1 // SPDX-License-Identifier: GPL-2.0 << 2 /* 1 /* 3 * tracing clocks 2 * tracing clocks 4 * 3 * 5 * Copyright (C) 2009 Red Hat, Inc., Ingo Mol 4 * Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 5 * 7 * Implements 3 trace clock variants, with dif 6 * Implements 3 trace clock variants, with differing scalability/precision 8 * tradeoffs: 7 * tradeoffs: 9 * 8 * 10 * - local: CPU-local trace clock 9 * - local: CPU-local trace clock 11 * - medium: scalable global clock with some 10 * - medium: scalable global clock with some jitter 12 * - global: globally monotonic, serialized 11 * - global: globally monotonic, serialized clock 13 * 12 * 14 * Tracer plugins will chose a default from th 13 * Tracer plugins will chose a default from these clocks. 15 */ 14 */ 16 #include <linux/spinlock.h> 15 #include <linux/spinlock.h> 17 #include <linux/irqflags.h> 16 #include <linux/irqflags.h> 18 #include <linux/hardirq.h> 17 #include <linux/hardirq.h> 19 #include <linux/module.h> 18 #include <linux/module.h> 20 #include <linux/percpu.h> 19 #include <linux/percpu.h> 21 #include <linux/sched.h> 20 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 21 #include <linux/sched/clock.h> 23 #include <linux/ktime.h> 22 #include <linux/ktime.h> 24 #include <linux/trace_clock.h> 23 #include <linux/trace_clock.h> 25 24 26 /* 25 /* 27 * trace_clock_local(): the simplest and least 26 * trace_clock_local(): the simplest and least coherent tracing clock. 28 * 27 * 29 * Useful for tracing that does not cross to o 28 * Useful for tracing that does not cross to other CPUs nor 30 * does it go through idle events. 29 * does it go through idle events. 31 */ 30 */ 32 u64 notrace trace_clock_local(void) 31 u64 notrace trace_clock_local(void) 33 { 32 { 34 u64 clock; 33 u64 clock; 35 34 36 /* 35 /* 37 * sched_clock() is an architecture im 36 * sched_clock() is an architecture implemented, fast, scalable, 38 * lockless clock. It is not guarantee 37 * lockless clock. It is not guaranteed to be coherent across 39 * CPUs, nor across CPU idle events. 38 * CPUs, nor across CPU idle events. 40 */ 39 */ 41 preempt_disable_notrace(); 40 preempt_disable_notrace(); 42 clock = sched_clock(); 41 clock = sched_clock(); 43 preempt_enable_notrace(); 42 preempt_enable_notrace(); 44 43 45 return clock; 44 return clock; 46 } 45 } 47 EXPORT_SYMBOL_GPL(trace_clock_local); 46 EXPORT_SYMBOL_GPL(trace_clock_local); 48 47 49 /* 48 /* 50 * trace_clock(): 'between' trace clock. Not c 49 * trace_clock(): 'between' trace clock. Not completely serialized, 51 * but not completely incorrect when crossing 50 * but not completely incorrect when crossing CPUs either. 52 * 51 * 53 * This is based on cpu_clock(), which will al 52 * This is based on cpu_clock(), which will allow at most ~1 jiffy of 54 * jitter between CPUs. So it's a pretty scala 53 * jitter between CPUs. So it's a pretty scalable clock, but there 55 * can be offsets in the trace data. 54 * can be offsets in the trace data. 56 */ 55 */ 57 u64 notrace trace_clock(void) 56 u64 notrace trace_clock(void) 58 { 57 { 59 return local_clock(); 58 return local_clock(); 60 } 59 } 61 EXPORT_SYMBOL_GPL(trace_clock); 60 EXPORT_SYMBOL_GPL(trace_clock); 62 61 63 /* 62 /* 64 * trace_jiffy_clock(): Simply use jiffies as 63 * trace_jiffy_clock(): Simply use jiffies as a clock counter. 65 * Note that this use of jiffies_64 is not com 64 * Note that this use of jiffies_64 is not completely safe on 66 * 32-bit systems. But the window is tiny, and 65 * 32-bit systems. But the window is tiny, and the effect if 67 * we are affected is that we will have an obv 66 * we are affected is that we will have an obviously bogus 68 * timestamp on a trace event - i.e. not life 67 * timestamp on a trace event - i.e. not life threatening. 69 */ 68 */ 70 u64 notrace trace_clock_jiffies(void) 69 u64 notrace trace_clock_jiffies(void) 71 { 70 { 72 return jiffies_64_to_clock_t(jiffies_6 71 return jiffies_64_to_clock_t(jiffies_64 - INITIAL_JIFFIES); 73 } 72 } 74 EXPORT_SYMBOL_GPL(trace_clock_jiffies); 73 EXPORT_SYMBOL_GPL(trace_clock_jiffies); 75 74 76 /* 75 /* 77 * trace_clock_global(): special globally cohe 76 * trace_clock_global(): special globally coherent trace clock 78 * 77 * 79 * It has higher overhead than the other trace 78 * It has higher overhead than the other trace clocks but is still 80 * an order of magnitude faster than GTOD deri 79 * an order of magnitude faster than GTOD derived hardware clocks. 81 * 80 * 82 * Used by plugins that need globally coherent 81 * Used by plugins that need globally coherent timestamps. 83 */ 82 */ 84 83 85 /* keep prev_time and lock in the same cacheli 84 /* keep prev_time and lock in the same cacheline. */ 86 static struct { 85 static struct { 87 u64 prev_time; 86 u64 prev_time; 88 arch_spinlock_t lock; 87 arch_spinlock_t lock; 89 } trace_clock_struct ____cacheline_aligned_in_ 88 } trace_clock_struct ____cacheline_aligned_in_smp = 90 { 89 { 91 .lock = (arch_spinlock_t)__ARC 90 .lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED, 92 }; 91 }; 93 92 94 u64 notrace trace_clock_global(void) 93 u64 notrace trace_clock_global(void) 95 { 94 { 96 unsigned long flags; 95 unsigned long flags; 97 int this_cpu; 96 int this_cpu; 98 u64 now, prev_time; !! 97 u64 now; 99 98 100 raw_local_irq_save(flags); !! 99 local_irq_save(flags); 101 100 102 this_cpu = raw_smp_processor_id(); 101 this_cpu = raw_smp_processor_id(); 103 !! 102 now = sched_clock_cpu(this_cpu); 104 /* 103 /* 105 * The global clock "guarantees" that !! 104 * If in an NMI context then dont risk lockups and return the 106 * between CPUs. But if two events on !! 105 * cpu_clock() time: 107 * trace_clock_global at roughly the s << 108 * not matter which one gets the earli << 109 * that the same CPU will always show << 110 * << 111 * Use a read memory barrier to get th << 112 * time that was recorded. << 113 */ 106 */ 114 smp_rmb(); !! 107 if (unlikely(in_nmi())) 115 prev_time = READ_ONCE(trace_clock_stru !! 108 goto out; 116 now = sched_clock_cpu(this_cpu); << 117 109 118 /* Make sure that now is always greate !! 110 arch_spin_lock(&trace_clock_struct.lock); 119 if ((s64)(now - prev_time) < 0) << 120 now = prev_time; << 121 111 122 /* 112 /* 123 * If in an NMI context then dont risk !! 113 * TODO: if this happens often then maybe we should reset 124 * the current time. !! 114 * my_scd->clock to prev_time+1, to make sure >> 115 * we start ticking with the local clock from now on? 125 */ 116 */ 126 if (unlikely(in_nmi())) !! 117 if ((s64)(now - trace_clock_struct.prev_time) < 0) 127 goto out; !! 118 now = trace_clock_struct.prev_time + 1; >> 119 >> 120 trace_clock_struct.prev_time = now; >> 121 >> 122 arch_spin_unlock(&trace_clock_struct.lock); 128 123 129 /* Tracing can cause strange recursion << 130 if (arch_spin_trylock(&trace_clock_str << 131 /* Reread prev_time in case it << 132 prev_time = READ_ONCE(trace_cl << 133 if ((s64)(now - prev_time) < 0 << 134 now = prev_time; << 135 << 136 trace_clock_struct.prev_time = << 137 << 138 /* The unlock acts as the wmb << 139 arch_spin_unlock(&trace_clock_ << 140 } << 141 out: 124 out: 142 raw_local_irq_restore(flags); !! 125 local_irq_restore(flags); 143 126 144 return now; 127 return now; 145 } 128 } 146 EXPORT_SYMBOL_GPL(trace_clock_global); 129 EXPORT_SYMBOL_GPL(trace_clock_global); 147 130 148 static atomic64_t trace_counter; 131 static atomic64_t trace_counter; 149 132 150 /* 133 /* 151 * trace_clock_counter(): simply an atomic cou 134 * trace_clock_counter(): simply an atomic counter. 152 * Use the trace_counter "counter" for cases w 135 * Use the trace_counter "counter" for cases where you do not care 153 * about timings, but are interested in strict 136 * about timings, but are interested in strict ordering. 154 */ 137 */ 155 u64 notrace trace_clock_counter(void) 138 u64 notrace trace_clock_counter(void) 156 { 139 { 157 return atomic64_add_return(1, &trace_c 140 return atomic64_add_return(1, &trace_counter); 158 } 141 } 159 142
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.