1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright 2019 ARM Ltd. 3 * Copyright 2019 ARM Ltd. 4 * 4 * 5 * Generic implementation of update_vsyscall a 5 * Generic implementation of update_vsyscall and update_vsyscall_tz. 6 * 6 * 7 * Based on the x86 specific implementation. 7 * Based on the x86 specific implementation. 8 */ 8 */ 9 9 10 #include <linux/hrtimer.h> 10 #include <linux/hrtimer.h> 11 #include <linux/timekeeper_internal.h> 11 #include <linux/timekeeper_internal.h> 12 #include <vdso/datapage.h> 12 #include <vdso/datapage.h> 13 #include <vdso/helpers.h> 13 #include <vdso/helpers.h> 14 #include <vdso/vsyscall.h> 14 #include <vdso/vsyscall.h> 15 15 16 #include "timekeeping_internal.h" << 17 << 18 static inline void update_vdso_data(struct vds 16 static inline void update_vdso_data(struct vdso_data *vdata, 19 struct tim 17 struct timekeeper *tk) 20 { 18 { 21 struct vdso_timestamp *vdso_ts; 19 struct vdso_timestamp *vdso_ts; 22 u64 nsec, sec; 20 u64 nsec, sec; 23 21 24 vdata[CS_HRES_COARSE].cycle_last 22 vdata[CS_HRES_COARSE].cycle_last = tk->tkr_mono.cycle_last; 25 #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT << 26 vdata[CS_HRES_COARSE].max_cycles << 27 #endif << 28 vdata[CS_HRES_COARSE].mask 23 vdata[CS_HRES_COARSE].mask = tk->tkr_mono.mask; 29 vdata[CS_HRES_COARSE].mult 24 vdata[CS_HRES_COARSE].mult = tk->tkr_mono.mult; 30 vdata[CS_HRES_COARSE].shift 25 vdata[CS_HRES_COARSE].shift = tk->tkr_mono.shift; 31 vdata[CS_RAW].cycle_last 26 vdata[CS_RAW].cycle_last = tk->tkr_raw.cycle_last; 32 #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT << 33 vdata[CS_RAW].max_cycles << 34 #endif << 35 vdata[CS_RAW].mask 27 vdata[CS_RAW].mask = tk->tkr_raw.mask; 36 vdata[CS_RAW].mult 28 vdata[CS_RAW].mult = tk->tkr_raw.mult; 37 vdata[CS_RAW].shift 29 vdata[CS_RAW].shift = tk->tkr_raw.shift; 38 30 >> 31 /* CLOCK_REALTIME */ >> 32 vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME]; >> 33 vdso_ts->sec = tk->xtime_sec; >> 34 vdso_ts->nsec = tk->tkr_mono.xtime_nsec; >> 35 39 /* CLOCK_MONOTONIC */ 36 /* CLOCK_MONOTONIC */ 40 vdso_ts = &vdata[CS_HRES_COARS 37 vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC]; 41 vdso_ts->sec = tk->xtime_sec + tk-> 38 vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 42 39 43 nsec = tk->tkr_mono.xtime_nsec; 40 nsec = tk->tkr_mono.xtime_nsec; 44 nsec += ((u64)tk->wall_to_monotonic.tv 41 nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); 45 while (nsec >= (((u64)NSEC_PER_SEC) << 42 while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { 46 nsec -= (((u64)NSEC_PER_SEC) < 43 nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift); 47 vdso_ts->sec++; 44 vdso_ts->sec++; 48 } 45 } 49 vdso_ts->nsec = nsec; 46 vdso_ts->nsec = nsec; 50 47 51 /* Copy MONOTONIC time for BOOTTIME */ 48 /* Copy MONOTONIC time for BOOTTIME */ 52 sec = vdso_ts->sec; 49 sec = vdso_ts->sec; 53 /* Add the boot offset */ 50 /* Add the boot offset */ 54 sec += tk->monotonic_to_boot.tv_se 51 sec += tk->monotonic_to_boot.tv_sec; 55 nsec += (u64)tk->monotonic_to_boot. 52 nsec += (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift; 56 53 57 /* CLOCK_BOOTTIME */ 54 /* CLOCK_BOOTTIME */ 58 vdso_ts = &vdata[CS_HRES_COARS 55 vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME]; 59 vdso_ts->sec = sec; 56 vdso_ts->sec = sec; 60 57 61 while (nsec >= (((u64)NSEC_PER_SEC) << 58 while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { 62 nsec -= (((u64)NSEC_PER_SEC) < 59 nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift); 63 vdso_ts->sec++; 60 vdso_ts->sec++; 64 } 61 } 65 vdso_ts->nsec = nsec; 62 vdso_ts->nsec = nsec; 66 63 67 /* CLOCK_MONOTONIC_RAW */ 64 /* CLOCK_MONOTONIC_RAW */ 68 vdso_ts = &vdata[CS_RAW].baset 65 vdso_ts = &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW]; 69 vdso_ts->sec = tk->raw_sec; 66 vdso_ts->sec = tk->raw_sec; 70 vdso_ts->nsec = tk->tkr_raw.xtime_ns 67 vdso_ts->nsec = tk->tkr_raw.xtime_nsec; 71 68 72 /* CLOCK_TAI */ 69 /* CLOCK_TAI */ 73 vdso_ts = &vdata[CS_HRES_COARS 70 vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI]; 74 vdso_ts->sec = tk->xtime_sec + (s64 71 vdso_ts->sec = tk->xtime_sec + (s64)tk->tai_offset; 75 vdso_ts->nsec = tk->tkr_mono.xtime_n 72 vdso_ts->nsec = tk->tkr_mono.xtime_nsec; >> 73 >> 74 /* >> 75 * Read without the seqlock held by clock_getres(). >> 76 * Note: No need to have a second copy. >> 77 */ >> 78 WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution); 76 } 79 } 77 80 78 void update_vsyscall(struct timekeeper *tk) 81 void update_vsyscall(struct timekeeper *tk) 79 { 82 { 80 struct vdso_data *vdata = __arch_get_k 83 struct vdso_data *vdata = __arch_get_k_vdso_data(); 81 struct vdso_timestamp *vdso_ts; 84 struct vdso_timestamp *vdso_ts; 82 s32 clock_mode; << 83 u64 nsec; 85 u64 nsec; 84 86 >> 87 if (__arch_update_vdso_data()) { >> 88 /* >> 89 * Some architectures might want to skip the update of the >> 90 * data page. >> 91 */ >> 92 return; >> 93 } >> 94 85 /* copy vsyscall data */ 95 /* copy vsyscall data */ 86 vdso_write_begin(vdata); 96 vdso_write_begin(vdata); 87 97 88 clock_mode = tk->tkr_mono.clock->vdso_ !! 98 vdata[CS_HRES_COARSE].clock_mode = __arch_get_clock_mode(tk); 89 vdata[CS_HRES_COARSE].clock_mode !! 99 vdata[CS_RAW].clock_mode = __arch_get_clock_mode(tk); 90 vdata[CS_RAW].clock_mode << 91 << 92 /* CLOCK_REALTIME also required for ti << 93 vdso_ts = &vdata[CS_HRES_COARS << 94 vdso_ts->sec = tk->xtime_sec; << 95 vdso_ts->nsec = tk->tkr_mono.xtime_n << 96 100 97 /* CLOCK_REALTIME_COARSE */ 101 /* CLOCK_REALTIME_COARSE */ 98 vdso_ts = &vdata[CS_HRES_COARS 102 vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE]; 99 vdso_ts->sec = tk->xtime_sec; 103 vdso_ts->sec = tk->xtime_sec; 100 vdso_ts->nsec = tk->tkr_mono.xtime_n 104 vdso_ts->nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 101 105 102 /* CLOCK_MONOTONIC_COARSE */ 106 /* CLOCK_MONOTONIC_COARSE */ 103 vdso_ts = &vdata[CS_HRES_COARS 107 vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE]; 104 vdso_ts->sec = tk->xtime_sec + tk-> 108 vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 105 nsec = tk->tkr_mono.xtime_n 109 nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 106 nsec = nsec + tk->wall_to_m 110 nsec = nsec + tk->wall_to_monotonic.tv_nsec; 107 vdso_ts->sec += __iter_div_u64_rem( 111 vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec); 108 112 109 /* !! 113 update_vdso_data(vdata, tk); 110 * Read without the seqlock held by cl << 111 * Note: No need to have a second copy << 112 */ << 113 WRITE_ONCE(vdata[CS_HRES_COARSE].hrtim << 114 << 115 /* << 116 * If the current clocksource is not V << 117 * update of the high resolution parts << 118 */ << 119 if (clock_mode != VDSO_CLOCKMODE_NONE) << 120 update_vdso_data(vdata, tk); << 121 114 122 __arch_update_vsyscall(vdata, tk); 115 __arch_update_vsyscall(vdata, tk); 123 116 124 vdso_write_end(vdata); 117 vdso_write_end(vdata); 125 118 126 __arch_sync_vdso_data(vdata); 119 __arch_sync_vdso_data(vdata); 127 } 120 } 128 121 129 void update_vsyscall_tz(void) 122 void update_vsyscall_tz(void) 130 { 123 { 131 struct vdso_data *vdata = __arch_get_k 124 struct vdso_data *vdata = __arch_get_k_vdso_data(); 132 125 133 vdata[CS_HRES_COARSE].tz_minuteswest = 126 vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest; 134 vdata[CS_HRES_COARSE].tz_dsttime = sys 127 vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime; 135 128 136 __arch_sync_vdso_data(vdata); 129 __arch_sync_vdso_data(vdata); 137 } << 138 << 139 /** << 140 * vdso_update_begin - Start of a VDSO update << 141 * << 142 * Allows architecture code to safely update t << 143 * data. Disables interrupts, acquires timekee << 144 * concurrent updates from timekeeping and inv << 145 * sequence counter to prevent concurrent read << 146 * inconsistent data. << 147 * << 148 * Returns: Saved interrupt flags which need t << 149 * vdso_update_end(). << 150 */ << 151 unsigned long vdso_update_begin(void) << 152 { << 153 struct vdso_data *vdata = __arch_get_k << 154 unsigned long flags; << 155 << 156 raw_spin_lock_irqsave(&timekeeper_lock << 157 vdso_write_begin(vdata); << 158 return flags; << 159 } << 160 << 161 /** << 162 * vdso_update_end - End of a VDSO update sect << 163 * @flags: Interrupt flags as returned fr << 164 * << 165 * Pairs with vdso_update_begin(). Marks vdso << 166 * synchronization if the architecture require << 167 * and restores interrupt flags. << 168 */ << 169 void vdso_update_end(unsigned long flags) << 170 { << 171 struct vdso_data *vdata = __arch_get_k << 172 << 173 vdso_write_end(vdata); << 174 __arch_sync_vdso_data(vdata); << 175 raw_spin_unlock_irqrestore(&timekeeper << 176 } 130 } 177 131
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.