1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * kernel/stop_machine.c 3 * kernel/stop_machine.c 4 * 4 * 5 * Copyright (C) 2008, 2005 IBM Corporatio 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell 6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Pro 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@ 8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 9 */ 9 */ 10 #include <linux/compiler.h> 10 #include <linux/compiler.h> 11 #include <linux/completion.h> 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 24 #include <linux/sched/wake_q.h> 25 25 26 /* 26 /* 27 * Structure to determine completion condition 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 28 * be shared by works on different cpus. 29 */ 29 */ 30 struct cpu_stop_done { 30 struct cpu_stop_done { 31 atomic_t nr_todo; 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; 32 int ret; /* collected return value */ 33 struct completion completion; 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 34 }; 35 35 36 /* the actual stopper, one per every possible 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 37 struct cpu_stopper { 38 struct task_struct *thread; 38 struct task_struct *thread; 39 39 40 raw_spinlock_t lock; 40 raw_spinlock_t lock; 41 bool enabled; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; 42 struct list_head works; /* list of pending works */ 43 43 44 struct cpu_stop_work stop_work; 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 unsigned long caller; << 46 cpu_stop_fn_t fn; << 47 }; 45 }; 48 46 49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_ 47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 50 static bool stop_machine_initialized = false; 48 static bool stop_machine_initialized = false; 51 49 52 void print_stop_info(const char *log_lvl, stru << 53 { << 54 /* << 55 * If @task is a stopper task, it cann << 56 * stable. << 57 */ << 58 struct cpu_stopper *stopper = per_cpu_ << 59 << 60 if (task != stopper->thread) << 61 return; << 62 << 63 printk("%sStopper: %pS <- %pS\n", log_ << 64 } << 65 << 66 /* static data for stop_cpus */ 50 /* static data for stop_cpus */ 67 static DEFINE_MUTEX(stop_cpus_mutex); 51 static DEFINE_MUTEX(stop_cpus_mutex); 68 static bool stop_cpus_in_progress; 52 static bool stop_cpus_in_progress; 69 53 70 static void cpu_stop_init_done(struct cpu_stop 54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 71 { 55 { 72 memset(done, 0, sizeof(*done)); 56 memset(done, 0, sizeof(*done)); 73 atomic_set(&done->nr_todo, nr_todo); 57 atomic_set(&done->nr_todo, nr_todo); 74 init_completion(&done->completion); 58 init_completion(&done->completion); 75 } 59 } 76 60 77 /* signal completion unless @done is NULL */ 61 /* signal completion unless @done is NULL */ 78 static void cpu_stop_signal_done(struct cpu_st 62 static void cpu_stop_signal_done(struct cpu_stop_done *done) 79 { 63 { 80 if (atomic_dec_and_test(&done->nr_todo 64 if (atomic_dec_and_test(&done->nr_todo)) 81 complete(&done->completion); 65 complete(&done->completion); 82 } 66 } 83 67 84 static void __cpu_stop_queue_work(struct cpu_s 68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 85 struct 69 struct cpu_stop_work *work, 86 struct 70 struct wake_q_head *wakeq) 87 { 71 { 88 list_add_tail(&work->list, &stopper->w 72 list_add_tail(&work->list, &stopper->works); 89 wake_q_add(wakeq, stopper->thread); 73 wake_q_add(wakeq, stopper->thread); 90 } 74 } 91 75 92 /* queue @work to @stopper. if offline, @work 76 /* queue @work to @stopper. if offline, @work is completed immediately */ 93 static bool cpu_stop_queue_work(unsigned int c 77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 94 { 78 { 95 struct cpu_stopper *stopper = &per_cpu 79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 96 DEFINE_WAKE_Q(wakeq); 80 DEFINE_WAKE_Q(wakeq); 97 unsigned long flags; 81 unsigned long flags; 98 bool enabled; 82 bool enabled; 99 83 100 preempt_disable(); 84 preempt_disable(); 101 raw_spin_lock_irqsave(&stopper->lock, 85 raw_spin_lock_irqsave(&stopper->lock, flags); 102 enabled = stopper->enabled; 86 enabled = stopper->enabled; 103 if (enabled) 87 if (enabled) 104 __cpu_stop_queue_work(stopper, 88 __cpu_stop_queue_work(stopper, work, &wakeq); 105 else if (work->done) 89 else if (work->done) 106 cpu_stop_signal_done(work->don 90 cpu_stop_signal_done(work->done); 107 raw_spin_unlock_irqrestore(&stopper->l 91 raw_spin_unlock_irqrestore(&stopper->lock, flags); 108 92 109 wake_up_q(&wakeq); 93 wake_up_q(&wakeq); 110 preempt_enable(); 94 preempt_enable(); 111 95 112 return enabled; 96 return enabled; 113 } 97 } 114 98 115 /** 99 /** 116 * stop_one_cpu - stop a cpu 100 * stop_one_cpu - stop a cpu 117 * @cpu: cpu to stop 101 * @cpu: cpu to stop 118 * @fn: function to execute 102 * @fn: function to execute 119 * @arg: argument to @fn 103 * @arg: argument to @fn 120 * 104 * 121 * Execute @fn(@arg) on @cpu. @fn is run in a 105 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 122 * the highest priority preempting any task on 106 * the highest priority preempting any task on the cpu and 123 * monopolizing it. This function returns aft 107 * monopolizing it. This function returns after the execution is 124 * complete. 108 * complete. 125 * 109 * 126 * This function doesn't guarantee @cpu stays 110 * This function doesn't guarantee @cpu stays online till @fn 127 * completes. If @cpu goes down in the middle 111 * completes. If @cpu goes down in the middle, execution may happen 128 * partially or fully on different cpus. @fn 112 * partially or fully on different cpus. @fn should either be ready 129 * for that or the caller should ensure that @ 113 * for that or the caller should ensure that @cpu stays online until 130 * this function completes. 114 * this function completes. 131 * 115 * 132 * CONTEXT: 116 * CONTEXT: 133 * Might sleep. 117 * Might sleep. 134 * 118 * 135 * RETURNS: 119 * RETURNS: 136 * -ENOENT if @fn(@arg) was not executed becau 120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 137 * otherwise, the return value of @fn. 121 * otherwise, the return value of @fn. 138 */ 122 */ 139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn 123 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 140 { 124 { 141 struct cpu_stop_done done; 125 struct cpu_stop_done done; 142 struct cpu_stop_work work = { .fn = fn !! 126 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 143 127 144 cpu_stop_init_done(&done, 1); 128 cpu_stop_init_done(&done, 1); 145 if (!cpu_stop_queue_work(cpu, &work)) 129 if (!cpu_stop_queue_work(cpu, &work)) 146 return -ENOENT; 130 return -ENOENT; 147 /* 131 /* 148 * In case @cpu == smp_proccessor_id() 132 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 149 * cycle by doing a preemption: 133 * cycle by doing a preemption: 150 */ 134 */ 151 cond_resched(); 135 cond_resched(); 152 wait_for_completion(&done.completion); 136 wait_for_completion(&done.completion); 153 return done.ret; 137 return done.ret; 154 } 138 } 155 139 156 /* This controls the threads on each CPU. */ 140 /* This controls the threads on each CPU. */ 157 enum multi_stop_state { 141 enum multi_stop_state { 158 /* Dummy starting state for thread. */ 142 /* Dummy starting state for thread. */ 159 MULTI_STOP_NONE, 143 MULTI_STOP_NONE, 160 /* Awaiting everyone to be scheduled. 144 /* Awaiting everyone to be scheduled. */ 161 MULTI_STOP_PREPARE, 145 MULTI_STOP_PREPARE, 162 /* Disable interrupts. */ 146 /* Disable interrupts. */ 163 MULTI_STOP_DISABLE_IRQ, 147 MULTI_STOP_DISABLE_IRQ, 164 /* Run the function */ 148 /* Run the function */ 165 MULTI_STOP_RUN, 149 MULTI_STOP_RUN, 166 /* Exit */ 150 /* Exit */ 167 MULTI_STOP_EXIT, 151 MULTI_STOP_EXIT, 168 }; 152 }; 169 153 170 struct multi_stop_data { 154 struct multi_stop_data { 171 cpu_stop_fn_t fn; 155 cpu_stop_fn_t fn; 172 void *data; 156 void *data; 173 /* Like num_online_cpus(), but hotplug 157 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 174 unsigned int num_threads; 158 unsigned int num_threads; 175 const struct cpumask *active_cpus; 159 const struct cpumask *active_cpus; 176 160 177 enum multi_stop_state state; 161 enum multi_stop_state state; 178 atomic_t thread_ack; 162 atomic_t thread_ack; 179 }; 163 }; 180 164 181 static void set_state(struct multi_stop_data * 165 static void set_state(struct multi_stop_data *msdata, 182 enum multi_stop_state ne 166 enum multi_stop_state newstate) 183 { 167 { 184 /* Reset ack counter. */ 168 /* Reset ack counter. */ 185 atomic_set(&msdata->thread_ack, msdata 169 atomic_set(&msdata->thread_ack, msdata->num_threads); 186 smp_wmb(); 170 smp_wmb(); 187 WRITE_ONCE(msdata->state, newstate); 171 WRITE_ONCE(msdata->state, newstate); 188 } 172 } 189 173 190 /* Last one to ack a state moves to the next s 174 /* Last one to ack a state moves to the next state. */ 191 static void ack_state(struct multi_stop_data * 175 static void ack_state(struct multi_stop_data *msdata) 192 { 176 { 193 if (atomic_dec_and_test(&msdata->threa 177 if (atomic_dec_and_test(&msdata->thread_ack)) 194 set_state(msdata, msdata->stat 178 set_state(msdata, msdata->state + 1); 195 } 179 } 196 180 197 notrace void __weak stop_machine_yield(const s !! 181 void __weak stop_machine_yield(const struct cpumask *cpumask) 198 { 182 { 199 cpu_relax(); 183 cpu_relax(); 200 } 184 } 201 185 202 /* This is the cpu_stop function which stops t 186 /* This is the cpu_stop function which stops the CPU. */ 203 static int multi_cpu_stop(void *data) 187 static int multi_cpu_stop(void *data) 204 { 188 { 205 struct multi_stop_data *msdata = data; 189 struct multi_stop_data *msdata = data; 206 enum multi_stop_state newstate, cursta 190 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE; 207 int cpu = smp_processor_id(), err = 0; 191 int cpu = smp_processor_id(), err = 0; 208 const struct cpumask *cpumask; 192 const struct cpumask *cpumask; 209 unsigned long flags; 193 unsigned long flags; 210 bool is_active; 194 bool is_active; 211 195 212 /* 196 /* 213 * When called from stop_machine_from_ 197 * When called from stop_machine_from_inactive_cpu(), irq might 214 * already be disabled. Save the stat 198 * already be disabled. Save the state and restore it on exit. 215 */ 199 */ 216 local_save_flags(flags); 200 local_save_flags(flags); 217 201 218 if (!msdata->active_cpus) { 202 if (!msdata->active_cpus) { 219 cpumask = cpu_online_mask; 203 cpumask = cpu_online_mask; 220 is_active = cpu == cpumask_fir 204 is_active = cpu == cpumask_first(cpumask); 221 } else { 205 } else { 222 cpumask = msdata->active_cpus; 206 cpumask = msdata->active_cpus; 223 is_active = cpumask_test_cpu(c 207 is_active = cpumask_test_cpu(cpu, cpumask); 224 } 208 } 225 209 226 /* Simple state machine */ 210 /* Simple state machine */ 227 do { 211 do { 228 /* Chill out and ensure we re- 212 /* Chill out and ensure we re-read multi_stop_state. */ 229 stop_machine_yield(cpumask); 213 stop_machine_yield(cpumask); 230 newstate = READ_ONCE(msdata->s 214 newstate = READ_ONCE(msdata->state); 231 if (newstate != curstate) { 215 if (newstate != curstate) { 232 curstate = newstate; 216 curstate = newstate; 233 switch (curstate) { 217 switch (curstate) { 234 case MULTI_STOP_DISABL 218 case MULTI_STOP_DISABLE_IRQ: 235 local_irq_disa 219 local_irq_disable(); 236 hard_irq_disab 220 hard_irq_disable(); 237 break; 221 break; 238 case MULTI_STOP_RUN: 222 case MULTI_STOP_RUN: 239 if (is_active) 223 if (is_active) 240 err = 224 err = msdata->fn(msdata->data); 241 break; 225 break; 242 default: 226 default: 243 break; 227 break; 244 } 228 } 245 ack_state(msdata); 229 ack_state(msdata); 246 } else if (curstate > MULTI_ST 230 } else if (curstate > MULTI_STOP_PREPARE) { 247 /* 231 /* 248 * At this stage all o 232 * At this stage all other CPUs we depend on must spin 249 * in the same loop. A 233 * in the same loop. Any reason for hard-lockup should 250 * be detected and rep 234 * be detected and reported on their side. 251 */ 235 */ 252 touch_nmi_watchdog(); 236 touch_nmi_watchdog(); 253 } 237 } 254 rcu_momentary_dyntick_idle(); 238 rcu_momentary_dyntick_idle(); 255 } while (curstate != MULTI_STOP_EXIT); 239 } while (curstate != MULTI_STOP_EXIT); 256 240 257 local_irq_restore(flags); 241 local_irq_restore(flags); 258 return err; 242 return err; 259 } 243 } 260 244 261 static int cpu_stop_queue_two_works(int cpu1, 245 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 262 int cpu2, 246 int cpu2, struct cpu_stop_work *work2) 263 { 247 { 264 struct cpu_stopper *stopper1 = per_cpu 248 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 265 struct cpu_stopper *stopper2 = per_cpu 249 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 266 DEFINE_WAKE_Q(wakeq); 250 DEFINE_WAKE_Q(wakeq); 267 int err; 251 int err; 268 252 269 retry: 253 retry: 270 /* 254 /* 271 * The waking up of stopper threads ha 255 * The waking up of stopper threads has to happen in the same 272 * scheduling context as the queueing. 256 * scheduling context as the queueing. Otherwise, there is a 273 * possibility of one of the above sto 257 * possibility of one of the above stoppers being woken up by another 274 * CPU, and preempting us. This will c 258 * CPU, and preempting us. This will cause us to not wake up the other 275 * stopper forever. 259 * stopper forever. 276 */ 260 */ 277 preempt_disable(); 261 preempt_disable(); 278 raw_spin_lock_irq(&stopper1->lock); 262 raw_spin_lock_irq(&stopper1->lock); 279 raw_spin_lock_nested(&stopper2->lock, 263 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 280 264 281 if (!stopper1->enabled || !stopper2->e 265 if (!stopper1->enabled || !stopper2->enabled) { 282 err = -ENOENT; 266 err = -ENOENT; 283 goto unlock; 267 goto unlock; 284 } 268 } 285 269 286 /* 270 /* 287 * Ensure that if we race with __stop_ 271 * Ensure that if we race with __stop_cpus() the stoppers won't get 288 * queued up in reverse order leading 272 * queued up in reverse order leading to system deadlock. 289 * 273 * 290 * We can't miss stop_cpus_in_progress 274 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 291 * queued a work on cpu1 but not on cp 275 * queued a work on cpu1 but not on cpu2, we hold both locks. 292 * 276 * 293 * It can be falsely true but it is sa 277 * It can be falsely true but it is safe to spin until it is cleared, 294 * queue_stop_cpus_work() does everyth 278 * queue_stop_cpus_work() does everything under preempt_disable(). 295 */ 279 */ 296 if (unlikely(stop_cpus_in_progress)) { 280 if (unlikely(stop_cpus_in_progress)) { 297 err = -EDEADLK; 281 err = -EDEADLK; 298 goto unlock; 282 goto unlock; 299 } 283 } 300 284 301 err = 0; 285 err = 0; 302 __cpu_stop_queue_work(stopper1, work1, 286 __cpu_stop_queue_work(stopper1, work1, &wakeq); 303 __cpu_stop_queue_work(stopper2, work2, 287 __cpu_stop_queue_work(stopper2, work2, &wakeq); 304 288 305 unlock: 289 unlock: 306 raw_spin_unlock(&stopper2->lock); 290 raw_spin_unlock(&stopper2->lock); 307 raw_spin_unlock_irq(&stopper1->lock); 291 raw_spin_unlock_irq(&stopper1->lock); 308 292 309 if (unlikely(err == -EDEADLK)) { 293 if (unlikely(err == -EDEADLK)) { 310 preempt_enable(); 294 preempt_enable(); 311 295 312 while (stop_cpus_in_progress) 296 while (stop_cpus_in_progress) 313 cpu_relax(); 297 cpu_relax(); 314 298 315 goto retry; 299 goto retry; 316 } 300 } 317 301 318 wake_up_q(&wakeq); 302 wake_up_q(&wakeq); 319 preempt_enable(); 303 preempt_enable(); 320 304 321 return err; 305 return err; 322 } 306 } 323 /** 307 /** 324 * stop_two_cpus - stops two cpus 308 * stop_two_cpus - stops two cpus 325 * @cpu1: the cpu to stop 309 * @cpu1: the cpu to stop 326 * @cpu2: the other cpu to stop 310 * @cpu2: the other cpu to stop 327 * @fn: function to execute 311 * @fn: function to execute 328 * @arg: argument to @fn 312 * @arg: argument to @fn 329 * 313 * 330 * Stops both the current and specified CPU an 314 * Stops both the current and specified CPU and runs @fn on one of them. 331 * 315 * 332 * returns when both are completed. 316 * returns when both are completed. 333 */ 317 */ 334 int stop_two_cpus(unsigned int cpu1, unsigned 318 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 335 { 319 { 336 struct cpu_stop_done done; 320 struct cpu_stop_done done; 337 struct cpu_stop_work work1, work2; 321 struct cpu_stop_work work1, work2; 338 struct multi_stop_data msdata; 322 struct multi_stop_data msdata; 339 323 340 msdata = (struct multi_stop_data){ 324 msdata = (struct multi_stop_data){ 341 .fn = fn, 325 .fn = fn, 342 .data = arg, 326 .data = arg, 343 .num_threads = 2, 327 .num_threads = 2, 344 .active_cpus = cpumask_of(cpu1 328 .active_cpus = cpumask_of(cpu1), 345 }; 329 }; 346 330 347 work1 = work2 = (struct cpu_stop_work) 331 work1 = work2 = (struct cpu_stop_work){ 348 .fn = multi_cpu_stop, 332 .fn = multi_cpu_stop, 349 .arg = &msdata, 333 .arg = &msdata, 350 .done = &done, !! 334 .done = &done 351 .caller = _RET_IP_, << 352 }; 335 }; 353 336 354 cpu_stop_init_done(&done, 2); 337 cpu_stop_init_done(&done, 2); 355 set_state(&msdata, MULTI_STOP_PREPARE) 338 set_state(&msdata, MULTI_STOP_PREPARE); 356 339 357 if (cpu1 > cpu2) 340 if (cpu1 > cpu2) 358 swap(cpu1, cpu2); 341 swap(cpu1, cpu2); 359 if (cpu_stop_queue_two_works(cpu1, &wo 342 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 360 return -ENOENT; 343 return -ENOENT; 361 344 362 wait_for_completion(&done.completion); 345 wait_for_completion(&done.completion); 363 return done.ret; 346 return done.ret; 364 } 347 } 365 348 366 /** 349 /** 367 * stop_one_cpu_nowait - stop a cpu but don't 350 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 368 * @cpu: cpu to stop 351 * @cpu: cpu to stop 369 * @fn: function to execute 352 * @fn: function to execute 370 * @arg: argument to @fn 353 * @arg: argument to @fn 371 * @work_buf: pointer to cpu_stop_work structu 354 * @work_buf: pointer to cpu_stop_work structure 372 * 355 * 373 * Similar to stop_one_cpu() but doesn't wait 356 * Similar to stop_one_cpu() but doesn't wait for completion. The 374 * caller is responsible for ensuring @work_bu 357 * caller is responsible for ensuring @work_buf is currently unused 375 * and will remain untouched until stopper sta 358 * and will remain untouched until stopper starts executing @fn. 376 * 359 * 377 * CONTEXT: 360 * CONTEXT: 378 * Don't care. 361 * Don't care. 379 * 362 * 380 * RETURNS: 363 * RETURNS: 381 * true if cpu_stop_work was queued successful 364 * true if cpu_stop_work was queued successfully and @fn will be called, 382 * false otherwise. 365 * false otherwise. 383 */ 366 */ 384 bool stop_one_cpu_nowait(unsigned int cpu, cpu 367 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 385 struct cpu_stop_work * 368 struct cpu_stop_work *work_buf) 386 { 369 { 387 *work_buf = (struct cpu_stop_work){ .f !! 370 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 388 return cpu_stop_queue_work(cpu, work_b 371 return cpu_stop_queue_work(cpu, work_buf); 389 } 372 } 390 373 391 static bool queue_stop_cpus_work(const struct 374 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 392 cpu_stop_fn_t 375 cpu_stop_fn_t fn, void *arg, 393 struct cpu_st 376 struct cpu_stop_done *done) 394 { 377 { 395 struct cpu_stop_work *work; 378 struct cpu_stop_work *work; 396 unsigned int cpu; 379 unsigned int cpu; 397 bool queued = false; 380 bool queued = false; 398 381 399 /* 382 /* 400 * Disable preemption while queueing t 383 * Disable preemption while queueing to avoid getting 401 * preempted by a stopper which might 384 * preempted by a stopper which might wait for other stoppers 402 * to enter @fn which can lead to dead 385 * to enter @fn which can lead to deadlock. 403 */ 386 */ 404 preempt_disable(); 387 preempt_disable(); 405 stop_cpus_in_progress = true; 388 stop_cpus_in_progress = true; 406 barrier(); 389 barrier(); 407 for_each_cpu(cpu, cpumask) { 390 for_each_cpu(cpu, cpumask) { 408 work = &per_cpu(cpu_stopper.st 391 work = &per_cpu(cpu_stopper.stop_work, cpu); 409 work->fn = fn; 392 work->fn = fn; 410 work->arg = arg; 393 work->arg = arg; 411 work->done = done; 394 work->done = done; 412 work->caller = _RET_IP_; << 413 if (cpu_stop_queue_work(cpu, w 395 if (cpu_stop_queue_work(cpu, work)) 414 queued = true; 396 queued = true; 415 } 397 } 416 barrier(); 398 barrier(); 417 stop_cpus_in_progress = false; 399 stop_cpus_in_progress = false; 418 preempt_enable(); 400 preempt_enable(); 419 401 420 return queued; 402 return queued; 421 } 403 } 422 404 423 static int __stop_cpus(const struct cpumask *c 405 static int __stop_cpus(const struct cpumask *cpumask, 424 cpu_stop_fn_t fn, void 406 cpu_stop_fn_t fn, void *arg) 425 { 407 { 426 struct cpu_stop_done done; 408 struct cpu_stop_done done; 427 409 428 cpu_stop_init_done(&done, cpumask_weig 410 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 429 if (!queue_stop_cpus_work(cpumask, fn, 411 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 430 return -ENOENT; 412 return -ENOENT; 431 wait_for_completion(&done.completion); 413 wait_for_completion(&done.completion); 432 return done.ret; 414 return done.ret; 433 } 415 } 434 416 435 /** 417 /** 436 * stop_cpus - stop multiple cpus 418 * stop_cpus - stop multiple cpus 437 * @cpumask: cpus to stop 419 * @cpumask: cpus to stop 438 * @fn: function to execute 420 * @fn: function to execute 439 * @arg: argument to @fn 421 * @arg: argument to @fn 440 * 422 * 441 * Execute @fn(@arg) on online cpus in @cpumas 423 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 442 * @fn is run in a process context with the hi 424 * @fn is run in a process context with the highest priority 443 * preempting any task on the cpu and monopoli 425 * preempting any task on the cpu and monopolizing it. This function 444 * returns after all executions are complete. 426 * returns after all executions are complete. 445 * 427 * 446 * This function doesn't guarantee the cpus in 428 * This function doesn't guarantee the cpus in @cpumask stay online 447 * till @fn completes. If some cpus go down i 429 * till @fn completes. If some cpus go down in the middle, execution 448 * on the cpu may happen partially or fully on 430 * on the cpu may happen partially or fully on different cpus. @fn 449 * should either be ready for that or the call 431 * should either be ready for that or the caller should ensure that 450 * the cpus stay online until this function co 432 * the cpus stay online until this function completes. 451 * 433 * 452 * All stop_cpus() calls are serialized making 434 * All stop_cpus() calls are serialized making it safe for @fn to wait 453 * for all cpus to start executing it. 435 * for all cpus to start executing it. 454 * 436 * 455 * CONTEXT: 437 * CONTEXT: 456 * Might sleep. 438 * Might sleep. 457 * 439 * 458 * RETURNS: 440 * RETURNS: 459 * -ENOENT if @fn(@arg) was not executed at al 441 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 460 * @cpumask were offline; otherwise, 0 if all 442 * @cpumask were offline; otherwise, 0 if all executions of @fn 461 * returned 0, any non zero return value if an 443 * returned 0, any non zero return value if any returned non zero. 462 */ 444 */ 463 static int stop_cpus(const struct cpumask *cpu !! 445 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 464 { 446 { 465 int ret; 447 int ret; 466 448 467 /* static works are used, process one 449 /* static works are used, process one request at a time */ 468 mutex_lock(&stop_cpus_mutex); 450 mutex_lock(&stop_cpus_mutex); 469 ret = __stop_cpus(cpumask, fn, arg); 451 ret = __stop_cpus(cpumask, fn, arg); 470 mutex_unlock(&stop_cpus_mutex); 452 mutex_unlock(&stop_cpus_mutex); 471 return ret; 453 return ret; 472 } 454 } 473 455 >> 456 /** >> 457 * try_stop_cpus - try to stop multiple cpus >> 458 * @cpumask: cpus to stop >> 459 * @fn: function to execute >> 460 * @arg: argument to @fn >> 461 * >> 462 * Identical to stop_cpus() except that it fails with -EAGAIN if >> 463 * someone else is already using the facility. >> 464 * >> 465 * CONTEXT: >> 466 * Might sleep. >> 467 * >> 468 * RETURNS: >> 469 * -EAGAIN if someone else is already stopping cpus, -ENOENT if >> 470 * @fn(@arg) was not executed at all because all cpus in @cpumask were >> 471 * offline; otherwise, 0 if all executions of @fn returned 0, any non >> 472 * zero return value if any returned non zero. >> 473 */ >> 474 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) >> 475 { >> 476 int ret; >> 477 >> 478 /* static works are used, process one request at a time */ >> 479 if (!mutex_trylock(&stop_cpus_mutex)) >> 480 return -EAGAIN; >> 481 ret = __stop_cpus(cpumask, fn, arg); >> 482 mutex_unlock(&stop_cpus_mutex); >> 483 return ret; >> 484 } >> 485 474 static int cpu_stop_should_run(unsigned int cp 486 static int cpu_stop_should_run(unsigned int cpu) 475 { 487 { 476 struct cpu_stopper *stopper = &per_cpu 488 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 477 unsigned long flags; 489 unsigned long flags; 478 int run; 490 int run; 479 491 480 raw_spin_lock_irqsave(&stopper->lock, 492 raw_spin_lock_irqsave(&stopper->lock, flags); 481 run = !list_empty(&stopper->works); 493 run = !list_empty(&stopper->works); 482 raw_spin_unlock_irqrestore(&stopper->l 494 raw_spin_unlock_irqrestore(&stopper->lock, flags); 483 return run; 495 return run; 484 } 496 } 485 497 486 static void cpu_stopper_thread(unsigned int cp 498 static void cpu_stopper_thread(unsigned int cpu) 487 { 499 { 488 struct cpu_stopper *stopper = &per_cpu 500 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 489 struct cpu_stop_work *work; 501 struct cpu_stop_work *work; 490 502 491 repeat: 503 repeat: 492 work = NULL; 504 work = NULL; 493 raw_spin_lock_irq(&stopper->lock); 505 raw_spin_lock_irq(&stopper->lock); 494 if (!list_empty(&stopper->works)) { 506 if (!list_empty(&stopper->works)) { 495 work = list_first_entry(&stopp 507 work = list_first_entry(&stopper->works, 496 struct 508 struct cpu_stop_work, list); 497 list_del_init(&work->list); 509 list_del_init(&work->list); 498 } 510 } 499 raw_spin_unlock_irq(&stopper->lock); 511 raw_spin_unlock_irq(&stopper->lock); 500 512 501 if (work) { 513 if (work) { 502 cpu_stop_fn_t fn = work->fn; 514 cpu_stop_fn_t fn = work->fn; 503 void *arg = work->arg; 515 void *arg = work->arg; 504 struct cpu_stop_done *done = w 516 struct cpu_stop_done *done = work->done; 505 int ret; 517 int ret; 506 518 507 /* cpu stop callbacks must not 519 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 508 stopper->caller = work->caller << 509 stopper->fn = fn; << 510 preempt_count_inc(); 520 preempt_count_inc(); 511 ret = fn(arg); 521 ret = fn(arg); 512 if (done) { 522 if (done) { 513 if (ret) 523 if (ret) 514 done->ret = re 524 done->ret = ret; 515 cpu_stop_signal_done(d 525 cpu_stop_signal_done(done); 516 } 526 } 517 preempt_count_dec(); 527 preempt_count_dec(); 518 stopper->fn = NULL; << 519 stopper->caller = 0; << 520 WARN_ONCE(preempt_count(), 528 WARN_ONCE(preempt_count(), 521 "cpu_stop: %ps(%p) l 529 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 522 goto repeat; 530 goto repeat; 523 } 531 } 524 } 532 } 525 533 526 void stop_machine_park(int cpu) 534 void stop_machine_park(int cpu) 527 { 535 { 528 struct cpu_stopper *stopper = &per_cpu 536 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 529 /* 537 /* 530 * Lockless. cpu_stopper_thread() will 538 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 531 * the pending works before it parks, 539 * the pending works before it parks, until then it is fine to queue 532 * the new works. 540 * the new works. 533 */ 541 */ 534 stopper->enabled = false; 542 stopper->enabled = false; 535 kthread_park(stopper->thread); 543 kthread_park(stopper->thread); 536 } 544 } 537 545 >> 546 extern void sched_set_stop_task(int cpu, struct task_struct *stop); >> 547 538 static void cpu_stop_create(unsigned int cpu) 548 static void cpu_stop_create(unsigned int cpu) 539 { 549 { 540 sched_set_stop_task(cpu, per_cpu(cpu_s 550 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 541 } 551 } 542 552 543 static void cpu_stop_park(unsigned int cpu) 553 static void cpu_stop_park(unsigned int cpu) 544 { 554 { 545 struct cpu_stopper *stopper = &per_cpu 555 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 546 556 547 WARN_ON(!list_empty(&stopper->works)); 557 WARN_ON(!list_empty(&stopper->works)); 548 } 558 } 549 559 550 void stop_machine_unpark(int cpu) 560 void stop_machine_unpark(int cpu) 551 { 561 { 552 struct cpu_stopper *stopper = &per_cpu 562 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 553 563 554 stopper->enabled = true; 564 stopper->enabled = true; 555 kthread_unpark(stopper->thread); 565 kthread_unpark(stopper->thread); 556 } 566 } 557 567 558 static struct smp_hotplug_thread cpu_stop_thre 568 static struct smp_hotplug_thread cpu_stop_threads = { 559 .store = &cpu_stopper 569 .store = &cpu_stopper.thread, 560 .thread_should_run = cpu_stop_sho 570 .thread_should_run = cpu_stop_should_run, 561 .thread_fn = cpu_stopper_ 571 .thread_fn = cpu_stopper_thread, 562 .thread_comm = "migration/% 572 .thread_comm = "migration/%u", 563 .create = cpu_stop_cre 573 .create = cpu_stop_create, 564 .park = cpu_stop_par 574 .park = cpu_stop_park, 565 .selfparking = true, 575 .selfparking = true, 566 }; 576 }; 567 577 568 static int __init cpu_stop_init(void) 578 static int __init cpu_stop_init(void) 569 { 579 { 570 unsigned int cpu; 580 unsigned int cpu; 571 581 572 for_each_possible_cpu(cpu) { 582 for_each_possible_cpu(cpu) { 573 struct cpu_stopper *stopper = 583 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 574 584 575 raw_spin_lock_init(&stopper->l 585 raw_spin_lock_init(&stopper->lock); 576 INIT_LIST_HEAD(&stopper->works 586 INIT_LIST_HEAD(&stopper->works); 577 } 587 } 578 588 579 BUG_ON(smpboot_register_percpu_thread( 589 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 580 stop_machine_unpark(raw_smp_processor_ 590 stop_machine_unpark(raw_smp_processor_id()); 581 stop_machine_initialized = true; 591 stop_machine_initialized = true; 582 return 0; 592 return 0; 583 } 593 } 584 early_initcall(cpu_stop_init); 594 early_initcall(cpu_stop_init); 585 595 586 int stop_machine_cpuslocked(cpu_stop_fn_t fn, 596 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 587 const struct cpuma 597 const struct cpumask *cpus) 588 { 598 { 589 struct multi_stop_data msdata = { 599 struct multi_stop_data msdata = { 590 .fn = fn, 600 .fn = fn, 591 .data = data, 601 .data = data, 592 .num_threads = num_online_cpus 602 .num_threads = num_online_cpus(), 593 .active_cpus = cpus, 603 .active_cpus = cpus, 594 }; 604 }; 595 605 596 lockdep_assert_cpus_held(); 606 lockdep_assert_cpus_held(); 597 607 598 if (!stop_machine_initialized) { 608 if (!stop_machine_initialized) { 599 /* 609 /* 600 * Handle the case where stop_ 610 * Handle the case where stop_machine() is called 601 * early in boot before stop_m 611 * early in boot before stop_machine() has been 602 * initialized. 612 * initialized. 603 */ 613 */ 604 unsigned long flags; 614 unsigned long flags; 605 int ret; 615 int ret; 606 616 607 WARN_ON_ONCE(msdata.num_thread 617 WARN_ON_ONCE(msdata.num_threads != 1); 608 618 609 local_irq_save(flags); 619 local_irq_save(flags); 610 hard_irq_disable(); 620 hard_irq_disable(); 611 ret = (*fn)(data); 621 ret = (*fn)(data); 612 local_irq_restore(flags); 622 local_irq_restore(flags); 613 623 614 return ret; 624 return ret; 615 } 625 } 616 626 617 /* Set the initial state and stop all 627 /* Set the initial state and stop all online cpus. */ 618 set_state(&msdata, MULTI_STOP_PREPARE) 628 set_state(&msdata, MULTI_STOP_PREPARE); 619 return stop_cpus(cpu_online_mask, mult 629 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 620 } 630 } 621 631 622 int stop_machine(cpu_stop_fn_t fn, void *data, 632 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 623 { 633 { 624 int ret; 634 int ret; 625 635 626 /* No CPUs can come up or down during 636 /* No CPUs can come up or down during this. */ 627 cpus_read_lock(); 637 cpus_read_lock(); 628 ret = stop_machine_cpuslocked(fn, data 638 ret = stop_machine_cpuslocked(fn, data, cpus); 629 cpus_read_unlock(); 639 cpus_read_unlock(); 630 return ret; 640 return ret; 631 } 641 } 632 EXPORT_SYMBOL_GPL(stop_machine); 642 EXPORT_SYMBOL_GPL(stop_machine); 633 << 634 #ifdef CONFIG_SCHED_SMT << 635 int stop_core_cpuslocked(unsigned int cpu, cpu << 636 { << 637 const struct cpumask *smt_mask = cpu_s << 638 << 639 struct multi_stop_data msdata = { << 640 .fn = fn, << 641 .data = data, << 642 .num_threads = cpumask_weight( << 643 .active_cpus = smt_mask, << 644 }; << 645 << 646 lockdep_assert_cpus_held(); << 647 << 648 /* Set the initial state and stop all << 649 set_state(&msdata, MULTI_STOP_PREPARE) << 650 return stop_cpus(smt_mask, multi_cpu_s << 651 } << 652 EXPORT_SYMBOL_GPL(stop_core_cpuslocked); << 653 #endif << 654 643 655 /** 644 /** 656 * stop_machine_from_inactive_cpu - stop_machi 645 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 657 * @fn: the function to run 646 * @fn: the function to run 658 * @data: the data ptr for the @fn() 647 * @data: the data ptr for the @fn() 659 * @cpus: the cpus to run the @fn() on (NULL = 648 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 660 * 649 * 661 * This is identical to stop_machine() but can 650 * This is identical to stop_machine() but can be called from a CPU which 662 * is not active. The local CPU is in the pro 651 * is not active. The local CPU is in the process of hotplug (so no other 663 * CPU hotplug can start) and not marked activ 652 * CPU hotplug can start) and not marked active and doesn't have enough 664 * context to sleep. 653 * context to sleep. 665 * 654 * 666 * This function provides stop_machine() funct 655 * This function provides stop_machine() functionality for such state by 667 * using busy-wait for synchronization and exe 656 * using busy-wait for synchronization and executing @fn directly for local 668 * CPU. 657 * CPU. 669 * 658 * 670 * CONTEXT: 659 * CONTEXT: 671 * Local CPU is inactive. Temporarily stops a 660 * Local CPU is inactive. Temporarily stops all active CPUs. 672 * 661 * 673 * RETURNS: 662 * RETURNS: 674 * 0 if all executions of @fn returned 0, any 663 * 0 if all executions of @fn returned 0, any non zero return value if any 675 * returned non zero. 664 * returned non zero. 676 */ 665 */ 677 int stop_machine_from_inactive_cpu(cpu_stop_fn 666 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 678 const struct 667 const struct cpumask *cpus) 679 { 668 { 680 struct multi_stop_data msdata = { .fn 669 struct multi_stop_data msdata = { .fn = fn, .data = data, 681 .a 670 .active_cpus = cpus }; 682 struct cpu_stop_done done; 671 struct cpu_stop_done done; 683 int ret; 672 int ret; 684 673 685 /* Local CPU must be inactive and CPU 674 /* Local CPU must be inactive and CPU hotplug in progress. */ 686 BUG_ON(cpu_active(raw_smp_processor_id 675 BUG_ON(cpu_active(raw_smp_processor_id())); 687 msdata.num_threads = num_active_cpus() 676 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 688 677 689 /* No proper task established and can' 678 /* No proper task established and can't sleep - busy wait for lock. */ 690 while (!mutex_trylock(&stop_cpus_mutex 679 while (!mutex_trylock(&stop_cpus_mutex)) 691 cpu_relax(); 680 cpu_relax(); 692 681 693 /* Schedule work on other CPUs and exe 682 /* Schedule work on other CPUs and execute directly for local CPU */ 694 set_state(&msdata, MULTI_STOP_PREPARE) 683 set_state(&msdata, MULTI_STOP_PREPARE); 695 cpu_stop_init_done(&done, num_active_c 684 cpu_stop_init_done(&done, num_active_cpus()); 696 queue_stop_cpus_work(cpu_active_mask, 685 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 697 &done); 686 &done); 698 ret = multi_cpu_stop(&msdata); 687 ret = multi_cpu_stop(&msdata); 699 688 700 /* Busy wait for completion. */ 689 /* Busy wait for completion. */ 701 while (!completion_done(&done.completi 690 while (!completion_done(&done.completion)) 702 cpu_relax(); 691 cpu_relax(); 703 692 704 mutex_unlock(&stop_cpus_mutex); 693 mutex_unlock(&stop_cpus_mutex); 705 return ret ?: done.ret; 694 return ret ?: done.ret; 706 } 695 } 707 696
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.