1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * kernel/workqueue.c - generic async executio 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 4 * 5 * Copyright (C) 2002 Ingo Molnar 5 * Copyright (C) 2002 Ingo Molnar 6 * 6 * 7 * Derived from the taskqueue/keventd code b 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin. 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 12 * 13 * Made to use alloc_percpu by Christoph Lamet 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 14 * 15 * Copyright (C) 2010 SUSE Linux Pro 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@ 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 17 * 18 * This is the generic async execution mechani 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker po 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worke 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high pr 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 23 * number of these backing pools is dynamic. 24 * 24 * 25 * Please read Documentation/core-api/workqueu 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 26 */ 27 27 28 #include <linux/export.h> 28 #include <linux/export.h> 29 #include <linux/kernel.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> << 33 #include <linux/signal.h> 32 #include <linux/signal.h> 34 #include <linux/completion.h> 33 #include <linux/completion.h> 35 #include <linux/workqueue.h> 34 #include <linux/workqueue.h> 36 #include <linux/slab.h> 35 #include <linux/slab.h> 37 #include <linux/cpu.h> 36 #include <linux/cpu.h> 38 #include <linux/notifier.h> 37 #include <linux/notifier.h> 39 #include <linux/kthread.h> 38 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 39 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 40 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 41 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 42 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 43 #include <linux/lockdep.h> 45 #include <linux/idr.h> 44 #include <linux/idr.h> 46 #include <linux/jhash.h> 45 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 46 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 47 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 48 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 49 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 50 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 51 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 52 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 53 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 54 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 55 #include <linux/delay.h> 57 #include <linux/irq_work.h> << 58 56 59 #include "workqueue_internal.h" 57 #include "workqueue_internal.h" 60 58 61 enum worker_pool_flags { !! 59 enum { 62 /* 60 /* 63 * worker_pool flags 61 * worker_pool flags 64 * 62 * 65 * A bound pool is either associated o 63 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), 64 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND se 65 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 66 * is in effect. 69 * 67 * 70 * While DISASSOCIATED, the cpu may be 68 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency 69 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool 70 * be executing on any CPU. The pool behaves as an unbound one. 73 * 71 * 74 * Note that DISASSOCIATED should be f 72 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid chang 73 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progr 74 * worker_attach_to_pool() is in progress. 77 * << 78 * As there can only be one concurrent << 79 * BH pool is per-CPU and always DISAS << 80 */ 75 */ 81 POOL_BH = 1 << 0, !! 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 82 POOL_MANAGER_ACTIVE = 1 << 1, << 83 POOL_DISASSOCIATED = 1 << 2, 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, << 85 }; << 86 78 87 enum worker_flags { << 88 /* worker flags */ 79 /* worker flags */ 89 WORKER_DIE = 1 << 1, 80 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, 81 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, 82 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, 83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, 84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, 85 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 86 96 WORKER_NOT_RUNNING = WORKER_PREP 87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOU 88 WORKER_UNBOUND | WORKER_REBOUND, 98 }; << 99 << 100 enum work_cancel_flags { << 101 WORK_CANCEL_DELAYED = 1 << 0, << 102 WORK_CANCEL_DISABLE = 1 << 1, << 103 }; << 104 89 105 enum wq_internal_consts { << 106 NR_STD_WORKER_POOLS = 2, 90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 91 108 UNBOUND_POOL_HASH_ORDER = 6, 92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, 93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 94 111 MAX_IDLE_WORKERS_RATIO = 4, 95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, 96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 97 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 99 /* call for help after 10ms 116 100 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, 101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, 102 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 103 120 /* 104 /* 121 * Rescue workers are used only on eme 105 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 106 * all cpus. Give MIN_NICE. 123 */ 107 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 108 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 109 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 110 127 WQ_NAME_LEN = 32, !! 111 WQ_NAME_LEN = 24, 128 WORKER_ID_LEN = 10 + WQ_NAME << 129 }; 112 }; 130 113 131 /* 114 /* 132 * We don't want to trap softirq for too long. << 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. Th << 134 * msecs_to_jiffies() can't be an initializer. << 135 */ << 136 #define BH_WORKER_JIFFIES msecs_to_jiffi << 137 #define BH_WORKER_RESTARTS 10 << 138 << 139 /* << 140 * Structure fields follow one of the followin 115 * Structure fields follow one of the following exclusion rules. 141 * 116 * 142 * I: Modifiable by initialization/destruction 117 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 118 * everyone else. 144 * 119 * 145 * P: Preemption protected. Disabling preempt 120 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the l 121 * only be modified and accessed from the local cpu. 147 * 122 * 148 * L: pool->lock protected. Access with pool- 123 * L: pool->lock protected. Access with pool->lock held. 149 * 124 * 150 * LN: pool->lock and wq_node_nr_active->lock << 151 * reads. << 152 * << 153 * K: Only modified by worker while holding po 125 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from I 126 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 127 * kworker. 156 * 128 * 157 * S: Only modified by worker self. 129 * S: Only modified by worker self. 158 * 130 * 159 * A: wq_pool_attach_mutex protected. 131 * A: wq_pool_attach_mutex protected. 160 * 132 * 161 * PL: wq_pool_mutex protected. 133 * PL: wq_pool_mutex protected. 162 * 134 * 163 * PR: wq_pool_mutex protected for writes. RC 135 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 136 * 165 * PW: wq_pool_mutex and wq->mutex protected f 137 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 138 * 167 * PWR: wq_pool_mutex and wq->mutex protected 139 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 140 * RCU for reads. 169 * 141 * 170 * WQ: wq->mutex protected. 142 * WQ: wq->mutex protected. 171 * 143 * 172 * WR: wq->mutex protected for writes. RCU pr 144 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 145 * 174 * WO: wq->mutex protected for writes. Updated << 175 * with READ_ONCE() without locking. << 176 * << 177 * MD: wq_mayday_lock protected. 146 * MD: wq_mayday_lock protected. 178 * 147 * 179 * WD: Used internally by the watchdog. 148 * WD: Used internally by the watchdog. 180 */ 149 */ 181 150 182 /* struct worker is defined in workqueue_inter 151 /* struct worker is defined in workqueue_internal.h */ 183 152 184 struct worker_pool { 153 struct worker_pool { 185 raw_spinlock_t lock; 154 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; 155 int cpu; /* I: the associated cpu */ 187 int node; 156 int node; /* I: the associated node ID */ 188 int id; 157 int id; /* I: pool ID */ 189 unsigned int flags; 158 unsigned int flags; /* L: flags */ 190 159 191 unsigned long watchdog_ts; 160 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; 161 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 162 194 /* 163 /* 195 * The counter is incremented in a pro 164 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decreme 165 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers 166 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter re 167 * guaranteed to see if the counter reached zero. 199 */ 168 */ 200 int nr_running; 169 int nr_running; 201 170 202 struct list_head worklist; 171 struct list_head worklist; /* L: list of pending works */ 203 172 204 int nr_workers; 173 int nr_workers; /* L: total number of workers */ 205 int nr_idle; 174 int nr_idle; /* L: currently idle workers */ 206 175 207 struct list_head idle_list; 176 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; 177 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work 178 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 179 211 struct timer_list mayday_timer; 180 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 181 213 /* a workers is either on busy_hash or 182 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORK 183 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 184 /* L: hash of busy workers */ 216 185 217 struct worker *manager; 186 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; 187 struct list_head workers; /* A: attached workers */ >> 188 struct list_head dying_workers; /* A: workers about to die */ >> 189 struct completion *detach_completion; /* all workers detached */ 219 190 220 struct ida worker_ida; 191 struct ida worker_ida; /* worker IDs for task name */ 221 192 222 struct workqueue_attrs *attrs; 193 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; 194 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; 195 int refcnt; /* PL: refcnt for unbound pools */ 225 196 226 /* 197 /* 227 * Destruction of pool is RCU protecte 198 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 199 * from get_work_pool(). 229 */ 200 */ 230 struct rcu_head rcu; 201 struct rcu_head rcu; 231 }; 202 }; 232 203 233 /* 204 /* 234 * Per-pool_workqueue statistics. These can be 205 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 206 * tools/workqueue/wq_monitor.py. 236 */ 207 */ 237 enum pool_workqueue_stats { 208 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items 209 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items 210 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU t 211 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_inte 212 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency 213 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound wor 214 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to 215 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work 216 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 217 247 PWQ_NR_STATS, 218 PWQ_NR_STATS, 248 }; 219 }; 249 220 250 /* 221 /* 251 * The per-pool workqueue. While queued, bits !! 222 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 252 * of work_struct->data are used for flags and 223 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be ali 224 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 225 * number of flag bits. 255 */ 226 */ 256 struct pool_workqueue { 227 struct pool_workqueue { 257 struct worker_pool *pool; 228 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; 229 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; 230 int work_color; /* L: current color */ 260 int flush_color; 231 int flush_color; /* L: flushing color */ 261 int refcnt; 232 int refcnt; /* L: reference count */ 262 int nr_in_flight[W 233 int nr_in_flight[WORK_NR_COLORS]; 263 234 /* L: nr of in_flight works */ 264 bool plugged; << 265 235 266 /* 236 /* 267 * nr_active management and WORK_STRUC 237 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 238 * 269 * When pwq->nr_active >= max_active, 239 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool 240 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 241 * WORK_STRUCT_INACTIVE. 272 * 242 * 273 * All work items marked with WORK_STR !! 243 * All work items marked with WORK_STRUCT_INACTIVE do not participate 274 * nr_active and all work items in pwq !! 244 * in pwq->nr_active and all work items in pwq->inactive_works are 275 * WORK_STRUCT_INACTIVE. But not all W !! 245 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 276 * in pwq->inactive_works. Some of the !! 246 * work items are in pwq->inactive_works. Some of them are ready to 277 * pool->worklist or worker->scheduled !! 247 * run in pool->worklist or worker->scheduled. Those work itmes are 278 * wq_barrier which is used for flush_ !! 248 * only struct wq_barrier which is used for flush_work() and should 279 * in nr_active. For non-barrier work !! 249 * not participate in pwq->nr_active. For non-barrier work item, it 280 * WORK_STRUCT_INACTIVE iff it is in p !! 250 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 251 */ 282 int nr_active; 252 int nr_active; /* L: nr of active works */ >> 253 int max_active; /* L: max active works */ 283 struct list_head inactive_works 254 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; << 285 struct list_head pwqs_node; 255 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; 256 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 257 288 u64 stats[PWQ_NR_S 258 u64 stats[PWQ_NR_STATS]; 289 259 290 /* 260 /* 291 * Release of unbound pwq is punted to 261 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for detail 262 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq 263 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 264 * grabbing wq->mutex. 295 */ 265 */ 296 struct kthread_work release_work; 266 struct kthread_work release_work; 297 struct rcu_head rcu; 267 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); !! 268 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 299 269 300 /* 270 /* 301 * Structure used to wait for workqueue flush. 271 * Structure used to wait for workqueue flush. 302 */ 272 */ 303 struct wq_flusher { 273 struct wq_flusher { 304 struct list_head list; 274 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; 275 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; 276 struct completion done; /* flush completion */ 307 }; 277 }; 308 278 309 struct wq_device; 279 struct wq_device; 310 280 311 /* 281 /* 312 * Unlike in a per-cpu workqueue where max_act << 313 * on each CPU, in an unbound workqueue, max_a << 314 * As sharing a single nr_active across multip << 315 * the counting and enforcement is per NUMA no << 316 * << 317 * The following struct is used to enforce per << 318 * to start executing a work item, it should i << 319 * tryinc_node_nr_active(). If acquisition fai << 320 * ->max, the pwq is queued on ->pending_pwqs. << 321 * and decrement ->nr, node_activate_pending_p << 322 * round-robin order. << 323 */ << 324 struct wq_node_nr_active { << 325 int max; << 326 atomic_t nr; << 327 raw_spinlock_t lock; << 328 struct list_head pending_pwqs; << 329 }; << 330 << 331 /* << 332 * The externally visible workqueue. It relay 282 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its poo 283 * the appropriate worker_pool through its pool_workqueues. 334 */ 284 */ 335 struct workqueue_struct { 285 struct workqueue_struct { 336 struct list_head pwqs; 286 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; 287 struct list_head list; /* PR: list of all workqueues */ 338 288 339 struct mutex mutex; 289 struct mutex mutex; /* protects this wq */ 340 int work_color; 290 int work_color; /* WQ: current work color */ 341 int flush_color; 291 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flu 292 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher 293 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; 294 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overfl 295 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 296 347 struct list_head maydays; 297 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; 298 struct worker *rescuer; /* MD: rescue worker */ 349 299 350 int nr_drainers; 300 int nr_drainers; /* WQ: drain in progress */ 351 !! 301 int saved_max_active; /* WQ: saved pwq max_active */ 352 /* See alloc_workqueue() function comm << 353 int max_active; << 354 int min_active; << 355 int saved_max_acti << 356 int saved_min_acti << 357 302 358 struct workqueue_attrs *unbound_attrs 303 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; !! 304 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 360 305 361 #ifdef CONFIG_SYSFS 306 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; 307 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 308 #endif 364 #ifdef CONFIG_LOCKDEP 309 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 310 char *lock_name; 366 struct lock_class_key key; 311 struct lock_class_key key; 367 struct lockdep_map lockdep_map; 312 struct lockdep_map lockdep_map; 368 #endif 313 #endif 369 char name[WQ_NAME_L 314 char name[WQ_NAME_LEN]; /* I: workqueue name */ 370 315 371 /* 316 /* 372 * Destruction of workqueue_struct is 317 * Destruction of workqueue_struct is RCU protected to allow walking 373 * the workqueues list without grabbin 318 * the workqueues list without grabbing wq_pool_mutex. 374 * This is used to dump all workqueues 319 * This is used to dump all workqueues from sysrq. 375 */ 320 */ 376 struct rcu_head rcu; 321 struct rcu_head rcu; 377 322 378 /* hot fields used during command issu 323 /* hot fields used during command issue, aligned to cacheline */ 379 unsigned int flags ____cach 324 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 380 struct pool_workqueue __rcu * __percpu !! 325 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 381 struct wq_node_nr_active *node_nr_acti << 382 }; 326 }; 383 327 >> 328 static struct kmem_cache *pwq_cache; >> 329 384 /* 330 /* 385 * Each pod type describes how CPUs should be 331 * Each pod type describes how CPUs should be grouped for unbound workqueues. 386 * See the comment above workqueue_attrs->affn 332 * See the comment above workqueue_attrs->affn_scope. 387 */ 333 */ 388 struct wq_pod_type { 334 struct wq_pod_type { 389 int nr_pods; 335 int nr_pods; /* number of pods */ 390 cpumask_var_t *pod_cpus; 336 cpumask_var_t *pod_cpus; /* pod -> cpus */ 391 int *pod_node; 337 int *pod_node; /* pod -> node */ 392 int *cpu_pod; 338 int *cpu_pod; /* cpu -> pod */ 393 }; 339 }; 394 340 395 struct work_offq_data { !! 341 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 396 u32 pool_id; !! 342 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 397 u32 disable; << 398 u32 flags; << 399 }; << 400 343 401 static const char *wq_affn_names[WQ_AFFN_NR_TY 344 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 402 [WQ_AFFN_DFL] = "default", !! 345 [WQ_AFFN_DFL] = "default", 403 [WQ_AFFN_CPU] = "cpu", !! 346 [WQ_AFFN_CPU] = "cpu", 404 [WQ_AFFN_SMT] = "smt", !! 347 [WQ_AFFN_SMT] = "smt", 405 [WQ_AFFN_CACHE] = "cache", !! 348 [WQ_AFFN_CACHE] = "cache", 406 [WQ_AFFN_NUMA] = "numa", !! 349 [WQ_AFFN_NUMA] = "numa", 407 [WQ_AFFN_SYSTEM] = "system", !! 350 [WQ_AFFN_SYSTEM] = "system", 408 }; 351 }; 409 352 410 /* 353 /* 411 * Per-cpu work items which run for longer tha 354 * Per-cpu work items which run for longer than the following threshold are 412 * automatically considered CPU intensive and 355 * automatically considered CPU intensive and excluded from concurrency 413 * management to prevent them from noticeably 356 * management to prevent them from noticeably delaying other per-cpu work items. 414 * ULONG_MAX indicates that the user hasn't ov 357 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 415 * The actual value is initialized in wq_cpu_i 358 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 416 */ 359 */ 417 static unsigned long wq_cpu_intensive_thresh_u 360 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 418 module_param_named(cpu_intensive_thresh_us, wq 361 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 419 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT << 420 static unsigned int wq_cpu_intensive_warning_t << 421 module_param_named(cpu_intensive_warning_thres << 422 #endif << 423 362 424 /* see the comment above the definition of WQ_ 363 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 425 static bool wq_power_efficient = IS_ENABLED(CO 364 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 426 module_param_named(power_efficient, wq_power_e 365 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 427 366 428 static bool wq_online; /* can 367 static bool wq_online; /* can kworkers be created yet? */ 429 static bool wq_topo_initialized __read_mostly << 430 << 431 static struct kmem_cache *pwq_cache; << 432 << 433 static struct wq_pod_type wq_pod_types[WQ_AFFN << 434 static enum wq_affn_scope wq_affn_dfl = WQ_AFF << 435 368 436 /* buf for wq_update_unbound_pod_attrs(), prot 369 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 437 static struct workqueue_attrs *unbound_wq_upda !! 370 static struct workqueue_attrs *wq_update_pod_attrs_buf; 438 371 439 static DEFINE_MUTEX(wq_pool_mutex); /* pro 372 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 440 static DEFINE_MUTEX(wq_pool_attach_mutex); /* 373 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 441 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); 374 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 442 /* wait for manager to go away */ 375 /* wait for manager to go away */ 443 static struct rcuwait manager_wait = __RCUWAIT 376 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 444 377 445 static LIST_HEAD(workqueues); /* PR: 378 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 446 static bool workqueue_freezing; /* PL: 379 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 447 380 448 /* PL: mirror the cpu_online_mask excluding th << 449 static cpumask_var_t wq_online_cpumask; << 450 << 451 /* PL&A: allowable cpus for unbound wqs and wo 381 /* PL&A: allowable cpus for unbound wqs and work items */ 452 static cpumask_var_t wq_unbound_cpumask; 382 static cpumask_var_t wq_unbound_cpumask; 453 383 454 /* PL: user requested unbound cpumask via sysf << 455 static cpumask_var_t wq_requested_unbound_cpum << 456 << 457 /* PL: isolated cpumask to be excluded from un << 458 static cpumask_var_t wq_isolated_cpumask; << 459 << 460 /* for further constrain wq_unbound_cpumask by 384 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 461 static struct cpumask wq_cmdline_cpumask __ini 385 static struct cpumask wq_cmdline_cpumask __initdata; 462 386 463 /* CPU where unbound work was last round robin 387 /* CPU where unbound work was last round robin scheduled from this CPU */ 464 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 388 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 465 389 466 /* 390 /* 467 * Local execution of unbound work items is no 391 * Local execution of unbound work items is no longer guaranteed. The 468 * following always forces round-robin CPU sel 392 * following always forces round-robin CPU selection on unbound work items 469 * to uncover usages which depend on it. 393 * to uncover usages which depend on it. 470 */ 394 */ 471 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 395 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 472 static bool wq_debug_force_rr_cpu = true; 396 static bool wq_debug_force_rr_cpu = true; 473 #else 397 #else 474 static bool wq_debug_force_rr_cpu = false; 398 static bool wq_debug_force_rr_cpu = false; 475 #endif 399 #endif 476 module_param_named(debug_force_rr_cpu, wq_debu 400 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 477 401 478 /* to raise softirq for the BH worker pools on << 479 static DEFINE_PER_CPU_SHARED_ALIGNED(struct ir << 480 bh_pool_i << 481 << 482 /* the BH worker pools */ << 483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct wo << 484 bh_worker << 485 << 486 /* the per-cpu worker pools */ 402 /* the per-cpu worker pools */ 487 static DEFINE_PER_CPU_SHARED_ALIGNED(struct wo !! 403 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 488 cpu_worke << 489 404 490 static DEFINE_IDR(worker_pool_idr); /* PR: 405 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 491 406 492 /* PL: hash of all unbound pools keyed by pool 407 /* PL: hash of all unbound pools keyed by pool->attrs */ 493 static DEFINE_HASHTABLE(unbound_pool_hash, UNB 408 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 494 409 495 /* I: attributes used when instantiating stand 410 /* I: attributes used when instantiating standard unbound pools on demand */ 496 static struct workqueue_attrs *unbound_std_wq_ 411 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 497 412 498 /* I: attributes used when instantiating order 413 /* I: attributes used when instantiating ordered pools on demand */ 499 static struct workqueue_attrs *ordered_wq_attr 414 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 500 415 501 /* 416 /* 502 * I: kthread_worker to release pwq's. pwq rel 417 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 503 * process context while holding a pool lock. 418 * process context while holding a pool lock. Bounce to a dedicated kthread 504 * worker to avoid A-A deadlocks. 419 * worker to avoid A-A deadlocks. 505 */ 420 */ 506 static struct kthread_worker *pwq_release_work !! 421 static struct kthread_worker *pwq_release_worker; 507 422 508 struct workqueue_struct *system_wq __ro_after_ !! 423 struct workqueue_struct *system_wq __read_mostly; 509 EXPORT_SYMBOL(system_wq); 424 EXPORT_SYMBOL(system_wq); 510 struct workqueue_struct *system_highpri_wq __r !! 425 struct workqueue_struct *system_highpri_wq __read_mostly; 511 EXPORT_SYMBOL_GPL(system_highpri_wq); 426 EXPORT_SYMBOL_GPL(system_highpri_wq); 512 struct workqueue_struct *system_long_wq __ro_a !! 427 struct workqueue_struct *system_long_wq __read_mostly; 513 EXPORT_SYMBOL_GPL(system_long_wq); 428 EXPORT_SYMBOL_GPL(system_long_wq); 514 struct workqueue_struct *system_unbound_wq __r !! 429 struct workqueue_struct *system_unbound_wq __read_mostly; 515 EXPORT_SYMBOL_GPL(system_unbound_wq); 430 EXPORT_SYMBOL_GPL(system_unbound_wq); 516 struct workqueue_struct *system_freezable_wq _ !! 431 struct workqueue_struct *system_freezable_wq __read_mostly; 517 EXPORT_SYMBOL_GPL(system_freezable_wq); 432 EXPORT_SYMBOL_GPL(system_freezable_wq); 518 struct workqueue_struct *system_power_efficien !! 433 struct workqueue_struct *system_power_efficient_wq __read_mostly; 519 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 434 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 520 struct workqueue_struct *system_freezable_powe !! 435 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 521 EXPORT_SYMBOL_GPL(system_freezable_power_effic 436 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 522 struct workqueue_struct *system_bh_wq; << 523 EXPORT_SYMBOL_GPL(system_bh_wq); << 524 struct workqueue_struct *system_bh_highpri_wq; << 525 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); << 526 437 527 static int worker_thread(void *__worker); 438 static int worker_thread(void *__worker); 528 static void workqueue_sysfs_unregister(struct 439 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 529 static void show_pwq(struct pool_workqueue *pw 440 static void show_pwq(struct pool_workqueue *pwq); 530 static void show_one_worker_pool(struct worker 441 static void show_one_worker_pool(struct worker_pool *pool); 531 442 532 #define CREATE_TRACE_POINTS 443 #define CREATE_TRACE_POINTS 533 #include <trace/events/workqueue.h> 444 #include <trace/events/workqueue.h> 534 445 535 #define assert_rcu_or_pool_mutex() 446 #define assert_rcu_or_pool_mutex() \ 536 RCU_LOCKDEP_WARN(!rcu_read_lock_any_he !! 447 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 537 !lockdep_is_held(&wq_ 448 !lockdep_is_held(&wq_pool_mutex), \ 538 "RCU or wq_pool_mutex 449 "RCU or wq_pool_mutex should be held") 539 450 540 #define assert_rcu_or_wq_mutex_or_pool_mutex(w 451 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 541 RCU_LOCKDEP_WARN(!rcu_read_lock_any_he !! 452 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 542 !lockdep_is_held(&wq- 453 !lockdep_is_held(&wq->mutex) && \ 543 !lockdep_is_held(&wq_ 454 !lockdep_is_held(&wq_pool_mutex), \ 544 "RCU, wq->mutex or wq 455 "RCU, wq->mutex or wq_pool_mutex should be held") 545 456 546 #define for_each_bh_worker_pool(pool, cpu) << 547 for ((pool) = &per_cpu(bh_worker_pools << 548 (pool) < &per_cpu(bh_worker_pools << 549 (pool)++) << 550 << 551 #define for_each_cpu_worker_pool(pool, cpu) 457 #define for_each_cpu_worker_pool(pool, cpu) \ 552 for ((pool) = &per_cpu(cpu_worker_pool 458 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 553 (pool) < &per_cpu(cpu_worker_pool 459 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 554 (pool)++) 460 (pool)++) 555 461 556 /** 462 /** 557 * for_each_pool - iterate through all worker_ 463 * for_each_pool - iterate through all worker_pools in the system 558 * @pool: iteration cursor 464 * @pool: iteration cursor 559 * @pi: integer used for iteration 465 * @pi: integer used for iteration 560 * 466 * 561 * This must be called either with wq_pool_mut 467 * This must be called either with wq_pool_mutex held or RCU read 562 * locked. If the pool needs to be used beyon 468 * locked. If the pool needs to be used beyond the locking in effect, the 563 * caller is responsible for guaranteeing that 469 * caller is responsible for guaranteeing that the pool stays online. 564 * 470 * 565 * The if/else clause exists only for the lock 471 * The if/else clause exists only for the lockdep assertion and can be 566 * ignored. 472 * ignored. 567 */ 473 */ 568 #define for_each_pool(pool, pi) 474 #define for_each_pool(pool, pi) \ 569 idr_for_each_entry(&worker_pool_idr, p 475 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 570 if (({ assert_rcu_or_pool_mute 476 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 571 else 477 else 572 478 573 /** 479 /** 574 * for_each_pool_worker - iterate through all 480 * for_each_pool_worker - iterate through all workers of a worker_pool 575 * @worker: iteration cursor 481 * @worker: iteration cursor 576 * @pool: worker_pool to iterate workers of 482 * @pool: worker_pool to iterate workers of 577 * 483 * 578 * This must be called with wq_pool_attach_mut 484 * This must be called with wq_pool_attach_mutex. 579 * 485 * 580 * The if/else clause exists only for the lock 486 * The if/else clause exists only for the lockdep assertion and can be 581 * ignored. 487 * ignored. 582 */ 488 */ 583 #define for_each_pool_worker(worker, pool) 489 #define for_each_pool_worker(worker, pool) \ 584 list_for_each_entry((worker), &(pool)- 490 list_for_each_entry((worker), &(pool)->workers, node) \ 585 if (({ lockdep_assert_held(&wq 491 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 586 else 492 else 587 493 588 /** 494 /** 589 * for_each_pwq - iterate through all pool_wor 495 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 590 * @pwq: iteration cursor 496 * @pwq: iteration cursor 591 * @wq: the target workqueue 497 * @wq: the target workqueue 592 * 498 * 593 * This must be called either with wq->mutex h 499 * This must be called either with wq->mutex held or RCU read locked. 594 * If the pwq needs to be used beyond the lock 500 * If the pwq needs to be used beyond the locking in effect, the caller is 595 * responsible for guaranteeing that the pwq s 501 * responsible for guaranteeing that the pwq stays online. 596 * 502 * 597 * The if/else clause exists only for the lock 503 * The if/else clause exists only for the lockdep assertion and can be 598 * ignored. 504 * ignored. 599 */ 505 */ 600 #define for_each_pwq(pwq, wq) 506 #define for_each_pwq(pwq, wq) \ 601 list_for_each_entry_rcu((pwq), &(wq)-> 507 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 602 lockdep_is_he 508 lockdep_is_held(&(wq->mutex))) 603 509 604 #ifdef CONFIG_DEBUG_OBJECTS_WORK 510 #ifdef CONFIG_DEBUG_OBJECTS_WORK 605 511 606 static const struct debug_obj_descr work_debug 512 static const struct debug_obj_descr work_debug_descr; 607 513 608 static void *work_debug_hint(void *addr) 514 static void *work_debug_hint(void *addr) 609 { 515 { 610 return ((struct work_struct *) addr)-> 516 return ((struct work_struct *) addr)->func; 611 } 517 } 612 518 613 static bool work_is_static_object(void *addr) 519 static bool work_is_static_object(void *addr) 614 { 520 { 615 struct work_struct *work = addr; 521 struct work_struct *work = addr; 616 522 617 return test_bit(WORK_STRUCT_STATIC_BIT 523 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 618 } 524 } 619 525 620 /* 526 /* 621 * fixup_init is called when: 527 * fixup_init is called when: 622 * - an active object is initialized 528 * - an active object is initialized 623 */ 529 */ 624 static bool work_fixup_init(void *addr, enum d 530 static bool work_fixup_init(void *addr, enum debug_obj_state state) 625 { 531 { 626 struct work_struct *work = addr; 532 struct work_struct *work = addr; 627 533 628 switch (state) { 534 switch (state) { 629 case ODEBUG_STATE_ACTIVE: 535 case ODEBUG_STATE_ACTIVE: 630 cancel_work_sync(work); 536 cancel_work_sync(work); 631 debug_object_init(work, &work_ 537 debug_object_init(work, &work_debug_descr); 632 return true; 538 return true; 633 default: 539 default: 634 return false; 540 return false; 635 } 541 } 636 } 542 } 637 543 638 /* 544 /* 639 * fixup_free is called when: 545 * fixup_free is called when: 640 * - an active object is freed 546 * - an active object is freed 641 */ 547 */ 642 static bool work_fixup_free(void *addr, enum d 548 static bool work_fixup_free(void *addr, enum debug_obj_state state) 643 { 549 { 644 struct work_struct *work = addr; 550 struct work_struct *work = addr; 645 551 646 switch (state) { 552 switch (state) { 647 case ODEBUG_STATE_ACTIVE: 553 case ODEBUG_STATE_ACTIVE: 648 cancel_work_sync(work); 554 cancel_work_sync(work); 649 debug_object_free(work, &work_ 555 debug_object_free(work, &work_debug_descr); 650 return true; 556 return true; 651 default: 557 default: 652 return false; 558 return false; 653 } 559 } 654 } 560 } 655 561 656 static const struct debug_obj_descr work_debug 562 static const struct debug_obj_descr work_debug_descr = { 657 .name = "work_struct", 563 .name = "work_struct", 658 .debug_hint = work_debug_hint, 564 .debug_hint = work_debug_hint, 659 .is_static_object = work_is_static_obj 565 .is_static_object = work_is_static_object, 660 .fixup_init = work_fixup_init, 566 .fixup_init = work_fixup_init, 661 .fixup_free = work_fixup_free, 567 .fixup_free = work_fixup_free, 662 }; 568 }; 663 569 664 static inline void debug_work_activate(struct 570 static inline void debug_work_activate(struct work_struct *work) 665 { 571 { 666 debug_object_activate(work, &work_debu 572 debug_object_activate(work, &work_debug_descr); 667 } 573 } 668 574 669 static inline void debug_work_deactivate(struc 575 static inline void debug_work_deactivate(struct work_struct *work) 670 { 576 { 671 debug_object_deactivate(work, &work_de 577 debug_object_deactivate(work, &work_debug_descr); 672 } 578 } 673 579 674 void __init_work(struct work_struct *work, int 580 void __init_work(struct work_struct *work, int onstack) 675 { 581 { 676 if (onstack) 582 if (onstack) 677 debug_object_init_on_stack(wor 583 debug_object_init_on_stack(work, &work_debug_descr); 678 else 584 else 679 debug_object_init(work, &work_ 585 debug_object_init(work, &work_debug_descr); 680 } 586 } 681 EXPORT_SYMBOL_GPL(__init_work); 587 EXPORT_SYMBOL_GPL(__init_work); 682 588 683 void destroy_work_on_stack(struct work_struct 589 void destroy_work_on_stack(struct work_struct *work) 684 { 590 { 685 debug_object_free(work, &work_debug_de 591 debug_object_free(work, &work_debug_descr); 686 } 592 } 687 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 593 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 688 594 689 void destroy_delayed_work_on_stack(struct dela 595 void destroy_delayed_work_on_stack(struct delayed_work *work) 690 { 596 { 691 destroy_timer_on_stack(&work->timer); 597 destroy_timer_on_stack(&work->timer); 692 debug_object_free(&work->work, &work_d 598 debug_object_free(&work->work, &work_debug_descr); 693 } 599 } 694 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stac 600 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 695 601 696 #else 602 #else 697 static inline void debug_work_activate(struct 603 static inline void debug_work_activate(struct work_struct *work) { } 698 static inline void debug_work_deactivate(struc 604 static inline void debug_work_deactivate(struct work_struct *work) { } 699 #endif 605 #endif 700 606 701 /** 607 /** 702 * worker_pool_assign_id - allocate ID and ass 608 * worker_pool_assign_id - allocate ID and assign it to @pool 703 * @pool: the pool pointer of interest 609 * @pool: the pool pointer of interest 704 * 610 * 705 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) 611 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 706 * successfully, -errno on failure. 612 * successfully, -errno on failure. 707 */ 613 */ 708 static int worker_pool_assign_id(struct worker 614 static int worker_pool_assign_id(struct worker_pool *pool) 709 { 615 { 710 int ret; 616 int ret; 711 617 712 lockdep_assert_held(&wq_pool_mutex); 618 lockdep_assert_held(&wq_pool_mutex); 713 619 714 ret = idr_alloc(&worker_pool_idr, pool 620 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 715 GFP_KERNEL); 621 GFP_KERNEL); 716 if (ret >= 0) { 622 if (ret >= 0) { 717 pool->id = ret; 623 pool->id = ret; 718 return 0; 624 return 0; 719 } 625 } 720 return ret; 626 return ret; 721 } 627 } 722 628 723 static struct pool_workqueue __rcu ** << 724 unbound_pwq_slot(struct workqueue_struct *wq, << 725 { << 726 if (cpu >= 0) << 727 return per_cpu_ptr(wq->cpu_pwq, << 728 else << 729 return &wq->dfl_pwq; << 730 } << 731 << 732 /* @cpu < 0 for dfl_pwq */ << 733 static struct pool_workqueue *unbound_pwq(stru << 734 { << 735 return rcu_dereference_check(*unbound_ << 736 lockdep_i << 737 lockdep_i << 738 } << 739 << 740 /** << 741 * unbound_effective_cpumask - effective cpuma << 742 * @wq: workqueue of interest << 743 * << 744 * @wq->unbound_attrs->cpumask contains the cp << 745 * is masked with wq_unbound_cpumask to determ << 746 * default pwq is always mapped to the pool wi << 747 */ << 748 static struct cpumask *unbound_effective_cpuma << 749 { << 750 return unbound_pwq(wq, -1)->pool->attr << 751 } << 752 << 753 static unsigned int work_color_to_flags(int co 629 static unsigned int work_color_to_flags(int color) 754 { 630 { 755 return color << WORK_STRUCT_COLOR_SHIF 631 return color << WORK_STRUCT_COLOR_SHIFT; 756 } 632 } 757 633 758 static int get_work_color(unsigned long work_d 634 static int get_work_color(unsigned long work_data) 759 { 635 { 760 return (work_data >> WORK_STRUCT_COLOR 636 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 761 ((1 << WORK_STRUCT_COLOR_BITS) 637 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 762 } 638 } 763 639 764 static int work_next_color(int color) 640 static int work_next_color(int color) 765 { 641 { 766 return (color + 1) % WORK_NR_COLORS; 642 return (color + 1) % WORK_NR_COLORS; 767 } 643 } 768 644 769 static unsigned long pool_offq_flags(struct wo << 770 { << 771 return (pool->flags & POOL_BH) ? WORK_ << 772 } << 773 << 774 /* 645 /* 775 * While queued, %WORK_STRUCT_PWQ is set and n 646 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 776 * contain the pointer to the queued pwq. Onc 647 * contain the pointer to the queued pwq. Once execution starts, the flag 777 * is cleared and the high bits contain OFFQ f 648 * is cleared and the high bits contain OFFQ flags and pool ID. 778 * 649 * 779 * set_work_pwq(), set_work_pool_and_clear_pen !! 650 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 780 * can be used to set the pwq, pool or clear w !! 651 * and clear_work_data() can be used to set the pwq, pool or clear 781 * only be called while the work is owned - ie !! 652 * work->data. These functions should only be called while the work is >> 653 * owned - ie. while the PENDING bit is set. 782 * 654 * 783 * get_work_pool() and get_work_pwq() can be u 655 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 784 * corresponding to a work. Pool is available 656 * corresponding to a work. Pool is available once the work has been 785 * queued anywhere after initialization until 657 * queued anywhere after initialization until it is sync canceled. pwq is 786 * available only while the work item is queue 658 * available only while the work item is queued. >> 659 * >> 660 * %WORK_OFFQ_CANCELING is used to mark a work item which is being >> 661 * canceled. While being canceled, a work item may have its PENDING set >> 662 * but stay off timer and worklist for arbitrarily long and nobody should >> 663 * try to steal the PENDING bit. 787 */ 664 */ 788 static inline void set_work_data(struct work_s !! 665 static inline void set_work_data(struct work_struct *work, unsigned long data, >> 666 unsigned long flags) 789 { 667 { 790 WARN_ON_ONCE(!work_pending(work)); 668 WARN_ON_ONCE(!work_pending(work)); 791 atomic_long_set(&work->data, data | wo !! 669 atomic_long_set(&work->data, data | flags | work_static(work)); 792 } 670 } 793 671 794 static void set_work_pwq(struct work_struct *w 672 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 795 unsigned long flags) !! 673 unsigned long extra_flags) 796 { 674 { 797 set_work_data(work, (unsigned long)pwq !! 675 set_work_data(work, (unsigned long)pwq, 798 WORK_STRUCT_PWQ | flags) !! 676 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 799 } 677 } 800 678 801 static void set_work_pool_and_keep_pending(str 679 static void set_work_pool_and_keep_pending(struct work_struct *work, 802 int !! 680 int pool_id) 803 { 681 { 804 set_work_data(work, ((unsigned long)po !! 682 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 805 WORK_STRUCT_PENDING | fl !! 683 WORK_STRUCT_PENDING); 806 } 684 } 807 685 808 static void set_work_pool_and_clear_pending(st 686 static void set_work_pool_and_clear_pending(struct work_struct *work, 809 in !! 687 int pool_id) 810 { 688 { 811 /* 689 /* 812 * The following wmb is paired with th 690 * The following wmb is paired with the implied mb in 813 * test_and_set_bit(PENDING) and ensur 691 * test_and_set_bit(PENDING) and ensures all updates to @work made 814 * here are visible to and precede any 692 * here are visible to and precede any updates by the next PENDING 815 * owner. 693 * owner. 816 */ 694 */ 817 smp_wmb(); 695 smp_wmb(); 818 set_work_data(work, ((unsigned long)po !! 696 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 819 flags); << 820 /* 697 /* 821 * The following mb guarantees that pr 698 * The following mb guarantees that previous clear of a PENDING bit 822 * will not be reordered with any spec 699 * will not be reordered with any speculative LOADS or STORES from 823 * work->current_func, which is execut 700 * work->current_func, which is executed afterwards. This possible 824 * reordering can lead to a missed exe 701 * reordering can lead to a missed execution on attempt to queue 825 * the same @work. E.g. consider this 702 * the same @work. E.g. consider this case: 826 * 703 * 827 * CPU#0 CPU 704 * CPU#0 CPU#1 828 * ---------------------------- --- 705 * ---------------------------- -------------------------------- 829 * 706 * 830 * 1 STORE event_indicated 707 * 1 STORE event_indicated 831 * 2 queue_work_on() { 708 * 2 queue_work_on() { 832 * 3 test_and_set_bit(PENDING) 709 * 3 test_and_set_bit(PENDING) 833 * 4 } set 710 * 4 } set_..._and_clear_pending() { 834 * 5 s 711 * 5 set_work_data() # clear bit 835 * 6 s 712 * 6 smp_mb() 836 * 7 wor 713 * 7 work->current_func() { 837 * 8 714 * 8 LOAD event_indicated 838 * } 715 * } 839 * 716 * 840 * Without an explicit full barrier sp 717 * Without an explicit full barrier speculative LOAD on line 8 can 841 * be executed before CPU#0 does STORE 718 * be executed before CPU#0 does STORE on line 1. If that happens, 842 * CPU#0 observes the PENDING bit is s 719 * CPU#0 observes the PENDING bit is still set and new execution of 843 * a @work is not queued in a hope, th 720 * a @work is not queued in a hope, that CPU#1 will eventually 844 * finish the queued @work. Meanwhile 721 * finish the queued @work. Meanwhile CPU#1 does not see 845 * event_indicated is set, because spe 722 * event_indicated is set, because speculative LOAD was executed 846 * before actual STORE. 723 * before actual STORE. 847 */ 724 */ 848 smp_mb(); 725 smp_mb(); 849 } 726 } 850 727 >> 728 static void clear_work_data(struct work_struct *work) >> 729 { >> 730 smp_wmb(); /* see set_work_pool_and_clear_pending() */ >> 731 set_work_data(work, WORK_STRUCT_NO_POOL, 0); >> 732 } >> 733 851 static inline struct pool_workqueue *work_stru 734 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 852 { 735 { 853 return (struct pool_workqueue *)(data !! 736 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); 854 } 737 } 855 738 856 static struct pool_workqueue *get_work_pwq(str 739 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 857 { 740 { 858 unsigned long data = atomic_long_read( 741 unsigned long data = atomic_long_read(&work->data); 859 742 860 if (data & WORK_STRUCT_PWQ) 743 if (data & WORK_STRUCT_PWQ) 861 return work_struct_pwq(data); 744 return work_struct_pwq(data); 862 else 745 else 863 return NULL; 746 return NULL; 864 } 747 } 865 748 866 /** 749 /** 867 * get_work_pool - return the worker_pool a gi 750 * get_work_pool - return the worker_pool a given work was associated with 868 * @work: the work item of interest 751 * @work: the work item of interest 869 * 752 * 870 * Pools are created and destroyed under wq_po 753 * Pools are created and destroyed under wq_pool_mutex, and allows read 871 * access under RCU read lock. As such, this 754 * access under RCU read lock. As such, this function should be 872 * called under wq_pool_mutex or inside of a r 755 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 873 * 756 * 874 * All fields of the returned pool are accessi 757 * All fields of the returned pool are accessible as long as the above 875 * mentioned locking is in effect. If the ret 758 * mentioned locking is in effect. If the returned pool needs to be used 876 * beyond the critical section, the caller is 759 * beyond the critical section, the caller is responsible for ensuring the 877 * returned pool is and stays online. 760 * returned pool is and stays online. 878 * 761 * 879 * Return: The worker_pool @work was last asso 762 * Return: The worker_pool @work was last associated with. %NULL if none. 880 */ 763 */ 881 static struct worker_pool *get_work_pool(struc 764 static struct worker_pool *get_work_pool(struct work_struct *work) 882 { 765 { 883 unsigned long data = atomic_long_read( 766 unsigned long data = atomic_long_read(&work->data); 884 int pool_id; 767 int pool_id; 885 768 886 assert_rcu_or_pool_mutex(); 769 assert_rcu_or_pool_mutex(); 887 770 888 if (data & WORK_STRUCT_PWQ) 771 if (data & WORK_STRUCT_PWQ) 889 return work_struct_pwq(data)-> 772 return work_struct_pwq(data)->pool; 890 773 891 pool_id = data >> WORK_OFFQ_POOL_SHIFT 774 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 892 if (pool_id == WORK_OFFQ_POOL_NONE) 775 if (pool_id == WORK_OFFQ_POOL_NONE) 893 return NULL; 776 return NULL; 894 777 895 return idr_find(&worker_pool_idr, pool 778 return idr_find(&worker_pool_idr, pool_id); 896 } 779 } 897 780 898 static unsigned long shift_and_mask(unsigned l !! 781 /** >> 782 * get_work_pool_id - return the worker pool ID a given work is associated with >> 783 * @work: the work item of interest >> 784 * >> 785 * Return: The worker_pool ID @work was last associated with. >> 786 * %WORK_OFFQ_POOL_NONE if none. >> 787 */ >> 788 static int get_work_pool_id(struct work_struct *work) 899 { 789 { 900 return (v >> shift) & ((1U << bits) - !! 790 unsigned long data = atomic_long_read(&work->data); >> 791 >> 792 if (data & WORK_STRUCT_PWQ) >> 793 return work_struct_pwq(data)->pool->id; >> 794 >> 795 return data >> WORK_OFFQ_POOL_SHIFT; 901 } 796 } 902 797 903 static void work_offqd_unpack(struct work_offq !! 798 static void mark_work_canceling(struct work_struct *work) 904 { 799 { 905 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); !! 800 unsigned long pool_id = get_work_pool_id(work); 906 801 907 offqd->pool_id = shift_and_mask(data, !! 802 pool_id <<= WORK_OFFQ_POOL_SHIFT; 908 WORK_O !! 803 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 909 offqd->disable = shift_and_mask(data, << 910 WORK_O << 911 offqd->flags = data & WORK_OFFQ_FLAG_M << 912 } 804 } 913 805 914 static unsigned long work_offqd_pack_flags(str !! 806 static bool work_is_canceling(struct work_struct *work) 915 { 807 { 916 return ((unsigned long)offqd->disable !! 808 unsigned long data = atomic_long_read(&work->data); 917 ((unsigned long)offqd->flags); !! 809 >> 810 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 918 } 811 } 919 812 920 /* 813 /* 921 * Policy functions. These define the policie 814 * Policy functions. These define the policies on how the global worker 922 * pools are managed. Unless noted otherwise, 815 * pools are managed. Unless noted otherwise, these functions assume that 923 * they're being called with pool->lock held. 816 * they're being called with pool->lock held. 924 */ 817 */ 925 818 926 /* 819 /* 927 * Need to wake up a worker? Called from anyt 820 * Need to wake up a worker? Called from anything but currently 928 * running workers. 821 * running workers. 929 * 822 * 930 * Note that, because unbound workers never co 823 * Note that, because unbound workers never contribute to nr_running, this 931 * function will always return %true for unbou 824 * function will always return %true for unbound pools as long as the 932 * worklist isn't empty. 825 * worklist isn't empty. 933 */ 826 */ 934 static bool need_more_worker(struct worker_poo 827 static bool need_more_worker(struct worker_pool *pool) 935 { 828 { 936 return !list_empty(&pool->worklist) && 829 return !list_empty(&pool->worklist) && !pool->nr_running; 937 } 830 } 938 831 939 /* Can I start working? Called from busy but 832 /* Can I start working? Called from busy but !running workers. */ 940 static bool may_start_working(struct worker_po 833 static bool may_start_working(struct worker_pool *pool) 941 { 834 { 942 return pool->nr_idle; 835 return pool->nr_idle; 943 } 836 } 944 837 945 /* Do I need to keep working? Called from cur 838 /* Do I need to keep working? Called from currently running workers. */ 946 static bool keep_working(struct worker_pool *p 839 static bool keep_working(struct worker_pool *pool) 947 { 840 { 948 return !list_empty(&pool->worklist) && 841 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 949 } 842 } 950 843 951 /* Do we need a new worker? Called from manag 844 /* Do we need a new worker? Called from manager. */ 952 static bool need_to_create_worker(struct worke 845 static bool need_to_create_worker(struct worker_pool *pool) 953 { 846 { 954 return need_more_worker(pool) && !may_ 847 return need_more_worker(pool) && !may_start_working(pool); 955 } 848 } 956 849 957 /* Do we have too many workers and should some 850 /* Do we have too many workers and should some go away? */ 958 static bool too_many_workers(struct worker_poo 851 static bool too_many_workers(struct worker_pool *pool) 959 { 852 { 960 bool managing = pool->flags & POOL_MAN 853 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 961 int nr_idle = pool->nr_idle + managing 854 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 962 int nr_busy = pool->nr_workers - nr_id 855 int nr_busy = pool->nr_workers - nr_idle; 963 856 964 return nr_idle > 2 && (nr_idle - 2) * 857 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 965 } 858 } 966 859 967 /** 860 /** 968 * worker_set_flags - set worker flags and adj 861 * worker_set_flags - set worker flags and adjust nr_running accordingly 969 * @worker: self 862 * @worker: self 970 * @flags: flags to set 863 * @flags: flags to set 971 * 864 * 972 * Set @flags in @worker->flags and adjust nr_ 865 * Set @flags in @worker->flags and adjust nr_running accordingly. 973 */ 866 */ 974 static inline void worker_set_flags(struct wor 867 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 975 { 868 { 976 struct worker_pool *pool = worker->poo 869 struct worker_pool *pool = worker->pool; 977 870 978 lockdep_assert_held(&pool->lock); 871 lockdep_assert_held(&pool->lock); 979 872 980 /* If transitioning into NOT_RUNNING, 873 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 981 if ((flags & WORKER_NOT_RUNNING) && 874 if ((flags & WORKER_NOT_RUNNING) && 982 !(worker->flags & WORKER_NOT_RUNNI 875 !(worker->flags & WORKER_NOT_RUNNING)) { 983 pool->nr_running--; 876 pool->nr_running--; 984 } 877 } 985 878 986 worker->flags |= flags; 879 worker->flags |= flags; 987 } 880 } 988 881 989 /** 882 /** 990 * worker_clr_flags - clear worker flags and a 883 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 991 * @worker: self 884 * @worker: self 992 * @flags: flags to clear 885 * @flags: flags to clear 993 * 886 * 994 * Clear @flags in @worker->flags and adjust n 887 * Clear @flags in @worker->flags and adjust nr_running accordingly. 995 */ 888 */ 996 static inline void worker_clr_flags(struct wor 889 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 997 { 890 { 998 struct worker_pool *pool = worker->poo 891 struct worker_pool *pool = worker->pool; 999 unsigned int oflags = worker->flags; 892 unsigned int oflags = worker->flags; 1000 893 1001 lockdep_assert_held(&pool->lock); 894 lockdep_assert_held(&pool->lock); 1002 895 1003 worker->flags &= ~flags; 896 worker->flags &= ~flags; 1004 897 1005 /* 898 /* 1006 * If transitioning out of NOT_RUNNIN 899 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1007 * that the nested NOT_RUNNING is not 900 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1008 * of multiple flags, not a single fl 901 * of multiple flags, not a single flag. 1009 */ 902 */ 1010 if ((flags & WORKER_NOT_RUNNING) && ( 903 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1011 if (!(worker->flags & WORKER_ 904 if (!(worker->flags & WORKER_NOT_RUNNING)) 1012 pool->nr_running++; 905 pool->nr_running++; 1013 } 906 } 1014 907 1015 /* Return the first idle worker. Called with 908 /* Return the first idle worker. Called with pool->lock held. */ 1016 static struct worker *first_idle_worker(struc 909 static struct worker *first_idle_worker(struct worker_pool *pool) 1017 { 910 { 1018 if (unlikely(list_empty(&pool->idle_l 911 if (unlikely(list_empty(&pool->idle_list))) 1019 return NULL; 912 return NULL; 1020 913 1021 return list_first_entry(&pool->idle_l 914 return list_first_entry(&pool->idle_list, struct worker, entry); 1022 } 915 } 1023 916 1024 /** 917 /** 1025 * worker_enter_idle - enter idle state 918 * worker_enter_idle - enter idle state 1026 * @worker: worker which is entering idle sta 919 * @worker: worker which is entering idle state 1027 * 920 * 1028 * @worker is entering idle state. Update st 921 * @worker is entering idle state. Update stats and idle timer if 1029 * necessary. 922 * necessary. 1030 * 923 * 1031 * LOCKING: 924 * LOCKING: 1032 * raw_spin_lock_irq(pool->lock). 925 * raw_spin_lock_irq(pool->lock). 1033 */ 926 */ 1034 static void worker_enter_idle(struct worker * 927 static void worker_enter_idle(struct worker *worker) 1035 { 928 { 1036 struct worker_pool *pool = worker->po 929 struct worker_pool *pool = worker->pool; 1037 930 1038 if (WARN_ON_ONCE(worker->flags & WORK 931 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1039 WARN_ON_ONCE(!list_empty(&worker- 932 WARN_ON_ONCE(!list_empty(&worker->entry) && 1040 (worker->hentry.next 933 (worker->hentry.next || worker->hentry.pprev))) 1041 return; 934 return; 1042 935 1043 /* can't use worker_set_flags(), also 936 /* can't use worker_set_flags(), also called from create_worker() */ 1044 worker->flags |= WORKER_IDLE; 937 worker->flags |= WORKER_IDLE; 1045 pool->nr_idle++; 938 pool->nr_idle++; 1046 worker->last_active = jiffies; 939 worker->last_active = jiffies; 1047 940 1048 /* idle_list is LIFO */ 941 /* idle_list is LIFO */ 1049 list_add(&worker->entry, &pool->idle_ 942 list_add(&worker->entry, &pool->idle_list); 1050 943 1051 if (too_many_workers(pool) && !timer_ 944 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1052 mod_timer(&pool->idle_timer, 945 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1053 946 1054 /* Sanity check nr_running. */ 947 /* Sanity check nr_running. */ 1055 WARN_ON_ONCE(pool->nr_workers == pool 948 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1056 } 949 } 1057 950 1058 /** 951 /** 1059 * worker_leave_idle - leave idle state 952 * worker_leave_idle - leave idle state 1060 * @worker: worker which is leaving idle stat 953 * @worker: worker which is leaving idle state 1061 * 954 * 1062 * @worker is leaving idle state. Update sta 955 * @worker is leaving idle state. Update stats. 1063 * 956 * 1064 * LOCKING: 957 * LOCKING: 1065 * raw_spin_lock_irq(pool->lock). 958 * raw_spin_lock_irq(pool->lock). 1066 */ 959 */ 1067 static void worker_leave_idle(struct worker * 960 static void worker_leave_idle(struct worker *worker) 1068 { 961 { 1069 struct worker_pool *pool = worker->po 962 struct worker_pool *pool = worker->pool; 1070 963 1071 if (WARN_ON_ONCE(!(worker->flags & WO 964 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1072 return; 965 return; 1073 worker_clr_flags(worker, WORKER_IDLE) 966 worker_clr_flags(worker, WORKER_IDLE); 1074 pool->nr_idle--; 967 pool->nr_idle--; 1075 list_del_init(&worker->entry); 968 list_del_init(&worker->entry); 1076 } 969 } 1077 970 1078 /** 971 /** 1079 * find_worker_executing_work - find worker w 972 * find_worker_executing_work - find worker which is executing a work 1080 * @pool: pool of interest 973 * @pool: pool of interest 1081 * @work: work to find worker for 974 * @work: work to find worker for 1082 * 975 * 1083 * Find a worker which is executing @work on 976 * Find a worker which is executing @work on @pool by searching 1084 * @pool->busy_hash which is keyed by the add 977 * @pool->busy_hash which is keyed by the address of @work. For a worker 1085 * to match, its current execution should mat 978 * to match, its current execution should match the address of @work and 1086 * its work function. This is to avoid unwan 979 * its work function. This is to avoid unwanted dependency between 1087 * unrelated work executions through a work i 980 * unrelated work executions through a work item being recycled while still 1088 * being executed. 981 * being executed. 1089 * 982 * 1090 * This is a bit tricky. A work item may be 983 * This is a bit tricky. A work item may be freed once its execution 1091 * starts and nothing prevents the freed area 984 * starts and nothing prevents the freed area from being recycled for 1092 * another work item. If the same work item 985 * another work item. If the same work item address ends up being reused 1093 * before the original execution finishes, wo 986 * before the original execution finishes, workqueue will identify the 1094 * recycled work item as currently executing 987 * recycled work item as currently executing and make it wait until the 1095 * current execution finishes, introducing an 988 * current execution finishes, introducing an unwanted dependency. 1096 * 989 * 1097 * This function checks the work item address 990 * This function checks the work item address and work function to avoid 1098 * false positives. Note that this isn't com 991 * false positives. Note that this isn't complete as one may construct a 1099 * work function which can introduce dependen 992 * work function which can introduce dependency onto itself through a 1100 * recycled work item. Well, if somebody wan 993 * recycled work item. Well, if somebody wants to shoot oneself in the 1101 * foot that badly, there's only so much we c 994 * foot that badly, there's only so much we can do, and if such deadlock 1102 * actually occurs, it should be easy to loca 995 * actually occurs, it should be easy to locate the culprit work function. 1103 * 996 * 1104 * CONTEXT: 997 * CONTEXT: 1105 * raw_spin_lock_irq(pool->lock). 998 * raw_spin_lock_irq(pool->lock). 1106 * 999 * 1107 * Return: 1000 * Return: 1108 * Pointer to worker which is executing @work 1001 * Pointer to worker which is executing @work if found, %NULL 1109 * otherwise. 1002 * otherwise. 1110 */ 1003 */ 1111 static struct worker *find_worker_executing_w 1004 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1112 1005 struct work_struct *work) 1113 { 1006 { 1114 struct worker *worker; 1007 struct worker *worker; 1115 1008 1116 hash_for_each_possible(pool->busy_has 1009 hash_for_each_possible(pool->busy_hash, worker, hentry, 1117 (unsigned long 1010 (unsigned long)work) 1118 if (worker->current_work == w 1011 if (worker->current_work == work && 1119 worker->current_func == w 1012 worker->current_func == work->func) 1120 return worker; 1013 return worker; 1121 1014 1122 return NULL; 1015 return NULL; 1123 } 1016 } 1124 1017 1125 /** 1018 /** 1126 * move_linked_works - move linked works to a 1019 * move_linked_works - move linked works to a list 1127 * @work: start of series of works to be sche 1020 * @work: start of series of works to be scheduled 1128 * @head: target list to append @work to 1021 * @head: target list to append @work to 1129 * @nextp: out parameter for nested worklist 1022 * @nextp: out parameter for nested worklist walking 1130 * 1023 * 1131 * Schedule linked works starting from @work 1024 * Schedule linked works starting from @work to @head. Work series to be 1132 * scheduled starts at @work and includes any 1025 * scheduled starts at @work and includes any consecutive work with 1133 * WORK_STRUCT_LINKED set in its predecessor. 1026 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1134 * @nextp. 1027 * @nextp. 1135 * 1028 * 1136 * CONTEXT: 1029 * CONTEXT: 1137 * raw_spin_lock_irq(pool->lock). 1030 * raw_spin_lock_irq(pool->lock). 1138 */ 1031 */ 1139 static void move_linked_works(struct work_str 1032 static void move_linked_works(struct work_struct *work, struct list_head *head, 1140 struct work_str 1033 struct work_struct **nextp) 1141 { 1034 { 1142 struct work_struct *n; 1035 struct work_struct *n; 1143 1036 1144 /* 1037 /* 1145 * Linked worklist will always end be 1038 * Linked worklist will always end before the end of the list, 1146 * use NULL for list head. 1039 * use NULL for list head. 1147 */ 1040 */ 1148 list_for_each_entry_safe_from(work, n 1041 list_for_each_entry_safe_from(work, n, NULL, entry) { 1149 list_move_tail(&work->entry, 1042 list_move_tail(&work->entry, head); 1150 if (!(*work_data_bits(work) & 1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1151 break; 1044 break; 1152 } 1045 } 1153 1046 1154 /* 1047 /* 1155 * If we're already inside safe list 1048 * If we're already inside safe list traversal and have moved 1156 * multiple works to the scheduled qu 1049 * multiple works to the scheduled queue, the next position 1157 * needs to be updated. 1050 * needs to be updated. 1158 */ 1051 */ 1159 if (nextp) 1052 if (nextp) 1160 *nextp = n; 1053 *nextp = n; 1161 } 1054 } 1162 1055 1163 /** 1056 /** 1164 * assign_work - assign a work item and its l 1057 * assign_work - assign a work item and its linked work items to a worker 1165 * @work: work to assign 1058 * @work: work to assign 1166 * @worker: worker to assign to 1059 * @worker: worker to assign to 1167 * @nextp: out parameter for nested worklist 1060 * @nextp: out parameter for nested worklist walking 1168 * 1061 * 1169 * Assign @work and its linked work items to 1062 * Assign @work and its linked work items to @worker. If @work is already being 1170 * executed by another worker in the same poo 1063 * executed by another worker in the same pool, it'll be punted there. 1171 * 1064 * 1172 * If @nextp is not NULL, it's updated to poi 1065 * If @nextp is not NULL, it's updated to point to the next work of the last 1173 * scheduled work. This allows assign_work() 1066 * scheduled work. This allows assign_work() to be nested inside 1174 * list_for_each_entry_safe(). 1067 * list_for_each_entry_safe(). 1175 * 1068 * 1176 * Returns %true if @work was successfully as 1069 * Returns %true if @work was successfully assigned to @worker. %false if @work 1177 * was punted to another worker already execu 1070 * was punted to another worker already executing it. 1178 */ 1071 */ 1179 static bool assign_work(struct work_struct *w 1072 static bool assign_work(struct work_struct *work, struct worker *worker, 1180 struct work_struct ** 1073 struct work_struct **nextp) 1181 { 1074 { 1182 struct worker_pool *pool = worker->po 1075 struct worker_pool *pool = worker->pool; 1183 struct worker *collision; 1076 struct worker *collision; 1184 1077 1185 lockdep_assert_held(&pool->lock); 1078 lockdep_assert_held(&pool->lock); 1186 1079 1187 /* 1080 /* 1188 * A single work shouldn't be execute 1081 * A single work shouldn't be executed concurrently by multiple workers. 1189 * __queue_work() ensures that @work 1082 * __queue_work() ensures that @work doesn't jump to a different pool 1190 * while still running in the previou 1083 * while still running in the previous pool. Here, we should ensure that 1191 * @work is not executed concurrently 1084 * @work is not executed concurrently by multiple workers from the same 1192 * pool. Check whether anyone is alre 1085 * pool. Check whether anyone is already processing the work. If so, 1193 * defer the work to the currently ex 1086 * defer the work to the currently executing one. 1194 */ 1087 */ 1195 collision = find_worker_executing_wor 1088 collision = find_worker_executing_work(pool, work); 1196 if (unlikely(collision)) { 1089 if (unlikely(collision)) { 1197 move_linked_works(work, &coll 1090 move_linked_works(work, &collision->scheduled, nextp); 1198 return false; 1091 return false; 1199 } 1092 } 1200 1093 1201 move_linked_works(work, &worker->sche 1094 move_linked_works(work, &worker->scheduled, nextp); 1202 return true; 1095 return true; 1203 } 1096 } 1204 1097 1205 static struct irq_work *bh_pool_irq_work(stru << 1206 { << 1207 int high = pool->attrs->nice == HIGHP << 1208 << 1209 return &per_cpu(bh_pool_irq_works, po << 1210 } << 1211 << 1212 static void kick_bh_pool(struct worker_pool * << 1213 { << 1214 #ifdef CONFIG_SMP << 1215 /* see drain_dead_softirq_workfn() fo << 1216 if (unlikely(pool->cpu != smp_process << 1217 !(pool->flags & POOL_BH_ << 1218 irq_work_queue_on(bh_pool_irq << 1219 return; << 1220 } << 1221 #endif << 1222 if (pool->attrs->nice == HIGHPRI_NICE << 1223 raise_softirq_irqoff(HI_SOFTI << 1224 else << 1225 raise_softirq_irqoff(TASKLET_ << 1226 } << 1227 << 1228 /** 1098 /** 1229 * kick_pool - wake up an idle worker if nece 1099 * kick_pool - wake up an idle worker if necessary 1230 * @pool: pool to kick 1100 * @pool: pool to kick 1231 * 1101 * 1232 * @pool may have pending work items. Wake up 1102 * @pool may have pending work items. Wake up worker if necessary. Returns 1233 * whether a worker was woken up. 1103 * whether a worker was woken up. 1234 */ 1104 */ 1235 static bool kick_pool(struct worker_pool *poo 1105 static bool kick_pool(struct worker_pool *pool) 1236 { 1106 { 1237 struct worker *worker = first_idle_wo 1107 struct worker *worker = first_idle_worker(pool); 1238 struct task_struct *p; 1108 struct task_struct *p; 1239 1109 1240 lockdep_assert_held(&pool->lock); 1110 lockdep_assert_held(&pool->lock); 1241 1111 1242 if (!need_more_worker(pool) || !worke 1112 if (!need_more_worker(pool) || !worker) 1243 return false; 1113 return false; 1244 1114 1245 if (pool->flags & POOL_BH) { << 1246 kick_bh_pool(pool); << 1247 return true; << 1248 } << 1249 << 1250 p = worker->task; 1115 p = worker->task; 1251 1116 1252 #ifdef CONFIG_SMP 1117 #ifdef CONFIG_SMP 1253 /* 1118 /* 1254 * Idle @worker is about to execute @ 1119 * Idle @worker is about to execute @work and waking up provides an 1255 * opportunity to migrate @worker at 1120 * opportunity to migrate @worker at a lower cost by setting the task's 1256 * wake_cpu field. Let's see if we wa 1121 * wake_cpu field. Let's see if we want to move @worker to improve 1257 * execution locality. 1122 * execution locality. 1258 * 1123 * 1259 * We're waking the worker that went 1124 * We're waking the worker that went idle the latest and there's some 1260 * chance that @worker is marked idle 1125 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1261 * so, setting the wake_cpu won't do 1126 * so, setting the wake_cpu won't do anything. As this is a best-effort 1262 * optimization and the race window i 1127 * optimization and the race window is narrow, let's leave as-is for 1263 * now. If this becomes pronounced, w 1128 * now. If this becomes pronounced, we can skip over workers which are 1264 * still on cpu when picking an idle 1129 * still on cpu when picking an idle worker. 1265 * 1130 * 1266 * If @pool has non-strict affinity, 1131 * If @pool has non-strict affinity, @worker might have ended up outside 1267 * its affinity scope. Repatriate. 1132 * its affinity scope. Repatriate. 1268 */ 1133 */ 1269 if (!pool->attrs->affn_strict && 1134 if (!pool->attrs->affn_strict && 1270 !cpumask_test_cpu(p->wake_cpu, po 1135 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1271 struct work_struct *work = li 1136 struct work_struct *work = list_first_entry(&pool->worklist, 1272 1137 struct work_struct, entry); 1273 int wake_cpu = cpumask_any_an 1138 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1274 1139 cpu_online_mask); 1275 if (wake_cpu < nr_cpu_ids) { 1140 if (wake_cpu < nr_cpu_ids) { 1276 p->wake_cpu = wake_cp 1141 p->wake_cpu = wake_cpu; 1277 get_work_pwq(work)->s 1142 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1278 } 1143 } 1279 } 1144 } 1280 #endif 1145 #endif 1281 wake_up_process(p); 1146 wake_up_process(p); 1282 return true; 1147 return true; 1283 } 1148 } 1284 1149 1285 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1150 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1286 1151 1287 /* 1152 /* 1288 * Concurrency-managed per-cpu work items tha 1153 * Concurrency-managed per-cpu work items that hog CPU for longer than 1289 * wq_cpu_intensive_thresh_us trigger the aut 1154 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1290 * which prevents them from stalling other co 1155 * which prevents them from stalling other concurrency-managed work items. If a 1291 * work function keeps triggering this mechan 1156 * work function keeps triggering this mechanism, it's likely that the work item 1292 * should be using an unbound workqueue inste 1157 * should be using an unbound workqueue instead. 1293 * 1158 * 1294 * wq_cpu_intensive_report() tracks work func 1159 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1295 * and report them so that they can be examin 1160 * and report them so that they can be examined and converted to use unbound 1296 * workqueues as appropriate. To avoid floodi 1161 * workqueues as appropriate. To avoid flooding the console, each violating work 1297 * function is tracked and reported with expo 1162 * function is tracked and reported with exponential backoff. 1298 */ 1163 */ 1299 #define WCI_MAX_ENTS 128 1164 #define WCI_MAX_ENTS 128 1300 1165 1301 struct wci_ent { 1166 struct wci_ent { 1302 work_func_t func; 1167 work_func_t func; 1303 atomic64_t cnt; 1168 atomic64_t cnt; 1304 struct hlist_node hash_node; 1169 struct hlist_node hash_node; 1305 }; 1170 }; 1306 1171 1307 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1172 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1308 static int wci_nr_ents; 1173 static int wci_nr_ents; 1309 static DEFINE_RAW_SPINLOCK(wci_lock); 1174 static DEFINE_RAW_SPINLOCK(wci_lock); 1310 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_M 1175 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1311 1176 1312 static struct wci_ent *wci_find_ent(work_func 1177 static struct wci_ent *wci_find_ent(work_func_t func) 1313 { 1178 { 1314 struct wci_ent *ent; 1179 struct wci_ent *ent; 1315 1180 1316 hash_for_each_possible_rcu(wci_hash, 1181 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1317 (unsigned 1182 (unsigned long)func) { 1318 if (ent->func == func) 1183 if (ent->func == func) 1319 return ent; 1184 return ent; 1320 } 1185 } 1321 return NULL; 1186 return NULL; 1322 } 1187 } 1323 1188 1324 static void wq_cpu_intensive_report(work_func 1189 static void wq_cpu_intensive_report(work_func_t func) 1325 { 1190 { 1326 struct wci_ent *ent; 1191 struct wci_ent *ent; 1327 1192 1328 restart: 1193 restart: 1329 ent = wci_find_ent(func); 1194 ent = wci_find_ent(func); 1330 if (ent) { 1195 if (ent) { 1331 u64 cnt; 1196 u64 cnt; 1332 1197 1333 /* 1198 /* 1334 * Start reporting from the w !! 1199 * Start reporting from the fourth time and back off 1335 * exponentially. 1200 * exponentially. 1336 */ 1201 */ 1337 cnt = atomic64_inc_return_rel 1202 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1338 if (wq_cpu_intensive_warning_ !! 1203 if (cnt >= 4 && is_power_of_2(cnt)) 1339 cnt >= wq_cpu_intensive_w << 1340 is_power_of_2(cnt + 1 - w << 1341 printk_deferred(KERN_ 1204 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1342 ent-> 1205 ent->func, wq_cpu_intensive_thresh_us, 1343 atomi 1206 atomic64_read(&ent->cnt)); 1344 return; 1207 return; 1345 } 1208 } 1346 1209 1347 /* 1210 /* 1348 * @func is a new violation. Allocate 1211 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1349 * is exhausted, something went reall 1212 * is exhausted, something went really wrong and we probably made enough 1350 * noise already. 1213 * noise already. 1351 */ 1214 */ 1352 if (wci_nr_ents >= WCI_MAX_ENTS) 1215 if (wci_nr_ents >= WCI_MAX_ENTS) 1353 return; 1216 return; 1354 1217 1355 raw_spin_lock(&wci_lock); 1218 raw_spin_lock(&wci_lock); 1356 1219 1357 if (wci_nr_ents >= WCI_MAX_ENTS) { 1220 if (wci_nr_ents >= WCI_MAX_ENTS) { 1358 raw_spin_unlock(&wci_lock); 1221 raw_spin_unlock(&wci_lock); 1359 return; 1222 return; 1360 } 1223 } 1361 1224 1362 if (wci_find_ent(func)) { 1225 if (wci_find_ent(func)) { 1363 raw_spin_unlock(&wci_lock); 1226 raw_spin_unlock(&wci_lock); 1364 goto restart; 1227 goto restart; 1365 } 1228 } 1366 1229 1367 ent = &wci_ents[wci_nr_ents++]; 1230 ent = &wci_ents[wci_nr_ents++]; 1368 ent->func = func; 1231 ent->func = func; 1369 atomic64_set(&ent->cnt, 0); !! 1232 atomic64_set(&ent->cnt, 1); 1370 hash_add_rcu(wci_hash, &ent->hash_nod 1233 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1371 1234 1372 raw_spin_unlock(&wci_lock); 1235 raw_spin_unlock(&wci_lock); 1373 << 1374 goto restart; << 1375 } 1236 } 1376 1237 1377 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1238 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1378 static void wq_cpu_intensive_report(work_func 1239 static void wq_cpu_intensive_report(work_func_t func) {} 1379 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1240 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1380 1241 1381 /** 1242 /** 1382 * wq_worker_running - a worker is running ag 1243 * wq_worker_running - a worker is running again 1383 * @task: task waking up 1244 * @task: task waking up 1384 * 1245 * 1385 * This function is called when a worker retu 1246 * This function is called when a worker returns from schedule() 1386 */ 1247 */ 1387 void wq_worker_running(struct task_struct *ta 1248 void wq_worker_running(struct task_struct *task) 1388 { 1249 { 1389 struct worker *worker = kthread_data( 1250 struct worker *worker = kthread_data(task); 1390 1251 1391 if (!READ_ONCE(worker->sleeping)) 1252 if (!READ_ONCE(worker->sleeping)) 1392 return; 1253 return; 1393 1254 1394 /* 1255 /* 1395 * If preempted by unbind_workers() b 1256 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1396 * and the nr_running increment below 1257 * and the nr_running increment below, we may ruin the nr_running reset 1397 * and leave with an unexpected pool- 1258 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1398 * pool. Protect against such race. 1259 * pool. Protect against such race. 1399 */ 1260 */ 1400 preempt_disable(); 1261 preempt_disable(); 1401 if (!(worker->flags & WORKER_NOT_RUNN 1262 if (!(worker->flags & WORKER_NOT_RUNNING)) 1402 worker->pool->nr_running++; 1263 worker->pool->nr_running++; 1403 preempt_enable(); 1264 preempt_enable(); 1404 1265 1405 /* 1266 /* 1406 * CPU intensive auto-detection cares 1267 * CPU intensive auto-detection cares about how long a work item hogged 1407 * CPU without sleeping. Reset the st 1268 * CPU without sleeping. Reset the starting timestamp on wakeup. 1408 */ 1269 */ 1409 worker->current_at = worker->task->se 1270 worker->current_at = worker->task->se.sum_exec_runtime; 1410 1271 1411 WRITE_ONCE(worker->sleeping, 0); 1272 WRITE_ONCE(worker->sleeping, 0); 1412 } 1273 } 1413 1274 1414 /** 1275 /** 1415 * wq_worker_sleeping - a worker is going to 1276 * wq_worker_sleeping - a worker is going to sleep 1416 * @task: task going to sleep 1277 * @task: task going to sleep 1417 * 1278 * 1418 * This function is called from schedule() wh 1279 * This function is called from schedule() when a busy worker is 1419 * going to sleep. 1280 * going to sleep. 1420 */ 1281 */ 1421 void wq_worker_sleeping(struct task_struct *t 1282 void wq_worker_sleeping(struct task_struct *task) 1422 { 1283 { 1423 struct worker *worker = kthread_data( 1284 struct worker *worker = kthread_data(task); 1424 struct worker_pool *pool; 1285 struct worker_pool *pool; 1425 1286 1426 /* 1287 /* 1427 * Rescuers, which may not have all t 1288 * Rescuers, which may not have all the fields set up like normal 1428 * workers, also reach here, let's no 1289 * workers, also reach here, let's not access anything before 1429 * checking NOT_RUNNING. 1290 * checking NOT_RUNNING. 1430 */ 1291 */ 1431 if (worker->flags & WORKER_NOT_RUNNIN 1292 if (worker->flags & WORKER_NOT_RUNNING) 1432 return; 1293 return; 1433 1294 1434 pool = worker->pool; 1295 pool = worker->pool; 1435 1296 1436 /* Return if preempted before wq_work 1297 /* Return if preempted before wq_worker_running() was reached */ 1437 if (READ_ONCE(worker->sleeping)) 1298 if (READ_ONCE(worker->sleeping)) 1438 return; 1299 return; 1439 1300 1440 WRITE_ONCE(worker->sleeping, 1); 1301 WRITE_ONCE(worker->sleeping, 1); 1441 raw_spin_lock_irq(&pool->lock); 1302 raw_spin_lock_irq(&pool->lock); 1442 1303 1443 /* 1304 /* 1444 * Recheck in case unbind_workers() p 1305 * Recheck in case unbind_workers() preempted us. We don't 1445 * want to decrement nr_running after 1306 * want to decrement nr_running after the worker is unbound 1446 * and nr_running has been reset. 1307 * and nr_running has been reset. 1447 */ 1308 */ 1448 if (worker->flags & WORKER_NOT_RUNNIN 1309 if (worker->flags & WORKER_NOT_RUNNING) { 1449 raw_spin_unlock_irq(&pool->lo 1310 raw_spin_unlock_irq(&pool->lock); 1450 return; 1311 return; 1451 } 1312 } 1452 1313 1453 pool->nr_running--; 1314 pool->nr_running--; 1454 if (kick_pool(pool)) 1315 if (kick_pool(pool)) 1455 worker->current_pwq->stats[PW 1316 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1456 1317 1457 raw_spin_unlock_irq(&pool->lock); 1318 raw_spin_unlock_irq(&pool->lock); 1458 } 1319 } 1459 1320 1460 /** 1321 /** 1461 * wq_worker_tick - a scheduler tick occurred 1322 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1462 * @task: task currently running 1323 * @task: task currently running 1463 * 1324 * 1464 * Called from sched_tick(). We're in the IRQ !! 1325 * Called from scheduler_tick(). We're in the IRQ context and the current 1465 * worker's fields which follow the 'K' locki 1326 * worker's fields which follow the 'K' locking rule can be accessed safely. 1466 */ 1327 */ 1467 void wq_worker_tick(struct task_struct *task) 1328 void wq_worker_tick(struct task_struct *task) 1468 { 1329 { 1469 struct worker *worker = kthread_data( 1330 struct worker *worker = kthread_data(task); 1470 struct pool_workqueue *pwq = worker-> 1331 struct pool_workqueue *pwq = worker->current_pwq; 1471 struct worker_pool *pool = worker->po 1332 struct worker_pool *pool = worker->pool; 1472 1333 1473 if (!pwq) 1334 if (!pwq) 1474 return; 1335 return; 1475 1336 1476 pwq->stats[PWQ_STAT_CPU_TIME] += TICK 1337 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1477 1338 1478 if (!wq_cpu_intensive_thresh_us) 1339 if (!wq_cpu_intensive_thresh_us) 1479 return; 1340 return; 1480 1341 1481 /* 1342 /* 1482 * If the current worker is concurren 1343 * If the current worker is concurrency managed and hogged the CPU for 1483 * longer than wq_cpu_intensive_thres 1344 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1484 * CPU_INTENSIVE to avoid stalling ot 1345 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1485 * 1346 * 1486 * Set @worker->sleeping means that @ 1347 * Set @worker->sleeping means that @worker is in the process of 1487 * switching out voluntarily and won' 1348 * switching out voluntarily and won't be contributing to 1488 * @pool->nr_running until it wakes u 1349 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1489 * decrements ->nr_running, setting C 1350 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1490 * double decrements. The task is rel 1351 * double decrements. The task is releasing the CPU anyway. Let's skip. 1491 * We probably want to make this pret 1352 * We probably want to make this prettier in the future. 1492 */ 1353 */ 1493 if ((worker->flags & WORKER_NOT_RUNNI 1354 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1494 worker->task->se.sum_exec_runtime 1355 worker->task->se.sum_exec_runtime - worker->current_at < 1495 wq_cpu_intensive_thresh_us * NSEC 1356 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1496 return; 1357 return; 1497 1358 1498 raw_spin_lock(&pool->lock); 1359 raw_spin_lock(&pool->lock); 1499 1360 1500 worker_set_flags(worker, WORKER_CPU_I 1361 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1501 wq_cpu_intensive_report(worker->curre 1362 wq_cpu_intensive_report(worker->current_func); 1502 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1363 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1503 1364 1504 if (kick_pool(pool)) 1365 if (kick_pool(pool)) 1505 pwq->stats[PWQ_STAT_CM_WAKEUP 1366 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1506 1367 1507 raw_spin_unlock(&pool->lock); 1368 raw_spin_unlock(&pool->lock); 1508 } 1369 } 1509 1370 1510 /** 1371 /** 1511 * wq_worker_last_func - retrieve worker's la 1372 * wq_worker_last_func - retrieve worker's last work function 1512 * @task: Task to retrieve last work function 1373 * @task: Task to retrieve last work function of. 1513 * 1374 * 1514 * Determine the last function a worker execu 1375 * Determine the last function a worker executed. This is called from 1515 * the scheduler to get a worker's last known 1376 * the scheduler to get a worker's last known identity. 1516 * 1377 * 1517 * CONTEXT: 1378 * CONTEXT: 1518 * raw_spin_lock_irq(rq->lock) 1379 * raw_spin_lock_irq(rq->lock) 1519 * 1380 * 1520 * This function is called during schedule() 1381 * This function is called during schedule() when a kworker is going 1521 * to sleep. It's used by psi to identify agg 1382 * to sleep. It's used by psi to identify aggregation workers during 1522 * dequeuing, to allow periodic aggregation t 1383 * dequeuing, to allow periodic aggregation to shut-off when that 1523 * worker is the last task in the system or c 1384 * worker is the last task in the system or cgroup to go to sleep. 1524 * 1385 * 1525 * As this function doesn't involve any workq 1386 * As this function doesn't involve any workqueue-related locking, it 1526 * only returns stable values when called fro 1387 * only returns stable values when called from inside the scheduler's 1527 * queuing and dequeuing paths, when @task, w 1388 * queuing and dequeuing paths, when @task, which must be a kworker, 1528 * is guaranteed to not be processing any wor 1389 * is guaranteed to not be processing any works. 1529 * 1390 * 1530 * Return: 1391 * Return: 1531 * The last work function %current executed a 1392 * The last work function %current executed as a worker, NULL if it 1532 * hasn't executed any work yet. 1393 * hasn't executed any work yet. 1533 */ 1394 */ 1534 work_func_t wq_worker_last_func(struct task_s 1395 work_func_t wq_worker_last_func(struct task_struct *task) 1535 { 1396 { 1536 struct worker *worker = kthread_data( 1397 struct worker *worker = kthread_data(task); 1537 1398 1538 return worker->last_func; 1399 return worker->last_func; 1539 } 1400 } 1540 1401 1541 /** 1402 /** 1542 * wq_node_nr_active - Determine wq_node_nr_a << 1543 * @wq: workqueue of interest << 1544 * @node: NUMA node, can be %NUMA_NO_NODE << 1545 * << 1546 * Determine wq_node_nr_active to use for @wq << 1547 * << 1548 * - %NULL for per-cpu workqueues as they don << 1549 * << 1550 * - node_nr_active[nr_node_ids] if @node is << 1551 * << 1552 * - Otherwise, node_nr_active[@node]. << 1553 */ << 1554 static struct wq_node_nr_active *wq_node_nr_a << 1555 << 1556 { << 1557 if (!(wq->flags & WQ_UNBOUND)) << 1558 return NULL; << 1559 << 1560 if (node == NUMA_NO_NODE) << 1561 node = nr_node_ids; << 1562 << 1563 return wq->node_nr_active[node]; << 1564 } << 1565 << 1566 /** << 1567 * wq_update_node_max_active - Update per-nod << 1568 * @wq: workqueue to update << 1569 * @off_cpu: CPU that's going down, -1 if a C << 1570 * << 1571 * Update @wq->node_nr_active[]->max. @wq mus << 1572 * distributed among nodes according to the p << 1573 * cpus. The result is always between @wq->mi << 1574 */ << 1575 static void wq_update_node_max_active(struct << 1576 { << 1577 struct cpumask *effective = unbound_e << 1578 int min_active = READ_ONCE(wq->min_ac << 1579 int max_active = READ_ONCE(wq->max_ac << 1580 int total_cpus, node; << 1581 << 1582 lockdep_assert_held(&wq->mutex); << 1583 << 1584 if (!wq_topo_initialized) << 1585 return; << 1586 << 1587 if (off_cpu >= 0 && !cpumask_test_cpu << 1588 off_cpu = -1; << 1589 << 1590 total_cpus = cpumask_weight_and(effec << 1591 if (off_cpu >= 0) << 1592 total_cpus--; << 1593 << 1594 /* If all CPUs of the wq get offline, << 1595 if (unlikely(!total_cpus)) { << 1596 for_each_node(node) << 1597 wq_node_nr_active(wq, << 1598 << 1599 wq_node_nr_active(wq, NUMA_NO << 1600 return; << 1601 } << 1602 << 1603 for_each_node(node) { << 1604 int node_cpus; << 1605 << 1606 node_cpus = cpumask_weight_an << 1607 if (off_cpu >= 0 && cpu_to_no << 1608 node_cpus--; << 1609 << 1610 wq_node_nr_active(wq, node)-> << 1611 clamp(DIV_ROUND_UP(ma << 1612 min_active, max << 1613 } << 1614 << 1615 wq_node_nr_active(wq, NUMA_NO_NODE)-> << 1616 } << 1617 << 1618 /** << 1619 * get_pwq - get an extra reference on the sp 1403 * get_pwq - get an extra reference on the specified pool_workqueue 1620 * @pwq: pool_workqueue to get 1404 * @pwq: pool_workqueue to get 1621 * 1405 * 1622 * Obtain an extra reference on @pwq. The ca 1406 * Obtain an extra reference on @pwq. The caller should guarantee that 1623 * @pwq has positive refcnt and be holding th 1407 * @pwq has positive refcnt and be holding the matching pool->lock. 1624 */ 1408 */ 1625 static void get_pwq(struct pool_workqueue *pw 1409 static void get_pwq(struct pool_workqueue *pwq) 1626 { 1410 { 1627 lockdep_assert_held(&pwq->pool->lock) 1411 lockdep_assert_held(&pwq->pool->lock); 1628 WARN_ON_ONCE(pwq->refcnt <= 0); 1412 WARN_ON_ONCE(pwq->refcnt <= 0); 1629 pwq->refcnt++; 1413 pwq->refcnt++; 1630 } 1414 } 1631 1415 1632 /** 1416 /** 1633 * put_pwq - put a pool_workqueue reference 1417 * put_pwq - put a pool_workqueue reference 1634 * @pwq: pool_workqueue to put 1418 * @pwq: pool_workqueue to put 1635 * 1419 * 1636 * Drop a reference of @pwq. If its refcnt r 1420 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1637 * destruction. The caller should be holding 1421 * destruction. The caller should be holding the matching pool->lock. 1638 */ 1422 */ 1639 static void put_pwq(struct pool_workqueue *pw 1423 static void put_pwq(struct pool_workqueue *pwq) 1640 { 1424 { 1641 lockdep_assert_held(&pwq->pool->lock) 1425 lockdep_assert_held(&pwq->pool->lock); 1642 if (likely(--pwq->refcnt)) 1426 if (likely(--pwq->refcnt)) 1643 return; 1427 return; 1644 /* 1428 /* 1645 * @pwq can't be released under pool- 1429 * @pwq can't be released under pool->lock, bounce to a dedicated 1646 * kthread_worker to avoid A-A deadlo 1430 * kthread_worker to avoid A-A deadlocks. 1647 */ 1431 */ 1648 kthread_queue_work(pwq_release_worker 1432 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1649 } 1433 } 1650 1434 1651 /** 1435 /** 1652 * put_pwq_unlocked - put_pwq() with surround 1436 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1653 * @pwq: pool_workqueue to put (can be %NULL) 1437 * @pwq: pool_workqueue to put (can be %NULL) 1654 * 1438 * 1655 * put_pwq() with locking. This function als 1439 * put_pwq() with locking. This function also allows %NULL @pwq. 1656 */ 1440 */ 1657 static void put_pwq_unlocked(struct pool_work 1441 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1658 { 1442 { 1659 if (pwq) { 1443 if (pwq) { 1660 /* 1444 /* 1661 * As both pwqs and pools are 1445 * As both pwqs and pools are RCU protected, the 1662 * following lock operations 1446 * following lock operations are safe. 1663 */ 1447 */ 1664 raw_spin_lock_irq(&pwq->pool- 1448 raw_spin_lock_irq(&pwq->pool->lock); 1665 put_pwq(pwq); 1449 put_pwq(pwq); 1666 raw_spin_unlock_irq(&pwq->poo 1450 raw_spin_unlock_irq(&pwq->pool->lock); 1667 } 1451 } 1668 } 1452 } 1669 1453 1670 static bool pwq_is_empty(struct pool_workqueu !! 1454 static void pwq_activate_inactive_work(struct work_struct *work) 1671 { << 1672 return !pwq->nr_active && list_empty( << 1673 } << 1674 << 1675 static void __pwq_activate_work(struct pool_w << 1676 struct work_s << 1677 { 1455 { 1678 unsigned long *wdb = work_data_bits(w !! 1456 struct pool_workqueue *pwq = get_work_pwq(work); 1679 1457 1680 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INA << 1681 trace_workqueue_activate_work(work); 1458 trace_workqueue_activate_work(work); 1682 if (list_empty(&pwq->pool->worklist)) 1459 if (list_empty(&pwq->pool->worklist)) 1683 pwq->pool->watchdog_ts = jiff 1460 pwq->pool->watchdog_ts = jiffies; 1684 move_linked_works(work, &pwq->pool->w 1461 move_linked_works(work, &pwq->pool->worklist, NULL); 1685 __clear_bit(WORK_STRUCT_INACTIVE_BIT, !! 1462 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); >> 1463 pwq->nr_active++; 1686 } 1464 } 1687 1465 1688 static bool tryinc_node_nr_active(struct wq_n !! 1466 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1689 { 1467 { 1690 int max = READ_ONCE(nna->max); !! 1468 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1691 !! 1469 struct work_struct, entry); 1692 while (true) { << 1693 int old, tmp; << 1694 << 1695 old = atomic_read(&nna->nr); << 1696 if (old >= max) << 1697 return false; << 1698 tmp = atomic_cmpxchg_relaxed( << 1699 if (tmp == old) << 1700 return true; << 1701 } << 1702 } << 1703 << 1704 /** << 1705 * pwq_tryinc_nr_active - Try to increment nr << 1706 * @pwq: pool_workqueue of interest << 1707 * @fill: max_active may have increased, try << 1708 * << 1709 * Try to increment nr_active for @pwq. Retur << 1710 * successfully obtained. %false otherwise. << 1711 */ << 1712 static bool pwq_tryinc_nr_active(struct pool_ << 1713 { << 1714 struct workqueue_struct *wq = pwq->wq << 1715 struct worker_pool *pool = pwq->pool; << 1716 struct wq_node_nr_active *nna = wq_no << 1717 bool obtained = false; << 1718 << 1719 lockdep_assert_held(&pool->lock); << 1720 << 1721 if (!nna) { << 1722 /* BH or per-cpu workqueue, p << 1723 obtained = pwq->nr_active < R << 1724 goto out; << 1725 } << 1726 << 1727 if (unlikely(pwq->plugged)) << 1728 return false; << 1729 << 1730 /* << 1731 * Unbound workqueue uses per-node sh << 1732 * already waiting on $nna, pwq_dec_n << 1733 * concurrency level. Don't jump the << 1734 * << 1735 * We need to ignore the pending test << 1736 * pwq_dec_nr_active() can only maint << 1737 * increase it. This is indicated by << 1738 */ << 1739 if (!list_empty(&pwq->pending_node) & << 1740 goto out; << 1741 << 1742 obtained = tryinc_node_nr_active(nna) << 1743 if (obtained) << 1744 goto out; << 1745 << 1746 /* << 1747 * Lockless acquisition failed. Lock, << 1748 * and try again. The smp_mb() is pai << 1749 * of atomic_dec_return() in pwq_dec_ << 1750 * we see the decremented $nna->nr or << 1751 * $nna->pending_pwqs. << 1752 */ << 1753 raw_spin_lock(&nna->lock); << 1754 << 1755 if (list_empty(&pwq->pending_node)) << 1756 list_add_tail(&pwq->pending_n << 1757 else if (likely(!fill)) << 1758 goto out_unlock; << 1759 << 1760 smp_mb(); << 1761 << 1762 obtained = tryinc_node_nr_active(nna) << 1763 << 1764 /* << 1765 * If @fill, @pwq might have already << 1766 * pending in cold paths doesn't affe << 1767 */ << 1768 if (obtained && likely(!fill)) << 1769 list_del_init(&pwq->pending_n << 1770 << 1771 out_unlock: << 1772 raw_spin_unlock(&nna->lock); << 1773 out: << 1774 if (obtained) << 1775 pwq->nr_active++; << 1776 return obtained; << 1777 } << 1778 << 1779 /** << 1780 * pwq_activate_first_inactive - Activate the << 1781 * @pwq: pool_workqueue of interest << 1782 * @fill: max_active may have increased, try << 1783 * << 1784 * Activate the first inactive work item of @ << 1785 * max_active limit. << 1786 * << 1787 * Returns %true if an inactive work item has << 1788 * inactive work item is found or max_active << 1789 */ << 1790 static bool pwq_activate_first_inactive(struc << 1791 { << 1792 struct work_struct *work = << 1793 list_first_entry_or_null(&pwq << 1794 stru << 1795 << 1796 if (work && pwq_tryinc_nr_active(pwq, << 1797 __pwq_activate_work(pwq, work << 1798 return true; << 1799 } else { << 1800 return false; << 1801 } << 1802 } << 1803 << 1804 /** << 1805 * unplug_oldest_pwq - unplug the oldest pool << 1806 * @wq: workqueue_struct where its oldest pwq << 1807 * << 1808 * This function should only be called for or << 1809 * oldest pwq is unplugged, the others are pl << 1810 * ensure proper work item ordering:: << 1811 * << 1812 * dfl_pwq --------------+ [P] - plugg << 1813 * | << 1814 * v << 1815 * pwqs -> A -> B [P] -> C [P] (newest) << 1816 * | | | << 1817 * 1 3 5 << 1818 * | | | << 1819 * 2 4 6 << 1820 * << 1821 * When the oldest pwq is drained and removed << 1822 * to unplug the next oldest one to start its << 1823 * pwq's are linked into wq->pwqs with the ol << 1824 * the list is the oldest. << 1825 */ << 1826 static void unplug_oldest_pwq(struct workqueu << 1827 { << 1828 struct pool_workqueue *pwq; << 1829 << 1830 lockdep_assert_held(&wq->mutex); << 1831 << 1832 /* Caller should make sure that pwqs << 1833 pwq = list_first_entry_or_null(&wq->p << 1834 pwqs_n << 1835 raw_spin_lock_irq(&pwq->pool->lock); << 1836 if (pwq->plugged) { << 1837 pwq->plugged = false; << 1838 if (pwq_activate_first_inacti << 1839 kick_pool(pwq->pool); << 1840 } << 1841 raw_spin_unlock_irq(&pwq->pool->lock) << 1842 } << 1843 << 1844 /** << 1845 * node_activate_pending_pwq - Activate a pen << 1846 * @nna: wq_node_nr_active to activate a pend << 1847 * @caller_pool: worker_pool the caller is lo << 1848 * << 1849 * Activate a pwq in @nna->pending_pwqs. Call << 1850 * @caller_pool may be unlocked and relocked << 1851 */ << 1852 static void node_activate_pending_pwq(struct << 1853 struct << 1854 { << 1855 struct worker_pool *locked_pool = cal << 1856 struct pool_workqueue *pwq; << 1857 struct work_struct *work; << 1858 << 1859 lockdep_assert_held(&caller_pool->loc << 1860 << 1861 raw_spin_lock(&nna->lock); << 1862 retry: << 1863 pwq = list_first_entry_or_null(&nna-> << 1864 struct << 1865 if (!pwq) << 1866 goto out_unlock; << 1867 << 1868 /* << 1869 * If @pwq is for a different pool th << 1870 * @pwq->pool->lock. Let's trylock fi << 1871 * / lock dance. For that, we also ne << 1872 * nested inside pool locks. << 1873 */ << 1874 if (pwq->pool != locked_pool) { << 1875 raw_spin_unlock(&locked_pool- << 1876 locked_pool = pwq->pool; << 1877 if (!raw_spin_trylock(&locked << 1878 raw_spin_unlock(&nna- << 1879 raw_spin_lock(&locked << 1880 raw_spin_lock(&nna->l << 1881 goto retry; << 1882 } << 1883 } << 1884 << 1885 /* << 1886 * $pwq may not have any inactive wor << 1887 * Drop it from pending_pwqs and see << 1888 */ << 1889 work = list_first_entry_or_null(&pwq- << 1890 struc << 1891 if (!work) { << 1892 list_del_init(&pwq->pending_n << 1893 goto retry; << 1894 } << 1895 << 1896 /* << 1897 * Acquire an nr_active count and act << 1898 * $pwq still has inactive work items << 1899 * pending_pwqs so that we round-robi << 1900 * inactive work items are not activa << 1901 * given that there has never been an << 1902 */ << 1903 if (likely(tryinc_node_nr_active(nna) << 1904 pwq->nr_active++; << 1905 __pwq_activate_work(pwq, work << 1906 << 1907 if (list_empty(&pwq->inactive << 1908 list_del_init(&pwq->p << 1909 else << 1910 list_move_tail(&pwq-> << 1911 << 1912 /* if activating a foreign po << 1913 if (pwq->pool != caller_pool) << 1914 kick_pool(pwq->pool); << 1915 } << 1916 << 1917 out_unlock: << 1918 raw_spin_unlock(&nna->lock); << 1919 if (locked_pool != caller_pool) { << 1920 raw_spin_unlock(&locked_pool- << 1921 raw_spin_lock(&caller_pool->l << 1922 } << 1923 } << 1924 << 1925 /** << 1926 * pwq_dec_nr_active - Retire an active count << 1927 * @pwq: pool_workqueue of interest << 1928 * << 1929 * Decrement @pwq's nr_active and try to acti << 1930 * For unbound workqueues, this function may << 1931 */ << 1932 static void pwq_dec_nr_active(struct pool_wor << 1933 { << 1934 struct worker_pool *pool = pwq->pool; << 1935 struct wq_node_nr_active *nna = wq_no << 1936 << 1937 lockdep_assert_held(&pool->lock); << 1938 << 1939 /* << 1940 * @pwq->nr_active should be decremen << 1941 * workqueues. << 1942 */ << 1943 pwq->nr_active--; << 1944 << 1945 /* << 1946 * For a percpu workqueue, it's simpl << 1947 * inactive work item on @pwq itself. << 1948 */ << 1949 if (!nna) { << 1950 pwq_activate_first_inactive(p << 1951 return; << 1952 } << 1953 << 1954 /* << 1955 * If @pwq is for an unbound workqueu << 1956 * multiple pwqs and pools may be sha << 1957 * pwq needs to wait for an nr_active << 1958 * $nna->pending_pwqs. The following << 1959 * memory barrier is paired with smp_ << 1960 * guarantee that either we see non-e << 1961 * decremented $nna->nr. << 1962 * << 1963 * $nna->max may change as CPUs come << 1964 * max_active gets updated. However, << 1965 * larger than @pwq->wq->min_active w << 1966 * This maintains the forward progres << 1967 */ << 1968 if (atomic_dec_return(&nna->nr) >= RE << 1969 return; << 1970 1470 1971 if (!list_empty(&nna->pending_pwqs)) !! 1471 pwq_activate_inactive_work(work); 1972 node_activate_pending_pwq(nna << 1973 } 1472 } 1974 1473 1975 /** 1474 /** 1976 * pwq_dec_nr_in_flight - decrement pwq's nr_ 1475 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1977 * @pwq: pwq of interest 1476 * @pwq: pwq of interest 1978 * @work_data: work_data of work which left t 1477 * @work_data: work_data of work which left the queue 1979 * 1478 * 1980 * A work either has completed or is removed 1479 * A work either has completed or is removed from pending queue, 1981 * decrement nr_in_flight of its pwq and hand 1480 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1982 * 1481 * 1983 * NOTE: << 1984 * For unbound workqueues, this function may << 1985 * and thus should be called after all other << 1986 * work item is complete. << 1987 * << 1988 * CONTEXT: 1482 * CONTEXT: 1989 * raw_spin_lock_irq(pool->lock). 1483 * raw_spin_lock_irq(pool->lock). 1990 */ 1484 */ 1991 static void pwq_dec_nr_in_flight(struct pool_ 1485 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1992 { 1486 { 1993 int color = get_work_color(work_data) 1487 int color = get_work_color(work_data); 1994 1488 1995 if (!(work_data & WORK_STRUCT_INACTIV !! 1489 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1996 pwq_dec_nr_active(pwq); !! 1490 pwq->nr_active--; >> 1491 if (!list_empty(&pwq->inactive_works)) { >> 1492 /* one down, submit an inactive one */ >> 1493 if (pwq->nr_active < pwq->max_active) >> 1494 pwq_activate_first_inactive(pwq); >> 1495 } >> 1496 } 1997 1497 1998 pwq->nr_in_flight[color]--; 1498 pwq->nr_in_flight[color]--; 1999 1499 2000 /* is flush in progress and are we at 1500 /* is flush in progress and are we at the flushing tip? */ 2001 if (likely(pwq->flush_color != color) 1501 if (likely(pwq->flush_color != color)) 2002 goto out_put; 1502 goto out_put; 2003 1503 2004 /* are there still in-flight works? * 1504 /* are there still in-flight works? */ 2005 if (pwq->nr_in_flight[color]) 1505 if (pwq->nr_in_flight[color]) 2006 goto out_put; 1506 goto out_put; 2007 1507 2008 /* this pwq is done, clear flush_colo 1508 /* this pwq is done, clear flush_color */ 2009 pwq->flush_color = -1; 1509 pwq->flush_color = -1; 2010 1510 2011 /* 1511 /* 2012 * If this was the last pwq, wake up 1512 * If this was the last pwq, wake up the first flusher. It 2013 * will handle the rest. 1513 * will handle the rest. 2014 */ 1514 */ 2015 if (atomic_dec_and_test(&pwq->wq->nr_ 1515 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2016 complete(&pwq->wq->first_flus 1516 complete(&pwq->wq->first_flusher->done); 2017 out_put: 1517 out_put: 2018 put_pwq(pwq); 1518 put_pwq(pwq); 2019 } 1519 } 2020 1520 2021 /** 1521 /** 2022 * try_to_grab_pending - steal work item from 1522 * try_to_grab_pending - steal work item from worklist and disable irq 2023 * @work: work item to steal 1523 * @work: work item to steal 2024 * @cflags: %WORK_CANCEL_ flags !! 1524 * @is_dwork: @work is a delayed_work 2025 * @irq_flags: place to store irq state !! 1525 * @flags: place to store irq state 2026 * 1526 * 2027 * Try to grab PENDING bit of @work. This fu 1527 * Try to grab PENDING bit of @work. This function can handle @work in any 2028 * stable state - idle, on timer or on workli 1528 * stable state - idle, on timer or on worklist. 2029 * 1529 * 2030 * Return: 1530 * Return: 2031 * 1531 * 2032 * ======== ============================= 1532 * ======== ================================================================ 2033 * 1 if @work was pending and we s 1533 * 1 if @work was pending and we successfully stole PENDING 2034 * 0 if @work was idle and we clai 1534 * 0 if @work was idle and we claimed PENDING 2035 * -EAGAIN if PENDING couldn't be grabbe 1535 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry >> 1536 * -ENOENT if someone else is canceling @work, this state may persist >> 1537 * for arbitrarily long 2036 * ======== ============================= 1538 * ======== ================================================================ 2037 * 1539 * 2038 * Note: 1540 * Note: 2039 * On >= 0 return, the caller owns @work's PE 1541 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2040 * interrupted while holding PENDING and @wor 1542 * interrupted while holding PENDING and @work off queue, irq must be 2041 * disabled on entry. This, combined with de 1543 * disabled on entry. This, combined with delayed_work->timer being 2042 * irqsafe, ensures that we return -EAGAIN fo 1544 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2043 * 1545 * 2044 * On successful return, >= 0, irq is disable 1546 * On successful return, >= 0, irq is disabled and the caller is 2045 * responsible for releasing it using local_i !! 1547 * responsible for releasing it using local_irq_restore(*@flags). 2046 * 1548 * 2047 * This function is safe to call from any con 1549 * This function is safe to call from any context including IRQ handler. 2048 */ 1550 */ 2049 static int try_to_grab_pending(struct work_st !! 1551 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 2050 unsigned long !! 1552 unsigned long *flags) 2051 { 1553 { 2052 struct worker_pool *pool; 1554 struct worker_pool *pool; 2053 struct pool_workqueue *pwq; 1555 struct pool_workqueue *pwq; 2054 1556 2055 local_irq_save(*irq_flags); !! 1557 local_irq_save(*flags); 2056 1558 2057 /* try to steal the timer if it exist 1559 /* try to steal the timer if it exists */ 2058 if (cflags & WORK_CANCEL_DELAYED) { !! 1560 if (is_dwork) { 2059 struct delayed_work *dwork = 1561 struct delayed_work *dwork = to_delayed_work(work); 2060 1562 2061 /* 1563 /* 2062 * dwork->timer is irqsafe. 1564 * dwork->timer is irqsafe. If del_timer() fails, it's 2063 * guaranteed that the timer 1565 * guaranteed that the timer is not queued anywhere and not 2064 * running on the local CPU. 1566 * running on the local CPU. 2065 */ 1567 */ 2066 if (likely(del_timer(&dwork-> 1568 if (likely(del_timer(&dwork->timer))) 2067 return 1; 1569 return 1; 2068 } 1570 } 2069 1571 2070 /* try to claim PENDING the normal wa 1572 /* try to claim PENDING the normal way */ 2071 if (!test_and_set_bit(WORK_STRUCT_PEN 1573 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2072 return 0; 1574 return 0; 2073 1575 2074 rcu_read_lock(); 1576 rcu_read_lock(); 2075 /* 1577 /* 2076 * The queueing is in progress, or it 1578 * The queueing is in progress, or it is already queued. Try to 2077 * steal it from ->worklist without c 1579 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2078 */ 1580 */ 2079 pool = get_work_pool(work); 1581 pool = get_work_pool(work); 2080 if (!pool) 1582 if (!pool) 2081 goto fail; 1583 goto fail; 2082 1584 2083 raw_spin_lock(&pool->lock); 1585 raw_spin_lock(&pool->lock); 2084 /* 1586 /* 2085 * work->data is guaranteed to point 1587 * work->data is guaranteed to point to pwq only while the work 2086 * item is queued on pwq->wq, and bot 1588 * item is queued on pwq->wq, and both updating work->data to point 2087 * to pwq on queueing and to pool on 1589 * to pwq on queueing and to pool on dequeueing are done under 2088 * pwq->pool->lock. This in turn gua 1590 * pwq->pool->lock. This in turn guarantees that, if work->data 2089 * points to pwq which is associated 1591 * points to pwq which is associated with a locked pool, the work 2090 * item is currently queued on that p 1592 * item is currently queued on that pool. 2091 */ 1593 */ 2092 pwq = get_work_pwq(work); 1594 pwq = get_work_pwq(work); 2093 if (pwq && pwq->pool == pool) { 1595 if (pwq && pwq->pool == pool) { 2094 unsigned long work_data = *wo << 2095 << 2096 debug_work_deactivate(work); 1596 debug_work_deactivate(work); 2097 1597 2098 /* 1598 /* 2099 * A cancelable inactive work 1599 * A cancelable inactive work item must be in the 2100 * pwq->inactive_works since 1600 * pwq->inactive_works since a queued barrier can't be 2101 * canceled (see the comments 1601 * canceled (see the comments in insert_wq_barrier()). 2102 * 1602 * 2103 * An inactive work item cann !! 1603 * An inactive work item cannot be grabbed directly because 2104 * it might have linked barri 1604 * it might have linked barrier work items which, if left 2105 * on the inactive_works list 1605 * on the inactive_works list, will confuse pwq->nr_active 2106 * management later on and ca !! 1606 * management later on and cause stall. Make sure the work 2107 * barrier work items to the !! 1607 * item is activated before grabbing. 2108 * item. Also keep WORK_STRUC << 2109 * it doesn't participate in << 2110 * pwq_dec_nr_in_flight(). << 2111 */ 1608 */ 2112 if (work_data & WORK_STRUCT_I !! 1609 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 2113 move_linked_works(wor !! 1610 pwq_activate_inactive_work(work); 2114 1611 2115 list_del_init(&work->entry); 1612 list_del_init(&work->entry); >> 1613 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 2116 1614 2117 /* !! 1615 /* work->data points to pwq iff queued, point to pool */ 2118 * work->data points to pwq i !! 1616 set_work_pool_and_keep_pending(work, pool->id); 2119 * this destroys work->data n << 2120 */ << 2121 set_work_pool_and_keep_pendin << 2122 << 2123 << 2124 /* must be the last step, see << 2125 pwq_dec_nr_in_flight(pwq, wor << 2126 1617 2127 raw_spin_unlock(&pool->lock); 1618 raw_spin_unlock(&pool->lock); 2128 rcu_read_unlock(); 1619 rcu_read_unlock(); 2129 return 1; 1620 return 1; 2130 } 1621 } 2131 raw_spin_unlock(&pool->lock); 1622 raw_spin_unlock(&pool->lock); 2132 fail: 1623 fail: 2133 rcu_read_unlock(); 1624 rcu_read_unlock(); 2134 local_irq_restore(*irq_flags); !! 1625 local_irq_restore(*flags); >> 1626 if (work_is_canceling(work)) >> 1627 return -ENOENT; >> 1628 cpu_relax(); 2135 return -EAGAIN; 1629 return -EAGAIN; 2136 } 1630 } 2137 1631 2138 /** 1632 /** 2139 * work_grab_pending - steal work item from w << 2140 * @work: work item to steal << 2141 * @cflags: %WORK_CANCEL_ flags << 2142 * @irq_flags: place to store IRQ state << 2143 * << 2144 * Grab PENDING bit of @work. @work can be in << 2145 * or on worklist. << 2146 * << 2147 * Can be called from any context. IRQ is dis << 2148 * stored in *@irq_flags. The caller is respo << 2149 * local_irq_restore(). << 2150 * << 2151 * Returns %true if @work was pending. %false << 2152 */ << 2153 static bool work_grab_pending(struct work_str << 2154 unsigned long * << 2155 { << 2156 int ret; << 2157 << 2158 while (true) { << 2159 ret = try_to_grab_pending(wor << 2160 if (ret >= 0) << 2161 return ret; << 2162 cpu_relax(); << 2163 } << 2164 } << 2165 << 2166 /** << 2167 * insert_work - insert a work into a pool 1633 * insert_work - insert a work into a pool 2168 * @pwq: pwq @work belongs to 1634 * @pwq: pwq @work belongs to 2169 * @work: work to insert 1635 * @work: work to insert 2170 * @head: insertion point 1636 * @head: insertion point 2171 * @extra_flags: extra WORK_STRUCT_* flags to 1637 * @extra_flags: extra WORK_STRUCT_* flags to set 2172 * 1638 * 2173 * Insert @work which belongs to @pwq after @ 1639 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2174 * work_struct flags. 1640 * work_struct flags. 2175 * 1641 * 2176 * CONTEXT: 1642 * CONTEXT: 2177 * raw_spin_lock_irq(pool->lock). 1643 * raw_spin_lock_irq(pool->lock). 2178 */ 1644 */ 2179 static void insert_work(struct pool_workqueue 1645 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2180 struct list_head *hea 1646 struct list_head *head, unsigned int extra_flags) 2181 { 1647 { 2182 debug_work_activate(work); 1648 debug_work_activate(work); 2183 1649 2184 /* record the work call stack in orde 1650 /* record the work call stack in order to print it in KASAN reports */ 2185 kasan_record_aux_stack_noalloc(work); 1651 kasan_record_aux_stack_noalloc(work); 2186 1652 2187 /* we own @work, set data and link */ 1653 /* we own @work, set data and link */ 2188 set_work_pwq(work, pwq, extra_flags); 1654 set_work_pwq(work, pwq, extra_flags); 2189 list_add_tail(&work->entry, head); 1655 list_add_tail(&work->entry, head); 2190 get_pwq(pwq); 1656 get_pwq(pwq); 2191 } 1657 } 2192 1658 2193 /* 1659 /* 2194 * Test whether @work is being queued from an 1660 * Test whether @work is being queued from another work executing on the 2195 * same workqueue. 1661 * same workqueue. 2196 */ 1662 */ 2197 static bool is_chained_work(struct workqueue_ 1663 static bool is_chained_work(struct workqueue_struct *wq) 2198 { 1664 { 2199 struct worker *worker; 1665 struct worker *worker; 2200 1666 2201 worker = current_wq_worker(); 1667 worker = current_wq_worker(); 2202 /* 1668 /* 2203 * Return %true iff I'm a worker exec 1669 * Return %true iff I'm a worker executing a work item on @wq. If 2204 * I'm @worker, it's safe to derefere 1670 * I'm @worker, it's safe to dereference it without locking. 2205 */ 1671 */ 2206 return worker && worker->current_pwq- 1672 return worker && worker->current_pwq->wq == wq; 2207 } 1673 } 2208 1674 2209 /* 1675 /* 2210 * When queueing an unbound work item to a wq 1676 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2211 * by wq_unbound_cpumask. Otherwise, round r 1677 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2212 * avoid perturbing sensitive tasks. 1678 * avoid perturbing sensitive tasks. 2213 */ 1679 */ 2214 static int wq_select_unbound_cpu(int cpu) 1680 static int wq_select_unbound_cpu(int cpu) 2215 { 1681 { 2216 int new_cpu; 1682 int new_cpu; 2217 1683 2218 if (likely(!wq_debug_force_rr_cpu)) { 1684 if (likely(!wq_debug_force_rr_cpu)) { 2219 if (cpumask_test_cpu(cpu, wq_ 1685 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2220 return cpu; 1686 return cpu; 2221 } else { 1687 } else { 2222 pr_warn_once("workqueue: roun 1688 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2223 } 1689 } 2224 1690 2225 new_cpu = __this_cpu_read(wq_rr_cpu_l 1691 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2226 new_cpu = cpumask_next_and(new_cpu, w 1692 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2227 if (unlikely(new_cpu >= nr_cpu_ids)) 1693 if (unlikely(new_cpu >= nr_cpu_ids)) { 2228 new_cpu = cpumask_first_and(w 1694 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2229 if (unlikely(new_cpu >= nr_cp 1695 if (unlikely(new_cpu >= nr_cpu_ids)) 2230 return cpu; 1696 return cpu; 2231 } 1697 } 2232 __this_cpu_write(wq_rr_cpu_last, new_ 1698 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2233 1699 2234 return new_cpu; 1700 return new_cpu; 2235 } 1701 } 2236 1702 2237 static void __queue_work(int cpu, struct work 1703 static void __queue_work(int cpu, struct workqueue_struct *wq, 2238 struct work_struct * 1704 struct work_struct *work) 2239 { 1705 { 2240 struct pool_workqueue *pwq; 1706 struct pool_workqueue *pwq; 2241 struct worker_pool *last_pool, *pool; 1707 struct worker_pool *last_pool, *pool; 2242 unsigned int work_flags; 1708 unsigned int work_flags; 2243 unsigned int req_cpu = cpu; 1709 unsigned int req_cpu = cpu; 2244 1710 2245 /* 1711 /* 2246 * While a work item is PENDING && of 1712 * While a work item is PENDING && off queue, a task trying to 2247 * steal the PENDING will busy-loop w 1713 * steal the PENDING will busy-loop waiting for it to either get 2248 * queued or lose PENDING. Grabbing 1714 * queued or lose PENDING. Grabbing PENDING and queueing should 2249 * happen with IRQ disabled. 1715 * happen with IRQ disabled. 2250 */ 1716 */ 2251 lockdep_assert_irqs_disabled(); 1717 lockdep_assert_irqs_disabled(); 2252 1718 >> 1719 2253 /* 1720 /* 2254 * For a draining wq, only works from 1721 * For a draining wq, only works from the same workqueue are 2255 * allowed. The __WQ_DESTROYING helps 1722 * allowed. The __WQ_DESTROYING helps to spot the issue that 2256 * queues a new work item to a wq aft 1723 * queues a new work item to a wq after destroy_workqueue(wq). 2257 */ 1724 */ 2258 if (unlikely(wq->flags & (__WQ_DESTRO 1725 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2259 WARN_ON_ONCE(!is_chained 1726 WARN_ON_ONCE(!is_chained_work(wq)))) 2260 return; 1727 return; 2261 rcu_read_lock(); 1728 rcu_read_lock(); 2262 retry: 1729 retry: 2263 /* pwq which will be used unless @wor 1730 /* pwq which will be used unless @work is executing elsewhere */ 2264 if (req_cpu == WORK_CPU_UNBOUND) { 1731 if (req_cpu == WORK_CPU_UNBOUND) { 2265 if (wq->flags & WQ_UNBOUND) 1732 if (wq->flags & WQ_UNBOUND) 2266 cpu = wq_select_unbou 1733 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2267 else 1734 else 2268 cpu = raw_smp_process 1735 cpu = raw_smp_processor_id(); 2269 } 1736 } 2270 1737 2271 pwq = rcu_dereference(*per_cpu_ptr(wq 1738 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2272 pool = pwq->pool; 1739 pool = pwq->pool; 2273 1740 2274 /* 1741 /* 2275 * If @work was previously on a diffe 1742 * If @work was previously on a different pool, it might still be 2276 * running there, in which case the w 1743 * running there, in which case the work needs to be queued on that 2277 * pool to guarantee non-reentrancy. 1744 * pool to guarantee non-reentrancy. 2278 * << 2279 * For ordered workqueue, work items << 2280 * for accurate order management. Gu << 2281 * non-reentrancy. See the comments << 2282 */ 1745 */ 2283 last_pool = get_work_pool(work); 1746 last_pool = get_work_pool(work); 2284 if (last_pool && last_pool != pool && !! 1747 if (last_pool && last_pool != pool) { 2285 struct worker *worker; 1748 struct worker *worker; 2286 1749 2287 raw_spin_lock(&last_pool->loc 1750 raw_spin_lock(&last_pool->lock); 2288 1751 2289 worker = find_worker_executin 1752 worker = find_worker_executing_work(last_pool, work); 2290 1753 2291 if (worker && worker->current 1754 if (worker && worker->current_pwq->wq == wq) { 2292 pwq = worker->current 1755 pwq = worker->current_pwq; 2293 pool = pwq->pool; 1756 pool = pwq->pool; 2294 WARN_ON_ONCE(pool != 1757 WARN_ON_ONCE(pool != last_pool); 2295 } else { 1758 } else { 2296 /* meh... not running 1759 /* meh... not running there, queue here */ 2297 raw_spin_unlock(&last 1760 raw_spin_unlock(&last_pool->lock); 2298 raw_spin_lock(&pool-> 1761 raw_spin_lock(&pool->lock); 2299 } 1762 } 2300 } else { 1763 } else { 2301 raw_spin_lock(&pool->lock); 1764 raw_spin_lock(&pool->lock); 2302 } 1765 } 2303 1766 2304 /* 1767 /* 2305 * pwq is determined and locked. For 1768 * pwq is determined and locked. For unbound pools, we could have raced 2306 * with pwq release and it could alre 1769 * with pwq release and it could already be dead. If its refcnt is zero, 2307 * repeat pwq selection. Note that un 1770 * repeat pwq selection. Note that unbound pwqs never die without 2308 * another pwq replacing it in cpu_pw 1771 * another pwq replacing it in cpu_pwq or while work items are executing 2309 * on it, so the retrying is guarante 1772 * on it, so the retrying is guaranteed to make forward-progress. 2310 */ 1773 */ 2311 if (unlikely(!pwq->refcnt)) { 1774 if (unlikely(!pwq->refcnt)) { 2312 if (wq->flags & WQ_UNBOUND) { 1775 if (wq->flags & WQ_UNBOUND) { 2313 raw_spin_unlock(&pool 1776 raw_spin_unlock(&pool->lock); 2314 cpu_relax(); 1777 cpu_relax(); 2315 goto retry; 1778 goto retry; 2316 } 1779 } 2317 /* oops */ 1780 /* oops */ 2318 WARN_ONCE(true, "workqueue: p 1781 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2319 wq->name, cpu); 1782 wq->name, cpu); 2320 } 1783 } 2321 1784 2322 /* pwq determined, queue */ 1785 /* pwq determined, queue */ 2323 trace_workqueue_queue_work(req_cpu, p 1786 trace_workqueue_queue_work(req_cpu, pwq, work); 2324 1787 2325 if (WARN_ON(!list_empty(&work->entry) 1788 if (WARN_ON(!list_empty(&work->entry))) 2326 goto out; 1789 goto out; 2327 1790 2328 pwq->nr_in_flight[pwq->work_color]++; 1791 pwq->nr_in_flight[pwq->work_color]++; 2329 work_flags = work_color_to_flags(pwq- 1792 work_flags = work_color_to_flags(pwq->work_color); 2330 1793 2331 /* !! 1794 if (likely(pwq->nr_active < pwq->max_active)) { 2332 * Limit the number of concurrently a << 2333 * @work must also queue behind exist << 2334 * ordering when max_active changes. << 2335 */ << 2336 if (list_empty(&pwq->inactive_works) << 2337 if (list_empty(&pool->worklis 1795 if (list_empty(&pool->worklist)) 2338 pool->watchdog_ts = j 1796 pool->watchdog_ts = jiffies; 2339 1797 2340 trace_workqueue_activate_work 1798 trace_workqueue_activate_work(work); >> 1799 pwq->nr_active++; 2341 insert_work(pwq, work, &pool- 1800 insert_work(pwq, work, &pool->worklist, work_flags); 2342 kick_pool(pool); 1801 kick_pool(pool); 2343 } else { 1802 } else { 2344 work_flags |= WORK_STRUCT_INA 1803 work_flags |= WORK_STRUCT_INACTIVE; 2345 insert_work(pwq, work, &pwq-> 1804 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2346 } 1805 } 2347 1806 2348 out: 1807 out: 2349 raw_spin_unlock(&pool->lock); 1808 raw_spin_unlock(&pool->lock); 2350 rcu_read_unlock(); 1809 rcu_read_unlock(); 2351 } 1810 } 2352 1811 2353 static bool clear_pending_if_disabled(struct << 2354 { << 2355 unsigned long data = *work_data_bits( << 2356 struct work_offq_data offqd; << 2357 << 2358 if (likely((data & WORK_STRUCT_PWQ) | << 2359 !(data & WORK_OFFQ_DISABLE << 2360 return false; << 2361 << 2362 work_offqd_unpack(&offqd, data); << 2363 set_work_pool_and_clear_pending(work, << 2364 work_ << 2365 return true; << 2366 } << 2367 << 2368 /** 1812 /** 2369 * queue_work_on - queue work on specific cpu 1813 * queue_work_on - queue work on specific cpu 2370 * @cpu: CPU number to execute work on 1814 * @cpu: CPU number to execute work on 2371 * @wq: workqueue to use 1815 * @wq: workqueue to use 2372 * @work: work to queue 1816 * @work: work to queue 2373 * 1817 * 2374 * We queue the work to a specific CPU, the c 1818 * We queue the work to a specific CPU, the caller must ensure it 2375 * can't go away. Callers that fail to ensur 1819 * can't go away. Callers that fail to ensure that the specified 2376 * CPU cannot go away will execute on a rando 1820 * CPU cannot go away will execute on a randomly chosen CPU. 2377 * But note well that callers specifying a CP 1821 * But note well that callers specifying a CPU that never has been 2378 * online will get a splat. 1822 * online will get a splat. 2379 * 1823 * 2380 * Return: %false if @work was already on a q 1824 * Return: %false if @work was already on a queue, %true otherwise. 2381 */ 1825 */ 2382 bool queue_work_on(int cpu, struct workqueue_ 1826 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2383 struct work_struct *work) 1827 struct work_struct *work) 2384 { 1828 { 2385 bool ret = false; 1829 bool ret = false; 2386 unsigned long irq_flags; !! 1830 unsigned long flags; 2387 1831 2388 local_irq_save(irq_flags); !! 1832 local_irq_save(flags); 2389 1833 2390 if (!test_and_set_bit(WORK_STRUCT_PEN !! 1834 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2391 !clear_pending_if_disabled(work)) << 2392 __queue_work(cpu, wq, work); 1835 __queue_work(cpu, wq, work); 2393 ret = true; 1836 ret = true; 2394 } 1837 } 2395 1838 2396 local_irq_restore(irq_flags); !! 1839 local_irq_restore(flags); 2397 return ret; 1840 return ret; 2398 } 1841 } 2399 EXPORT_SYMBOL(queue_work_on); 1842 EXPORT_SYMBOL(queue_work_on); 2400 1843 2401 /** 1844 /** 2402 * select_numa_node_cpu - Select a CPU based 1845 * select_numa_node_cpu - Select a CPU based on NUMA node 2403 * @node: NUMA node ID that we want to select 1846 * @node: NUMA node ID that we want to select a CPU from 2404 * 1847 * 2405 * This function will attempt to find a "rand 1848 * This function will attempt to find a "random" cpu available on a given 2406 * node. If there are no CPUs available on th 1849 * node. If there are no CPUs available on the given node it will return 2407 * WORK_CPU_UNBOUND indicating that we should 1850 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2408 * available CPU if we need to schedule this 1851 * available CPU if we need to schedule this work. 2409 */ 1852 */ 2410 static int select_numa_node_cpu(int node) 1853 static int select_numa_node_cpu(int node) 2411 { 1854 { 2412 int cpu; 1855 int cpu; 2413 1856 2414 /* Delay binding to CPU if node is no 1857 /* Delay binding to CPU if node is not valid or online */ 2415 if (node < 0 || node >= MAX_NUMNODES 1858 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2416 return WORK_CPU_UNBOUND; 1859 return WORK_CPU_UNBOUND; 2417 1860 2418 /* Use local node/cpu if we are alrea 1861 /* Use local node/cpu if we are already there */ 2419 cpu = raw_smp_processor_id(); 1862 cpu = raw_smp_processor_id(); 2420 if (node == cpu_to_node(cpu)) 1863 if (node == cpu_to_node(cpu)) 2421 return cpu; 1864 return cpu; 2422 1865 2423 /* Use "random" otherwise know as "fi 1866 /* Use "random" otherwise know as "first" online CPU of node */ 2424 cpu = cpumask_any_and(cpumask_of_node 1867 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2425 1868 2426 /* If CPU is valid return that, other 1869 /* If CPU is valid return that, otherwise just defer */ 2427 return cpu < nr_cpu_ids ? cpu : WORK_ 1870 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2428 } 1871 } 2429 1872 2430 /** 1873 /** 2431 * queue_work_node - queue work on a "random" 1874 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2432 * @node: NUMA node that we are targeting the 1875 * @node: NUMA node that we are targeting the work for 2433 * @wq: workqueue to use 1876 * @wq: workqueue to use 2434 * @work: work to queue 1877 * @work: work to queue 2435 * 1878 * 2436 * We queue the work to a "random" CPU within 1879 * We queue the work to a "random" CPU within a given NUMA node. The basic 2437 * idea here is to provide a way to somehow a 1880 * idea here is to provide a way to somehow associate work with a given 2438 * NUMA node. 1881 * NUMA node. 2439 * 1882 * 2440 * This function will only make a best effort 1883 * This function will only make a best effort attempt at getting this onto 2441 * the right NUMA node. If no node is request 1884 * the right NUMA node. If no node is requested or the requested node is 2442 * offline then we just fall back to standard 1885 * offline then we just fall back to standard queue_work behavior. 2443 * 1886 * 2444 * Currently the "random" CPU ends up being t 1887 * Currently the "random" CPU ends up being the first available CPU in the 2445 * intersection of cpu_online_mask and the cp 1888 * intersection of cpu_online_mask and the cpumask of the node, unless we 2446 * are running on the node. In that case we j 1889 * are running on the node. In that case we just use the current CPU. 2447 * 1890 * 2448 * Return: %false if @work was already on a q 1891 * Return: %false if @work was already on a queue, %true otherwise. 2449 */ 1892 */ 2450 bool queue_work_node(int node, struct workque 1893 bool queue_work_node(int node, struct workqueue_struct *wq, 2451 struct work_struct *work 1894 struct work_struct *work) 2452 { 1895 { 2453 unsigned long irq_flags; !! 1896 unsigned long flags; 2454 bool ret = false; 1897 bool ret = false; 2455 1898 2456 /* 1899 /* 2457 * This current implementation is spe 1900 * This current implementation is specific to unbound workqueues. 2458 * Specifically we only return the fi 1901 * Specifically we only return the first available CPU for a given 2459 * node instead of cycling through in 1902 * node instead of cycling through individual CPUs within the node. 2460 * 1903 * 2461 * If this is used with a per-cpu wor 1904 * If this is used with a per-cpu workqueue then the logic in 2462 * workqueue_select_cpu_near would ne 1905 * workqueue_select_cpu_near would need to be updated to allow for 2463 * some round robin type logic. 1906 * some round robin type logic. 2464 */ 1907 */ 2465 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND 1908 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2466 1909 2467 local_irq_save(irq_flags); !! 1910 local_irq_save(flags); 2468 1911 2469 if (!test_and_set_bit(WORK_STRUCT_PEN !! 1912 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2470 !clear_pending_if_disabled(work)) << 2471 int cpu = select_numa_node_cp 1913 int cpu = select_numa_node_cpu(node); 2472 1914 2473 __queue_work(cpu, wq, work); 1915 __queue_work(cpu, wq, work); 2474 ret = true; 1916 ret = true; 2475 } 1917 } 2476 1918 2477 local_irq_restore(irq_flags); !! 1919 local_irq_restore(flags); 2478 return ret; 1920 return ret; 2479 } 1921 } 2480 EXPORT_SYMBOL_GPL(queue_work_node); 1922 EXPORT_SYMBOL_GPL(queue_work_node); 2481 1923 2482 void delayed_work_timer_fn(struct timer_list 1924 void delayed_work_timer_fn(struct timer_list *t) 2483 { 1925 { 2484 struct delayed_work *dwork = from_tim 1926 struct delayed_work *dwork = from_timer(dwork, t, timer); 2485 1927 2486 /* should have been called from irqsa 1928 /* should have been called from irqsafe timer with irq already off */ 2487 __queue_work(dwork->cpu, dwork->wq, & 1929 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2488 } 1930 } 2489 EXPORT_SYMBOL(delayed_work_timer_fn); 1931 EXPORT_SYMBOL(delayed_work_timer_fn); 2490 1932 2491 static void __queue_delayed_work(int cpu, str 1933 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2492 struct delaye 1934 struct delayed_work *dwork, unsigned long delay) 2493 { 1935 { 2494 struct timer_list *timer = &dwork->ti 1936 struct timer_list *timer = &dwork->timer; 2495 struct work_struct *work = &dwork->wo 1937 struct work_struct *work = &dwork->work; 2496 1938 2497 WARN_ON_ONCE(!wq); 1939 WARN_ON_ONCE(!wq); 2498 WARN_ON_ONCE(timer->function != delay 1940 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2499 WARN_ON_ONCE(timer_pending(timer)); 1941 WARN_ON_ONCE(timer_pending(timer)); 2500 WARN_ON_ONCE(!list_empty(&work->entry 1942 WARN_ON_ONCE(!list_empty(&work->entry)); 2501 1943 2502 /* 1944 /* 2503 * If @delay is 0, queue @dwork->work 1945 * If @delay is 0, queue @dwork->work immediately. This is for 2504 * both optimization and correctness. 1946 * both optimization and correctness. The earliest @timer can 2505 * expire is on the closest next tick 1947 * expire is on the closest next tick and delayed_work users depend 2506 * on that there's no such delay when 1948 * on that there's no such delay when @delay is 0. 2507 */ 1949 */ 2508 if (!delay) { 1950 if (!delay) { 2509 __queue_work(cpu, wq, &dwork- 1951 __queue_work(cpu, wq, &dwork->work); 2510 return; 1952 return; 2511 } 1953 } 2512 1954 2513 dwork->wq = wq; 1955 dwork->wq = wq; 2514 dwork->cpu = cpu; 1956 dwork->cpu = cpu; 2515 timer->expires = jiffies + delay; 1957 timer->expires = jiffies + delay; 2516 1958 2517 if (housekeeping_enabled(HK_TYPE_TIME !! 1959 if (unlikely(cpu != WORK_CPU_UNBOUND)) 2518 /* If the current cpu is a ho << 2519 cpu = smp_processor_id(); << 2520 if (!housekeeping_test_cpu(cp << 2521 cpu = housekeeping_an << 2522 add_timer_on(timer, cpu); 1960 add_timer_on(timer, cpu); 2523 } else { !! 1961 else 2524 if (likely(cpu == WORK_CPU_UN !! 1962 add_timer(timer); 2525 add_timer_global(time << 2526 else << 2527 add_timer_on(timer, c << 2528 } << 2529 } 1963 } 2530 1964 2531 /** 1965 /** 2532 * queue_delayed_work_on - queue work on spec 1966 * queue_delayed_work_on - queue work on specific CPU after delay 2533 * @cpu: CPU number to execute work on 1967 * @cpu: CPU number to execute work on 2534 * @wq: workqueue to use 1968 * @wq: workqueue to use 2535 * @dwork: work to queue 1969 * @dwork: work to queue 2536 * @delay: number of jiffies to wait before q 1970 * @delay: number of jiffies to wait before queueing 2537 * 1971 * 2538 * Return: %false if @work was already on a q 1972 * Return: %false if @work was already on a queue, %true otherwise. If 2539 * @delay is zero and @dwork is idle, it will 1973 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2540 * execution. 1974 * execution. 2541 */ 1975 */ 2542 bool queue_delayed_work_on(int cpu, struct wo 1976 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2543 struct delayed_wor 1977 struct delayed_work *dwork, unsigned long delay) 2544 { 1978 { 2545 struct work_struct *work = &dwork->wo 1979 struct work_struct *work = &dwork->work; 2546 bool ret = false; 1980 bool ret = false; 2547 unsigned long irq_flags; !! 1981 unsigned long flags; 2548 1982 2549 /* read the comment in __queue_work() 1983 /* read the comment in __queue_work() */ 2550 local_irq_save(irq_flags); !! 1984 local_irq_save(flags); 2551 1985 2552 if (!test_and_set_bit(WORK_STRUCT_PEN !! 1986 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2553 !clear_pending_if_disabled(work)) << 2554 __queue_delayed_work(cpu, wq, 1987 __queue_delayed_work(cpu, wq, dwork, delay); 2555 ret = true; 1988 ret = true; 2556 } 1989 } 2557 1990 2558 local_irq_restore(irq_flags); !! 1991 local_irq_restore(flags); 2559 return ret; 1992 return ret; 2560 } 1993 } 2561 EXPORT_SYMBOL(queue_delayed_work_on); 1994 EXPORT_SYMBOL(queue_delayed_work_on); 2562 1995 2563 /** 1996 /** 2564 * mod_delayed_work_on - modify delay of or q 1997 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2565 * @cpu: CPU number to execute work on 1998 * @cpu: CPU number to execute work on 2566 * @wq: workqueue to use 1999 * @wq: workqueue to use 2567 * @dwork: work to queue 2000 * @dwork: work to queue 2568 * @delay: number of jiffies to wait before q 2001 * @delay: number of jiffies to wait before queueing 2569 * 2002 * 2570 * If @dwork is idle, equivalent to queue_del 2003 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2571 * modify @dwork's timer so that it expires a 2004 * modify @dwork's timer so that it expires after @delay. If @delay is 2572 * zero, @work is guaranteed to be scheduled 2005 * zero, @work is guaranteed to be scheduled immediately regardless of its 2573 * current state. 2006 * current state. 2574 * 2007 * 2575 * Return: %false if @dwork was idle and queu 2008 * Return: %false if @dwork was idle and queued, %true if @dwork was 2576 * pending and its timer was modified. 2009 * pending and its timer was modified. 2577 * 2010 * 2578 * This function is safe to call from any con 2011 * This function is safe to call from any context including IRQ handler. 2579 * See try_to_grab_pending() for details. 2012 * See try_to_grab_pending() for details. 2580 */ 2013 */ 2581 bool mod_delayed_work_on(int cpu, struct work 2014 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2582 struct delayed_work 2015 struct delayed_work *dwork, unsigned long delay) 2583 { 2016 { 2584 unsigned long irq_flags; !! 2017 unsigned long flags; 2585 bool ret; !! 2018 int ret; 2586 2019 2587 ret = work_grab_pending(&dwork->work, !! 2020 do { >> 2021 ret = try_to_grab_pending(&dwork->work, true, &flags); >> 2022 } while (unlikely(ret == -EAGAIN)); 2588 2023 2589 if (!clear_pending_if_disabled(&dwork !! 2024 if (likely(ret >= 0)) { 2590 __queue_delayed_work(cpu, wq, 2025 __queue_delayed_work(cpu, wq, dwork, delay); >> 2026 local_irq_restore(flags); >> 2027 } 2591 2028 2592 local_irq_restore(irq_flags); !! 2029 /* -ENOENT from try_to_grab_pending() becomes %true */ 2593 return ret; 2030 return ret; 2594 } 2031 } 2595 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2032 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2596 2033 2597 static void rcu_work_rcufn(struct rcu_head *r 2034 static void rcu_work_rcufn(struct rcu_head *rcu) 2598 { 2035 { 2599 struct rcu_work *rwork = container_of 2036 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2600 2037 2601 /* read the comment in __queue_work() 2038 /* read the comment in __queue_work() */ 2602 local_irq_disable(); 2039 local_irq_disable(); 2603 __queue_work(WORK_CPU_UNBOUND, rwork- 2040 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2604 local_irq_enable(); 2041 local_irq_enable(); 2605 } 2042 } 2606 2043 2607 /** 2044 /** 2608 * queue_rcu_work - queue work after a RCU gr 2045 * queue_rcu_work - queue work after a RCU grace period 2609 * @wq: workqueue to use 2046 * @wq: workqueue to use 2610 * @rwork: work to queue 2047 * @rwork: work to queue 2611 * 2048 * 2612 * Return: %false if @rwork was already pendi 2049 * Return: %false if @rwork was already pending, %true otherwise. Note 2613 * that a full RCU grace period is guaranteed 2050 * that a full RCU grace period is guaranteed only after a %true return. 2614 * While @rwork is guaranteed to be executed 2051 * While @rwork is guaranteed to be executed after a %false return, the 2615 * execution may happen before a full RCU gra 2052 * execution may happen before a full RCU grace period has passed. 2616 */ 2053 */ 2617 bool queue_rcu_work(struct workqueue_struct * 2054 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2618 { 2055 { 2619 struct work_struct *work = &rwork->wo 2056 struct work_struct *work = &rwork->work; 2620 2057 2621 /* !! 2058 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2622 * rcu_work can't be canceled or disa << 2623 * inside @rwork and disabled the inn << 2624 */ << 2625 if (!test_and_set_bit(WORK_STRUCT_PEN << 2626 !WARN_ON_ONCE(clear_pending_if_di << 2627 rwork->wq = wq; 2059 rwork->wq = wq; 2628 call_rcu_hurry(&rwork->rcu, r 2060 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2629 return true; 2061 return true; 2630 } 2062 } 2631 2063 2632 return false; 2064 return false; 2633 } 2065 } 2634 EXPORT_SYMBOL(queue_rcu_work); 2066 EXPORT_SYMBOL(queue_rcu_work); 2635 2067 2636 static struct worker *alloc_worker(int node) 2068 static struct worker *alloc_worker(int node) 2637 { 2069 { 2638 struct worker *worker; 2070 struct worker *worker; 2639 2071 2640 worker = kzalloc_node(sizeof(*worker) 2072 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2641 if (worker) { 2073 if (worker) { 2642 INIT_LIST_HEAD(&worker->entry 2074 INIT_LIST_HEAD(&worker->entry); 2643 INIT_LIST_HEAD(&worker->sched 2075 INIT_LIST_HEAD(&worker->scheduled); 2644 INIT_LIST_HEAD(&worker->node) 2076 INIT_LIST_HEAD(&worker->node); 2645 /* on creation a worker is in 2077 /* on creation a worker is in !idle && prep state */ 2646 worker->flags = WORKER_PREP; 2078 worker->flags = WORKER_PREP; 2647 } 2079 } 2648 return worker; 2080 return worker; 2649 } 2081 } 2650 2082 2651 static cpumask_t *pool_allowed_cpus(struct wo 2083 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2652 { 2084 { 2653 if (pool->cpu < 0 && pool->attrs->aff 2085 if (pool->cpu < 0 && pool->attrs->affn_strict) 2654 return pool->attrs->__pod_cpu 2086 return pool->attrs->__pod_cpumask; 2655 else 2087 else 2656 return pool->attrs->cpumask; 2088 return pool->attrs->cpumask; 2657 } 2089 } 2658 2090 2659 /** 2091 /** 2660 * worker_attach_to_pool() - attach a worker 2092 * worker_attach_to_pool() - attach a worker to a pool 2661 * @worker: worker to be attached 2093 * @worker: worker to be attached 2662 * @pool: the target pool 2094 * @pool: the target pool 2663 * 2095 * 2664 * Attach @worker to @pool. Once attached, t 2096 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2665 * cpu-binding of @worker are kept coordinate 2097 * cpu-binding of @worker are kept coordinated with the pool across 2666 * cpu-[un]hotplugs. 2098 * cpu-[un]hotplugs. 2667 */ 2099 */ 2668 static void worker_attach_to_pool(struct work 2100 static void worker_attach_to_pool(struct worker *worker, 2669 struct work !! 2101 struct worker_pool *pool) 2670 { 2102 { 2671 mutex_lock(&wq_pool_attach_mutex); 2103 mutex_lock(&wq_pool_attach_mutex); 2672 2104 2673 /* 2105 /* 2674 * The wq_pool_attach_mutex ensures % !! 2106 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 2675 * across this function. See the comm !! 2107 * stable across this function. See the comments above the flag 2676 * details. BH workers are, while per !! 2108 * definition for details. 2677 */ 2109 */ 2678 if (pool->flags & POOL_DISASSOCIATED) !! 2110 if (pool->flags & POOL_DISASSOCIATED) 2679 worker->flags |= WORKER_UNBOU 2111 worker->flags |= WORKER_UNBOUND; 2680 } else { !! 2112 else 2681 WARN_ON_ONCE(pool->flags & PO << 2682 kthread_set_per_cpu(worker->t 2113 kthread_set_per_cpu(worker->task, pool->cpu); 2683 } << 2684 2114 2685 if (worker->rescue_wq) 2115 if (worker->rescue_wq) 2686 set_cpus_allowed_ptr(worker-> 2116 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2687 2117 2688 list_add_tail(&worker->node, &pool->w 2118 list_add_tail(&worker->node, &pool->workers); 2689 worker->pool = pool; 2119 worker->pool = pool; 2690 2120 2691 mutex_unlock(&wq_pool_attach_mutex); 2121 mutex_unlock(&wq_pool_attach_mutex); 2692 } 2122 } 2693 2123 2694 static void unbind_worker(struct worker *work << 2695 { << 2696 lockdep_assert_held(&wq_pool_attach_m << 2697 << 2698 kthread_set_per_cpu(worker->task, -1) << 2699 if (cpumask_intersects(wq_unbound_cpu << 2700 WARN_ON_ONCE(set_cpus_allowed << 2701 else << 2702 WARN_ON_ONCE(set_cpus_allowed << 2703 } << 2704 << 2705 << 2706 static void detach_worker(struct worker *work << 2707 { << 2708 lockdep_assert_held(&wq_pool_attach_m << 2709 << 2710 unbind_worker(worker); << 2711 list_del(&worker->node); << 2712 } << 2713 << 2714 /** 2124 /** 2715 * worker_detach_from_pool() - detach a worke 2125 * worker_detach_from_pool() - detach a worker from its pool 2716 * @worker: worker which is attached to its p 2126 * @worker: worker which is attached to its pool 2717 * 2127 * 2718 * Undo the attaching which had been done in 2128 * Undo the attaching which had been done in worker_attach_to_pool(). The 2719 * caller worker shouldn't access to the pool 2129 * caller worker shouldn't access to the pool after detached except it has 2720 * other reference to the pool. 2130 * other reference to the pool. 2721 */ 2131 */ 2722 static void worker_detach_from_pool(struct wo 2132 static void worker_detach_from_pool(struct worker *worker) 2723 { 2133 { 2724 struct worker_pool *pool = worker->po 2134 struct worker_pool *pool = worker->pool; 2725 !! 2135 struct completion *detach_completion = NULL; 2726 /* there is one permanent BH worker p << 2727 WARN_ON_ONCE(pool->flags & POOL_BH); << 2728 2136 2729 mutex_lock(&wq_pool_attach_mutex); 2137 mutex_lock(&wq_pool_attach_mutex); 2730 detach_worker(worker); !! 2138 >> 2139 kthread_set_per_cpu(worker->task, -1); >> 2140 list_del(&worker->node); 2731 worker->pool = NULL; 2141 worker->pool = NULL; >> 2142 >> 2143 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) >> 2144 detach_completion = pool->detach_completion; 2732 mutex_unlock(&wq_pool_attach_mutex); 2145 mutex_unlock(&wq_pool_attach_mutex); 2733 2146 2734 /* clear leftover flags without pool- 2147 /* clear leftover flags without pool->lock after it is detached */ 2735 worker->flags &= ~(WORKER_UNBOUND | W 2148 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2736 } << 2737 << 2738 static int format_worker_id(char *buf, size_t << 2739 struct worker_poo << 2740 { << 2741 if (worker->rescue_wq) << 2742 return scnprintf(buf, size, " << 2743 worker->resc << 2744 2149 2745 if (pool) { !! 2150 if (detach_completion) 2746 if (pool->cpu >= 0) !! 2151 complete(detach_completion); 2747 return scnprintf(buf, << 2748 pool << 2749 pool << 2750 else << 2751 return scnprintf(buf, << 2752 pool << 2753 } else { << 2754 return scnprintf(buf, size, " << 2755 } << 2756 } 2152 } 2757 2153 2758 /** 2154 /** 2759 * create_worker - create a new workqueue wor 2155 * create_worker - create a new workqueue worker 2760 * @pool: pool the new worker will belong to 2156 * @pool: pool the new worker will belong to 2761 * 2157 * 2762 * Create and start a new worker which is att 2158 * Create and start a new worker which is attached to @pool. 2763 * 2159 * 2764 * CONTEXT: 2160 * CONTEXT: 2765 * Might sleep. Does GFP_KERNEL allocations. 2161 * Might sleep. Does GFP_KERNEL allocations. 2766 * 2162 * 2767 * Return: 2163 * Return: 2768 * Pointer to the newly created worker. 2164 * Pointer to the newly created worker. 2769 */ 2165 */ 2770 static struct worker *create_worker(struct wo 2166 static struct worker *create_worker(struct worker_pool *pool) 2771 { 2167 { 2772 struct worker *worker; 2168 struct worker *worker; 2773 int id; 2169 int id; >> 2170 char id_buf[23]; 2774 2171 2775 /* ID is needed to determine kthread 2172 /* ID is needed to determine kthread name */ 2776 id = ida_alloc(&pool->worker_ida, GFP 2173 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2777 if (id < 0) { 2174 if (id < 0) { 2778 pr_err_once("workqueue: Faile 2175 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2779 ERR_PTR(id)); 2176 ERR_PTR(id)); 2780 return NULL; 2177 return NULL; 2781 } 2178 } 2782 2179 2783 worker = alloc_worker(pool->node); 2180 worker = alloc_worker(pool->node); 2784 if (!worker) { 2181 if (!worker) { 2785 pr_err_once("workqueue: Faile 2182 pr_err_once("workqueue: Failed to allocate a worker\n"); 2786 goto fail; 2183 goto fail; 2787 } 2184 } 2788 2185 2789 worker->id = id; 2186 worker->id = id; 2790 2187 2791 if (!(pool->flags & POOL_BH)) { !! 2188 if (pool->cpu >= 0) 2792 char id_buf[WORKER_ID_LEN]; !! 2189 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, >> 2190 pool->attrs->nice < 0 ? "H" : ""); >> 2191 else >> 2192 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2793 2193 2794 format_worker_id(id_buf, size !! 2194 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 2795 worker->task = kthread_create !! 2195 "kworker/%s", id_buf); 2796 !! 2196 if (IS_ERR(worker->task)) { 2797 if (IS_ERR(worker->task)) { !! 2197 if (PTR_ERR(worker->task) == -EINTR) { 2798 if (PTR_ERR(worker->t !! 2198 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2799 pr_err("workq !! 2199 id_buf); 2800 id_buf !! 2200 } else { 2801 } else { !! 2201 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2802 pr_err_once(" !! 2202 worker->task); 2803 w << 2804 } << 2805 goto fail; << 2806 } 2203 } 2807 !! 2204 goto fail; 2808 set_user_nice(worker->task, p << 2809 kthread_bind_mask(worker->tas << 2810 } 2205 } 2811 2206 >> 2207 set_user_nice(worker->task, pool->attrs->nice); >> 2208 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); >> 2209 2812 /* successful, attach the worker to t 2210 /* successful, attach the worker to the pool */ 2813 worker_attach_to_pool(worker, pool); 2211 worker_attach_to_pool(worker, pool); 2814 2212 2815 /* start the newly created worker */ 2213 /* start the newly created worker */ 2816 raw_spin_lock_irq(&pool->lock); 2214 raw_spin_lock_irq(&pool->lock); 2817 2215 2818 worker->pool->nr_workers++; 2216 worker->pool->nr_workers++; 2819 worker_enter_idle(worker); 2217 worker_enter_idle(worker); >> 2218 kick_pool(pool); 2820 2219 2821 /* 2220 /* 2822 * @worker is waiting on a completion 2221 * @worker is waiting on a completion in kthread() and will trigger hung 2823 * check if not woken up soon. As kic !! 2222 * check if not woken up soon. As kick_pool() might not have waken it 2824 * wake it up explicitly. !! 2223 * up, wake it up explicitly once more. 2825 */ 2224 */ 2826 if (worker->task) !! 2225 wake_up_process(worker->task); 2827 wake_up_process(worker->task) << 2828 2226 2829 raw_spin_unlock_irq(&pool->lock); 2227 raw_spin_unlock_irq(&pool->lock); 2830 2228 2831 return worker; 2229 return worker; 2832 2230 2833 fail: 2231 fail: 2834 ida_free(&pool->worker_ida, id); 2232 ida_free(&pool->worker_ida, id); 2835 kfree(worker); 2233 kfree(worker); 2836 return NULL; 2234 return NULL; 2837 } 2235 } 2838 2236 2839 static void detach_dying_workers(struct list_ !! 2237 static void unbind_worker(struct worker *worker) 2840 { 2238 { 2841 struct worker *worker; !! 2239 lockdep_assert_held(&wq_pool_attach_mutex); 2842 2240 2843 list_for_each_entry(worker, cull_list !! 2241 kthread_set_per_cpu(worker->task, -1); 2844 detach_worker(worker); !! 2242 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) >> 2243 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); >> 2244 else >> 2245 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2845 } 2246 } 2846 2247 2847 static void reap_dying_workers(struct list_he !! 2248 static void wake_dying_workers(struct list_head *cull_list) 2848 { 2249 { 2849 struct worker *worker, *tmp; 2250 struct worker *worker, *tmp; 2850 2251 2851 list_for_each_entry_safe(worker, tmp, 2252 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2852 list_del_init(&worker->entry) 2253 list_del_init(&worker->entry); 2853 kthread_stop_put(worker->task !! 2254 unbind_worker(worker); 2854 kfree(worker); !! 2255 /* >> 2256 * If the worker was somehow already running, then it had to be >> 2257 * in pool->idle_list when set_worker_dying() happened or we >> 2258 * wouldn't have gotten here. >> 2259 * >> 2260 * Thus, the worker must either have observed the WORKER_DIE >> 2261 * flag, or have set its state to TASK_IDLE. Either way, the >> 2262 * below will be observed by the worker and is safe to do >> 2263 * outside of pool->lock. >> 2264 */ >> 2265 wake_up_process(worker->task); 2855 } 2266 } 2856 } 2267 } 2857 2268 2858 /** 2269 /** 2859 * set_worker_dying - Tag a worker for destru 2270 * set_worker_dying - Tag a worker for destruction 2860 * @worker: worker to be destroyed 2271 * @worker: worker to be destroyed 2861 * @list: transfer worker away from its pool- 2272 * @list: transfer worker away from its pool->idle_list and into list 2862 * 2273 * 2863 * Tag @worker for destruction and adjust @po 2274 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2864 * should be idle. 2275 * should be idle. 2865 * 2276 * 2866 * CONTEXT: 2277 * CONTEXT: 2867 * raw_spin_lock_irq(pool->lock). 2278 * raw_spin_lock_irq(pool->lock). 2868 */ 2279 */ 2869 static void set_worker_dying(struct worker *w 2280 static void set_worker_dying(struct worker *worker, struct list_head *list) 2870 { 2281 { 2871 struct worker_pool *pool = worker->po 2282 struct worker_pool *pool = worker->pool; 2872 2283 2873 lockdep_assert_held(&pool->lock); 2284 lockdep_assert_held(&pool->lock); 2874 lockdep_assert_held(&wq_pool_attach_m 2285 lockdep_assert_held(&wq_pool_attach_mutex); 2875 2286 2876 /* sanity check frenzy */ 2287 /* sanity check frenzy */ 2877 if (WARN_ON(worker->current_work) || 2288 if (WARN_ON(worker->current_work) || 2878 WARN_ON(!list_empty(&worker->sche 2289 WARN_ON(!list_empty(&worker->scheduled)) || 2879 WARN_ON(!(worker->flags & WORKER_ 2290 WARN_ON(!(worker->flags & WORKER_IDLE))) 2880 return; 2291 return; 2881 2292 2882 pool->nr_workers--; 2293 pool->nr_workers--; 2883 pool->nr_idle--; 2294 pool->nr_idle--; 2884 2295 2885 worker->flags |= WORKER_DIE; 2296 worker->flags |= WORKER_DIE; 2886 2297 2887 list_move(&worker->entry, list); 2298 list_move(&worker->entry, list); 2888 !! 2299 list_move(&worker->node, &pool->dying_workers); 2889 /* get an extra task struct reference << 2890 get_task_struct(worker->task); << 2891 } 2300 } 2892 2301 2893 /** 2302 /** 2894 * idle_worker_timeout - check if some idle w 2303 * idle_worker_timeout - check if some idle workers can now be deleted. 2895 * @t: The pool's idle_timer that just expire 2304 * @t: The pool's idle_timer that just expired 2896 * 2305 * 2897 * The timer is armed in worker_enter_idle(). 2306 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2898 * worker_leave_idle(), as a worker flicking 2307 * worker_leave_idle(), as a worker flicking between idle and active while its 2899 * pool is at the too_many_workers() tipping 2308 * pool is at the too_many_workers() tipping point would cause too much timer 2900 * housekeeping overhead. Since IDLE_WORKER_T 2309 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2901 * it expire and re-evaluate things from ther 2310 * it expire and re-evaluate things from there. 2902 */ 2311 */ 2903 static void idle_worker_timeout(struct timer_ 2312 static void idle_worker_timeout(struct timer_list *t) 2904 { 2313 { 2905 struct worker_pool *pool = from_timer 2314 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2906 bool do_cull = false; 2315 bool do_cull = false; 2907 2316 2908 if (work_pending(&pool->idle_cull_wor 2317 if (work_pending(&pool->idle_cull_work)) 2909 return; 2318 return; 2910 2319 2911 raw_spin_lock_irq(&pool->lock); 2320 raw_spin_lock_irq(&pool->lock); 2912 2321 2913 if (too_many_workers(pool)) { 2322 if (too_many_workers(pool)) { 2914 struct worker *worker; 2323 struct worker *worker; 2915 unsigned long expires; 2324 unsigned long expires; 2916 2325 2917 /* idle_list is kept in LIFO 2326 /* idle_list is kept in LIFO order, check the last one */ 2918 worker = list_last_entry(&poo !! 2327 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2919 expires = worker->last_active 2328 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2920 do_cull = !time_before(jiffie 2329 do_cull = !time_before(jiffies, expires); 2921 2330 2922 if (!do_cull) 2331 if (!do_cull) 2923 mod_timer(&pool->idle 2332 mod_timer(&pool->idle_timer, expires); 2924 } 2333 } 2925 raw_spin_unlock_irq(&pool->lock); 2334 raw_spin_unlock_irq(&pool->lock); 2926 2335 2927 if (do_cull) 2336 if (do_cull) 2928 queue_work(system_unbound_wq, 2337 queue_work(system_unbound_wq, &pool->idle_cull_work); 2929 } 2338 } 2930 2339 2931 /** 2340 /** 2932 * idle_cull_fn - cull workers that have been 2341 * idle_cull_fn - cull workers that have been idle for too long. 2933 * @work: the pool's work for handling these 2342 * @work: the pool's work for handling these idle workers 2934 * 2343 * 2935 * This goes through a pool's idle workers an 2344 * This goes through a pool's idle workers and gets rid of those that have been 2936 * idle for at least IDLE_WORKER_TIMEOUT seco 2345 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2937 * 2346 * 2938 * We don't want to disturb isolated CPUs bec 2347 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2939 * culled, so this also resets worker affinit 2348 * culled, so this also resets worker affinity. This requires a sleepable 2940 * context, hence the split between timer cal 2349 * context, hence the split between timer callback and work item. 2941 */ 2350 */ 2942 static void idle_cull_fn(struct work_struct * 2351 static void idle_cull_fn(struct work_struct *work) 2943 { 2352 { 2944 struct worker_pool *pool = container_ 2353 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2945 LIST_HEAD(cull_list); 2354 LIST_HEAD(cull_list); 2946 2355 2947 /* 2356 /* 2948 * Grabbing wq_pool_attach_mutex here 2357 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2949 * cannot proceed beyong set_pf_worke !! 2358 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2950 * This is required as a previously-p !! 2359 * path. This is required as a previously-preempted worker could run after 2951 * set_worker_dying() has happened bu !! 2360 * set_worker_dying() has happened but before wake_dying_workers() did. 2952 */ 2361 */ 2953 mutex_lock(&wq_pool_attach_mutex); 2362 mutex_lock(&wq_pool_attach_mutex); 2954 raw_spin_lock_irq(&pool->lock); 2363 raw_spin_lock_irq(&pool->lock); 2955 2364 2956 while (too_many_workers(pool)) { 2365 while (too_many_workers(pool)) { 2957 struct worker *worker; 2366 struct worker *worker; 2958 unsigned long expires; 2367 unsigned long expires; 2959 2368 2960 worker = list_last_entry(&poo !! 2369 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2961 expires = worker->last_active 2370 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2962 2371 2963 if (time_before(jiffies, expi 2372 if (time_before(jiffies, expires)) { 2964 mod_timer(&pool->idle 2373 mod_timer(&pool->idle_timer, expires); 2965 break; 2374 break; 2966 } 2375 } 2967 2376 2968 set_worker_dying(worker, &cul 2377 set_worker_dying(worker, &cull_list); 2969 } 2378 } 2970 2379 2971 raw_spin_unlock_irq(&pool->lock); 2380 raw_spin_unlock_irq(&pool->lock); 2972 detach_dying_workers(&cull_list); !! 2381 wake_dying_workers(&cull_list); 2973 mutex_unlock(&wq_pool_attach_mutex); 2382 mutex_unlock(&wq_pool_attach_mutex); 2974 << 2975 reap_dying_workers(&cull_list); << 2976 } 2383 } 2977 2384 2978 static void send_mayday(struct work_struct *w 2385 static void send_mayday(struct work_struct *work) 2979 { 2386 { 2980 struct pool_workqueue *pwq = get_work 2387 struct pool_workqueue *pwq = get_work_pwq(work); 2981 struct workqueue_struct *wq = pwq->wq 2388 struct workqueue_struct *wq = pwq->wq; 2982 2389 2983 lockdep_assert_held(&wq_mayday_lock); 2390 lockdep_assert_held(&wq_mayday_lock); 2984 2391 2985 if (!wq->rescuer) 2392 if (!wq->rescuer) 2986 return; 2393 return; 2987 2394 2988 /* mayday mayday mayday */ 2395 /* mayday mayday mayday */ 2989 if (list_empty(&pwq->mayday_node)) { 2396 if (list_empty(&pwq->mayday_node)) { 2990 /* 2397 /* 2991 * If @pwq is for an unbound 2398 * If @pwq is for an unbound wq, its base ref may be put at 2992 * any time due to an attribu 2399 * any time due to an attribute change. Pin @pwq until the 2993 * rescuer is done with it. 2400 * rescuer is done with it. 2994 */ 2401 */ 2995 get_pwq(pwq); 2402 get_pwq(pwq); 2996 list_add_tail(&pwq->mayday_no 2403 list_add_tail(&pwq->mayday_node, &wq->maydays); 2997 wake_up_process(wq->rescuer-> 2404 wake_up_process(wq->rescuer->task); 2998 pwq->stats[PWQ_STAT_MAYDAY]++ 2405 pwq->stats[PWQ_STAT_MAYDAY]++; 2999 } 2406 } 3000 } 2407 } 3001 2408 3002 static void pool_mayday_timeout(struct timer_ 2409 static void pool_mayday_timeout(struct timer_list *t) 3003 { 2410 { 3004 struct worker_pool *pool = from_timer 2411 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3005 struct work_struct *work; 2412 struct work_struct *work; 3006 2413 3007 raw_spin_lock_irq(&pool->lock); 2414 raw_spin_lock_irq(&pool->lock); 3008 raw_spin_lock(&wq_mayday_lock); 2415 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3009 2416 3010 if (need_to_create_worker(pool)) { 2417 if (need_to_create_worker(pool)) { 3011 /* 2418 /* 3012 * We've been trying to creat 2419 * We've been trying to create a new worker but 3013 * haven't been successful. 2420 * haven't been successful. We might be hitting an 3014 * allocation deadlock. Send 2421 * allocation deadlock. Send distress signals to 3015 * rescuers. 2422 * rescuers. 3016 */ 2423 */ 3017 list_for_each_entry(work, &po 2424 list_for_each_entry(work, &pool->worklist, entry) 3018 send_mayday(work); 2425 send_mayday(work); 3019 } 2426 } 3020 2427 3021 raw_spin_unlock(&wq_mayday_lock); 2428 raw_spin_unlock(&wq_mayday_lock); 3022 raw_spin_unlock_irq(&pool->lock); 2429 raw_spin_unlock_irq(&pool->lock); 3023 2430 3024 mod_timer(&pool->mayday_timer, jiffie 2431 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3025 } 2432 } 3026 2433 3027 /** 2434 /** 3028 * maybe_create_worker - create a new worker 2435 * maybe_create_worker - create a new worker if necessary 3029 * @pool: pool to create a new worker for 2436 * @pool: pool to create a new worker for 3030 * 2437 * 3031 * Create a new worker for @pool if necessary 2438 * Create a new worker for @pool if necessary. @pool is guaranteed to 3032 * have at least one idle worker on return fr 2439 * have at least one idle worker on return from this function. If 3033 * creating a new worker takes longer than MA 2440 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3034 * sent to all rescuers with works scheduled 2441 * sent to all rescuers with works scheduled on @pool to resolve 3035 * possible allocation deadlock. 2442 * possible allocation deadlock. 3036 * 2443 * 3037 * On return, need_to_create_worker() is guar 2444 * On return, need_to_create_worker() is guaranteed to be %false and 3038 * may_start_working() %true. 2445 * may_start_working() %true. 3039 * 2446 * 3040 * LOCKING: 2447 * LOCKING: 3041 * raw_spin_lock_irq(pool->lock) which may be 2448 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3042 * multiple times. Does GFP_KERNEL allocatio 2449 * multiple times. Does GFP_KERNEL allocations. Called only from 3043 * manager. 2450 * manager. 3044 */ 2451 */ 3045 static void maybe_create_worker(struct worker 2452 static void maybe_create_worker(struct worker_pool *pool) 3046 __releases(&pool->lock) 2453 __releases(&pool->lock) 3047 __acquires(&pool->lock) 2454 __acquires(&pool->lock) 3048 { 2455 { 3049 restart: 2456 restart: 3050 raw_spin_unlock_irq(&pool->lock); 2457 raw_spin_unlock_irq(&pool->lock); 3051 2458 3052 /* if we don't make progress in MAYDA 2459 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3053 mod_timer(&pool->mayday_timer, jiffie 2460 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3054 2461 3055 while (true) { 2462 while (true) { 3056 if (create_worker(pool) || !n 2463 if (create_worker(pool) || !need_to_create_worker(pool)) 3057 break; 2464 break; 3058 2465 3059 schedule_timeout_interruptibl 2466 schedule_timeout_interruptible(CREATE_COOLDOWN); 3060 2467 3061 if (!need_to_create_worker(po 2468 if (!need_to_create_worker(pool)) 3062 break; 2469 break; 3063 } 2470 } 3064 2471 3065 del_timer_sync(&pool->mayday_timer); 2472 del_timer_sync(&pool->mayday_timer); 3066 raw_spin_lock_irq(&pool->lock); 2473 raw_spin_lock_irq(&pool->lock); 3067 /* 2474 /* 3068 * This is necessary even after a new 2475 * This is necessary even after a new worker was just successfully 3069 * created as @pool->lock was dropped 2476 * created as @pool->lock was dropped and the new worker might have 3070 * already become busy. 2477 * already become busy. 3071 */ 2478 */ 3072 if (need_to_create_worker(pool)) 2479 if (need_to_create_worker(pool)) 3073 goto restart; 2480 goto restart; 3074 } 2481 } 3075 2482 3076 /** 2483 /** 3077 * manage_workers - manage worker pool 2484 * manage_workers - manage worker pool 3078 * @worker: self 2485 * @worker: self 3079 * 2486 * 3080 * Assume the manager role and manage the wor 2487 * Assume the manager role and manage the worker pool @worker belongs 3081 * to. At any given time, there can be only 2488 * to. At any given time, there can be only zero or one manager per 3082 * pool. The exclusion is handled automatica 2489 * pool. The exclusion is handled automatically by this function. 3083 * 2490 * 3084 * The caller can safely start processing wor 2491 * The caller can safely start processing works on false return. On 3085 * true return, it's guaranteed that need_to_ 2492 * true return, it's guaranteed that need_to_create_worker() is false 3086 * and may_start_working() is true. 2493 * and may_start_working() is true. 3087 * 2494 * 3088 * CONTEXT: 2495 * CONTEXT: 3089 * raw_spin_lock_irq(pool->lock) which may be 2496 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3090 * multiple times. Does GFP_KERNEL allocatio 2497 * multiple times. Does GFP_KERNEL allocations. 3091 * 2498 * 3092 * Return: 2499 * Return: 3093 * %false if the pool doesn't need management 2500 * %false if the pool doesn't need management and the caller can safely 3094 * start processing works, %true if managemen 2501 * start processing works, %true if management function was performed and 3095 * the conditions that the caller verified be 2502 * the conditions that the caller verified before calling the function may 3096 * no longer be true. 2503 * no longer be true. 3097 */ 2504 */ 3098 static bool manage_workers(struct worker *wor 2505 static bool manage_workers(struct worker *worker) 3099 { 2506 { 3100 struct worker_pool *pool = worker->po 2507 struct worker_pool *pool = worker->pool; 3101 2508 3102 if (pool->flags & POOL_MANAGER_ACTIVE 2509 if (pool->flags & POOL_MANAGER_ACTIVE) 3103 return false; 2510 return false; 3104 2511 3105 pool->flags |= POOL_MANAGER_ACTIVE; 2512 pool->flags |= POOL_MANAGER_ACTIVE; 3106 pool->manager = worker; 2513 pool->manager = worker; 3107 2514 3108 maybe_create_worker(pool); 2515 maybe_create_worker(pool); 3109 2516 3110 pool->manager = NULL; 2517 pool->manager = NULL; 3111 pool->flags &= ~POOL_MANAGER_ACTIVE; 2518 pool->flags &= ~POOL_MANAGER_ACTIVE; 3112 rcuwait_wake_up(&manager_wait); 2519 rcuwait_wake_up(&manager_wait); 3113 return true; 2520 return true; 3114 } 2521 } 3115 2522 3116 /** 2523 /** 3117 * process_one_work - process single work 2524 * process_one_work - process single work 3118 * @worker: self 2525 * @worker: self 3119 * @work: work to process 2526 * @work: work to process 3120 * 2527 * 3121 * Process @work. This function contains all 2528 * Process @work. This function contains all the logics necessary to 3122 * process a single work including synchroniz 2529 * process a single work including synchronization against and 3123 * interaction with other workers on the same 2530 * interaction with other workers on the same cpu, queueing and 3124 * flushing. As long as context requirement 2531 * flushing. As long as context requirement is met, any worker can 3125 * call this function to process a work. 2532 * call this function to process a work. 3126 * 2533 * 3127 * CONTEXT: 2534 * CONTEXT: 3128 * raw_spin_lock_irq(pool->lock) which is rel 2535 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3129 */ 2536 */ 3130 static void process_one_work(struct worker *w 2537 static void process_one_work(struct worker *worker, struct work_struct *work) 3131 __releases(&pool->lock) 2538 __releases(&pool->lock) 3132 __acquires(&pool->lock) 2539 __acquires(&pool->lock) 3133 { 2540 { 3134 struct pool_workqueue *pwq = get_work 2541 struct pool_workqueue *pwq = get_work_pwq(work); 3135 struct worker_pool *pool = worker->po 2542 struct worker_pool *pool = worker->pool; 3136 unsigned long work_data; 2543 unsigned long work_data; 3137 int lockdep_start_depth, rcu_start_de << 3138 bool bh_draining = pool->flags & POOL << 3139 #ifdef CONFIG_LOCKDEP 2544 #ifdef CONFIG_LOCKDEP 3140 /* 2545 /* 3141 * It is permissible to free the stru 2546 * It is permissible to free the struct work_struct from 3142 * inside the function that is called 2547 * inside the function that is called from it, this we need to 3143 * take into account for lockdep too. 2548 * take into account for lockdep too. To avoid bogus "held 3144 * lock freed" warnings as well as pr 2549 * lock freed" warnings as well as problems when looking into 3145 * work->lockdep_map, make a copy and 2550 * work->lockdep_map, make a copy and use that here. 3146 */ 2551 */ 3147 struct lockdep_map lockdep_map; 2552 struct lockdep_map lockdep_map; 3148 2553 3149 lockdep_copy_map(&lockdep_map, &work- 2554 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3150 #endif 2555 #endif 3151 /* ensure we're on the correct CPU */ 2556 /* ensure we're on the correct CPU */ 3152 WARN_ON_ONCE(!(pool->flags & POOL_DIS 2557 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3153 raw_smp_processor_id() ! 2558 raw_smp_processor_id() != pool->cpu); 3154 2559 3155 /* claim and dequeue */ 2560 /* claim and dequeue */ 3156 debug_work_deactivate(work); 2561 debug_work_deactivate(work); 3157 hash_add(pool->busy_hash, &worker->he 2562 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3158 worker->current_work = work; 2563 worker->current_work = work; 3159 worker->current_func = work->func; 2564 worker->current_func = work->func; 3160 worker->current_pwq = pwq; 2565 worker->current_pwq = pwq; 3161 if (worker->task) !! 2566 worker->current_at = worker->task->se.sum_exec_runtime; 3162 worker->current_at = worker-> << 3163 work_data = *work_data_bits(work); 2567 work_data = *work_data_bits(work); 3164 worker->current_color = get_work_colo 2568 worker->current_color = get_work_color(work_data); 3165 2569 3166 /* 2570 /* 3167 * Record wq name for cmdline and deb 2571 * Record wq name for cmdline and debug reporting, may get 3168 * overridden through set_worker_desc 2572 * overridden through set_worker_desc(). 3169 */ 2573 */ 3170 strscpy(worker->desc, pwq->wq->name, 2574 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3171 2575 3172 list_del_init(&work->entry); 2576 list_del_init(&work->entry); 3173 2577 3174 /* 2578 /* 3175 * CPU intensive works don't particip 2579 * CPU intensive works don't participate in concurrency management. 3176 * They're the scheduler's responsibi 2580 * They're the scheduler's responsibility. This takes @worker out 3177 * of concurrency management and the 2581 * of concurrency management and the next code block will chain 3178 * execution of the pending work item 2582 * execution of the pending work items. 3179 */ 2583 */ 3180 if (unlikely(pwq->wq->flags & WQ_CPU_ 2584 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3181 worker_set_flags(worker, WORK 2585 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3182 2586 3183 /* 2587 /* 3184 * Kick @pool if necessary. It's alwa 2588 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3185 * since nr_running would always be > 2589 * since nr_running would always be >= 1 at this point. This is used to 3186 * chain execution of the pending wor 2590 * chain execution of the pending work items for WORKER_NOT_RUNNING 3187 * workers such as the UNBOUND and CP 2591 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3188 */ 2592 */ 3189 kick_pool(pool); 2593 kick_pool(pool); 3190 2594 3191 /* 2595 /* 3192 * Record the last pool and clear PEN 2596 * Record the last pool and clear PENDING which should be the last 3193 * update to @work. Also, do this in 2597 * update to @work. Also, do this inside @pool->lock so that 3194 * PENDING and queued state changes h 2598 * PENDING and queued state changes happen together while IRQ is 3195 * disabled. 2599 * disabled. 3196 */ 2600 */ 3197 set_work_pool_and_clear_pending(work, !! 2601 set_work_pool_and_clear_pending(work, pool->id); 3198 2602 3199 pwq->stats[PWQ_STAT_STARTED]++; 2603 pwq->stats[PWQ_STAT_STARTED]++; 3200 raw_spin_unlock_irq(&pool->lock); 2604 raw_spin_unlock_irq(&pool->lock); 3201 2605 3202 rcu_start_depth = rcu_preempt_depth() !! 2606 lock_map_acquire(&pwq->wq->lockdep_map); 3203 lockdep_start_depth = lockdep_depth(c << 3204 /* see drain_dead_softirq_workfn() */ << 3205 if (!bh_draining) << 3206 lock_map_acquire(&pwq->wq->lo << 3207 lock_map_acquire(&lockdep_map); 2607 lock_map_acquire(&lockdep_map); 3208 /* 2608 /* 3209 * Strictly speaking we should mark t 2609 * Strictly speaking we should mark the invariant state without holding 3210 * any locks, that is, before these t 2610 * any locks, that is, before these two lock_map_acquire()'s. 3211 * 2611 * 3212 * However, that would result in: 2612 * However, that would result in: 3213 * 2613 * 3214 * A(W1) 2614 * A(W1) 3215 * WFC(C) 2615 * WFC(C) 3216 * A(W1) 2616 * A(W1) 3217 * C(C) 2617 * C(C) 3218 * 2618 * 3219 * Which would create W1->C->W1 depen 2619 * Which would create W1->C->W1 dependencies, even though there is no 3220 * actual deadlock possible. There ar 2620 * actual deadlock possible. There are two solutions, using a 3221 * read-recursive acquire on the work 2621 * read-recursive acquire on the work(queue) 'locks', but this will then 3222 * hit the lockdep limitation on recu 2622 * hit the lockdep limitation on recursive locks, or simply discard 3223 * these locks. 2623 * these locks. 3224 * 2624 * 3225 * AFAICT there is no possible deadlo 2625 * AFAICT there is no possible deadlock scenario between the 3226 * flush_work() and complete() primit 2626 * flush_work() and complete() primitives (except for single-threaded 3227 * workqueues), so hiding them isn't 2627 * workqueues), so hiding them isn't a problem. 3228 */ 2628 */ 3229 lockdep_invariant_state(true); 2629 lockdep_invariant_state(true); 3230 trace_workqueue_execute_start(work); 2630 trace_workqueue_execute_start(work); 3231 worker->current_func(work); 2631 worker->current_func(work); 3232 /* 2632 /* 3233 * While we must be careful to not us 2633 * While we must be careful to not use "work" after this, the trace 3234 * point will only record its address 2634 * point will only record its address. 3235 */ 2635 */ 3236 trace_workqueue_execute_end(work, wor 2636 trace_workqueue_execute_end(work, worker->current_func); 3237 pwq->stats[PWQ_STAT_COMPLETED]++; 2637 pwq->stats[PWQ_STAT_COMPLETED]++; 3238 lock_map_release(&lockdep_map); 2638 lock_map_release(&lockdep_map); 3239 if (!bh_draining) !! 2639 lock_map_release(&pwq->wq->lockdep_map); 3240 lock_map_release(&pwq->wq->lo << 3241 2640 3242 if (unlikely((worker->task && in_atom !! 2641 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 3243 lockdep_depth(current) ! !! 2642 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 3244 rcu_preempt_depth() != r !! 2643 " last function: %ps\n", 3245 pr_err("BUG: workqueue leaked !! 2644 current->comm, preempt_count(), task_pid_nr(current), 3246 " preempt=0x%08x l << 3247 current->comm, task_pi << 3248 lockdep_start_depth, l << 3249 rcu_start_depth, rcu_p << 3250 worker->current_func); 2645 worker->current_func); 3251 debug_show_held_locks(current 2646 debug_show_held_locks(current); 3252 dump_stack(); 2647 dump_stack(); 3253 } 2648 } 3254 2649 3255 /* 2650 /* 3256 * The following prevents a kworker f 2651 * The following prevents a kworker from hogging CPU on !PREEMPTION 3257 * kernels, where a requeueing work i 2652 * kernels, where a requeueing work item waiting for something to 3258 * happen could deadlock with stop_ma 2653 * happen could deadlock with stop_machine as such work item could 3259 * indefinitely requeue itself while 2654 * indefinitely requeue itself while all other CPUs are trapped in 3260 * stop_machine. At the same time, re 2655 * stop_machine. At the same time, report a quiescent RCU state so 3261 * the same condition doesn't freeze 2656 * the same condition doesn't freeze RCU. 3262 */ 2657 */ 3263 if (worker->task) !! 2658 cond_resched(); 3264 cond_resched(); << 3265 2659 3266 raw_spin_lock_irq(&pool->lock); 2660 raw_spin_lock_irq(&pool->lock); 3267 2661 3268 /* 2662 /* 3269 * In addition to %WQ_CPU_INTENSIVE, 2663 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3270 * CPU intensive by wq_worker_tick() 2664 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3271 * wq_cpu_intensive_thresh_us. Clear 2665 * wq_cpu_intensive_thresh_us. Clear it. 3272 */ 2666 */ 3273 worker_clr_flags(worker, WORKER_CPU_I 2667 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3274 2668 3275 /* tag the worker for identification 2669 /* tag the worker for identification in schedule() */ 3276 worker->last_func = worker->current_f 2670 worker->last_func = worker->current_func; 3277 2671 3278 /* we're done with it, release */ 2672 /* we're done with it, release */ 3279 hash_del(&worker->hentry); 2673 hash_del(&worker->hentry); 3280 worker->current_work = NULL; 2674 worker->current_work = NULL; 3281 worker->current_func = NULL; 2675 worker->current_func = NULL; 3282 worker->current_pwq = NULL; 2676 worker->current_pwq = NULL; 3283 worker->current_color = INT_MAX; 2677 worker->current_color = INT_MAX; 3284 << 3285 /* must be the last step, see the fun << 3286 pwq_dec_nr_in_flight(pwq, work_data); 2678 pwq_dec_nr_in_flight(pwq, work_data); 3287 } 2679 } 3288 2680 3289 /** 2681 /** 3290 * process_scheduled_works - process schedule 2682 * process_scheduled_works - process scheduled works 3291 * @worker: self 2683 * @worker: self 3292 * 2684 * 3293 * Process all scheduled works. Please note 2685 * Process all scheduled works. Please note that the scheduled list 3294 * may change while processing a work, so thi 2686 * may change while processing a work, so this function repeatedly 3295 * fetches a work from the top and executes i 2687 * fetches a work from the top and executes it. 3296 * 2688 * 3297 * CONTEXT: 2689 * CONTEXT: 3298 * raw_spin_lock_irq(pool->lock) which may be 2690 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3299 * multiple times. 2691 * multiple times. 3300 */ 2692 */ 3301 static void process_scheduled_works(struct wo 2693 static void process_scheduled_works(struct worker *worker) 3302 { 2694 { 3303 struct work_struct *work; 2695 struct work_struct *work; 3304 bool first = true; 2696 bool first = true; 3305 2697 3306 while ((work = list_first_entry_or_nu 2698 while ((work = list_first_entry_or_null(&worker->scheduled, 3307 2699 struct work_struct, entry))) { 3308 if (first) { 2700 if (first) { 3309 worker->pool->watchdo 2701 worker->pool->watchdog_ts = jiffies; 3310 first = false; 2702 first = false; 3311 } 2703 } 3312 process_one_work(worker, work 2704 process_one_work(worker, work); 3313 } 2705 } 3314 } 2706 } 3315 2707 3316 static void set_pf_worker(bool val) 2708 static void set_pf_worker(bool val) 3317 { 2709 { 3318 mutex_lock(&wq_pool_attach_mutex); 2710 mutex_lock(&wq_pool_attach_mutex); 3319 if (val) 2711 if (val) 3320 current->flags |= PF_WQ_WORKE 2712 current->flags |= PF_WQ_WORKER; 3321 else 2713 else 3322 current->flags &= ~PF_WQ_WORK 2714 current->flags &= ~PF_WQ_WORKER; 3323 mutex_unlock(&wq_pool_attach_mutex); 2715 mutex_unlock(&wq_pool_attach_mutex); 3324 } 2716 } 3325 2717 3326 /** 2718 /** 3327 * worker_thread - the worker thread function 2719 * worker_thread - the worker thread function 3328 * @__worker: self 2720 * @__worker: self 3329 * 2721 * 3330 * The worker thread function. All workers b 2722 * The worker thread function. All workers belong to a worker_pool - 3331 * either a per-cpu one or dynamic unbound on 2723 * either a per-cpu one or dynamic unbound one. These workers process all 3332 * work items regardless of their specific ta 2724 * work items regardless of their specific target workqueue. The only 3333 * exception is work items which belong to wo 2725 * exception is work items which belong to workqueues with a rescuer which 3334 * will be explained in rescuer_thread(). 2726 * will be explained in rescuer_thread(). 3335 * 2727 * 3336 * Return: 0 2728 * Return: 0 3337 */ 2729 */ 3338 static int worker_thread(void *__worker) 2730 static int worker_thread(void *__worker) 3339 { 2731 { 3340 struct worker *worker = __worker; 2732 struct worker *worker = __worker; 3341 struct worker_pool *pool = worker->po 2733 struct worker_pool *pool = worker->pool; 3342 2734 3343 /* tell the scheduler that this is a 2735 /* tell the scheduler that this is a workqueue worker */ 3344 set_pf_worker(true); 2736 set_pf_worker(true); 3345 woke_up: 2737 woke_up: 3346 raw_spin_lock_irq(&pool->lock); 2738 raw_spin_lock_irq(&pool->lock); 3347 2739 3348 /* am I supposed to die? */ 2740 /* am I supposed to die? */ 3349 if (unlikely(worker->flags & WORKER_D 2741 if (unlikely(worker->flags & WORKER_DIE)) { 3350 raw_spin_unlock_irq(&pool->lo 2742 raw_spin_unlock_irq(&pool->lock); 3351 set_pf_worker(false); 2743 set_pf_worker(false); 3352 /* !! 2744 3353 * The worker is dead and PF_ !! 2745 set_task_comm(worker->task, "kworker/dying"); 3354 * shouldn't be accessed, res << 3355 */ << 3356 worker->pool = NULL; << 3357 ida_free(&pool->worker_ida, w 2746 ida_free(&pool->worker_ida, worker->id); >> 2747 worker_detach_from_pool(worker); >> 2748 WARN_ON_ONCE(!list_empty(&worker->entry)); >> 2749 kfree(worker); 3358 return 0; 2750 return 0; 3359 } 2751 } 3360 2752 3361 worker_leave_idle(worker); 2753 worker_leave_idle(worker); 3362 recheck: 2754 recheck: 3363 /* no more worker necessary? */ 2755 /* no more worker necessary? */ 3364 if (!need_more_worker(pool)) 2756 if (!need_more_worker(pool)) 3365 goto sleep; 2757 goto sleep; 3366 2758 3367 /* do we need to manage? */ 2759 /* do we need to manage? */ 3368 if (unlikely(!may_start_working(pool) 2760 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3369 goto recheck; 2761 goto recheck; 3370 2762 3371 /* 2763 /* 3372 * ->scheduled list can only be fille 2764 * ->scheduled list can only be filled while a worker is 3373 * preparing to process a work or act 2765 * preparing to process a work or actually processing it. 3374 * Make sure nobody diddled with it w 2766 * Make sure nobody diddled with it while I was sleeping. 3375 */ 2767 */ 3376 WARN_ON_ONCE(!list_empty(&worker->sch 2768 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3377 2769 3378 /* 2770 /* 3379 * Finish PREP stage. We're guarante 2771 * Finish PREP stage. We're guaranteed to have at least one idle 3380 * worker or that someone else has al 2772 * worker or that someone else has already assumed the manager 3381 * role. This is where @worker start 2773 * role. This is where @worker starts participating in concurrency 3382 * management if applicable and concu 2774 * management if applicable and concurrency management is restored 3383 * after being rebound. See rebind_w 2775 * after being rebound. See rebind_workers() for details. 3384 */ 2776 */ 3385 worker_clr_flags(worker, WORKER_PREP 2777 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3386 2778 3387 do { 2779 do { 3388 struct work_struct *work = 2780 struct work_struct *work = 3389 list_first_entry(&poo 2781 list_first_entry(&pool->worklist, 3390 stru 2782 struct work_struct, entry); 3391 2783 3392 if (assign_work(work, worker, 2784 if (assign_work(work, worker, NULL)) 3393 process_scheduled_wor 2785 process_scheduled_works(worker); 3394 } while (keep_working(pool)); 2786 } while (keep_working(pool)); 3395 2787 3396 worker_set_flags(worker, WORKER_PREP) 2788 worker_set_flags(worker, WORKER_PREP); 3397 sleep: 2789 sleep: 3398 /* 2790 /* 3399 * pool->lock is held and there's no 2791 * pool->lock is held and there's no work to process and no need to 3400 * manage, sleep. Workers are woken 2792 * manage, sleep. Workers are woken up only while holding 3401 * pool->lock or from local cpu, so s 2793 * pool->lock or from local cpu, so setting the current state 3402 * before releasing pool->lock is eno 2794 * before releasing pool->lock is enough to prevent losing any 3403 * event. 2795 * event. 3404 */ 2796 */ 3405 worker_enter_idle(worker); 2797 worker_enter_idle(worker); 3406 __set_current_state(TASK_IDLE); 2798 __set_current_state(TASK_IDLE); 3407 raw_spin_unlock_irq(&pool->lock); 2799 raw_spin_unlock_irq(&pool->lock); 3408 schedule(); 2800 schedule(); 3409 goto woke_up; 2801 goto woke_up; 3410 } 2802 } 3411 2803 3412 /** 2804 /** 3413 * rescuer_thread - the rescuer thread functi 2805 * rescuer_thread - the rescuer thread function 3414 * @__rescuer: self 2806 * @__rescuer: self 3415 * 2807 * 3416 * Workqueue rescuer thread function. There' 2808 * Workqueue rescuer thread function. There's one rescuer for each 3417 * workqueue which has WQ_MEM_RECLAIM set. 2809 * workqueue which has WQ_MEM_RECLAIM set. 3418 * 2810 * 3419 * Regular work processing on a pool may bloc 2811 * Regular work processing on a pool may block trying to create a new 3420 * worker which uses GFP_KERNEL allocation wh 2812 * worker which uses GFP_KERNEL allocation which has slight chance of 3421 * developing into deadlock if some works cur 2813 * developing into deadlock if some works currently on the same queue 3422 * need to be processed to satisfy the GFP_KE 2814 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3423 * the problem rescuer solves. 2815 * the problem rescuer solves. 3424 * 2816 * 3425 * When such condition is possible, the pool 2817 * When such condition is possible, the pool summons rescuers of all 3426 * workqueues which have works queued on the 2818 * workqueues which have works queued on the pool and let them process 3427 * those works so that forward progress can b 2819 * those works so that forward progress can be guaranteed. 3428 * 2820 * 3429 * This should happen rarely. 2821 * This should happen rarely. 3430 * 2822 * 3431 * Return: 0 2823 * Return: 0 3432 */ 2824 */ 3433 static int rescuer_thread(void *__rescuer) 2825 static int rescuer_thread(void *__rescuer) 3434 { 2826 { 3435 struct worker *rescuer = __rescuer; 2827 struct worker *rescuer = __rescuer; 3436 struct workqueue_struct *wq = rescuer 2828 struct workqueue_struct *wq = rescuer->rescue_wq; 3437 bool should_stop; 2829 bool should_stop; 3438 2830 3439 set_user_nice(current, RESCUER_NICE_L 2831 set_user_nice(current, RESCUER_NICE_LEVEL); 3440 2832 3441 /* 2833 /* 3442 * Mark rescuer as worker too. As WO 2834 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3443 * doesn't participate in concurrency 2835 * doesn't participate in concurrency management. 3444 */ 2836 */ 3445 set_pf_worker(true); 2837 set_pf_worker(true); 3446 repeat: 2838 repeat: 3447 set_current_state(TASK_IDLE); 2839 set_current_state(TASK_IDLE); 3448 2840 3449 /* 2841 /* 3450 * By the time the rescuer is request 2842 * By the time the rescuer is requested to stop, the workqueue 3451 * shouldn't have any work pending, b 2843 * shouldn't have any work pending, but @wq->maydays may still have 3452 * pwq(s) queued. This can happen by 2844 * pwq(s) queued. This can happen by non-rescuer workers consuming 3453 * all the work items before the resc 2845 * all the work items before the rescuer got to them. Go through 3454 * @wq->maydays processing before act 2846 * @wq->maydays processing before acting on should_stop so that the 3455 * list is always empty on exit. 2847 * list is always empty on exit. 3456 */ 2848 */ 3457 should_stop = kthread_should_stop(); 2849 should_stop = kthread_should_stop(); 3458 2850 3459 /* see whether any pwq is asking for 2851 /* see whether any pwq is asking for help */ 3460 raw_spin_lock_irq(&wq_mayday_lock); 2852 raw_spin_lock_irq(&wq_mayday_lock); 3461 2853 3462 while (!list_empty(&wq->maydays)) { 2854 while (!list_empty(&wq->maydays)) { 3463 struct pool_workqueue *pwq = 2855 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3464 struc 2856 struct pool_workqueue, mayday_node); 3465 struct worker_pool *pool = pw 2857 struct worker_pool *pool = pwq->pool; 3466 struct work_struct *work, *n; 2858 struct work_struct *work, *n; 3467 2859 3468 __set_current_state(TASK_RUNN 2860 __set_current_state(TASK_RUNNING); 3469 list_del_init(&pwq->mayday_no 2861 list_del_init(&pwq->mayday_node); 3470 2862 3471 raw_spin_unlock_irq(&wq_mayda 2863 raw_spin_unlock_irq(&wq_mayday_lock); 3472 2864 3473 worker_attach_to_pool(rescuer 2865 worker_attach_to_pool(rescuer, pool); 3474 2866 3475 raw_spin_lock_irq(&pool->lock 2867 raw_spin_lock_irq(&pool->lock); 3476 2868 3477 /* 2869 /* 3478 * Slurp in all works issued 2870 * Slurp in all works issued via this workqueue and 3479 * process'em. 2871 * process'em. 3480 */ 2872 */ 3481 WARN_ON_ONCE(!list_empty(&res 2873 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3482 list_for_each_entry_safe(work 2874 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3483 if (get_work_pwq(work 2875 if (get_work_pwq(work) == pwq && 3484 assign_work(work, 2876 assign_work(work, rescuer, &n)) 3485 pwq->stats[PW 2877 pwq->stats[PWQ_STAT_RESCUED]++; 3486 } 2878 } 3487 2879 3488 if (!list_empty(&rescuer->sch 2880 if (!list_empty(&rescuer->scheduled)) { 3489 process_scheduled_wor 2881 process_scheduled_works(rescuer); 3490 2882 3491 /* 2883 /* 3492 * The above executio 2884 * The above execution of rescued work items could 3493 * have created more 2885 * have created more to rescue through 3494 * pwq_activate_first 2886 * pwq_activate_first_inactive() or chained 3495 * queueing. Let's p 2887 * queueing. Let's put @pwq back on mayday list so 3496 * that such back-to- 2888 * that such back-to-back work items, which may be 3497 * being used to reli 2889 * being used to relieve memory pressure, don't 3498 * incur MAYDAY_INTER 2890 * incur MAYDAY_INTERVAL delay inbetween. 3499 */ 2891 */ 3500 if (pwq->nr_active && 2892 if (pwq->nr_active && need_to_create_worker(pool)) { 3501 raw_spin_lock 2893 raw_spin_lock(&wq_mayday_lock); 3502 /* 2894 /* 3503 * Queue iff 2895 * Queue iff we aren't racing destruction 3504 * and somebo 2896 * and somebody else hasn't queued it already. 3505 */ 2897 */ 3506 if (wq->rescu 2898 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3507 get_p 2899 get_pwq(pwq); 3508 list_ 2900 list_add_tail(&pwq->mayday_node, &wq->maydays); 3509 } 2901 } 3510 raw_spin_unlo 2902 raw_spin_unlock(&wq_mayday_lock); 3511 } 2903 } 3512 } 2904 } 3513 2905 3514 /* 2906 /* 3515 * Put the reference grabbed 2907 * Put the reference grabbed by send_mayday(). @pool won't 3516 * go away while we're still 2908 * go away while we're still attached to it. 3517 */ 2909 */ 3518 put_pwq(pwq); 2910 put_pwq(pwq); 3519 2911 3520 /* 2912 /* 3521 * Leave this pool. Notify re 2913 * Leave this pool. Notify regular workers; otherwise, we end up 3522 * with 0 concurrency and sta 2914 * with 0 concurrency and stalling the execution. 3523 */ 2915 */ 3524 kick_pool(pool); 2916 kick_pool(pool); 3525 2917 3526 raw_spin_unlock_irq(&pool->lo 2918 raw_spin_unlock_irq(&pool->lock); 3527 2919 3528 worker_detach_from_pool(rescu 2920 worker_detach_from_pool(rescuer); 3529 2921 3530 raw_spin_lock_irq(&wq_mayday_ 2922 raw_spin_lock_irq(&wq_mayday_lock); 3531 } 2923 } 3532 2924 3533 raw_spin_unlock_irq(&wq_mayday_lock); 2925 raw_spin_unlock_irq(&wq_mayday_lock); 3534 2926 3535 if (should_stop) { 2927 if (should_stop) { 3536 __set_current_state(TASK_RUNN 2928 __set_current_state(TASK_RUNNING); 3537 set_pf_worker(false); 2929 set_pf_worker(false); 3538 return 0; 2930 return 0; 3539 } 2931 } 3540 2932 3541 /* rescuers should never participate 2933 /* rescuers should never participate in concurrency management */ 3542 WARN_ON_ONCE(!(rescuer->flags & WORKE 2934 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3543 schedule(); 2935 schedule(); 3544 goto repeat; 2936 goto repeat; 3545 } 2937 } 3546 2938 3547 static void bh_worker(struct worker *worker) << 3548 { << 3549 struct worker_pool *pool = worker->po << 3550 int nr_restarts = BH_WORKER_RESTARTS; << 3551 unsigned long end = jiffies + BH_WORK << 3552 << 3553 raw_spin_lock_irq(&pool->lock); << 3554 worker_leave_idle(worker); << 3555 << 3556 /* << 3557 * This function follows the structur << 3558 * explanations on each step. << 3559 */ << 3560 if (!need_more_worker(pool)) << 3561 goto done; << 3562 << 3563 WARN_ON_ONCE(!list_empty(&worker->sch << 3564 worker_clr_flags(worker, WORKER_PREP << 3565 << 3566 do { << 3567 struct work_struct *work = << 3568 list_first_entry(&poo << 3569 stru << 3570 << 3571 if (assign_work(work, worker, << 3572 process_scheduled_wor << 3573 } while (keep_working(pool) && << 3574 --nr_restarts && time_before << 3575 << 3576 worker_set_flags(worker, WORKER_PREP) << 3577 done: << 3578 worker_enter_idle(worker); << 3579 kick_pool(pool); << 3580 raw_spin_unlock_irq(&pool->lock); << 3581 } << 3582 << 3583 /* << 3584 * TODO: Convert all tasklet users to workque << 3585 * << 3586 * This is currently called from tasklet[_hi] << 3587 * whenever there are tasklets to run. Let's << 3588 * queued. Once conversion from tasklet is co << 3589 * can be dropped. << 3590 * << 3591 * After full conversion, we'll add worker->s << 3592 * softirq action and obtain the worker point << 3593 */ << 3594 void workqueue_softirq_action(bool highpri) << 3595 { << 3596 struct worker_pool *pool = << 3597 &per_cpu(bh_worker_pools, smp << 3598 if (need_more_worker(pool)) << 3599 bh_worker(list_first_entry(&p << 3600 } << 3601 << 3602 struct wq_drain_dead_softirq_work { << 3603 struct work_struct work; << 3604 struct worker_pool *pool; << 3605 struct completion done; << 3606 }; << 3607 << 3608 static void drain_dead_softirq_workfn(struct << 3609 { << 3610 struct wq_drain_dead_softirq_work *de << 3611 container_of(work, struct wq_ << 3612 struct worker_pool *pool = dead_work- << 3613 bool repeat; << 3614 << 3615 /* << 3616 * @pool's CPU is dead and we want to << 3617 * items from this BH work item which << 3618 * its CPU is dead, @pool can't be ki << 3619 * will be nested, a lockdep annotati << 3620 * @pool with %POOL_BH_DRAINING for t << 3621 */ << 3622 raw_spin_lock_irq(&pool->lock); << 3623 pool->flags |= POOL_BH_DRAINING; << 3624 raw_spin_unlock_irq(&pool->lock); << 3625 << 3626 bh_worker(list_first_entry(&pool->wor << 3627 << 3628 raw_spin_lock_irq(&pool->lock); << 3629 pool->flags &= ~POOL_BH_DRAINING; << 3630 repeat = need_more_worker(pool); << 3631 raw_spin_unlock_irq(&pool->lock); << 3632 << 3633 /* << 3634 * bh_worker() might hit consecutive << 3635 * still are pending work items, resc << 3636 * don't hog this CPU's BH. << 3637 */ << 3638 if (repeat) { << 3639 if (pool->attrs->nice == HIGH << 3640 queue_work(system_bh_ << 3641 else << 3642 queue_work(system_bh_ << 3643 } else { << 3644 complete(&dead_work->done); << 3645 } << 3646 } << 3647 << 3648 /* << 3649 * @cpu is dead. Drain the remaining BH work << 3650 * possible to allocate dead_work per CPU and << 3651 * have to worry about draining overlapping w << 3652 * nesting (one CPU's dead_work queued on ano << 3653 * on). Let's keep it simple and drain them s << 3654 * items which shouldn't be requeued on the s << 3655 */ << 3656 void workqueue_softirq_dead(unsigned int cpu) << 3657 { << 3658 int i; << 3659 << 3660 for (i = 0; i < NR_STD_WORKER_POOLS; << 3661 struct worker_pool *pool = &p << 3662 struct wq_drain_dead_softirq_ << 3663 << 3664 if (!need_more_worker(pool)) << 3665 continue; << 3666 << 3667 INIT_WORK_ONSTACK(&dead_work. << 3668 dead_work.pool = pool; << 3669 init_completion(&dead_work.do << 3670 << 3671 if (pool->attrs->nice == HIGH << 3672 queue_work(system_bh_ << 3673 else << 3674 queue_work(system_bh_ << 3675 << 3676 wait_for_completion(&dead_wor << 3677 destroy_work_on_stack(&dead_w << 3678 } << 3679 } << 3680 << 3681 /** 2939 /** 3682 * check_flush_dependency - check for flush d 2940 * check_flush_dependency - check for flush dependency sanity 3683 * @target_wq: workqueue being flushed 2941 * @target_wq: workqueue being flushed 3684 * @target_work: work item being flushed (NUL 2942 * @target_work: work item being flushed (NULL for workqueue flushes) 3685 * 2943 * 3686 * %current is trying to flush the whole @tar 2944 * %current is trying to flush the whole @target_wq or @target_work on it. 3687 * If @target_wq doesn't have %WQ_MEM_RECLAIM 2945 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3688 * reclaiming memory or running on a workqueu 2946 * reclaiming memory or running on a workqueue which doesn't have 3689 * %WQ_MEM_RECLAIM as that can break forward- 2947 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3690 * a deadlock. 2948 * a deadlock. 3691 */ 2949 */ 3692 static void check_flush_dependency(struct wor 2950 static void check_flush_dependency(struct workqueue_struct *target_wq, 3693 struct wor 2951 struct work_struct *target_work) 3694 { 2952 { 3695 work_func_t target_func = target_work 2953 work_func_t target_func = target_work ? target_work->func : NULL; 3696 struct worker *worker; 2954 struct worker *worker; 3697 2955 3698 if (target_wq->flags & WQ_MEM_RECLAIM 2956 if (target_wq->flags & WQ_MEM_RECLAIM) 3699 return; 2957 return; 3700 2958 3701 worker = current_wq_worker(); 2959 worker = current_wq_worker(); 3702 2960 3703 WARN_ONCE(current->flags & PF_MEMALLO 2961 WARN_ONCE(current->flags & PF_MEMALLOC, 3704 "workqueue: PF_MEMALLOC tas 2962 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3705 current->pid, current->comm 2963 current->pid, current->comm, target_wq->name, target_func); 3706 WARN_ONCE(worker && ((worker->current 2964 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3707 (WQ_MEM_RECLAIM 2965 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3708 "workqueue: WQ_MEM_RECLAIM 2966 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3709 worker->current_pwq->wq->na 2967 worker->current_pwq->wq->name, worker->current_func, 3710 target_wq->name, target_fun 2968 target_wq->name, target_func); 3711 } 2969 } 3712 2970 3713 struct wq_barrier { 2971 struct wq_barrier { 3714 struct work_struct work; 2972 struct work_struct work; 3715 struct completion done; 2973 struct completion done; 3716 struct task_struct *task; /* pu 2974 struct task_struct *task; /* purely informational */ 3717 }; 2975 }; 3718 2976 3719 static void wq_barrier_func(struct work_struc 2977 static void wq_barrier_func(struct work_struct *work) 3720 { 2978 { 3721 struct wq_barrier *barr = container_o 2979 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3722 complete(&barr->done); 2980 complete(&barr->done); 3723 } 2981 } 3724 2982 3725 /** 2983 /** 3726 * insert_wq_barrier - insert a barrier work 2984 * insert_wq_barrier - insert a barrier work 3727 * @pwq: pwq to insert barrier into 2985 * @pwq: pwq to insert barrier into 3728 * @barr: wq_barrier to insert 2986 * @barr: wq_barrier to insert 3729 * @target: target work to attach @barr to 2987 * @target: target work to attach @barr to 3730 * @worker: worker currently executing @targe 2988 * @worker: worker currently executing @target, NULL if @target is not executing 3731 * 2989 * 3732 * @barr is linked to @target such that @barr 2990 * @barr is linked to @target such that @barr is completed only after 3733 * @target finishes execution. Please note t 2991 * @target finishes execution. Please note that the ordering 3734 * guarantee is observed only with respect to 2992 * guarantee is observed only with respect to @target and on the local 3735 * cpu. 2993 * cpu. 3736 * 2994 * 3737 * Currently, a queued barrier can't be cance 2995 * Currently, a queued barrier can't be canceled. This is because 3738 * try_to_grab_pending() can't determine whet 2996 * try_to_grab_pending() can't determine whether the work to be 3739 * grabbed is at the head of the queue and th 2997 * grabbed is at the head of the queue and thus can't clear LINKED 3740 * flag of the previous work while there must 2998 * flag of the previous work while there must be a valid next work 3741 * after a work with LINKED flag set. 2999 * after a work with LINKED flag set. 3742 * 3000 * 3743 * Note that when @worker is non-NULL, @targe 3001 * Note that when @worker is non-NULL, @target may be modified 3744 * underneath us, so we can't reliably determ 3002 * underneath us, so we can't reliably determine pwq from @target. 3745 * 3003 * 3746 * CONTEXT: 3004 * CONTEXT: 3747 * raw_spin_lock_irq(pool->lock). 3005 * raw_spin_lock_irq(pool->lock). 3748 */ 3006 */ 3749 static void insert_wq_barrier(struct pool_wor 3007 static void insert_wq_barrier(struct pool_workqueue *pwq, 3750 struct wq_barri 3008 struct wq_barrier *barr, 3751 struct work_str 3009 struct work_struct *target, struct worker *worker) 3752 { 3010 { 3753 static __maybe_unused struct lock_cla << 3754 unsigned int work_flags = 0; 3011 unsigned int work_flags = 0; 3755 unsigned int work_color; 3012 unsigned int work_color; 3756 struct list_head *head; 3013 struct list_head *head; 3757 3014 3758 /* 3015 /* 3759 * debugobject calls are safe here ev 3016 * debugobject calls are safe here even with pool->lock locked 3760 * as we know for sure that this will 3017 * as we know for sure that this will not trigger any of the 3761 * checks and call back into the fixu 3018 * checks and call back into the fixup functions where we 3762 * might deadlock. 3019 * might deadlock. 3763 * << 3764 * BH and threaded workqueues need se << 3765 * spuriously triggering "inconsisten << 3766 * usage". << 3767 */ 3020 */ 3768 INIT_WORK_ONSTACK_KEY(&barr->work, wq !! 3021 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 3769 (pwq->wq->flags << 3770 __set_bit(WORK_STRUCT_PENDING_BIT, wo 3022 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3771 3023 3772 init_completion_map(&barr->done, &tar 3024 init_completion_map(&barr->done, &target->lockdep_map); 3773 3025 3774 barr->task = current; 3026 barr->task = current; 3775 3027 3776 /* The barrier work item does not par !! 3028 /* The barrier work item does not participate in pwq->nr_active. */ 3777 work_flags |= WORK_STRUCT_INACTIVE; 3029 work_flags |= WORK_STRUCT_INACTIVE; 3778 3030 3779 /* 3031 /* 3780 * If @target is currently being exec 3032 * If @target is currently being executed, schedule the 3781 * barrier to the worker; otherwise, 3033 * barrier to the worker; otherwise, put it after @target. 3782 */ 3034 */ 3783 if (worker) { 3035 if (worker) { 3784 head = worker->scheduled.next 3036 head = worker->scheduled.next; 3785 work_color = worker->current_ 3037 work_color = worker->current_color; 3786 } else { 3038 } else { 3787 unsigned long *bits = work_da 3039 unsigned long *bits = work_data_bits(target); 3788 3040 3789 head = target->entry.next; 3041 head = target->entry.next; 3790 /* there can already be other 3042 /* there can already be other linked works, inherit and set */ 3791 work_flags |= *bits & WORK_ST 3043 work_flags |= *bits & WORK_STRUCT_LINKED; 3792 work_color = get_work_color(* 3044 work_color = get_work_color(*bits); 3793 __set_bit(WORK_STRUCT_LINKED_ 3045 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3794 } 3046 } 3795 3047 3796 pwq->nr_in_flight[work_color]++; 3048 pwq->nr_in_flight[work_color]++; 3797 work_flags |= work_color_to_flags(wor 3049 work_flags |= work_color_to_flags(work_color); 3798 3050 3799 insert_work(pwq, &barr->work, head, w 3051 insert_work(pwq, &barr->work, head, work_flags); 3800 } 3052 } 3801 3053 3802 /** 3054 /** 3803 * flush_workqueue_prep_pwqs - prepare pwqs f 3055 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3804 * @wq: workqueue being flushed 3056 * @wq: workqueue being flushed 3805 * @flush_color: new flush color, < 0 for no- 3057 * @flush_color: new flush color, < 0 for no-op 3806 * @work_color: new work color, < 0 for no-op 3058 * @work_color: new work color, < 0 for no-op 3807 * 3059 * 3808 * Prepare pwqs for workqueue flushing. 3060 * Prepare pwqs for workqueue flushing. 3809 * 3061 * 3810 * If @flush_color is non-negative, flush_col 3062 * If @flush_color is non-negative, flush_color on all pwqs should be 3811 * -1. If no pwq has in-flight commands at t 3063 * -1. If no pwq has in-flight commands at the specified color, all 3812 * pwq->flush_color's stay at -1 and %false i 3064 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3813 * has in flight commands, its pwq->flush_col 3065 * has in flight commands, its pwq->flush_color is set to 3814 * @flush_color, @wq->nr_pwqs_to_flush is upd 3066 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3815 * wakeup logic is armed and %true is returne 3067 * wakeup logic is armed and %true is returned. 3816 * 3068 * 3817 * The caller should have initialized @wq->fi 3069 * The caller should have initialized @wq->first_flusher prior to 3818 * calling this function with non-negative @f 3070 * calling this function with non-negative @flush_color. If 3819 * @flush_color is negative, no flush color u 3071 * @flush_color is negative, no flush color update is done and %false 3820 * is returned. 3072 * is returned. 3821 * 3073 * 3822 * If @work_color is non-negative, all pwqs s 3074 * If @work_color is non-negative, all pwqs should have the same 3823 * work_color which is previous to @work_colo 3075 * work_color which is previous to @work_color and all will be 3824 * advanced to @work_color. 3076 * advanced to @work_color. 3825 * 3077 * 3826 * CONTEXT: 3078 * CONTEXT: 3827 * mutex_lock(wq->mutex). 3079 * mutex_lock(wq->mutex). 3828 * 3080 * 3829 * Return: 3081 * Return: 3830 * %true if @flush_color >= 0 and there's som 3082 * %true if @flush_color >= 0 and there's something to flush. %false 3831 * otherwise. 3083 * otherwise. 3832 */ 3084 */ 3833 static bool flush_workqueue_prep_pwqs(struct 3085 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3834 int flu 3086 int flush_color, int work_color) 3835 { 3087 { 3836 bool wait = false; 3088 bool wait = false; 3837 struct pool_workqueue *pwq; 3089 struct pool_workqueue *pwq; 3838 3090 3839 if (flush_color >= 0) { 3091 if (flush_color >= 0) { 3840 WARN_ON_ONCE(atomic_read(&wq- 3092 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3841 atomic_set(&wq->nr_pwqs_to_fl 3093 atomic_set(&wq->nr_pwqs_to_flush, 1); 3842 } 3094 } 3843 3095 3844 for_each_pwq(pwq, wq) { 3096 for_each_pwq(pwq, wq) { 3845 struct worker_pool *pool = pw 3097 struct worker_pool *pool = pwq->pool; 3846 3098 3847 raw_spin_lock_irq(&pool->lock 3099 raw_spin_lock_irq(&pool->lock); 3848 3100 3849 if (flush_color >= 0) { 3101 if (flush_color >= 0) { 3850 WARN_ON_ONCE(pwq->flu 3102 WARN_ON_ONCE(pwq->flush_color != -1); 3851 3103 3852 if (pwq->nr_in_flight 3104 if (pwq->nr_in_flight[flush_color]) { 3853 pwq->flush_co 3105 pwq->flush_color = flush_color; 3854 atomic_inc(&w 3106 atomic_inc(&wq->nr_pwqs_to_flush); 3855 wait = true; 3107 wait = true; 3856 } 3108 } 3857 } 3109 } 3858 3110 3859 if (work_color >= 0) { 3111 if (work_color >= 0) { 3860 WARN_ON_ONCE(work_col 3112 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3861 pwq->work_color = wor 3113 pwq->work_color = work_color; 3862 } 3114 } 3863 3115 3864 raw_spin_unlock_irq(&pool->lo 3116 raw_spin_unlock_irq(&pool->lock); 3865 } 3117 } 3866 3118 3867 if (flush_color >= 0 && atomic_dec_an 3119 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3868 complete(&wq->first_flusher-> 3120 complete(&wq->first_flusher->done); 3869 3121 3870 return wait; 3122 return wait; 3871 } 3123 } 3872 3124 3873 static void touch_wq_lockdep_map(struct workq << 3874 { << 3875 #ifdef CONFIG_LOCKDEP << 3876 if (wq->flags & WQ_BH) << 3877 local_bh_disable(); << 3878 << 3879 lock_map_acquire(&wq->lockdep_map); << 3880 lock_map_release(&wq->lockdep_map); << 3881 << 3882 if (wq->flags & WQ_BH) << 3883 local_bh_enable(); << 3884 #endif << 3885 } << 3886 << 3887 static void touch_work_lockdep_map(struct wor << 3888 struct wor << 3889 { << 3890 #ifdef CONFIG_LOCKDEP << 3891 if (wq->flags & WQ_BH) << 3892 local_bh_disable(); << 3893 << 3894 lock_map_acquire(&work->lockdep_map); << 3895 lock_map_release(&work->lockdep_map); << 3896 << 3897 if (wq->flags & WQ_BH) << 3898 local_bh_enable(); << 3899 #endif << 3900 } << 3901 << 3902 /** 3125 /** 3903 * __flush_workqueue - ensure that any schedu 3126 * __flush_workqueue - ensure that any scheduled work has run to completion. 3904 * @wq: workqueue to flush 3127 * @wq: workqueue to flush 3905 * 3128 * 3906 * This function sleeps until all work items 3129 * This function sleeps until all work items which were queued on entry 3907 * have finished execution, but it is not liv 3130 * have finished execution, but it is not livelocked by new incoming ones. 3908 */ 3131 */ 3909 void __flush_workqueue(struct workqueue_struc 3132 void __flush_workqueue(struct workqueue_struct *wq) 3910 { 3133 { 3911 struct wq_flusher this_flusher = { 3134 struct wq_flusher this_flusher = { 3912 .list = LIST_HEAD_INIT(this_f 3135 .list = LIST_HEAD_INIT(this_flusher.list), 3913 .flush_color = -1, 3136 .flush_color = -1, 3914 .done = COMPLETION_INITIALIZE 3137 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3915 }; 3138 }; 3916 int next_color; 3139 int next_color; 3917 3140 3918 if (WARN_ON(!wq_online)) 3141 if (WARN_ON(!wq_online)) 3919 return; 3142 return; 3920 3143 3921 touch_wq_lockdep_map(wq); !! 3144 lock_map_acquire(&wq->lockdep_map); >> 3145 lock_map_release(&wq->lockdep_map); 3922 3146 3923 mutex_lock(&wq->mutex); 3147 mutex_lock(&wq->mutex); 3924 3148 3925 /* 3149 /* 3926 * Start-to-wait phase 3150 * Start-to-wait phase 3927 */ 3151 */ 3928 next_color = work_next_color(wq->work 3152 next_color = work_next_color(wq->work_color); 3929 3153 3930 if (next_color != wq->flush_color) { 3154 if (next_color != wq->flush_color) { 3931 /* 3155 /* 3932 * Color space is not full. 3156 * Color space is not full. The current work_color 3933 * becomes our flush_color an 3157 * becomes our flush_color and work_color is advanced 3934 * by one. 3158 * by one. 3935 */ 3159 */ 3936 WARN_ON_ONCE(!list_empty(&wq- 3160 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3937 this_flusher.flush_color = wq 3161 this_flusher.flush_color = wq->work_color; 3938 wq->work_color = next_color; 3162 wq->work_color = next_color; 3939 3163 3940 if (!wq->first_flusher) { 3164 if (!wq->first_flusher) { 3941 /* no flush in progre 3165 /* no flush in progress, become the first flusher */ 3942 WARN_ON_ONCE(wq->flus 3166 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3943 3167 3944 wq->first_flusher = & 3168 wq->first_flusher = &this_flusher; 3945 3169 3946 if (!flush_workqueue_ 3170 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3947 3171 wq->work_color)) { 3948 /* nothing to 3172 /* nothing to flush, done */ 3949 wq->flush_col 3173 wq->flush_color = next_color; 3950 wq->first_flu 3174 wq->first_flusher = NULL; 3951 goto out_unlo 3175 goto out_unlock; 3952 } 3176 } 3953 } else { 3177 } else { 3954 /* wait in queue */ 3178 /* wait in queue */ 3955 WARN_ON_ONCE(wq->flus 3179 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3956 list_add_tail(&this_f 3180 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3957 flush_workqueue_prep_ 3181 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3958 } 3182 } 3959 } else { 3183 } else { 3960 /* 3184 /* 3961 * Oops, color space is full, 3185 * Oops, color space is full, wait on overflow queue. 3962 * The next flush completion 3186 * The next flush completion will assign us 3963 * flush_color and transfer t 3187 * flush_color and transfer to flusher_queue. 3964 */ 3188 */ 3965 list_add_tail(&this_flusher.l 3189 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3966 } 3190 } 3967 3191 3968 check_flush_dependency(wq, NULL); 3192 check_flush_dependency(wq, NULL); 3969 3193 3970 mutex_unlock(&wq->mutex); 3194 mutex_unlock(&wq->mutex); 3971 3195 3972 wait_for_completion(&this_flusher.don 3196 wait_for_completion(&this_flusher.done); 3973 3197 3974 /* 3198 /* 3975 * Wake-up-and-cascade phase 3199 * Wake-up-and-cascade phase 3976 * 3200 * 3977 * First flushers are responsible for 3201 * First flushers are responsible for cascading flushes and 3978 * handling overflow. Non-first flus 3202 * handling overflow. Non-first flushers can simply return. 3979 */ 3203 */ 3980 if (READ_ONCE(wq->first_flusher) != & 3204 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3981 return; 3205 return; 3982 3206 3983 mutex_lock(&wq->mutex); 3207 mutex_lock(&wq->mutex); 3984 3208 3985 /* we might have raced, check again w 3209 /* we might have raced, check again with mutex held */ 3986 if (wq->first_flusher != &this_flushe 3210 if (wq->first_flusher != &this_flusher) 3987 goto out_unlock; 3211 goto out_unlock; 3988 3212 3989 WRITE_ONCE(wq->first_flusher, NULL); 3213 WRITE_ONCE(wq->first_flusher, NULL); 3990 3214 3991 WARN_ON_ONCE(!list_empty(&this_flushe 3215 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3992 WARN_ON_ONCE(wq->flush_color != this_ 3216 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3993 3217 3994 while (true) { 3218 while (true) { 3995 struct wq_flusher *next, *tmp 3219 struct wq_flusher *next, *tmp; 3996 3220 3997 /* complete all the flushers 3221 /* complete all the flushers sharing the current flush color */ 3998 list_for_each_entry_safe(next 3222 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3999 if (next->flush_color 3223 if (next->flush_color != wq->flush_color) 4000 break; 3224 break; 4001 list_del_init(&next-> 3225 list_del_init(&next->list); 4002 complete(&next->done) 3226 complete(&next->done); 4003 } 3227 } 4004 3228 4005 WARN_ON_ONCE(!list_empty(&wq- 3229 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4006 wq->flush_color 3230 wq->flush_color != work_next_color(wq->work_color)); 4007 3231 4008 /* this flush_color is finish 3232 /* this flush_color is finished, advance by one */ 4009 wq->flush_color = work_next_c 3233 wq->flush_color = work_next_color(wq->flush_color); 4010 3234 4011 /* one color has been freed, 3235 /* one color has been freed, handle overflow queue */ 4012 if (!list_empty(&wq->flusher_ 3236 if (!list_empty(&wq->flusher_overflow)) { 4013 /* 3237 /* 4014 * Assign the same co 3238 * Assign the same color to all overflowed 4015 * flushers, advance 3239 * flushers, advance work_color and append to 4016 * flusher_queue. Th 3240 * flusher_queue. This is the start-to-wait 4017 * phase for these ov 3241 * phase for these overflowed flushers. 4018 */ 3242 */ 4019 list_for_each_entry(t 3243 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4020 tmp->flush_co 3244 tmp->flush_color = wq->work_color; 4021 3245 4022 wq->work_color = work 3246 wq->work_color = work_next_color(wq->work_color); 4023 3247 4024 list_splice_tail_init 3248 list_splice_tail_init(&wq->flusher_overflow, 4025 3249 &wq->flusher_queue); 4026 flush_workqueue_prep_ 3250 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4027 } 3251 } 4028 3252 4029 if (list_empty(&wq->flusher_q 3253 if (list_empty(&wq->flusher_queue)) { 4030 WARN_ON_ONCE(wq->flus 3254 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4031 break; 3255 break; 4032 } 3256 } 4033 3257 4034 /* 3258 /* 4035 * Need to flush more colors. 3259 * Need to flush more colors. Make the next flusher 4036 * the new first flusher and 3260 * the new first flusher and arm pwqs. 4037 */ 3261 */ 4038 WARN_ON_ONCE(wq->flush_color 3262 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4039 WARN_ON_ONCE(wq->flush_color 3263 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4040 3264 4041 list_del_init(&next->list); 3265 list_del_init(&next->list); 4042 wq->first_flusher = next; 3266 wq->first_flusher = next; 4043 3267 4044 if (flush_workqueue_prep_pwqs 3268 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4045 break; 3269 break; 4046 3270 4047 /* 3271 /* 4048 * Meh... this color is alrea 3272 * Meh... this color is already done, clear first 4049 * flusher and repeat cascadi 3273 * flusher and repeat cascading. 4050 */ 3274 */ 4051 wq->first_flusher = NULL; 3275 wq->first_flusher = NULL; 4052 } 3276 } 4053 3277 4054 out_unlock: 3278 out_unlock: 4055 mutex_unlock(&wq->mutex); 3279 mutex_unlock(&wq->mutex); 4056 } 3280 } 4057 EXPORT_SYMBOL(__flush_workqueue); 3281 EXPORT_SYMBOL(__flush_workqueue); 4058 3282 4059 /** 3283 /** 4060 * drain_workqueue - drain a workqueue 3284 * drain_workqueue - drain a workqueue 4061 * @wq: workqueue to drain 3285 * @wq: workqueue to drain 4062 * 3286 * 4063 * Wait until the workqueue becomes empty. W 3287 * Wait until the workqueue becomes empty. While draining is in progress, 4064 * only chain queueing is allowed. IOW, only 3288 * only chain queueing is allowed. IOW, only currently pending or running 4065 * work items on @wq can queue further work i 3289 * work items on @wq can queue further work items on it. @wq is flushed 4066 * repeatedly until it becomes empty. The nu 3290 * repeatedly until it becomes empty. The number of flushing is determined 4067 * by the depth of chaining and should be rel 3291 * by the depth of chaining and should be relatively short. Whine if it 4068 * takes too long. 3292 * takes too long. 4069 */ 3293 */ 4070 void drain_workqueue(struct workqueue_struct 3294 void drain_workqueue(struct workqueue_struct *wq) 4071 { 3295 { 4072 unsigned int flush_cnt = 0; 3296 unsigned int flush_cnt = 0; 4073 struct pool_workqueue *pwq; 3297 struct pool_workqueue *pwq; 4074 3298 4075 /* 3299 /* 4076 * __queue_work() needs to test wheth 3300 * __queue_work() needs to test whether there are drainers, is much 4077 * hotter than drain_workqueue() and 3301 * hotter than drain_workqueue() and already looks at @wq->flags. 4078 * Use __WQ_DRAINING so that queue do 3302 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4079 */ 3303 */ 4080 mutex_lock(&wq->mutex); 3304 mutex_lock(&wq->mutex); 4081 if (!wq->nr_drainers++) 3305 if (!wq->nr_drainers++) 4082 wq->flags |= __WQ_DRAINING; 3306 wq->flags |= __WQ_DRAINING; 4083 mutex_unlock(&wq->mutex); 3307 mutex_unlock(&wq->mutex); 4084 reflush: 3308 reflush: 4085 __flush_workqueue(wq); 3309 __flush_workqueue(wq); 4086 3310 4087 mutex_lock(&wq->mutex); 3311 mutex_lock(&wq->mutex); 4088 3312 4089 for_each_pwq(pwq, wq) { 3313 for_each_pwq(pwq, wq) { 4090 bool drained; 3314 bool drained; 4091 3315 4092 raw_spin_lock_irq(&pwq->pool- 3316 raw_spin_lock_irq(&pwq->pool->lock); 4093 drained = pwq_is_empty(pwq); !! 3317 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 4094 raw_spin_unlock_irq(&pwq->poo 3318 raw_spin_unlock_irq(&pwq->pool->lock); 4095 3319 4096 if (drained) 3320 if (drained) 4097 continue; 3321 continue; 4098 3322 4099 if (++flush_cnt == 10 || 3323 if (++flush_cnt == 10 || 4100 (flush_cnt % 100 == 0 && 3324 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4101 pr_warn("workqueue %s 3325 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4102 wq->name, __f 3326 wq->name, __func__, flush_cnt); 4103 3327 4104 mutex_unlock(&wq->mutex); 3328 mutex_unlock(&wq->mutex); 4105 goto reflush; 3329 goto reflush; 4106 } 3330 } 4107 3331 4108 if (!--wq->nr_drainers) 3332 if (!--wq->nr_drainers) 4109 wq->flags &= ~__WQ_DRAINING; 3333 wq->flags &= ~__WQ_DRAINING; 4110 mutex_unlock(&wq->mutex); 3334 mutex_unlock(&wq->mutex); 4111 } 3335 } 4112 EXPORT_SYMBOL_GPL(drain_workqueue); 3336 EXPORT_SYMBOL_GPL(drain_workqueue); 4113 3337 4114 static bool start_flush_work(struct work_stru 3338 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4115 bool from_cancel 3339 bool from_cancel) 4116 { 3340 { 4117 struct worker *worker = NULL; 3341 struct worker *worker = NULL; 4118 struct worker_pool *pool; 3342 struct worker_pool *pool; 4119 struct pool_workqueue *pwq; 3343 struct pool_workqueue *pwq; 4120 struct workqueue_struct *wq; !! 3344 >> 3345 might_sleep(); 4121 3346 4122 rcu_read_lock(); 3347 rcu_read_lock(); 4123 pool = get_work_pool(work); 3348 pool = get_work_pool(work); 4124 if (!pool) { 3349 if (!pool) { 4125 rcu_read_unlock(); 3350 rcu_read_unlock(); 4126 return false; 3351 return false; 4127 } 3352 } 4128 3353 4129 raw_spin_lock_irq(&pool->lock); 3354 raw_spin_lock_irq(&pool->lock); 4130 /* see the comment in try_to_grab_pen 3355 /* see the comment in try_to_grab_pending() with the same code */ 4131 pwq = get_work_pwq(work); 3356 pwq = get_work_pwq(work); 4132 if (pwq) { 3357 if (pwq) { 4133 if (unlikely(pwq->pool != poo 3358 if (unlikely(pwq->pool != pool)) 4134 goto already_gone; 3359 goto already_gone; 4135 } else { 3360 } else { 4136 worker = find_worker_executin 3361 worker = find_worker_executing_work(pool, work); 4137 if (!worker) 3362 if (!worker) 4138 goto already_gone; 3363 goto already_gone; 4139 pwq = worker->current_pwq; 3364 pwq = worker->current_pwq; 4140 } 3365 } 4141 3366 4142 wq = pwq->wq; !! 3367 check_flush_dependency(pwq->wq, work); 4143 check_flush_dependency(wq, work); << 4144 3368 4145 insert_wq_barrier(pwq, barr, work, wo 3369 insert_wq_barrier(pwq, barr, work, worker); 4146 raw_spin_unlock_irq(&pool->lock); 3370 raw_spin_unlock_irq(&pool->lock); 4147 3371 4148 touch_work_lockdep_map(work, wq); << 4149 << 4150 /* 3372 /* 4151 * Force a lock recursion deadlock wh 3373 * Force a lock recursion deadlock when using flush_work() inside a 4152 * single-threaded or rescuer equippe 3374 * single-threaded or rescuer equipped workqueue. 4153 * 3375 * 4154 * For single threaded workqueues the 3376 * For single threaded workqueues the deadlock happens when the work 4155 * is after the work issuing the flus 3377 * is after the work issuing the flush_work(). For rescuer equipped 4156 * workqueues the deadlock happens wh 3378 * workqueues the deadlock happens when the rescuer stalls, blocking 4157 * forward progress. 3379 * forward progress. 4158 */ 3380 */ 4159 if (!from_cancel && (wq->saved_max_ac !! 3381 if (!from_cancel && 4160 touch_wq_lockdep_map(wq); !! 3382 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 4161 !! 3383 lock_map_acquire(&pwq->wq->lockdep_map); >> 3384 lock_map_release(&pwq->wq->lockdep_map); >> 3385 } 4162 rcu_read_unlock(); 3386 rcu_read_unlock(); 4163 return true; 3387 return true; 4164 already_gone: 3388 already_gone: 4165 raw_spin_unlock_irq(&pool->lock); 3389 raw_spin_unlock_irq(&pool->lock); 4166 rcu_read_unlock(); 3390 rcu_read_unlock(); 4167 return false; 3391 return false; 4168 } 3392 } 4169 3393 4170 static bool __flush_work(struct work_struct * 3394 static bool __flush_work(struct work_struct *work, bool from_cancel) 4171 { 3395 { 4172 struct wq_barrier barr; 3396 struct wq_barrier barr; 4173 3397 4174 if (WARN_ON(!wq_online)) 3398 if (WARN_ON(!wq_online)) 4175 return false; 3399 return false; 4176 3400 4177 if (WARN_ON(!work->func)) 3401 if (WARN_ON(!work->func)) 4178 return false; 3402 return false; 4179 3403 4180 if (!start_flush_work(work, &barr, fr !! 3404 lock_map_acquire(&work->lockdep_map); 4181 return false; !! 3405 lock_map_release(&work->lockdep_map); 4182 << 4183 /* << 4184 * start_flush_work() returned %true. << 4185 * that @work must have been executin << 4186 * can't currently be queued. Its dat << 4187 * was queued on a BH workqueue, we a << 4188 * BH context and thus can be busy-wa << 4189 */ << 4190 if (from_cancel) { << 4191 unsigned long data = *work_da << 4192 3406 4193 if (!WARN_ON_ONCE(data & WORK !! 3407 if (start_flush_work(work, &barr, from_cancel)) { 4194 (data & WORK_OFFQ_BH)) { !! 3408 wait_for_completion(&barr.done); 4195 /* !! 3409 destroy_work_on_stack(&barr.work); 4196 * On RT, prevent a l !! 3410 return true; 4197 * soft interrupt pro !! 3411 } else { 4198 * running by keeping !! 3412 return false; 4199 * runs on a differen << 4200 * than doing the BH << 4201 * This is copied fro << 4202 * kernel/softirq.c:: << 4203 */ << 4204 while (!try_wait_for_ << 4205 if (IS_ENABLE << 4206 local << 4207 local << 4208 } else { << 4209 cpu_r << 4210 } << 4211 } << 4212 goto out_destroy; << 4213 } << 4214 } 3413 } 4215 << 4216 wait_for_completion(&barr.done); << 4217 << 4218 out_destroy: << 4219 destroy_work_on_stack(&barr.work); << 4220 return true; << 4221 } 3414 } 4222 3415 4223 /** 3416 /** 4224 * flush_work - wait for a work to finish exe 3417 * flush_work - wait for a work to finish executing the last queueing instance 4225 * @work: the work to flush 3418 * @work: the work to flush 4226 * 3419 * 4227 * Wait until @work has finished execution. 3420 * Wait until @work has finished execution. @work is guaranteed to be idle 4228 * on return if it hasn't been requeued since 3421 * on return if it hasn't been requeued since flush started. 4229 * 3422 * 4230 * Return: 3423 * Return: 4231 * %true if flush_work() waited for the work 3424 * %true if flush_work() waited for the work to finish execution, 4232 * %false if it was already idle. 3425 * %false if it was already idle. 4233 */ 3426 */ 4234 bool flush_work(struct work_struct *work) 3427 bool flush_work(struct work_struct *work) 4235 { 3428 { 4236 might_sleep(); << 4237 return __flush_work(work, false); 3429 return __flush_work(work, false); 4238 } 3430 } 4239 EXPORT_SYMBOL_GPL(flush_work); 3431 EXPORT_SYMBOL_GPL(flush_work); 4240 3432 >> 3433 struct cwt_wait { >> 3434 wait_queue_entry_t wait; >> 3435 struct work_struct *work; >> 3436 }; >> 3437 >> 3438 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) >> 3439 { >> 3440 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); >> 3441 >> 3442 if (cwait->work != key) >> 3443 return 0; >> 3444 return autoremove_wake_function(wait, mode, sync, key); >> 3445 } >> 3446 >> 3447 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) >> 3448 { >> 3449 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); >> 3450 unsigned long flags; >> 3451 int ret; >> 3452 >> 3453 do { >> 3454 ret = try_to_grab_pending(work, is_dwork, &flags); >> 3455 /* >> 3456 * If someone else is already canceling, wait for it to >> 3457 * finish. flush_work() doesn't work for PREEMPT_NONE >> 3458 * because we may get scheduled between @work's completion >> 3459 * and the other canceling task resuming and clearing >> 3460 * CANCELING - flush_work() will return false immediately >> 3461 * as @work is no longer busy, try_to_grab_pending() will >> 3462 * return -ENOENT as @work is still being canceled and the >> 3463 * other canceling task won't be able to clear CANCELING as >> 3464 * we're hogging the CPU. >> 3465 * >> 3466 * Let's wait for completion using a waitqueue. As this >> 3467 * may lead to the thundering herd problem, use a custom >> 3468 * wake function which matches @work along with exclusive >> 3469 * wait and wakeup. >> 3470 */ >> 3471 if (unlikely(ret == -ENOENT)) { >> 3472 struct cwt_wait cwait; >> 3473 >> 3474 init_wait(&cwait.wait); >> 3475 cwait.wait.func = cwt_wakefn; >> 3476 cwait.work = work; >> 3477 >> 3478 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, >> 3479 TASK_UNINTERRUPTIBLE); >> 3480 if (work_is_canceling(work)) >> 3481 schedule(); >> 3482 finish_wait(&cancel_waitq, &cwait.wait); >> 3483 } >> 3484 } while (unlikely(ret < 0)); >> 3485 >> 3486 /* tell other tasks trying to grab @work to back off */ >> 3487 mark_work_canceling(work); >> 3488 local_irq_restore(flags); >> 3489 >> 3490 /* >> 3491 * This allows canceling during early boot. We know that @work >> 3492 * isn't executing. >> 3493 */ >> 3494 if (wq_online) >> 3495 __flush_work(work, true); >> 3496 >> 3497 clear_work_data(work); >> 3498 >> 3499 /* >> 3500 * Paired with prepare_to_wait() above so that either >> 3501 * waitqueue_active() is visible here or !work_is_canceling() is >> 3502 * visible there. >> 3503 */ >> 3504 smp_mb(); >> 3505 if (waitqueue_active(&cancel_waitq)) >> 3506 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); >> 3507 >> 3508 return ret; >> 3509 } >> 3510 >> 3511 /** >> 3512 * cancel_work_sync - cancel a work and wait for it to finish >> 3513 * @work: the work to cancel >> 3514 * >> 3515 * Cancel @work and wait for its execution to finish. This function >> 3516 * can be used even if the work re-queues itself or migrates to >> 3517 * another workqueue. On return from this function, @work is >> 3518 * guaranteed to be not pending or executing on any CPU. >> 3519 * >> 3520 * cancel_work_sync(&delayed_work->work) must not be used for >> 3521 * delayed_work's. Use cancel_delayed_work_sync() instead. >> 3522 * >> 3523 * The caller must ensure that the workqueue on which @work was last >> 3524 * queued can't be destroyed before this function returns. >> 3525 * >> 3526 * Return: >> 3527 * %true if @work was pending, %false otherwise. >> 3528 */ >> 3529 bool cancel_work_sync(struct work_struct *work) >> 3530 { >> 3531 return __cancel_work_timer(work, false); >> 3532 } >> 3533 EXPORT_SYMBOL_GPL(cancel_work_sync); >> 3534 4241 /** 3535 /** 4242 * flush_delayed_work - wait for a dwork to f 3536 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4243 * @dwork: the delayed work to flush 3537 * @dwork: the delayed work to flush 4244 * 3538 * 4245 * Delayed timer is cancelled and the pending 3539 * Delayed timer is cancelled and the pending work is queued for 4246 * immediate execution. Like flush_work(), t 3540 * immediate execution. Like flush_work(), this function only 4247 * considers the last queueing instance of @d 3541 * considers the last queueing instance of @dwork. 4248 * 3542 * 4249 * Return: 3543 * Return: 4250 * %true if flush_work() waited for the work 3544 * %true if flush_work() waited for the work to finish execution, 4251 * %false if it was already idle. 3545 * %false if it was already idle. 4252 */ 3546 */ 4253 bool flush_delayed_work(struct delayed_work * 3547 bool flush_delayed_work(struct delayed_work *dwork) 4254 { 3548 { 4255 local_irq_disable(); 3549 local_irq_disable(); 4256 if (del_timer_sync(&dwork->timer)) 3550 if (del_timer_sync(&dwork->timer)) 4257 __queue_work(dwork->cpu, dwor 3551 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4258 local_irq_enable(); 3552 local_irq_enable(); 4259 return flush_work(&dwork->work); 3553 return flush_work(&dwork->work); 4260 } 3554 } 4261 EXPORT_SYMBOL(flush_delayed_work); 3555 EXPORT_SYMBOL(flush_delayed_work); 4262 3556 4263 /** 3557 /** 4264 * flush_rcu_work - wait for a rwork to finis 3558 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4265 * @rwork: the rcu work to flush 3559 * @rwork: the rcu work to flush 4266 * 3560 * 4267 * Return: 3561 * Return: 4268 * %true if flush_rcu_work() waited for the w 3562 * %true if flush_rcu_work() waited for the work to finish execution, 4269 * %false if it was already idle. 3563 * %false if it was already idle. 4270 */ 3564 */ 4271 bool flush_rcu_work(struct rcu_work *rwork) 3565 bool flush_rcu_work(struct rcu_work *rwork) 4272 { 3566 { 4273 if (test_bit(WORK_STRUCT_PENDING_BIT, 3567 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4274 rcu_barrier(); 3568 rcu_barrier(); 4275 flush_work(&rwork->work); 3569 flush_work(&rwork->work); 4276 return true; 3570 return true; 4277 } else { 3571 } else { 4278 return flush_work(&rwork->wor 3572 return flush_work(&rwork->work); 4279 } 3573 } 4280 } 3574 } 4281 EXPORT_SYMBOL(flush_rcu_work); 3575 EXPORT_SYMBOL(flush_rcu_work); 4282 3576 4283 static void work_offqd_disable(struct work_of !! 3577 static bool __cancel_work(struct work_struct *work, bool is_dwork) 4284 { << 4285 const unsigned long max = (1lu << WOR << 4286 << 4287 if (likely(offqd->disable < max)) << 4288 offqd->disable++; << 4289 else << 4290 WARN_ONCE(true, "workqueue: w << 4291 } << 4292 << 4293 static void work_offqd_enable(struct work_off << 4294 { 3578 { 4295 if (likely(offqd->disable > 0)) !! 3579 unsigned long flags; 4296 offqd->disable--; << 4297 else << 4298 WARN_ONCE(true, "workqueue: w << 4299 } << 4300 << 4301 static bool __cancel_work(struct work_struct << 4302 { << 4303 struct work_offq_data offqd; << 4304 unsigned long irq_flags; << 4305 int ret; 3580 int ret; 4306 3581 4307 ret = work_grab_pending(work, cflags, !! 3582 do { 4308 !! 3583 ret = try_to_grab_pending(work, is_dwork, &flags); 4309 work_offqd_unpack(&offqd, *work_data_ !! 3584 } while (unlikely(ret == -EAGAIN)); 4310 << 4311 if (cflags & WORK_CANCEL_DISABLE) << 4312 work_offqd_disable(&offqd); << 4313 << 4314 set_work_pool_and_clear_pending(work, << 4315 work_ << 4316 local_irq_restore(irq_flags); << 4317 return ret; << 4318 } << 4319 << 4320 static bool __cancel_work_sync(struct work_st << 4321 { << 4322 bool ret; << 4323 << 4324 ret = __cancel_work(work, cflags | WO << 4325 << 4326 if (*work_data_bits(work) & WORK_OFFQ << 4327 WARN_ON_ONCE(in_hardirq()); << 4328 else << 4329 might_sleep(); << 4330 << 4331 /* << 4332 * Skip __flush_work() during early b << 4333 * executing. This allows canceling d << 4334 */ << 4335 if (wq_online) << 4336 __flush_work(work, true); << 4337 3585 4338 if (!(cflags & WORK_CANCEL_DISABLE)) !! 3586 if (unlikely(ret < 0)) 4339 enable_work(work); !! 3587 return false; 4340 3588 >> 3589 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); >> 3590 local_irq_restore(flags); 4341 return ret; 3591 return ret; 4342 } 3592 } 4343 3593 4344 /* 3594 /* 4345 * See cancel_delayed_work() 3595 * See cancel_delayed_work() 4346 */ 3596 */ 4347 bool cancel_work(struct work_struct *work) 3597 bool cancel_work(struct work_struct *work) 4348 { 3598 { 4349 return __cancel_work(work, 0); !! 3599 return __cancel_work(work, false); 4350 } 3600 } 4351 EXPORT_SYMBOL(cancel_work); 3601 EXPORT_SYMBOL(cancel_work); 4352 3602 4353 /** 3603 /** 4354 * cancel_work_sync - cancel a work and wait << 4355 * @work: the work to cancel << 4356 * << 4357 * Cancel @work and wait for its execution to << 4358 * even if the work re-queues itself or migra << 4359 * from this function, @work is guaranteed to << 4360 * CPU as long as there aren't racing enqueue << 4361 * << 4362 * cancel_work_sync(&delayed_work->work) must << 4363 * Use cancel_delayed_work_sync() instead. << 4364 * << 4365 * Must be called from a sleepable context if << 4366 * workqueue. Can also be called from non-har << 4367 * if @work was last queued on a BH workqueue << 4368 * << 4369 * Returns %true if @work was pending, %false << 4370 */ << 4371 bool cancel_work_sync(struct work_struct *wor << 4372 { << 4373 return __cancel_work_sync(work, 0); << 4374 } << 4375 EXPORT_SYMBOL_GPL(cancel_work_sync); << 4376 << 4377 /** << 4378 * cancel_delayed_work - cancel a delayed wor 3604 * cancel_delayed_work - cancel a delayed work 4379 * @dwork: delayed_work to cancel 3605 * @dwork: delayed_work to cancel 4380 * 3606 * 4381 * Kill off a pending delayed_work. 3607 * Kill off a pending delayed_work. 4382 * 3608 * 4383 * Return: %true if @dwork was pending and ca 3609 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4384 * pending. 3610 * pending. 4385 * 3611 * 4386 * Note: 3612 * Note: 4387 * The work callback function may still be ru 3613 * The work callback function may still be running on return, unless 4388 * it returns %true and the work doesn't re-a 3614 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4389 * use cancel_delayed_work_sync() to wait on 3615 * use cancel_delayed_work_sync() to wait on it. 4390 * 3616 * 4391 * This function is safe to call from any con 3617 * This function is safe to call from any context including IRQ handler. 4392 */ 3618 */ 4393 bool cancel_delayed_work(struct delayed_work 3619 bool cancel_delayed_work(struct delayed_work *dwork) 4394 { 3620 { 4395 return __cancel_work(&dwork->work, WO !! 3621 return __cancel_work(&dwork->work, true); 4396 } 3622 } 4397 EXPORT_SYMBOL(cancel_delayed_work); 3623 EXPORT_SYMBOL(cancel_delayed_work); 4398 3624 4399 /** 3625 /** 4400 * cancel_delayed_work_sync - cancel a delaye 3626 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4401 * @dwork: the delayed work cancel 3627 * @dwork: the delayed work cancel 4402 * 3628 * 4403 * This is cancel_work_sync() for delayed wor 3629 * This is cancel_work_sync() for delayed works. 4404 * 3630 * 4405 * Return: 3631 * Return: 4406 * %true if @dwork was pending, %false otherw 3632 * %true if @dwork was pending, %false otherwise. 4407 */ 3633 */ 4408 bool cancel_delayed_work_sync(struct delayed_ 3634 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4409 { 3635 { 4410 return __cancel_work_sync(&dwork->wor !! 3636 return __cancel_work_timer(&dwork->work, true); 4411 } 3637 } 4412 EXPORT_SYMBOL(cancel_delayed_work_sync); 3638 EXPORT_SYMBOL(cancel_delayed_work_sync); 4413 3639 4414 /** 3640 /** 4415 * disable_work - Disable and cancel a work i << 4416 * @work: work item to disable << 4417 * << 4418 * Disable @work by incrementing its disable << 4419 * pending. As long as the disable count is n << 4420 * will fail and return %false. The maximum s << 4421 * power of %WORK_OFFQ_DISABLE_BITS, currentl << 4422 * << 4423 * Can be called from any context. Returns %t << 4424 * otherwise. << 4425 */ << 4426 bool disable_work(struct work_struct *work) << 4427 { << 4428 return __cancel_work(work, WORK_CANCE << 4429 } << 4430 EXPORT_SYMBOL_GPL(disable_work); << 4431 << 4432 /** << 4433 * disable_work_sync - Disable, cancel and dr << 4434 * @work: work item to disable << 4435 * << 4436 * Similar to disable_work() but also wait fo << 4437 * executing. << 4438 * << 4439 * Must be called from a sleepable context if << 4440 * workqueue. Can also be called from non-har << 4441 * if @work was last queued on a BH workqueue << 4442 * << 4443 * Returns %true if @work was pending, %false << 4444 */ << 4445 bool disable_work_sync(struct work_struct *wo << 4446 { << 4447 return __cancel_work_sync(work, WORK_ << 4448 } << 4449 EXPORT_SYMBOL_GPL(disable_work_sync); << 4450 << 4451 /** << 4452 * enable_work - Enable a work item << 4453 * @work: work item to enable << 4454 * << 4455 * Undo disable_work[_sync]() by decrementing << 4456 * only be queued if its disable count is 0. << 4457 * << 4458 * Can be called from any context. Returns %t << 4459 * Otherwise, %false. << 4460 */ << 4461 bool enable_work(struct work_struct *work) << 4462 { << 4463 struct work_offq_data offqd; << 4464 unsigned long irq_flags; << 4465 << 4466 work_grab_pending(work, 0, &irq_flags << 4467 << 4468 work_offqd_unpack(&offqd, *work_data_ << 4469 work_offqd_enable(&offqd); << 4470 set_work_pool_and_clear_pending(work, << 4471 work_ << 4472 local_irq_restore(irq_flags); << 4473 << 4474 return !offqd.disable; << 4475 } << 4476 EXPORT_SYMBOL_GPL(enable_work); << 4477 << 4478 /** << 4479 * disable_delayed_work - Disable and cancel << 4480 * @dwork: delayed work item to disable << 4481 * << 4482 * disable_work() for delayed work items. << 4483 */ << 4484 bool disable_delayed_work(struct delayed_work << 4485 { << 4486 return __cancel_work(&dwork->work, << 4487 WORK_CANCEL_DELA << 4488 } << 4489 EXPORT_SYMBOL_GPL(disable_delayed_work); << 4490 << 4491 /** << 4492 * disable_delayed_work_sync - Disable, cance << 4493 * @dwork: delayed work item to disable << 4494 * << 4495 * disable_work_sync() for delayed work items << 4496 */ << 4497 bool disable_delayed_work_sync(struct delayed << 4498 { << 4499 return __cancel_work_sync(&dwork->wor << 4500 WORK_CANCEL << 4501 } << 4502 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); << 4503 << 4504 /** << 4505 * enable_delayed_work - Enable a delayed wor << 4506 * @dwork: delayed work item to enable << 4507 * << 4508 * enable_work() for delayed work items. << 4509 */ << 4510 bool enable_delayed_work(struct delayed_work << 4511 { << 4512 return enable_work(&dwork->work); << 4513 } << 4514 EXPORT_SYMBOL_GPL(enable_delayed_work); << 4515 << 4516 /** << 4517 * schedule_on_each_cpu - execute a function 3641 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4518 * @func: the function to call 3642 * @func: the function to call 4519 * 3643 * 4520 * schedule_on_each_cpu() executes @func on e 3644 * schedule_on_each_cpu() executes @func on each online CPU using the 4521 * system workqueue and blocks until all CPUs 3645 * system workqueue and blocks until all CPUs have completed. 4522 * schedule_on_each_cpu() is very slow. 3646 * schedule_on_each_cpu() is very slow. 4523 * 3647 * 4524 * Return: 3648 * Return: 4525 * 0 on success, -errno on failure. 3649 * 0 on success, -errno on failure. 4526 */ 3650 */ 4527 int schedule_on_each_cpu(work_func_t func) 3651 int schedule_on_each_cpu(work_func_t func) 4528 { 3652 { 4529 int cpu; 3653 int cpu; 4530 struct work_struct __percpu *works; 3654 struct work_struct __percpu *works; 4531 3655 4532 works = alloc_percpu(struct work_stru 3656 works = alloc_percpu(struct work_struct); 4533 if (!works) 3657 if (!works) 4534 return -ENOMEM; 3658 return -ENOMEM; 4535 3659 4536 cpus_read_lock(); 3660 cpus_read_lock(); 4537 3661 4538 for_each_online_cpu(cpu) { 3662 for_each_online_cpu(cpu) { 4539 struct work_struct *work = pe 3663 struct work_struct *work = per_cpu_ptr(works, cpu); 4540 3664 4541 INIT_WORK(work, func); 3665 INIT_WORK(work, func); 4542 schedule_work_on(cpu, work); 3666 schedule_work_on(cpu, work); 4543 } 3667 } 4544 3668 4545 for_each_online_cpu(cpu) 3669 for_each_online_cpu(cpu) 4546 flush_work(per_cpu_ptr(works, 3670 flush_work(per_cpu_ptr(works, cpu)); 4547 3671 4548 cpus_read_unlock(); 3672 cpus_read_unlock(); 4549 free_percpu(works); 3673 free_percpu(works); 4550 return 0; 3674 return 0; 4551 } 3675 } 4552 3676 4553 /** 3677 /** 4554 * execute_in_process_context - reliably exec 3678 * execute_in_process_context - reliably execute the routine with user context 4555 * @fn: the function to execute 3679 * @fn: the function to execute 4556 * @ew: guaranteed storage for the ex 3680 * @ew: guaranteed storage for the execute work structure (must 4557 * be available when the work ex 3681 * be available when the work executes) 4558 * 3682 * 4559 * Executes the function immediately if proce 3683 * Executes the function immediately if process context is available, 4560 * otherwise schedules the function for delay 3684 * otherwise schedules the function for delayed execution. 4561 * 3685 * 4562 * Return: 0 - function was executed 3686 * Return: 0 - function was executed 4563 * 1 - function was scheduled fo 3687 * 1 - function was scheduled for execution 4564 */ 3688 */ 4565 int execute_in_process_context(work_func_t fn 3689 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4566 { 3690 { 4567 if (!in_interrupt()) { 3691 if (!in_interrupt()) { 4568 fn(&ew->work); 3692 fn(&ew->work); 4569 return 0; 3693 return 0; 4570 } 3694 } 4571 3695 4572 INIT_WORK(&ew->work, fn); 3696 INIT_WORK(&ew->work, fn); 4573 schedule_work(&ew->work); 3697 schedule_work(&ew->work); 4574 3698 4575 return 1; 3699 return 1; 4576 } 3700 } 4577 EXPORT_SYMBOL_GPL(execute_in_process_context) 3701 EXPORT_SYMBOL_GPL(execute_in_process_context); 4578 3702 4579 /** 3703 /** 4580 * free_workqueue_attrs - free a workqueue_at 3704 * free_workqueue_attrs - free a workqueue_attrs 4581 * @attrs: workqueue_attrs to free 3705 * @attrs: workqueue_attrs to free 4582 * 3706 * 4583 * Undo alloc_workqueue_attrs(). 3707 * Undo alloc_workqueue_attrs(). 4584 */ 3708 */ 4585 void free_workqueue_attrs(struct workqueue_at 3709 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4586 { 3710 { 4587 if (attrs) { 3711 if (attrs) { 4588 free_cpumask_var(attrs->cpuma 3712 free_cpumask_var(attrs->cpumask); 4589 free_cpumask_var(attrs->__pod 3713 free_cpumask_var(attrs->__pod_cpumask); 4590 kfree(attrs); 3714 kfree(attrs); 4591 } 3715 } 4592 } 3716 } 4593 3717 4594 /** 3718 /** 4595 * alloc_workqueue_attrs - allocate a workque 3719 * alloc_workqueue_attrs - allocate a workqueue_attrs 4596 * 3720 * 4597 * Allocate a new workqueue_attrs, initialize 3721 * Allocate a new workqueue_attrs, initialize with default settings and 4598 * return it. 3722 * return it. 4599 * 3723 * 4600 * Return: The allocated new workqueue_attr o 3724 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4601 */ 3725 */ 4602 struct workqueue_attrs *alloc_workqueue_attrs 3726 struct workqueue_attrs *alloc_workqueue_attrs(void) 4603 { 3727 { 4604 struct workqueue_attrs *attrs; 3728 struct workqueue_attrs *attrs; 4605 3729 4606 attrs = kzalloc(sizeof(*attrs), GFP_K 3730 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4607 if (!attrs) 3731 if (!attrs) 4608 goto fail; 3732 goto fail; 4609 if (!alloc_cpumask_var(&attrs->cpumas 3733 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4610 goto fail; 3734 goto fail; 4611 if (!alloc_cpumask_var(&attrs->__pod_ 3735 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4612 goto fail; 3736 goto fail; 4613 3737 4614 cpumask_copy(attrs->cpumask, cpu_poss 3738 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4615 attrs->affn_scope = WQ_AFFN_DFL; 3739 attrs->affn_scope = WQ_AFFN_DFL; 4616 return attrs; 3740 return attrs; 4617 fail: 3741 fail: 4618 free_workqueue_attrs(attrs); 3742 free_workqueue_attrs(attrs); 4619 return NULL; 3743 return NULL; 4620 } 3744 } 4621 3745 4622 static void copy_workqueue_attrs(struct workq 3746 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4623 const struct 3747 const struct workqueue_attrs *from) 4624 { 3748 { 4625 to->nice = from->nice; 3749 to->nice = from->nice; 4626 cpumask_copy(to->cpumask, from->cpuma 3750 cpumask_copy(to->cpumask, from->cpumask); 4627 cpumask_copy(to->__pod_cpumask, from- 3751 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4628 to->affn_strict = from->affn_strict; 3752 to->affn_strict = from->affn_strict; 4629 3753 4630 /* 3754 /* 4631 * Unlike hash and equality test, cop 3755 * Unlike hash and equality test, copying shouldn't ignore wq-only 4632 * fields as copying is used for both 3756 * fields as copying is used for both pool and wq attrs. Instead, 4633 * get_unbound_pool() explicitly clea 3757 * get_unbound_pool() explicitly clears the fields. 4634 */ 3758 */ 4635 to->affn_scope = from->affn_scope; 3759 to->affn_scope = from->affn_scope; 4636 to->ordered = from->ordered; 3760 to->ordered = from->ordered; 4637 } 3761 } 4638 3762 4639 /* 3763 /* 4640 * Some attrs fields are workqueue-only. Clea 3764 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4641 * comments in 'struct workqueue_attrs' defin 3765 * comments in 'struct workqueue_attrs' definition. 4642 */ 3766 */ 4643 static void wqattrs_clear_for_pool(struct wor 3767 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4644 { 3768 { 4645 attrs->affn_scope = WQ_AFFN_NR_TYPES; 3769 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4646 attrs->ordered = false; 3770 attrs->ordered = false; 4647 if (attrs->affn_strict) << 4648 cpumask_copy(attrs->cpumask, << 4649 } 3771 } 4650 3772 4651 /* hash value of the content of @attr */ 3773 /* hash value of the content of @attr */ 4652 static u32 wqattrs_hash(const struct workqueu 3774 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4653 { 3775 { 4654 u32 hash = 0; 3776 u32 hash = 0; 4655 3777 4656 hash = jhash_1word(attrs->nice, hash) 3778 hash = jhash_1word(attrs->nice, hash); 4657 hash = jhash_1word(attrs->affn_strict !! 3779 hash = jhash(cpumask_bits(attrs->cpumask), >> 3780 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4658 hash = jhash(cpumask_bits(attrs->__po 3781 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4659 BITS_TO_LONGS(nr_cpumask 3782 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4660 if (!attrs->affn_strict) !! 3783 hash = jhash_1word(attrs->affn_strict, hash); 4661 hash = jhash(cpumask_bits(att << 4662 BITS_TO_LONGS(nr << 4663 return hash; 3784 return hash; 4664 } 3785 } 4665 3786 4666 /* content equality test */ 3787 /* content equality test */ 4667 static bool wqattrs_equal(const struct workqu 3788 static bool wqattrs_equal(const struct workqueue_attrs *a, 4668 const struct workqu 3789 const struct workqueue_attrs *b) 4669 { 3790 { 4670 if (a->nice != b->nice) 3791 if (a->nice != b->nice) 4671 return false; 3792 return false; 4672 if (a->affn_strict != b->affn_strict) !! 3793 if (!cpumask_equal(a->cpumask, b->cpumask)) 4673 return false; 3794 return false; 4674 if (!cpumask_equal(a->__pod_cpumask, 3795 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4675 return false; 3796 return false; 4676 if (!a->affn_strict && !cpumask_equal !! 3797 if (a->affn_strict != b->affn_strict) 4677 return false; 3798 return false; 4678 return true; 3799 return true; 4679 } 3800 } 4680 3801 4681 /* Update @attrs with actually available CPUs 3802 /* Update @attrs with actually available CPUs */ 4682 static void wqattrs_actualize_cpumask(struct 3803 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4683 const c 3804 const cpumask_t *unbound_cpumask) 4684 { 3805 { 4685 /* 3806 /* 4686 * Calculate the effective CPU mask o 3807 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4687 * @attrs->cpumask doesn't overlap wi 3808 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4688 * @unbound_cpumask. 3809 * @unbound_cpumask. 4689 */ 3810 */ 4690 cpumask_and(attrs->cpumask, attrs->cp 3811 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4691 if (unlikely(cpumask_empty(attrs->cpu 3812 if (unlikely(cpumask_empty(attrs->cpumask))) 4692 cpumask_copy(attrs->cpumask, 3813 cpumask_copy(attrs->cpumask, unbound_cpumask); 4693 } 3814 } 4694 3815 4695 /* find wq_pod_type to use for @attrs */ 3816 /* find wq_pod_type to use for @attrs */ 4696 static const struct wq_pod_type * 3817 static const struct wq_pod_type * 4697 wqattrs_pod_type(const struct workqueue_attrs 3818 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4698 { 3819 { 4699 enum wq_affn_scope scope; 3820 enum wq_affn_scope scope; 4700 struct wq_pod_type *pt; 3821 struct wq_pod_type *pt; 4701 3822 4702 /* to synchronize access to wq_affn_d 3823 /* to synchronize access to wq_affn_dfl */ 4703 lockdep_assert_held(&wq_pool_mutex); 3824 lockdep_assert_held(&wq_pool_mutex); 4704 3825 4705 if (attrs->affn_scope == WQ_AFFN_DFL) 3826 if (attrs->affn_scope == WQ_AFFN_DFL) 4706 scope = wq_affn_dfl; 3827 scope = wq_affn_dfl; 4707 else 3828 else 4708 scope = attrs->affn_scope; 3829 scope = attrs->affn_scope; 4709 3830 4710 pt = &wq_pod_types[scope]; 3831 pt = &wq_pod_types[scope]; 4711 3832 4712 if (!WARN_ON_ONCE(attrs->affn_scope = 3833 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4713 likely(pt->nr_pods)) 3834 likely(pt->nr_pods)) 4714 return pt; 3835 return pt; 4715 3836 4716 /* 3837 /* 4717 * Before workqueue_init_topology(), 3838 * Before workqueue_init_topology(), only SYSTEM is available which is 4718 * initialized in workqueue_init_earl 3839 * initialized in workqueue_init_early(). 4719 */ 3840 */ 4720 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 3841 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4721 BUG_ON(!pt->nr_pods); 3842 BUG_ON(!pt->nr_pods); 4722 return pt; 3843 return pt; 4723 } 3844 } 4724 3845 4725 /** 3846 /** 4726 * init_worker_pool - initialize a newly zall 3847 * init_worker_pool - initialize a newly zalloc'd worker_pool 4727 * @pool: worker_pool to initialize 3848 * @pool: worker_pool to initialize 4728 * 3849 * 4729 * Initialize a newly zalloc'd @pool. It als 3850 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4730 * 3851 * 4731 * Return: 0 on success, -errno on failure. 3852 * Return: 0 on success, -errno on failure. Even on failure, all fields 4732 * inside @pool proper are initialized and pu 3853 * inside @pool proper are initialized and put_unbound_pool() can be called 4733 * on @pool safely to release it. 3854 * on @pool safely to release it. 4734 */ 3855 */ 4735 static int init_worker_pool(struct worker_poo 3856 static int init_worker_pool(struct worker_pool *pool) 4736 { 3857 { 4737 raw_spin_lock_init(&pool->lock); 3858 raw_spin_lock_init(&pool->lock); 4738 pool->id = -1; 3859 pool->id = -1; 4739 pool->cpu = -1; 3860 pool->cpu = -1; 4740 pool->node = NUMA_NO_NODE; 3861 pool->node = NUMA_NO_NODE; 4741 pool->flags |= POOL_DISASSOCIATED; 3862 pool->flags |= POOL_DISASSOCIATED; 4742 pool->watchdog_ts = jiffies; 3863 pool->watchdog_ts = jiffies; 4743 INIT_LIST_HEAD(&pool->worklist); 3864 INIT_LIST_HEAD(&pool->worklist); 4744 INIT_LIST_HEAD(&pool->idle_list); 3865 INIT_LIST_HEAD(&pool->idle_list); 4745 hash_init(pool->busy_hash); 3866 hash_init(pool->busy_hash); 4746 3867 4747 timer_setup(&pool->idle_timer, idle_w 3868 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4748 INIT_WORK(&pool->idle_cull_work, idle 3869 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4749 3870 4750 timer_setup(&pool->mayday_timer, pool 3871 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4751 3872 4752 INIT_LIST_HEAD(&pool->workers); 3873 INIT_LIST_HEAD(&pool->workers); >> 3874 INIT_LIST_HEAD(&pool->dying_workers); 4753 3875 4754 ida_init(&pool->worker_ida); 3876 ida_init(&pool->worker_ida); 4755 INIT_HLIST_NODE(&pool->hash_node); 3877 INIT_HLIST_NODE(&pool->hash_node); 4756 pool->refcnt = 1; 3878 pool->refcnt = 1; 4757 3879 4758 /* shouldn't fail above this point */ 3880 /* shouldn't fail above this point */ 4759 pool->attrs = alloc_workqueue_attrs() 3881 pool->attrs = alloc_workqueue_attrs(); 4760 if (!pool->attrs) 3882 if (!pool->attrs) 4761 return -ENOMEM; 3883 return -ENOMEM; 4762 3884 4763 wqattrs_clear_for_pool(pool->attrs); 3885 wqattrs_clear_for_pool(pool->attrs); 4764 3886 4765 return 0; 3887 return 0; 4766 } 3888 } 4767 3889 4768 #ifdef CONFIG_LOCKDEP 3890 #ifdef CONFIG_LOCKDEP 4769 static void wq_init_lockdep(struct workqueue_ 3891 static void wq_init_lockdep(struct workqueue_struct *wq) 4770 { 3892 { 4771 char *lock_name; 3893 char *lock_name; 4772 3894 4773 lockdep_register_key(&wq->key); 3895 lockdep_register_key(&wq->key); 4774 lock_name = kasprintf(GFP_KERNEL, "%s 3896 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4775 if (!lock_name) 3897 if (!lock_name) 4776 lock_name = wq->name; 3898 lock_name = wq->name; 4777 3899 4778 wq->lock_name = lock_name; 3900 wq->lock_name = lock_name; 4779 lockdep_init_map(&wq->lockdep_map, lo 3901 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4780 } 3902 } 4781 3903 4782 static void wq_unregister_lockdep(struct work 3904 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4783 { 3905 { 4784 lockdep_unregister_key(&wq->key); 3906 lockdep_unregister_key(&wq->key); 4785 } 3907 } 4786 3908 4787 static void wq_free_lockdep(struct workqueue_ 3909 static void wq_free_lockdep(struct workqueue_struct *wq) 4788 { 3910 { 4789 if (wq->lock_name != wq->name) 3911 if (wq->lock_name != wq->name) 4790 kfree(wq->lock_name); 3912 kfree(wq->lock_name); 4791 } 3913 } 4792 #else 3914 #else 4793 static void wq_init_lockdep(struct workqueue_ 3915 static void wq_init_lockdep(struct workqueue_struct *wq) 4794 { 3916 { 4795 } 3917 } 4796 3918 4797 static void wq_unregister_lockdep(struct work 3919 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4798 { 3920 { 4799 } 3921 } 4800 3922 4801 static void wq_free_lockdep(struct workqueue_ 3923 static void wq_free_lockdep(struct workqueue_struct *wq) 4802 { 3924 { 4803 } 3925 } 4804 #endif 3926 #endif 4805 3927 4806 static void free_node_nr_active(struct wq_nod << 4807 { << 4808 int node; << 4809 << 4810 for_each_node(node) { << 4811 kfree(nna_ar[node]); << 4812 nna_ar[node] = NULL; << 4813 } << 4814 << 4815 kfree(nna_ar[nr_node_ids]); << 4816 nna_ar[nr_node_ids] = NULL; << 4817 } << 4818 << 4819 static void init_node_nr_active(struct wq_nod << 4820 { << 4821 nna->max = WQ_DFL_MIN_ACTIVE; << 4822 atomic_set(&nna->nr, 0); << 4823 raw_spin_lock_init(&nna->lock); << 4824 INIT_LIST_HEAD(&nna->pending_pwqs); << 4825 } << 4826 << 4827 /* << 4828 * Each node's nr_active counter will be acce << 4829 * should be allocated in the node. << 4830 */ << 4831 static int alloc_node_nr_active(struct wq_nod << 4832 { << 4833 struct wq_node_nr_active *nna; << 4834 int node; << 4835 << 4836 for_each_node(node) { << 4837 nna = kzalloc_node(sizeof(*nn << 4838 if (!nna) << 4839 goto err_free; << 4840 init_node_nr_active(nna); << 4841 nna_ar[node] = nna; << 4842 } << 4843 << 4844 /* [nr_node_ids] is used as the fallb << 4845 nna = kzalloc_node(sizeof(*nna), GFP_ << 4846 if (!nna) << 4847 goto err_free; << 4848 init_node_nr_active(nna); << 4849 nna_ar[nr_node_ids] = nna; << 4850 << 4851 return 0; << 4852 << 4853 err_free: << 4854 free_node_nr_active(nna_ar); << 4855 return -ENOMEM; << 4856 } << 4857 << 4858 static void rcu_free_wq(struct rcu_head *rcu) 3928 static void rcu_free_wq(struct rcu_head *rcu) 4859 { 3929 { 4860 struct workqueue_struct *wq = 3930 struct workqueue_struct *wq = 4861 container_of(rcu, struct work 3931 container_of(rcu, struct workqueue_struct, rcu); 4862 3932 4863 if (wq->flags & WQ_UNBOUND) << 4864 free_node_nr_active(wq->node_ << 4865 << 4866 wq_free_lockdep(wq); 3933 wq_free_lockdep(wq); 4867 free_percpu(wq->cpu_pwq); 3934 free_percpu(wq->cpu_pwq); 4868 free_workqueue_attrs(wq->unbound_attr 3935 free_workqueue_attrs(wq->unbound_attrs); 4869 kfree(wq); 3936 kfree(wq); 4870 } 3937 } 4871 3938 4872 static void rcu_free_pool(struct rcu_head *rc 3939 static void rcu_free_pool(struct rcu_head *rcu) 4873 { 3940 { 4874 struct worker_pool *pool = container_ 3941 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4875 3942 4876 ida_destroy(&pool->worker_ida); 3943 ida_destroy(&pool->worker_ida); 4877 free_workqueue_attrs(pool->attrs); 3944 free_workqueue_attrs(pool->attrs); 4878 kfree(pool); 3945 kfree(pool); 4879 } 3946 } 4880 3947 4881 /** 3948 /** 4882 * put_unbound_pool - put a worker_pool 3949 * put_unbound_pool - put a worker_pool 4883 * @pool: worker_pool to put 3950 * @pool: worker_pool to put 4884 * 3951 * 4885 * Put @pool. If its refcnt reaches zero, it 3952 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4886 * safe manner. get_unbound_pool() calls thi 3953 * safe manner. get_unbound_pool() calls this function on its failure path 4887 * and this function should be able to releas 3954 * and this function should be able to release pools which went through, 4888 * successfully or not, init_worker_pool(). 3955 * successfully or not, init_worker_pool(). 4889 * 3956 * 4890 * Should be called with wq_pool_mutex held. 3957 * Should be called with wq_pool_mutex held. 4891 */ 3958 */ 4892 static void put_unbound_pool(struct worker_po 3959 static void put_unbound_pool(struct worker_pool *pool) 4893 { 3960 { >> 3961 DECLARE_COMPLETION_ONSTACK(detach_completion); 4894 struct worker *worker; 3962 struct worker *worker; 4895 LIST_HEAD(cull_list); 3963 LIST_HEAD(cull_list); 4896 3964 4897 lockdep_assert_held(&wq_pool_mutex); 3965 lockdep_assert_held(&wq_pool_mutex); 4898 3966 4899 if (--pool->refcnt) 3967 if (--pool->refcnt) 4900 return; 3968 return; 4901 3969 4902 /* sanity checks */ 3970 /* sanity checks */ 4903 if (WARN_ON(!(pool->cpu < 0)) || 3971 if (WARN_ON(!(pool->cpu < 0)) || 4904 WARN_ON(!list_empty(&pool->workli 3972 WARN_ON(!list_empty(&pool->worklist))) 4905 return; 3973 return; 4906 3974 4907 /* release id and unhash */ 3975 /* release id and unhash */ 4908 if (pool->id >= 0) 3976 if (pool->id >= 0) 4909 idr_remove(&worker_pool_idr, 3977 idr_remove(&worker_pool_idr, pool->id); 4910 hash_del(&pool->hash_node); 3978 hash_del(&pool->hash_node); 4911 3979 4912 /* 3980 /* 4913 * Become the manager and destroy all 3981 * Become the manager and destroy all workers. This prevents 4914 * @pool's workers from blocking on a 3982 * @pool's workers from blocking on attach_mutex. We're the last 4915 * manager and @pool gets freed with 3983 * manager and @pool gets freed with the flag set. 4916 * 3984 * 4917 * Having a concurrent manager is qui 3985 * Having a concurrent manager is quite unlikely to happen as we can 4918 * only get here with 3986 * only get here with 4919 * pwq->refcnt == pool->refcnt == 0 3987 * pwq->refcnt == pool->refcnt == 0 4920 * which implies no work queued to th 3988 * which implies no work queued to the pool, which implies no worker can 4921 * become the manager. However a work 3989 * become the manager. However a worker could have taken the role of 4922 * manager before the refcnts dropped 3990 * manager before the refcnts dropped to 0, since maybe_create_worker() 4923 * drops pool->lock 3991 * drops pool->lock 4924 */ 3992 */ 4925 while (true) { 3993 while (true) { 4926 rcuwait_wait_event(&manager_w 3994 rcuwait_wait_event(&manager_wait, 4927 !(pool->fl 3995 !(pool->flags & POOL_MANAGER_ACTIVE), 4928 TASK_UNINT 3996 TASK_UNINTERRUPTIBLE); 4929 3997 4930 mutex_lock(&wq_pool_attach_mu 3998 mutex_lock(&wq_pool_attach_mutex); 4931 raw_spin_lock_irq(&pool->lock 3999 raw_spin_lock_irq(&pool->lock); 4932 if (!(pool->flags & POOL_MANA 4000 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4933 pool->flags |= POOL_M 4001 pool->flags |= POOL_MANAGER_ACTIVE; 4934 break; 4002 break; 4935 } 4003 } 4936 raw_spin_unlock_irq(&pool->lo 4004 raw_spin_unlock_irq(&pool->lock); 4937 mutex_unlock(&wq_pool_attach_ 4005 mutex_unlock(&wq_pool_attach_mutex); 4938 } 4006 } 4939 4007 4940 while ((worker = first_idle_worker(po 4008 while ((worker = first_idle_worker(pool))) 4941 set_worker_dying(worker, &cul 4009 set_worker_dying(worker, &cull_list); 4942 WARN_ON(pool->nr_workers || pool->nr_ 4010 WARN_ON(pool->nr_workers || pool->nr_idle); 4943 raw_spin_unlock_irq(&pool->lock); 4011 raw_spin_unlock_irq(&pool->lock); 4944 4012 4945 detach_dying_workers(&cull_list); !! 4013 wake_dying_workers(&cull_list); 4946 4014 >> 4015 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) >> 4016 pool->detach_completion = &detach_completion; 4947 mutex_unlock(&wq_pool_attach_mutex); 4017 mutex_unlock(&wq_pool_attach_mutex); 4948 4018 4949 reap_dying_workers(&cull_list); !! 4019 if (pool->detach_completion) >> 4020 wait_for_completion(pool->detach_completion); 4950 4021 4951 /* shut down the timers */ 4022 /* shut down the timers */ 4952 del_timer_sync(&pool->idle_timer); 4023 del_timer_sync(&pool->idle_timer); 4953 cancel_work_sync(&pool->idle_cull_wor 4024 cancel_work_sync(&pool->idle_cull_work); 4954 del_timer_sync(&pool->mayday_timer); 4025 del_timer_sync(&pool->mayday_timer); 4955 4026 4956 /* RCU protected to allow dereference 4027 /* RCU protected to allow dereferences from get_work_pool() */ 4957 call_rcu(&pool->rcu, rcu_free_pool); 4028 call_rcu(&pool->rcu, rcu_free_pool); 4958 } 4029 } 4959 4030 4960 /** 4031 /** 4961 * get_unbound_pool - get a worker_pool with 4032 * get_unbound_pool - get a worker_pool with the specified attributes 4962 * @attrs: the attributes of the worker_pool 4033 * @attrs: the attributes of the worker_pool to get 4963 * 4034 * 4964 * Obtain a worker_pool which has the same at 4035 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4965 * reference count and return it. If there a 4036 * reference count and return it. If there already is a matching 4966 * worker_pool, it will be used; otherwise, t 4037 * worker_pool, it will be used; otherwise, this function attempts to 4967 * create a new one. 4038 * create a new one. 4968 * 4039 * 4969 * Should be called with wq_pool_mutex held. 4040 * Should be called with wq_pool_mutex held. 4970 * 4041 * 4971 * Return: On success, a worker_pool with the 4042 * Return: On success, a worker_pool with the same attributes as @attrs. 4972 * On failure, %NULL. 4043 * On failure, %NULL. 4973 */ 4044 */ 4974 static struct worker_pool *get_unbound_pool(c 4045 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4975 { 4046 { 4976 struct wq_pod_type *pt = &wq_pod_type 4047 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4977 u32 hash = wqattrs_hash(attrs); 4048 u32 hash = wqattrs_hash(attrs); 4978 struct worker_pool *pool; 4049 struct worker_pool *pool; 4979 int pod, node = NUMA_NO_NODE; 4050 int pod, node = NUMA_NO_NODE; 4980 4051 4981 lockdep_assert_held(&wq_pool_mutex); 4052 lockdep_assert_held(&wq_pool_mutex); 4982 4053 4983 /* do we already have a matching pool 4054 /* do we already have a matching pool? */ 4984 hash_for_each_possible(unbound_pool_h 4055 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4985 if (wqattrs_equal(pool->attrs 4056 if (wqattrs_equal(pool->attrs, attrs)) { 4986 pool->refcnt++; 4057 pool->refcnt++; 4987 return pool; 4058 return pool; 4988 } 4059 } 4989 } 4060 } 4990 4061 4991 /* If __pod_cpumask is contained insi 4062 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4992 for (pod = 0; pod < pt->nr_pods; pod+ 4063 for (pod = 0; pod < pt->nr_pods; pod++) { 4993 if (cpumask_subset(attrs->__p 4064 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4994 node = pt->pod_node[p 4065 node = pt->pod_node[pod]; 4995 break; 4066 break; 4996 } 4067 } 4997 } 4068 } 4998 4069 4999 /* nope, create a new one */ 4070 /* nope, create a new one */ 5000 pool = kzalloc_node(sizeof(*pool), GF 4071 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5001 if (!pool || init_worker_pool(pool) < 4072 if (!pool || init_worker_pool(pool) < 0) 5002 goto fail; 4073 goto fail; 5003 4074 5004 pool->node = node; 4075 pool->node = node; 5005 copy_workqueue_attrs(pool->attrs, att 4076 copy_workqueue_attrs(pool->attrs, attrs); 5006 wqattrs_clear_for_pool(pool->attrs); 4077 wqattrs_clear_for_pool(pool->attrs); 5007 4078 5008 if (worker_pool_assign_id(pool) < 0) 4079 if (worker_pool_assign_id(pool) < 0) 5009 goto fail; 4080 goto fail; 5010 4081 5011 /* create and start the initial worke 4082 /* create and start the initial worker */ 5012 if (wq_online && !create_worker(pool) 4083 if (wq_online && !create_worker(pool)) 5013 goto fail; 4084 goto fail; 5014 4085 5015 /* install */ 4086 /* install */ 5016 hash_add(unbound_pool_hash, &pool->ha 4087 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5017 4088 5018 return pool; 4089 return pool; 5019 fail: 4090 fail: 5020 if (pool) 4091 if (pool) 5021 put_unbound_pool(pool); 4092 put_unbound_pool(pool); 5022 return NULL; 4093 return NULL; 5023 } 4094 } 5024 4095 >> 4096 static void rcu_free_pwq(struct rcu_head *rcu) >> 4097 { >> 4098 kmem_cache_free(pwq_cache, >> 4099 container_of(rcu, struct pool_workqueue, rcu)); >> 4100 } >> 4101 5025 /* 4102 /* 5026 * Scheduled on pwq_release_worker by put_pwq 4103 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5027 * refcnt and needs to be destroyed. 4104 * refcnt and needs to be destroyed. 5028 */ 4105 */ 5029 static void pwq_release_workfn(struct kthread 4106 static void pwq_release_workfn(struct kthread_work *work) 5030 { 4107 { 5031 struct pool_workqueue *pwq = containe 4108 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5032 4109 release_work); 5033 struct workqueue_struct *wq = pwq->wq 4110 struct workqueue_struct *wq = pwq->wq; 5034 struct worker_pool *pool = pwq->pool; 4111 struct worker_pool *pool = pwq->pool; 5035 bool is_last = false; 4112 bool is_last = false; 5036 4113 5037 /* 4114 /* 5038 * When @pwq is not linked, it doesn' 4115 * When @pwq is not linked, it doesn't hold any reference to the 5039 * @wq, and @wq is invalid to access. 4116 * @wq, and @wq is invalid to access. 5040 */ 4117 */ 5041 if (!list_empty(&pwq->pwqs_node)) { 4118 if (!list_empty(&pwq->pwqs_node)) { 5042 mutex_lock(&wq->mutex); 4119 mutex_lock(&wq->mutex); 5043 list_del_rcu(&pwq->pwqs_node) 4120 list_del_rcu(&pwq->pwqs_node); 5044 is_last = list_empty(&wq->pwq 4121 is_last = list_empty(&wq->pwqs); 5045 << 5046 /* << 5047 * For ordered workqueue with << 5048 */ << 5049 if (!is_last && (wq->flags & << 5050 unplug_oldest_pwq(wq) << 5051 << 5052 mutex_unlock(&wq->mutex); 4122 mutex_unlock(&wq->mutex); 5053 } 4123 } 5054 4124 5055 if (wq->flags & WQ_UNBOUND) { 4125 if (wq->flags & WQ_UNBOUND) { 5056 mutex_lock(&wq_pool_mutex); 4126 mutex_lock(&wq_pool_mutex); 5057 put_unbound_pool(pool); 4127 put_unbound_pool(pool); 5058 mutex_unlock(&wq_pool_mutex); 4128 mutex_unlock(&wq_pool_mutex); 5059 } 4129 } 5060 4130 5061 if (!list_empty(&pwq->pending_node)) !! 4131 call_rcu(&pwq->rcu, rcu_free_pwq); 5062 struct wq_node_nr_active *nna << 5063 wq_node_nr_active(pwq << 5064 << 5065 raw_spin_lock_irq(&nna->lock) << 5066 list_del_init(&pwq->pending_n << 5067 raw_spin_unlock_irq(&nna->loc << 5068 } << 5069 << 5070 kfree_rcu(pwq, rcu); << 5071 4132 5072 /* 4133 /* 5073 * If we're the last pwq going away, 4134 * If we're the last pwq going away, @wq is already dead and no one 5074 * is gonna access it anymore. Sched 4135 * is gonna access it anymore. Schedule RCU free. 5075 */ 4136 */ 5076 if (is_last) { 4137 if (is_last) { 5077 wq_unregister_lockdep(wq); 4138 wq_unregister_lockdep(wq); 5078 call_rcu(&wq->rcu, rcu_free_w 4139 call_rcu(&wq->rcu, rcu_free_wq); 5079 } 4140 } 5080 } 4141 } 5081 4142 >> 4143 /** >> 4144 * pwq_adjust_max_active - update a pwq's max_active to the current setting >> 4145 * @pwq: target pool_workqueue >> 4146 * >> 4147 * If @pwq isn't freezing, set @pwq->max_active to the associated >> 4148 * workqueue's saved_max_active and activate inactive work items >> 4149 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. >> 4150 */ >> 4151 static void pwq_adjust_max_active(struct pool_workqueue *pwq) >> 4152 { >> 4153 struct workqueue_struct *wq = pwq->wq; >> 4154 bool freezable = wq->flags & WQ_FREEZABLE; >> 4155 unsigned long flags; >> 4156 >> 4157 /* for @wq->saved_max_active */ >> 4158 lockdep_assert_held(&wq->mutex); >> 4159 >> 4160 /* fast exit for non-freezable wqs */ >> 4161 if (!freezable && pwq->max_active == wq->saved_max_active) >> 4162 return; >> 4163 >> 4164 /* this function can be called during early boot w/ irq disabled */ >> 4165 raw_spin_lock_irqsave(&pwq->pool->lock, flags); >> 4166 >> 4167 /* >> 4168 * During [un]freezing, the caller is responsible for ensuring that >> 4169 * this function is called at least once after @workqueue_freezing >> 4170 * is updated and visible. >> 4171 */ >> 4172 if (!freezable || !workqueue_freezing) { >> 4173 pwq->max_active = wq->saved_max_active; >> 4174 >> 4175 while (!list_empty(&pwq->inactive_works) && >> 4176 pwq->nr_active < pwq->max_active) >> 4177 pwq_activate_first_inactive(pwq); >> 4178 >> 4179 kick_pool(pwq->pool); >> 4180 } else { >> 4181 pwq->max_active = 0; >> 4182 } >> 4183 >> 4184 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); >> 4185 } >> 4186 5082 /* initialize newly allocated @pwq which is a 4187 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5083 static void init_pwq(struct pool_workqueue *p 4188 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5084 struct worker_pool *pool 4189 struct worker_pool *pool) 5085 { 4190 { 5086 BUG_ON((unsigned long)pwq & ~WORK_STR !! 4191 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 5087 4192 5088 memset(pwq, 0, sizeof(*pwq)); 4193 memset(pwq, 0, sizeof(*pwq)); 5089 4194 5090 pwq->pool = pool; 4195 pwq->pool = pool; 5091 pwq->wq = wq; 4196 pwq->wq = wq; 5092 pwq->flush_color = -1; 4197 pwq->flush_color = -1; 5093 pwq->refcnt = 1; 4198 pwq->refcnt = 1; 5094 INIT_LIST_HEAD(&pwq->inactive_works); 4199 INIT_LIST_HEAD(&pwq->inactive_works); 5095 INIT_LIST_HEAD(&pwq->pending_node); << 5096 INIT_LIST_HEAD(&pwq->pwqs_node); 4200 INIT_LIST_HEAD(&pwq->pwqs_node); 5097 INIT_LIST_HEAD(&pwq->mayday_node); 4201 INIT_LIST_HEAD(&pwq->mayday_node); 5098 kthread_init_work(&pwq->release_work, 4202 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5099 } 4203 } 5100 4204 5101 /* sync @pwq with the current state of its as 4205 /* sync @pwq with the current state of its associated wq and link it */ 5102 static void link_pwq(struct pool_workqueue *p 4206 static void link_pwq(struct pool_workqueue *pwq) 5103 { 4207 { 5104 struct workqueue_struct *wq = pwq->wq 4208 struct workqueue_struct *wq = pwq->wq; 5105 4209 5106 lockdep_assert_held(&wq->mutex); 4210 lockdep_assert_held(&wq->mutex); 5107 4211 5108 /* may be called multiple times, igno 4212 /* may be called multiple times, ignore if already linked */ 5109 if (!list_empty(&pwq->pwqs_node)) 4213 if (!list_empty(&pwq->pwqs_node)) 5110 return; 4214 return; 5111 4215 5112 /* set the matching work_color */ 4216 /* set the matching work_color */ 5113 pwq->work_color = wq->work_color; 4217 pwq->work_color = wq->work_color; 5114 4218 >> 4219 /* sync max_active to the current setting */ >> 4220 pwq_adjust_max_active(pwq); >> 4221 5115 /* link in @pwq */ 4222 /* link in @pwq */ 5116 list_add_tail_rcu(&pwq->pwqs_node, &w !! 4223 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 5117 } 4224 } 5118 4225 5119 /* obtain a pool matching @attr and create a 4226 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5120 static struct pool_workqueue *alloc_unbound_p 4227 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5121 const 4228 const struct workqueue_attrs *attrs) 5122 { 4229 { 5123 struct worker_pool *pool; 4230 struct worker_pool *pool; 5124 struct pool_workqueue *pwq; 4231 struct pool_workqueue *pwq; 5125 4232 5126 lockdep_assert_held(&wq_pool_mutex); 4233 lockdep_assert_held(&wq_pool_mutex); 5127 4234 5128 pool = get_unbound_pool(attrs); 4235 pool = get_unbound_pool(attrs); 5129 if (!pool) 4236 if (!pool) 5130 return NULL; 4237 return NULL; 5131 4238 5132 pwq = kmem_cache_alloc_node(pwq_cache 4239 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5133 if (!pwq) { 4240 if (!pwq) { 5134 put_unbound_pool(pool); 4241 put_unbound_pool(pool); 5135 return NULL; 4242 return NULL; 5136 } 4243 } 5137 4244 5138 init_pwq(pwq, wq, pool); 4245 init_pwq(pwq, wq, pool); 5139 return pwq; 4246 return pwq; 5140 } 4247 } 5141 4248 5142 static void apply_wqattrs_lock(void) << 5143 { << 5144 mutex_lock(&wq_pool_mutex); << 5145 } << 5146 << 5147 static void apply_wqattrs_unlock(void) << 5148 { << 5149 mutex_unlock(&wq_pool_mutex); << 5150 } << 5151 << 5152 /** 4249 /** 5153 * wq_calc_pod_cpumask - calculate a wq_attrs 4250 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5154 * @attrs: the wq_attrs of the default pwq of 4251 * @attrs: the wq_attrs of the default pwq of the target workqueue 5155 * @cpu: the target CPU 4252 * @cpu: the target CPU >> 4253 * @cpu_going_down: if >= 0, the CPU to consider as offline 5156 * 4254 * 5157 * Calculate the cpumask a workqueue with @at !! 4255 * Calculate the cpumask a workqueue with @attrs should use on @pod. If >> 4256 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 5158 * The result is stored in @attrs->__pod_cpum 4257 * The result is stored in @attrs->__pod_cpumask. 5159 * 4258 * 5160 * If pod affinity is not enabled, @attrs->cp 4259 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5161 * and @pod has online CPUs requested by @att 4260 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5162 * intersection of the possible CPUs of @pod 4261 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5163 * 4262 * 5164 * The caller is responsible for ensuring tha 4263 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5165 */ 4264 */ 5166 static void wq_calc_pod_cpumask(struct workqu !! 4265 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, >> 4266 int cpu_going_down) 5167 { 4267 { 5168 const struct wq_pod_type *pt = wqattr 4268 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5169 int pod = pt->cpu_pod[cpu]; 4269 int pod = pt->cpu_pod[cpu]; 5170 4270 5171 /* calculate possible CPUs in @pod th << 5172 cpumask_and(attrs->__pod_cpumask, pt- << 5173 /* does @pod have any online CPUs @at 4271 /* does @pod have any online CPUs @attrs wants? */ 5174 if (!cpumask_intersects(attrs->__pod_ !! 4272 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); >> 4273 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); >> 4274 if (cpu_going_down >= 0) >> 4275 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); >> 4276 >> 4277 if (cpumask_empty(attrs->__pod_cpumask)) { 5175 cpumask_copy(attrs->__pod_cpu 4278 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5176 return; 4279 return; 5177 } 4280 } >> 4281 >> 4282 /* yeap, return possible CPUs in @pod that @attrs wants */ >> 4283 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); >> 4284 >> 4285 if (cpumask_empty(attrs->__pod_cpumask)) >> 4286 pr_warn_once("WARNING: workqueue cpumask: online intersect > " >> 4287 "possible intersect\n"); 5178 } 4288 } 5179 4289 5180 /* install @pwq into @wq and return the old p !! 4290 /* install @pwq into @wq's cpu_pwq and return the old pwq */ 5181 static struct pool_workqueue *install_unbound 4291 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5182 int c 4292 int cpu, struct pool_workqueue *pwq) 5183 { 4293 { 5184 struct pool_workqueue __rcu **slot = << 5185 struct pool_workqueue *old_pwq; 4294 struct pool_workqueue *old_pwq; 5186 4295 5187 lockdep_assert_held(&wq_pool_mutex); 4296 lockdep_assert_held(&wq_pool_mutex); 5188 lockdep_assert_held(&wq->mutex); 4297 lockdep_assert_held(&wq->mutex); 5189 4298 5190 /* link_pwq() can handle duplicate ca 4299 /* link_pwq() can handle duplicate calls */ 5191 link_pwq(pwq); 4300 link_pwq(pwq); 5192 4301 5193 old_pwq = rcu_access_pointer(*slot); !! 4302 old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu)); 5194 rcu_assign_pointer(*slot, pwq); !! 4303 rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq); 5195 return old_pwq; 4304 return old_pwq; 5196 } 4305 } 5197 4306 5198 /* context to store the prepared attrs & pwqs 4307 /* context to store the prepared attrs & pwqs before applying */ 5199 struct apply_wqattrs_ctx { 4308 struct apply_wqattrs_ctx { 5200 struct workqueue_struct *wq; 4309 struct workqueue_struct *wq; /* target workqueue */ 5201 struct workqueue_attrs *attrs; 4310 struct workqueue_attrs *attrs; /* attrs to apply */ 5202 struct list_head list; 4311 struct list_head list; /* queued for batching commit */ 5203 struct pool_workqueue *dfl_pwq; 4312 struct pool_workqueue *dfl_pwq; 5204 struct pool_workqueue *pwq_tbl[]; 4313 struct pool_workqueue *pwq_tbl[]; 5205 }; 4314 }; 5206 4315 5207 /* free the resources after success or abort 4316 /* free the resources after success or abort */ 5208 static void apply_wqattrs_cleanup(struct appl 4317 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5209 { 4318 { 5210 if (ctx) { 4319 if (ctx) { 5211 int cpu; 4320 int cpu; 5212 4321 5213 for_each_possible_cpu(cpu) 4322 for_each_possible_cpu(cpu) 5214 put_pwq_unlocked(ctx- 4323 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5215 put_pwq_unlocked(ctx->dfl_pwq 4324 put_pwq_unlocked(ctx->dfl_pwq); 5216 4325 5217 free_workqueue_attrs(ctx->att 4326 free_workqueue_attrs(ctx->attrs); 5218 4327 5219 kfree(ctx); 4328 kfree(ctx); 5220 } 4329 } 5221 } 4330 } 5222 4331 5223 /* allocate the attrs and pwqs for later inst 4332 /* allocate the attrs and pwqs for later installation */ 5224 static struct apply_wqattrs_ctx * 4333 static struct apply_wqattrs_ctx * 5225 apply_wqattrs_prepare(struct workqueue_struct 4334 apply_wqattrs_prepare(struct workqueue_struct *wq, 5226 const struct workqueue_ 4335 const struct workqueue_attrs *attrs, 5227 const cpumask_var_t unb 4336 const cpumask_var_t unbound_cpumask) 5228 { 4337 { 5229 struct apply_wqattrs_ctx *ctx; 4338 struct apply_wqattrs_ctx *ctx; 5230 struct workqueue_attrs *new_attrs; 4339 struct workqueue_attrs *new_attrs; 5231 int cpu; 4340 int cpu; 5232 4341 5233 lockdep_assert_held(&wq_pool_mutex); 4342 lockdep_assert_held(&wq_pool_mutex); 5234 4343 5235 if (WARN_ON(attrs->affn_scope < 0 || 4344 if (WARN_ON(attrs->affn_scope < 0 || 5236 attrs->affn_scope >= WQ_A 4345 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5237 return ERR_PTR(-EINVAL); 4346 return ERR_PTR(-EINVAL); 5238 4347 5239 ctx = kzalloc(struct_size(ctx, pwq_tb 4348 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5240 4349 5241 new_attrs = alloc_workqueue_attrs(); 4350 new_attrs = alloc_workqueue_attrs(); 5242 if (!ctx || !new_attrs) 4351 if (!ctx || !new_attrs) 5243 goto out_free; 4352 goto out_free; 5244 4353 5245 /* 4354 /* 5246 * If something goes wrong during CPU 4355 * If something goes wrong during CPU up/down, we'll fall back to 5247 * the default pwq covering whole @at 4356 * the default pwq covering whole @attrs->cpumask. Always create 5248 * it even if we don't use it immedia 4357 * it even if we don't use it immediately. 5249 */ 4358 */ 5250 copy_workqueue_attrs(new_attrs, attrs 4359 copy_workqueue_attrs(new_attrs, attrs); 5251 wqattrs_actualize_cpumask(new_attrs, 4360 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5252 cpumask_copy(new_attrs->__pod_cpumask 4361 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5253 ctx->dfl_pwq = alloc_unbound_pwq(wq, 4362 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5254 if (!ctx->dfl_pwq) 4363 if (!ctx->dfl_pwq) 5255 goto out_free; 4364 goto out_free; 5256 4365 5257 for_each_possible_cpu(cpu) { 4366 for_each_possible_cpu(cpu) { 5258 if (new_attrs->ordered) { 4367 if (new_attrs->ordered) { 5259 ctx->dfl_pwq->refcnt+ 4368 ctx->dfl_pwq->refcnt++; 5260 ctx->pwq_tbl[cpu] = c 4369 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5261 } else { 4370 } else { 5262 wq_calc_pod_cpumask(n !! 4371 wq_calc_pod_cpumask(new_attrs, cpu, -1); 5263 ctx->pwq_tbl[cpu] = a 4372 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5264 if (!ctx->pwq_tbl[cpu 4373 if (!ctx->pwq_tbl[cpu]) 5265 goto out_free 4374 goto out_free; 5266 } 4375 } 5267 } 4376 } 5268 4377 5269 /* save the user configured attrs and 4378 /* save the user configured attrs and sanitize it. */ 5270 copy_workqueue_attrs(new_attrs, attrs 4379 copy_workqueue_attrs(new_attrs, attrs); 5271 cpumask_and(new_attrs->cpumask, new_a 4380 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5272 cpumask_copy(new_attrs->__pod_cpumask 4381 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5273 ctx->attrs = new_attrs; 4382 ctx->attrs = new_attrs; 5274 4383 5275 /* << 5276 * For initialized ordered workqueues << 5277 * (dfl_pwq). Set the plugged flag of << 5278 * of newly queued work items until e << 5279 * the old pwq's have completed. << 5280 */ << 5281 if ((wq->flags & __WQ_ORDERED) && !li << 5282 ctx->dfl_pwq->plugged = true; << 5283 << 5284 ctx->wq = wq; 4384 ctx->wq = wq; 5285 return ctx; 4385 return ctx; 5286 4386 5287 out_free: 4387 out_free: 5288 free_workqueue_attrs(new_attrs); 4388 free_workqueue_attrs(new_attrs); 5289 apply_wqattrs_cleanup(ctx); 4389 apply_wqattrs_cleanup(ctx); 5290 return ERR_PTR(-ENOMEM); 4390 return ERR_PTR(-ENOMEM); 5291 } 4391 } 5292 4392 5293 /* set attrs and install prepared pwqs, @ctx 4393 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5294 static void apply_wqattrs_commit(struct apply 4394 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5295 { 4395 { 5296 int cpu; 4396 int cpu; 5297 4397 5298 /* all pwqs have been created success 4398 /* all pwqs have been created successfully, let's install'em */ 5299 mutex_lock(&ctx->wq->mutex); 4399 mutex_lock(&ctx->wq->mutex); 5300 4400 5301 copy_workqueue_attrs(ctx->wq->unbound 4401 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5302 4402 5303 /* save the previous pwqs and install !! 4403 /* save the previous pwq and install the new one */ 5304 for_each_possible_cpu(cpu) 4404 for_each_possible_cpu(cpu) 5305 ctx->pwq_tbl[cpu] = install_u 4405 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5306 4406 ctx->pwq_tbl[cpu]); 5307 ctx->dfl_pwq = install_unbound_pwq(ct << 5308 4407 5309 /* update node_nr_active->max */ !! 4408 /* @dfl_pwq might not have been used, ensure it's linked */ 5310 wq_update_node_max_active(ctx->wq, -1 !! 4409 link_pwq(ctx->dfl_pwq); 5311 !! 4410 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 5312 /* rescuer needs to respect wq cpumas << 5313 if (ctx->wq->rescuer) << 5314 set_cpus_allowed_ptr(ctx->wq- << 5315 unbound_ << 5316 4411 5317 mutex_unlock(&ctx->wq->mutex); 4412 mutex_unlock(&ctx->wq->mutex); 5318 } 4413 } 5319 4414 >> 4415 static void apply_wqattrs_lock(void) >> 4416 { >> 4417 /* CPUs should stay stable across pwq creations and installations */ >> 4418 cpus_read_lock(); >> 4419 mutex_lock(&wq_pool_mutex); >> 4420 } >> 4421 >> 4422 static void apply_wqattrs_unlock(void) >> 4423 { >> 4424 mutex_unlock(&wq_pool_mutex); >> 4425 cpus_read_unlock(); >> 4426 } >> 4427 5320 static int apply_workqueue_attrs_locked(struc 4428 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5321 const 4429 const struct workqueue_attrs *attrs) 5322 { 4430 { 5323 struct apply_wqattrs_ctx *ctx; 4431 struct apply_wqattrs_ctx *ctx; 5324 4432 5325 /* only unbound workqueues can change 4433 /* only unbound workqueues can change attributes */ 5326 if (WARN_ON(!(wq->flags & WQ_UNBOUND) 4434 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5327 return -EINVAL; 4435 return -EINVAL; 5328 4436 >> 4437 /* creating multiple pwqs breaks ordering guarantee */ >> 4438 if (!list_empty(&wq->pwqs)) { >> 4439 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) >> 4440 return -EINVAL; >> 4441 >> 4442 wq->flags &= ~__WQ_ORDERED; >> 4443 } >> 4444 5329 ctx = apply_wqattrs_prepare(wq, attrs 4445 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5330 if (IS_ERR(ctx)) 4446 if (IS_ERR(ctx)) 5331 return PTR_ERR(ctx); 4447 return PTR_ERR(ctx); 5332 4448 5333 /* the ctx has been prepared successf 4449 /* the ctx has been prepared successfully, let's commit it */ 5334 apply_wqattrs_commit(ctx); 4450 apply_wqattrs_commit(ctx); 5335 apply_wqattrs_cleanup(ctx); 4451 apply_wqattrs_cleanup(ctx); 5336 4452 5337 return 0; 4453 return 0; 5338 } 4454 } 5339 4455 5340 /** 4456 /** 5341 * apply_workqueue_attrs - apply new workqueu 4457 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5342 * @wq: the target workqueue 4458 * @wq: the target workqueue 5343 * @attrs: the workqueue_attrs to apply, allo 4459 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5344 * 4460 * 5345 * Apply @attrs to an unbound workqueue @wq. 4461 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5346 * a separate pwq to each CPU pod with possib 4462 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5347 * work items are affine to the pod it was is 4463 * work items are affine to the pod it was issued on. Older pwqs are released as 5348 * in-flight work items finish. Note that a w 4464 * in-flight work items finish. Note that a work item which repeatedly requeues 5349 * itself back-to-back will stay on its curre 4465 * itself back-to-back will stay on its current pwq. 5350 * 4466 * 5351 * Performs GFP_KERNEL allocations. 4467 * Performs GFP_KERNEL allocations. 5352 * 4468 * >> 4469 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). >> 4470 * 5353 * Return: 0 on success and -errno on failure 4471 * Return: 0 on success and -errno on failure. 5354 */ 4472 */ 5355 int apply_workqueue_attrs(struct workqueue_st 4473 int apply_workqueue_attrs(struct workqueue_struct *wq, 5356 const struct workqu 4474 const struct workqueue_attrs *attrs) 5357 { 4475 { 5358 int ret; 4476 int ret; 5359 4477 >> 4478 lockdep_assert_cpus_held(); >> 4479 5360 mutex_lock(&wq_pool_mutex); 4480 mutex_lock(&wq_pool_mutex); 5361 ret = apply_workqueue_attrs_locked(wq 4481 ret = apply_workqueue_attrs_locked(wq, attrs); 5362 mutex_unlock(&wq_pool_mutex); 4482 mutex_unlock(&wq_pool_mutex); 5363 4483 5364 return ret; 4484 return ret; 5365 } 4485 } 5366 4486 5367 /** 4487 /** 5368 * unbound_wq_update_pwq - update a pwq slot !! 4488 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 5369 * @wq: the target workqueue 4489 * @wq: the target workqueue 5370 * @cpu: the CPU to update the pwq slot for !! 4490 * @cpu: the CPU to update pool association for >> 4491 * @hotplug_cpu: the CPU coming up or going down >> 4492 * @online: whether @cpu is coming up or going down 5371 * 4493 * 5372 * This function is to be called from %CPU_DO 4494 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5373 * %CPU_DOWN_FAILED. @cpu is in the same pod !! 4495 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of >> 4496 * @wq accordingly. 5374 * 4497 * 5375 * 4498 * 5376 * If pod affinity can't be adjusted due to m 4499 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5377 * back to @wq->dfl_pwq which may not be opti 4500 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5378 * 4501 * 5379 * Note that when the last allowed CPU of a p 4502 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5380 * with a cpumask spanning multiple pods, the 4503 * with a cpumask spanning multiple pods, the workers which were already 5381 * executing the work items for the workqueue 4504 * executing the work items for the workqueue will lose their CPU affinity and 5382 * may execute on any CPU. This is similar to 4505 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5383 * CPU_DOWN. If a workqueue user wants strict 4506 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5384 * responsibility to flush the work item from 4507 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5385 */ 4508 */ 5386 static void unbound_wq_update_pwq(struct work !! 4509 static void wq_update_pod(struct workqueue_struct *wq, int cpu, >> 4510 int hotplug_cpu, bool online) 5387 { 4511 { >> 4512 int off_cpu = online ? -1 : hotplug_cpu; 5388 struct pool_workqueue *old_pwq = NULL 4513 struct pool_workqueue *old_pwq = NULL, *pwq; 5389 struct workqueue_attrs *target_attrs; 4514 struct workqueue_attrs *target_attrs; 5390 4515 5391 lockdep_assert_held(&wq_pool_mutex); 4516 lockdep_assert_held(&wq_pool_mutex); 5392 4517 5393 if (!(wq->flags & WQ_UNBOUND) || wq-> 4518 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5394 return; 4519 return; 5395 4520 5396 /* 4521 /* 5397 * We don't wanna alloc/free wq_attrs 4522 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5398 * Let's use a preallocated one. The 4523 * Let's use a preallocated one. The following buf is protected by 5399 * CPU hotplug exclusion. 4524 * CPU hotplug exclusion. 5400 */ 4525 */ 5401 target_attrs = unbound_wq_update_pwq_ !! 4526 target_attrs = wq_update_pod_attrs_buf; 5402 4527 5403 copy_workqueue_attrs(target_attrs, wq 4528 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5404 wqattrs_actualize_cpumask(target_attr 4529 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5405 4530 5406 /* nothing to do if the target cpumas 4531 /* nothing to do if the target cpumask matches the current pwq */ 5407 wq_calc_pod_cpumask(target_attrs, cpu !! 4532 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 5408 if (wqattrs_equal(target_attrs, unbou !! 4533 pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu), >> 4534 lockdep_is_held(&wq_pool_mutex)); >> 4535 if (wqattrs_equal(target_attrs, pwq->pool->attrs)) 5409 return; 4536 return; 5410 4537 5411 /* create a new pwq */ 4538 /* create a new pwq */ 5412 pwq = alloc_unbound_pwq(wq, target_at 4539 pwq = alloc_unbound_pwq(wq, target_attrs); 5413 if (!pwq) { 4540 if (!pwq) { 5414 pr_warn("workqueue: allocatio 4541 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5415 wq->name); 4542 wq->name); 5416 goto use_dfl_pwq; 4543 goto use_dfl_pwq; 5417 } 4544 } 5418 4545 5419 /* Install the new pwq. */ 4546 /* Install the new pwq. */ 5420 mutex_lock(&wq->mutex); 4547 mutex_lock(&wq->mutex); 5421 old_pwq = install_unbound_pwq(wq, cpu 4548 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5422 goto out_unlock; 4549 goto out_unlock; 5423 4550 5424 use_dfl_pwq: 4551 use_dfl_pwq: 5425 mutex_lock(&wq->mutex); 4552 mutex_lock(&wq->mutex); 5426 pwq = unbound_pwq(wq, -1); !! 4553 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 5427 raw_spin_lock_irq(&pwq->pool->lock); !! 4554 get_pwq(wq->dfl_pwq); 5428 get_pwq(pwq); !! 4555 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 5429 raw_spin_unlock_irq(&pwq->pool->lock) !! 4556 old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq); 5430 old_pwq = install_unbound_pwq(wq, cpu << 5431 out_unlock: 4557 out_unlock: 5432 mutex_unlock(&wq->mutex); 4558 mutex_unlock(&wq->mutex); 5433 put_pwq_unlocked(old_pwq); 4559 put_pwq_unlocked(old_pwq); 5434 } 4560 } 5435 4561 5436 static int alloc_and_link_pwqs(struct workque 4562 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5437 { 4563 { 5438 bool highpri = wq->flags & WQ_HIGHPRI 4564 bool highpri = wq->flags & WQ_HIGHPRI; 5439 int cpu, ret; 4565 int cpu, ret; 5440 4566 5441 lockdep_assert_held(&wq_pool_mutex); << 5442 << 5443 wq->cpu_pwq = alloc_percpu(struct poo 4567 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5444 if (!wq->cpu_pwq) 4568 if (!wq->cpu_pwq) 5445 goto enomem; 4569 goto enomem; 5446 4570 5447 if (!(wq->flags & WQ_UNBOUND)) { 4571 if (!(wq->flags & WQ_UNBOUND)) { 5448 struct worker_pool __percpu * << 5449 << 5450 if (wq->flags & WQ_BH) << 5451 pools = bh_worker_poo << 5452 else << 5453 pools = cpu_worker_po << 5454 << 5455 for_each_possible_cpu(cpu) { 4572 for_each_possible_cpu(cpu) { 5456 struct pool_workqueue !! 4573 struct pool_workqueue **pwq_p = 5457 struct worker_pool *p !! 4574 per_cpu_ptr(wq->cpu_pwq, cpu); 5458 !! 4575 struct worker_pool *pool = 5459 pool = &(per_cpu_ptr( !! 4576 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]); 5460 pwq_p = per_cpu_ptr(w << 5461 4577 5462 *pwq_p = kmem_cache_a 4578 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5463 4579 pool->node); 5464 if (!*pwq_p) 4580 if (!*pwq_p) 5465 goto enomem; 4581 goto enomem; 5466 4582 5467 init_pwq(*pwq_p, wq, 4583 init_pwq(*pwq_p, wq, pool); 5468 4584 5469 mutex_lock(&wq->mutex 4585 mutex_lock(&wq->mutex); 5470 link_pwq(*pwq_p); 4586 link_pwq(*pwq_p); 5471 mutex_unlock(&wq->mut 4587 mutex_unlock(&wq->mutex); 5472 } 4588 } 5473 return 0; 4589 return 0; 5474 } 4590 } 5475 4591 >> 4592 cpus_read_lock(); 5476 if (wq->flags & __WQ_ORDERED) { 4593 if (wq->flags & __WQ_ORDERED) { 5477 struct pool_workqueue *dfl_pw !! 4594 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 5478 << 5479 ret = apply_workqueue_attrs_l << 5480 /* there should only be singl 4595 /* there should only be single pwq for ordering guarantee */ 5481 dfl_pwq = rcu_access_pointer( !! 4596 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 5482 WARN(!ret && (wq->pwqs.next ! !! 4597 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 5483 wq->pwqs.prev ! << 5484 "ordering guarantee brok 4598 "ordering guarantee broken for workqueue %s\n", wq->name); 5485 } else { 4599 } else { 5486 ret = apply_workqueue_attrs_l !! 4600 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 5487 } 4601 } >> 4602 cpus_read_unlock(); >> 4603 >> 4604 /* for unbound pwq, flush the pwq_release_worker ensures that the >> 4605 * pwq_release_workfn() completes before calling kfree(wq). >> 4606 */ >> 4607 if (ret) >> 4608 kthread_flush_worker(pwq_release_worker); 5488 4609 5489 return ret; 4610 return ret; 5490 4611 5491 enomem: 4612 enomem: 5492 if (wq->cpu_pwq) { 4613 if (wq->cpu_pwq) { 5493 for_each_possible_cpu(cpu) { 4614 for_each_possible_cpu(cpu) { 5494 struct pool_workqueue 4615 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5495 4616 5496 if (pwq) 4617 if (pwq) 5497 kmem_cache_fr 4618 kmem_cache_free(pwq_cache, pwq); 5498 } 4619 } 5499 free_percpu(wq->cpu_pwq); 4620 free_percpu(wq->cpu_pwq); 5500 wq->cpu_pwq = NULL; 4621 wq->cpu_pwq = NULL; 5501 } 4622 } 5502 return -ENOMEM; 4623 return -ENOMEM; 5503 } 4624 } 5504 4625 5505 static int wq_clamp_max_active(int max_active 4626 static int wq_clamp_max_active(int max_active, unsigned int flags, 5506 const char *na 4627 const char *name) 5507 { 4628 { 5508 if (max_active < 1 || max_active > WQ 4629 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5509 pr_warn("workqueue: max_activ 4630 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5510 max_active, name, 1, 4631 max_active, name, 1, WQ_MAX_ACTIVE); 5511 4632 5512 return clamp_val(max_active, 1, WQ_MA 4633 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5513 } 4634 } 5514 4635 5515 /* 4636 /* 5516 * Workqueues which may be used during memory 4637 * Workqueues which may be used during memory reclaim should have a rescuer 5517 * to guarantee forward progress. 4638 * to guarantee forward progress. 5518 */ 4639 */ 5519 static int init_rescuer(struct workqueue_stru 4640 static int init_rescuer(struct workqueue_struct *wq) 5520 { 4641 { 5521 struct worker *rescuer; 4642 struct worker *rescuer; 5522 char id_buf[WORKER_ID_LEN]; << 5523 int ret; 4643 int ret; 5524 4644 5525 lockdep_assert_held(&wq_pool_mutex); << 5526 << 5527 if (!(wq->flags & WQ_MEM_RECLAIM)) 4645 if (!(wq->flags & WQ_MEM_RECLAIM)) 5528 return 0; 4646 return 0; 5529 4647 5530 rescuer = alloc_worker(NUMA_NO_NODE); 4648 rescuer = alloc_worker(NUMA_NO_NODE); 5531 if (!rescuer) { 4649 if (!rescuer) { 5532 pr_err("workqueue: Failed to 4650 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5533 wq->name); 4651 wq->name); 5534 return -ENOMEM; 4652 return -ENOMEM; 5535 } 4653 } 5536 4654 5537 rescuer->rescue_wq = wq; 4655 rescuer->rescue_wq = wq; 5538 format_worker_id(id_buf, sizeof(id_bu !! 4656 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5539 << 5540 rescuer->task = kthread_create(rescue << 5541 if (IS_ERR(rescuer->task)) { 4657 if (IS_ERR(rescuer->task)) { 5542 ret = PTR_ERR(rescuer->task); 4658 ret = PTR_ERR(rescuer->task); 5543 pr_err("workqueue: Failed to 4659 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5544 wq->name, ERR_PTR(ret) 4660 wq->name, ERR_PTR(ret)); 5545 kfree(rescuer); 4661 kfree(rescuer); 5546 return ret; 4662 return ret; 5547 } 4663 } 5548 4664 5549 wq->rescuer = rescuer; 4665 wq->rescuer = rescuer; 5550 if (wq->flags & WQ_UNBOUND) !! 4666 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5551 kthread_bind_mask(rescuer->ta << 5552 else << 5553 kthread_bind_mask(rescuer->ta << 5554 wake_up_process(rescuer->task); 4667 wake_up_process(rescuer->task); 5555 4668 5556 return 0; 4669 return 0; 5557 } 4670 } 5558 4671 5559 /** << 5560 * wq_adjust_max_active - update a wq's max_a << 5561 * @wq: target workqueue << 5562 * << 5563 * If @wq isn't freezing, set @wq->max_active << 5564 * activate inactive work items accordingly. << 5565 * @wq->max_active to zero. << 5566 */ << 5567 static void wq_adjust_max_active(struct workq << 5568 { << 5569 bool activated; << 5570 int new_max, new_min; << 5571 << 5572 lockdep_assert_held(&wq->mutex); << 5573 << 5574 if ((wq->flags & WQ_FREEZABLE) && wor << 5575 new_max = 0; << 5576 new_min = 0; << 5577 } else { << 5578 new_max = wq->saved_max_activ << 5579 new_min = wq->saved_min_activ << 5580 } << 5581 << 5582 if (wq->max_active == new_max && wq-> << 5583 return; << 5584 << 5585 /* << 5586 * Update @wq->max/min_active and the << 5587 * active work items are allowed. Thi << 5588 * because new work items are always << 5589 * work items if there are any. << 5590 */ << 5591 WRITE_ONCE(wq->max_active, new_max); << 5592 WRITE_ONCE(wq->min_active, new_min); << 5593 << 5594 if (wq->flags & WQ_UNBOUND) << 5595 wq_update_node_max_active(wq, << 5596 << 5597 if (new_max == 0) << 5598 return; << 5599 << 5600 /* << 5601 * Round-robin through pwq's activati << 5602 * until max_active is filled. << 5603 */ << 5604 do { << 5605 struct pool_workqueue *pwq; << 5606 << 5607 activated = false; << 5608 for_each_pwq(pwq, wq) { << 5609 unsigned long irq_fla << 5610 << 5611 /* can be called duri << 5612 raw_spin_lock_irqsave << 5613 if (pwq_activate_firs << 5614 activated = t << 5615 kick_pool(pwq << 5616 } << 5617 raw_spin_unlock_irqre << 5618 } << 5619 } while (activated); << 5620 } << 5621 << 5622 __printf(1, 4) 4672 __printf(1, 4) 5623 struct workqueue_struct *alloc_workqueue(cons 4673 struct workqueue_struct *alloc_workqueue(const char *fmt, 5624 unsi 4674 unsigned int flags, 5625 int 4675 int max_active, ...) 5626 { 4676 { 5627 va_list args; 4677 va_list args; 5628 struct workqueue_struct *wq; 4678 struct workqueue_struct *wq; 5629 size_t wq_size; !! 4679 struct pool_workqueue *pwq; 5630 int name_len; << 5631 4680 5632 if (flags & WQ_BH) { !! 4681 /* 5633 if (WARN_ON_ONCE(flags & ~__W !! 4682 * Unbound && max_active == 1 used to imply ordered, which is no longer 5634 return NULL; !! 4683 * the case on many machines due to per-pod pools. While 5635 if (WARN_ON_ONCE(max_active)) !! 4684 * alloc_ordered_workqueue() is the right way to create an ordered 5636 return NULL; !! 4685 * workqueue, keep the previous behavior to avoid subtle breakages. 5637 } !! 4686 */ >> 4687 if ((flags & WQ_UNBOUND) && max_active == 1) >> 4688 flags |= __WQ_ORDERED; 5638 4689 5639 /* see the comment above the definiti 4690 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5640 if ((flags & WQ_POWER_EFFICIENT) && w 4691 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5641 flags |= WQ_UNBOUND; 4692 flags |= WQ_UNBOUND; 5642 4693 5643 /* allocate wq and format name */ 4694 /* allocate wq and format name */ 5644 if (flags & WQ_UNBOUND) !! 4695 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 5645 wq_size = struct_size(wq, nod << 5646 else << 5647 wq_size = sizeof(*wq); << 5648 << 5649 wq = kzalloc(wq_size, GFP_KERNEL); << 5650 if (!wq) 4696 if (!wq) 5651 return NULL; 4697 return NULL; 5652 4698 5653 if (flags & WQ_UNBOUND) { 4699 if (flags & WQ_UNBOUND) { 5654 wq->unbound_attrs = alloc_wor 4700 wq->unbound_attrs = alloc_workqueue_attrs(); 5655 if (!wq->unbound_attrs) 4701 if (!wq->unbound_attrs) 5656 goto err_free_wq; 4702 goto err_free_wq; 5657 } 4703 } 5658 4704 5659 va_start(args, max_active); 4705 va_start(args, max_active); 5660 name_len = vsnprintf(wq->name, sizeof !! 4706 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5661 va_end(args); 4707 va_end(args); 5662 4708 5663 if (name_len >= WQ_NAME_LEN) !! 4709 max_active = max_active ?: WQ_DFL_ACTIVE; 5664 pr_warn_once("workqueue: name !! 4710 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5665 wq->name); << 5666 << 5667 if (flags & WQ_BH) { << 5668 /* << 5669 * BH workqueues always share << 5670 * and don't impose any max_a << 5671 */ << 5672 max_active = INT_MAX; << 5673 } else { << 5674 max_active = max_active ?: WQ << 5675 max_active = wq_clamp_max_act << 5676 } << 5677 4711 5678 /* init wq */ 4712 /* init wq */ 5679 wq->flags = flags; 4713 wq->flags = flags; 5680 wq->max_active = max_active; !! 4714 wq->saved_max_active = max_active; 5681 wq->min_active = min(max_active, WQ_D << 5682 wq->saved_max_active = wq->max_active << 5683 wq->saved_min_active = wq->min_active << 5684 mutex_init(&wq->mutex); 4715 mutex_init(&wq->mutex); 5685 atomic_set(&wq->nr_pwqs_to_flush, 0); 4716 atomic_set(&wq->nr_pwqs_to_flush, 0); 5686 INIT_LIST_HEAD(&wq->pwqs); 4717 INIT_LIST_HEAD(&wq->pwqs); 5687 INIT_LIST_HEAD(&wq->flusher_queue); 4718 INIT_LIST_HEAD(&wq->flusher_queue); 5688 INIT_LIST_HEAD(&wq->flusher_overflow) 4719 INIT_LIST_HEAD(&wq->flusher_overflow); 5689 INIT_LIST_HEAD(&wq->maydays); 4720 INIT_LIST_HEAD(&wq->maydays); 5690 4721 5691 wq_init_lockdep(wq); 4722 wq_init_lockdep(wq); 5692 INIT_LIST_HEAD(&wq->list); 4723 INIT_LIST_HEAD(&wq->list); 5693 4724 5694 if (flags & WQ_UNBOUND) { !! 4725 if (alloc_and_link_pwqs(wq) < 0) 5695 if (alloc_node_nr_active(wq-> !! 4726 goto err_unreg_lockdep; 5696 goto err_unreg_lockde !! 4727 5697 } !! 4728 if (wq_online && init_rescuer(wq) < 0) >> 4729 goto err_destroy; >> 4730 >> 4731 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) >> 4732 goto err_destroy; 5698 4733 5699 /* 4734 /* 5700 * wq_pool_mutex protects the workque !! 4735 * wq_pool_mutex protects global freeze state and workqueues list. 5701 * and the global freeze state. !! 4736 * Grab it, adjust max_active and add the new @wq to workqueues >> 4737 * list. 5702 */ 4738 */ 5703 apply_wqattrs_lock(); !! 4739 mutex_lock(&wq_pool_mutex); 5704 << 5705 if (alloc_and_link_pwqs(wq) < 0) << 5706 goto err_unlock_free_node_nr_ << 5707 4740 5708 mutex_lock(&wq->mutex); 4741 mutex_lock(&wq->mutex); 5709 wq_adjust_max_active(wq); !! 4742 for_each_pwq(pwq, wq) >> 4743 pwq_adjust_max_active(pwq); 5710 mutex_unlock(&wq->mutex); 4744 mutex_unlock(&wq->mutex); 5711 4745 5712 list_add_tail_rcu(&wq->list, &workque 4746 list_add_tail_rcu(&wq->list, &workqueues); 5713 4747 5714 if (wq_online && init_rescuer(wq) < 0 !! 4748 mutex_unlock(&wq_pool_mutex); 5715 goto err_unlock_destroy; << 5716 << 5717 apply_wqattrs_unlock(); << 5718 << 5719 if ((wq->flags & WQ_SYSFS) && workque << 5720 goto err_destroy; << 5721 4749 5722 return wq; 4750 return wq; 5723 4751 5724 err_unlock_free_node_nr_active: << 5725 apply_wqattrs_unlock(); << 5726 /* << 5727 * Failed alloc_and_link_pwqs() may l << 5728 * flushing the pwq_release_worker en << 5729 * completes before calling kfree(wq) << 5730 */ << 5731 if (wq->flags & WQ_UNBOUND) { << 5732 kthread_flush_worker(pwq_rele << 5733 free_node_nr_active(wq->node_ << 5734 } << 5735 err_unreg_lockdep: 4752 err_unreg_lockdep: 5736 wq_unregister_lockdep(wq); 4753 wq_unregister_lockdep(wq); 5737 wq_free_lockdep(wq); 4754 wq_free_lockdep(wq); 5738 err_free_wq: 4755 err_free_wq: 5739 free_workqueue_attrs(wq->unbound_attr 4756 free_workqueue_attrs(wq->unbound_attrs); 5740 kfree(wq); 4757 kfree(wq); 5741 return NULL; 4758 return NULL; 5742 err_unlock_destroy: << 5743 apply_wqattrs_unlock(); << 5744 err_destroy: 4759 err_destroy: 5745 destroy_workqueue(wq); 4760 destroy_workqueue(wq); 5746 return NULL; 4761 return NULL; 5747 } 4762 } 5748 EXPORT_SYMBOL_GPL(alloc_workqueue); 4763 EXPORT_SYMBOL_GPL(alloc_workqueue); 5749 4764 5750 static bool pwq_busy(struct pool_workqueue *p 4765 static bool pwq_busy(struct pool_workqueue *pwq) 5751 { 4766 { 5752 int i; 4767 int i; 5753 4768 5754 for (i = 0; i < WORK_NR_COLORS; i++) 4769 for (i = 0; i < WORK_NR_COLORS; i++) 5755 if (pwq->nr_in_flight[i]) 4770 if (pwq->nr_in_flight[i]) 5756 return true; 4771 return true; 5757 4772 5758 if ((pwq != rcu_access_pointer(pwq->w !! 4773 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 5759 return true; 4774 return true; 5760 if (!pwq_is_empty(pwq)) !! 4775 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 5761 return true; 4776 return true; 5762 4777 5763 return false; 4778 return false; 5764 } 4779 } 5765 4780 5766 /** 4781 /** 5767 * destroy_workqueue - safely terminate a wor 4782 * destroy_workqueue - safely terminate a workqueue 5768 * @wq: target workqueue 4783 * @wq: target workqueue 5769 * 4784 * 5770 * Safely destroy a workqueue. All work curre 4785 * Safely destroy a workqueue. All work currently pending will be done first. 5771 */ 4786 */ 5772 void destroy_workqueue(struct workqueue_struc 4787 void destroy_workqueue(struct workqueue_struct *wq) 5773 { 4788 { 5774 struct pool_workqueue *pwq; 4789 struct pool_workqueue *pwq; 5775 int cpu; 4790 int cpu; 5776 4791 5777 /* 4792 /* 5778 * Remove it from sysfs first so that 4793 * Remove it from sysfs first so that sanity check failure doesn't 5779 * lead to sysfs name conflicts. 4794 * lead to sysfs name conflicts. 5780 */ 4795 */ 5781 workqueue_sysfs_unregister(wq); 4796 workqueue_sysfs_unregister(wq); 5782 4797 5783 /* mark the workqueue destruction is 4798 /* mark the workqueue destruction is in progress */ 5784 mutex_lock(&wq->mutex); 4799 mutex_lock(&wq->mutex); 5785 wq->flags |= __WQ_DESTROYING; 4800 wq->flags |= __WQ_DESTROYING; 5786 mutex_unlock(&wq->mutex); 4801 mutex_unlock(&wq->mutex); 5787 4802 5788 /* drain it before proceeding with de 4803 /* drain it before proceeding with destruction */ 5789 drain_workqueue(wq); 4804 drain_workqueue(wq); 5790 4805 5791 /* kill rescuer, if sanity checks fai 4806 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5792 if (wq->rescuer) { 4807 if (wq->rescuer) { 5793 struct worker *rescuer = wq-> 4808 struct worker *rescuer = wq->rescuer; 5794 4809 5795 /* this prevents new queueing 4810 /* this prevents new queueing */ 5796 raw_spin_lock_irq(&wq_mayday_ 4811 raw_spin_lock_irq(&wq_mayday_lock); 5797 wq->rescuer = NULL; 4812 wq->rescuer = NULL; 5798 raw_spin_unlock_irq(&wq_mayda 4813 raw_spin_unlock_irq(&wq_mayday_lock); 5799 4814 5800 /* rescuer will empty maydays 4815 /* rescuer will empty maydays list before exiting */ 5801 kthread_stop(rescuer->task); 4816 kthread_stop(rescuer->task); 5802 kfree(rescuer); 4817 kfree(rescuer); 5803 } 4818 } 5804 4819 5805 /* 4820 /* 5806 * Sanity checks - grab all the locks 4821 * Sanity checks - grab all the locks so that we wait for all 5807 * in-flight operations which may do 4822 * in-flight operations which may do put_pwq(). 5808 */ 4823 */ 5809 mutex_lock(&wq_pool_mutex); 4824 mutex_lock(&wq_pool_mutex); 5810 mutex_lock(&wq->mutex); 4825 mutex_lock(&wq->mutex); 5811 for_each_pwq(pwq, wq) { 4826 for_each_pwq(pwq, wq) { 5812 raw_spin_lock_irq(&pwq->pool- 4827 raw_spin_lock_irq(&pwq->pool->lock); 5813 if (WARN_ON(pwq_busy(pwq))) { 4828 if (WARN_ON(pwq_busy(pwq))) { 5814 pr_warn("%s: %s has t 4829 pr_warn("%s: %s has the following busy pwq\n", 5815 __func__, wq- 4830 __func__, wq->name); 5816 show_pwq(pwq); 4831 show_pwq(pwq); 5817 raw_spin_unlock_irq(& 4832 raw_spin_unlock_irq(&pwq->pool->lock); 5818 mutex_unlock(&wq->mut 4833 mutex_unlock(&wq->mutex); 5819 mutex_unlock(&wq_pool 4834 mutex_unlock(&wq_pool_mutex); 5820 show_one_workqueue(wq 4835 show_one_workqueue(wq); 5821 return; 4836 return; 5822 } 4837 } 5823 raw_spin_unlock_irq(&pwq->poo 4838 raw_spin_unlock_irq(&pwq->pool->lock); 5824 } 4839 } 5825 mutex_unlock(&wq->mutex); 4840 mutex_unlock(&wq->mutex); 5826 4841 5827 /* 4842 /* 5828 * wq list is used to freeze wq, remo 4843 * wq list is used to freeze wq, remove from list after 5829 * flushing is complete in case freez 4844 * flushing is complete in case freeze races us. 5830 */ 4845 */ 5831 list_del_rcu(&wq->list); 4846 list_del_rcu(&wq->list); 5832 mutex_unlock(&wq_pool_mutex); 4847 mutex_unlock(&wq_pool_mutex); 5833 4848 5834 /* 4849 /* 5835 * We're the sole accessor of @wq. Di 4850 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5836 * to put the base refs. @wq will be 4851 * to put the base refs. @wq will be auto-destroyed from the last 5837 * pwq_put. RCU read lock prevents @w 4852 * pwq_put. RCU read lock prevents @wq from going away from under us. 5838 */ 4853 */ 5839 rcu_read_lock(); 4854 rcu_read_lock(); 5840 4855 5841 for_each_possible_cpu(cpu) { 4856 for_each_possible_cpu(cpu) { 5842 put_pwq_unlocked(unbound_pwq( !! 4857 pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu)); 5843 RCU_INIT_POINTER(*unbound_pwq !! 4858 RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL); >> 4859 put_pwq_unlocked(pwq); 5844 } 4860 } 5845 4861 5846 put_pwq_unlocked(unbound_pwq(wq, -1)) !! 4862 put_pwq_unlocked(wq->dfl_pwq); 5847 RCU_INIT_POINTER(*unbound_pwq_slot(wq !! 4863 wq->dfl_pwq = NULL; 5848 4864 5849 rcu_read_unlock(); 4865 rcu_read_unlock(); 5850 } 4866 } 5851 EXPORT_SYMBOL_GPL(destroy_workqueue); 4867 EXPORT_SYMBOL_GPL(destroy_workqueue); 5852 4868 5853 /** 4869 /** 5854 * workqueue_set_max_active - adjust max_acti 4870 * workqueue_set_max_active - adjust max_active of a workqueue 5855 * @wq: target workqueue 4871 * @wq: target workqueue 5856 * @max_active: new max_active value. 4872 * @max_active: new max_active value. 5857 * 4873 * 5858 * Set max_active of @wq to @max_active. See !! 4874 * Set max_active of @wq to @max_active. 5859 * comment. << 5860 * 4875 * 5861 * CONTEXT: 4876 * CONTEXT: 5862 * Don't call from IRQ context. 4877 * Don't call from IRQ context. 5863 */ 4878 */ 5864 void workqueue_set_max_active(struct workqueu 4879 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5865 { 4880 { 5866 /* max_active doesn't mean anything f !! 4881 struct pool_workqueue *pwq; 5867 if (WARN_ON(wq->flags & WQ_BH)) !! 4882 5868 return; << 5869 /* disallow meddling with max_active 4883 /* disallow meddling with max_active for ordered workqueues */ 5870 if (WARN_ON(wq->flags & __WQ_ORDERED) !! 4884 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5871 return; 4885 return; 5872 4886 5873 max_active = wq_clamp_max_active(max_ 4887 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5874 4888 5875 mutex_lock(&wq->mutex); 4889 mutex_lock(&wq->mutex); 5876 4890 >> 4891 wq->flags &= ~__WQ_ORDERED; 5877 wq->saved_max_active = max_active; 4892 wq->saved_max_active = max_active; 5878 if (wq->flags & WQ_UNBOUND) << 5879 wq->saved_min_active = min(wq << 5880 4893 5881 wq_adjust_max_active(wq); !! 4894 for_each_pwq(pwq, wq) >> 4895 pwq_adjust_max_active(pwq); 5882 4896 5883 mutex_unlock(&wq->mutex); 4897 mutex_unlock(&wq->mutex); 5884 } 4898 } 5885 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4899 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5886 4900 5887 /** 4901 /** 5888 * workqueue_set_min_active - adjust min_acti << 5889 * @wq: target unbound workqueue << 5890 * @min_active: new min_active value << 5891 * << 5892 * Set min_active of an unbound workqueue. Un << 5893 * unbound workqueue is not guaranteed to be << 5894 * interdependent work items. Instead, an unb << 5895 * able to process min_active number of inter << 5896 * %WQ_DFL_MIN_ACTIVE by default. << 5897 * << 5898 * Use this function to adjust the min_active << 5899 * max_active. << 5900 */ << 5901 void workqueue_set_min_active(struct workqueu << 5902 { << 5903 /* min_active is only meaningful for << 5904 if (WARN_ON((wq->flags & (WQ_BH | WQ_ << 5905 WQ_UNBOUND)) << 5906 return; << 5907 << 5908 mutex_lock(&wq->mutex); << 5909 wq->saved_min_active = clamp(min_acti << 5910 wq_adjust_max_active(wq); << 5911 mutex_unlock(&wq->mutex); << 5912 } << 5913 << 5914 /** << 5915 * current_work - retrieve %current task's wo 4902 * current_work - retrieve %current task's work struct 5916 * 4903 * 5917 * Determine if %current task is a workqueue 4904 * Determine if %current task is a workqueue worker and what it's working on. 5918 * Useful to find out the context that the %c 4905 * Useful to find out the context that the %current task is running in. 5919 * 4906 * 5920 * Return: work struct if %current task is a 4907 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5921 */ 4908 */ 5922 struct work_struct *current_work(void) 4909 struct work_struct *current_work(void) 5923 { 4910 { 5924 struct worker *worker = current_wq_wo 4911 struct worker *worker = current_wq_worker(); 5925 4912 5926 return worker ? worker->current_work 4913 return worker ? worker->current_work : NULL; 5927 } 4914 } 5928 EXPORT_SYMBOL(current_work); 4915 EXPORT_SYMBOL(current_work); 5929 4916 5930 /** 4917 /** 5931 * current_is_workqueue_rescuer - is %current 4918 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5932 * 4919 * 5933 * Determine whether %current is a workqueue 4920 * Determine whether %current is a workqueue rescuer. Can be used from 5934 * work functions to determine whether it's b 4921 * work functions to determine whether it's being run off the rescuer task. 5935 * 4922 * 5936 * Return: %true if %current is a workqueue r 4923 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5937 */ 4924 */ 5938 bool current_is_workqueue_rescuer(void) 4925 bool current_is_workqueue_rescuer(void) 5939 { 4926 { 5940 struct worker *worker = current_wq_wo 4927 struct worker *worker = current_wq_worker(); 5941 4928 5942 return worker && worker->rescue_wq; 4929 return worker && worker->rescue_wq; 5943 } 4930 } 5944 4931 5945 /** 4932 /** 5946 * workqueue_congested - test whether a workq 4933 * workqueue_congested - test whether a workqueue is congested 5947 * @cpu: CPU in question 4934 * @cpu: CPU in question 5948 * @wq: target workqueue 4935 * @wq: target workqueue 5949 * 4936 * 5950 * Test whether @wq's cpu workqueue for @cpu 4937 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5951 * no synchronization around this function an 4938 * no synchronization around this function and the test result is 5952 * unreliable and only useful as advisory hin 4939 * unreliable and only useful as advisory hints or for debugging. 5953 * 4940 * 5954 * If @cpu is WORK_CPU_UNBOUND, the test is p 4941 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5955 * 4942 * 5956 * With the exception of ordered workqueues, 4943 * With the exception of ordered workqueues, all workqueues have per-cpu 5957 * pool_workqueues, each with its own congest 4944 * pool_workqueues, each with its own congested state. A workqueue being 5958 * congested on one CPU doesn't mean that the 4945 * congested on one CPU doesn't mean that the workqueue is contested on any 5959 * other CPUs. 4946 * other CPUs. 5960 * 4947 * 5961 * Return: 4948 * Return: 5962 * %true if congested, %false otherwise. 4949 * %true if congested, %false otherwise. 5963 */ 4950 */ 5964 bool workqueue_congested(int cpu, struct work 4951 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5965 { 4952 { 5966 struct pool_workqueue *pwq; 4953 struct pool_workqueue *pwq; 5967 bool ret; 4954 bool ret; 5968 4955 5969 rcu_read_lock(); 4956 rcu_read_lock(); 5970 preempt_disable(); 4957 preempt_disable(); 5971 4958 5972 if (cpu == WORK_CPU_UNBOUND) 4959 if (cpu == WORK_CPU_UNBOUND) 5973 cpu = smp_processor_id(); 4960 cpu = smp_processor_id(); 5974 4961 5975 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 4962 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5976 ret = !list_empty(&pwq->inactive_work 4963 ret = !list_empty(&pwq->inactive_works); 5977 4964 5978 preempt_enable(); 4965 preempt_enable(); 5979 rcu_read_unlock(); 4966 rcu_read_unlock(); 5980 4967 5981 return ret; 4968 return ret; 5982 } 4969 } 5983 EXPORT_SYMBOL_GPL(workqueue_congested); 4970 EXPORT_SYMBOL_GPL(workqueue_congested); 5984 4971 5985 /** 4972 /** 5986 * work_busy - test whether a work is current 4973 * work_busy - test whether a work is currently pending or running 5987 * @work: the work to be tested 4974 * @work: the work to be tested 5988 * 4975 * 5989 * Test whether @work is currently pending or 4976 * Test whether @work is currently pending or running. There is no 5990 * synchronization around this function and t 4977 * synchronization around this function and the test result is 5991 * unreliable and only useful as advisory hin 4978 * unreliable and only useful as advisory hints or for debugging. 5992 * 4979 * 5993 * Return: 4980 * Return: 5994 * OR'd bitmask of WORK_BUSY_* bits. 4981 * OR'd bitmask of WORK_BUSY_* bits. 5995 */ 4982 */ 5996 unsigned int work_busy(struct work_struct *wo 4983 unsigned int work_busy(struct work_struct *work) 5997 { 4984 { 5998 struct worker_pool *pool; 4985 struct worker_pool *pool; 5999 unsigned long irq_flags; !! 4986 unsigned long flags; 6000 unsigned int ret = 0; 4987 unsigned int ret = 0; 6001 4988 6002 if (work_pending(work)) 4989 if (work_pending(work)) 6003 ret |= WORK_BUSY_PENDING; 4990 ret |= WORK_BUSY_PENDING; 6004 4991 6005 rcu_read_lock(); 4992 rcu_read_lock(); 6006 pool = get_work_pool(work); 4993 pool = get_work_pool(work); 6007 if (pool) { 4994 if (pool) { 6008 raw_spin_lock_irqsave(&pool-> !! 4995 raw_spin_lock_irqsave(&pool->lock, flags); 6009 if (find_worker_executing_wor 4996 if (find_worker_executing_work(pool, work)) 6010 ret |= WORK_BUSY_RUNN 4997 ret |= WORK_BUSY_RUNNING; 6011 raw_spin_unlock_irqrestore(&p !! 4998 raw_spin_unlock_irqrestore(&pool->lock, flags); 6012 } 4999 } 6013 rcu_read_unlock(); 5000 rcu_read_unlock(); 6014 5001 6015 return ret; 5002 return ret; 6016 } 5003 } 6017 EXPORT_SYMBOL_GPL(work_busy); 5004 EXPORT_SYMBOL_GPL(work_busy); 6018 5005 6019 /** 5006 /** 6020 * set_worker_desc - set description for the 5007 * set_worker_desc - set description for the current work item 6021 * @fmt: printf-style format string 5008 * @fmt: printf-style format string 6022 * @...: arguments for the format string 5009 * @...: arguments for the format string 6023 * 5010 * 6024 * This function can be called by a running w 5011 * This function can be called by a running work function to describe what 6025 * the work item is about. If the worker tas 5012 * the work item is about. If the worker task gets dumped, this 6026 * information will be printed out together t 5013 * information will be printed out together to help debugging. The 6027 * description can be at most WORKER_DESC_LEN 5014 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6028 */ 5015 */ 6029 void set_worker_desc(const char *fmt, ...) 5016 void set_worker_desc(const char *fmt, ...) 6030 { 5017 { 6031 struct worker *worker = current_wq_wo 5018 struct worker *worker = current_wq_worker(); 6032 va_list args; 5019 va_list args; 6033 5020 6034 if (worker) { 5021 if (worker) { 6035 va_start(args, fmt); 5022 va_start(args, fmt); 6036 vsnprintf(worker->desc, sizeo 5023 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6037 va_end(args); 5024 va_end(args); 6038 } 5025 } 6039 } 5026 } 6040 EXPORT_SYMBOL_GPL(set_worker_desc); 5027 EXPORT_SYMBOL_GPL(set_worker_desc); 6041 5028 6042 /** 5029 /** 6043 * print_worker_info - print out worker infor 5030 * print_worker_info - print out worker information and description 6044 * @log_lvl: the log level to use when printi 5031 * @log_lvl: the log level to use when printing 6045 * @task: target task 5032 * @task: target task 6046 * 5033 * 6047 * If @task is a worker and currently executi 5034 * If @task is a worker and currently executing a work item, print out the 6048 * name of the workqueue being serviced and w 5035 * name of the workqueue being serviced and worker description set with 6049 * set_worker_desc() by the currently executi 5036 * set_worker_desc() by the currently executing work item. 6050 * 5037 * 6051 * This function can be safely called on any 5038 * This function can be safely called on any task as long as the 6052 * task_struct itself is accessible. While s 5039 * task_struct itself is accessible. While safe, this function isn't 6053 * synchronized and may print out mixups or g 5040 * synchronized and may print out mixups or garbages of limited length. 6054 */ 5041 */ 6055 void print_worker_info(const char *log_lvl, s 5042 void print_worker_info(const char *log_lvl, struct task_struct *task) 6056 { 5043 { 6057 work_func_t *fn = NULL; 5044 work_func_t *fn = NULL; 6058 char name[WQ_NAME_LEN] = { }; 5045 char name[WQ_NAME_LEN] = { }; 6059 char desc[WORKER_DESC_LEN] = { }; 5046 char desc[WORKER_DESC_LEN] = { }; 6060 struct pool_workqueue *pwq = NULL; 5047 struct pool_workqueue *pwq = NULL; 6061 struct workqueue_struct *wq = NULL; 5048 struct workqueue_struct *wq = NULL; 6062 struct worker *worker; 5049 struct worker *worker; 6063 5050 6064 if (!(task->flags & PF_WQ_WORKER)) 5051 if (!(task->flags & PF_WQ_WORKER)) 6065 return; 5052 return; 6066 5053 6067 /* 5054 /* 6068 * This function is called without an 5055 * This function is called without any synchronization and @task 6069 * could be in any state. Be careful 5056 * could be in any state. Be careful with dereferences. 6070 */ 5057 */ 6071 worker = kthread_probe_data(task); 5058 worker = kthread_probe_data(task); 6072 5059 6073 /* 5060 /* 6074 * Carefully copy the associated work 5061 * Carefully copy the associated workqueue's workfn, name and desc. 6075 * Keep the original last '\0' in cas 5062 * Keep the original last '\0' in case the original is garbage. 6076 */ 5063 */ 6077 copy_from_kernel_nofault(&fn, &worker 5064 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6078 copy_from_kernel_nofault(&pwq, &worke 5065 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6079 copy_from_kernel_nofault(&wq, &pwq->w 5066 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6080 copy_from_kernel_nofault(name, wq->na 5067 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6081 copy_from_kernel_nofault(desc, worker 5068 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6082 5069 6083 if (fn || name[0] || desc[0]) { 5070 if (fn || name[0] || desc[0]) { 6084 printk("%sWorkqueue: %s %ps", 5071 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6085 if (strcmp(name, desc)) 5072 if (strcmp(name, desc)) 6086 pr_cont(" (%s)", desc 5073 pr_cont(" (%s)", desc); 6087 pr_cont("\n"); 5074 pr_cont("\n"); 6088 } 5075 } 6089 } 5076 } 6090 5077 6091 static void pr_cont_pool_info(struct worker_p 5078 static void pr_cont_pool_info(struct worker_pool *pool) 6092 { 5079 { 6093 pr_cont(" cpus=%*pbl", nr_cpumask_bit 5080 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6094 if (pool->node != NUMA_NO_NODE) 5081 if (pool->node != NUMA_NO_NODE) 6095 pr_cont(" node=%d", pool->nod 5082 pr_cont(" node=%d", pool->node); 6096 pr_cont(" flags=0x%x", pool->flags); !! 5083 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 6097 if (pool->flags & POOL_BH) << 6098 pr_cont(" bh%s", << 6099 pool->attrs->nice == << 6100 else << 6101 pr_cont(" nice=%d", pool->att << 6102 } << 6103 << 6104 static void pr_cont_worker_id(struct worker * << 6105 { << 6106 struct worker_pool *pool = worker->po << 6107 << 6108 if (pool->flags & WQ_BH) << 6109 pr_cont("bh%s", << 6110 pool->attrs->nice == << 6111 else << 6112 pr_cont("%d%s", task_pid_nr(w << 6113 worker->rescue_wq ? " << 6114 } 5084 } 6115 5085 6116 struct pr_cont_work_struct { 5086 struct pr_cont_work_struct { 6117 bool comma; 5087 bool comma; 6118 work_func_t func; 5088 work_func_t func; 6119 long ctr; 5089 long ctr; 6120 }; 5090 }; 6121 5091 6122 static void pr_cont_work_flush(bool comma, wo 5092 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6123 { 5093 { 6124 if (!pcwsp->ctr) 5094 if (!pcwsp->ctr) 6125 goto out_record; 5095 goto out_record; 6126 if (func == pcwsp->func) { 5096 if (func == pcwsp->func) { 6127 pcwsp->ctr++; 5097 pcwsp->ctr++; 6128 return; 5098 return; 6129 } 5099 } 6130 if (pcwsp->ctr == 1) 5100 if (pcwsp->ctr == 1) 6131 pr_cont("%s %ps", pcwsp->comm 5101 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6132 else 5102 else 6133 pr_cont("%s %ld*%ps", pcwsp-> 5103 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6134 pcwsp->ctr = 0; 5104 pcwsp->ctr = 0; 6135 out_record: 5105 out_record: 6136 if ((long)func == -1L) 5106 if ((long)func == -1L) 6137 return; 5107 return; 6138 pcwsp->comma = comma; 5108 pcwsp->comma = comma; 6139 pcwsp->func = func; 5109 pcwsp->func = func; 6140 pcwsp->ctr = 1; 5110 pcwsp->ctr = 1; 6141 } 5111 } 6142 5112 6143 static void pr_cont_work(bool comma, struct w 5113 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6144 { 5114 { 6145 if (work->func == wq_barrier_func) { 5115 if (work->func == wq_barrier_func) { 6146 struct wq_barrier *barr; 5116 struct wq_barrier *barr; 6147 5117 6148 barr = container_of(work, str 5118 barr = container_of(work, struct wq_barrier, work); 6149 5119 6150 pr_cont_work_flush(comma, (wo 5120 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6151 pr_cont("%s BAR(%d)", comma ? 5121 pr_cont("%s BAR(%d)", comma ? "," : "", 6152 task_pid_nr(barr->tas 5122 task_pid_nr(barr->task)); 6153 } else { 5123 } else { 6154 if (!comma) 5124 if (!comma) 6155 pr_cont_work_flush(co 5125 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6156 pr_cont_work_flush(comma, wor 5126 pr_cont_work_flush(comma, work->func, pcwsp); 6157 } 5127 } 6158 } 5128 } 6159 5129 6160 static void show_pwq(struct pool_workqueue *p 5130 static void show_pwq(struct pool_workqueue *pwq) 6161 { 5131 { 6162 struct pr_cont_work_struct pcws = { . 5132 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6163 struct worker_pool *pool = pwq->pool; 5133 struct worker_pool *pool = pwq->pool; 6164 struct work_struct *work; 5134 struct work_struct *work; 6165 struct worker *worker; 5135 struct worker *worker; 6166 bool has_in_flight = false, has_pendi 5136 bool has_in_flight = false, has_pending = false; 6167 int bkt; 5137 int bkt; 6168 5138 6169 pr_info(" pwq %d:", pool->id); 5139 pr_info(" pwq %d:", pool->id); 6170 pr_cont_pool_info(pool); 5140 pr_cont_pool_info(pool); 6171 5141 6172 pr_cont(" active=%d refcnt=%d%s\n", !! 5142 pr_cont(" active=%d/%d refcnt=%d%s\n", 6173 pwq->nr_active, pwq->refcnt, !! 5143 pwq->nr_active, pwq->max_active, pwq->refcnt, 6174 !list_empty(&pwq->mayday_node 5144 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6175 5145 6176 hash_for_each(pool->busy_hash, bkt, w 5146 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6177 if (worker->current_pwq == pw 5147 if (worker->current_pwq == pwq) { 6178 has_in_flight = true; 5148 has_in_flight = true; 6179 break; 5149 break; 6180 } 5150 } 6181 } 5151 } 6182 if (has_in_flight) { 5152 if (has_in_flight) { 6183 bool comma = false; 5153 bool comma = false; 6184 5154 6185 pr_info(" in-flight:"); 5155 pr_info(" in-flight:"); 6186 hash_for_each(pool->busy_hash 5156 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6187 if (worker->current_p 5157 if (worker->current_pwq != pwq) 6188 continue; 5158 continue; 6189 5159 6190 pr_cont(" %s", comma !! 5160 pr_cont("%s %d%s:%ps", comma ? "," : "", 6191 pr_cont_worker_id(wor !! 5161 task_pid_nr(worker->task), 6192 pr_cont(":%ps", worke !! 5162 worker->rescue_wq ? "(RESCUER)" : "", >> 5163 worker->current_func); 6193 list_for_each_entry(w 5164 list_for_each_entry(work, &worker->scheduled, entry) 6194 pr_cont_work( 5165 pr_cont_work(false, work, &pcws); 6195 pr_cont_work_flush(co 5166 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6196 comma = true; 5167 comma = true; 6197 } 5168 } 6198 pr_cont("\n"); 5169 pr_cont("\n"); 6199 } 5170 } 6200 5171 6201 list_for_each_entry(work, &pool->work 5172 list_for_each_entry(work, &pool->worklist, entry) { 6202 if (get_work_pwq(work) == pwq 5173 if (get_work_pwq(work) == pwq) { 6203 has_pending = true; 5174 has_pending = true; 6204 break; 5175 break; 6205 } 5176 } 6206 } 5177 } 6207 if (has_pending) { 5178 if (has_pending) { 6208 bool comma = false; 5179 bool comma = false; 6209 5180 6210 pr_info(" pending:"); 5181 pr_info(" pending:"); 6211 list_for_each_entry(work, &po 5182 list_for_each_entry(work, &pool->worklist, entry) { 6212 if (get_work_pwq(work 5183 if (get_work_pwq(work) != pwq) 6213 continue; 5184 continue; 6214 5185 6215 pr_cont_work(comma, w 5186 pr_cont_work(comma, work, &pcws); 6216 comma = !(*work_data_ 5187 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6217 } 5188 } 6218 pr_cont_work_flush(comma, (wo 5189 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6219 pr_cont("\n"); 5190 pr_cont("\n"); 6220 } 5191 } 6221 5192 6222 if (!list_empty(&pwq->inactive_works) 5193 if (!list_empty(&pwq->inactive_works)) { 6223 bool comma = false; 5194 bool comma = false; 6224 5195 6225 pr_info(" inactive:"); 5196 pr_info(" inactive:"); 6226 list_for_each_entry(work, &pw 5197 list_for_each_entry(work, &pwq->inactive_works, entry) { 6227 pr_cont_work(comma, w 5198 pr_cont_work(comma, work, &pcws); 6228 comma = !(*work_data_ 5199 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6229 } 5200 } 6230 pr_cont_work_flush(comma, (wo 5201 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6231 pr_cont("\n"); 5202 pr_cont("\n"); 6232 } 5203 } 6233 } 5204 } 6234 5205 6235 /** 5206 /** 6236 * show_one_workqueue - dump state of specifi 5207 * show_one_workqueue - dump state of specified workqueue 6237 * @wq: workqueue whose state will be printed 5208 * @wq: workqueue whose state will be printed 6238 */ 5209 */ 6239 void show_one_workqueue(struct workqueue_stru 5210 void show_one_workqueue(struct workqueue_struct *wq) 6240 { 5211 { 6241 struct pool_workqueue *pwq; 5212 struct pool_workqueue *pwq; 6242 bool idle = true; 5213 bool idle = true; 6243 unsigned long irq_flags; !! 5214 unsigned long flags; 6244 5215 6245 for_each_pwq(pwq, wq) { 5216 for_each_pwq(pwq, wq) { 6246 if (!pwq_is_empty(pwq)) { !! 5217 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 6247 idle = false; 5218 idle = false; 6248 break; 5219 break; 6249 } 5220 } 6250 } 5221 } 6251 if (idle) /* Nothing to print for idl 5222 if (idle) /* Nothing to print for idle workqueue */ 6252 return; 5223 return; 6253 5224 6254 pr_info("workqueue %s: flags=0x%x\n", 5225 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6255 5226 6256 for_each_pwq(pwq, wq) { 5227 for_each_pwq(pwq, wq) { 6257 raw_spin_lock_irqsave(&pwq->p !! 5228 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 6258 if (!pwq_is_empty(pwq)) { !! 5229 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 6259 /* 5230 /* 6260 * Defer printing to 5231 * Defer printing to avoid deadlocks in console 6261 * drivers that queue 5232 * drivers that queue work while holding locks 6262 * also taken in thei 5233 * also taken in their write paths. 6263 */ 5234 */ 6264 printk_deferred_enter 5235 printk_deferred_enter(); 6265 show_pwq(pwq); 5236 show_pwq(pwq); 6266 printk_deferred_exit( 5237 printk_deferred_exit(); 6267 } 5238 } 6268 raw_spin_unlock_irqrestore(&p !! 5239 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 6269 /* 5240 /* 6270 * We could be printing a lot 5241 * We could be printing a lot from atomic context, e.g. 6271 * sysrq-t -> show_all_workqu 5242 * sysrq-t -> show_all_workqueues(). Avoid triggering 6272 * hard lockup. 5243 * hard lockup. 6273 */ 5244 */ 6274 touch_nmi_watchdog(); 5245 touch_nmi_watchdog(); 6275 } 5246 } 6276 5247 6277 } 5248 } 6278 5249 6279 /** 5250 /** 6280 * show_one_worker_pool - dump state of speci 5251 * show_one_worker_pool - dump state of specified worker pool 6281 * @pool: worker pool whose state will be pri 5252 * @pool: worker pool whose state will be printed 6282 */ 5253 */ 6283 static void show_one_worker_pool(struct worke 5254 static void show_one_worker_pool(struct worker_pool *pool) 6284 { 5255 { 6285 struct worker *worker; 5256 struct worker *worker; 6286 bool first = true; 5257 bool first = true; 6287 unsigned long irq_flags; !! 5258 unsigned long flags; 6288 unsigned long hung = 0; 5259 unsigned long hung = 0; 6289 5260 6290 raw_spin_lock_irqsave(&pool->lock, ir !! 5261 raw_spin_lock_irqsave(&pool->lock, flags); 6291 if (pool->nr_workers == pool->nr_idle 5262 if (pool->nr_workers == pool->nr_idle) 6292 goto next_pool; 5263 goto next_pool; 6293 5264 6294 /* How long the first pending work is 5265 /* How long the first pending work is waiting for a worker. */ 6295 if (!list_empty(&pool->worklist)) 5266 if (!list_empty(&pool->worklist)) 6296 hung = jiffies_to_msecs(jiffi 5267 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6297 5268 6298 /* 5269 /* 6299 * Defer printing to avoid deadlocks 5270 * Defer printing to avoid deadlocks in console drivers that 6300 * queue work while holding locks als 5271 * queue work while holding locks also taken in their write 6301 * paths. 5272 * paths. 6302 */ 5273 */ 6303 printk_deferred_enter(); 5274 printk_deferred_enter(); 6304 pr_info("pool %d:", pool->id); 5275 pr_info("pool %d:", pool->id); 6305 pr_cont_pool_info(pool); 5276 pr_cont_pool_info(pool); 6306 pr_cont(" hung=%lus workers=%d", hung 5277 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6307 if (pool->manager) 5278 if (pool->manager) 6308 pr_cont(" manager: %d", 5279 pr_cont(" manager: %d", 6309 task_pid_nr(pool->man 5280 task_pid_nr(pool->manager->task)); 6310 list_for_each_entry(worker, &pool->id 5281 list_for_each_entry(worker, &pool->idle_list, entry) { 6311 pr_cont(" %s", first ? "idle: !! 5282 pr_cont(" %s%d", first ? "idle: " : "", 6312 pr_cont_worker_id(worker); !! 5283 task_pid_nr(worker->task)); 6313 first = false; 5284 first = false; 6314 } 5285 } 6315 pr_cont("\n"); 5286 pr_cont("\n"); 6316 printk_deferred_exit(); 5287 printk_deferred_exit(); 6317 next_pool: 5288 next_pool: 6318 raw_spin_unlock_irqrestore(&pool->loc !! 5289 raw_spin_unlock_irqrestore(&pool->lock, flags); 6319 /* 5290 /* 6320 * We could be printing a lot from at 5291 * We could be printing a lot from atomic context, e.g. 6321 * sysrq-t -> show_all_workqueues(). 5292 * sysrq-t -> show_all_workqueues(). Avoid triggering 6322 * hard lockup. 5293 * hard lockup. 6323 */ 5294 */ 6324 touch_nmi_watchdog(); 5295 touch_nmi_watchdog(); 6325 5296 6326 } 5297 } 6327 5298 6328 /** 5299 /** 6329 * show_all_workqueues - dump workqueue state 5300 * show_all_workqueues - dump workqueue state 6330 * 5301 * 6331 * Called from a sysrq handler and prints out 5302 * Called from a sysrq handler and prints out all busy workqueues and pools. 6332 */ 5303 */ 6333 void show_all_workqueues(void) 5304 void show_all_workqueues(void) 6334 { 5305 { 6335 struct workqueue_struct *wq; 5306 struct workqueue_struct *wq; 6336 struct worker_pool *pool; 5307 struct worker_pool *pool; 6337 int pi; 5308 int pi; 6338 5309 6339 rcu_read_lock(); 5310 rcu_read_lock(); 6340 5311 6341 pr_info("Showing busy workqueues and 5312 pr_info("Showing busy workqueues and worker pools:\n"); 6342 5313 6343 list_for_each_entry_rcu(wq, &workqueu 5314 list_for_each_entry_rcu(wq, &workqueues, list) 6344 show_one_workqueue(wq); 5315 show_one_workqueue(wq); 6345 5316 6346 for_each_pool(pool, pi) 5317 for_each_pool(pool, pi) 6347 show_one_worker_pool(pool); 5318 show_one_worker_pool(pool); 6348 5319 6349 rcu_read_unlock(); 5320 rcu_read_unlock(); 6350 } 5321 } 6351 5322 6352 /** 5323 /** 6353 * show_freezable_workqueues - dump freezable 5324 * show_freezable_workqueues - dump freezable workqueue state 6354 * 5325 * 6355 * Called from try_to_freeze_tasks() and prin 5326 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6356 * still busy. 5327 * still busy. 6357 */ 5328 */ 6358 void show_freezable_workqueues(void) 5329 void show_freezable_workqueues(void) 6359 { 5330 { 6360 struct workqueue_struct *wq; 5331 struct workqueue_struct *wq; 6361 5332 6362 rcu_read_lock(); 5333 rcu_read_lock(); 6363 5334 6364 pr_info("Showing freezable workqueues 5335 pr_info("Showing freezable workqueues that are still busy:\n"); 6365 5336 6366 list_for_each_entry_rcu(wq, &workqueu 5337 list_for_each_entry_rcu(wq, &workqueues, list) { 6367 if (!(wq->flags & WQ_FREEZABL 5338 if (!(wq->flags & WQ_FREEZABLE)) 6368 continue; 5339 continue; 6369 show_one_workqueue(wq); 5340 show_one_workqueue(wq); 6370 } 5341 } 6371 5342 6372 rcu_read_unlock(); 5343 rcu_read_unlock(); 6373 } 5344 } 6374 5345 6375 /* used to show worker information through /p 5346 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6376 void wq_worker_comm(char *buf, size_t size, s 5347 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6377 { 5348 { >> 5349 int off; >> 5350 >> 5351 /* always show the actual comm */ >> 5352 off = strscpy(buf, task->comm, size); >> 5353 if (off < 0) >> 5354 return; >> 5355 6378 /* stabilize PF_WQ_WORKER and worker 5356 /* stabilize PF_WQ_WORKER and worker pool association */ 6379 mutex_lock(&wq_pool_attach_mutex); 5357 mutex_lock(&wq_pool_attach_mutex); 6380 5358 6381 if (task->flags & PF_WQ_WORKER) { 5359 if (task->flags & PF_WQ_WORKER) { 6382 struct worker *worker = kthre 5360 struct worker *worker = kthread_data(task); 6383 struct worker_pool *pool = wo 5361 struct worker_pool *pool = worker->pool; 6384 int off; << 6385 << 6386 off = format_worker_id(buf, s << 6387 5362 6388 if (pool) { 5363 if (pool) { 6389 raw_spin_lock_irq(&po 5364 raw_spin_lock_irq(&pool->lock); 6390 /* 5365 /* 6391 * ->desc tracks info 5366 * ->desc tracks information (wq name or 6392 * set_worker_desc()) 5367 * set_worker_desc()) for the latest execution. If 6393 * current, prepend ' 5368 * current, prepend '+', otherwise '-'. 6394 */ 5369 */ 6395 if (worker->desc[0] ! 5370 if (worker->desc[0] != '\0') { 6396 if (worker->c 5371 if (worker->current_work) 6397 scnpr 5372 scnprintf(buf + off, size - off, "+%s", 6398 5373 worker->desc); 6399 else 5374 else 6400 scnpr 5375 scnprintf(buf + off, size - off, "-%s", 6401 5376 worker->desc); 6402 } 5377 } 6403 raw_spin_unlock_irq(& 5378 raw_spin_unlock_irq(&pool->lock); 6404 } 5379 } 6405 } else { << 6406 strscpy(buf, task->comm, size << 6407 } 5380 } 6408 5381 6409 mutex_unlock(&wq_pool_attach_mutex); 5382 mutex_unlock(&wq_pool_attach_mutex); 6410 } 5383 } 6411 5384 6412 #ifdef CONFIG_SMP 5385 #ifdef CONFIG_SMP 6413 5386 6414 /* 5387 /* 6415 * CPU hotplug. 5388 * CPU hotplug. 6416 * 5389 * 6417 * There are two challenges in supporting CPU 5390 * There are two challenges in supporting CPU hotplug. Firstly, there 6418 * are a lot of assumptions on strong associa 5391 * are a lot of assumptions on strong associations among work, pwq and 6419 * pool which make migrating pending and sche 5392 * pool which make migrating pending and scheduled works very 6420 * difficult to implement without impacting h 5393 * difficult to implement without impacting hot paths. Secondly, 6421 * worker pools serve mix of short, long and 5394 * worker pools serve mix of short, long and very long running works making 6422 * blocked draining impractical. 5395 * blocked draining impractical. 6423 * 5396 * 6424 * This is solved by allowing the pools to be 5397 * This is solved by allowing the pools to be disassociated from the CPU 6425 * running as an unbound one and allowing it 5398 * running as an unbound one and allowing it to be reattached later if the 6426 * cpu comes back online. 5399 * cpu comes back online. 6427 */ 5400 */ 6428 5401 6429 static void unbind_workers(int cpu) 5402 static void unbind_workers(int cpu) 6430 { 5403 { 6431 struct worker_pool *pool; 5404 struct worker_pool *pool; 6432 struct worker *worker; 5405 struct worker *worker; 6433 5406 6434 for_each_cpu_worker_pool(pool, cpu) { 5407 for_each_cpu_worker_pool(pool, cpu) { 6435 mutex_lock(&wq_pool_attach_mu 5408 mutex_lock(&wq_pool_attach_mutex); 6436 raw_spin_lock_irq(&pool->lock 5409 raw_spin_lock_irq(&pool->lock); 6437 5410 6438 /* 5411 /* 6439 * We've blocked all attach/d 5412 * We've blocked all attach/detach operations. Make all workers 6440 * unbound and set DISASSOCIA 5413 * unbound and set DISASSOCIATED. Before this, all workers 6441 * must be on the cpu. After 5414 * must be on the cpu. After this, they may become diasporas. 6442 * And the preemption disable 5415 * And the preemption disabled section in their sched callbacks 6443 * are guaranteed to see WORK 5416 * are guaranteed to see WORKER_UNBOUND since the code here 6444 * is on the same cpu. 5417 * is on the same cpu. 6445 */ 5418 */ 6446 for_each_pool_worker(worker, 5419 for_each_pool_worker(worker, pool) 6447 worker->flags |= WORK 5420 worker->flags |= WORKER_UNBOUND; 6448 5421 6449 pool->flags |= POOL_DISASSOCI 5422 pool->flags |= POOL_DISASSOCIATED; 6450 5423 6451 /* 5424 /* 6452 * The handling of nr_running 5425 * The handling of nr_running in sched callbacks are disabled 6453 * now. Zap nr_running. Aft 5426 * now. Zap nr_running. After this, nr_running stays zero and 6454 * need_more_worker() and kee 5427 * need_more_worker() and keep_working() are always true as 6455 * long as the worklist is no 5428 * long as the worklist is not empty. This pool now behaves as 6456 * an unbound (in terms of co 5429 * an unbound (in terms of concurrency management) pool which 6457 * are served by workers tied 5430 * are served by workers tied to the pool. 6458 */ 5431 */ 6459 pool->nr_running = 0; 5432 pool->nr_running = 0; 6460 5433 6461 /* 5434 /* 6462 * With concurrency managemen 5435 * With concurrency management just turned off, a busy 6463 * worker blocking could lead 5436 * worker blocking could lead to lengthy stalls. Kick off 6464 * unbound chain execution of 5437 * unbound chain execution of currently pending work items. 6465 */ 5438 */ 6466 kick_pool(pool); 5439 kick_pool(pool); 6467 5440 6468 raw_spin_unlock_irq(&pool->lo 5441 raw_spin_unlock_irq(&pool->lock); 6469 5442 6470 for_each_pool_worker(worker, 5443 for_each_pool_worker(worker, pool) 6471 unbind_worker(worker) 5444 unbind_worker(worker); 6472 5445 6473 mutex_unlock(&wq_pool_attach_ 5446 mutex_unlock(&wq_pool_attach_mutex); 6474 } 5447 } 6475 } 5448 } 6476 5449 6477 /** 5450 /** 6478 * rebind_workers - rebind all workers of a p 5451 * rebind_workers - rebind all workers of a pool to the associated CPU 6479 * @pool: pool of interest 5452 * @pool: pool of interest 6480 * 5453 * 6481 * @pool->cpu is coming online. Rebind all w 5454 * @pool->cpu is coming online. Rebind all workers to the CPU. 6482 */ 5455 */ 6483 static void rebind_workers(struct worker_pool 5456 static void rebind_workers(struct worker_pool *pool) 6484 { 5457 { 6485 struct worker *worker; 5458 struct worker *worker; 6486 5459 6487 lockdep_assert_held(&wq_pool_attach_m 5460 lockdep_assert_held(&wq_pool_attach_mutex); 6488 5461 6489 /* 5462 /* 6490 * Restore CPU affinity of all worker 5463 * Restore CPU affinity of all workers. As all idle workers should 6491 * be on the run-queue of the associa 5464 * be on the run-queue of the associated CPU before any local 6492 * wake-ups for concurrency managemen 5465 * wake-ups for concurrency management happen, restore CPU affinity 6493 * of all workers first and then clea 5466 * of all workers first and then clear UNBOUND. As we're called 6494 * from CPU_ONLINE, the following sho 5467 * from CPU_ONLINE, the following shouldn't fail. 6495 */ 5468 */ 6496 for_each_pool_worker(worker, pool) { 5469 for_each_pool_worker(worker, pool) { 6497 kthread_set_per_cpu(worker->t 5470 kthread_set_per_cpu(worker->task, pool->cpu); 6498 WARN_ON_ONCE(set_cpus_allowed 5471 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6499 5472 pool_allowed_cpus(pool)) < 0); 6500 } 5473 } 6501 5474 6502 raw_spin_lock_irq(&pool->lock); 5475 raw_spin_lock_irq(&pool->lock); 6503 5476 6504 pool->flags &= ~POOL_DISASSOCIATED; 5477 pool->flags &= ~POOL_DISASSOCIATED; 6505 5478 6506 for_each_pool_worker(worker, pool) { 5479 for_each_pool_worker(worker, pool) { 6507 unsigned int worker_flags = w 5480 unsigned int worker_flags = worker->flags; 6508 5481 6509 /* 5482 /* 6510 * We want to clear UNBOUND b 5483 * We want to clear UNBOUND but can't directly call 6511 * worker_clr_flags() or adju 5484 * worker_clr_flags() or adjust nr_running. Atomically 6512 * replace UNBOUND with anoth 5485 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6513 * @worker will clear REBOUND 5486 * @worker will clear REBOUND using worker_clr_flags() when 6514 * it initiates the next exec 5487 * it initiates the next execution cycle thus restoring 6515 * concurrency management. N 5488 * concurrency management. Note that when or whether 6516 * @worker clears REBOUND doe 5489 * @worker clears REBOUND doesn't affect correctness. 6517 * 5490 * 6518 * WRITE_ONCE() is necessary 5491 * WRITE_ONCE() is necessary because @worker->flags may be 6519 * tested without holding any 5492 * tested without holding any lock in 6520 * wq_worker_running(). With 5493 * wq_worker_running(). Without it, NOT_RUNNING test may 6521 * fail incorrectly leading t 5494 * fail incorrectly leading to premature concurrency 6522 * management operations. 5495 * management operations. 6523 */ 5496 */ 6524 WARN_ON_ONCE(!(worker_flags & 5497 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6525 worker_flags |= WORKER_REBOUN 5498 worker_flags |= WORKER_REBOUND; 6526 worker_flags &= ~WORKER_UNBOU 5499 worker_flags &= ~WORKER_UNBOUND; 6527 WRITE_ONCE(worker->flags, wor 5500 WRITE_ONCE(worker->flags, worker_flags); 6528 } 5501 } 6529 5502 6530 raw_spin_unlock_irq(&pool->lock); 5503 raw_spin_unlock_irq(&pool->lock); 6531 } 5504 } 6532 5505 6533 /** 5506 /** 6534 * restore_unbound_workers_cpumask - restore 5507 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6535 * @pool: unbound pool of interest 5508 * @pool: unbound pool of interest 6536 * @cpu: the CPU which is coming up 5509 * @cpu: the CPU which is coming up 6537 * 5510 * 6538 * An unbound pool may end up with a cpumask 5511 * An unbound pool may end up with a cpumask which doesn't have any online 6539 * CPUs. When a worker of such pool get sche 5512 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6540 * its cpus_allowed. If @cpu is in @pool's c 5513 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6541 * online CPU before, cpus_allowed of all its 5514 * online CPU before, cpus_allowed of all its workers should be restored. 6542 */ 5515 */ 6543 static void restore_unbound_workers_cpumask(s 5516 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6544 { 5517 { 6545 static cpumask_t cpumask; 5518 static cpumask_t cpumask; 6546 struct worker *worker; 5519 struct worker *worker; 6547 5520 6548 lockdep_assert_held(&wq_pool_attach_m 5521 lockdep_assert_held(&wq_pool_attach_mutex); 6549 5522 6550 /* is @cpu allowed for @pool? */ 5523 /* is @cpu allowed for @pool? */ 6551 if (!cpumask_test_cpu(cpu, pool->attr 5524 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6552 return; 5525 return; 6553 5526 6554 cpumask_and(&cpumask, pool->attrs->cp 5527 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6555 5528 6556 /* as we're called from CPU_ONLINE, t 5529 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6557 for_each_pool_worker(worker, pool) 5530 for_each_pool_worker(worker, pool) 6558 WARN_ON_ONCE(set_cpus_allowed 5531 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6559 } 5532 } 6560 5533 6561 int workqueue_prepare_cpu(unsigned int cpu) 5534 int workqueue_prepare_cpu(unsigned int cpu) 6562 { 5535 { 6563 struct worker_pool *pool; 5536 struct worker_pool *pool; 6564 5537 6565 for_each_cpu_worker_pool(pool, cpu) { 5538 for_each_cpu_worker_pool(pool, cpu) { 6566 if (pool->nr_workers) 5539 if (pool->nr_workers) 6567 continue; 5540 continue; 6568 if (!create_worker(pool)) 5541 if (!create_worker(pool)) 6569 return -ENOMEM; 5542 return -ENOMEM; 6570 } 5543 } 6571 return 0; 5544 return 0; 6572 } 5545 } 6573 5546 6574 int workqueue_online_cpu(unsigned int cpu) 5547 int workqueue_online_cpu(unsigned int cpu) 6575 { 5548 { 6576 struct worker_pool *pool; 5549 struct worker_pool *pool; 6577 struct workqueue_struct *wq; 5550 struct workqueue_struct *wq; 6578 int pi; 5551 int pi; 6579 5552 6580 mutex_lock(&wq_pool_mutex); 5553 mutex_lock(&wq_pool_mutex); 6581 5554 6582 cpumask_set_cpu(cpu, wq_online_cpumas << 6583 << 6584 for_each_pool(pool, pi) { 5555 for_each_pool(pool, pi) { 6585 /* BH pools aren't affected b << 6586 if (pool->flags & POOL_BH) << 6587 continue; << 6588 << 6589 mutex_lock(&wq_pool_attach_mu 5556 mutex_lock(&wq_pool_attach_mutex); >> 5557 6590 if (pool->cpu == cpu) 5558 if (pool->cpu == cpu) 6591 rebind_workers(pool); 5559 rebind_workers(pool); 6592 else if (pool->cpu < 0) 5560 else if (pool->cpu < 0) 6593 restore_unbound_worke 5561 restore_unbound_workers_cpumask(pool, cpu); >> 5562 6594 mutex_unlock(&wq_pool_attach_ 5563 mutex_unlock(&wq_pool_attach_mutex); 6595 } 5564 } 6596 5565 6597 /* update pod affinity of unbound wor 5566 /* update pod affinity of unbound workqueues */ 6598 list_for_each_entry(wq, &workqueues, 5567 list_for_each_entry(wq, &workqueues, list) { 6599 struct workqueue_attrs *attrs 5568 struct workqueue_attrs *attrs = wq->unbound_attrs; 6600 5569 6601 if (attrs) { 5570 if (attrs) { 6602 const struct wq_pod_t 5571 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6603 int tcpu; 5572 int tcpu; 6604 5573 6605 for_each_cpu(tcpu, pt 5574 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6606 unbound_wq_up !! 5575 wq_update_pod(wq, tcpu, cpu, true); 6607 << 6608 mutex_lock(&wq->mutex << 6609 wq_update_node_max_ac << 6610 mutex_unlock(&wq->mut << 6611 } 5576 } 6612 } 5577 } 6613 5578 6614 mutex_unlock(&wq_pool_mutex); 5579 mutex_unlock(&wq_pool_mutex); 6615 return 0; 5580 return 0; 6616 } 5581 } 6617 5582 6618 int workqueue_offline_cpu(unsigned int cpu) 5583 int workqueue_offline_cpu(unsigned int cpu) 6619 { 5584 { 6620 struct workqueue_struct *wq; 5585 struct workqueue_struct *wq; 6621 5586 6622 /* unbinding per-cpu workers should h 5587 /* unbinding per-cpu workers should happen on the local CPU */ 6623 if (WARN_ON(cpu != smp_processor_id() 5588 if (WARN_ON(cpu != smp_processor_id())) 6624 return -1; 5589 return -1; 6625 5590 6626 unbind_workers(cpu); 5591 unbind_workers(cpu); 6627 5592 6628 /* update pod affinity of unbound wor 5593 /* update pod affinity of unbound workqueues */ 6629 mutex_lock(&wq_pool_mutex); 5594 mutex_lock(&wq_pool_mutex); 6630 << 6631 cpumask_clear_cpu(cpu, wq_online_cpum << 6632 << 6633 list_for_each_entry(wq, &workqueues, 5595 list_for_each_entry(wq, &workqueues, list) { 6634 struct workqueue_attrs *attrs 5596 struct workqueue_attrs *attrs = wq->unbound_attrs; 6635 5597 6636 if (attrs) { 5598 if (attrs) { 6637 const struct wq_pod_t 5599 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6638 int tcpu; 5600 int tcpu; 6639 5601 6640 for_each_cpu(tcpu, pt 5602 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6641 unbound_wq_up !! 5603 wq_update_pod(wq, tcpu, cpu, false); 6642 << 6643 mutex_lock(&wq->mutex << 6644 wq_update_node_max_ac << 6645 mutex_unlock(&wq->mut << 6646 } 5604 } 6647 } 5605 } 6648 mutex_unlock(&wq_pool_mutex); 5606 mutex_unlock(&wq_pool_mutex); 6649 5607 6650 return 0; 5608 return 0; 6651 } 5609 } 6652 5610 6653 struct work_for_cpu { 5611 struct work_for_cpu { 6654 struct work_struct work; 5612 struct work_struct work; 6655 long (*fn)(void *); 5613 long (*fn)(void *); 6656 void *arg; 5614 void *arg; 6657 long ret; 5615 long ret; 6658 }; 5616 }; 6659 5617 6660 static void work_for_cpu_fn(struct work_struc 5618 static void work_for_cpu_fn(struct work_struct *work) 6661 { 5619 { 6662 struct work_for_cpu *wfc = container_ 5620 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6663 5621 6664 wfc->ret = wfc->fn(wfc->arg); 5622 wfc->ret = wfc->fn(wfc->arg); 6665 } 5623 } 6666 5624 6667 /** 5625 /** 6668 * work_on_cpu_key - run a function in thread 5626 * work_on_cpu_key - run a function in thread context on a particular cpu 6669 * @cpu: the cpu to run on 5627 * @cpu: the cpu to run on 6670 * @fn: the function to run 5628 * @fn: the function to run 6671 * @arg: the function arg 5629 * @arg: the function arg 6672 * @key: The lock class key for lock debuggin 5630 * @key: The lock class key for lock debugging purposes 6673 * 5631 * 6674 * It is up to the caller to ensure that the 5632 * It is up to the caller to ensure that the cpu doesn't go offline. 6675 * The caller must not hold any locks which w 5633 * The caller must not hold any locks which would prevent @fn from completing. 6676 * 5634 * 6677 * Return: The value @fn returns. 5635 * Return: The value @fn returns. 6678 */ 5636 */ 6679 long work_on_cpu_key(int cpu, long (*fn)(void 5637 long work_on_cpu_key(int cpu, long (*fn)(void *), 6680 void *arg, struct lock_c 5638 void *arg, struct lock_class_key *key) 6681 { 5639 { 6682 struct work_for_cpu wfc = { .fn = fn, 5640 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6683 5641 6684 INIT_WORK_ONSTACK_KEY(&wfc.work, work 5642 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6685 schedule_work_on(cpu, &wfc.work); 5643 schedule_work_on(cpu, &wfc.work); 6686 flush_work(&wfc.work); 5644 flush_work(&wfc.work); 6687 destroy_work_on_stack(&wfc.work); 5645 destroy_work_on_stack(&wfc.work); 6688 return wfc.ret; 5646 return wfc.ret; 6689 } 5647 } 6690 EXPORT_SYMBOL_GPL(work_on_cpu_key); 5648 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6691 5649 6692 /** 5650 /** 6693 * work_on_cpu_safe_key - run a function in t 5651 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6694 * @cpu: the cpu to run on 5652 * @cpu: the cpu to run on 6695 * @fn: the function to run 5653 * @fn: the function to run 6696 * @arg: the function argument 5654 * @arg: the function argument 6697 * @key: The lock class key for lock debuggin 5655 * @key: The lock class key for lock debugging purposes 6698 * 5656 * 6699 * Disables CPU hotplug and calls work_on_cpu 5657 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6700 * any locks which would prevent @fn from com 5658 * any locks which would prevent @fn from completing. 6701 * 5659 * 6702 * Return: The value @fn returns. 5660 * Return: The value @fn returns. 6703 */ 5661 */ 6704 long work_on_cpu_safe_key(int cpu, long (*fn) 5662 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6705 void *arg, struct l 5663 void *arg, struct lock_class_key *key) 6706 { 5664 { 6707 long ret = -ENODEV; 5665 long ret = -ENODEV; 6708 5666 6709 cpus_read_lock(); 5667 cpus_read_lock(); 6710 if (cpu_online(cpu)) 5668 if (cpu_online(cpu)) 6711 ret = work_on_cpu_key(cpu, fn 5669 ret = work_on_cpu_key(cpu, fn, arg, key); 6712 cpus_read_unlock(); 5670 cpus_read_unlock(); 6713 return ret; 5671 return ret; 6714 } 5672 } 6715 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 5673 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6716 #endif /* CONFIG_SMP */ 5674 #endif /* CONFIG_SMP */ 6717 5675 6718 #ifdef CONFIG_FREEZER 5676 #ifdef CONFIG_FREEZER 6719 5677 6720 /** 5678 /** 6721 * freeze_workqueues_begin - begin freezing w 5679 * freeze_workqueues_begin - begin freezing workqueues 6722 * 5680 * 6723 * Start freezing workqueues. After this fun 5681 * Start freezing workqueues. After this function returns, all freezable 6724 * workqueues will queue new works to their i 5682 * workqueues will queue new works to their inactive_works list instead of 6725 * pool->worklist. 5683 * pool->worklist. 6726 * 5684 * 6727 * CONTEXT: 5685 * CONTEXT: 6728 * Grabs and releases wq_pool_mutex, wq->mute 5686 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6729 */ 5687 */ 6730 void freeze_workqueues_begin(void) 5688 void freeze_workqueues_begin(void) 6731 { 5689 { 6732 struct workqueue_struct *wq; 5690 struct workqueue_struct *wq; >> 5691 struct pool_workqueue *pwq; 6733 5692 6734 mutex_lock(&wq_pool_mutex); 5693 mutex_lock(&wq_pool_mutex); 6735 5694 6736 WARN_ON_ONCE(workqueue_freezing); 5695 WARN_ON_ONCE(workqueue_freezing); 6737 workqueue_freezing = true; 5696 workqueue_freezing = true; 6738 5697 6739 list_for_each_entry(wq, &workqueues, 5698 list_for_each_entry(wq, &workqueues, list) { 6740 mutex_lock(&wq->mutex); 5699 mutex_lock(&wq->mutex); 6741 wq_adjust_max_active(wq); !! 5700 for_each_pwq(pwq, wq) >> 5701 pwq_adjust_max_active(pwq); 6742 mutex_unlock(&wq->mutex); 5702 mutex_unlock(&wq->mutex); 6743 } 5703 } 6744 5704 6745 mutex_unlock(&wq_pool_mutex); 5705 mutex_unlock(&wq_pool_mutex); 6746 } 5706 } 6747 5707 6748 /** 5708 /** 6749 * freeze_workqueues_busy - are freezable wor 5709 * freeze_workqueues_busy - are freezable workqueues still busy? 6750 * 5710 * 6751 * Check whether freezing is complete. This 5711 * Check whether freezing is complete. This function must be called 6752 * between freeze_workqueues_begin() and thaw 5712 * between freeze_workqueues_begin() and thaw_workqueues(). 6753 * 5713 * 6754 * CONTEXT: 5714 * CONTEXT: 6755 * Grabs and releases wq_pool_mutex. 5715 * Grabs and releases wq_pool_mutex. 6756 * 5716 * 6757 * Return: 5717 * Return: 6758 * %true if some freezable workqueues are sti 5718 * %true if some freezable workqueues are still busy. %false if freezing 6759 * is complete. 5719 * is complete. 6760 */ 5720 */ 6761 bool freeze_workqueues_busy(void) 5721 bool freeze_workqueues_busy(void) 6762 { 5722 { 6763 bool busy = false; 5723 bool busy = false; 6764 struct workqueue_struct *wq; 5724 struct workqueue_struct *wq; 6765 struct pool_workqueue *pwq; 5725 struct pool_workqueue *pwq; 6766 5726 6767 mutex_lock(&wq_pool_mutex); 5727 mutex_lock(&wq_pool_mutex); 6768 5728 6769 WARN_ON_ONCE(!workqueue_freezing); 5729 WARN_ON_ONCE(!workqueue_freezing); 6770 5730 6771 list_for_each_entry(wq, &workqueues, 5731 list_for_each_entry(wq, &workqueues, list) { 6772 if (!(wq->flags & WQ_FREEZABL 5732 if (!(wq->flags & WQ_FREEZABLE)) 6773 continue; 5733 continue; 6774 /* 5734 /* 6775 * nr_active is monotonically 5735 * nr_active is monotonically decreasing. It's safe 6776 * to peek without lock. 5736 * to peek without lock. 6777 */ 5737 */ 6778 rcu_read_lock(); 5738 rcu_read_lock(); 6779 for_each_pwq(pwq, wq) { 5739 for_each_pwq(pwq, wq) { 6780 WARN_ON_ONCE(pwq->nr_ 5740 WARN_ON_ONCE(pwq->nr_active < 0); 6781 if (pwq->nr_active) { 5741 if (pwq->nr_active) { 6782 busy = true; 5742 busy = true; 6783 rcu_read_unlo 5743 rcu_read_unlock(); 6784 goto out_unlo 5744 goto out_unlock; 6785 } 5745 } 6786 } 5746 } 6787 rcu_read_unlock(); 5747 rcu_read_unlock(); 6788 } 5748 } 6789 out_unlock: 5749 out_unlock: 6790 mutex_unlock(&wq_pool_mutex); 5750 mutex_unlock(&wq_pool_mutex); 6791 return busy; 5751 return busy; 6792 } 5752 } 6793 5753 6794 /** 5754 /** 6795 * thaw_workqueues - thaw workqueues 5755 * thaw_workqueues - thaw workqueues 6796 * 5756 * 6797 * Thaw workqueues. Normal queueing is resto 5757 * Thaw workqueues. Normal queueing is restored and all collected 6798 * frozen works are transferred to their resp 5758 * frozen works are transferred to their respective pool worklists. 6799 * 5759 * 6800 * CONTEXT: 5760 * CONTEXT: 6801 * Grabs and releases wq_pool_mutex, wq->mute 5761 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6802 */ 5762 */ 6803 void thaw_workqueues(void) 5763 void thaw_workqueues(void) 6804 { 5764 { 6805 struct workqueue_struct *wq; 5765 struct workqueue_struct *wq; >> 5766 struct pool_workqueue *pwq; 6806 5767 6807 mutex_lock(&wq_pool_mutex); 5768 mutex_lock(&wq_pool_mutex); 6808 5769 6809 if (!workqueue_freezing) 5770 if (!workqueue_freezing) 6810 goto out_unlock; 5771 goto out_unlock; 6811 5772 6812 workqueue_freezing = false; 5773 workqueue_freezing = false; 6813 5774 6814 /* restore max_active and repopulate 5775 /* restore max_active and repopulate worklist */ 6815 list_for_each_entry(wq, &workqueues, 5776 list_for_each_entry(wq, &workqueues, list) { 6816 mutex_lock(&wq->mutex); 5777 mutex_lock(&wq->mutex); 6817 wq_adjust_max_active(wq); !! 5778 for_each_pwq(pwq, wq) >> 5779 pwq_adjust_max_active(pwq); 6818 mutex_unlock(&wq->mutex); 5780 mutex_unlock(&wq->mutex); 6819 } 5781 } 6820 5782 6821 out_unlock: 5783 out_unlock: 6822 mutex_unlock(&wq_pool_mutex); 5784 mutex_unlock(&wq_pool_mutex); 6823 } 5785 } 6824 #endif /* CONFIG_FREEZER */ 5786 #endif /* CONFIG_FREEZER */ 6825 5787 6826 static int workqueue_apply_unbound_cpumask(co 5788 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6827 { 5789 { 6828 LIST_HEAD(ctxs); 5790 LIST_HEAD(ctxs); 6829 int ret = 0; 5791 int ret = 0; 6830 struct workqueue_struct *wq; 5792 struct workqueue_struct *wq; 6831 struct apply_wqattrs_ctx *ctx, *n; 5793 struct apply_wqattrs_ctx *ctx, *n; 6832 5794 6833 lockdep_assert_held(&wq_pool_mutex); 5795 lockdep_assert_held(&wq_pool_mutex); 6834 5796 6835 list_for_each_entry(wq, &workqueues, 5797 list_for_each_entry(wq, &workqueues, list) { 6836 if (!(wq->flags & WQ_UNBOUND) !! 5798 if (!(wq->flags & WQ_UNBOUND)) >> 5799 continue; >> 5800 /* creating multiple pwqs breaks ordering guarantee */ >> 5801 if (wq->flags & __WQ_ORDERED) 6837 continue; 5802 continue; 6838 5803 6839 ctx = apply_wqattrs_prepare(w 5804 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6840 if (IS_ERR(ctx)) { 5805 if (IS_ERR(ctx)) { 6841 ret = PTR_ERR(ctx); 5806 ret = PTR_ERR(ctx); 6842 break; 5807 break; 6843 } 5808 } 6844 5809 6845 list_add_tail(&ctx->list, &ct 5810 list_add_tail(&ctx->list, &ctxs); 6846 } 5811 } 6847 5812 6848 list_for_each_entry_safe(ctx, n, &ctx 5813 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6849 if (!ret) 5814 if (!ret) 6850 apply_wqattrs_commit( 5815 apply_wqattrs_commit(ctx); 6851 apply_wqattrs_cleanup(ctx); 5816 apply_wqattrs_cleanup(ctx); 6852 } 5817 } 6853 5818 6854 if (!ret) { 5819 if (!ret) { 6855 mutex_lock(&wq_pool_attach_mu 5820 mutex_lock(&wq_pool_attach_mutex); 6856 cpumask_copy(wq_unbound_cpuma 5821 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6857 mutex_unlock(&wq_pool_attach_ 5822 mutex_unlock(&wq_pool_attach_mutex); 6858 } 5823 } 6859 return ret; 5824 return ret; 6860 } 5825 } 6861 5826 6862 /** 5827 /** 6863 * workqueue_unbound_exclude_cpumask - Exclud !! 5828 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 6864 * @exclude_cpumask: the cpumask to be exclud !! 5829 * @cpumask: the cpumask to set 6865 * 5830 * 6866 * This function can be called from cpuset co !! 5831 * The low-level workqueues cpumask is a global cpumask that limits 6867 * CPUs that should be excluded from wq_unbou !! 5832 * the affinity of all unbound workqueues. This function check the @cpumask >> 5833 * and apply it to all unbound workqueues and updates all pwqs of them. >> 5834 * >> 5835 * Return: 0 - Success >> 5836 * -EINVAL - Invalid @cpumask >> 5837 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 6868 */ 5838 */ 6869 int workqueue_unbound_exclude_cpumask(cpumask !! 5839 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 6870 { 5840 { 6871 cpumask_var_t cpumask; !! 5841 int ret = -EINVAL; 6872 int ret = 0; << 6873 << 6874 if (!zalloc_cpumask_var(&cpumask, GFP << 6875 return -ENOMEM; << 6876 << 6877 mutex_lock(&wq_pool_mutex); << 6878 5842 6879 /* 5843 /* 6880 * If the operation fails, it will fa !! 5844 * Not excluding isolated cpus on purpose. 6881 * wq_requested_unbound_cpumask which !! 5845 * If the user wishes to include them, we allow that. 6882 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) ho !! 5846 */ 6883 * by any subsequent write to workque !! 5847 cpumask_and(cpumask, cpumask, cpu_possible_mask); 6884 */ !! 5848 if (!cpumask_empty(cpumask)) { 6885 if (!cpumask_andnot(cpumask, wq_reque !! 5849 apply_wqattrs_lock(); 6886 cpumask_copy(cpumask, wq_requ !! 5850 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 6887 if (!cpumask_equal(cpumask, wq_unboun !! 5851 ret = 0; >> 5852 goto out_unlock; >> 5853 } >> 5854 6888 ret = workqueue_apply_unbound 5855 ret = workqueue_apply_unbound_cpumask(cpumask); 6889 5856 6890 /* Save the current isolated cpumask !! 5857 out_unlock: 6891 if (!ret) !! 5858 apply_wqattrs_unlock(); 6892 cpumask_copy(wq_isolated_cpum !! 5859 } 6893 5860 6894 mutex_unlock(&wq_pool_mutex); << 6895 free_cpumask_var(cpumask); << 6896 return ret; 5861 return ret; 6897 } 5862 } 6898 5863 6899 static int parse_affn_scope(const char *val) 5864 static int parse_affn_scope(const char *val) 6900 { 5865 { 6901 int i; 5866 int i; 6902 5867 6903 for (i = 0; i < ARRAY_SIZE(wq_affn_na 5868 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6904 if (!strncasecmp(val, wq_affn 5869 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6905 return i; 5870 return i; 6906 } 5871 } 6907 return -EINVAL; 5872 return -EINVAL; 6908 } 5873 } 6909 5874 6910 static int wq_affn_dfl_set(const char *val, c 5875 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6911 { 5876 { 6912 struct workqueue_struct *wq; 5877 struct workqueue_struct *wq; 6913 int affn, cpu; 5878 int affn, cpu; 6914 5879 6915 affn = parse_affn_scope(val); 5880 affn = parse_affn_scope(val); 6916 if (affn < 0) 5881 if (affn < 0) 6917 return affn; 5882 return affn; 6918 if (affn == WQ_AFFN_DFL) 5883 if (affn == WQ_AFFN_DFL) 6919 return -EINVAL; 5884 return -EINVAL; 6920 5885 6921 cpus_read_lock(); 5886 cpus_read_lock(); 6922 mutex_lock(&wq_pool_mutex); 5887 mutex_lock(&wq_pool_mutex); 6923 5888 6924 wq_affn_dfl = affn; 5889 wq_affn_dfl = affn; 6925 5890 6926 list_for_each_entry(wq, &workqueues, 5891 list_for_each_entry(wq, &workqueues, list) { 6927 for_each_online_cpu(cpu) !! 5892 for_each_online_cpu(cpu) { 6928 unbound_wq_update_pwq !! 5893 wq_update_pod(wq, cpu, cpu, true); >> 5894 } 6929 } 5895 } 6930 5896 6931 mutex_unlock(&wq_pool_mutex); 5897 mutex_unlock(&wq_pool_mutex); 6932 cpus_read_unlock(); 5898 cpus_read_unlock(); 6933 5899 6934 return 0; 5900 return 0; 6935 } 5901 } 6936 5902 6937 static int wq_affn_dfl_get(char *buffer, cons 5903 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6938 { 5904 { 6939 return scnprintf(buffer, PAGE_SIZE, " 5905 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6940 } 5906 } 6941 5907 6942 static const struct kernel_param_ops wq_affn_ 5908 static const struct kernel_param_ops wq_affn_dfl_ops = { 6943 .set = wq_affn_dfl_set, 5909 .set = wq_affn_dfl_set, 6944 .get = wq_affn_dfl_get, 5910 .get = wq_affn_dfl_get, 6945 }; 5911 }; 6946 5912 6947 module_param_cb(default_affinity_scope, &wq_a 5913 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6948 5914 6949 #ifdef CONFIG_SYSFS 5915 #ifdef CONFIG_SYSFS 6950 /* 5916 /* 6951 * Workqueues with WQ_SYSFS flag set is visib 5917 * Workqueues with WQ_SYSFS flag set is visible to userland via 6952 * /sys/bus/workqueue/devices/WQ_NAME. All v 5918 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6953 * following attributes. 5919 * following attributes. 6954 * 5920 * 6955 * per_cpu RO bool : whether the 5921 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6956 * max_active RW int : maximum num 5922 * max_active RW int : maximum number of in-flight work items 6957 * 5923 * 6958 * Unbound workqueues have the following extr 5924 * Unbound workqueues have the following extra attributes. 6959 * 5925 * 6960 * nice RW int : nice value 5926 * nice RW int : nice value of the workers 6961 * cpumask RW mask : bitmask of 5927 * cpumask RW mask : bitmask of allowed CPUs for the workers 6962 * affinity_scope RW str : worker CPU 5928 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6963 * affinity_strict RW bool : worker CPU 5929 * affinity_strict RW bool : worker CPU affinity is strict 6964 */ 5930 */ 6965 struct wq_device { 5931 struct wq_device { 6966 struct workqueue_struct *wq; 5932 struct workqueue_struct *wq; 6967 struct device dev; 5933 struct device dev; 6968 }; 5934 }; 6969 5935 6970 static struct workqueue_struct *dev_to_wq(str 5936 static struct workqueue_struct *dev_to_wq(struct device *dev) 6971 { 5937 { 6972 struct wq_device *wq_dev = container_ 5938 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6973 5939 6974 return wq_dev->wq; 5940 return wq_dev->wq; 6975 } 5941 } 6976 5942 6977 static ssize_t per_cpu_show(struct device *de 5943 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6978 char *buf) 5944 char *buf) 6979 { 5945 { 6980 struct workqueue_struct *wq = dev_to_ 5946 struct workqueue_struct *wq = dev_to_wq(dev); 6981 5947 6982 return scnprintf(buf, PAGE_SIZE, "%d\ 5948 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6983 } 5949 } 6984 static DEVICE_ATTR_RO(per_cpu); 5950 static DEVICE_ATTR_RO(per_cpu); 6985 5951 6986 static ssize_t max_active_show(struct device 5952 static ssize_t max_active_show(struct device *dev, 6987 struct device_ 5953 struct device_attribute *attr, char *buf) 6988 { 5954 { 6989 struct workqueue_struct *wq = dev_to_ 5955 struct workqueue_struct *wq = dev_to_wq(dev); 6990 5956 6991 return scnprintf(buf, PAGE_SIZE, "%d\ 5957 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6992 } 5958 } 6993 5959 6994 static ssize_t max_active_store(struct device 5960 static ssize_t max_active_store(struct device *dev, 6995 struct device 5961 struct device_attribute *attr, const char *buf, 6996 size_t count) 5962 size_t count) 6997 { 5963 { 6998 struct workqueue_struct *wq = dev_to_ 5964 struct workqueue_struct *wq = dev_to_wq(dev); 6999 int val; 5965 int val; 7000 5966 7001 if (sscanf(buf, "%d", &val) != 1 || v 5967 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7002 return -EINVAL; 5968 return -EINVAL; 7003 5969 7004 workqueue_set_max_active(wq, val); 5970 workqueue_set_max_active(wq, val); 7005 return count; 5971 return count; 7006 } 5972 } 7007 static DEVICE_ATTR_RW(max_active); 5973 static DEVICE_ATTR_RW(max_active); 7008 5974 7009 static struct attribute *wq_sysfs_attrs[] = { 5975 static struct attribute *wq_sysfs_attrs[] = { 7010 &dev_attr_per_cpu.attr, 5976 &dev_attr_per_cpu.attr, 7011 &dev_attr_max_active.attr, 5977 &dev_attr_max_active.attr, 7012 NULL, 5978 NULL, 7013 }; 5979 }; 7014 ATTRIBUTE_GROUPS(wq_sysfs); 5980 ATTRIBUTE_GROUPS(wq_sysfs); 7015 5981 7016 static ssize_t wq_nice_show(struct device *de 5982 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7017 char *buf) 5983 char *buf) 7018 { 5984 { 7019 struct workqueue_struct *wq = dev_to_ 5985 struct workqueue_struct *wq = dev_to_wq(dev); 7020 int written; 5986 int written; 7021 5987 7022 mutex_lock(&wq->mutex); 5988 mutex_lock(&wq->mutex); 7023 written = scnprintf(buf, PAGE_SIZE, " 5989 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7024 mutex_unlock(&wq->mutex); 5990 mutex_unlock(&wq->mutex); 7025 5991 7026 return written; 5992 return written; 7027 } 5993 } 7028 5994 7029 /* prepare workqueue_attrs for sysfs store op 5995 /* prepare workqueue_attrs for sysfs store operations */ 7030 static struct workqueue_attrs *wq_sysfs_prep_ 5996 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7031 { 5997 { 7032 struct workqueue_attrs *attrs; 5998 struct workqueue_attrs *attrs; 7033 5999 7034 lockdep_assert_held(&wq_pool_mutex); 6000 lockdep_assert_held(&wq_pool_mutex); 7035 6001 7036 attrs = alloc_workqueue_attrs(); 6002 attrs = alloc_workqueue_attrs(); 7037 if (!attrs) 6003 if (!attrs) 7038 return NULL; 6004 return NULL; 7039 6005 7040 copy_workqueue_attrs(attrs, wq->unbou 6006 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7041 return attrs; 6007 return attrs; 7042 } 6008 } 7043 6009 7044 static ssize_t wq_nice_store(struct device *d 6010 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7045 const char *buf, 6011 const char *buf, size_t count) 7046 { 6012 { 7047 struct workqueue_struct *wq = dev_to_ 6013 struct workqueue_struct *wq = dev_to_wq(dev); 7048 struct workqueue_attrs *attrs; 6014 struct workqueue_attrs *attrs; 7049 int ret = -ENOMEM; 6015 int ret = -ENOMEM; 7050 6016 7051 apply_wqattrs_lock(); 6017 apply_wqattrs_lock(); 7052 6018 7053 attrs = wq_sysfs_prep_attrs(wq); 6019 attrs = wq_sysfs_prep_attrs(wq); 7054 if (!attrs) 6020 if (!attrs) 7055 goto out_unlock; 6021 goto out_unlock; 7056 6022 7057 if (sscanf(buf, "%d", &attrs->nice) = 6023 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7058 attrs->nice >= MIN_NICE && attrs- 6024 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7059 ret = apply_workqueue_attrs_l 6025 ret = apply_workqueue_attrs_locked(wq, attrs); 7060 else 6026 else 7061 ret = -EINVAL; 6027 ret = -EINVAL; 7062 6028 7063 out_unlock: 6029 out_unlock: 7064 apply_wqattrs_unlock(); 6030 apply_wqattrs_unlock(); 7065 free_workqueue_attrs(attrs); 6031 free_workqueue_attrs(attrs); 7066 return ret ?: count; 6032 return ret ?: count; 7067 } 6033 } 7068 6034 7069 static ssize_t wq_cpumask_show(struct device 6035 static ssize_t wq_cpumask_show(struct device *dev, 7070 struct device_ 6036 struct device_attribute *attr, char *buf) 7071 { 6037 { 7072 struct workqueue_struct *wq = dev_to_ 6038 struct workqueue_struct *wq = dev_to_wq(dev); 7073 int written; 6039 int written; 7074 6040 7075 mutex_lock(&wq->mutex); 6041 mutex_lock(&wq->mutex); 7076 written = scnprintf(buf, PAGE_SIZE, " 6042 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7077 cpumask_pr_args(w 6043 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7078 mutex_unlock(&wq->mutex); 6044 mutex_unlock(&wq->mutex); 7079 return written; 6045 return written; 7080 } 6046 } 7081 6047 7082 static ssize_t wq_cpumask_store(struct device 6048 static ssize_t wq_cpumask_store(struct device *dev, 7083 struct device 6049 struct device_attribute *attr, 7084 const char *b 6050 const char *buf, size_t count) 7085 { 6051 { 7086 struct workqueue_struct *wq = dev_to_ 6052 struct workqueue_struct *wq = dev_to_wq(dev); 7087 struct workqueue_attrs *attrs; 6053 struct workqueue_attrs *attrs; 7088 int ret = -ENOMEM; 6054 int ret = -ENOMEM; 7089 6055 7090 apply_wqattrs_lock(); 6056 apply_wqattrs_lock(); 7091 6057 7092 attrs = wq_sysfs_prep_attrs(wq); 6058 attrs = wq_sysfs_prep_attrs(wq); 7093 if (!attrs) 6059 if (!attrs) 7094 goto out_unlock; 6060 goto out_unlock; 7095 6061 7096 ret = cpumask_parse(buf, attrs->cpuma 6062 ret = cpumask_parse(buf, attrs->cpumask); 7097 if (!ret) 6063 if (!ret) 7098 ret = apply_workqueue_attrs_l 6064 ret = apply_workqueue_attrs_locked(wq, attrs); 7099 6065 7100 out_unlock: 6066 out_unlock: 7101 apply_wqattrs_unlock(); 6067 apply_wqattrs_unlock(); 7102 free_workqueue_attrs(attrs); 6068 free_workqueue_attrs(attrs); 7103 return ret ?: count; 6069 return ret ?: count; 7104 } 6070 } 7105 6071 7106 static ssize_t wq_affn_scope_show(struct devi 6072 static ssize_t wq_affn_scope_show(struct device *dev, 7107 struct devi 6073 struct device_attribute *attr, char *buf) 7108 { 6074 { 7109 struct workqueue_struct *wq = dev_to_ 6075 struct workqueue_struct *wq = dev_to_wq(dev); 7110 int written; 6076 int written; 7111 6077 7112 mutex_lock(&wq->mutex); 6078 mutex_lock(&wq->mutex); 7113 if (wq->unbound_attrs->affn_scope == 6079 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7114 written = scnprintf(buf, PAGE 6080 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7115 wq_affn_n 6081 wq_affn_names[WQ_AFFN_DFL], 7116 wq_affn_n 6082 wq_affn_names[wq_affn_dfl]); 7117 else 6083 else 7118 written = scnprintf(buf, PAGE 6084 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7119 wq_affn_n 6085 wq_affn_names[wq->unbound_attrs->affn_scope]); 7120 mutex_unlock(&wq->mutex); 6086 mutex_unlock(&wq->mutex); 7121 6087 7122 return written; 6088 return written; 7123 } 6089 } 7124 6090 7125 static ssize_t wq_affn_scope_store(struct dev 6091 static ssize_t wq_affn_scope_store(struct device *dev, 7126 struct dev 6092 struct device_attribute *attr, 7127 const char 6093 const char *buf, size_t count) 7128 { 6094 { 7129 struct workqueue_struct *wq = dev_to_ 6095 struct workqueue_struct *wq = dev_to_wq(dev); 7130 struct workqueue_attrs *attrs; 6096 struct workqueue_attrs *attrs; 7131 int affn, ret = -ENOMEM; 6097 int affn, ret = -ENOMEM; 7132 6098 7133 affn = parse_affn_scope(buf); 6099 affn = parse_affn_scope(buf); 7134 if (affn < 0) 6100 if (affn < 0) 7135 return affn; 6101 return affn; 7136 6102 7137 apply_wqattrs_lock(); 6103 apply_wqattrs_lock(); 7138 attrs = wq_sysfs_prep_attrs(wq); 6104 attrs = wq_sysfs_prep_attrs(wq); 7139 if (attrs) { 6105 if (attrs) { 7140 attrs->affn_scope = affn; 6106 attrs->affn_scope = affn; 7141 ret = apply_workqueue_attrs_l 6107 ret = apply_workqueue_attrs_locked(wq, attrs); 7142 } 6108 } 7143 apply_wqattrs_unlock(); 6109 apply_wqattrs_unlock(); 7144 free_workqueue_attrs(attrs); 6110 free_workqueue_attrs(attrs); 7145 return ret ?: count; 6111 return ret ?: count; 7146 } 6112 } 7147 6113 7148 static ssize_t wq_affinity_strict_show(struct 6114 static ssize_t wq_affinity_strict_show(struct device *dev, 7149 struct 6115 struct device_attribute *attr, char *buf) 7150 { 6116 { 7151 struct workqueue_struct *wq = dev_to_ 6117 struct workqueue_struct *wq = dev_to_wq(dev); 7152 6118 7153 return scnprintf(buf, PAGE_SIZE, "%d\ 6119 return scnprintf(buf, PAGE_SIZE, "%d\n", 7154 wq->unbound_attrs->a 6120 wq->unbound_attrs->affn_strict); 7155 } 6121 } 7156 6122 7157 static ssize_t wq_affinity_strict_store(struc 6123 static ssize_t wq_affinity_strict_store(struct device *dev, 7158 struc 6124 struct device_attribute *attr, 7159 const 6125 const char *buf, size_t count) 7160 { 6126 { 7161 struct workqueue_struct *wq = dev_to_ 6127 struct workqueue_struct *wq = dev_to_wq(dev); 7162 struct workqueue_attrs *attrs; 6128 struct workqueue_attrs *attrs; 7163 int v, ret = -ENOMEM; 6129 int v, ret = -ENOMEM; 7164 6130 7165 if (sscanf(buf, "%d", &v) != 1) 6131 if (sscanf(buf, "%d", &v) != 1) 7166 return -EINVAL; 6132 return -EINVAL; 7167 6133 7168 apply_wqattrs_lock(); 6134 apply_wqattrs_lock(); 7169 attrs = wq_sysfs_prep_attrs(wq); 6135 attrs = wq_sysfs_prep_attrs(wq); 7170 if (attrs) { 6136 if (attrs) { 7171 attrs->affn_strict = (bool)v; 6137 attrs->affn_strict = (bool)v; 7172 ret = apply_workqueue_attrs_l 6138 ret = apply_workqueue_attrs_locked(wq, attrs); 7173 } 6139 } 7174 apply_wqattrs_unlock(); 6140 apply_wqattrs_unlock(); 7175 free_workqueue_attrs(attrs); 6141 free_workqueue_attrs(attrs); 7176 return ret ?: count; 6142 return ret ?: count; 7177 } 6143 } 7178 6144 7179 static struct device_attribute wq_sysfs_unbou 6145 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7180 __ATTR(nice, 0644, wq_nice_show, wq_n 6146 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7181 __ATTR(cpumask, 0644, wq_cpumask_show 6147 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7182 __ATTR(affinity_scope, 0644, wq_affn_ 6148 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7183 __ATTR(affinity_strict, 0644, wq_affi 6149 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7184 __ATTR_NULL, 6150 __ATTR_NULL, 7185 }; 6151 }; 7186 6152 7187 static const struct bus_type wq_subsys = { !! 6153 static struct bus_type wq_subsys = { 7188 .name = "wo 6154 .name = "workqueue", 7189 .dev_groups = wq_ 6155 .dev_groups = wq_sysfs_groups, 7190 }; 6156 }; 7191 6157 7192 /** !! 6158 static ssize_t wq_unbound_cpumask_show(struct device *dev, 7193 * workqueue_set_unbound_cpumask - Set the l !! 6159 struct device_attribute *attr, char *buf) 7194 * @cpumask: the cpumask to set << 7195 * << 7196 * The low-level workqueues cpumask is a glo << 7197 * the affinity of all unbound workqueues. << 7198 * and apply it to all unbound workqueues an << 7199 * << 7200 * Return: 0 - Success << 7201 * -EINVAL - Invalid @cpumask << 7202 * -ENOMEM - Failed to allocate << 7203 */ << 7204 static int workqueue_set_unbound_cpumask(cpum << 7205 { << 7206 int ret = -EINVAL; << 7207 << 7208 /* << 7209 * Not excluding isolated cpus on pur << 7210 * If the user wishes to include them << 7211 */ << 7212 cpumask_and(cpumask, cpumask, cpu_pos << 7213 if (!cpumask_empty(cpumask)) { << 7214 ret = 0; << 7215 apply_wqattrs_lock(); << 7216 if (!cpumask_equal(cpumask, w << 7217 ret = workqueue_apply << 7218 if (!ret) << 7219 cpumask_copy(wq_reque << 7220 apply_wqattrs_unlock(); << 7221 } << 7222 << 7223 return ret; << 7224 } << 7225 << 7226 static ssize_t __wq_cpumask_show(struct devic << 7227 struct device_attribute *attr << 7228 { 6160 { 7229 int written; 6161 int written; 7230 6162 7231 mutex_lock(&wq_pool_mutex); 6163 mutex_lock(&wq_pool_mutex); 7232 written = scnprintf(buf, PAGE_SIZE, " !! 6164 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", >> 6165 cpumask_pr_args(wq_unbound_cpumask)); 7233 mutex_unlock(&wq_pool_mutex); 6166 mutex_unlock(&wq_pool_mutex); 7234 6167 7235 return written; 6168 return written; 7236 } 6169 } 7237 6170 7238 static ssize_t cpumask_requested_show(struct !! 6171 static ssize_t wq_unbound_cpumask_store(struct device *dev, 7239 struct device_attribute *attr << 7240 { << 7241 return __wq_cpumask_show(dev, attr, b << 7242 } << 7243 static DEVICE_ATTR_RO(cpumask_requested); << 7244 << 7245 static ssize_t cpumask_isolated_show(struct d << 7246 struct device_attribute *attr << 7247 { << 7248 return __wq_cpumask_show(dev, attr, b << 7249 } << 7250 static DEVICE_ATTR_RO(cpumask_isolated); << 7251 << 7252 static ssize_t cpumask_show(struct device *de << 7253 struct device_attribute *attr << 7254 { << 7255 return __wq_cpumask_show(dev, attr, b << 7256 } << 7257 << 7258 static ssize_t cpumask_store(struct device *d << 7259 struct device_attribute *attr 6172 struct device_attribute *attr, const char *buf, size_t count) 7260 { 6173 { 7261 cpumask_var_t cpumask; 6174 cpumask_var_t cpumask; 7262 int ret; 6175 int ret; 7263 6176 7264 if (!zalloc_cpumask_var(&cpumask, GFP 6177 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7265 return -ENOMEM; 6178 return -ENOMEM; 7266 6179 7267 ret = cpumask_parse(buf, cpumask); 6180 ret = cpumask_parse(buf, cpumask); 7268 if (!ret) 6181 if (!ret) 7269 ret = workqueue_set_unbound_c 6182 ret = workqueue_set_unbound_cpumask(cpumask); 7270 6183 7271 free_cpumask_var(cpumask); 6184 free_cpumask_var(cpumask); 7272 return ret ? ret : count; 6185 return ret ? ret : count; 7273 } 6186 } 7274 static DEVICE_ATTR_RW(cpumask); << 7275 6187 7276 static struct attribute *wq_sysfs_cpumask_att !! 6188 static struct device_attribute wq_sysfs_cpumask_attr = 7277 &dev_attr_cpumask.attr, !! 6189 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 7278 &dev_attr_cpumask_requested.attr, !! 6190 wq_unbound_cpumask_store); 7279 &dev_attr_cpumask_isolated.attr, << 7280 NULL, << 7281 }; << 7282 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); << 7283 6191 7284 static int __init wq_sysfs_init(void) 6192 static int __init wq_sysfs_init(void) 7285 { 6193 { 7286 return subsys_virtual_register(&wq_su !! 6194 struct device *dev_root; >> 6195 int err; >> 6196 >> 6197 err = subsys_virtual_register(&wq_subsys, NULL); >> 6198 if (err) >> 6199 return err; >> 6200 >> 6201 dev_root = bus_get_dev_root(&wq_subsys); >> 6202 if (dev_root) { >> 6203 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); >> 6204 put_device(dev_root); >> 6205 } >> 6206 return err; 7287 } 6207 } 7288 core_initcall(wq_sysfs_init); 6208 core_initcall(wq_sysfs_init); 7289 6209 7290 static void wq_device_release(struct device * 6210 static void wq_device_release(struct device *dev) 7291 { 6211 { 7292 struct wq_device *wq_dev = container_ 6212 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7293 6213 7294 kfree(wq_dev); 6214 kfree(wq_dev); 7295 } 6215 } 7296 6216 7297 /** 6217 /** 7298 * workqueue_sysfs_register - make a workqueu 6218 * workqueue_sysfs_register - make a workqueue visible in sysfs 7299 * @wq: the workqueue to register 6219 * @wq: the workqueue to register 7300 * 6220 * 7301 * Expose @wq in sysfs under /sys/bus/workque 6221 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7302 * alloc_workqueue*() automatically calls thi 6222 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7303 * which is the preferred method. 6223 * which is the preferred method. 7304 * 6224 * 7305 * Workqueue user should use this function di 6225 * Workqueue user should use this function directly iff it wants to apply 7306 * workqueue_attrs before making the workqueu 6226 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7307 * apply_workqueue_attrs() may race against u 6227 * apply_workqueue_attrs() may race against userland updating the 7308 * attributes. 6228 * attributes. 7309 * 6229 * 7310 * Return: 0 on success, -errno on failure. 6230 * Return: 0 on success, -errno on failure. 7311 */ 6231 */ 7312 int workqueue_sysfs_register(struct workqueue 6232 int workqueue_sysfs_register(struct workqueue_struct *wq) 7313 { 6233 { 7314 struct wq_device *wq_dev; 6234 struct wq_device *wq_dev; 7315 int ret; 6235 int ret; 7316 6236 7317 /* 6237 /* 7318 * Adjusting max_active breaks orderi !! 6238 * Adjusting max_active or creating new pwqs by applying 7319 * ordered workqueues. !! 6239 * attributes breaks ordering guarantee. Disallow exposing ordered >> 6240 * workqueues. 7320 */ 6241 */ 7321 if (WARN_ON(wq->flags & __WQ_ORDERED) !! 6242 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 7322 return -EINVAL; 6243 return -EINVAL; 7323 6244 7324 wq->wq_dev = wq_dev = kzalloc(sizeof( 6245 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7325 if (!wq_dev) 6246 if (!wq_dev) 7326 return -ENOMEM; 6247 return -ENOMEM; 7327 6248 7328 wq_dev->wq = wq; 6249 wq_dev->wq = wq; 7329 wq_dev->dev.bus = &wq_subsys; 6250 wq_dev->dev.bus = &wq_subsys; 7330 wq_dev->dev.release = wq_device_relea 6251 wq_dev->dev.release = wq_device_release; 7331 dev_set_name(&wq_dev->dev, "%s", wq-> 6252 dev_set_name(&wq_dev->dev, "%s", wq->name); 7332 6253 7333 /* 6254 /* 7334 * unbound_attrs are created separate 6255 * unbound_attrs are created separately. Suppress uevent until 7335 * everything is ready. 6256 * everything is ready. 7336 */ 6257 */ 7337 dev_set_uevent_suppress(&wq_dev->dev, 6258 dev_set_uevent_suppress(&wq_dev->dev, true); 7338 6259 7339 ret = device_register(&wq_dev->dev); 6260 ret = device_register(&wq_dev->dev); 7340 if (ret) { 6261 if (ret) { 7341 put_device(&wq_dev->dev); 6262 put_device(&wq_dev->dev); 7342 wq->wq_dev = NULL; 6263 wq->wq_dev = NULL; 7343 return ret; 6264 return ret; 7344 } 6265 } 7345 6266 7346 if (wq->flags & WQ_UNBOUND) { 6267 if (wq->flags & WQ_UNBOUND) { 7347 struct device_attribute *attr 6268 struct device_attribute *attr; 7348 6269 7349 for (attr = wq_sysfs_unbound_ 6270 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7350 ret = device_create_f 6271 ret = device_create_file(&wq_dev->dev, attr); 7351 if (ret) { 6272 if (ret) { 7352 device_unregi 6273 device_unregister(&wq_dev->dev); 7353 wq->wq_dev = 6274 wq->wq_dev = NULL; 7354 return ret; 6275 return ret; 7355 } 6276 } 7356 } 6277 } 7357 } 6278 } 7358 6279 7359 dev_set_uevent_suppress(&wq_dev->dev, 6280 dev_set_uevent_suppress(&wq_dev->dev, false); 7360 kobject_uevent(&wq_dev->dev.kobj, KOB 6281 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7361 return 0; 6282 return 0; 7362 } 6283 } 7363 6284 7364 /** 6285 /** 7365 * workqueue_sysfs_unregister - undo workqueu 6286 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7366 * @wq: the workqueue to unregister 6287 * @wq: the workqueue to unregister 7367 * 6288 * 7368 * If @wq is registered to sysfs by workqueue 6289 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7369 */ 6290 */ 7370 static void workqueue_sysfs_unregister(struct 6291 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7371 { 6292 { 7372 struct wq_device *wq_dev = wq->wq_dev 6293 struct wq_device *wq_dev = wq->wq_dev; 7373 6294 7374 if (!wq->wq_dev) 6295 if (!wq->wq_dev) 7375 return; 6296 return; 7376 6297 7377 wq->wq_dev = NULL; 6298 wq->wq_dev = NULL; 7378 device_unregister(&wq_dev->dev); 6299 device_unregister(&wq_dev->dev); 7379 } 6300 } 7380 #else /* CONFIG_SYSFS */ 6301 #else /* CONFIG_SYSFS */ 7381 static void workqueue_sysfs_unregister(struct 6302 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7382 #endif /* CONFIG_SYSFS */ 6303 #endif /* CONFIG_SYSFS */ 7383 6304 7384 /* 6305 /* 7385 * Workqueue watchdog. 6306 * Workqueue watchdog. 7386 * 6307 * 7387 * Stall may be caused by various bugs - miss 6308 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7388 * flush dependency, a concurrency managed wo 6309 * flush dependency, a concurrency managed work item which stays RUNNING 7389 * indefinitely. Workqueue stalls can be ver 6310 * indefinitely. Workqueue stalls can be very difficult to debug as the 7390 * usual warning mechanisms don't trigger and 6311 * usual warning mechanisms don't trigger and internal workqueue state is 7391 * largely opaque. 6312 * largely opaque. 7392 * 6313 * 7393 * Workqueue watchdog monitors all worker poo 6314 * Workqueue watchdog monitors all worker pools periodically and dumps 7394 * state if some pools failed to make forward 6315 * state if some pools failed to make forward progress for a while where 7395 * forward progress is defined as the first i 6316 * forward progress is defined as the first item on ->worklist changing. 7396 * 6317 * 7397 * This mechanism is controlled through the k 6318 * This mechanism is controlled through the kernel parameter 7398 * "workqueue.watchdog_thresh" which can be u 6319 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7399 * corresponding sysfs parameter file. 6320 * corresponding sysfs parameter file. 7400 */ 6321 */ 7401 #ifdef CONFIG_WQ_WATCHDOG 6322 #ifdef CONFIG_WQ_WATCHDOG 7402 6323 7403 static unsigned long wq_watchdog_thresh = 30; 6324 static unsigned long wq_watchdog_thresh = 30; 7404 static struct timer_list wq_watchdog_timer; 6325 static struct timer_list wq_watchdog_timer; 7405 6326 7406 static unsigned long wq_watchdog_touched = IN 6327 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7407 static DEFINE_PER_CPU(unsigned long, wq_watch 6328 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7408 6329 7409 /* 6330 /* 7410 * Show workers that might prevent the proces 6331 * Show workers that might prevent the processing of pending work items. 7411 * The only candidates are CPU-bound workers 6332 * The only candidates are CPU-bound workers in the running state. 7412 * Pending work items should be handled by an 6333 * Pending work items should be handled by another idle worker 7413 * in all other situations. 6334 * in all other situations. 7414 */ 6335 */ 7415 static void show_cpu_pool_hog(struct worker_p 6336 static void show_cpu_pool_hog(struct worker_pool *pool) 7416 { 6337 { 7417 struct worker *worker; 6338 struct worker *worker; 7418 unsigned long irq_flags; !! 6339 unsigned long flags; 7419 int bkt; 6340 int bkt; 7420 6341 7421 raw_spin_lock_irqsave(&pool->lock, ir !! 6342 raw_spin_lock_irqsave(&pool->lock, flags); 7422 6343 7423 hash_for_each(pool->busy_hash, bkt, w 6344 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7424 if (task_is_running(worker->t 6345 if (task_is_running(worker->task)) { 7425 /* 6346 /* 7426 * Defer printing to 6347 * Defer printing to avoid deadlocks in console 7427 * drivers that queue 6348 * drivers that queue work while holding locks 7428 * also taken in thei 6349 * also taken in their write paths. 7429 */ 6350 */ 7430 printk_deferred_enter 6351 printk_deferred_enter(); 7431 6352 7432 pr_info("pool %d:\n", 6353 pr_info("pool %d:\n", pool->id); 7433 sched_show_task(worke 6354 sched_show_task(worker->task); 7434 6355 7435 printk_deferred_exit( 6356 printk_deferred_exit(); 7436 } 6357 } 7437 } 6358 } 7438 6359 7439 raw_spin_unlock_irqrestore(&pool->loc !! 6360 raw_spin_unlock_irqrestore(&pool->lock, flags); 7440 } 6361 } 7441 6362 7442 static void show_cpu_pools_hogs(void) 6363 static void show_cpu_pools_hogs(void) 7443 { 6364 { 7444 struct worker_pool *pool; 6365 struct worker_pool *pool; 7445 int pi; 6366 int pi; 7446 6367 7447 pr_info("Showing backtraces of runnin 6368 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7448 6369 7449 rcu_read_lock(); 6370 rcu_read_lock(); 7450 6371 7451 for_each_pool(pool, pi) { 6372 for_each_pool(pool, pi) { 7452 if (pool->cpu_stall) 6373 if (pool->cpu_stall) 7453 show_cpu_pool_hog(poo 6374 show_cpu_pool_hog(pool); 7454 6375 7455 } 6376 } 7456 6377 7457 rcu_read_unlock(); 6378 rcu_read_unlock(); 7458 } 6379 } 7459 6380 7460 static void wq_watchdog_reset_touched(void) 6381 static void wq_watchdog_reset_touched(void) 7461 { 6382 { 7462 int cpu; 6383 int cpu; 7463 6384 7464 wq_watchdog_touched = jiffies; 6385 wq_watchdog_touched = jiffies; 7465 for_each_possible_cpu(cpu) 6386 for_each_possible_cpu(cpu) 7466 per_cpu(wq_watchdog_touched_c 6387 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7467 } 6388 } 7468 6389 7469 static void wq_watchdog_timer_fn(struct timer 6390 static void wq_watchdog_timer_fn(struct timer_list *unused) 7470 { 6391 { 7471 unsigned long thresh = READ_ONCE(wq_w 6392 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7472 bool lockup_detected = false; 6393 bool lockup_detected = false; 7473 bool cpu_pool_stall = false; 6394 bool cpu_pool_stall = false; 7474 unsigned long now = jiffies; 6395 unsigned long now = jiffies; 7475 struct worker_pool *pool; 6396 struct worker_pool *pool; 7476 int pi; 6397 int pi; 7477 6398 7478 if (!thresh) 6399 if (!thresh) 7479 return; 6400 return; 7480 6401 7481 rcu_read_lock(); 6402 rcu_read_lock(); 7482 6403 7483 for_each_pool(pool, pi) { 6404 for_each_pool(pool, pi) { 7484 unsigned long pool_ts, touche 6405 unsigned long pool_ts, touched, ts; 7485 6406 7486 pool->cpu_stall = false; 6407 pool->cpu_stall = false; 7487 if (list_empty(&pool->worklis 6408 if (list_empty(&pool->worklist)) 7488 continue; 6409 continue; 7489 6410 7490 /* 6411 /* 7491 * If a virtual machine is st 6412 * If a virtual machine is stopped by the host it can look to 7492 * the watchdog like a stall. 6413 * the watchdog like a stall. 7493 */ 6414 */ 7494 kvm_check_and_clear_guest_pau 6415 kvm_check_and_clear_guest_paused(); 7495 6416 7496 /* get the latest of pool and 6417 /* get the latest of pool and touched timestamps */ 7497 if (pool->cpu >= 0) 6418 if (pool->cpu >= 0) 7498 touched = READ_ONCE(p 6419 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7499 else 6420 else 7500 touched = READ_ONCE(w 6421 touched = READ_ONCE(wq_watchdog_touched); 7501 pool_ts = READ_ONCE(pool->wat 6422 pool_ts = READ_ONCE(pool->watchdog_ts); 7502 6423 7503 if (time_after(pool_ts, touch 6424 if (time_after(pool_ts, touched)) 7504 ts = pool_ts; 6425 ts = pool_ts; 7505 else 6426 else 7506 ts = touched; 6427 ts = touched; 7507 6428 7508 /* did we stall? */ 6429 /* did we stall? */ 7509 if (time_after(now, ts + thre 6430 if (time_after(now, ts + thresh)) { 7510 lockup_detected = tru 6431 lockup_detected = true; 7511 if (pool->cpu >= 0 && !! 6432 if (pool->cpu >= 0) { 7512 pool->cpu_sta 6433 pool->cpu_stall = true; 7513 cpu_pool_stal 6434 cpu_pool_stall = true; 7514 } 6435 } 7515 pr_emerg("BUG: workqu 6436 pr_emerg("BUG: workqueue lockup - pool"); 7516 pr_cont_pool_info(poo 6437 pr_cont_pool_info(pool); 7517 pr_cont(" stuck for % 6438 pr_cont(" stuck for %us!\n", 7518 jiffies_to_ms 6439 jiffies_to_msecs(now - pool_ts) / 1000); 7519 } 6440 } 7520 6441 7521 6442 7522 } 6443 } 7523 6444 7524 rcu_read_unlock(); 6445 rcu_read_unlock(); 7525 6446 7526 if (lockup_detected) 6447 if (lockup_detected) 7527 show_all_workqueues(); 6448 show_all_workqueues(); 7528 6449 7529 if (cpu_pool_stall) 6450 if (cpu_pool_stall) 7530 show_cpu_pools_hogs(); 6451 show_cpu_pools_hogs(); 7531 6452 7532 wq_watchdog_reset_touched(); 6453 wq_watchdog_reset_touched(); 7533 mod_timer(&wq_watchdog_timer, jiffies 6454 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7534 } 6455 } 7535 6456 7536 notrace void wq_watchdog_touch(int cpu) 6457 notrace void wq_watchdog_touch(int cpu) 7537 { 6458 { 7538 unsigned long thresh = READ_ONCE(wq_w 6459 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7539 unsigned long touch_ts = READ_ONCE(wq 6460 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7540 unsigned long now = jiffies; 6461 unsigned long now = jiffies; 7541 6462 7542 if (cpu >= 0) 6463 if (cpu >= 0) 7543 per_cpu(wq_watchdog_touched_c 6464 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7544 else 6465 else 7545 WARN_ONCE(1, "%s should be ca 6466 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7546 6467 7547 /* Don't unnecessarily store to globa 6468 /* Don't unnecessarily store to global cacheline */ 7548 if (time_after(now, touch_ts + thresh 6469 if (time_after(now, touch_ts + thresh / 4)) 7549 WRITE_ONCE(wq_watchdog_touche 6470 WRITE_ONCE(wq_watchdog_touched, jiffies); 7550 } 6471 } 7551 6472 7552 static void wq_watchdog_set_thresh(unsigned l 6473 static void wq_watchdog_set_thresh(unsigned long thresh) 7553 { 6474 { 7554 wq_watchdog_thresh = 0; 6475 wq_watchdog_thresh = 0; 7555 del_timer_sync(&wq_watchdog_timer); 6476 del_timer_sync(&wq_watchdog_timer); 7556 6477 7557 if (thresh) { 6478 if (thresh) { 7558 wq_watchdog_thresh = thresh; 6479 wq_watchdog_thresh = thresh; 7559 wq_watchdog_reset_touched(); 6480 wq_watchdog_reset_touched(); 7560 mod_timer(&wq_watchdog_timer, 6481 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7561 } 6482 } 7562 } 6483 } 7563 6484 7564 static int wq_watchdog_param_set_thresh(const 6485 static int wq_watchdog_param_set_thresh(const char *val, 7565 const 6486 const struct kernel_param *kp) 7566 { 6487 { 7567 unsigned long thresh; 6488 unsigned long thresh; 7568 int ret; 6489 int ret; 7569 6490 7570 ret = kstrtoul(val, 0, &thresh); 6491 ret = kstrtoul(val, 0, &thresh); 7571 if (ret) 6492 if (ret) 7572 return ret; 6493 return ret; 7573 6494 7574 if (system_wq) 6495 if (system_wq) 7575 wq_watchdog_set_thresh(thresh 6496 wq_watchdog_set_thresh(thresh); 7576 else 6497 else 7577 wq_watchdog_thresh = thresh; 6498 wq_watchdog_thresh = thresh; 7578 6499 7579 return 0; 6500 return 0; 7580 } 6501 } 7581 6502 7582 static const struct kernel_param_ops wq_watch 6503 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7583 .set = wq_watchdog_param_set_thres 6504 .set = wq_watchdog_param_set_thresh, 7584 .get = param_get_ulong, 6505 .get = param_get_ulong, 7585 }; 6506 }; 7586 6507 7587 module_param_cb(watchdog_thresh, &wq_watchdog 6508 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7588 0644); 6509 0644); 7589 6510 7590 static void wq_watchdog_init(void) 6511 static void wq_watchdog_init(void) 7591 { 6512 { 7592 timer_setup(&wq_watchdog_timer, wq_wa 6513 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7593 wq_watchdog_set_thresh(wq_watchdog_th 6514 wq_watchdog_set_thresh(wq_watchdog_thresh); 7594 } 6515 } 7595 6516 7596 #else /* CONFIG_WQ_WATCHDOG */ 6517 #else /* CONFIG_WQ_WATCHDOG */ 7597 6518 7598 static inline void wq_watchdog_init(void) { } 6519 static inline void wq_watchdog_init(void) { } 7599 6520 7600 #endif /* CONFIG_WQ_WATCHDOG */ 6521 #endif /* CONFIG_WQ_WATCHDOG */ 7601 6522 7602 static void bh_pool_kick_normal(struct irq_wo << 7603 { << 7604 raise_softirq_irqoff(TASKLET_SOFTIRQ) << 7605 } << 7606 << 7607 static void bh_pool_kick_highpri(struct irq_w << 7608 { << 7609 raise_softirq_irqoff(HI_SOFTIRQ); << 7610 } << 7611 << 7612 static void __init restrict_unbound_cpumask(c 6523 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7613 { 6524 { 7614 if (!cpumask_intersects(wq_unbound_cp 6525 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7615 pr_warn("workqueue: Restricti 6526 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7616 cpumask_pr_args(wq_un 6527 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7617 return; 6528 return; 7618 } 6529 } 7619 6530 7620 cpumask_and(wq_unbound_cpumask, wq_un 6531 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7621 } 6532 } 7622 6533 7623 static void __init init_cpu_worker_pool(struc << 7624 { << 7625 BUG_ON(init_worker_pool(pool)); << 7626 pool->cpu = cpu; << 7627 cpumask_copy(pool->attrs->cpumask, cp << 7628 cpumask_copy(pool->attrs->__pod_cpuma << 7629 pool->attrs->nice = nice; << 7630 pool->attrs->affn_strict = true; << 7631 pool->node = cpu_to_node(cpu); << 7632 << 7633 /* alloc pool ID */ << 7634 mutex_lock(&wq_pool_mutex); << 7635 BUG_ON(worker_pool_assign_id(pool)); << 7636 mutex_unlock(&wq_pool_mutex); << 7637 } << 7638 << 7639 /** 6534 /** 7640 * workqueue_init_early - early init for work 6535 * workqueue_init_early - early init for workqueue subsystem 7641 * 6536 * 7642 * This is the first step of three-staged wor 6537 * This is the first step of three-staged workqueue subsystem initialization and 7643 * invoked as soon as the bare basics - memor 6538 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7644 * up. It sets up all the data structures and 6539 * up. It sets up all the data structures and system workqueues and allows early 7645 * boot code to create workqueues and queue/c 6540 * boot code to create workqueues and queue/cancel work items. Actual work item 7646 * execution starts only after kthreads can b 6541 * execution starts only after kthreads can be created and scheduled right 7647 * before early initcalls. 6542 * before early initcalls. 7648 */ 6543 */ 7649 void __init workqueue_init_early(void) 6544 void __init workqueue_init_early(void) 7650 { 6545 { 7651 struct wq_pod_type *pt = &wq_pod_type 6546 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7652 int std_nice[NR_STD_WORKER_POOLS] = { 6547 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7653 void (*irq_work_fns[2])(struct irq_wo << 7654 << 7655 int i, cpu; 6548 int i, cpu; 7656 6549 7657 BUILD_BUG_ON(__alignof__(struct pool_ 6550 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7658 6551 7659 BUG_ON(!alloc_cpumask_var(&wq_online_ << 7660 BUG_ON(!alloc_cpumask_var(&wq_unbound 6552 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7661 BUG_ON(!alloc_cpumask_var(&wq_request << 7662 BUG_ON(!zalloc_cpumask_var(&wq_isolat << 7663 << 7664 cpumask_copy(wq_online_cpumask, cpu_o << 7665 cpumask_copy(wq_unbound_cpumask, cpu_ 6553 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7666 restrict_unbound_cpumask("HK_TYPE_WQ" 6554 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7667 restrict_unbound_cpumask("HK_TYPE_DOM 6555 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7668 if (!cpumask_empty(&wq_cmdline_cpumas 6556 if (!cpumask_empty(&wq_cmdline_cpumask)) 7669 restrict_unbound_cpumask("wor 6557 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7670 6558 7671 cpumask_copy(wq_requested_unbound_cpu << 7672 << 7673 pwq_cache = KMEM_CACHE(pool_workqueue 6559 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7674 6560 7675 unbound_wq_update_pwq_attrs_buf = all !! 6561 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 7676 BUG_ON(!unbound_wq_update_pwq_attrs_b !! 6562 BUG_ON(!wq_update_pod_attrs_buf); 7677 << 7678 /* << 7679 * If nohz_full is enabled, set power << 7680 * This allows workqueue items to be << 7681 */ << 7682 if (housekeeping_enabled(HK_TYPE_TICK << 7683 wq_power_efficient = true; << 7684 6563 7685 /* initialize WQ_AFFN_SYSTEM pods */ 6564 /* initialize WQ_AFFN_SYSTEM pods */ 7686 pt->pod_cpus = kcalloc(1, sizeof(pt-> 6565 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7687 pt->pod_node = kcalloc(1, sizeof(pt-> 6566 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7688 pt->cpu_pod = kcalloc(nr_cpu_ids, siz 6567 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7689 BUG_ON(!pt->pod_cpus || !pt->pod_node 6568 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7690 6569 7691 BUG_ON(!zalloc_cpumask_var_node(&pt-> 6570 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7692 6571 7693 pt->nr_pods = 1; 6572 pt->nr_pods = 1; 7694 cpumask_copy(pt->pod_cpus[0], cpu_pos 6573 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7695 pt->pod_node[0] = NUMA_NO_NODE; 6574 pt->pod_node[0] = NUMA_NO_NODE; 7696 pt->cpu_pod[0] = 0; 6575 pt->cpu_pod[0] = 0; 7697 6576 7698 /* initialize BH and CPU pools */ !! 6577 /* initialize CPU pools */ 7699 for_each_possible_cpu(cpu) { 6578 for_each_possible_cpu(cpu) { 7700 struct worker_pool *pool; 6579 struct worker_pool *pool; 7701 6580 7702 i = 0; 6581 i = 0; 7703 for_each_bh_worker_pool(pool, !! 6582 for_each_cpu_worker_pool(pool, cpu) { 7704 init_cpu_worker_pool( !! 6583 BUG_ON(init_worker_pool(pool)); 7705 pool->flags |= POOL_B !! 6584 pool->cpu = cpu; 7706 init_irq_work(bh_pool !! 6585 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7707 i++; !! 6586 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7708 } !! 6587 pool->attrs->nice = std_nice[i++]; >> 6588 pool->attrs->affn_strict = true; >> 6589 pool->node = cpu_to_node(cpu); 7709 6590 7710 i = 0; !! 6591 /* alloc pool ID */ 7711 for_each_cpu_worker_pool(pool !! 6592 mutex_lock(&wq_pool_mutex); 7712 init_cpu_worker_pool( !! 6593 BUG_ON(worker_pool_assign_id(pool)); >> 6594 mutex_unlock(&wq_pool_mutex); >> 6595 } 7713 } 6596 } 7714 6597 7715 /* create default unbound and ordered 6598 /* create default unbound and ordered wq attrs */ 7716 for (i = 0; i < NR_STD_WORKER_POOLS; 6599 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7717 struct workqueue_attrs *attrs 6600 struct workqueue_attrs *attrs; 7718 6601 7719 BUG_ON(!(attrs = alloc_workqu 6602 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7720 attrs->nice = std_nice[i]; 6603 attrs->nice = std_nice[i]; 7721 unbound_std_wq_attrs[i] = att 6604 unbound_std_wq_attrs[i] = attrs; 7722 6605 7723 /* 6606 /* 7724 * An ordered wq should have 6607 * An ordered wq should have only one pwq as ordering is 7725 * guaranteed by max_active w 6608 * guaranteed by max_active which is enforced by pwqs. 7726 */ 6609 */ 7727 BUG_ON(!(attrs = alloc_workqu 6610 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7728 attrs->nice = std_nice[i]; 6611 attrs->nice = std_nice[i]; 7729 attrs->ordered = true; 6612 attrs->ordered = true; 7730 ordered_wq_attrs[i] = attrs; 6613 ordered_wq_attrs[i] = attrs; 7731 } 6614 } 7732 6615 7733 system_wq = alloc_workqueue("events", 6616 system_wq = alloc_workqueue("events", 0, 0); 7734 system_highpri_wq = alloc_workqueue(" 6617 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7735 system_long_wq = alloc_workqueue("eve 6618 system_long_wq = alloc_workqueue("events_long", 0, 0); 7736 system_unbound_wq = alloc_workqueue(" 6619 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7737 W 6620 WQ_MAX_ACTIVE); 7738 system_freezable_wq = alloc_workqueue 6621 system_freezable_wq = alloc_workqueue("events_freezable", 7739 6622 WQ_FREEZABLE, 0); 7740 system_power_efficient_wq = alloc_wor 6623 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7741 6624 WQ_POWER_EFFICIENT, 0); 7742 system_freezable_power_efficient_wq = !! 6625 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 7743 6626 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7744 6627 0); 7745 system_bh_wq = alloc_workqueue("event << 7746 system_bh_highpri_wq = alloc_workqueu << 7747 << 7748 BUG_ON(!system_wq || !system_highpri_ 6628 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7749 !system_unbound_wq || !system_ 6629 !system_unbound_wq || !system_freezable_wq || 7750 !system_power_efficient_wq || 6630 !system_power_efficient_wq || 7751 !system_freezable_power_effici !! 6631 !system_freezable_power_efficient_wq); 7752 !system_bh_wq || !system_bh_hi << 7753 } 6632 } 7754 6633 7755 static void __init wq_cpu_intensive_thresh_in 6634 static void __init wq_cpu_intensive_thresh_init(void) 7756 { 6635 { 7757 unsigned long thresh; 6636 unsigned long thresh; 7758 unsigned long bogo; 6637 unsigned long bogo; 7759 6638 7760 pwq_release_worker = kthread_create_w 6639 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7761 BUG_ON(IS_ERR(pwq_release_worker)); 6640 BUG_ON(IS_ERR(pwq_release_worker)); 7762 6641 7763 /* if the user set it to a specific v 6642 /* if the user set it to a specific value, keep it */ 7764 if (wq_cpu_intensive_thresh_us != ULO 6643 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7765 return; 6644 return; 7766 6645 7767 /* 6646 /* 7768 * The default of 10ms is derived fro 6647 * The default of 10ms is derived from the fact that most modern (as of 7769 * 2023) processors can do a lot in 1 6648 * 2023) processors can do a lot in 10ms and that it's just below what 7770 * most consider human-perceivable. H 6649 * most consider human-perceivable. However, the kernel also runs on a 7771 * lot slower CPUs including microcon 6650 * lot slower CPUs including microcontrollers where the threshold is way 7772 * too low. 6651 * too low. 7773 * 6652 * 7774 * Let's scale up the threshold upto 6653 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7775 * This is by no means accurate but i 6654 * This is by no means accurate but it doesn't have to be. The mechanism 7776 * is still useful even when the thre 6655 * is still useful even when the threshold is fully scaled up. Also, as 7777 * the reports would usually be appli 6656 * the reports would usually be applicable to everyone, some machines 7778 * operating on longer thresholds won 6657 * operating on longer thresholds won't significantly diminish their 7779 * usefulness. 6658 * usefulness. 7780 */ 6659 */ 7781 thresh = 10 * USEC_PER_MSEC; 6660 thresh = 10 * USEC_PER_MSEC; 7782 6661 7783 /* see init/calibrate.c for lpj -> Bo 6662 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7784 bogo = max_t(unsigned long, loops_per 6663 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7785 if (bogo < 4000) 6664 if (bogo < 4000) 7786 thresh = min_t(unsigned long, 6665 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7787 6666 7788 pr_debug("wq_cpu_intensive_thresh: lp 6667 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7789 loops_per_jiffy, bogo, thres 6668 loops_per_jiffy, bogo, thresh); 7790 6669 7791 wq_cpu_intensive_thresh_us = thresh; 6670 wq_cpu_intensive_thresh_us = thresh; 7792 } 6671 } 7793 6672 7794 /** 6673 /** 7795 * workqueue_init - bring workqueue subsystem 6674 * workqueue_init - bring workqueue subsystem fully online 7796 * 6675 * 7797 * This is the second step of three-staged wo 6676 * This is the second step of three-staged workqueue subsystem initialization 7798 * and invoked as soon as kthreads can be cre 6677 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7799 * been created and work items queued on them 6678 * been created and work items queued on them, but there are no kworkers 7800 * executing the work items yet. Populate the 6679 * executing the work items yet. Populate the worker pools with the initial 7801 * workers and enable future kworker creation 6680 * workers and enable future kworker creations. 7802 */ 6681 */ 7803 void __init workqueue_init(void) 6682 void __init workqueue_init(void) 7804 { 6683 { 7805 struct workqueue_struct *wq; 6684 struct workqueue_struct *wq; 7806 struct worker_pool *pool; 6685 struct worker_pool *pool; 7807 int cpu, bkt; 6686 int cpu, bkt; 7808 6687 7809 wq_cpu_intensive_thresh_init(); 6688 wq_cpu_intensive_thresh_init(); 7810 6689 7811 mutex_lock(&wq_pool_mutex); 6690 mutex_lock(&wq_pool_mutex); 7812 6691 7813 /* 6692 /* 7814 * Per-cpu pools created earlier coul 6693 * Per-cpu pools created earlier could be missing node hint. Fix them 7815 * up. Also, create a rescuer for wor 6694 * up. Also, create a rescuer for workqueues that requested it. 7816 */ 6695 */ 7817 for_each_possible_cpu(cpu) { 6696 for_each_possible_cpu(cpu) { 7818 for_each_bh_worker_pool(pool, !! 6697 for_each_cpu_worker_pool(pool, cpu) { 7819 pool->node = cpu_to_n << 7820 for_each_cpu_worker_pool(pool << 7821 pool->node = cpu_to_n 6698 pool->node = cpu_to_node(cpu); >> 6699 } 7822 } 6700 } 7823 6701 7824 list_for_each_entry(wq, &workqueues, 6702 list_for_each_entry(wq, &workqueues, list) { 7825 WARN(init_rescuer(wq), 6703 WARN(init_rescuer(wq), 7826 "workqueue: failed to cr 6704 "workqueue: failed to create early rescuer for %s", 7827 wq->name); 6705 wq->name); 7828 } 6706 } 7829 6707 7830 mutex_unlock(&wq_pool_mutex); 6708 mutex_unlock(&wq_pool_mutex); 7831 6709 7832 /* !! 6710 /* create the initial workers */ 7833 * Create the initial workers. A BH p << 7834 * represents the shared BH execution << 7835 * affected by hotplug events. Create << 7836 * possible CPUs here. << 7837 */ << 7838 for_each_possible_cpu(cpu) << 7839 for_each_bh_worker_pool(pool, << 7840 BUG_ON(!create_worker << 7841 << 7842 for_each_online_cpu(cpu) { 6711 for_each_online_cpu(cpu) { 7843 for_each_cpu_worker_pool(pool 6712 for_each_cpu_worker_pool(pool, cpu) { 7844 pool->flags &= ~POOL_ 6713 pool->flags &= ~POOL_DISASSOCIATED; 7845 BUG_ON(!create_worker 6714 BUG_ON(!create_worker(pool)); 7846 } 6715 } 7847 } 6716 } 7848 6717 7849 hash_for_each(unbound_pool_hash, bkt, 6718 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7850 BUG_ON(!create_worker(pool)); 6719 BUG_ON(!create_worker(pool)); 7851 6720 7852 wq_online = true; 6721 wq_online = true; 7853 wq_watchdog_init(); 6722 wq_watchdog_init(); 7854 } 6723 } 7855 6724 7856 /* 6725 /* 7857 * Initialize @pt by first initializing @pt-> 6726 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7858 * @cpu_shares_pod(). Each subset of CPUs tha 6727 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7859 * and consecutive pod ID. The rest of @pt is 6728 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7860 */ 6729 */ 7861 static void __init init_pod_type(struct wq_po 6730 static void __init init_pod_type(struct wq_pod_type *pt, 7862 bool (*cpus_ 6731 bool (*cpus_share_pod)(int, int)) 7863 { 6732 { 7864 int cur, pre, cpu, pod; 6733 int cur, pre, cpu, pod; 7865 6734 7866 pt->nr_pods = 0; 6735 pt->nr_pods = 0; 7867 6736 7868 /* init @pt->cpu_pod[] according to @ 6737 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7869 pt->cpu_pod = kcalloc(nr_cpu_ids, siz 6738 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7870 BUG_ON(!pt->cpu_pod); 6739 BUG_ON(!pt->cpu_pod); 7871 6740 7872 for_each_possible_cpu(cur) { 6741 for_each_possible_cpu(cur) { 7873 for_each_possible_cpu(pre) { 6742 for_each_possible_cpu(pre) { 7874 if (pre >= cur) { 6743 if (pre >= cur) { 7875 pt->cpu_pod[c 6744 pt->cpu_pod[cur] = pt->nr_pods++; 7876 break; 6745 break; 7877 } 6746 } 7878 if (cpus_share_pod(cu 6747 if (cpus_share_pod(cur, pre)) { 7879 pt->cpu_pod[c 6748 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7880 break; 6749 break; 7881 } 6750 } 7882 } 6751 } 7883 } 6752 } 7884 6753 7885 /* init the rest to match @pt->cpu_po 6754 /* init the rest to match @pt->cpu_pod[] */ 7886 pt->pod_cpus = kcalloc(pt->nr_pods, s 6755 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7887 pt->pod_node = kcalloc(pt->nr_pods, s 6756 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7888 BUG_ON(!pt->pod_cpus || !pt->pod_node 6757 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7889 6758 7890 for (pod = 0; pod < pt->nr_pods; pod+ 6759 for (pod = 0; pod < pt->nr_pods; pod++) 7891 BUG_ON(!zalloc_cpumask_var(&p 6760 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7892 6761 7893 for_each_possible_cpu(cpu) { 6762 for_each_possible_cpu(cpu) { 7894 cpumask_set_cpu(cpu, pt->pod_ 6763 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7895 pt->pod_node[pt->cpu_pod[cpu] 6764 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7896 } 6765 } 7897 } 6766 } 7898 6767 7899 static bool __init cpus_dont_share(int cpu0, 6768 static bool __init cpus_dont_share(int cpu0, int cpu1) 7900 { 6769 { 7901 return false; 6770 return false; 7902 } 6771 } 7903 6772 7904 static bool __init cpus_share_smt(int cpu0, i 6773 static bool __init cpus_share_smt(int cpu0, int cpu1) 7905 { 6774 { 7906 #ifdef CONFIG_SCHED_SMT 6775 #ifdef CONFIG_SCHED_SMT 7907 return cpumask_test_cpu(cpu0, cpu_smt 6776 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7908 #else 6777 #else 7909 return false; 6778 return false; 7910 #endif 6779 #endif 7911 } 6780 } 7912 6781 7913 static bool __init cpus_share_numa(int cpu0, 6782 static bool __init cpus_share_numa(int cpu0, int cpu1) 7914 { 6783 { 7915 return cpu_to_node(cpu0) == cpu_to_no 6784 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7916 } 6785 } 7917 6786 7918 /** 6787 /** 7919 * workqueue_init_topology - initialize CPU p 6788 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7920 * 6789 * 7921 * This is the third step of three-staged wor !! 6790 * This is the third step of there-staged workqueue subsystem initialization and 7922 * invoked after SMP and topology information 6791 * invoked after SMP and topology information are fully initialized. It 7923 * initializes the unbound CPU pods according 6792 * initializes the unbound CPU pods accordingly. 7924 */ 6793 */ 7925 void __init workqueue_init_topology(void) 6794 void __init workqueue_init_topology(void) 7926 { 6795 { 7927 struct workqueue_struct *wq; 6796 struct workqueue_struct *wq; 7928 int cpu; 6797 int cpu; 7929 6798 7930 init_pod_type(&wq_pod_types[WQ_AFFN_C 6799 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7931 init_pod_type(&wq_pod_types[WQ_AFFN_S 6800 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7932 init_pod_type(&wq_pod_types[WQ_AFFN_C 6801 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7933 init_pod_type(&wq_pod_types[WQ_AFFN_N 6802 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7934 6803 7935 wq_topo_initialized = true; << 7936 << 7937 mutex_lock(&wq_pool_mutex); 6804 mutex_lock(&wq_pool_mutex); 7938 6805 7939 /* 6806 /* 7940 * Workqueues allocated earlier would 6807 * Workqueues allocated earlier would have all CPUs sharing the default 7941 * worker pool. Explicitly call unbou !! 6808 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 7942 * and CPU combinations to apply per- !! 6809 * combinations to apply per-pod sharing. 7943 */ 6810 */ 7944 list_for_each_entry(wq, &workqueues, 6811 list_for_each_entry(wq, &workqueues, list) { 7945 for_each_online_cpu(cpu) !! 6812 for_each_online_cpu(cpu) { 7946 unbound_wq_update_pwq !! 6813 wq_update_pod(wq, cpu, cpu, true); 7947 if (wq->flags & WQ_UNBOUND) { << 7948 mutex_lock(&wq->mutex << 7949 wq_update_node_max_ac << 7950 mutex_unlock(&wq->mut << 7951 } 6814 } 7952 } 6815 } 7953 6816 7954 mutex_unlock(&wq_pool_mutex); 6817 mutex_unlock(&wq_pool_mutex); 7955 } 6818 } 7956 6819 7957 void __warn_flushing_systemwide_wq(void) 6820 void __warn_flushing_systemwide_wq(void) 7958 { 6821 { 7959 pr_warn("WARNING: Flushing system-wid 6822 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7960 dump_stack(); 6823 dump_stack(); 7961 } 6824 } 7962 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6825 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7963 6826 7964 static int __init workqueue_unbound_cpus_setu 6827 static int __init workqueue_unbound_cpus_setup(char *str) 7965 { 6828 { 7966 if (cpulist_parse(str, &wq_cmdline_cp 6829 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7967 cpumask_clear(&wq_cmdline_cpu 6830 cpumask_clear(&wq_cmdline_cpumask); 7968 pr_warn("workqueue.unbound_cp 6831 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7969 } 6832 } 7970 6833 7971 return 1; 6834 return 1; 7972 } 6835 } 7973 __setup("workqueue.unbound_cpus=", workqueue_ 6836 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7974 6837
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.