1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * kernel/stop_machine.c 3 * kernel/stop_machine.c 4 * 4 * 5 * Copyright (C) 2008, 2005 IBM Corporatio 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell 6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Pro 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@ 8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 9 */ 9 */ 10 #include <linux/compiler.h> << 11 #include <linux/completion.h> 10 #include <linux/completion.h> 12 #include <linux/cpu.h> 11 #include <linux/cpu.h> 13 #include <linux/init.h> 12 #include <linux/init.h> 14 #include <linux/kthread.h> 13 #include <linux/kthread.h> 15 #include <linux/export.h> 14 #include <linux/export.h> 16 #include <linux/percpu.h> 15 #include <linux/percpu.h> 17 #include <linux/sched.h> 16 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 17 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 18 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 19 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 20 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 21 #include <linux/atomic.h> 23 #include <linux/nmi.h> 22 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 23 #include <linux/sched/wake_q.h> 25 24 26 /* 25 /* 27 * Structure to determine completion condition 26 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 27 * be shared by works on different cpus. 29 */ 28 */ 30 struct cpu_stop_done { 29 struct cpu_stop_done { 31 atomic_t nr_todo; 30 atomic_t nr_todo; /* nr left to execute */ 32 int ret; 31 int ret; /* collected return value */ 33 struct completion completion; 32 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 33 }; 35 34 36 /* the actual stopper, one per every possible 35 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 36 struct cpu_stopper { 38 struct task_struct *thread; 37 struct task_struct *thread; 39 38 40 raw_spinlock_t lock; 39 raw_spinlock_t lock; 41 bool enabled; 40 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; 41 struct list_head works; /* list of pending works */ 43 42 44 struct cpu_stop_work stop_work; 43 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 unsigned long caller; << 46 cpu_stop_fn_t fn; << 47 }; 44 }; 48 45 49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_ 46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 50 static bool stop_machine_initialized = false; 47 static bool stop_machine_initialized = false; 51 48 52 void print_stop_info(const char *log_lvl, stru << 53 { << 54 /* << 55 * If @task is a stopper task, it cann << 56 * stable. << 57 */ << 58 struct cpu_stopper *stopper = per_cpu_ << 59 << 60 if (task != stopper->thread) << 61 return; << 62 << 63 printk("%sStopper: %pS <- %pS\n", log_ << 64 } << 65 << 66 /* static data for stop_cpus */ 49 /* static data for stop_cpus */ 67 static DEFINE_MUTEX(stop_cpus_mutex); 50 static DEFINE_MUTEX(stop_cpus_mutex); 68 static bool stop_cpus_in_progress; 51 static bool stop_cpus_in_progress; 69 52 70 static void cpu_stop_init_done(struct cpu_stop 53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 71 { 54 { 72 memset(done, 0, sizeof(*done)); 55 memset(done, 0, sizeof(*done)); 73 atomic_set(&done->nr_todo, nr_todo); 56 atomic_set(&done->nr_todo, nr_todo); 74 init_completion(&done->completion); 57 init_completion(&done->completion); 75 } 58 } 76 59 77 /* signal completion unless @done is NULL */ 60 /* signal completion unless @done is NULL */ 78 static void cpu_stop_signal_done(struct cpu_st 61 static void cpu_stop_signal_done(struct cpu_stop_done *done) 79 { 62 { 80 if (atomic_dec_and_test(&done->nr_todo 63 if (atomic_dec_and_test(&done->nr_todo)) 81 complete(&done->completion); 64 complete(&done->completion); 82 } 65 } 83 66 84 static void __cpu_stop_queue_work(struct cpu_s 67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 85 struct 68 struct cpu_stop_work *work, 86 struct 69 struct wake_q_head *wakeq) 87 { 70 { 88 list_add_tail(&work->list, &stopper->w 71 list_add_tail(&work->list, &stopper->works); 89 wake_q_add(wakeq, stopper->thread); 72 wake_q_add(wakeq, stopper->thread); 90 } 73 } 91 74 92 /* queue @work to @stopper. if offline, @work 75 /* queue @work to @stopper. if offline, @work is completed immediately */ 93 static bool cpu_stop_queue_work(unsigned int c 76 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 94 { 77 { 95 struct cpu_stopper *stopper = &per_cpu 78 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 96 DEFINE_WAKE_Q(wakeq); 79 DEFINE_WAKE_Q(wakeq); 97 unsigned long flags; 80 unsigned long flags; 98 bool enabled; 81 bool enabled; 99 82 100 preempt_disable(); 83 preempt_disable(); 101 raw_spin_lock_irqsave(&stopper->lock, 84 raw_spin_lock_irqsave(&stopper->lock, flags); 102 enabled = stopper->enabled; 85 enabled = stopper->enabled; 103 if (enabled) 86 if (enabled) 104 __cpu_stop_queue_work(stopper, 87 __cpu_stop_queue_work(stopper, work, &wakeq); 105 else if (work->done) 88 else if (work->done) 106 cpu_stop_signal_done(work->don 89 cpu_stop_signal_done(work->done); 107 raw_spin_unlock_irqrestore(&stopper->l 90 raw_spin_unlock_irqrestore(&stopper->lock, flags); 108 91 109 wake_up_q(&wakeq); 92 wake_up_q(&wakeq); 110 preempt_enable(); 93 preempt_enable(); 111 94 112 return enabled; 95 return enabled; 113 } 96 } 114 97 115 /** 98 /** 116 * stop_one_cpu - stop a cpu 99 * stop_one_cpu - stop a cpu 117 * @cpu: cpu to stop 100 * @cpu: cpu to stop 118 * @fn: function to execute 101 * @fn: function to execute 119 * @arg: argument to @fn 102 * @arg: argument to @fn 120 * 103 * 121 * Execute @fn(@arg) on @cpu. @fn is run in a 104 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 122 * the highest priority preempting any task on 105 * the highest priority preempting any task on the cpu and 123 * monopolizing it. This function returns aft 106 * monopolizing it. This function returns after the execution is 124 * complete. 107 * complete. 125 * 108 * 126 * This function doesn't guarantee @cpu stays 109 * This function doesn't guarantee @cpu stays online till @fn 127 * completes. If @cpu goes down in the middle 110 * completes. If @cpu goes down in the middle, execution may happen 128 * partially or fully on different cpus. @fn 111 * partially or fully on different cpus. @fn should either be ready 129 * for that or the caller should ensure that @ 112 * for that or the caller should ensure that @cpu stays online until 130 * this function completes. 113 * this function completes. 131 * 114 * 132 * CONTEXT: 115 * CONTEXT: 133 * Might sleep. 116 * Might sleep. 134 * 117 * 135 * RETURNS: 118 * RETURNS: 136 * -ENOENT if @fn(@arg) was not executed becau 119 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 137 * otherwise, the return value of @fn. 120 * otherwise, the return value of @fn. 138 */ 121 */ 139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn 122 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 140 { 123 { 141 struct cpu_stop_done done; 124 struct cpu_stop_done done; 142 struct cpu_stop_work work = { .fn = fn !! 125 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 143 126 144 cpu_stop_init_done(&done, 1); 127 cpu_stop_init_done(&done, 1); 145 if (!cpu_stop_queue_work(cpu, &work)) 128 if (!cpu_stop_queue_work(cpu, &work)) 146 return -ENOENT; 129 return -ENOENT; 147 /* 130 /* 148 * In case @cpu == smp_proccessor_id() 131 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 149 * cycle by doing a preemption: 132 * cycle by doing a preemption: 150 */ 133 */ 151 cond_resched(); 134 cond_resched(); 152 wait_for_completion(&done.completion); 135 wait_for_completion(&done.completion); 153 return done.ret; 136 return done.ret; 154 } 137 } 155 138 156 /* This controls the threads on each CPU. */ 139 /* This controls the threads on each CPU. */ 157 enum multi_stop_state { 140 enum multi_stop_state { 158 /* Dummy starting state for thread. */ 141 /* Dummy starting state for thread. */ 159 MULTI_STOP_NONE, 142 MULTI_STOP_NONE, 160 /* Awaiting everyone to be scheduled. 143 /* Awaiting everyone to be scheduled. */ 161 MULTI_STOP_PREPARE, 144 MULTI_STOP_PREPARE, 162 /* Disable interrupts. */ 145 /* Disable interrupts. */ 163 MULTI_STOP_DISABLE_IRQ, 146 MULTI_STOP_DISABLE_IRQ, 164 /* Run the function */ 147 /* Run the function */ 165 MULTI_STOP_RUN, 148 MULTI_STOP_RUN, 166 /* Exit */ 149 /* Exit */ 167 MULTI_STOP_EXIT, 150 MULTI_STOP_EXIT, 168 }; 151 }; 169 152 170 struct multi_stop_data { 153 struct multi_stop_data { 171 cpu_stop_fn_t fn; 154 cpu_stop_fn_t fn; 172 void *data; 155 void *data; 173 /* Like num_online_cpus(), but hotplug 156 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 174 unsigned int num_threads; 157 unsigned int num_threads; 175 const struct cpumask *active_cpus; 158 const struct cpumask *active_cpus; 176 159 177 enum multi_stop_state state; 160 enum multi_stop_state state; 178 atomic_t thread_ack; 161 atomic_t thread_ack; 179 }; 162 }; 180 163 181 static void set_state(struct multi_stop_data * 164 static void set_state(struct multi_stop_data *msdata, 182 enum multi_stop_state ne 165 enum multi_stop_state newstate) 183 { 166 { 184 /* Reset ack counter. */ 167 /* Reset ack counter. */ 185 atomic_set(&msdata->thread_ack, msdata 168 atomic_set(&msdata->thread_ack, msdata->num_threads); 186 smp_wmb(); 169 smp_wmb(); 187 WRITE_ONCE(msdata->state, newstate); !! 170 msdata->state = newstate; 188 } 171 } 189 172 190 /* Last one to ack a state moves to the next s 173 /* Last one to ack a state moves to the next state. */ 191 static void ack_state(struct multi_stop_data * 174 static void ack_state(struct multi_stop_data *msdata) 192 { 175 { 193 if (atomic_dec_and_test(&msdata->threa 176 if (atomic_dec_and_test(&msdata->thread_ack)) 194 set_state(msdata, msdata->stat 177 set_state(msdata, msdata->state + 1); 195 } 178 } 196 179 197 notrace void __weak stop_machine_yield(const s << 198 { << 199 cpu_relax(); << 200 } << 201 << 202 /* This is the cpu_stop function which stops t 180 /* This is the cpu_stop function which stops the CPU. */ 203 static int multi_cpu_stop(void *data) 181 static int multi_cpu_stop(void *data) 204 { 182 { 205 struct multi_stop_data *msdata = data; 183 struct multi_stop_data *msdata = data; 206 enum multi_stop_state newstate, cursta !! 184 enum multi_stop_state curstate = MULTI_STOP_NONE; 207 int cpu = smp_processor_id(), err = 0; 185 int cpu = smp_processor_id(), err = 0; 208 const struct cpumask *cpumask; << 209 unsigned long flags; 186 unsigned long flags; 210 bool is_active; 187 bool is_active; 211 188 212 /* 189 /* 213 * When called from stop_machine_from_ 190 * When called from stop_machine_from_inactive_cpu(), irq might 214 * already be disabled. Save the stat 191 * already be disabled. Save the state and restore it on exit. 215 */ 192 */ 216 local_save_flags(flags); 193 local_save_flags(flags); 217 194 218 if (!msdata->active_cpus) { !! 195 if (!msdata->active_cpus) 219 cpumask = cpu_online_mask; !! 196 is_active = cpu == cpumask_first(cpu_online_mask); 220 is_active = cpu == cpumask_fir !! 197 else 221 } else { !! 198 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 222 cpumask = msdata->active_cpus; << 223 is_active = cpumask_test_cpu(c << 224 } << 225 199 226 /* Simple state machine */ 200 /* Simple state machine */ 227 do { 201 do { 228 /* Chill out and ensure we re- 202 /* Chill out and ensure we re-read multi_stop_state. */ 229 stop_machine_yield(cpumask); !! 203 cpu_relax_yield(); 230 newstate = READ_ONCE(msdata->s !! 204 if (msdata->state != curstate) { 231 if (newstate != curstate) { !! 205 curstate = msdata->state; 232 curstate = newstate; << 233 switch (curstate) { 206 switch (curstate) { 234 case MULTI_STOP_DISABL 207 case MULTI_STOP_DISABLE_IRQ: 235 local_irq_disa 208 local_irq_disable(); 236 hard_irq_disab 209 hard_irq_disable(); 237 break; 210 break; 238 case MULTI_STOP_RUN: 211 case MULTI_STOP_RUN: 239 if (is_active) 212 if (is_active) 240 err = 213 err = msdata->fn(msdata->data); 241 break; 214 break; 242 default: 215 default: 243 break; 216 break; 244 } 217 } 245 ack_state(msdata); 218 ack_state(msdata); 246 } else if (curstate > MULTI_ST 219 } else if (curstate > MULTI_STOP_PREPARE) { 247 /* 220 /* 248 * At this stage all o 221 * At this stage all other CPUs we depend on must spin 249 * in the same loop. A 222 * in the same loop. Any reason for hard-lockup should 250 * be detected and rep 223 * be detected and reported on their side. 251 */ 224 */ 252 touch_nmi_watchdog(); 225 touch_nmi_watchdog(); 253 } 226 } 254 rcu_momentary_dyntick_idle(); << 255 } while (curstate != MULTI_STOP_EXIT); 227 } while (curstate != MULTI_STOP_EXIT); 256 228 257 local_irq_restore(flags); 229 local_irq_restore(flags); 258 return err; 230 return err; 259 } 231 } 260 232 261 static int cpu_stop_queue_two_works(int cpu1, 233 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 262 int cpu2, 234 int cpu2, struct cpu_stop_work *work2) 263 { 235 { 264 struct cpu_stopper *stopper1 = per_cpu 236 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 265 struct cpu_stopper *stopper2 = per_cpu 237 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 266 DEFINE_WAKE_Q(wakeq); 238 DEFINE_WAKE_Q(wakeq); 267 int err; 239 int err; 268 240 269 retry: 241 retry: 270 /* 242 /* 271 * The waking up of stopper threads ha 243 * The waking up of stopper threads has to happen in the same 272 * scheduling context as the queueing. 244 * scheduling context as the queueing. Otherwise, there is a 273 * possibility of one of the above sto 245 * possibility of one of the above stoppers being woken up by another 274 * CPU, and preempting us. This will c 246 * CPU, and preempting us. This will cause us to not wake up the other 275 * stopper forever. 247 * stopper forever. 276 */ 248 */ 277 preempt_disable(); 249 preempt_disable(); 278 raw_spin_lock_irq(&stopper1->lock); 250 raw_spin_lock_irq(&stopper1->lock); 279 raw_spin_lock_nested(&stopper2->lock, 251 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 280 252 281 if (!stopper1->enabled || !stopper2->e 253 if (!stopper1->enabled || !stopper2->enabled) { 282 err = -ENOENT; 254 err = -ENOENT; 283 goto unlock; 255 goto unlock; 284 } 256 } 285 257 286 /* 258 /* 287 * Ensure that if we race with __stop_ 259 * Ensure that if we race with __stop_cpus() the stoppers won't get 288 * queued up in reverse order leading 260 * queued up in reverse order leading to system deadlock. 289 * 261 * 290 * We can't miss stop_cpus_in_progress 262 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 291 * queued a work on cpu1 but not on cp 263 * queued a work on cpu1 but not on cpu2, we hold both locks. 292 * 264 * 293 * It can be falsely true but it is sa 265 * It can be falsely true but it is safe to spin until it is cleared, 294 * queue_stop_cpus_work() does everyth 266 * queue_stop_cpus_work() does everything under preempt_disable(). 295 */ 267 */ 296 if (unlikely(stop_cpus_in_progress)) { 268 if (unlikely(stop_cpus_in_progress)) { 297 err = -EDEADLK; 269 err = -EDEADLK; 298 goto unlock; 270 goto unlock; 299 } 271 } 300 272 301 err = 0; 273 err = 0; 302 __cpu_stop_queue_work(stopper1, work1, 274 __cpu_stop_queue_work(stopper1, work1, &wakeq); 303 __cpu_stop_queue_work(stopper2, work2, 275 __cpu_stop_queue_work(stopper2, work2, &wakeq); 304 276 305 unlock: 277 unlock: 306 raw_spin_unlock(&stopper2->lock); 278 raw_spin_unlock(&stopper2->lock); 307 raw_spin_unlock_irq(&stopper1->lock); 279 raw_spin_unlock_irq(&stopper1->lock); 308 280 309 if (unlikely(err == -EDEADLK)) { 281 if (unlikely(err == -EDEADLK)) { 310 preempt_enable(); 282 preempt_enable(); 311 283 312 while (stop_cpus_in_progress) 284 while (stop_cpus_in_progress) 313 cpu_relax(); 285 cpu_relax(); 314 286 315 goto retry; 287 goto retry; 316 } 288 } 317 289 318 wake_up_q(&wakeq); 290 wake_up_q(&wakeq); 319 preempt_enable(); 291 preempt_enable(); 320 292 321 return err; 293 return err; 322 } 294 } 323 /** 295 /** 324 * stop_two_cpus - stops two cpus 296 * stop_two_cpus - stops two cpus 325 * @cpu1: the cpu to stop 297 * @cpu1: the cpu to stop 326 * @cpu2: the other cpu to stop 298 * @cpu2: the other cpu to stop 327 * @fn: function to execute 299 * @fn: function to execute 328 * @arg: argument to @fn 300 * @arg: argument to @fn 329 * 301 * 330 * Stops both the current and specified CPU an 302 * Stops both the current and specified CPU and runs @fn on one of them. 331 * 303 * 332 * returns when both are completed. 304 * returns when both are completed. 333 */ 305 */ 334 int stop_two_cpus(unsigned int cpu1, unsigned 306 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 335 { 307 { 336 struct cpu_stop_done done; 308 struct cpu_stop_done done; 337 struct cpu_stop_work work1, work2; 309 struct cpu_stop_work work1, work2; 338 struct multi_stop_data msdata; 310 struct multi_stop_data msdata; 339 311 340 msdata = (struct multi_stop_data){ 312 msdata = (struct multi_stop_data){ 341 .fn = fn, 313 .fn = fn, 342 .data = arg, 314 .data = arg, 343 .num_threads = 2, 315 .num_threads = 2, 344 .active_cpus = cpumask_of(cpu1 316 .active_cpus = cpumask_of(cpu1), 345 }; 317 }; 346 318 347 work1 = work2 = (struct cpu_stop_work) 319 work1 = work2 = (struct cpu_stop_work){ 348 .fn = multi_cpu_stop, 320 .fn = multi_cpu_stop, 349 .arg = &msdata, 321 .arg = &msdata, 350 .done = &done, !! 322 .done = &done 351 .caller = _RET_IP_, << 352 }; 323 }; 353 324 354 cpu_stop_init_done(&done, 2); 325 cpu_stop_init_done(&done, 2); 355 set_state(&msdata, MULTI_STOP_PREPARE) 326 set_state(&msdata, MULTI_STOP_PREPARE); 356 327 357 if (cpu1 > cpu2) 328 if (cpu1 > cpu2) 358 swap(cpu1, cpu2); 329 swap(cpu1, cpu2); 359 if (cpu_stop_queue_two_works(cpu1, &wo 330 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 360 return -ENOENT; 331 return -ENOENT; 361 332 362 wait_for_completion(&done.completion); 333 wait_for_completion(&done.completion); 363 return done.ret; 334 return done.ret; 364 } 335 } 365 336 366 /** 337 /** 367 * stop_one_cpu_nowait - stop a cpu but don't 338 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 368 * @cpu: cpu to stop 339 * @cpu: cpu to stop 369 * @fn: function to execute 340 * @fn: function to execute 370 * @arg: argument to @fn 341 * @arg: argument to @fn 371 * @work_buf: pointer to cpu_stop_work structu 342 * @work_buf: pointer to cpu_stop_work structure 372 * 343 * 373 * Similar to stop_one_cpu() but doesn't wait 344 * Similar to stop_one_cpu() but doesn't wait for completion. The 374 * caller is responsible for ensuring @work_bu 345 * caller is responsible for ensuring @work_buf is currently unused 375 * and will remain untouched until stopper sta 346 * and will remain untouched until stopper starts executing @fn. 376 * 347 * 377 * CONTEXT: 348 * CONTEXT: 378 * Don't care. 349 * Don't care. 379 * 350 * 380 * RETURNS: 351 * RETURNS: 381 * true if cpu_stop_work was queued successful 352 * true if cpu_stop_work was queued successfully and @fn will be called, 382 * false otherwise. 353 * false otherwise. 383 */ 354 */ 384 bool stop_one_cpu_nowait(unsigned int cpu, cpu 355 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 385 struct cpu_stop_work * 356 struct cpu_stop_work *work_buf) 386 { 357 { 387 *work_buf = (struct cpu_stop_work){ .f !! 358 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 388 return cpu_stop_queue_work(cpu, work_b 359 return cpu_stop_queue_work(cpu, work_buf); 389 } 360 } 390 361 391 static bool queue_stop_cpus_work(const struct 362 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 392 cpu_stop_fn_t 363 cpu_stop_fn_t fn, void *arg, 393 struct cpu_st 364 struct cpu_stop_done *done) 394 { 365 { 395 struct cpu_stop_work *work; 366 struct cpu_stop_work *work; 396 unsigned int cpu; 367 unsigned int cpu; 397 bool queued = false; 368 bool queued = false; 398 369 399 /* 370 /* 400 * Disable preemption while queueing t 371 * Disable preemption while queueing to avoid getting 401 * preempted by a stopper which might 372 * preempted by a stopper which might wait for other stoppers 402 * to enter @fn which can lead to dead 373 * to enter @fn which can lead to deadlock. 403 */ 374 */ 404 preempt_disable(); 375 preempt_disable(); 405 stop_cpus_in_progress = true; 376 stop_cpus_in_progress = true; 406 barrier(); << 407 for_each_cpu(cpu, cpumask) { 377 for_each_cpu(cpu, cpumask) { 408 work = &per_cpu(cpu_stopper.st 378 work = &per_cpu(cpu_stopper.stop_work, cpu); 409 work->fn = fn; 379 work->fn = fn; 410 work->arg = arg; 380 work->arg = arg; 411 work->done = done; 381 work->done = done; 412 work->caller = _RET_IP_; << 413 if (cpu_stop_queue_work(cpu, w 382 if (cpu_stop_queue_work(cpu, work)) 414 queued = true; 383 queued = true; 415 } 384 } 416 barrier(); << 417 stop_cpus_in_progress = false; 385 stop_cpus_in_progress = false; 418 preempt_enable(); 386 preempt_enable(); 419 387 420 return queued; 388 return queued; 421 } 389 } 422 390 423 static int __stop_cpus(const struct cpumask *c 391 static int __stop_cpus(const struct cpumask *cpumask, 424 cpu_stop_fn_t fn, void 392 cpu_stop_fn_t fn, void *arg) 425 { 393 { 426 struct cpu_stop_done done; 394 struct cpu_stop_done done; 427 395 428 cpu_stop_init_done(&done, cpumask_weig 396 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 429 if (!queue_stop_cpus_work(cpumask, fn, 397 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 430 return -ENOENT; 398 return -ENOENT; 431 wait_for_completion(&done.completion); 399 wait_for_completion(&done.completion); 432 return done.ret; 400 return done.ret; 433 } 401 } 434 402 435 /** 403 /** 436 * stop_cpus - stop multiple cpus 404 * stop_cpus - stop multiple cpus 437 * @cpumask: cpus to stop 405 * @cpumask: cpus to stop 438 * @fn: function to execute 406 * @fn: function to execute 439 * @arg: argument to @fn 407 * @arg: argument to @fn 440 * 408 * 441 * Execute @fn(@arg) on online cpus in @cpumas 409 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 442 * @fn is run in a process context with the hi 410 * @fn is run in a process context with the highest priority 443 * preempting any task on the cpu and monopoli 411 * preempting any task on the cpu and monopolizing it. This function 444 * returns after all executions are complete. 412 * returns after all executions are complete. 445 * 413 * 446 * This function doesn't guarantee the cpus in 414 * This function doesn't guarantee the cpus in @cpumask stay online 447 * till @fn completes. If some cpus go down i 415 * till @fn completes. If some cpus go down in the middle, execution 448 * on the cpu may happen partially or fully on 416 * on the cpu may happen partially or fully on different cpus. @fn 449 * should either be ready for that or the call 417 * should either be ready for that or the caller should ensure that 450 * the cpus stay online until this function co 418 * the cpus stay online until this function completes. 451 * 419 * 452 * All stop_cpus() calls are serialized making 420 * All stop_cpus() calls are serialized making it safe for @fn to wait 453 * for all cpus to start executing it. 421 * for all cpus to start executing it. 454 * 422 * 455 * CONTEXT: 423 * CONTEXT: 456 * Might sleep. 424 * Might sleep. 457 * 425 * 458 * RETURNS: 426 * RETURNS: 459 * -ENOENT if @fn(@arg) was not executed at al 427 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 460 * @cpumask were offline; otherwise, 0 if all 428 * @cpumask were offline; otherwise, 0 if all executions of @fn 461 * returned 0, any non zero return value if an 429 * returned 0, any non zero return value if any returned non zero. 462 */ 430 */ 463 static int stop_cpus(const struct cpumask *cpu !! 431 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 464 { 432 { 465 int ret; 433 int ret; 466 434 467 /* static works are used, process one 435 /* static works are used, process one request at a time */ 468 mutex_lock(&stop_cpus_mutex); 436 mutex_lock(&stop_cpus_mutex); 469 ret = __stop_cpus(cpumask, fn, arg); 437 ret = __stop_cpus(cpumask, fn, arg); 470 mutex_unlock(&stop_cpus_mutex); 438 mutex_unlock(&stop_cpus_mutex); 471 return ret; 439 return ret; 472 } 440 } 473 441 >> 442 /** >> 443 * try_stop_cpus - try to stop multiple cpus >> 444 * @cpumask: cpus to stop >> 445 * @fn: function to execute >> 446 * @arg: argument to @fn >> 447 * >> 448 * Identical to stop_cpus() except that it fails with -EAGAIN if >> 449 * someone else is already using the facility. >> 450 * >> 451 * CONTEXT: >> 452 * Might sleep. >> 453 * >> 454 * RETURNS: >> 455 * -EAGAIN if someone else is already stopping cpus, -ENOENT if >> 456 * @fn(@arg) was not executed at all because all cpus in @cpumask were >> 457 * offline; otherwise, 0 if all executions of @fn returned 0, any non >> 458 * zero return value if any returned non zero. >> 459 */ >> 460 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) >> 461 { >> 462 int ret; >> 463 >> 464 /* static works are used, process one request at a time */ >> 465 if (!mutex_trylock(&stop_cpus_mutex)) >> 466 return -EAGAIN; >> 467 ret = __stop_cpus(cpumask, fn, arg); >> 468 mutex_unlock(&stop_cpus_mutex); >> 469 return ret; >> 470 } >> 471 474 static int cpu_stop_should_run(unsigned int cp 472 static int cpu_stop_should_run(unsigned int cpu) 475 { 473 { 476 struct cpu_stopper *stopper = &per_cpu 474 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 477 unsigned long flags; 475 unsigned long flags; 478 int run; 476 int run; 479 477 480 raw_spin_lock_irqsave(&stopper->lock, 478 raw_spin_lock_irqsave(&stopper->lock, flags); 481 run = !list_empty(&stopper->works); 479 run = !list_empty(&stopper->works); 482 raw_spin_unlock_irqrestore(&stopper->l 480 raw_spin_unlock_irqrestore(&stopper->lock, flags); 483 return run; 481 return run; 484 } 482 } 485 483 486 static void cpu_stopper_thread(unsigned int cp 484 static void cpu_stopper_thread(unsigned int cpu) 487 { 485 { 488 struct cpu_stopper *stopper = &per_cpu 486 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 489 struct cpu_stop_work *work; 487 struct cpu_stop_work *work; 490 488 491 repeat: 489 repeat: 492 work = NULL; 490 work = NULL; 493 raw_spin_lock_irq(&stopper->lock); 491 raw_spin_lock_irq(&stopper->lock); 494 if (!list_empty(&stopper->works)) { 492 if (!list_empty(&stopper->works)) { 495 work = list_first_entry(&stopp 493 work = list_first_entry(&stopper->works, 496 struct 494 struct cpu_stop_work, list); 497 list_del_init(&work->list); 495 list_del_init(&work->list); 498 } 496 } 499 raw_spin_unlock_irq(&stopper->lock); 497 raw_spin_unlock_irq(&stopper->lock); 500 498 501 if (work) { 499 if (work) { 502 cpu_stop_fn_t fn = work->fn; 500 cpu_stop_fn_t fn = work->fn; 503 void *arg = work->arg; 501 void *arg = work->arg; 504 struct cpu_stop_done *done = w 502 struct cpu_stop_done *done = work->done; 505 int ret; 503 int ret; 506 504 507 /* cpu stop callbacks must not 505 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 508 stopper->caller = work->caller << 509 stopper->fn = fn; << 510 preempt_count_inc(); 506 preempt_count_inc(); 511 ret = fn(arg); 507 ret = fn(arg); 512 if (done) { 508 if (done) { 513 if (ret) 509 if (ret) 514 done->ret = re 510 done->ret = ret; 515 cpu_stop_signal_done(d 511 cpu_stop_signal_done(done); 516 } 512 } 517 preempt_count_dec(); 513 preempt_count_dec(); 518 stopper->fn = NULL; << 519 stopper->caller = 0; << 520 WARN_ONCE(preempt_count(), 514 WARN_ONCE(preempt_count(), 521 "cpu_stop: %ps(%p) l 515 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 522 goto repeat; 516 goto repeat; 523 } 517 } 524 } 518 } 525 519 526 void stop_machine_park(int cpu) 520 void stop_machine_park(int cpu) 527 { 521 { 528 struct cpu_stopper *stopper = &per_cpu 522 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 529 /* 523 /* 530 * Lockless. cpu_stopper_thread() will 524 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 531 * the pending works before it parks, 525 * the pending works before it parks, until then it is fine to queue 532 * the new works. 526 * the new works. 533 */ 527 */ 534 stopper->enabled = false; 528 stopper->enabled = false; 535 kthread_park(stopper->thread); 529 kthread_park(stopper->thread); 536 } 530 } 537 531 >> 532 extern void sched_set_stop_task(int cpu, struct task_struct *stop); >> 533 538 static void cpu_stop_create(unsigned int cpu) 534 static void cpu_stop_create(unsigned int cpu) 539 { 535 { 540 sched_set_stop_task(cpu, per_cpu(cpu_s 536 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 541 } 537 } 542 538 543 static void cpu_stop_park(unsigned int cpu) 539 static void cpu_stop_park(unsigned int cpu) 544 { 540 { 545 struct cpu_stopper *stopper = &per_cpu 541 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 546 542 547 WARN_ON(!list_empty(&stopper->works)); 543 WARN_ON(!list_empty(&stopper->works)); 548 } 544 } 549 545 550 void stop_machine_unpark(int cpu) 546 void stop_machine_unpark(int cpu) 551 { 547 { 552 struct cpu_stopper *stopper = &per_cpu 548 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 553 549 554 stopper->enabled = true; 550 stopper->enabled = true; 555 kthread_unpark(stopper->thread); 551 kthread_unpark(stopper->thread); 556 } 552 } 557 553 558 static struct smp_hotplug_thread cpu_stop_thre 554 static struct smp_hotplug_thread cpu_stop_threads = { 559 .store = &cpu_stopper 555 .store = &cpu_stopper.thread, 560 .thread_should_run = cpu_stop_sho 556 .thread_should_run = cpu_stop_should_run, 561 .thread_fn = cpu_stopper_ 557 .thread_fn = cpu_stopper_thread, 562 .thread_comm = "migration/% 558 .thread_comm = "migration/%u", 563 .create = cpu_stop_cre 559 .create = cpu_stop_create, 564 .park = cpu_stop_par 560 .park = cpu_stop_park, 565 .selfparking = true, 561 .selfparking = true, 566 }; 562 }; 567 563 568 static int __init cpu_stop_init(void) 564 static int __init cpu_stop_init(void) 569 { 565 { 570 unsigned int cpu; 566 unsigned int cpu; 571 567 572 for_each_possible_cpu(cpu) { 568 for_each_possible_cpu(cpu) { 573 struct cpu_stopper *stopper = 569 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 574 570 575 raw_spin_lock_init(&stopper->l 571 raw_spin_lock_init(&stopper->lock); 576 INIT_LIST_HEAD(&stopper->works 572 INIT_LIST_HEAD(&stopper->works); 577 } 573 } 578 574 579 BUG_ON(smpboot_register_percpu_thread( 575 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 580 stop_machine_unpark(raw_smp_processor_ 576 stop_machine_unpark(raw_smp_processor_id()); 581 stop_machine_initialized = true; 577 stop_machine_initialized = true; 582 return 0; 578 return 0; 583 } 579 } 584 early_initcall(cpu_stop_init); 580 early_initcall(cpu_stop_init); 585 581 586 int stop_machine_cpuslocked(cpu_stop_fn_t fn, 582 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 587 const struct cpuma 583 const struct cpumask *cpus) 588 { 584 { 589 struct multi_stop_data msdata = { 585 struct multi_stop_data msdata = { 590 .fn = fn, 586 .fn = fn, 591 .data = data, 587 .data = data, 592 .num_threads = num_online_cpus 588 .num_threads = num_online_cpus(), 593 .active_cpus = cpus, 589 .active_cpus = cpus, 594 }; 590 }; 595 591 596 lockdep_assert_cpus_held(); 592 lockdep_assert_cpus_held(); 597 593 598 if (!stop_machine_initialized) { 594 if (!stop_machine_initialized) { 599 /* 595 /* 600 * Handle the case where stop_ 596 * Handle the case where stop_machine() is called 601 * early in boot before stop_m 597 * early in boot before stop_machine() has been 602 * initialized. 598 * initialized. 603 */ 599 */ 604 unsigned long flags; 600 unsigned long flags; 605 int ret; 601 int ret; 606 602 607 WARN_ON_ONCE(msdata.num_thread 603 WARN_ON_ONCE(msdata.num_threads != 1); 608 604 609 local_irq_save(flags); 605 local_irq_save(flags); 610 hard_irq_disable(); 606 hard_irq_disable(); 611 ret = (*fn)(data); 607 ret = (*fn)(data); 612 local_irq_restore(flags); 608 local_irq_restore(flags); 613 609 614 return ret; 610 return ret; 615 } 611 } 616 612 617 /* Set the initial state and stop all 613 /* Set the initial state and stop all online cpus. */ 618 set_state(&msdata, MULTI_STOP_PREPARE) 614 set_state(&msdata, MULTI_STOP_PREPARE); 619 return stop_cpus(cpu_online_mask, mult 615 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 620 } 616 } 621 617 622 int stop_machine(cpu_stop_fn_t fn, void *data, 618 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 623 { 619 { 624 int ret; 620 int ret; 625 621 626 /* No CPUs can come up or down during 622 /* No CPUs can come up or down during this. */ 627 cpus_read_lock(); 623 cpus_read_lock(); 628 ret = stop_machine_cpuslocked(fn, data 624 ret = stop_machine_cpuslocked(fn, data, cpus); 629 cpus_read_unlock(); 625 cpus_read_unlock(); 630 return ret; 626 return ret; 631 } 627 } 632 EXPORT_SYMBOL_GPL(stop_machine); 628 EXPORT_SYMBOL_GPL(stop_machine); 633 << 634 #ifdef CONFIG_SCHED_SMT << 635 int stop_core_cpuslocked(unsigned int cpu, cpu << 636 { << 637 const struct cpumask *smt_mask = cpu_s << 638 << 639 struct multi_stop_data msdata = { << 640 .fn = fn, << 641 .data = data, << 642 .num_threads = cpumask_weight( << 643 .active_cpus = smt_mask, << 644 }; << 645 << 646 lockdep_assert_cpus_held(); << 647 << 648 /* Set the initial state and stop all << 649 set_state(&msdata, MULTI_STOP_PREPARE) << 650 return stop_cpus(smt_mask, multi_cpu_s << 651 } << 652 EXPORT_SYMBOL_GPL(stop_core_cpuslocked); << 653 #endif << 654 629 655 /** 630 /** 656 * stop_machine_from_inactive_cpu - stop_machi 631 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 657 * @fn: the function to run 632 * @fn: the function to run 658 * @data: the data ptr for the @fn() 633 * @data: the data ptr for the @fn() 659 * @cpus: the cpus to run the @fn() on (NULL = 634 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 660 * 635 * 661 * This is identical to stop_machine() but can 636 * This is identical to stop_machine() but can be called from a CPU which 662 * is not active. The local CPU is in the pro 637 * is not active. The local CPU is in the process of hotplug (so no other 663 * CPU hotplug can start) and not marked activ 638 * CPU hotplug can start) and not marked active and doesn't have enough 664 * context to sleep. 639 * context to sleep. 665 * 640 * 666 * This function provides stop_machine() funct 641 * This function provides stop_machine() functionality for such state by 667 * using busy-wait for synchronization and exe 642 * using busy-wait for synchronization and executing @fn directly for local 668 * CPU. 643 * CPU. 669 * 644 * 670 * CONTEXT: 645 * CONTEXT: 671 * Local CPU is inactive. Temporarily stops a 646 * Local CPU is inactive. Temporarily stops all active CPUs. 672 * 647 * 673 * RETURNS: 648 * RETURNS: 674 * 0 if all executions of @fn returned 0, any 649 * 0 if all executions of @fn returned 0, any non zero return value if any 675 * returned non zero. 650 * returned non zero. 676 */ 651 */ 677 int stop_machine_from_inactive_cpu(cpu_stop_fn 652 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 678 const struct 653 const struct cpumask *cpus) 679 { 654 { 680 struct multi_stop_data msdata = { .fn 655 struct multi_stop_data msdata = { .fn = fn, .data = data, 681 .a 656 .active_cpus = cpus }; 682 struct cpu_stop_done done; 657 struct cpu_stop_done done; 683 int ret; 658 int ret; 684 659 685 /* Local CPU must be inactive and CPU 660 /* Local CPU must be inactive and CPU hotplug in progress. */ 686 BUG_ON(cpu_active(raw_smp_processor_id 661 BUG_ON(cpu_active(raw_smp_processor_id())); 687 msdata.num_threads = num_active_cpus() 662 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 688 663 689 /* No proper task established and can' 664 /* No proper task established and can't sleep - busy wait for lock. */ 690 while (!mutex_trylock(&stop_cpus_mutex 665 while (!mutex_trylock(&stop_cpus_mutex)) 691 cpu_relax(); 666 cpu_relax(); 692 667 693 /* Schedule work on other CPUs and exe 668 /* Schedule work on other CPUs and execute directly for local CPU */ 694 set_state(&msdata, MULTI_STOP_PREPARE) 669 set_state(&msdata, MULTI_STOP_PREPARE); 695 cpu_stop_init_done(&done, num_active_c 670 cpu_stop_init_done(&done, num_active_cpus()); 696 queue_stop_cpus_work(cpu_active_mask, 671 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 697 &done); 672 &done); 698 ret = multi_cpu_stop(&msdata); 673 ret = multi_cpu_stop(&msdata); 699 674 700 /* Busy wait for completion. */ 675 /* Busy wait for completion. */ 701 while (!completion_done(&done.completi 676 while (!completion_done(&done.completion)) 702 cpu_relax(); 677 cpu_relax(); 703 678 704 mutex_unlock(&stop_cpus_mutex); 679 mutex_unlock(&stop_cpus_mutex); 705 return ret ?: done.ret; 680 return ret ?: done.ret; 706 } 681 } 707 682
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.