1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * lib/bitmap.c 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 4 * Helper functions for bitmap.h. 5 */ 5 */ 6 6 7 #include <linux/bitmap.h> 7 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 8 #include <linux/bitops.h> >> 9 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/ctype.h> 10 #include <linux/device.h> 11 #include <linux/device.h> >> 12 #include <linux/errno.h> 11 #include <linux/export.h> 13 #include <linux/export.h> >> 14 #include <linux/kernel.h> >> 15 #include <linux/mm.h> 12 #include <linux/slab.h> 16 #include <linux/slab.h> >> 17 #include <linux/string.h> >> 18 #include <linux/thread_info.h> >> 19 #include <linux/uaccess.h> >> 20 >> 21 #include <asm/page.h> >> 22 >> 23 #include "kstrtox.h" 13 24 14 /** 25 /** 15 * DOC: bitmap introduction 26 * DOC: bitmap introduction 16 * 27 * 17 * bitmaps provide an array of bits, implement 28 * bitmaps provide an array of bits, implemented using an 18 * array of unsigned longs. The number of val 29 * array of unsigned longs. The number of valid bits in a 19 * given bitmap does _not_ need to be an exact 30 * given bitmap does _not_ need to be an exact multiple of 20 * BITS_PER_LONG. 31 * BITS_PER_LONG. 21 * 32 * 22 * The possible unused bits in the last, parti 33 * The possible unused bits in the last, partially used word 23 * of a bitmap are 'don't care'. The implemen 34 * of a bitmap are 'don't care'. The implementation makes 24 * no particular effort to keep them zero. It 35 * no particular effort to keep them zero. It ensures that 25 * their value will not affect the results of 36 * their value will not affect the results of any operation. 26 * The bitmap operations that return Boolean ( 37 * The bitmap operations that return Boolean (bitmap_empty, 27 * for example) or scalar (bitmap_weight, for 38 * for example) or scalar (bitmap_weight, for example) results 28 * carefully filter out these unused bits from 39 * carefully filter out these unused bits from impacting their 29 * results. 40 * results. 30 * 41 * 31 * The byte ordering of bitmaps is more natura 42 * The byte ordering of bitmaps is more natural on little 32 * endian architectures. See the big-endian h 43 * endian architectures. See the big-endian headers 33 * include/asm-ppc64/bitops.h and include/asm- 44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 34 * for the best explanations of this ordering. 45 * for the best explanations of this ordering. 35 */ 46 */ 36 47 37 bool __bitmap_equal(const unsigned long *bitma !! 48 int __bitmap_equal(const unsigned long *bitmap1, 38 const unsigned long *bitma !! 49 const unsigned long *bitmap2, unsigned int bits) 39 { 50 { 40 unsigned int k, lim = bits/BITS_PER_LO 51 unsigned int k, lim = bits/BITS_PER_LONG; 41 for (k = 0; k < lim; ++k) 52 for (k = 0; k < lim; ++k) 42 if (bitmap1[k] != bitmap2[k]) 53 if (bitmap1[k] != bitmap2[k]) 43 return false; !! 54 return 0; 44 55 45 if (bits % BITS_PER_LONG) 56 if (bits % BITS_PER_LONG) 46 if ((bitmap1[k] ^ bitmap2[k]) 57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 47 return false; !! 58 return 0; 48 59 49 return true; !! 60 return 1; 50 } 61 } 51 EXPORT_SYMBOL(__bitmap_equal); 62 EXPORT_SYMBOL(__bitmap_equal); 52 63 53 bool __bitmap_or_equal(const unsigned long *bi 64 bool __bitmap_or_equal(const unsigned long *bitmap1, 54 const unsigned long *bi 65 const unsigned long *bitmap2, 55 const unsigned long *bi 66 const unsigned long *bitmap3, 56 unsigned int bits) 67 unsigned int bits) 57 { 68 { 58 unsigned int k, lim = bits / BITS_PER_ 69 unsigned int k, lim = bits / BITS_PER_LONG; 59 unsigned long tmp; 70 unsigned long tmp; 60 71 61 for (k = 0; k < lim; ++k) { 72 for (k = 0; k < lim; ++k) { 62 if ((bitmap1[k] | bitmap2[k]) 73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 63 return false; 74 return false; 64 } 75 } 65 76 66 if (!(bits % BITS_PER_LONG)) 77 if (!(bits % BITS_PER_LONG)) 67 return true; 78 return true; 68 79 69 tmp = (bitmap1[k] | bitmap2[k]) ^ bitm 80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 70 return (tmp & BITMAP_LAST_WORD_MASK(bi 81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 71 } 82 } 72 83 73 void __bitmap_complement(unsigned long *dst, c 84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 74 { 85 { 75 unsigned int k, lim = BITS_TO_LONGS(bi 86 unsigned int k, lim = BITS_TO_LONGS(bits); 76 for (k = 0; k < lim; ++k) 87 for (k = 0; k < lim; ++k) 77 dst[k] = ~src[k]; 88 dst[k] = ~src[k]; 78 } 89 } 79 EXPORT_SYMBOL(__bitmap_complement); 90 EXPORT_SYMBOL(__bitmap_complement); 80 91 81 /** 92 /** 82 * __bitmap_shift_right - logical right shift 93 * __bitmap_shift_right - logical right shift of the bits in a bitmap 83 * @dst : destination bitmap 94 * @dst : destination bitmap 84 * @src : source bitmap 95 * @src : source bitmap 85 * @shift : shift by this many bits 96 * @shift : shift by this many bits 86 * @nbits : bitmap size, in bits 97 * @nbits : bitmap size, in bits 87 * 98 * 88 * Shifting right (dividing) means moving bits 99 * Shifting right (dividing) means moving bits in the MS -> LS bit 89 * direction. Zeros are fed into the vacated 100 * direction. Zeros are fed into the vacated MS positions and the 90 * LS bits shifted off the bottom are lost. 101 * LS bits shifted off the bottom are lost. 91 */ 102 */ 92 void __bitmap_shift_right(unsigned long *dst, 103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 93 unsigned shift, unsign 104 unsigned shift, unsigned nbits) 94 { 105 { 95 unsigned k, lim = BITS_TO_LONGS(nbits) 106 unsigned k, lim = BITS_TO_LONGS(nbits); 96 unsigned off = shift/BITS_PER_LONG, re 107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 97 unsigned long mask = BITMAP_LAST_WORD_ 108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 98 for (k = 0; off + k < lim; ++k) { 109 for (k = 0; off + k < lim; ++k) { 99 unsigned long upper, lower; 110 unsigned long upper, lower; 100 111 101 /* 112 /* 102 * If shift is not word aligne 113 * If shift is not word aligned, take lower rem bits of 103 * word above and make them th 114 * word above and make them the top rem bits of result. 104 */ 115 */ 105 if (!rem || off + k + 1 >= lim 116 if (!rem || off + k + 1 >= lim) 106 upper = 0; 117 upper = 0; 107 else { 118 else { 108 upper = src[off + k + 119 upper = src[off + k + 1]; 109 if (off + k + 1 == lim 120 if (off + k + 1 == lim - 1) 110 upper &= mask; 121 upper &= mask; 111 upper <<= (BITS_PER_LO 122 upper <<= (BITS_PER_LONG - rem); 112 } 123 } 113 lower = src[off + k]; 124 lower = src[off + k]; 114 if (off + k == lim - 1) 125 if (off + k == lim - 1) 115 lower &= mask; 126 lower &= mask; 116 lower >>= rem; 127 lower >>= rem; 117 dst[k] = lower | upper; 128 dst[k] = lower | upper; 118 } 129 } 119 if (off) 130 if (off) 120 memset(&dst[lim - off], 0, off 131 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 121 } 132 } 122 EXPORT_SYMBOL(__bitmap_shift_right); 133 EXPORT_SYMBOL(__bitmap_shift_right); 123 134 124 135 125 /** 136 /** 126 * __bitmap_shift_left - logical left shift of 137 * __bitmap_shift_left - logical left shift of the bits in a bitmap 127 * @dst : destination bitmap 138 * @dst : destination bitmap 128 * @src : source bitmap 139 * @src : source bitmap 129 * @shift : shift by this many bits 140 * @shift : shift by this many bits 130 * @nbits : bitmap size, in bits 141 * @nbits : bitmap size, in bits 131 * 142 * 132 * Shifting left (multiplying) means moving bi 143 * Shifting left (multiplying) means moving bits in the LS -> MS 133 * direction. Zeros are fed into the vacated 144 * direction. Zeros are fed into the vacated LS bit positions 134 * and those MS bits shifted off the top are l 145 * and those MS bits shifted off the top are lost. 135 */ 146 */ 136 147 137 void __bitmap_shift_left(unsigned long *dst, c 148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 138 unsigned int shift, un 149 unsigned int shift, unsigned int nbits) 139 { 150 { 140 int k; 151 int k; 141 unsigned int lim = BITS_TO_LONGS(nbits 152 unsigned int lim = BITS_TO_LONGS(nbits); 142 unsigned int off = shift/BITS_PER_LONG 153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 143 for (k = lim - off - 1; k >= 0; --k) { 154 for (k = lim - off - 1; k >= 0; --k) { 144 unsigned long upper, lower; 155 unsigned long upper, lower; 145 156 146 /* 157 /* 147 * If shift is not word aligne 158 * If shift is not word aligned, take upper rem bits of 148 * word below and make them th 159 * word below and make them the bottom rem bits of result. 149 */ 160 */ 150 if (rem && k > 0) 161 if (rem && k > 0) 151 lower = src[k - 1] >> 162 lower = src[k - 1] >> (BITS_PER_LONG - rem); 152 else 163 else 153 lower = 0; 164 lower = 0; 154 upper = src[k] << rem; 165 upper = src[k] << rem; 155 dst[k + off] = lower | upper; 166 dst[k + off] = lower | upper; 156 } 167 } 157 if (off) 168 if (off) 158 memset(dst, 0, off*sizeof(unsi 169 memset(dst, 0, off*sizeof(unsigned long)); 159 } 170 } 160 EXPORT_SYMBOL(__bitmap_shift_left); 171 EXPORT_SYMBOL(__bitmap_shift_left); 161 172 162 /** 173 /** 163 * bitmap_cut() - remove bit region from bitma 174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 164 * @dst: destination bitmap, might overlap wit 175 * @dst: destination bitmap, might overlap with src 165 * @src: source bitmap 176 * @src: source bitmap 166 * @first: start bit of region to be removed 177 * @first: start bit of region to be removed 167 * @cut: number of bits to remove 178 * @cut: number of bits to remove 168 * @nbits: bitmap size, in bits 179 * @nbits: bitmap size, in bits 169 * 180 * 170 * Set the n-th bit of @dst iff the n-th bit o 181 * Set the n-th bit of @dst iff the n-th bit of @src is set and 171 * n is less than @first, or the m-th bit of @ 182 * n is less than @first, or the m-th bit of @src is set for any 172 * m such that @first <= n < nbits, and m = n 183 * m such that @first <= n < nbits, and m = n + @cut. 173 * 184 * 174 * In pictures, example for a big-endian 32-bi 185 * In pictures, example for a big-endian 32-bit architecture: 175 * 186 * 176 * The @src bitmap is:: 187 * The @src bitmap is:: 177 * 188 * 178 * 31 63 189 * 31 63 179 * | | 190 * | | 180 * 10000000 11000001 11110010 00010101 1000 191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 181 * | | | 192 * | | | | 182 * 16 14 0 193 * 16 14 0 32 183 * 194 * 184 * if @cut is 3, and @first is 14, bits 14-16 195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: 185 * 196 * 186 * 31 63 197 * 31 63 187 * | | 198 * | | 188 * 10110000 00011000 00110010 00010101 0001 199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 189 * | | 200 * | | | 190 * 14 (bit 17 0 201 * 14 (bit 17 0 32 191 * from @src) 202 * from @src) 192 * 203 * 193 * Note that @dst and @src might overlap parti 204 * Note that @dst and @src might overlap partially or entirely. 194 * 205 * 195 * This is implemented in the obvious way, wit 206 * This is implemented in the obvious way, with a shift and carry 196 * step for each moved bit. Optimisation is le 207 * step for each moved bit. Optimisation is left as an exercise 197 * for the compiler. 208 * for the compiler. 198 */ 209 */ 199 void bitmap_cut(unsigned long *dst, const unsi 210 void bitmap_cut(unsigned long *dst, const unsigned long *src, 200 unsigned int first, unsigned i 211 unsigned int first, unsigned int cut, unsigned int nbits) 201 { 212 { 202 unsigned int len = BITS_TO_LONGS(nbits 213 unsigned int len = BITS_TO_LONGS(nbits); 203 unsigned long keep = 0, carry; 214 unsigned long keep = 0, carry; 204 int i; 215 int i; 205 216 206 if (first % BITS_PER_LONG) { 217 if (first % BITS_PER_LONG) { 207 keep = src[first / BITS_PER_LO 218 keep = src[first / BITS_PER_LONG] & 208 (~0UL >> (BITS_PER_LONG 219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 209 } 220 } 210 221 211 memmove(dst, src, len * sizeof(*dst)); 222 memmove(dst, src, len * sizeof(*dst)); 212 223 213 while (cut--) { 224 while (cut--) { 214 for (i = first / BITS_PER_LONG 225 for (i = first / BITS_PER_LONG; i < len; i++) { 215 if (i < len - 1) 226 if (i < len - 1) 216 carry = dst[i 227 carry = dst[i + 1] & 1UL; 217 else 228 else 218 carry = 0; 229 carry = 0; 219 230 220 dst[i] = (dst[i] >> 1) 231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 221 } 232 } 222 } 233 } 223 234 224 dst[first / BITS_PER_LONG] &= ~0UL << 235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 225 dst[first / BITS_PER_LONG] |= keep; 236 dst[first / BITS_PER_LONG] |= keep; 226 } 237 } 227 EXPORT_SYMBOL(bitmap_cut); 238 EXPORT_SYMBOL(bitmap_cut); 228 239 229 bool __bitmap_and(unsigned long *dst, const un !! 240 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 230 const unsigned 241 const unsigned long *bitmap2, unsigned int bits) 231 { 242 { 232 unsigned int k; 243 unsigned int k; 233 unsigned int lim = bits/BITS_PER_LONG; 244 unsigned int lim = bits/BITS_PER_LONG; 234 unsigned long result = 0; 245 unsigned long result = 0; 235 246 236 for (k = 0; k < lim; k++) 247 for (k = 0; k < lim; k++) 237 result |= (dst[k] = bitmap1[k] 248 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 238 if (bits % BITS_PER_LONG) 249 if (bits % BITS_PER_LONG) 239 result |= (dst[k] = bitmap1[k] 250 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 240 BITMAP_LAST_WORD_MA 251 BITMAP_LAST_WORD_MASK(bits)); 241 return result != 0; 252 return result != 0; 242 } 253 } 243 EXPORT_SYMBOL(__bitmap_and); 254 EXPORT_SYMBOL(__bitmap_and); 244 255 245 void __bitmap_or(unsigned long *dst, const uns 256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 246 const unsigned 257 const unsigned long *bitmap2, unsigned int bits) 247 { 258 { 248 unsigned int k; 259 unsigned int k; 249 unsigned int nr = BITS_TO_LONGS(bits); 260 unsigned int nr = BITS_TO_LONGS(bits); 250 261 251 for (k = 0; k < nr; k++) 262 for (k = 0; k < nr; k++) 252 dst[k] = bitmap1[k] | bitmap2[ 263 dst[k] = bitmap1[k] | bitmap2[k]; 253 } 264 } 254 EXPORT_SYMBOL(__bitmap_or); 265 EXPORT_SYMBOL(__bitmap_or); 255 266 256 void __bitmap_xor(unsigned long *dst, const un 267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 257 const unsigned 268 const unsigned long *bitmap2, unsigned int bits) 258 { 269 { 259 unsigned int k; 270 unsigned int k; 260 unsigned int nr = BITS_TO_LONGS(bits); 271 unsigned int nr = BITS_TO_LONGS(bits); 261 272 262 for (k = 0; k < nr; k++) 273 for (k = 0; k < nr; k++) 263 dst[k] = bitmap1[k] ^ bitmap2[ 274 dst[k] = bitmap1[k] ^ bitmap2[k]; 264 } 275 } 265 EXPORT_SYMBOL(__bitmap_xor); 276 EXPORT_SYMBOL(__bitmap_xor); 266 277 267 bool __bitmap_andnot(unsigned long *dst, const !! 278 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 268 const unsigned 279 const unsigned long *bitmap2, unsigned int bits) 269 { 280 { 270 unsigned int k; 281 unsigned int k; 271 unsigned int lim = bits/BITS_PER_LONG; 282 unsigned int lim = bits/BITS_PER_LONG; 272 unsigned long result = 0; 283 unsigned long result = 0; 273 284 274 for (k = 0; k < lim; k++) 285 for (k = 0; k < lim; k++) 275 result |= (dst[k] = bitmap1[k] 286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 276 if (bits % BITS_PER_LONG) 287 if (bits % BITS_PER_LONG) 277 result |= (dst[k] = bitmap1[k] 288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 278 BITMAP_LAST_WORD_MA 289 BITMAP_LAST_WORD_MASK(bits)); 279 return result != 0; 290 return result != 0; 280 } 291 } 281 EXPORT_SYMBOL(__bitmap_andnot); 292 EXPORT_SYMBOL(__bitmap_andnot); 282 293 283 void __bitmap_replace(unsigned long *dst, 294 void __bitmap_replace(unsigned long *dst, 284 const unsigned long *old 295 const unsigned long *old, const unsigned long *new, 285 const unsigned long *mas 296 const unsigned long *mask, unsigned int nbits) 286 { 297 { 287 unsigned int k; 298 unsigned int k; 288 unsigned int nr = BITS_TO_LONGS(nbits) 299 unsigned int nr = BITS_TO_LONGS(nbits); 289 300 290 for (k = 0; k < nr; k++) 301 for (k = 0; k < nr; k++) 291 dst[k] = (old[k] & ~mask[k]) | 302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 292 } 303 } 293 EXPORT_SYMBOL(__bitmap_replace); 304 EXPORT_SYMBOL(__bitmap_replace); 294 305 295 bool __bitmap_intersects(const unsigned long * !! 306 int __bitmap_intersects(const unsigned long *bitmap1, 296 const unsigned long * !! 307 const unsigned long *bitmap2, unsigned int bits) 297 { 308 { 298 unsigned int k, lim = bits/BITS_PER_LO 309 unsigned int k, lim = bits/BITS_PER_LONG; 299 for (k = 0; k < lim; ++k) 310 for (k = 0; k < lim; ++k) 300 if (bitmap1[k] & bitmap2[k]) 311 if (bitmap1[k] & bitmap2[k]) 301 return true; !! 312 return 1; 302 313 303 if (bits % BITS_PER_LONG) 314 if (bits % BITS_PER_LONG) 304 if ((bitmap1[k] & bitmap2[k]) 315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 305 return true; !! 316 return 1; 306 return false; !! 317 return 0; 307 } 318 } 308 EXPORT_SYMBOL(__bitmap_intersects); 319 EXPORT_SYMBOL(__bitmap_intersects); 309 320 310 bool __bitmap_subset(const unsigned long *bitm !! 321 int __bitmap_subset(const unsigned long *bitmap1, 311 const unsigned long *bitm !! 322 const unsigned long *bitmap2, unsigned int bits) 312 { 323 { 313 unsigned int k, lim = bits/BITS_PER_LO 324 unsigned int k, lim = bits/BITS_PER_LONG; 314 for (k = 0; k < lim; ++k) 325 for (k = 0; k < lim; ++k) 315 if (bitmap1[k] & ~bitmap2[k]) 326 if (bitmap1[k] & ~bitmap2[k]) 316 return false; !! 327 return 0; 317 328 318 if (bits % BITS_PER_LONG) 329 if (bits % BITS_PER_LONG) 319 if ((bitmap1[k] & ~bitmap2[k]) 330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 320 return false; !! 331 return 0; 321 return true; !! 332 return 1; 322 } 333 } 323 EXPORT_SYMBOL(__bitmap_subset); 334 EXPORT_SYMBOL(__bitmap_subset); 324 335 325 #define BITMAP_WEIGHT(FETCH, bits) \ !! 336 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 326 ({ << 327 unsigned int __bits = (bits), idx, w = << 328 << 329 for (idx = 0; idx < __bits / BITS_PER_ << 330 w += hweight_long(FETCH); << 331 << 332 if (__bits % BITS_PER_LONG) << 333 w += hweight_long((FETCH) & BI << 334 << 335 w; << 336 }) << 337 << 338 unsigned int __bitmap_weight(const unsigned lo << 339 { 337 { 340 return BITMAP_WEIGHT(bitmap[idx], bits !! 338 unsigned int k, lim = bits/BITS_PER_LONG; 341 } !! 339 int w = 0; 342 EXPORT_SYMBOL(__bitmap_weight); << 343 340 344 unsigned int __bitmap_weight_and(const unsigne !! 341 for (k = 0; k < lim; k++) 345 const unsigned !! 342 w += hweight_long(bitmap[k]); 346 { << 347 return BITMAP_WEIGHT(bitmap1[idx] & bi << 348 } << 349 EXPORT_SYMBOL(__bitmap_weight_and); << 350 343 351 unsigned int __bitmap_weight_andnot(const unsi !! 344 if (bits % BITS_PER_LONG) 352 const unsigned !! 345 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 353 { !! 346 354 return BITMAP_WEIGHT(bitmap1[idx] & ~b !! 347 return w; 355 } 348 } 356 EXPORT_SYMBOL(__bitmap_weight_andnot); !! 349 EXPORT_SYMBOL(__bitmap_weight); 357 350 358 void __bitmap_set(unsigned long *map, unsigned 351 void __bitmap_set(unsigned long *map, unsigned int start, int len) 359 { 352 { 360 unsigned long *p = map + BIT_WORD(star 353 unsigned long *p = map + BIT_WORD(start); 361 const unsigned int size = start + len; 354 const unsigned int size = start + len; 362 int bits_to_set = BITS_PER_LONG - (sta 355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 363 unsigned long mask_to_set = BITMAP_FIR 356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 364 357 365 while (len - bits_to_set >= 0) { 358 while (len - bits_to_set >= 0) { 366 *p |= mask_to_set; 359 *p |= mask_to_set; 367 len -= bits_to_set; 360 len -= bits_to_set; 368 bits_to_set = BITS_PER_LONG; 361 bits_to_set = BITS_PER_LONG; 369 mask_to_set = ~0UL; 362 mask_to_set = ~0UL; 370 p++; 363 p++; 371 } 364 } 372 if (len) { 365 if (len) { 373 mask_to_set &= BITMAP_LAST_WOR 366 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 374 *p |= mask_to_set; 367 *p |= mask_to_set; 375 } 368 } 376 } 369 } 377 EXPORT_SYMBOL(__bitmap_set); 370 EXPORT_SYMBOL(__bitmap_set); 378 371 379 void __bitmap_clear(unsigned long *map, unsign 372 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 380 { 373 { 381 unsigned long *p = map + BIT_WORD(star 374 unsigned long *p = map + BIT_WORD(start); 382 const unsigned int size = start + len; 375 const unsigned int size = start + len; 383 int bits_to_clear = BITS_PER_LONG - (s 376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 384 unsigned long mask_to_clear = BITMAP_F 377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 385 378 386 while (len - bits_to_clear >= 0) { 379 while (len - bits_to_clear >= 0) { 387 *p &= ~mask_to_clear; 380 *p &= ~mask_to_clear; 388 len -= bits_to_clear; 381 len -= bits_to_clear; 389 bits_to_clear = BITS_PER_LONG; 382 bits_to_clear = BITS_PER_LONG; 390 mask_to_clear = ~0UL; 383 mask_to_clear = ~0UL; 391 p++; 384 p++; 392 } 385 } 393 if (len) { 386 if (len) { 394 mask_to_clear &= BITMAP_LAST_W 387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 395 *p &= ~mask_to_clear; 388 *p &= ~mask_to_clear; 396 } 389 } 397 } 390 } 398 EXPORT_SYMBOL(__bitmap_clear); 391 EXPORT_SYMBOL(__bitmap_clear); 399 392 400 /** 393 /** 401 * bitmap_find_next_zero_area_off - find a con 394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 402 * @map: The address to base the search on 395 * @map: The address to base the search on 403 * @size: The bitmap size in bits 396 * @size: The bitmap size in bits 404 * @start: The bitnumber to start searching at 397 * @start: The bitnumber to start searching at 405 * @nr: The number of zeroed bits we're lookin 398 * @nr: The number of zeroed bits we're looking for 406 * @align_mask: Alignment mask for zero area 399 * @align_mask: Alignment mask for zero area 407 * @align_offset: Alignment offset for zero ar 400 * @align_offset: Alignment offset for zero area. 408 * 401 * 409 * The @align_mask should be one less than a p 402 * The @align_mask should be one less than a power of 2; the effect is that 410 * the bit offset of all zero areas this funct 403 * the bit offset of all zero areas this function finds plus @align_offset 411 * is multiple of that power of 2. 404 * is multiple of that power of 2. 412 */ 405 */ 413 unsigned long bitmap_find_next_zero_area_off(u 406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 414 u 407 unsigned long size, 415 u 408 unsigned long start, 416 u 409 unsigned int nr, 417 u 410 unsigned long align_mask, 418 u 411 unsigned long align_offset) 419 { 412 { 420 unsigned long index, end, i; 413 unsigned long index, end, i; 421 again: 414 again: 422 index = find_next_zero_bit(map, size, 415 index = find_next_zero_bit(map, size, start); 423 416 424 /* Align allocation */ 417 /* Align allocation */ 425 index = __ALIGN_MASK(index + align_off 418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 426 419 427 end = index + nr; 420 end = index + nr; 428 if (end > size) 421 if (end > size) 429 return end; 422 return end; 430 i = find_next_bit(map, end, index); 423 i = find_next_bit(map, end, index); 431 if (i < end) { 424 if (i < end) { 432 start = i + 1; 425 start = i + 1; 433 goto again; 426 goto again; 434 } 427 } 435 return index; 428 return index; 436 } 429 } 437 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 438 431 >> 432 /* >> 433 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, >> 434 * second version by Paul Jackson, third by Joe Korty. >> 435 */ >> 436 >> 437 /** >> 438 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap >> 439 * >> 440 * @ubuf: pointer to user buffer containing string. >> 441 * @ulen: buffer size in bytes. If string is smaller than this >> 442 * then it must be terminated with a \0. >> 443 * @maskp: pointer to bitmap array that will contain result. >> 444 * @nmaskbits: size of bitmap, in bits. >> 445 */ >> 446 int bitmap_parse_user(const char __user *ubuf, >> 447 unsigned int ulen, unsigned long *maskp, >> 448 int nmaskbits) >> 449 { >> 450 char *buf; >> 451 int ret; >> 452 >> 453 buf = memdup_user_nul(ubuf, ulen); >> 454 if (IS_ERR(buf)) >> 455 return PTR_ERR(buf); >> 456 >> 457 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits); >> 458 >> 459 kfree(buf); >> 460 return ret; >> 461 } >> 462 EXPORT_SYMBOL(bitmap_parse_user); >> 463 >> 464 /** >> 465 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string >> 466 * @list: indicates whether the bitmap must be list >> 467 * @buf: page aligned buffer into which string is placed >> 468 * @maskp: pointer to bitmap to convert >> 469 * @nmaskbits: size of bitmap, in bits >> 470 * >> 471 * Output format is a comma-separated list of decimal numbers and >> 472 * ranges if list is specified or hex digits grouped into comma-separated >> 473 * sets of 8 digits/set. Returns the number of characters written to buf. >> 474 * >> 475 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned >> 476 * area and that sufficient storage remains at @buf to accommodate the >> 477 * bitmap_print_to_pagebuf() output. Returns the number of characters >> 478 * actually printed to @buf, excluding terminating '\0'. >> 479 */ >> 480 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, >> 481 int nmaskbits) >> 482 { >> 483 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); >> 484 >> 485 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : >> 486 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); >> 487 } >> 488 EXPORT_SYMBOL(bitmap_print_to_pagebuf); >> 489 >> 490 /** >> 491 * bitmap_print_to_buf - convert bitmap to list or hex format ASCII string >> 492 * @list: indicates whether the bitmap must be list >> 493 * true: print in decimal list format >> 494 * false: print in hexadecimal bitmask format >> 495 */ >> 496 static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp, >> 497 int nmaskbits, loff_t off, size_t count) >> 498 { >> 499 const char *fmt = list ? "%*pbl\n" : "%*pb\n"; >> 500 ssize_t size; >> 501 void *data; >> 502 >> 503 data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp); >> 504 if (!data) >> 505 return -ENOMEM; >> 506 >> 507 size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1); >> 508 kfree(data); >> 509 >> 510 return size; >> 511 } >> 512 >> 513 /** >> 514 * bitmap_print_bitmask_to_buf - convert bitmap to hex bitmask format ASCII string >> 515 * >> 516 * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper >> 517 * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal >> 518 * bitmask and decimal list to userspace by sysfs ABI. >> 519 * Drivers might be using a normal attribute for this kind of ABIs. A >> 520 * normal attribute typically has show entry as below: >> 521 * static ssize_t example_attribute_show(struct device *dev, >> 522 * struct device_attribute *attr, char *buf) >> 523 * { >> 524 * ... >> 525 * return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max); >> 526 * } >> 527 * show entry of attribute has no offset and count parameters and this >> 528 * means the file is limited to one page only. >> 529 * bitmap_print_to_pagebuf() API works terribly well for this kind of >> 530 * normal attribute with buf parameter and without offset, count: >> 531 * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, >> 532 * int nmaskbits) >> 533 * { >> 534 * } >> 535 * The problem is once we have a large bitmap, we have a chance to get a >> 536 * bitmask or list more than one page. Especially for list, it could be >> 537 * as complex as 0,3,5,7,9,... We have no simple way to know it exact size. >> 538 * It turns out bin_attribute is a way to break this limit. bin_attribute >> 539 * has show entry as below: >> 540 * static ssize_t >> 541 * example_bin_attribute_show(struct file *filp, struct kobject *kobj, >> 542 * struct bin_attribute *attr, char *buf, >> 543 * loff_t offset, size_t count) >> 544 * { >> 545 * ... >> 546 * } >> 547 * With the new offset and count parameters, this makes sysfs ABI be able >> 548 * to support file size more than one page. For example, offset could be >> 549 * >= 4096. >> 550 * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their >> 551 * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf() >> 552 * make those drivers be able to support large bitmask and list after they >> 553 * move to use bin_attribute. In result, we have to pass the corresponding >> 554 * parameters such as off, count from bin_attribute show entry to this API. >> 555 * >> 556 * @buf: buffer into which string is placed >> 557 * @maskp: pointer to bitmap to convert >> 558 * @nmaskbits: size of bitmap, in bits >> 559 * @off: in the string from which we are copying, We copy to @buf >> 560 * @count: the maximum number of bytes to print >> 561 * >> 562 * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf() >> 563 * is similar with cpumap_print_to_pagebuf(), the difference is that >> 564 * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption >> 565 * the destination buffer is exactly one page and won't be more than one page. >> 566 * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other >> 567 * hand, mainly serves bin_attribute which doesn't work with exact one page, >> 568 * and it can break the size limit of converted decimal list and hexadecimal >> 569 * bitmask. >> 570 * >> 571 * WARNING! >> 572 * >> 573 * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf(). >> 574 * It is intended to workaround sysfs limitations discussed above and should be >> 575 * used carefully in general case for the following reasons: >> 576 * - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf(). >> 577 * - Memory complexity is O(nbits), comparing to O(1) for snprintf(). >> 578 * - @off and @count are NOT offset and number of bits to print. >> 579 * - If printing part of bitmap as list, the resulting string is not a correct >> 580 * list representation of bitmap. Particularly, some bits within or out of >> 581 * related interval may be erroneously set or unset. The format of the string >> 582 * may be broken, so bitmap_parselist-like parser may fail parsing it. >> 583 * - If printing the whole bitmap as list by parts, user must ensure the order >> 584 * of calls of the function such that the offset is incremented linearly. >> 585 * - If printing the whole bitmap as list by parts, user must keep bitmap >> 586 * unchanged between the very first and very last call. Otherwise concatenated >> 587 * result may be incorrect, and format may be broken. >> 588 * >> 589 * Returns the number of characters actually printed to @buf >> 590 */ >> 591 int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp, >> 592 int nmaskbits, loff_t off, size_t count) >> 593 { >> 594 return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count); >> 595 } >> 596 EXPORT_SYMBOL(bitmap_print_bitmask_to_buf); >> 597 >> 598 /** >> 599 * bitmap_print_list_to_buf - convert bitmap to decimal list format ASCII string >> 600 * >> 601 * Everything is same with the above bitmap_print_bitmask_to_buf() except >> 602 * the print format. >> 603 */ >> 604 int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp, >> 605 int nmaskbits, loff_t off, size_t count) >> 606 { >> 607 return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count); >> 608 } >> 609 EXPORT_SYMBOL(bitmap_print_list_to_buf); >> 610 >> 611 /* >> 612 * Region 9-38:4/10 describes the following bitmap structure: >> 613 * 0 9 12 18 38 N >> 614 * .........****......****......****.................. >> 615 * ^ ^ ^ ^ ^ >> 616 * start off group_len end nbits >> 617 */ >> 618 struct region { >> 619 unsigned int start; >> 620 unsigned int off; >> 621 unsigned int group_len; >> 622 unsigned int end; >> 623 unsigned int nbits; >> 624 }; >> 625 >> 626 static void bitmap_set_region(const struct region *r, unsigned long *bitmap) >> 627 { >> 628 unsigned int start; >> 629 >> 630 for (start = r->start; start <= r->end; start += r->group_len) >> 631 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); >> 632 } >> 633 >> 634 static int bitmap_check_region(const struct region *r) >> 635 { >> 636 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) >> 637 return -EINVAL; >> 638 >> 639 if (r->end >= r->nbits) >> 640 return -ERANGE; >> 641 >> 642 return 0; >> 643 } >> 644 >> 645 static const char *bitmap_getnum(const char *str, unsigned int *num, >> 646 unsigned int lastbit) >> 647 { >> 648 unsigned long long n; >> 649 unsigned int len; >> 650 >> 651 if (str[0] == 'N') { >> 652 *num = lastbit; >> 653 return str + 1; >> 654 } >> 655 >> 656 len = _parse_integer(str, 10, &n); >> 657 if (!len) >> 658 return ERR_PTR(-EINVAL); >> 659 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) >> 660 return ERR_PTR(-EOVERFLOW); >> 661 >> 662 *num = n; >> 663 return str + len; >> 664 } >> 665 >> 666 static inline bool end_of_str(char c) >> 667 { >> 668 return c == '\0' || c == '\n'; >> 669 } >> 670 >> 671 static inline bool __end_of_region(char c) >> 672 { >> 673 return isspace(c) || c == ','; >> 674 } >> 675 >> 676 static inline bool end_of_region(char c) >> 677 { >> 678 return __end_of_region(c) || end_of_str(c); >> 679 } >> 680 >> 681 /* >> 682 * The format allows commas and whitespaces at the beginning >> 683 * of the region. >> 684 */ >> 685 static const char *bitmap_find_region(const char *str) >> 686 { >> 687 while (__end_of_region(*str)) >> 688 str++; >> 689 >> 690 return end_of_str(*str) ? NULL : str; >> 691 } >> 692 >> 693 static const char *bitmap_find_region_reverse(const char *start, const char *end) >> 694 { >> 695 while (start <= end && __end_of_region(*end)) >> 696 end--; >> 697 >> 698 return end; >> 699 } >> 700 >> 701 static const char *bitmap_parse_region(const char *str, struct region *r) >> 702 { >> 703 unsigned int lastbit = r->nbits - 1; >> 704 >> 705 if (!strncasecmp(str, "all", 3)) { >> 706 r->start = 0; >> 707 r->end = lastbit; >> 708 str += 3; >> 709 >> 710 goto check_pattern; >> 711 } >> 712 >> 713 str = bitmap_getnum(str, &r->start, lastbit); >> 714 if (IS_ERR(str)) >> 715 return str; >> 716 >> 717 if (end_of_region(*str)) >> 718 goto no_end; >> 719 >> 720 if (*str != '-') >> 721 return ERR_PTR(-EINVAL); >> 722 >> 723 str = bitmap_getnum(str + 1, &r->end, lastbit); >> 724 if (IS_ERR(str)) >> 725 return str; >> 726 >> 727 check_pattern: >> 728 if (end_of_region(*str)) >> 729 goto no_pattern; >> 730 >> 731 if (*str != ':') >> 732 return ERR_PTR(-EINVAL); >> 733 >> 734 str = bitmap_getnum(str + 1, &r->off, lastbit); >> 735 if (IS_ERR(str)) >> 736 return str; >> 737 >> 738 if (*str != '/') >> 739 return ERR_PTR(-EINVAL); >> 740 >> 741 return bitmap_getnum(str + 1, &r->group_len, lastbit); >> 742 >> 743 no_end: >> 744 r->end = r->start; >> 745 no_pattern: >> 746 r->off = r->end + 1; >> 747 r->group_len = r->end + 1; >> 748 >> 749 return end_of_str(*str) ? NULL : str; >> 750 } >> 751 >> 752 /** >> 753 * bitmap_parselist - convert list format ASCII string to bitmap >> 754 * @buf: read user string from this buffer; must be terminated >> 755 * with a \0 or \n. >> 756 * @maskp: write resulting mask here >> 757 * @nmaskbits: number of bits in mask to be written >> 758 * >> 759 * Input format is a comma-separated list of decimal numbers and >> 760 * ranges. Consecutively set bits are shown as two hyphen-separated >> 761 * decimal numbers, the smallest and largest bit numbers set in >> 762 * the range. >> 763 * Optionally each range can be postfixed to denote that only parts of it >> 764 * should be set. The range will divided to groups of specific size. >> 765 * From each group will be used only defined amount of bits. >> 766 * Syntax: range:used_size/group_size >> 767 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 >> 768 * The value 'N' can be used as a dynamically substituted token for the >> 769 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is >> 770 * dynamic, so if system changes cause the bitmap width to change, such >> 771 * as more cores in a CPU list, then any ranges using N will also change. >> 772 * >> 773 * Returns: 0 on success, -errno on invalid input strings. Error values: >> 774 * >> 775 * - ``-EINVAL``: wrong region format >> 776 * - ``-EINVAL``: invalid character in string >> 777 * - ``-ERANGE``: bit number specified too large for mask >> 778 * - ``-EOVERFLOW``: integer overflow in the input parameters >> 779 */ >> 780 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) >> 781 { >> 782 struct region r; >> 783 long ret; >> 784 >> 785 r.nbits = nmaskbits; >> 786 bitmap_zero(maskp, r.nbits); >> 787 >> 788 while (buf) { >> 789 buf = bitmap_find_region(buf); >> 790 if (buf == NULL) >> 791 return 0; >> 792 >> 793 buf = bitmap_parse_region(buf, &r); >> 794 if (IS_ERR(buf)) >> 795 return PTR_ERR(buf); >> 796 >> 797 ret = bitmap_check_region(&r); >> 798 if (ret) >> 799 return ret; >> 800 >> 801 bitmap_set_region(&r, maskp); >> 802 } >> 803 >> 804 return 0; >> 805 } >> 806 EXPORT_SYMBOL(bitmap_parselist); >> 807 >> 808 >> 809 /** >> 810 * bitmap_parselist_user() >> 811 * >> 812 * @ubuf: pointer to user buffer containing string. >> 813 * @ulen: buffer size in bytes. If string is smaller than this >> 814 * then it must be terminated with a \0. >> 815 * @maskp: pointer to bitmap array that will contain result. >> 816 * @nmaskbits: size of bitmap, in bits. >> 817 * >> 818 * Wrapper for bitmap_parselist(), providing it with user buffer. >> 819 */ >> 820 int bitmap_parselist_user(const char __user *ubuf, >> 821 unsigned int ulen, unsigned long *maskp, >> 822 int nmaskbits) >> 823 { >> 824 char *buf; >> 825 int ret; >> 826 >> 827 buf = memdup_user_nul(ubuf, ulen); >> 828 if (IS_ERR(buf)) >> 829 return PTR_ERR(buf); >> 830 >> 831 ret = bitmap_parselist(buf, maskp, nmaskbits); >> 832 >> 833 kfree(buf); >> 834 return ret; >> 835 } >> 836 EXPORT_SYMBOL(bitmap_parselist_user); >> 837 >> 838 static const char *bitmap_get_x32_reverse(const char *start, >> 839 const char *end, u32 *num) >> 840 { >> 841 u32 ret = 0; >> 842 int c, i; >> 843 >> 844 for (i = 0; i < 32; i += 4) { >> 845 c = hex_to_bin(*end--); >> 846 if (c < 0) >> 847 return ERR_PTR(-EINVAL); >> 848 >> 849 ret |= c << i; >> 850 >> 851 if (start > end || __end_of_region(*end)) >> 852 goto out; >> 853 } >> 854 >> 855 if (hex_to_bin(*end--) >= 0) >> 856 return ERR_PTR(-EOVERFLOW); >> 857 out: >> 858 *num = ret; >> 859 return end; >> 860 } >> 861 >> 862 /** >> 863 * bitmap_parse - convert an ASCII hex string into a bitmap. >> 864 * @start: pointer to buffer containing string. >> 865 * @buflen: buffer size in bytes. If string is smaller than this >> 866 * then it must be terminated with a \0 or \n. In that case, >> 867 * UINT_MAX may be provided instead of string length. >> 868 * @maskp: pointer to bitmap array that will contain result. >> 869 * @nmaskbits: size of bitmap, in bits. >> 870 * >> 871 * Commas group hex digits into chunks. Each chunk defines exactly 32 >> 872 * bits of the resultant bitmask. No chunk may specify a value larger >> 873 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value >> 874 * then leading 0-bits are prepended. %-EINVAL is returned for illegal >> 875 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed. >> 876 * Leading, embedded and trailing whitespace accepted. >> 877 */ >> 878 int bitmap_parse(const char *start, unsigned int buflen, >> 879 unsigned long *maskp, int nmaskbits) >> 880 { >> 881 const char *end = strnchrnul(start, buflen, '\n') - 1; >> 882 int chunks = BITS_TO_U32(nmaskbits); >> 883 u32 *bitmap = (u32 *)maskp; >> 884 int unset_bit; >> 885 int chunk; >> 886 >> 887 for (chunk = 0; ; chunk++) { >> 888 end = bitmap_find_region_reverse(start, end); >> 889 if (start > end) >> 890 break; >> 891 >> 892 if (!chunks--) >> 893 return -EOVERFLOW; >> 894 >> 895 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) >> 896 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]); >> 897 #else >> 898 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]); >> 899 #endif >> 900 if (IS_ERR(end)) >> 901 return PTR_ERR(end); >> 902 } >> 903 >> 904 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32; >> 905 if (unset_bit < nmaskbits) { >> 906 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit); >> 907 return 0; >> 908 } >> 909 >> 910 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit) >> 911 return -EOVERFLOW; >> 912 >> 913 return 0; >> 914 } >> 915 EXPORT_SYMBOL(bitmap_parse); >> 916 439 /** 917 /** 440 * bitmap_pos_to_ord - find ordinal of set bit 918 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 441 * @buf: pointer to a bitmap 919 * @buf: pointer to a bitmap 442 * @pos: a bit position in @buf (0 <= @po 920 * @pos: a bit position in @buf (0 <= @pos < @nbits) 443 * @nbits: number of valid bit positions 921 * @nbits: number of valid bit positions in @buf 444 * 922 * 445 * Map the bit at position @pos in @buf (of le 923 * Map the bit at position @pos in @buf (of length @nbits) to the 446 * ordinal of which set bit it is. If it is n 924 * ordinal of which set bit it is. If it is not set or if @pos 447 * is not a valid bit position, map to -1. 925 * is not a valid bit position, map to -1. 448 * 926 * 449 * If for example, just bits 4 through 7 are s 927 * If for example, just bits 4 through 7 are set in @buf, then @pos 450 * values 4 through 7 will get mapped to 0 thr 928 * values 4 through 7 will get mapped to 0 through 3, respectively, 451 * and other @pos values will get mapped to -1 929 * and other @pos values will get mapped to -1. When @pos value 7 452 * gets mapped to (returns) @ord value 3 in th 930 * gets mapped to (returns) @ord value 3 in this example, that means 453 * that bit 7 is the 3rd (starting with 0th) s 931 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 454 * 932 * 455 * The bit positions 0 through @bits are valid 933 * The bit positions 0 through @bits are valid positions in @buf. 456 */ 934 */ 457 static int bitmap_pos_to_ord(const unsigned lo 935 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 458 { 936 { 459 if (pos >= nbits || !test_bit(pos, buf 937 if (pos >= nbits || !test_bit(pos, buf)) 460 return -1; 938 return -1; 461 939 462 return bitmap_weight(buf, pos); !! 940 return __bitmap_weight(buf, pos); >> 941 } >> 942 >> 943 /** >> 944 * bitmap_ord_to_pos - find position of n-th set bit in bitmap >> 945 * @buf: pointer to bitmap >> 946 * @ord: ordinal bit position (n-th set bit, n >= 0) >> 947 * @nbits: number of valid bit positions in @buf >> 948 * >> 949 * Map the ordinal offset of bit @ord in @buf to its position in @buf. >> 950 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord >> 951 * >= weight(buf), returns @nbits. >> 952 * >> 953 * If for example, just bits 4 through 7 are set in @buf, then @ord >> 954 * values 0 through 3 will get mapped to 4 through 7, respectively, >> 955 * and all other @ord values returns @nbits. When @ord value 3 >> 956 * gets mapped to (returns) @pos value 7 in this example, that means >> 957 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. >> 958 * >> 959 * The bit positions 0 through @nbits-1 are valid positions in @buf. >> 960 */ >> 961 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) >> 962 { >> 963 unsigned int pos; >> 964 >> 965 for (pos = find_first_bit(buf, nbits); >> 966 pos < nbits && ord; >> 967 pos = find_next_bit(buf, nbits, pos + 1)) >> 968 ord--; >> 969 >> 970 return pos; 463 } 971 } 464 972 465 /** 973 /** 466 * bitmap_remap - Apply map defined by a pair 974 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 467 * @dst: remapped result 975 * @dst: remapped result 468 * @src: subset to be remapped 976 * @src: subset to be remapped 469 * @old: defines domain of map 977 * @old: defines domain of map 470 * @new: defines range of map 978 * @new: defines range of map 471 * @nbits: number of bits in each of thes 979 * @nbits: number of bits in each of these bitmaps 472 * 980 * 473 * Let @old and @new define a mapping of bit p 981 * Let @old and @new define a mapping of bit positions, such that 474 * whatever position is held by the n-th set b 982 * whatever position is held by the n-th set bit in @old is mapped 475 * to the n-th set bit in @new. In the more g 983 * to the n-th set bit in @new. In the more general case, allowing 476 * for the possibility that the weight 'w' of 984 * for the possibility that the weight 'w' of @new is less than the 477 * weight of @old, map the position of the n-t 985 * weight of @old, map the position of the n-th set bit in @old to 478 * the position of the m-th set bit in @new, w 986 * the position of the m-th set bit in @new, where m == n % w. 479 * 987 * 480 * If either of the @old and @new bitmaps are 988 * If either of the @old and @new bitmaps are empty, or if @src and 481 * @dst point to the same location, then this 989 * @dst point to the same location, then this routine copies @src 482 * to @dst. 990 * to @dst. 483 * 991 * 484 * The positions of unset bits in @old are map 992 * The positions of unset bits in @old are mapped to themselves 485 * (the identity map). !! 993 * (the identify map). 486 * 994 * 487 * Apply the above specified mapping to @src, 995 * Apply the above specified mapping to @src, placing the result in 488 * @dst, clearing any bits previously set in @ 996 * @dst, clearing any bits previously set in @dst. 489 * 997 * 490 * For example, lets say that @old has bits 4 998 * For example, lets say that @old has bits 4 through 7 set, and 491 * @new has bits 12 through 15 set. This defi 999 * @new has bits 12 through 15 set. This defines the mapping of bit 492 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 1000 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 493 * bit positions unchanged. So if say @src co 1001 * bit positions unchanged. So if say @src comes into this routine 494 * with bits 1, 5 and 7 set, then @dst should 1002 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 495 * 13 and 15 set. 1003 * 13 and 15 set. 496 */ 1004 */ 497 void bitmap_remap(unsigned long *dst, const un 1005 void bitmap_remap(unsigned long *dst, const unsigned long *src, 498 const unsigned long *old, cons 1006 const unsigned long *old, const unsigned long *new, 499 unsigned int nbits) 1007 unsigned int nbits) 500 { 1008 { 501 unsigned int oldbit, w; 1009 unsigned int oldbit, w; 502 1010 503 if (dst == src) /* following d 1011 if (dst == src) /* following doesn't handle inplace remaps */ 504 return; 1012 return; 505 bitmap_zero(dst, nbits); 1013 bitmap_zero(dst, nbits); 506 1014 507 w = bitmap_weight(new, nbits); 1015 w = bitmap_weight(new, nbits); 508 for_each_set_bit(oldbit, src, nbits) { 1016 for_each_set_bit(oldbit, src, nbits) { 509 int n = bitmap_pos_to_ord(old, 1017 int n = bitmap_pos_to_ord(old, oldbit, nbits); 510 1018 511 if (n < 0 || w == 0) 1019 if (n < 0 || w == 0) 512 set_bit(oldbit, dst); 1020 set_bit(oldbit, dst); /* identity map */ 513 else 1021 else 514 set_bit(find_nth_bit(n !! 1022 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 515 } 1023 } 516 } 1024 } 517 EXPORT_SYMBOL(bitmap_remap); 1025 EXPORT_SYMBOL(bitmap_remap); 518 1026 519 /** 1027 /** 520 * bitmap_bitremap - Apply map defined by a pa 1028 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 521 * @oldbit: bit position to be mapped 1029 * @oldbit: bit position to be mapped 522 * @old: defines domain of map 1030 * @old: defines domain of map 523 * @new: defines range of map 1031 * @new: defines range of map 524 * @bits: number of bits in each of these 1032 * @bits: number of bits in each of these bitmaps 525 * 1033 * 526 * Let @old and @new define a mapping of bit p 1034 * Let @old and @new define a mapping of bit positions, such that 527 * whatever position is held by the n-th set b 1035 * whatever position is held by the n-th set bit in @old is mapped 528 * to the n-th set bit in @new. In the more g 1036 * to the n-th set bit in @new. In the more general case, allowing 529 * for the possibility that the weight 'w' of 1037 * for the possibility that the weight 'w' of @new is less than the 530 * weight of @old, map the position of the n-t 1038 * weight of @old, map the position of the n-th set bit in @old to 531 * the position of the m-th set bit in @new, w 1039 * the position of the m-th set bit in @new, where m == n % w. 532 * 1040 * 533 * The positions of unset bits in @old are map 1041 * The positions of unset bits in @old are mapped to themselves 534 * (the identity map). !! 1042 * (the identify map). 535 * 1043 * 536 * Apply the above specified mapping to bit po 1044 * Apply the above specified mapping to bit position @oldbit, returning 537 * the new bit position. 1045 * the new bit position. 538 * 1046 * 539 * For example, lets say that @old has bits 4 1047 * For example, lets say that @old has bits 4 through 7 set, and 540 * @new has bits 12 through 15 set. This defi 1048 * @new has bits 12 through 15 set. This defines the mapping of bit 541 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 1049 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 542 * bit positions unchanged. So if say @oldbit 1050 * bit positions unchanged. So if say @oldbit is 5, then this routine 543 * returns 13. 1051 * returns 13. 544 */ 1052 */ 545 int bitmap_bitremap(int oldbit, const unsigned 1053 int bitmap_bitremap(int oldbit, const unsigned long *old, 546 const unsigned 1054 const unsigned long *new, int bits) 547 { 1055 { 548 int w = bitmap_weight(new, bits); 1056 int w = bitmap_weight(new, bits); 549 int n = bitmap_pos_to_ord(old, oldbit, 1057 int n = bitmap_pos_to_ord(old, oldbit, bits); 550 if (n < 0 || w == 0) 1058 if (n < 0 || w == 0) 551 return oldbit; 1059 return oldbit; 552 else 1060 else 553 return find_nth_bit(new, bits, !! 1061 return bitmap_ord_to_pos(new, n % w, bits); 554 } 1062 } 555 EXPORT_SYMBOL(bitmap_bitremap); 1063 EXPORT_SYMBOL(bitmap_bitremap); 556 1064 557 #ifdef CONFIG_NUMA 1065 #ifdef CONFIG_NUMA 558 /** 1066 /** 559 * bitmap_onto - translate one bitmap relative 1067 * bitmap_onto - translate one bitmap relative to another 560 * @dst: resulting translated bitmap 1068 * @dst: resulting translated bitmap 561 * @orig: original untranslated bitmap 1069 * @orig: original untranslated bitmap 562 * @relmap: bitmap relative to which tran 1070 * @relmap: bitmap relative to which translated 563 * @bits: number of bits in each of these 1071 * @bits: number of bits in each of these bitmaps 564 * 1072 * 565 * Set the n-th bit of @dst iff there exists s 1073 * Set the n-th bit of @dst iff there exists some m such that the 566 * n-th bit of @relmap is set, the m-th bit of 1074 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 567 * the n-th bit of @relmap is also the m-th _s 1075 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 568 * (If you understood the previous sentence th 1076 * (If you understood the previous sentence the first time your 569 * read it, you're overqualified for your curr 1077 * read it, you're overqualified for your current job.) 570 * 1078 * 571 * In other words, @orig is mapped onto (surje 1079 * In other words, @orig is mapped onto (surjectively) @dst, 572 * using the map { <n, m> | the n-th bit of @r 1080 * using the map { <n, m> | the n-th bit of @relmap is the 573 * m-th set bit of @relmap }. 1081 * m-th set bit of @relmap }. 574 * 1082 * 575 * Any set bits in @orig above bit number W, w 1083 * Any set bits in @orig above bit number W, where W is the 576 * weight of (number of set bits in) @relmap a 1084 * weight of (number of set bits in) @relmap are mapped nowhere. 577 * In particular, if for all bits m set in @or 1085 * In particular, if for all bits m set in @orig, m >= W, then 578 * @dst will end up empty. In situations wher 1086 * @dst will end up empty. In situations where the possibility 579 * of such an empty result is not desired, one 1087 * of such an empty result is not desired, one way to avoid it is 580 * to use the bitmap_fold() operator, below, t 1088 * to use the bitmap_fold() operator, below, to first fold the 581 * @orig bitmap over itself so that all its se 1089 * @orig bitmap over itself so that all its set bits x are in the 582 * range 0 <= x < W. The bitmap_fold() operat 1090 * range 0 <= x < W. The bitmap_fold() operator does this by 583 * setting the bit (m % W) in @dst, for each b 1091 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 584 * 1092 * 585 * Example [1] for bitmap_onto(): 1093 * Example [1] for bitmap_onto(): 586 * Let's say @relmap has bits 30-39 set, and 1094 * Let's say @relmap has bits 30-39 set, and @orig has bits 587 * 1, 3, 5, 7, 9 and 11 set. Then on return 1095 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 588 * @dst will have bits 31, 33, 35, 37 and 39 1096 * @dst will have bits 31, 33, 35, 37 and 39 set. 589 * 1097 * 590 * When bit 0 is set in @orig, it means turn 1098 * When bit 0 is set in @orig, it means turn on the bit in 591 * @dst corresponding to whatever is the firs 1099 * @dst corresponding to whatever is the first bit (if any) 592 * that is turned on in @relmap. Since bit 0 1100 * that is turned on in @relmap. Since bit 0 was off in the 593 * above example, we leave off that bit (bit 1101 * above example, we leave off that bit (bit 30) in @dst. 594 * 1102 * 595 * When bit 1 is set in @orig (as in the abov 1103 * When bit 1 is set in @orig (as in the above example), it 596 * means turn on the bit in @dst correspondin 1104 * means turn on the bit in @dst corresponding to whatever 597 * is the second bit that is turned on in @re 1105 * is the second bit that is turned on in @relmap. The second 598 * bit in @relmap that was turned on in the a 1106 * bit in @relmap that was turned on in the above example was 599 * bit 31, so we turned on bit 31 in @dst. 1107 * bit 31, so we turned on bit 31 in @dst. 600 * 1108 * 601 * Similarly, we turned on bits 33, 35, 37 an 1109 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 602 * because they were the 4th, 6th, 8th and 10 1110 * because they were the 4th, 6th, 8th and 10th set bits 603 * set in @relmap, and the 4th, 6th, 8th and 1111 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 604 * @orig (i.e. bits 3, 5, 7 and 9) were also 1112 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 605 * 1113 * 606 * When bit 11 is set in @orig, it means turn 1114 * When bit 11 is set in @orig, it means turn on the bit in 607 * @dst corresponding to whatever is the twel 1115 * @dst corresponding to whatever is the twelfth bit that is 608 * turned on in @relmap. In the above exampl 1116 * turned on in @relmap. In the above example, there were 609 * only ten bits turned on in @relmap (30..39 1117 * only ten bits turned on in @relmap (30..39), so that bit 610 * 11 was set in @orig had no affect on @dst. 1118 * 11 was set in @orig had no affect on @dst. 611 * 1119 * 612 * Example [2] for bitmap_fold() + bitmap_onto 1120 * Example [2] for bitmap_fold() + bitmap_onto(): 613 * Let's say @relmap has these ten bits set:: 1121 * Let's say @relmap has these ten bits set:: 614 * 1122 * 615 * 40 41 42 43 45 48 53 61 74 95 1123 * 40 41 42 43 45 48 53 61 74 95 616 * 1124 * 617 * (for the curious, that's 40 plus the first 1125 * (for the curious, that's 40 plus the first ten terms of the 618 * Fibonacci sequence.) 1126 * Fibonacci sequence.) 619 * 1127 * 620 * Further lets say we use the following code 1128 * Further lets say we use the following code, invoking 621 * bitmap_fold() then bitmap_onto, as suggest 1129 * bitmap_fold() then bitmap_onto, as suggested above to 622 * avoid the possibility of an empty @dst res 1130 * avoid the possibility of an empty @dst result:: 623 * 1131 * 624 * unsigned long *tmp; // a temporary 1132 * unsigned long *tmp; // a temporary bitmap's bits 625 * 1133 * 626 * bitmap_fold(tmp, orig, bitmap_weight(r 1134 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 627 * bitmap_onto(dst, tmp, relmap, bits); 1135 * bitmap_onto(dst, tmp, relmap, bits); 628 * 1136 * 629 * Then this table shows what various values 1137 * Then this table shows what various values of @dst would be, for 630 * various @orig's. I list the zero-based po 1138 * various @orig's. I list the zero-based positions of each set bit. 631 * The tmp column shows the intermediate resu 1139 * The tmp column shows the intermediate result, as computed by 632 * using bitmap_fold() to fold the @orig bitm 1140 * using bitmap_fold() to fold the @orig bitmap modulo ten 633 * (the weight of @relmap): 1141 * (the weight of @relmap): 634 * 1142 * 635 * =============== ============== ======= 1143 * =============== ============== ================= 636 * @orig tmp @dst 1144 * @orig tmp @dst 637 * 0 0 40 1145 * 0 0 40 638 * 1 1 41 1146 * 1 1 41 639 * 9 9 95 1147 * 9 9 95 640 * 10 0 40 [#f1 1148 * 10 0 40 [#f1]_ 641 * 1 3 5 7 1 3 5 7 41 43 4 1149 * 1 3 5 7 1 3 5 7 41 43 48 61 642 * 0 1 2 3 4 0 1 2 3 4 40 41 4 1150 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 643 * 0 9 18 27 0 9 8 7 40 61 7 1151 * 0 9 18 27 0 9 8 7 40 61 74 95 644 * 0 10 20 30 0 40 1152 * 0 10 20 30 0 40 645 * 0 11 22 33 0 1 2 3 40 41 4 1153 * 0 11 22 33 0 1 2 3 40 41 42 43 646 * 0 12 24 36 0 2 4 6 40 42 4 1154 * 0 12 24 36 0 2 4 6 40 42 45 53 647 * 78 102 211 1 2 8 41 42 7 1155 * 78 102 211 1 2 8 41 42 74 [#f1]_ 648 * =============== ============== ======= 1156 * =============== ============== ================= 649 * 1157 * 650 * .. [#f1] 1158 * .. [#f1] 651 * 1159 * 652 * For these marked lines, if we hadn't fi 1160 * For these marked lines, if we hadn't first done bitmap_fold() 653 * into tmp, then the @dst result would ha 1161 * into tmp, then the @dst result would have been empty. 654 * 1162 * 655 * If either of @orig or @relmap is empty (no 1163 * If either of @orig or @relmap is empty (no set bits), then @dst 656 * will be returned empty. 1164 * will be returned empty. 657 * 1165 * 658 * If (as explained above) the only set bits i 1166 * If (as explained above) the only set bits in @orig are in positions 659 * m where m >= W, (where W is the weight of @ 1167 * m where m >= W, (where W is the weight of @relmap) then @dst will 660 * once again be returned empty. 1168 * once again be returned empty. 661 * 1169 * 662 * All bits in @dst not set by the above rule 1170 * All bits in @dst not set by the above rule are cleared. 663 */ 1171 */ 664 void bitmap_onto(unsigned long *dst, const uns 1172 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 665 const unsigned long *r 1173 const unsigned long *relmap, unsigned int bits) 666 { 1174 { 667 unsigned int n, m; /* same meanin 1175 unsigned int n, m; /* same meaning as in above comment */ 668 1176 669 if (dst == orig) /* following d 1177 if (dst == orig) /* following doesn't handle inplace mappings */ 670 return; 1178 return; 671 bitmap_zero(dst, bits); 1179 bitmap_zero(dst, bits); 672 1180 673 /* 1181 /* 674 * The following code is a more effici 1182 * The following code is a more efficient, but less 675 * obvious, equivalent to the loop: 1183 * obvious, equivalent to the loop: 676 * for (m = 0; m < bitmap_weight( 1184 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 677 * n = find_nth_bit(orig, !! 1185 * n = bitmap_ord_to_pos(orig, m, bits); 678 * if (test_bit(m, orig)) 1186 * if (test_bit(m, orig)) 679 * set_bit(n, dst 1187 * set_bit(n, dst); 680 * } 1188 * } 681 */ 1189 */ 682 1190 683 m = 0; 1191 m = 0; 684 for_each_set_bit(n, relmap, bits) { 1192 for_each_set_bit(n, relmap, bits) { 685 /* m == bitmap_pos_to_ord(relm 1193 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 686 if (test_bit(m, orig)) 1194 if (test_bit(m, orig)) 687 set_bit(n, dst); 1195 set_bit(n, dst); 688 m++; 1196 m++; 689 } 1197 } 690 } 1198 } 691 1199 692 /** 1200 /** 693 * bitmap_fold - fold larger bitmap into small 1201 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 694 * @dst: resulting smaller bitmap 1202 * @dst: resulting smaller bitmap 695 * @orig: original larger bitmap 1203 * @orig: original larger bitmap 696 * @sz: specified size 1204 * @sz: specified size 697 * @nbits: number of bits in each of thes 1205 * @nbits: number of bits in each of these bitmaps 698 * 1206 * 699 * For each bit oldbit in @orig, set bit oldbi 1207 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 700 * Clear all other bits in @dst. See further 1208 * Clear all other bits in @dst. See further the comment and 701 * Example [2] for bitmap_onto() for why and h 1209 * Example [2] for bitmap_onto() for why and how to use this. 702 */ 1210 */ 703 void bitmap_fold(unsigned long *dst, const uns 1211 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 704 unsigned int sz, unsig 1212 unsigned int sz, unsigned int nbits) 705 { 1213 { 706 unsigned int oldbit; 1214 unsigned int oldbit; 707 1215 708 if (dst == orig) /* following d 1216 if (dst == orig) /* following doesn't handle inplace mappings */ 709 return; 1217 return; 710 bitmap_zero(dst, nbits); 1218 bitmap_zero(dst, nbits); 711 1219 712 for_each_set_bit(oldbit, orig, nbits) 1220 for_each_set_bit(oldbit, orig, nbits) 713 set_bit(oldbit % sz, dst); 1221 set_bit(oldbit % sz, dst); 714 } 1222 } 715 #endif /* CONFIG_NUMA */ 1223 #endif /* CONFIG_NUMA */ 716 1224 >> 1225 /* >> 1226 * Common code for bitmap_*_region() routines. >> 1227 * bitmap: array of unsigned longs corresponding to the bitmap >> 1228 * pos: the beginning of the region >> 1229 * order: region size (log base 2 of number of bits) >> 1230 * reg_op: operation(s) to perform on that region of bitmap >> 1231 * >> 1232 * Can set, verify and/or release a region of bits in a bitmap, >> 1233 * depending on which combination of REG_OP_* flag bits is set. >> 1234 * >> 1235 * A region of a bitmap is a sequence of bits in the bitmap, of >> 1236 * some size '1 << order' (a power of two), aligned to that same >> 1237 * '1 << order' power of two. >> 1238 * >> 1239 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). >> 1240 * Returns 0 in all other cases and reg_ops. >> 1241 */ >> 1242 >> 1243 enum { >> 1244 REG_OP_ISFREE, /* true if region is all zero bits */ >> 1245 REG_OP_ALLOC, /* set all bits in region */ >> 1246 REG_OP_RELEASE, /* clear all bits in region */ >> 1247 }; >> 1248 >> 1249 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) >> 1250 { >> 1251 int nbits_reg; /* number of bits in region */ >> 1252 int index; /* index first long of region in bitmap */ >> 1253 int offset; /* bit offset region in bitmap[index] */ >> 1254 int nlongs_reg; /* num longs spanned by region in bitmap */ >> 1255 int nbitsinlong; /* num bits of region in each spanned long */ >> 1256 unsigned long mask; /* bitmask for one long of region */ >> 1257 int i; /* scans bitmap by longs */ >> 1258 int ret = 0; /* return value */ >> 1259 >> 1260 /* >> 1261 * Either nlongs_reg == 1 (for small orders that fit in one long) >> 1262 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) >> 1263 */ >> 1264 nbits_reg = 1 << order; >> 1265 index = pos / BITS_PER_LONG; >> 1266 offset = pos - (index * BITS_PER_LONG); >> 1267 nlongs_reg = BITS_TO_LONGS(nbits_reg); >> 1268 nbitsinlong = min(nbits_reg, BITS_PER_LONG); >> 1269 >> 1270 /* >> 1271 * Can't do "mask = (1UL << nbitsinlong) - 1", as that >> 1272 * overflows if nbitsinlong == BITS_PER_LONG. >> 1273 */ >> 1274 mask = (1UL << (nbitsinlong - 1)); >> 1275 mask += mask - 1; >> 1276 mask <<= offset; >> 1277 >> 1278 switch (reg_op) { >> 1279 case REG_OP_ISFREE: >> 1280 for (i = 0; i < nlongs_reg; i++) { >> 1281 if (bitmap[index + i] & mask) >> 1282 goto done; >> 1283 } >> 1284 ret = 1; /* all bits in region free (zero) */ >> 1285 break; >> 1286 >> 1287 case REG_OP_ALLOC: >> 1288 for (i = 0; i < nlongs_reg; i++) >> 1289 bitmap[index + i] |= mask; >> 1290 break; >> 1291 >> 1292 case REG_OP_RELEASE: >> 1293 for (i = 0; i < nlongs_reg; i++) >> 1294 bitmap[index + i] &= ~mask; >> 1295 break; >> 1296 } >> 1297 done: >> 1298 return ret; >> 1299 } >> 1300 >> 1301 /** >> 1302 * bitmap_find_free_region - find a contiguous aligned mem region >> 1303 * @bitmap: array of unsigned longs corresponding to the bitmap >> 1304 * @bits: number of bits in the bitmap >> 1305 * @order: region size (log base 2 of number of bits) to find >> 1306 * >> 1307 * Find a region of free (zero) bits in a @bitmap of @bits bits and >> 1308 * allocate them (set them to one). Only consider regions of length >> 1309 * a power (@order) of two, aligned to that power of two, which >> 1310 * makes the search algorithm much faster. >> 1311 * >> 1312 * Return the bit offset in bitmap of the allocated region, >> 1313 * or -errno on failure. >> 1314 */ >> 1315 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) >> 1316 { >> 1317 unsigned int pos, end; /* scans bitmap by regions of size order */ >> 1318 >> 1319 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { >> 1320 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) >> 1321 continue; >> 1322 __reg_op(bitmap, pos, order, REG_OP_ALLOC); >> 1323 return pos; >> 1324 } >> 1325 return -ENOMEM; >> 1326 } >> 1327 EXPORT_SYMBOL(bitmap_find_free_region); >> 1328 >> 1329 /** >> 1330 * bitmap_release_region - release allocated bitmap region >> 1331 * @bitmap: array of unsigned longs corresponding to the bitmap >> 1332 * @pos: beginning of bit region to release >> 1333 * @order: region size (log base 2 of number of bits) to release >> 1334 * >> 1335 * This is the complement to __bitmap_find_free_region() and releases >> 1336 * the found region (by clearing it in the bitmap). >> 1337 * >> 1338 * No return value. >> 1339 */ >> 1340 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) >> 1341 { >> 1342 __reg_op(bitmap, pos, order, REG_OP_RELEASE); >> 1343 } >> 1344 EXPORT_SYMBOL(bitmap_release_region); >> 1345 >> 1346 /** >> 1347 * bitmap_allocate_region - allocate bitmap region >> 1348 * @bitmap: array of unsigned longs corresponding to the bitmap >> 1349 * @pos: beginning of bit region to allocate >> 1350 * @order: region size (log base 2 of number of bits) to allocate >> 1351 * >> 1352 * Allocate (set bits in) a specified region of a bitmap. >> 1353 * >> 1354 * Return 0 on success, or %-EBUSY if specified region wasn't >> 1355 * free (not all bits were zero). >> 1356 */ >> 1357 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) >> 1358 { >> 1359 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) >> 1360 return -EBUSY; >> 1361 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); >> 1362 } >> 1363 EXPORT_SYMBOL(bitmap_allocate_region); >> 1364 >> 1365 /** >> 1366 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. >> 1367 * @dst: destination buffer >> 1368 * @src: bitmap to copy >> 1369 * @nbits: number of bits in the bitmap >> 1370 * >> 1371 * Require nbits % BITS_PER_LONG == 0. >> 1372 */ >> 1373 #ifdef __BIG_ENDIAN >> 1374 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) >> 1375 { >> 1376 unsigned int i; >> 1377 >> 1378 for (i = 0; i < nbits/BITS_PER_LONG; i++) { >> 1379 if (BITS_PER_LONG == 64) >> 1380 dst[i] = cpu_to_le64(src[i]); >> 1381 else >> 1382 dst[i] = cpu_to_le32(src[i]); >> 1383 } >> 1384 } >> 1385 EXPORT_SYMBOL(bitmap_copy_le); >> 1386 #endif >> 1387 717 unsigned long *bitmap_alloc(unsigned int nbits 1388 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 718 { 1389 { 719 return kmalloc_array(BITS_TO_LONGS(nbi 1390 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 720 flags); 1391 flags); 721 } 1392 } 722 EXPORT_SYMBOL(bitmap_alloc); 1393 EXPORT_SYMBOL(bitmap_alloc); 723 1394 724 unsigned long *bitmap_zalloc(unsigned int nbit 1395 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 725 { 1396 { 726 return bitmap_alloc(nbits, flags | __G 1397 return bitmap_alloc(nbits, flags | __GFP_ZERO); 727 } 1398 } 728 EXPORT_SYMBOL(bitmap_zalloc); 1399 EXPORT_SYMBOL(bitmap_zalloc); 729 1400 730 unsigned long *bitmap_alloc_node(unsigned int << 731 { << 732 return kmalloc_array_node(BITS_TO_LONG << 733 flags, node) << 734 } << 735 EXPORT_SYMBOL(bitmap_alloc_node); << 736 << 737 unsigned long *bitmap_zalloc_node(unsigned int << 738 { << 739 return bitmap_alloc_node(nbits, flags << 740 } << 741 EXPORT_SYMBOL(bitmap_zalloc_node); << 742 << 743 void bitmap_free(const unsigned long *bitmap) 1401 void bitmap_free(const unsigned long *bitmap) 744 { 1402 { 745 kfree(bitmap); 1403 kfree(bitmap); 746 } 1404 } 747 EXPORT_SYMBOL(bitmap_free); 1405 EXPORT_SYMBOL(bitmap_free); 748 1406 749 static void devm_bitmap_free(void *data) 1407 static void devm_bitmap_free(void *data) 750 { 1408 { 751 unsigned long *bitmap = data; 1409 unsigned long *bitmap = data; 752 1410 753 bitmap_free(bitmap); 1411 bitmap_free(bitmap); 754 } 1412 } 755 1413 756 unsigned long *devm_bitmap_alloc(struct device 1414 unsigned long *devm_bitmap_alloc(struct device *dev, 757 unsigned int 1415 unsigned int nbits, gfp_t flags) 758 { 1416 { 759 unsigned long *bitmap; 1417 unsigned long *bitmap; 760 int ret; 1418 int ret; 761 1419 762 bitmap = bitmap_alloc(nbits, flags); 1420 bitmap = bitmap_alloc(nbits, flags); 763 if (!bitmap) 1421 if (!bitmap) 764 return NULL; 1422 return NULL; 765 1423 766 ret = devm_add_action_or_reset(dev, de 1424 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); 767 if (ret) 1425 if (ret) 768 return NULL; 1426 return NULL; 769 1427 770 return bitmap; 1428 return bitmap; 771 } 1429 } 772 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); 1430 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); 773 1431 774 unsigned long *devm_bitmap_zalloc(struct devic 1432 unsigned long *devm_bitmap_zalloc(struct device *dev, 775 unsigned int 1433 unsigned int nbits, gfp_t flags) 776 { 1434 { 777 return devm_bitmap_alloc(dev, nbits, f 1435 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); 778 } 1436 } 779 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); 1437 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); 780 1438 781 #if BITS_PER_LONG == 64 1439 #if BITS_PER_LONG == 64 782 /** 1440 /** 783 * bitmap_from_arr32 - copy the contents of u3 1441 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 784 * @bitmap: array of unsigned longs, the 1442 * @bitmap: array of unsigned longs, the destination bitmap 785 * @buf: array of u32 (in host byte order 1443 * @buf: array of u32 (in host byte order), the source bitmap 786 * @nbits: number of bits in @bitmap 1444 * @nbits: number of bits in @bitmap 787 */ 1445 */ 788 void bitmap_from_arr32(unsigned long *bitmap, 1446 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 789 { 1447 { 790 unsigned int i, halfwords; 1448 unsigned int i, halfwords; 791 1449 792 halfwords = DIV_ROUND_UP(nbits, 32); 1450 halfwords = DIV_ROUND_UP(nbits, 32); 793 for (i = 0; i < halfwords; i++) { 1451 for (i = 0; i < halfwords; i++) { 794 bitmap[i/2] = (unsigned long) 1452 bitmap[i/2] = (unsigned long) buf[i]; 795 if (++i < halfwords) 1453 if (++i < halfwords) 796 bitmap[i/2] |= ((unsig 1454 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 797 } 1455 } 798 1456 799 /* Clear tail bits in last word beyond 1457 /* Clear tail bits in last word beyond nbits. */ 800 if (nbits % BITS_PER_LONG) 1458 if (nbits % BITS_PER_LONG) 801 bitmap[(halfwords - 1) / 2] &= 1459 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 802 } 1460 } 803 EXPORT_SYMBOL(bitmap_from_arr32); 1461 EXPORT_SYMBOL(bitmap_from_arr32); 804 1462 805 /** 1463 /** 806 * bitmap_to_arr32 - copy the contents of bitm 1464 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 807 * @buf: array of u32 (in host byte order 1465 * @buf: array of u32 (in host byte order), the dest bitmap 808 * @bitmap: array of unsigned longs, the 1466 * @bitmap: array of unsigned longs, the source bitmap 809 * @nbits: number of bits in @bitmap 1467 * @nbits: number of bits in @bitmap 810 */ 1468 */ 811 void bitmap_to_arr32(u32 *buf, const unsigned 1469 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 812 { 1470 { 813 unsigned int i, halfwords; 1471 unsigned int i, halfwords; 814 1472 815 halfwords = DIV_ROUND_UP(nbits, 32); 1473 halfwords = DIV_ROUND_UP(nbits, 32); 816 for (i = 0; i < halfwords; i++) { 1474 for (i = 0; i < halfwords; i++) { 817 buf[i] = (u32) (bitmap[i/2] & 1475 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 818 if (++i < halfwords) 1476 if (++i < halfwords) 819 buf[i] = (u32) (bitmap 1477 buf[i] = (u32) (bitmap[i/2] >> 32); 820 } 1478 } 821 1479 822 /* Clear tail bits in last element of 1480 /* Clear tail bits in last element of array beyond nbits. */ 823 if (nbits % BITS_PER_LONG) 1481 if (nbits % BITS_PER_LONG) 824 buf[halfwords - 1] &= (u32) (U 1482 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 825 } 1483 } 826 EXPORT_SYMBOL(bitmap_to_arr32); 1484 EXPORT_SYMBOL(bitmap_to_arr32); 827 #endif << 828 << 829 #if BITS_PER_LONG == 32 << 830 /** << 831 * bitmap_from_arr64 - copy the contents of u6 << 832 * @bitmap: array of unsigned longs, the << 833 * @buf: array of u64 (in host byte order << 834 * @nbits: number of bits in @bitmap << 835 */ << 836 void bitmap_from_arr64(unsigned long *bitmap, << 837 { << 838 int n; << 839 << 840 for (n = nbits; n > 0; n -= 64) { << 841 u64 val = *buf++; << 842 << 843 *bitmap++ = val; << 844 if (n > 32) << 845 *bitmap++ = val >> 32; << 846 } << 847 << 848 /* << 849 * Clear tail bits in the last word be << 850 * << 851 * Negative index is OK because here w << 852 * to the last word of the bitmap, exc << 853 * is tested implicitly. << 854 */ << 855 if (nbits % BITS_PER_LONG) << 856 bitmap[-1] &= BITMAP_LAST_WORD << 857 } << 858 EXPORT_SYMBOL(bitmap_from_arr64); << 859 1485 860 /** << 861 * bitmap_to_arr64 - copy the contents of bitm << 862 * @buf: array of u64 (in host byte order << 863 * @bitmap: array of unsigned longs, the << 864 * @nbits: number of bits in @bitmap << 865 */ << 866 void bitmap_to_arr64(u64 *buf, const unsigned << 867 { << 868 const unsigned long *end = bitmap + BI << 869 << 870 while (bitmap < end) { << 871 *buf = *bitmap++; << 872 if (bitmap < end) << 873 *buf |= (u64)(*bitmap+ << 874 buf++; << 875 } << 876 << 877 /* Clear tail bits in the last element << 878 if (nbits % 64) << 879 buf[-1] &= GENMASK_ULL((nbits << 880 } << 881 EXPORT_SYMBOL(bitmap_to_arr64); << 882 #endif 1486 #endif 883 1487
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.