 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 85 struct 85 struct cpu_stop_work *work, 86 struct 86 struct wake_q_head *wakeq) 87 { 87 { 88 list_add_tail(&work->list, &stopper->w 88 list_add_tail(&work->list, &stopper->works); 89 wake_q_add(wakeq, stopper->thread); 89 wake_q_add(wakeq, stopper->thread); 90 } 90 } 91 91 92 /* queue @work to @stopper. if offline, @work 92 /* queue @work to @stopper. if offline, @work is completed immediately */ 93 static bool cpu_stop_queue_work(unsigned int c 93 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 94 { 94 { 95 struct cpu_stopper *stopper = &per_cpu 95 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 96 DEFINE_WAKE_Q(wakeq); 96 DEFINE_WAKE_Q(wakeq); 97 unsigned long flags; 97 unsigned long flags; 98 bool enabled; 98 bool enabled; 99 99 100 preempt_disable(); 100 preempt_disable(); 101 raw_spin_lock_irqsave(&stopper->lock, 101 raw_spin_lock_irqsave(&stopper->lock, flags); 102 enabled = stopper->enabled; 102 enabled = stopper->enabled; 103 if (enabled) 103 if (enabled) 104 __cpu_stop_queue_work(stopper, 104 __cpu_stop_queue_work(stopper, work, &wakeq); 105 else if (work->done) 105 else if (work->done) 106 cpu_stop_signal_done(work->don 106 cpu_stop_signal_done(work->done); 107 raw_spin_unlock_irqrestore(&stopper->l 107 raw_spin_unlock_irqrestore(&stopper->lock, flags); 108 108 109 wake_up_q(&wakeq); 109 wake_up_q(&wakeq); 110 preempt_enable(); 110 preempt_enable(); 111 111 112 return enabled; 112 return enabled; 113 } 113 } 114 114 115 /** 115 /** 116 * stop_one_cpu - stop a cpu 116 * stop_one_cpu - stop a cpu 117 * @cpu: cpu to stop 117 * @cpu: cpu to stop 118 * @fn: function to execute 118 * @fn: function to execute 119 * @arg: argument to @fn 119 * @arg: argument to @fn 120 * 120 * 121 * Execute @fn(@arg) on @cpu. @fn is run in a 121 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 122 * the highest priority preempting any task on 122 * the highest priority preempting any task on the cpu and 123 * monopolizing it. This function returns aft 123 * monopolizing it. This function returns after the execution is 124 * complete. 124 * complete. 125 * 125 * 126 * This function doesn't guarantee @cpu stays 126 * This function doesn't guarantee @cpu stays online till @fn 127 * completes. If @cpu goes down in the middle 127 * completes. If @cpu goes down in the middle, execution may happen 128 * partially or fully on different cpus. @fn 128 * partially or fully on different cpus. @fn should either be ready 129 * for that or the caller should ensure that @ 129 * for that or the caller should ensure that @cpu stays online until 130 * this function completes. 130 * this function completes. 131 * 131 * 132 * CONTEXT: 132 * CONTEXT: 133 * Might sleep. 133 * Might sleep. 134 * 134 * 135 * RETURNS: 135 * RETURNS: 136 * -ENOENT if @fn(@arg) was not executed becau 136 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 137 * otherwise, the return value of @fn. 137 * otherwise, the return value of @fn. 138 */ 138 */ 139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn 139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 140 { 140 { 141 struct cpu_stop_done done; 141 struct cpu_stop_done done; 142 struct cpu_stop_work work = { .fn = fn 142 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ }; 143 143 144 cpu_stop_init_done(&done, 1); 144 cpu_stop_init_done(&done, 1); 145 if (!cpu_stop_queue_work(cpu, &work)) 145 if (!cpu_stop_queue_work(cpu, &work)) 146 return -ENOENT; 146 return -ENOENT; 147 /* 147 /* 148 * In case @cpu == smp_proccessor_id() 148 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 149 * cycle by doing a preemption: 149 * cycle by doing a preemption: 150 */ 150 */ 151 cond_resched(); 151 cond_resched(); 152 wait_for_completion(&done.completion); 152 wait_for_completion(&done.completion); 153 return done.ret; 153 return done.ret; 154 } 154 } 155 155 156 /* This controls the threads on each CPU. */ 156 /* This controls the threads on each CPU. */ 157 enum multi_stop_state { 157 enum multi_stop_state { 158 /* Dummy starting state for thread. */ 158 /* Dummy starting state for thread. */ 159 MULTI_STOP_NONE, 159 MULTI_STOP_NONE, 160 /* Awaiting everyone to be scheduled. 160 /* Awaiting everyone to be scheduled. */ 161 MULTI_STOP_PREPARE, 161 MULTI_STOP_PREPARE, 162 /* Disable interrupts. */ 162 /* Disable interrupts. */ 163 MULTI_STOP_DISABLE_IRQ, 163 MULTI_STOP_DISABLE_IRQ, 164 /* Run the function */ 164 /* Run the function */ 165 MULTI_STOP_RUN, 165 MULTI_STOP_RUN, 166 /* Exit */ 166 /* Exit */ 167 MULTI_STOP_EXIT, 167 MULTI_STOP_EXIT, 168 }; 168 }; 169 169 170 struct multi_stop_data { 170 struct multi_stop_data { 171 cpu_stop_fn_t fn; 171 cpu_stop_fn_t fn; 172 void *data; 172 void *data; 173 /* Like num_online_cpus(), but hotplug 173 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 174 unsigned int num_threads; 174 unsigned int num_threads; 175 const struct cpumask *active_cpus; 175 const struct cpumask *active_cpus; 176 176 177 enum multi_stop_state state; 177 enum multi_stop_state state; 178 atomic_t thread_ack; 178 atomic_t thread_ack; 179 }; 179 }; 180 180 181 static void set_state(struct multi_stop_data * 181 static void set_state(struct multi_stop_data *msdata, 182 enum multi_stop_state ne 182 enum multi_stop_state newstate) 183 { 183 { 184 /* Reset ack counter. */ 184 /* Reset ack counter. */ 185 atomic_set(&msdata->thread_ack, msdata 185 atomic_set(&msdata->thread_ack, msdata->num_threads); 186 smp_wmb(); 186 smp_wmb(); 187 WRITE_ONCE(msdata->state, newstate); 187 WRITE_ONCE(msdata->state, newstate); 188 } 188 } 189 189 190 /* Last one to ack a state moves to the next s 190 /* Last one to ack a state moves to the next state. */ 191 static void ack_state(struct multi_stop_data * 191 static void ack_state(struct multi_stop_data *msdata) 192 { 192 { 193 if (atomic_dec_and_test(&msdata->threa 193 if (atomic_dec_and_test(&msdata->thread_ack)) 194 set_state(msdata, msdata->stat 194 set_state(msdata, msdata->state + 1); 195 } 195 } 196 196 197 notrace void __weak stop_machine_yield(const s 197 notrace void __weak stop_machine_yield(const struct cpumask *cpumask) 198 { 198 { 199 cpu_relax(); 199 cpu_relax(); 200 } 200 } 201 201 202 /* This is the cpu_stop function which stops t 202 /* This is the cpu_stop function which stops the CPU. */ 203 static int multi_cpu_stop(void *data) 203 static int multi_cpu_stop(void *data) 204 { 204 { 205 struct multi_stop_data *msdata = data; 205 struct multi_stop_data *msdata = data; 206 enum multi_stop_state newstate, cursta 206 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE; 207 int cpu = smp_processor_id(), err = 0; 207 int cpu = smp_processor_id(), err = 0; 208 const struct cpumask *cpumask; 208 const struct cpumask *cpumask; 209 unsigned long flags; 209 unsigned long flags; 210 bool is_active; 210 bool is_active; 211 211 212 /* 212 /* 213 * When called from stop_machine_from_ 213 * When called from stop_machine_from_inactive_cpu(), irq might 214 * already be disabled. Save the stat 214 * already be disabled. Save the state and restore it on exit. 215 */ 215 */ 216 local_save_flags(flags); 216 local_save_flags(flags); 217 217 218 if (!msdata->active_cpus) { 218 if (!msdata->active_cpus) { 219 cpumask = cpu_online_mask; 219 cpumask = cpu_online_mask; 220 is_active = cpu == cpumask_fir 220 is_active = cpu == cpumask_first(cpumask); 221 } else { 221 } else { 222 cpumask = msdata->active_cpus; 222 cpumask = msdata->active_cpus; 223 is_active = cpumask_test_cpu(c 223 is_active = cpumask_test_cpu(cpu, cpumask); 224 } 224 } 225 225 226 /* Simple state machine */ 226 /* Simple state machine */ 227 do { 227 do { 228 /* Chill out and ensure we re- 228 /* Chill out and ensure we re-read multi_stop_state. */ 229 stop_machine_yield(cpumask); 229 stop_machine_yield(cpumask); 230 newstate = READ_ONCE(msdata->s 230 newstate = READ_ONCE(msdata->state); 231 if (newstate != curstate) { 231 if (newstate != curstate) { 232 curstate = newstate; 232 curstate = newstate; 233 switch (curstate) { 233 switch (curstate) { 234 case MULTI_STOP_DISABL 234 case MULTI_STOP_DISABLE_IRQ: 235 local_irq_disa 235 local_irq_disable(); 236 hard_irq_disab 236 hard_irq_disable(); 237 break; 237 break; 238 case MULTI_STOP_RUN: 238 case MULTI_STOP_RUN: 239 if (is_active) 239 if (is_active) 240 err = 240 err = msdata->fn(msdata->data); 241 break; 241 break; 242 default: 242 default: 243 break; 243 break; 244 } 244 } 245 ack_state(msdata); 245 ack_state(msdata); 246 } else if (curstate > MULTI_ST 246 } else if (curstate > MULTI_STOP_PREPARE) { 247 /* 247 /* 248 * At this stage all o 248 * At this stage all other CPUs we depend on must spin 249 * in the same loop. A 249 * in the same loop. Any reason for hard-lockup should 250 * be detected and rep 250 * be detected and reported on their side. 251 */ 251 */ 252 touch_nmi_watchdog(); 252 touch_nmi_watchdog(); 253 } 253 } 254 rcu_momentary_dyntick_idle(); 254 rcu_momentary_dyntick_idle(); 255 } while (curstate != MULTI_STOP_EXIT); 255 } while (curstate != MULTI_STOP_EXIT); 256 256 257 local_irq_restore(flags); 257 local_irq_restore(flags); 258 return err; 258 return err; 259 } 259 } 260 260 261 static int cpu_stop_queue_two_works(int cpu1, 261 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 262 int cpu2, 262 int cpu2, struct cpu_stop_work *work2) 263 { 263 { 264 struct cpu_stopper *stopper1 = per_cpu 264 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 265 struct cpu_stopper *stopper2 = per_cpu 265 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 266 DEFINE_WAKE_Q(wakeq); 266 DEFINE_WAKE_Q(wakeq); 267 int err; 267 int err; 268 268 269 retry: 269 retry: 270 /* 270 /* 271 * The waking up of stopper threads ha 271 * The waking up of stopper threads has to happen in the same 272 * scheduling context as the queueing. 272 * scheduling context as the queueing. Otherwise, there is a 273 * possibility of one of the above sto 273 * possibility of one of the above stoppers being woken up by another 274 * CPU, and preempting us. This will c 274 * CPU, and preempting us. This will cause us to not wake up the other 275 * stopper forever. 275 * stopper forever. 276 */ 276 */ 277 preempt_disable(); 277 preempt_disable(); 278 raw_spin_lock_irq(&stopper1->lock); 278 raw_spin_lock_irq(&stopper1->lock); 279 raw_spin_lock_nested(&stopper2->lock, 279 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 280 280 281 if (!stopper1->enabled || !stopper2->e 281 if (!stopper1->enabled || !stopper2->enabled) { 282 err = -ENOENT; 282 err = -ENOENT; 283 goto unlock; 283 goto unlock; 284 } 284 } 285 285 286 /* 286 /* 287 * Ensure that if we race with __stop_ 287 * Ensure that if we race with __stop_cpus() the stoppers won't get 288 * queued up in reverse order leading 288 * queued up in reverse order leading to system deadlock. 289 * 289 * 290 * We can't miss stop_cpus_in_progress 290 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 291 * queued a work on cpu1 but not on cp 291 * queued a work on cpu1 but not on cpu2, we hold both locks. 292 * 292 * 293 * It can be falsely true but it is sa 293 * It can be falsely true but it is safe to spin until it is cleared, 294 * queue_stop_cpus_work() does everyth 294 * queue_stop_cpus_work() does everything under preempt_disable(). 295 */ 295 */ 296 if (unlikely(stop_cpus_in_progress)) { 296 if (unlikely(stop_cpus_in_progress)) { 297 err = -EDEADLK; 297 err = -EDEADLK; 298 goto unlock; 298 goto unlock; 299 } 299 } 300 300 301 err = 0; 301 err = 0; 302 __cpu_stop_queue_work(stopper1, work1, 302 __cpu_stop_queue_work(stopper1, work1, &wakeq); 303 __cpu_stop_queue_work(stopper2, work2, 303 __cpu_stop_queue_work(stopper2, work2, &wakeq); 304 304 305 unlock: 305 unlock: 306 raw_spin_unlock(&stopper2->lock); 306 raw_spin_unlock(&stopper2->lock); 307 raw_spin_unlock_irq(&stopper1->lock); 307 raw_spin_unlock_irq(&stopper1->lock); 308 308 309 if (unlikely(err == -EDEADLK)) { 309 if (unlikely(err == -EDEADLK)) { 310 preempt_enable(); 310 preempt_enable(); 311 311 312 while (stop_cpus_in_progress) 312 while (stop_cpus_in_progress) 313 cpu_relax(); 313 cpu_relax(); 314 314 315 goto retry; 315 goto retry; 316 } 316 } 317 317 318 wake_up_q(&wakeq); 318 wake_up_q(&wakeq); 319 preempt_enable(); 319 preempt_enable(); 320 320 321 return err; 321 return err; 322 } 322 } 323 /** 323 /** 324 * stop_two_cpus - stops two cpus 324 * stop_two_cpus - stops two cpus 325 * @cpu1: the cpu to stop 325 * @cpu1: the cpu to stop 326 * @cpu2: the other cpu to stop 326 * @cpu2: the other cpu to stop 327 * @fn: function to execute 327 * @fn: function to execute 328 * @arg: argument to @fn 328 * @arg: argument to @fn 329 * 329 * 330 * Stops both the current and specified CPU an 330 * Stops both the current and specified CPU and runs @fn on one of them. 331 * 331 * 332 * returns when both are completed. 332 * returns when both are completed. 333 */ 333 */ 334 int stop_two_cpus(unsigned int cpu1, unsigned 334 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 335 { 335 { 336 struct cpu_stop_done done; 336 struct cpu_stop_done done; 337 struct cpu_stop_work work1, work2; 337 struct cpu_stop_work work1, work2; 338 struct multi_stop_data msdata; 338 struct multi_stop_data msdata; 339 339 340 msdata = (struct multi_stop_data){ 340 msdata = (struct multi_stop_data){ 341 .fn = fn, 341 .fn = fn, 342 .data = arg, 342 .data = arg, 343 .num_threads = 2, 343 .num_threads = 2, 344 .active_cpus = cpumask_of(cpu1 344 .active_cpus = cpumask_of(cpu1), 345 }; 345 }; 346 346 347 work1 = work2 = (struct cpu_stop_work) 347 work1 = work2 = (struct cpu_stop_work){ 348 .fn = multi_cpu_stop, 348 .fn = multi_cpu_stop, 349 .arg = &msdata, 349 .arg = &msdata, 350 .done = &done, 350 .done = &done, 351 .caller = _RET_IP_, 351 .caller = _RET_IP_, 352 }; 352 }; 353 353 354 cpu_stop_init_done(&done, 2); 354 cpu_stop_init_done(&done, 2); 355 set_state(&msdata, MULTI_STOP_PREPARE) 355 set_state(&msdata, MULTI_STOP_PREPARE); 356 356 357 if (cpu1 > cpu2) 357 if (cpu1 > cpu2) 358 swap(cpu1, cpu2); 358 swap(cpu1, cpu2); 359 if (cpu_stop_queue_two_works(cpu1, &wo 359 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 360 return -ENOENT; 360 return -ENOENT; 361 361 362 wait_for_completion(&done.completion); 362 wait_for_completion(&done.completion); 363 return done.ret; 363 return done.ret; 364 } 364 } 365 365 366 /** 366 /** 367 * stop_one_cpu_nowait - stop a cpu but don't 367 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 368 * @cpu: cpu to stop 368 * @cpu: cpu to stop 369 * @fn: function to execute 369 * @fn: function to execute 370 * @arg: argument to @fn 370 * @arg: argument to @fn 371 * @work_buf: pointer to cpu_stop_work structu 371 * @work_buf: pointer to cpu_stop_work structure 372 * 372 * 373 * Similar to stop_one_cpu() but doesn't wait 373 * Similar to stop_one_cpu() but doesn't wait for completion. The 374 * caller is responsible for ensuring @work_bu 374 * caller is responsible for ensuring @work_buf is currently unused 375 * and will remain untouched until stopper sta 375 * and will remain untouched until stopper starts executing @fn. 376 * 376 * 377 * CONTEXT: 377 * CONTEXT: 378 * Don't care. 378 * Don't care. 379 * 379 * 380 * RETURNS: 380 * RETURNS: 381 * true if cpu_stop_work was queued successful 381 * true if cpu_stop_work was queued successfully and @fn will be called, 382 * false otherwise. 382 * false otherwise. 383 */ 383 */ 384 bool stop_one_cpu_nowait(unsigned int cpu, cpu 384 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 385 struct cpu_stop_work * 385 struct cpu_stop_work *work_buf) 386 { 386 { 387 *work_buf = (struct cpu_stop_work){ .f 387 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, }; 388 return cpu_stop_queue_work(cpu, work_b 388 return cpu_stop_queue_work(cpu, work_buf); 389 } 389 } 390 390 391 static bool queue_stop_cpus_work(const struct 391 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 392 cpu_stop_fn_t 392 cpu_stop_fn_t fn, void *arg, 393 struct cpu_st 393 struct cpu_stop_done *done) 394 { 394 { 395 struct cpu_stop_work *work; 395 struct cpu_stop_work *work; 396 unsigned int cpu; 396 unsigned int cpu; 397 bool queued = false; 397 bool queued = false; 398 398 399 /* 399 /* 400 * Disable preemption while queueing t 400 * Disable preemption while queueing to avoid getting 401 * preempted by a stopper which might 401 * preempted by a stopper which might wait for other stoppers 402 * to enter @fn which can lead to dead 402 * to enter @fn which can lead to deadlock. 403 */ 403 */ 404 preempt_disable(); 404 preempt_disable(); 405 stop_cpus_in_progress = true; 405 stop_cpus_in_progress = true; 406 barrier(); 406 barrier(); 407 for_each_cpu(cpu, cpumask) { 407 for_each_cpu(cpu, cpumask) { 408 work = &per_cpu(cpu_stopper.st 408 work = &per_cpu(cpu_stopper.stop_work, cpu); 409 work->fn = fn; 409 work->fn = fn; 410 work->arg = arg; 410 work->arg = arg; 411 work->done = done; 411 work->done = done; 412 work->caller = _RET_IP_; << 413 if (cpu_stop_queue_work(cpu, w 412 if (cpu_stop_queue_work(cpu, work)) 414 queued = true; 413 queued = true; 415 } 414 } 416 barrier(); 415 barrier(); 417 stop_cpus_in_progress = false; 416 stop_cpus_in_progress = false; 418 preempt_enable(); 417 preempt_enable(); 419 418 420 return queued; 419 return queued; 421 } 420 } 422 421 423 static int __stop_cpus(const struct cpumask *c 422 static int __stop_cpus(const struct cpumask *cpumask, 424 cpu_stop_fn_t fn, void 423 cpu_stop_fn_t fn, void *arg) 425 { 424 { 426 struct cpu_stop_done done; 425 struct cpu_stop_done done; 427 426 428 cpu_stop_init_done(&done, cpumask_weig 427 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 429 if (!queue_stop_cpus_work(cpumask, fn, 428 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 430 return -ENOENT; 429 return -ENOENT; 431 wait_for_completion(&done.completion); 430 wait_for_completion(&done.completion); 432 return done.ret; 431 return done.ret; 433 } 432 } 434 433 435 /** 434 /** 436 * stop_cpus - stop multiple cpus 435 * stop_cpus - stop multiple cpus 437 * @cpumask: cpus to stop 436 * @cpumask: cpus to stop 438 * @fn: function to execute 437 * @fn: function to execute 439 * @arg: argument to @fn 438 * @arg: argument to @fn 440 * 439 * 441 * Execute @fn(@arg) on online cpus in @cpumas 440 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 442 * @fn is run in a process context with the hi 441 * @fn is run in a process context with the highest priority 443 * preempting any task on the cpu and monopoli 442 * preempting any task on the cpu and monopolizing it. This function 444 * returns after all executions are complete. 443 * returns after all executions are complete. 445 * 444 * 446 * This function doesn't guarantee the cpus in 445 * This function doesn't guarantee the cpus in @cpumask stay online 447 * till @fn completes. If some cpus go down i 446 * till @fn completes. If some cpus go down in the middle, execution 448 * on the cpu may happen partially or fully on 447 * on the cpu may happen partially or fully on different cpus. @fn 449 * should either be ready for that or the call 448 * should either be ready for that or the caller should ensure that 450 * the cpus stay online until this function co 449 * the cpus stay online until this function completes. 451 * 450 * 452 * All stop_cpus() calls are serialized making 451 * All stop_cpus() calls are serialized making it safe for @fn to wait 453 * for all cpus to start executing it. 452 * for all cpus to start executing it. 454 * 453 * 455 * CONTEXT: 454 * CONTEXT: 456 * Might sleep. 455 * Might sleep. 457 * 456 * 458 * RETURNS: 457 * RETURNS: 459 * -ENOENT if @fn(@arg) was not executed at al 458 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 460 * @cpumask were offline; otherwise, 0 if all 459 * @cpumask were offline; otherwise, 0 if all executions of @fn 461 * returned 0, any non zero return value if an 460 * returned 0, any non zero return value if any returned non zero. 462 */ 461 */ 463 static int stop_cpus(const struct cpumask *cpu 462 static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 464 { 463 { 465 int ret; 464 int ret; 466 465 467 /* static works are used, process one 466 /* static works are used, process one request at a time */ 468 mutex_lock(&stop_cpus_mutex); 467 mutex_lock(&stop_cpus_mutex); 469 ret = __stop_cpus(cpumask, fn, arg); 468 ret = __stop_cpus(cpumask, fn, arg); 470 mutex_unlock(&stop_cpus_mutex); 469 mutex_unlock(&stop_cpus_mutex); 471 return ret; 470 return ret; 472 } 471 } 473 472 474 static int cpu_stop_should_run(unsigned int cp 473 static int cpu_stop_should_run(unsigned int cpu) 475 { 474 { 476 struct cpu_stopper *stopper = &per_cpu 475 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 477 unsigned long flags; 476 unsigned long flags; 478 int run; 477 int run; 479 478 480 raw_spin_lock_irqsave(&stopper->lock, 479 raw_spin_lock_irqsave(&stopper->lock, flags); 481 run = !list_empty(&stopper->works); 480 run = !list_empty(&stopper->works); 482 raw_spin_unlock_irqrestore(&stopper->l 481 raw_spin_unlock_irqrestore(&stopper->lock, flags); 483 return run; 482 return run; 484 } 483 } 485 484 486 static void cpu_stopper_thread(unsigned int cp 485 static void cpu_stopper_thread(unsigned int cpu) 487 { 486 { 488 struct cpu_stopper *stopper = &per_cpu 487 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 489 struct cpu_stop_work *work; 488 struct cpu_stop_work *work; 490 489 491 repeat: 490 repeat: 492 work = NULL; 491 work = NULL; 493 raw_spin_lock_irq(&stopper->lock); 492 raw_spin_lock_irq(&stopper->lock); 494 if (!list_empty(&stopper->works)) { 493 if (!list_empty(&stopper->works)) { 495 work = list_first_entry(&stopp 494 work = list_first_entry(&stopper->works, 496 struct 495 struct cpu_stop_work, list); 497 list_del_init(&work->list); 496 list_del_init(&work->list); 498 } 497 } 499 raw_spin_unlock_irq(&stopper->lock); 498 raw_spin_unlock_irq(&stopper->lock); 500 499 501 if (work) { 500 if (work) { 502 cpu_stop_fn_t fn = work->fn; 501 cpu_stop_fn_t fn = work->fn; 503 void *arg = work->arg; 502 void *arg = work->arg; 504 struct cpu_stop_done *done = w 503 struct cpu_stop_done *done = work->done; 505 int ret; 504 int ret; 506 505 507 /* cpu stop callbacks must not 506 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 508 stopper->caller = work->caller 507 stopper->caller = work->caller; 509 stopper->fn = fn; 508 stopper->fn = fn; 510 preempt_count_inc(); 509 preempt_count_inc(); 511 ret = fn(arg); 510 ret = fn(arg); 512 if (done) { 511 if (done) { 513 if (ret) 512 if (ret) 514 done->ret = re 513 done->ret = ret; 515 cpu_stop_signal_done(d 514 cpu_stop_signal_done(done); 516 } 515 } 517 preempt_count_dec(); 516 preempt_count_dec(); 518 stopper->fn = NULL; 517 stopper->fn = NULL; 519 stopper->caller = 0; 518 stopper->caller = 0; 520 WARN_ONCE(preempt_count(), 519 WARN_ONCE(preempt_count(), 521 "cpu_stop: %ps(%p) l 520 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 522 goto repeat; 521 goto repeat; 523 } 522 } 524 } 523 } 525 524 526 void stop_machine_park(int cpu) 525 void stop_machine_park(int cpu) 527 { 526 { 528 struct cpu_stopper *stopper = &per_cpu 527 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 529 /* 528 /* 530 * Lockless. cpu_stopper_thread() will 529 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 531 * the pending works before it parks, 530 * the pending works before it parks, until then it is fine to queue 532 * the new works. 531 * the new works. 533 */ 532 */ 534 stopper->enabled = false; 533 stopper->enabled = false; 535 kthread_park(stopper->thread); 534 kthread_park(stopper->thread); 536 } 535 } 537 536 >> 537 extern void sched_set_stop_task(int cpu, struct task_struct *stop); >> 538 538 static void cpu_stop_create(unsigned int cpu) 539 static void cpu_stop_create(unsigned int cpu) 539 { 540 { 540 sched_set_stop_task(cpu, per_cpu(cpu_s 541 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 541 } 542 } 542 543 543 static void cpu_stop_park(unsigned int cpu) 544 static void cpu_stop_park(unsigned int cpu) 544 { 545 { 545 struct cpu_stopper *stopper = &per_cpu 546 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 546 547 547 WARN_ON(!list_empty(&stopper->works)); 548 WARN_ON(!list_empty(&stopper->works)); 548 } 549 } 549 550 550 void stop_machine_unpark(int cpu) 551 void stop_machine_unpark(int cpu) 551 { 552 { 552 struct cpu_stopper *stopper = &per_cpu 553 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 553 554 554 stopper->enabled = true; 555 stopper->enabled = true; 555 kthread_unpark(stopper->thread); 556 kthread_unpark(stopper->thread); 556 } 557 } 557 558 558 static struct smp_hotplug_thread cpu_stop_thre 559 static struct smp_hotplug_thread cpu_stop_threads = { 559 .store = &cpu_stopper 560 .store = &cpu_stopper.thread, 560 .thread_should_run = cpu_stop_sho 561 .thread_should_run = cpu_stop_should_run, 561 .thread_fn = cpu_stopper_ 562 .thread_fn = cpu_stopper_thread, 562 .thread_comm = "migration/% 563 .thread_comm = "migration/%u", 563 .create = cpu_stop_cre 564 .create = cpu_stop_create, 564 .park = cpu_stop_par 565 .park = cpu_stop_park, 565 .selfparking = true, 566 .selfparking = true, 566 }; 567 }; 567 568 568 static int __init cpu_stop_init(void) 569 static int __init cpu_stop_init(void) 569 { 570 { 570 unsigned int cpu; 571 unsigned int cpu; 571 572 572 for_each_possible_cpu(cpu) { 573 for_each_possible_cpu(cpu) { 573 struct cpu_stopper *stopper = 574 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 574 575 575 raw_spin_lock_init(&stopper->l 576 raw_spin_lock_init(&stopper->lock); 576 INIT_LIST_HEAD(&stopper->works 577 INIT_LIST_HEAD(&stopper->works); 577 } 578 } 578 579 579 BUG_ON(smpboot_register_percpu_thread( 580 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 580 stop_machine_unpark(raw_smp_processor_ 581 stop_machine_unpark(raw_smp_processor_id()); 581 stop_machine_initialized = true; 582 stop_machine_initialized = true; 582 return 0; 583 return 0; 583 } 584 } 584 early_initcall(cpu_stop_init); 585 early_initcall(cpu_stop_init); 585 586 586 int stop_machine_cpuslocked(cpu_stop_fn_t fn, 587 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 587 const struct cpuma 588 const struct cpumask *cpus) 588 { 589 { 589 struct multi_stop_data msdata = { 590 struct multi_stop_data msdata = { 590 .fn = fn, 591 .fn = fn, 591 .data = data, 592 .data = data, 592 .num_threads = num_online_cpus 593 .num_threads = num_online_cpus(), 593 .active_cpus = cpus, 594 .active_cpus = cpus, 594 }; 595 }; 595 596 596 lockdep_assert_cpus_held(); 597 lockdep_assert_cpus_held(); 597 598 598 if (!stop_machine_initialized) { 599 if (!stop_machine_initialized) { 599 /* 600 /* 600 * Handle the case where stop_ 601 * Handle the case where stop_machine() is called 601 * early in boot before stop_m 602 * early in boot before stop_machine() has been 602 * initialized. 603 * initialized. 603 */ 604 */ 604 unsigned long flags; 605 unsigned long flags; 605 int ret; 606 int ret; 606 607 607 WARN_ON_ONCE(msdata.num_thread 608 WARN_ON_ONCE(msdata.num_threads != 1); 608 609 609 local_irq_save(flags); 610 local_irq_save(flags); 610 hard_irq_disable(); 611 hard_irq_disable(); 611 ret = (*fn)(data); 612 ret = (*fn)(data); 612 local_irq_restore(flags); 613 local_irq_restore(flags); 613 614 614 return ret; 615 return ret; 615 } 616 } 616 617 617 /* Set the initial state and stop all 618 /* Set the initial state and stop all online cpus. */ 618 set_state(&msdata, MULTI_STOP_PREPARE) 619 set_state(&msdata, MULTI_STOP_PREPARE); 619 return stop_cpus(cpu_online_mask, mult 620 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 620 } 621 } 621 622 622 int stop_machine(cpu_stop_fn_t fn, void *data, 623 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 623 { 624 { 624 int ret; 625 int ret; 625 626 626 /* No CPUs can come up or down during 627 /* No CPUs can come up or down during this. */ 627 cpus_read_lock(); 628 cpus_read_lock(); 628 ret = stop_machine_cpuslocked(fn, data 629 ret = stop_machine_cpuslocked(fn, data, cpus); 629 cpus_read_unlock(); 630 cpus_read_unlock(); 630 return ret; 631 return ret; 631 } 632 } 632 EXPORT_SYMBOL_GPL(stop_machine); 633 EXPORT_SYMBOL_GPL(stop_machine); 633 << 634 #ifdef CONFIG_SCHED_SMT << 635 int stop_core_cpuslocked(unsigned int cpu, cpu << 636 { << 637 const struct cpumask *smt_mask = cpu_s << 638 << 639 struct multi_stop_data msdata = { << 640 .fn = fn, << 641 .data = data, << 642 .num_threads = cpumask_weight( << 643 .active_cpus = smt_mask, << 644 }; << 645 << 646 lockdep_assert_cpus_held(); << 647 << 648 /* Set the initial state and stop all << 649 set_state(&msdata, MULTI_STOP_PREPARE) << 650 return stop_cpus(smt_mask, multi_cpu_s << 651 } << 652 EXPORT_SYMBOL_GPL(stop_core_cpuslocked); << 653 #endif << 654 634 655 /** 635 /** 656 * stop_machine_from_inactive_cpu - stop_machi 636 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 657 * @fn: the function to run 637 * @fn: the function to run 658 * @data: the data ptr for the @fn() 638 * @data: the data ptr for the @fn() 659 * @cpus: the cpus to run the @fn() on (NULL = 639 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 660 * 640 * 661 * This is identical to stop_machine() but can 641 * This is identical to stop_machine() but can be called from a CPU which 662 * is not active. The local CPU is in the pro 642 * is not active. The local CPU is in the process of hotplug (so no other 663 * CPU hotplug can start) and not marked activ 643 * CPU hotplug can start) and not marked active and doesn't have enough 664 * context to sleep. 644 * context to sleep. 665 * 645 * 666 * This function provides stop_machine() funct 646 * This function provides stop_machine() functionality for such state by 667 * using busy-wait for synchronization and exe 647 * using busy-wait for synchronization and executing @fn directly for local 668 * CPU. 648 * CPU. 669 * 649 * 670 * CONTEXT: 650 * CONTEXT: 671 * Local CPU is inactive. Temporarily stops a 651 * Local CPU is inactive. Temporarily stops all active CPUs. 672 * 652 * 673 * RETURNS: 653 * RETURNS: 674 * 0 if all executions of @fn returned 0, any 654 * 0 if all executions of @fn returned 0, any non zero return value if any 675 * returned non zero. 655 * returned non zero. 676 */ 656 */ 677 int stop_machine_from_inactive_cpu(cpu_stop_fn 657 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 678 const struct 658 const struct cpumask *cpus) 679 { 659 { 680 struct multi_stop_data msdata = { .fn 660 struct multi_stop_data msdata = { .fn = fn, .data = data, 681 .a 661 .active_cpus = cpus }; 682 struct cpu_stop_done done; 662 struct cpu_stop_done done; 683 int ret; 663 int ret; 684 664 685 /* Local CPU must be inactive and CPU 665 /* Local CPU must be inactive and CPU hotplug in progress. */ 686 BUG_ON(cpu_active(raw_smp_processor_id 666 BUG_ON(cpu_active(raw_smp_processor_id())); 687 msdata.num_threads = num_active_cpus() 667 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 688 668 689 /* No proper task established and can' 669 /* No proper task established and can't sleep - busy wait for lock. */ 690 while (!mutex_trylock(&stop_cpus_mutex 670 while (!mutex_trylock(&stop_cpus_mutex)) 691 cpu_relax(); 671 cpu_relax(); 692 672 693 /* Schedule work on other CPUs and exe 673 /* Schedule work on other CPUs and execute directly for local CPU */ 694 set_state(&msdata, MULTI_STOP_PREPARE) 674 set_state(&msdata, MULTI_STOP_PREPARE); 695 cpu_stop_init_done(&done, num_active_c 675 cpu_stop_init_done(&done, num_active_cpus()); 696 queue_stop_cpus_work(cpu_active_mask, 676 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 697 &done); 677 &done); 698 ret = multi_cpu_stop(&msdata); 678 ret = multi_cpu_stop(&msdata); 699 679 700 /* Busy wait for completion. */ 680 /* Busy wait for completion. */ 701 while (!completion_done(&done.completi 681 while (!completion_done(&done.completion)) 702 cpu_relax(); 682 cpu_relax(); 703 683 704 mutex_unlock(&stop_cpus_mutex); 684 mutex_unlock(&stop_cpus_mutex); 705 return ret ?: done.ret; 685 return ret ?: done.ret; 706 } 686 } 707 687
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.