1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * lib/bitmap.c 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 4 * Helper functions for bitmap.h. 5 */ 5 */ 6 !! 6 #include <linux/export.h> >> 7 #include <linux/thread_info.h> >> 8 #include <linux/ctype.h> >> 9 #include <linux/errno.h> 7 #include <linux/bitmap.h> 10 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 11 #include <linux/bitops.h> 9 #include <linux/ctype.h> !! 12 #include <linux/bug.h> 10 #include <linux/device.h> !! 13 #include <linux/kernel.h> 11 #include <linux/export.h> !! 14 #include <linux/mm.h> 12 #include <linux/slab.h> 15 #include <linux/slab.h> >> 16 #include <linux/string.h> >> 17 #include <linux/uaccess.h> >> 18 >> 19 #include <asm/page.h> >> 20 >> 21 #include "kstrtox.h" 13 22 14 /** 23 /** 15 * DOC: bitmap introduction 24 * DOC: bitmap introduction 16 * 25 * 17 * bitmaps provide an array of bits, implement !! 26 * bitmaps provide an array of bits, implemented using an an 18 * array of unsigned longs. The number of val 27 * array of unsigned longs. The number of valid bits in a 19 * given bitmap does _not_ need to be an exact 28 * given bitmap does _not_ need to be an exact multiple of 20 * BITS_PER_LONG. 29 * BITS_PER_LONG. 21 * 30 * 22 * The possible unused bits in the last, parti 31 * The possible unused bits in the last, partially used word 23 * of a bitmap are 'don't care'. The implemen 32 * of a bitmap are 'don't care'. The implementation makes 24 * no particular effort to keep them zero. It 33 * no particular effort to keep them zero. It ensures that 25 * their value will not affect the results of 34 * their value will not affect the results of any operation. 26 * The bitmap operations that return Boolean ( 35 * The bitmap operations that return Boolean (bitmap_empty, 27 * for example) or scalar (bitmap_weight, for 36 * for example) or scalar (bitmap_weight, for example) results 28 * carefully filter out these unused bits from 37 * carefully filter out these unused bits from impacting their 29 * results. 38 * results. 30 * 39 * 31 * The byte ordering of bitmaps is more natura 40 * The byte ordering of bitmaps is more natural on little 32 * endian architectures. See the big-endian h 41 * endian architectures. See the big-endian headers 33 * include/asm-ppc64/bitops.h and include/asm- 42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 34 * for the best explanations of this ordering. 43 * for the best explanations of this ordering. 35 */ 44 */ 36 45 37 bool __bitmap_equal(const unsigned long *bitma !! 46 int __bitmap_equal(const unsigned long *bitmap1, 38 const unsigned long *bitma !! 47 const unsigned long *bitmap2, unsigned int bits) 39 { 48 { 40 unsigned int k, lim = bits/BITS_PER_LO 49 unsigned int k, lim = bits/BITS_PER_LONG; 41 for (k = 0; k < lim; ++k) 50 for (k = 0; k < lim; ++k) 42 if (bitmap1[k] != bitmap2[k]) 51 if (bitmap1[k] != bitmap2[k]) 43 return false; !! 52 return 0; 44 53 45 if (bits % BITS_PER_LONG) 54 if (bits % BITS_PER_LONG) 46 if ((bitmap1[k] ^ bitmap2[k]) 55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 47 return false; !! 56 return 0; 48 57 49 return true; !! 58 return 1; 50 } 59 } 51 EXPORT_SYMBOL(__bitmap_equal); 60 EXPORT_SYMBOL(__bitmap_equal); 52 61 53 bool __bitmap_or_equal(const unsigned long *bi << 54 const unsigned long *bi << 55 const unsigned long *bi << 56 unsigned int bits) << 57 { << 58 unsigned int k, lim = bits / BITS_PER_ << 59 unsigned long tmp; << 60 << 61 for (k = 0; k < lim; ++k) { << 62 if ((bitmap1[k] | bitmap2[k]) << 63 return false; << 64 } << 65 << 66 if (!(bits % BITS_PER_LONG)) << 67 return true; << 68 << 69 tmp = (bitmap1[k] | bitmap2[k]) ^ bitm << 70 return (tmp & BITMAP_LAST_WORD_MASK(bi << 71 } << 72 << 73 void __bitmap_complement(unsigned long *dst, c 62 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 74 { 63 { 75 unsigned int k, lim = BITS_TO_LONGS(bi 64 unsigned int k, lim = BITS_TO_LONGS(bits); 76 for (k = 0; k < lim; ++k) 65 for (k = 0; k < lim; ++k) 77 dst[k] = ~src[k]; 66 dst[k] = ~src[k]; 78 } 67 } 79 EXPORT_SYMBOL(__bitmap_complement); 68 EXPORT_SYMBOL(__bitmap_complement); 80 69 81 /** 70 /** 82 * __bitmap_shift_right - logical right shift 71 * __bitmap_shift_right - logical right shift of the bits in a bitmap 83 * @dst : destination bitmap 72 * @dst : destination bitmap 84 * @src : source bitmap 73 * @src : source bitmap 85 * @shift : shift by this many bits 74 * @shift : shift by this many bits 86 * @nbits : bitmap size, in bits 75 * @nbits : bitmap size, in bits 87 * 76 * 88 * Shifting right (dividing) means moving bits 77 * Shifting right (dividing) means moving bits in the MS -> LS bit 89 * direction. Zeros are fed into the vacated 78 * direction. Zeros are fed into the vacated MS positions and the 90 * LS bits shifted off the bottom are lost. 79 * LS bits shifted off the bottom are lost. 91 */ 80 */ 92 void __bitmap_shift_right(unsigned long *dst, 81 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 93 unsigned shift, unsign 82 unsigned shift, unsigned nbits) 94 { 83 { 95 unsigned k, lim = BITS_TO_LONGS(nbits) 84 unsigned k, lim = BITS_TO_LONGS(nbits); 96 unsigned off = shift/BITS_PER_LONG, re 85 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 97 unsigned long mask = BITMAP_LAST_WORD_ 86 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 98 for (k = 0; off + k < lim; ++k) { 87 for (k = 0; off + k < lim; ++k) { 99 unsigned long upper, lower; 88 unsigned long upper, lower; 100 89 101 /* 90 /* 102 * If shift is not word aligne 91 * If shift is not word aligned, take lower rem bits of 103 * word above and make them th 92 * word above and make them the top rem bits of result. 104 */ 93 */ 105 if (!rem || off + k + 1 >= lim 94 if (!rem || off + k + 1 >= lim) 106 upper = 0; 95 upper = 0; 107 else { 96 else { 108 upper = src[off + k + 97 upper = src[off + k + 1]; 109 if (off + k + 1 == lim 98 if (off + k + 1 == lim - 1) 110 upper &= mask; 99 upper &= mask; 111 upper <<= (BITS_PER_LO 100 upper <<= (BITS_PER_LONG - rem); 112 } 101 } 113 lower = src[off + k]; 102 lower = src[off + k]; 114 if (off + k == lim - 1) 103 if (off + k == lim - 1) 115 lower &= mask; 104 lower &= mask; 116 lower >>= rem; 105 lower >>= rem; 117 dst[k] = lower | upper; 106 dst[k] = lower | upper; 118 } 107 } 119 if (off) 108 if (off) 120 memset(&dst[lim - off], 0, off 109 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 121 } 110 } 122 EXPORT_SYMBOL(__bitmap_shift_right); 111 EXPORT_SYMBOL(__bitmap_shift_right); 123 112 124 113 125 /** 114 /** 126 * __bitmap_shift_left - logical left shift of 115 * __bitmap_shift_left - logical left shift of the bits in a bitmap 127 * @dst : destination bitmap 116 * @dst : destination bitmap 128 * @src : source bitmap 117 * @src : source bitmap 129 * @shift : shift by this many bits 118 * @shift : shift by this many bits 130 * @nbits : bitmap size, in bits 119 * @nbits : bitmap size, in bits 131 * 120 * 132 * Shifting left (multiplying) means moving bi 121 * Shifting left (multiplying) means moving bits in the LS -> MS 133 * direction. Zeros are fed into the vacated 122 * direction. Zeros are fed into the vacated LS bit positions 134 * and those MS bits shifted off the top are l 123 * and those MS bits shifted off the top are lost. 135 */ 124 */ 136 125 137 void __bitmap_shift_left(unsigned long *dst, c 126 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 138 unsigned int shift, un 127 unsigned int shift, unsigned int nbits) 139 { 128 { 140 int k; 129 int k; 141 unsigned int lim = BITS_TO_LONGS(nbits 130 unsigned int lim = BITS_TO_LONGS(nbits); 142 unsigned int off = shift/BITS_PER_LONG 131 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 143 for (k = lim - off - 1; k >= 0; --k) { 132 for (k = lim - off - 1; k >= 0; --k) { 144 unsigned long upper, lower; 133 unsigned long upper, lower; 145 134 146 /* 135 /* 147 * If shift is not word aligne 136 * If shift is not word aligned, take upper rem bits of 148 * word below and make them th 137 * word below and make them the bottom rem bits of result. 149 */ 138 */ 150 if (rem && k > 0) 139 if (rem && k > 0) 151 lower = src[k - 1] >> 140 lower = src[k - 1] >> (BITS_PER_LONG - rem); 152 else 141 else 153 lower = 0; 142 lower = 0; 154 upper = src[k] << rem; 143 upper = src[k] << rem; 155 dst[k + off] = lower | upper; 144 dst[k + off] = lower | upper; 156 } 145 } 157 if (off) 146 if (off) 158 memset(dst, 0, off*sizeof(unsi 147 memset(dst, 0, off*sizeof(unsigned long)); 159 } 148 } 160 EXPORT_SYMBOL(__bitmap_shift_left); 149 EXPORT_SYMBOL(__bitmap_shift_left); 161 150 162 /** !! 151 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 163 * bitmap_cut() - remove bit region from bitma << 164 * @dst: destination bitmap, might overlap wit << 165 * @src: source bitmap << 166 * @first: start bit of region to be removed << 167 * @cut: number of bits to remove << 168 * @nbits: bitmap size, in bits << 169 * << 170 * Set the n-th bit of @dst iff the n-th bit o << 171 * n is less than @first, or the m-th bit of @ << 172 * m such that @first <= n < nbits, and m = n << 173 * << 174 * In pictures, example for a big-endian 32-bi << 175 * << 176 * The @src bitmap is:: << 177 * << 178 * 31 63 << 179 * | | << 180 * 10000000 11000001 11110010 00010101 1000 << 181 * | | | << 182 * 16 14 0 << 183 * << 184 * if @cut is 3, and @first is 14, bits 14-16 << 185 * << 186 * 31 63 << 187 * | | << 188 * 10110000 00011000 00110010 00010101 0001 << 189 * | | << 190 * 14 (bit 17 0 << 191 * from @src) << 192 * << 193 * Note that @dst and @src might overlap parti << 194 * << 195 * This is implemented in the obvious way, wit << 196 * step for each moved bit. Optimisation is le << 197 * for the compiler. << 198 */ << 199 void bitmap_cut(unsigned long *dst, const unsi << 200 unsigned int first, unsigned i << 201 { << 202 unsigned int len = BITS_TO_LONGS(nbits << 203 unsigned long keep = 0, carry; << 204 int i; << 205 << 206 if (first % BITS_PER_LONG) { << 207 keep = src[first / BITS_PER_LO << 208 (~0UL >> (BITS_PER_LONG << 209 } << 210 << 211 memmove(dst, src, len * sizeof(*dst)); << 212 << 213 while (cut--) { << 214 for (i = first / BITS_PER_LONG << 215 if (i < len - 1) << 216 carry = dst[i << 217 else << 218 carry = 0; << 219 << 220 dst[i] = (dst[i] >> 1) << 221 } << 222 } << 223 << 224 dst[first / BITS_PER_LONG] &= ~0UL << << 225 dst[first / BITS_PER_LONG] |= keep; << 226 } << 227 EXPORT_SYMBOL(bitmap_cut); << 228 << 229 bool __bitmap_and(unsigned long *dst, const un << 230 const unsigned 152 const unsigned long *bitmap2, unsigned int bits) 231 { 153 { 232 unsigned int k; 154 unsigned int k; 233 unsigned int lim = bits/BITS_PER_LONG; 155 unsigned int lim = bits/BITS_PER_LONG; 234 unsigned long result = 0; 156 unsigned long result = 0; 235 157 236 for (k = 0; k < lim; k++) 158 for (k = 0; k < lim; k++) 237 result |= (dst[k] = bitmap1[k] 159 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 238 if (bits % BITS_PER_LONG) 160 if (bits % BITS_PER_LONG) 239 result |= (dst[k] = bitmap1[k] 161 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 240 BITMAP_LAST_WORD_MA 162 BITMAP_LAST_WORD_MASK(bits)); 241 return result != 0; 163 return result != 0; 242 } 164 } 243 EXPORT_SYMBOL(__bitmap_and); 165 EXPORT_SYMBOL(__bitmap_and); 244 166 245 void __bitmap_or(unsigned long *dst, const uns 167 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 246 const unsigned 168 const unsigned long *bitmap2, unsigned int bits) 247 { 169 { 248 unsigned int k; 170 unsigned int k; 249 unsigned int nr = BITS_TO_LONGS(bits); 171 unsigned int nr = BITS_TO_LONGS(bits); 250 172 251 for (k = 0; k < nr; k++) 173 for (k = 0; k < nr; k++) 252 dst[k] = bitmap1[k] | bitmap2[ 174 dst[k] = bitmap1[k] | bitmap2[k]; 253 } 175 } 254 EXPORT_SYMBOL(__bitmap_or); 176 EXPORT_SYMBOL(__bitmap_or); 255 177 256 void __bitmap_xor(unsigned long *dst, const un 178 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 257 const unsigned 179 const unsigned long *bitmap2, unsigned int bits) 258 { 180 { 259 unsigned int k; 181 unsigned int k; 260 unsigned int nr = BITS_TO_LONGS(bits); 182 unsigned int nr = BITS_TO_LONGS(bits); 261 183 262 for (k = 0; k < nr; k++) 184 for (k = 0; k < nr; k++) 263 dst[k] = bitmap1[k] ^ bitmap2[ 185 dst[k] = bitmap1[k] ^ bitmap2[k]; 264 } 186 } 265 EXPORT_SYMBOL(__bitmap_xor); 187 EXPORT_SYMBOL(__bitmap_xor); 266 188 267 bool __bitmap_andnot(unsigned long *dst, const !! 189 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 268 const unsigned 190 const unsigned long *bitmap2, unsigned int bits) 269 { 191 { 270 unsigned int k; 192 unsigned int k; 271 unsigned int lim = bits/BITS_PER_LONG; 193 unsigned int lim = bits/BITS_PER_LONG; 272 unsigned long result = 0; 194 unsigned long result = 0; 273 195 274 for (k = 0; k < lim; k++) 196 for (k = 0; k < lim; k++) 275 result |= (dst[k] = bitmap1[k] 197 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 276 if (bits % BITS_PER_LONG) 198 if (bits % BITS_PER_LONG) 277 result |= (dst[k] = bitmap1[k] 199 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 278 BITMAP_LAST_WORD_MA 200 BITMAP_LAST_WORD_MASK(bits)); 279 return result != 0; 201 return result != 0; 280 } 202 } 281 EXPORT_SYMBOL(__bitmap_andnot); 203 EXPORT_SYMBOL(__bitmap_andnot); 282 204 283 void __bitmap_replace(unsigned long *dst, !! 205 int __bitmap_intersects(const unsigned long *bitmap1, 284 const unsigned long *old !! 206 const unsigned long *bitmap2, unsigned int bits) 285 const unsigned long *mas << 286 { << 287 unsigned int k; << 288 unsigned int nr = BITS_TO_LONGS(nbits) << 289 << 290 for (k = 0; k < nr; k++) << 291 dst[k] = (old[k] & ~mask[k]) | << 292 } << 293 EXPORT_SYMBOL(__bitmap_replace); << 294 << 295 bool __bitmap_intersects(const unsigned long * << 296 const unsigned long * << 297 { 207 { 298 unsigned int k, lim = bits/BITS_PER_LO 208 unsigned int k, lim = bits/BITS_PER_LONG; 299 for (k = 0; k < lim; ++k) 209 for (k = 0; k < lim; ++k) 300 if (bitmap1[k] & bitmap2[k]) 210 if (bitmap1[k] & bitmap2[k]) 301 return true; !! 211 return 1; 302 212 303 if (bits % BITS_PER_LONG) 213 if (bits % BITS_PER_LONG) 304 if ((bitmap1[k] & bitmap2[k]) 214 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 305 return true; !! 215 return 1; 306 return false; !! 216 return 0; 307 } 217 } 308 EXPORT_SYMBOL(__bitmap_intersects); 218 EXPORT_SYMBOL(__bitmap_intersects); 309 219 310 bool __bitmap_subset(const unsigned long *bitm !! 220 int __bitmap_subset(const unsigned long *bitmap1, 311 const unsigned long *bitm !! 221 const unsigned long *bitmap2, unsigned int bits) 312 { 222 { 313 unsigned int k, lim = bits/BITS_PER_LO 223 unsigned int k, lim = bits/BITS_PER_LONG; 314 for (k = 0; k < lim; ++k) 224 for (k = 0; k < lim; ++k) 315 if (bitmap1[k] & ~bitmap2[k]) 225 if (bitmap1[k] & ~bitmap2[k]) 316 return false; !! 226 return 0; 317 227 318 if (bits % BITS_PER_LONG) 228 if (bits % BITS_PER_LONG) 319 if ((bitmap1[k] & ~bitmap2[k]) 229 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 320 return false; !! 230 return 0; 321 return true; !! 231 return 1; 322 } 232 } 323 EXPORT_SYMBOL(__bitmap_subset); 233 EXPORT_SYMBOL(__bitmap_subset); 324 234 325 #define BITMAP_WEIGHT(FETCH, bits) \ !! 235 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 326 ({ << 327 unsigned int __bits = (bits), idx, w = << 328 << 329 for (idx = 0; idx < __bits / BITS_PER_ << 330 w += hweight_long(FETCH); << 331 << 332 if (__bits % BITS_PER_LONG) << 333 w += hweight_long((FETCH) & BI << 334 << 335 w; << 336 }) << 337 << 338 unsigned int __bitmap_weight(const unsigned lo << 339 { 236 { 340 return BITMAP_WEIGHT(bitmap[idx], bits !! 237 unsigned int k, lim = bits/BITS_PER_LONG; 341 } !! 238 int w = 0; 342 EXPORT_SYMBOL(__bitmap_weight); << 343 239 344 unsigned int __bitmap_weight_and(const unsigne !! 240 for (k = 0; k < lim; k++) 345 const unsigned !! 241 w += hweight_long(bitmap[k]); 346 { << 347 return BITMAP_WEIGHT(bitmap1[idx] & bi << 348 } << 349 EXPORT_SYMBOL(__bitmap_weight_and); << 350 242 351 unsigned int __bitmap_weight_andnot(const unsi !! 243 if (bits % BITS_PER_LONG) 352 const unsigned !! 244 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 353 { !! 245 354 return BITMAP_WEIGHT(bitmap1[idx] & ~b !! 246 return w; 355 } 247 } 356 EXPORT_SYMBOL(__bitmap_weight_andnot); !! 248 EXPORT_SYMBOL(__bitmap_weight); 357 249 358 void __bitmap_set(unsigned long *map, unsigned 250 void __bitmap_set(unsigned long *map, unsigned int start, int len) 359 { 251 { 360 unsigned long *p = map + BIT_WORD(star 252 unsigned long *p = map + BIT_WORD(start); 361 const unsigned int size = start + len; 253 const unsigned int size = start + len; 362 int bits_to_set = BITS_PER_LONG - (sta 254 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 363 unsigned long mask_to_set = BITMAP_FIR 255 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 364 256 365 while (len - bits_to_set >= 0) { 257 while (len - bits_to_set >= 0) { 366 *p |= mask_to_set; 258 *p |= mask_to_set; 367 len -= bits_to_set; 259 len -= bits_to_set; 368 bits_to_set = BITS_PER_LONG; 260 bits_to_set = BITS_PER_LONG; 369 mask_to_set = ~0UL; 261 mask_to_set = ~0UL; 370 p++; 262 p++; 371 } 263 } 372 if (len) { 264 if (len) { 373 mask_to_set &= BITMAP_LAST_WOR 265 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 374 *p |= mask_to_set; 266 *p |= mask_to_set; 375 } 267 } 376 } 268 } 377 EXPORT_SYMBOL(__bitmap_set); 269 EXPORT_SYMBOL(__bitmap_set); 378 270 379 void __bitmap_clear(unsigned long *map, unsign 271 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 380 { 272 { 381 unsigned long *p = map + BIT_WORD(star 273 unsigned long *p = map + BIT_WORD(start); 382 const unsigned int size = start + len; 274 const unsigned int size = start + len; 383 int bits_to_clear = BITS_PER_LONG - (s 275 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 384 unsigned long mask_to_clear = BITMAP_F 276 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 385 277 386 while (len - bits_to_clear >= 0) { 278 while (len - bits_to_clear >= 0) { 387 *p &= ~mask_to_clear; 279 *p &= ~mask_to_clear; 388 len -= bits_to_clear; 280 len -= bits_to_clear; 389 bits_to_clear = BITS_PER_LONG; 281 bits_to_clear = BITS_PER_LONG; 390 mask_to_clear = ~0UL; 282 mask_to_clear = ~0UL; 391 p++; 283 p++; 392 } 284 } 393 if (len) { 285 if (len) { 394 mask_to_clear &= BITMAP_LAST_W 286 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 395 *p &= ~mask_to_clear; 287 *p &= ~mask_to_clear; 396 } 288 } 397 } 289 } 398 EXPORT_SYMBOL(__bitmap_clear); 290 EXPORT_SYMBOL(__bitmap_clear); 399 291 400 /** 292 /** 401 * bitmap_find_next_zero_area_off - find a con 293 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 402 * @map: The address to base the search on 294 * @map: The address to base the search on 403 * @size: The bitmap size in bits 295 * @size: The bitmap size in bits 404 * @start: The bitnumber to start searching at 296 * @start: The bitnumber to start searching at 405 * @nr: The number of zeroed bits we're lookin 297 * @nr: The number of zeroed bits we're looking for 406 * @align_mask: Alignment mask for zero area 298 * @align_mask: Alignment mask for zero area 407 * @align_offset: Alignment offset for zero ar 299 * @align_offset: Alignment offset for zero area. 408 * 300 * 409 * The @align_mask should be one less than a p 301 * The @align_mask should be one less than a power of 2; the effect is that 410 * the bit offset of all zero areas this funct 302 * the bit offset of all zero areas this function finds plus @align_offset 411 * is multiple of that power of 2. 303 * is multiple of that power of 2. 412 */ 304 */ 413 unsigned long bitmap_find_next_zero_area_off(u 305 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 414 u 306 unsigned long size, 415 u 307 unsigned long start, 416 u 308 unsigned int nr, 417 u 309 unsigned long align_mask, 418 u 310 unsigned long align_offset) 419 { 311 { 420 unsigned long index, end, i; 312 unsigned long index, end, i; 421 again: 313 again: 422 index = find_next_zero_bit(map, size, 314 index = find_next_zero_bit(map, size, start); 423 315 424 /* Align allocation */ 316 /* Align allocation */ 425 index = __ALIGN_MASK(index + align_off 317 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 426 318 427 end = index + nr; 319 end = index + nr; 428 if (end > size) 320 if (end > size) 429 return end; 321 return end; 430 i = find_next_bit(map, end, index); 322 i = find_next_bit(map, end, index); 431 if (i < end) { 323 if (i < end) { 432 start = i + 1; 324 start = i + 1; 433 goto again; 325 goto again; 434 } 326 } 435 return index; 327 return index; 436 } 328 } 437 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 329 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 438 330 >> 331 /* >> 332 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, >> 333 * second version by Paul Jackson, third by Joe Korty. >> 334 */ >> 335 >> 336 #define CHUNKSZ 32 >> 337 #define nbits_to_hold_value(val) fls(val) >> 338 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ >> 339 >> 340 /** >> 341 * __bitmap_parse - convert an ASCII hex string into a bitmap. >> 342 * @buf: pointer to buffer containing string. >> 343 * @buflen: buffer size in bytes. If string is smaller than this >> 344 * then it must be terminated with a \0. >> 345 * @is_user: location of buffer, 0 indicates kernel space >> 346 * @maskp: pointer to bitmap array that will contain result. >> 347 * @nmaskbits: size of bitmap, in bits. >> 348 * >> 349 * Commas group hex digits into chunks. Each chunk defines exactly 32 >> 350 * bits of the resultant bitmask. No chunk may specify a value larger >> 351 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value >> 352 * then leading 0-bits are prepended. %-EINVAL is returned for illegal >> 353 * characters and for grouping errors such as "1,,5", ",44", "," and "". >> 354 * Leading and trailing whitespace accepted, but not embedded whitespace. >> 355 */ >> 356 int __bitmap_parse(const char *buf, unsigned int buflen, >> 357 int is_user, unsigned long *maskp, >> 358 int nmaskbits) >> 359 { >> 360 int c, old_c, totaldigits, ndigits, nchunks, nbits; >> 361 u32 chunk; >> 362 const char __user __force *ubuf = (const char __user __force *)buf; >> 363 >> 364 bitmap_zero(maskp, nmaskbits); >> 365 >> 366 nchunks = nbits = totaldigits = c = 0; >> 367 do { >> 368 chunk = 0; >> 369 ndigits = totaldigits; >> 370 >> 371 /* Get the next chunk of the bitmap */ >> 372 while (buflen) { >> 373 old_c = c; >> 374 if (is_user) { >> 375 if (__get_user(c, ubuf++)) >> 376 return -EFAULT; >> 377 } >> 378 else >> 379 c = *buf++; >> 380 buflen--; >> 381 if (isspace(c)) >> 382 continue; >> 383 >> 384 /* >> 385 * If the last character was a space and the current >> 386 * character isn't '\0', we've got embedded whitespace. >> 387 * This is a no-no, so throw an error. >> 388 */ >> 389 if (totaldigits && c && isspace(old_c)) >> 390 return -EINVAL; >> 391 >> 392 /* A '\0' or a ',' signal the end of the chunk */ >> 393 if (c == '\0' || c == ',') >> 394 break; >> 395 >> 396 if (!isxdigit(c)) >> 397 return -EINVAL; >> 398 >> 399 /* >> 400 * Make sure there are at least 4 free bits in 'chunk'. >> 401 * If not, this hexdigit will overflow 'chunk', so >> 402 * throw an error. >> 403 */ >> 404 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) >> 405 return -EOVERFLOW; >> 406 >> 407 chunk = (chunk << 4) | hex_to_bin(c); >> 408 totaldigits++; >> 409 } >> 410 if (ndigits == totaldigits) >> 411 return -EINVAL; >> 412 if (nchunks == 0 && chunk == 0) >> 413 continue; >> 414 >> 415 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); >> 416 *maskp |= chunk; >> 417 nchunks++; >> 418 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; >> 419 if (nbits > nmaskbits) >> 420 return -EOVERFLOW; >> 421 } while (buflen && c == ','); >> 422 >> 423 return 0; >> 424 } >> 425 EXPORT_SYMBOL(__bitmap_parse); >> 426 >> 427 /** >> 428 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap >> 429 * >> 430 * @ubuf: pointer to user buffer containing string. >> 431 * @ulen: buffer size in bytes. If string is smaller than this >> 432 * then it must be terminated with a \0. >> 433 * @maskp: pointer to bitmap array that will contain result. >> 434 * @nmaskbits: size of bitmap, in bits. >> 435 * >> 436 * Wrapper for __bitmap_parse(), providing it with user buffer. >> 437 * >> 438 * We cannot have this as an inline function in bitmap.h because it needs >> 439 * linux/uaccess.h to get the access_ok() declaration and this causes >> 440 * cyclic dependencies. >> 441 */ >> 442 int bitmap_parse_user(const char __user *ubuf, >> 443 unsigned int ulen, unsigned long *maskp, >> 444 int nmaskbits) >> 445 { >> 446 if (!access_ok(ubuf, ulen)) >> 447 return -EFAULT; >> 448 return __bitmap_parse((const char __force *)ubuf, >> 449 ulen, 1, maskp, nmaskbits); >> 450 >> 451 } >> 452 EXPORT_SYMBOL(bitmap_parse_user); >> 453 >> 454 /** >> 455 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string >> 456 * @list: indicates whether the bitmap must be list >> 457 * @buf: page aligned buffer into which string is placed >> 458 * @maskp: pointer to bitmap to convert >> 459 * @nmaskbits: size of bitmap, in bits >> 460 * >> 461 * Output format is a comma-separated list of decimal numbers and >> 462 * ranges if list is specified or hex digits grouped into comma-separated >> 463 * sets of 8 digits/set. Returns the number of characters written to buf. >> 464 * >> 465 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned >> 466 * area and that sufficient storage remains at @buf to accommodate the >> 467 * bitmap_print_to_pagebuf() output. Returns the number of characters >> 468 * actually printed to @buf, excluding terminating '\0'. >> 469 */ >> 470 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, >> 471 int nmaskbits) >> 472 { >> 473 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); >> 474 >> 475 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : >> 476 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); >> 477 } >> 478 EXPORT_SYMBOL(bitmap_print_to_pagebuf); >> 479 >> 480 /* >> 481 * Region 9-38:4/10 describes the following bitmap structure: >> 482 * 0 9 12 18 38 >> 483 * .........****......****......****...... >> 484 * ^ ^ ^ ^ >> 485 * start off group_len end >> 486 */ >> 487 struct region { >> 488 unsigned int start; >> 489 unsigned int off; >> 490 unsigned int group_len; >> 491 unsigned int end; >> 492 }; >> 493 >> 494 static int bitmap_set_region(const struct region *r, >> 495 unsigned long *bitmap, int nbits) >> 496 { >> 497 unsigned int start; >> 498 >> 499 if (r->end >= nbits) >> 500 return -ERANGE; >> 501 >> 502 for (start = r->start; start <= r->end; start += r->group_len) >> 503 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); >> 504 >> 505 return 0; >> 506 } >> 507 >> 508 static int bitmap_check_region(const struct region *r) >> 509 { >> 510 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) >> 511 return -EINVAL; >> 512 >> 513 return 0; >> 514 } >> 515 >> 516 static const char *bitmap_getnum(const char *str, unsigned int *num) >> 517 { >> 518 unsigned long long n; >> 519 unsigned int len; >> 520 >> 521 len = _parse_integer(str, 10, &n); >> 522 if (!len) >> 523 return ERR_PTR(-EINVAL); >> 524 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) >> 525 return ERR_PTR(-EOVERFLOW); >> 526 >> 527 *num = n; >> 528 return str + len; >> 529 } >> 530 >> 531 static inline bool end_of_str(char c) >> 532 { >> 533 return c == '\0' || c == '\n'; >> 534 } >> 535 >> 536 static inline bool __end_of_region(char c) >> 537 { >> 538 return isspace(c) || c == ','; >> 539 } >> 540 >> 541 static inline bool end_of_region(char c) >> 542 { >> 543 return __end_of_region(c) || end_of_str(c); >> 544 } >> 545 >> 546 /* >> 547 * The format allows commas and whitespases at the beginning >> 548 * of the region. >> 549 */ >> 550 static const char *bitmap_find_region(const char *str) >> 551 { >> 552 while (__end_of_region(*str)) >> 553 str++; >> 554 >> 555 return end_of_str(*str) ? NULL : str; >> 556 } >> 557 >> 558 static const char *bitmap_parse_region(const char *str, struct region *r) >> 559 { >> 560 str = bitmap_getnum(str, &r->start); >> 561 if (IS_ERR(str)) >> 562 return str; >> 563 >> 564 if (end_of_region(*str)) >> 565 goto no_end; >> 566 >> 567 if (*str != '-') >> 568 return ERR_PTR(-EINVAL); >> 569 >> 570 str = bitmap_getnum(str + 1, &r->end); >> 571 if (IS_ERR(str)) >> 572 return str; >> 573 >> 574 if (end_of_region(*str)) >> 575 goto no_pattern; >> 576 >> 577 if (*str != ':') >> 578 return ERR_PTR(-EINVAL); >> 579 >> 580 str = bitmap_getnum(str + 1, &r->off); >> 581 if (IS_ERR(str)) >> 582 return str; >> 583 >> 584 if (*str != '/') >> 585 return ERR_PTR(-EINVAL); >> 586 >> 587 return bitmap_getnum(str + 1, &r->group_len); >> 588 >> 589 no_end: >> 590 r->end = r->start; >> 591 no_pattern: >> 592 r->off = r->end + 1; >> 593 r->group_len = r->end + 1; >> 594 >> 595 return end_of_str(*str) ? NULL : str; >> 596 } >> 597 >> 598 /** >> 599 * bitmap_parselist - convert list format ASCII string to bitmap >> 600 * @buf: read user string from this buffer; must be terminated >> 601 * with a \0 or \n. >> 602 * @maskp: write resulting mask here >> 603 * @nmaskbits: number of bits in mask to be written >> 604 * >> 605 * Input format is a comma-separated list of decimal numbers and >> 606 * ranges. Consecutively set bits are shown as two hyphen-separated >> 607 * decimal numbers, the smallest and largest bit numbers set in >> 608 * the range. >> 609 * Optionally each range can be postfixed to denote that only parts of it >> 610 * should be set. The range will divided to groups of specific size. >> 611 * From each group will be used only defined amount of bits. >> 612 * Syntax: range:used_size/group_size >> 613 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 >> 614 * >> 615 * Returns: 0 on success, -errno on invalid input strings. Error values: >> 616 * >> 617 * - ``-EINVAL``: wrong region format >> 618 * - ``-EINVAL``: invalid character in string >> 619 * - ``-ERANGE``: bit number specified too large for mask >> 620 * - ``-EOVERFLOW``: integer overflow in the input parameters >> 621 */ >> 622 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) >> 623 { >> 624 struct region r; >> 625 long ret; >> 626 >> 627 bitmap_zero(maskp, nmaskbits); >> 628 >> 629 while (buf) { >> 630 buf = bitmap_find_region(buf); >> 631 if (buf == NULL) >> 632 return 0; >> 633 >> 634 buf = bitmap_parse_region(buf, &r); >> 635 if (IS_ERR(buf)) >> 636 return PTR_ERR(buf); >> 637 >> 638 ret = bitmap_check_region(&r); >> 639 if (ret) >> 640 return ret; >> 641 >> 642 ret = bitmap_set_region(&r, maskp, nmaskbits); >> 643 if (ret) >> 644 return ret; >> 645 } >> 646 >> 647 return 0; >> 648 } >> 649 EXPORT_SYMBOL(bitmap_parselist); >> 650 >> 651 >> 652 /** >> 653 * bitmap_parselist_user() >> 654 * >> 655 * @ubuf: pointer to user buffer containing string. >> 656 * @ulen: buffer size in bytes. If string is smaller than this >> 657 * then it must be terminated with a \0. >> 658 * @maskp: pointer to bitmap array that will contain result. >> 659 * @nmaskbits: size of bitmap, in bits. >> 660 * >> 661 * Wrapper for bitmap_parselist(), providing it with user buffer. >> 662 */ >> 663 int bitmap_parselist_user(const char __user *ubuf, >> 664 unsigned int ulen, unsigned long *maskp, >> 665 int nmaskbits) >> 666 { >> 667 char *buf; >> 668 int ret; >> 669 >> 670 buf = memdup_user_nul(ubuf, ulen); >> 671 if (IS_ERR(buf)) >> 672 return PTR_ERR(buf); >> 673 >> 674 ret = bitmap_parselist(buf, maskp, nmaskbits); >> 675 >> 676 kfree(buf); >> 677 return ret; >> 678 } >> 679 EXPORT_SYMBOL(bitmap_parselist_user); >> 680 >> 681 >> 682 #ifdef CONFIG_NUMA 439 /** 683 /** 440 * bitmap_pos_to_ord - find ordinal of set bit 684 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 441 * @buf: pointer to a bitmap 685 * @buf: pointer to a bitmap 442 * @pos: a bit position in @buf (0 <= @po 686 * @pos: a bit position in @buf (0 <= @pos < @nbits) 443 * @nbits: number of valid bit positions 687 * @nbits: number of valid bit positions in @buf 444 * 688 * 445 * Map the bit at position @pos in @buf (of le 689 * Map the bit at position @pos in @buf (of length @nbits) to the 446 * ordinal of which set bit it is. If it is n 690 * ordinal of which set bit it is. If it is not set or if @pos 447 * is not a valid bit position, map to -1. 691 * is not a valid bit position, map to -1. 448 * 692 * 449 * If for example, just bits 4 through 7 are s 693 * If for example, just bits 4 through 7 are set in @buf, then @pos 450 * values 4 through 7 will get mapped to 0 thr 694 * values 4 through 7 will get mapped to 0 through 3, respectively, 451 * and other @pos values will get mapped to -1 695 * and other @pos values will get mapped to -1. When @pos value 7 452 * gets mapped to (returns) @ord value 3 in th 696 * gets mapped to (returns) @ord value 3 in this example, that means 453 * that bit 7 is the 3rd (starting with 0th) s 697 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 454 * 698 * 455 * The bit positions 0 through @bits are valid 699 * The bit positions 0 through @bits are valid positions in @buf. 456 */ 700 */ 457 static int bitmap_pos_to_ord(const unsigned lo 701 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 458 { 702 { 459 if (pos >= nbits || !test_bit(pos, buf 703 if (pos >= nbits || !test_bit(pos, buf)) 460 return -1; 704 return -1; 461 705 462 return bitmap_weight(buf, pos); !! 706 return __bitmap_weight(buf, pos); >> 707 } >> 708 >> 709 /** >> 710 * bitmap_ord_to_pos - find position of n-th set bit in bitmap >> 711 * @buf: pointer to bitmap >> 712 * @ord: ordinal bit position (n-th set bit, n >= 0) >> 713 * @nbits: number of valid bit positions in @buf >> 714 * >> 715 * Map the ordinal offset of bit @ord in @buf to its position in @buf. >> 716 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord >> 717 * >= weight(buf), returns @nbits. >> 718 * >> 719 * If for example, just bits 4 through 7 are set in @buf, then @ord >> 720 * values 0 through 3 will get mapped to 4 through 7, respectively, >> 721 * and all other @ord values returns @nbits. When @ord value 3 >> 722 * gets mapped to (returns) @pos value 7 in this example, that means >> 723 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. >> 724 * >> 725 * The bit positions 0 through @nbits-1 are valid positions in @buf. >> 726 */ >> 727 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) >> 728 { >> 729 unsigned int pos; >> 730 >> 731 for (pos = find_first_bit(buf, nbits); >> 732 pos < nbits && ord; >> 733 pos = find_next_bit(buf, nbits, pos + 1)) >> 734 ord--; >> 735 >> 736 return pos; 463 } 737 } 464 738 465 /** 739 /** 466 * bitmap_remap - Apply map defined by a pair 740 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 467 * @dst: remapped result 741 * @dst: remapped result 468 * @src: subset to be remapped 742 * @src: subset to be remapped 469 * @old: defines domain of map 743 * @old: defines domain of map 470 * @new: defines range of map 744 * @new: defines range of map 471 * @nbits: number of bits in each of thes 745 * @nbits: number of bits in each of these bitmaps 472 * 746 * 473 * Let @old and @new define a mapping of bit p 747 * Let @old and @new define a mapping of bit positions, such that 474 * whatever position is held by the n-th set b 748 * whatever position is held by the n-th set bit in @old is mapped 475 * to the n-th set bit in @new. In the more g 749 * to the n-th set bit in @new. In the more general case, allowing 476 * for the possibility that the weight 'w' of 750 * for the possibility that the weight 'w' of @new is less than the 477 * weight of @old, map the position of the n-t 751 * weight of @old, map the position of the n-th set bit in @old to 478 * the position of the m-th set bit in @new, w 752 * the position of the m-th set bit in @new, where m == n % w. 479 * 753 * 480 * If either of the @old and @new bitmaps are 754 * If either of the @old and @new bitmaps are empty, or if @src and 481 * @dst point to the same location, then this 755 * @dst point to the same location, then this routine copies @src 482 * to @dst. 756 * to @dst. 483 * 757 * 484 * The positions of unset bits in @old are map 758 * The positions of unset bits in @old are mapped to themselves 485 * (the identity map). !! 759 * (the identify map). 486 * 760 * 487 * Apply the above specified mapping to @src, 761 * Apply the above specified mapping to @src, placing the result in 488 * @dst, clearing any bits previously set in @ 762 * @dst, clearing any bits previously set in @dst. 489 * 763 * 490 * For example, lets say that @old has bits 4 764 * For example, lets say that @old has bits 4 through 7 set, and 491 * @new has bits 12 through 15 set. This defi 765 * @new has bits 12 through 15 set. This defines the mapping of bit 492 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 766 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 493 * bit positions unchanged. So if say @src co 767 * bit positions unchanged. So if say @src comes into this routine 494 * with bits 1, 5 and 7 set, then @dst should 768 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 495 * 13 and 15 set. 769 * 13 and 15 set. 496 */ 770 */ 497 void bitmap_remap(unsigned long *dst, const un 771 void bitmap_remap(unsigned long *dst, const unsigned long *src, 498 const unsigned long *old, cons 772 const unsigned long *old, const unsigned long *new, 499 unsigned int nbits) 773 unsigned int nbits) 500 { 774 { 501 unsigned int oldbit, w; 775 unsigned int oldbit, w; 502 776 503 if (dst == src) /* following d 777 if (dst == src) /* following doesn't handle inplace remaps */ 504 return; 778 return; 505 bitmap_zero(dst, nbits); 779 bitmap_zero(dst, nbits); 506 780 507 w = bitmap_weight(new, nbits); 781 w = bitmap_weight(new, nbits); 508 for_each_set_bit(oldbit, src, nbits) { 782 for_each_set_bit(oldbit, src, nbits) { 509 int n = bitmap_pos_to_ord(old, 783 int n = bitmap_pos_to_ord(old, oldbit, nbits); 510 784 511 if (n < 0 || w == 0) 785 if (n < 0 || w == 0) 512 set_bit(oldbit, dst); 786 set_bit(oldbit, dst); /* identity map */ 513 else 787 else 514 set_bit(find_nth_bit(n !! 788 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 515 } 789 } 516 } 790 } 517 EXPORT_SYMBOL(bitmap_remap); << 518 791 519 /** 792 /** 520 * bitmap_bitremap - Apply map defined by a pa 793 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 521 * @oldbit: bit position to be mapped 794 * @oldbit: bit position to be mapped 522 * @old: defines domain of map 795 * @old: defines domain of map 523 * @new: defines range of map 796 * @new: defines range of map 524 * @bits: number of bits in each of these 797 * @bits: number of bits in each of these bitmaps 525 * 798 * 526 * Let @old and @new define a mapping of bit p 799 * Let @old and @new define a mapping of bit positions, such that 527 * whatever position is held by the n-th set b 800 * whatever position is held by the n-th set bit in @old is mapped 528 * to the n-th set bit in @new. In the more g 801 * to the n-th set bit in @new. In the more general case, allowing 529 * for the possibility that the weight 'w' of 802 * for the possibility that the weight 'w' of @new is less than the 530 * weight of @old, map the position of the n-t 803 * weight of @old, map the position of the n-th set bit in @old to 531 * the position of the m-th set bit in @new, w 804 * the position of the m-th set bit in @new, where m == n % w. 532 * 805 * 533 * The positions of unset bits in @old are map 806 * The positions of unset bits in @old are mapped to themselves 534 * (the identity map). !! 807 * (the identify map). 535 * 808 * 536 * Apply the above specified mapping to bit po 809 * Apply the above specified mapping to bit position @oldbit, returning 537 * the new bit position. 810 * the new bit position. 538 * 811 * 539 * For example, lets say that @old has bits 4 812 * For example, lets say that @old has bits 4 through 7 set, and 540 * @new has bits 12 through 15 set. This defi 813 * @new has bits 12 through 15 set. This defines the mapping of bit 541 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 814 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 542 * bit positions unchanged. So if say @oldbit 815 * bit positions unchanged. So if say @oldbit is 5, then this routine 543 * returns 13. 816 * returns 13. 544 */ 817 */ 545 int bitmap_bitremap(int oldbit, const unsigned 818 int bitmap_bitremap(int oldbit, const unsigned long *old, 546 const unsigned 819 const unsigned long *new, int bits) 547 { 820 { 548 int w = bitmap_weight(new, bits); 821 int w = bitmap_weight(new, bits); 549 int n = bitmap_pos_to_ord(old, oldbit, 822 int n = bitmap_pos_to_ord(old, oldbit, bits); 550 if (n < 0 || w == 0) 823 if (n < 0 || w == 0) 551 return oldbit; 824 return oldbit; 552 else 825 else 553 return find_nth_bit(new, bits, !! 826 return bitmap_ord_to_pos(new, n % w, bits); 554 } 827 } 555 EXPORT_SYMBOL(bitmap_bitremap); << 556 828 557 #ifdef CONFIG_NUMA << 558 /** 829 /** 559 * bitmap_onto - translate one bitmap relative 830 * bitmap_onto - translate one bitmap relative to another 560 * @dst: resulting translated bitmap 831 * @dst: resulting translated bitmap 561 * @orig: original untranslated bitmap 832 * @orig: original untranslated bitmap 562 * @relmap: bitmap relative to which tran 833 * @relmap: bitmap relative to which translated 563 * @bits: number of bits in each of these 834 * @bits: number of bits in each of these bitmaps 564 * 835 * 565 * Set the n-th bit of @dst iff there exists s 836 * Set the n-th bit of @dst iff there exists some m such that the 566 * n-th bit of @relmap is set, the m-th bit of 837 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 567 * the n-th bit of @relmap is also the m-th _s 838 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 568 * (If you understood the previous sentence th 839 * (If you understood the previous sentence the first time your 569 * read it, you're overqualified for your curr 840 * read it, you're overqualified for your current job.) 570 * 841 * 571 * In other words, @orig is mapped onto (surje 842 * In other words, @orig is mapped onto (surjectively) @dst, 572 * using the map { <n, m> | the n-th bit of @r 843 * using the map { <n, m> | the n-th bit of @relmap is the 573 * m-th set bit of @relmap }. 844 * m-th set bit of @relmap }. 574 * 845 * 575 * Any set bits in @orig above bit number W, w 846 * Any set bits in @orig above bit number W, where W is the 576 * weight of (number of set bits in) @relmap a 847 * weight of (number of set bits in) @relmap are mapped nowhere. 577 * In particular, if for all bits m set in @or 848 * In particular, if for all bits m set in @orig, m >= W, then 578 * @dst will end up empty. In situations wher 849 * @dst will end up empty. In situations where the possibility 579 * of such an empty result is not desired, one 850 * of such an empty result is not desired, one way to avoid it is 580 * to use the bitmap_fold() operator, below, t 851 * to use the bitmap_fold() operator, below, to first fold the 581 * @orig bitmap over itself so that all its se 852 * @orig bitmap over itself so that all its set bits x are in the 582 * range 0 <= x < W. The bitmap_fold() operat 853 * range 0 <= x < W. The bitmap_fold() operator does this by 583 * setting the bit (m % W) in @dst, for each b 854 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 584 * 855 * 585 * Example [1] for bitmap_onto(): 856 * Example [1] for bitmap_onto(): 586 * Let's say @relmap has bits 30-39 set, and 857 * Let's say @relmap has bits 30-39 set, and @orig has bits 587 * 1, 3, 5, 7, 9 and 11 set. Then on return 858 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 588 * @dst will have bits 31, 33, 35, 37 and 39 859 * @dst will have bits 31, 33, 35, 37 and 39 set. 589 * 860 * 590 * When bit 0 is set in @orig, it means turn 861 * When bit 0 is set in @orig, it means turn on the bit in 591 * @dst corresponding to whatever is the firs 862 * @dst corresponding to whatever is the first bit (if any) 592 * that is turned on in @relmap. Since bit 0 863 * that is turned on in @relmap. Since bit 0 was off in the 593 * above example, we leave off that bit (bit 864 * above example, we leave off that bit (bit 30) in @dst. 594 * 865 * 595 * When bit 1 is set in @orig (as in the abov 866 * When bit 1 is set in @orig (as in the above example), it 596 * means turn on the bit in @dst correspondin 867 * means turn on the bit in @dst corresponding to whatever 597 * is the second bit that is turned on in @re 868 * is the second bit that is turned on in @relmap. The second 598 * bit in @relmap that was turned on in the a 869 * bit in @relmap that was turned on in the above example was 599 * bit 31, so we turned on bit 31 in @dst. 870 * bit 31, so we turned on bit 31 in @dst. 600 * 871 * 601 * Similarly, we turned on bits 33, 35, 37 an 872 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 602 * because they were the 4th, 6th, 8th and 10 873 * because they were the 4th, 6th, 8th and 10th set bits 603 * set in @relmap, and the 4th, 6th, 8th and 874 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 604 * @orig (i.e. bits 3, 5, 7 and 9) were also 875 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 605 * 876 * 606 * When bit 11 is set in @orig, it means turn 877 * When bit 11 is set in @orig, it means turn on the bit in 607 * @dst corresponding to whatever is the twel 878 * @dst corresponding to whatever is the twelfth bit that is 608 * turned on in @relmap. In the above exampl 879 * turned on in @relmap. In the above example, there were 609 * only ten bits turned on in @relmap (30..39 880 * only ten bits turned on in @relmap (30..39), so that bit 610 * 11 was set in @orig had no affect on @dst. 881 * 11 was set in @orig had no affect on @dst. 611 * 882 * 612 * Example [2] for bitmap_fold() + bitmap_onto 883 * Example [2] for bitmap_fold() + bitmap_onto(): 613 * Let's say @relmap has these ten bits set:: 884 * Let's say @relmap has these ten bits set:: 614 * 885 * 615 * 40 41 42 43 45 48 53 61 74 95 886 * 40 41 42 43 45 48 53 61 74 95 616 * 887 * 617 * (for the curious, that's 40 plus the first 888 * (for the curious, that's 40 plus the first ten terms of the 618 * Fibonacci sequence.) 889 * Fibonacci sequence.) 619 * 890 * 620 * Further lets say we use the following code 891 * Further lets say we use the following code, invoking 621 * bitmap_fold() then bitmap_onto, as suggest 892 * bitmap_fold() then bitmap_onto, as suggested above to 622 * avoid the possibility of an empty @dst res 893 * avoid the possibility of an empty @dst result:: 623 * 894 * 624 * unsigned long *tmp; // a temporary 895 * unsigned long *tmp; // a temporary bitmap's bits 625 * 896 * 626 * bitmap_fold(tmp, orig, bitmap_weight(r 897 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 627 * bitmap_onto(dst, tmp, relmap, bits); 898 * bitmap_onto(dst, tmp, relmap, bits); 628 * 899 * 629 * Then this table shows what various values 900 * Then this table shows what various values of @dst would be, for 630 * various @orig's. I list the zero-based po 901 * various @orig's. I list the zero-based positions of each set bit. 631 * The tmp column shows the intermediate resu 902 * The tmp column shows the intermediate result, as computed by 632 * using bitmap_fold() to fold the @orig bitm 903 * using bitmap_fold() to fold the @orig bitmap modulo ten 633 * (the weight of @relmap): 904 * (the weight of @relmap): 634 * 905 * 635 * =============== ============== ======= 906 * =============== ============== ================= 636 * @orig tmp @dst 907 * @orig tmp @dst 637 * 0 0 40 908 * 0 0 40 638 * 1 1 41 909 * 1 1 41 639 * 9 9 95 910 * 9 9 95 640 * 10 0 40 [#f1 911 * 10 0 40 [#f1]_ 641 * 1 3 5 7 1 3 5 7 41 43 4 912 * 1 3 5 7 1 3 5 7 41 43 48 61 642 * 0 1 2 3 4 0 1 2 3 4 40 41 4 913 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 643 * 0 9 18 27 0 9 8 7 40 61 7 914 * 0 9 18 27 0 9 8 7 40 61 74 95 644 * 0 10 20 30 0 40 915 * 0 10 20 30 0 40 645 * 0 11 22 33 0 1 2 3 40 41 4 916 * 0 11 22 33 0 1 2 3 40 41 42 43 646 * 0 12 24 36 0 2 4 6 40 42 4 917 * 0 12 24 36 0 2 4 6 40 42 45 53 647 * 78 102 211 1 2 8 41 42 7 918 * 78 102 211 1 2 8 41 42 74 [#f1]_ 648 * =============== ============== ======= 919 * =============== ============== ================= 649 * 920 * 650 * .. [#f1] 921 * .. [#f1] 651 * 922 * 652 * For these marked lines, if we hadn't fi 923 * For these marked lines, if we hadn't first done bitmap_fold() 653 * into tmp, then the @dst result would ha 924 * into tmp, then the @dst result would have been empty. 654 * 925 * 655 * If either of @orig or @relmap is empty (no 926 * If either of @orig or @relmap is empty (no set bits), then @dst 656 * will be returned empty. 927 * will be returned empty. 657 * 928 * 658 * If (as explained above) the only set bits i 929 * If (as explained above) the only set bits in @orig are in positions 659 * m where m >= W, (where W is the weight of @ 930 * m where m >= W, (where W is the weight of @relmap) then @dst will 660 * once again be returned empty. 931 * once again be returned empty. 661 * 932 * 662 * All bits in @dst not set by the above rule 933 * All bits in @dst not set by the above rule are cleared. 663 */ 934 */ 664 void bitmap_onto(unsigned long *dst, const uns 935 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 665 const unsigned long *r 936 const unsigned long *relmap, unsigned int bits) 666 { 937 { 667 unsigned int n, m; /* same meanin 938 unsigned int n, m; /* same meaning as in above comment */ 668 939 669 if (dst == orig) /* following d 940 if (dst == orig) /* following doesn't handle inplace mappings */ 670 return; 941 return; 671 bitmap_zero(dst, bits); 942 bitmap_zero(dst, bits); 672 943 673 /* 944 /* 674 * The following code is a more effici 945 * The following code is a more efficient, but less 675 * obvious, equivalent to the loop: 946 * obvious, equivalent to the loop: 676 * for (m = 0; m < bitmap_weight( 947 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 677 * n = find_nth_bit(orig, !! 948 * n = bitmap_ord_to_pos(orig, m, bits); 678 * if (test_bit(m, orig)) 949 * if (test_bit(m, orig)) 679 * set_bit(n, dst 950 * set_bit(n, dst); 680 * } 951 * } 681 */ 952 */ 682 953 683 m = 0; 954 m = 0; 684 for_each_set_bit(n, relmap, bits) { 955 for_each_set_bit(n, relmap, bits) { 685 /* m == bitmap_pos_to_ord(relm 956 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 686 if (test_bit(m, orig)) 957 if (test_bit(m, orig)) 687 set_bit(n, dst); 958 set_bit(n, dst); 688 m++; 959 m++; 689 } 960 } 690 } 961 } 691 962 692 /** 963 /** 693 * bitmap_fold - fold larger bitmap into small 964 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 694 * @dst: resulting smaller bitmap 965 * @dst: resulting smaller bitmap 695 * @orig: original larger bitmap 966 * @orig: original larger bitmap 696 * @sz: specified size 967 * @sz: specified size 697 * @nbits: number of bits in each of thes 968 * @nbits: number of bits in each of these bitmaps 698 * 969 * 699 * For each bit oldbit in @orig, set bit oldbi 970 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 700 * Clear all other bits in @dst. See further 971 * Clear all other bits in @dst. See further the comment and 701 * Example [2] for bitmap_onto() for why and h 972 * Example [2] for bitmap_onto() for why and how to use this. 702 */ 973 */ 703 void bitmap_fold(unsigned long *dst, const uns 974 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 704 unsigned int sz, unsig 975 unsigned int sz, unsigned int nbits) 705 { 976 { 706 unsigned int oldbit; 977 unsigned int oldbit; 707 978 708 if (dst == orig) /* following d 979 if (dst == orig) /* following doesn't handle inplace mappings */ 709 return; 980 return; 710 bitmap_zero(dst, nbits); 981 bitmap_zero(dst, nbits); 711 982 712 for_each_set_bit(oldbit, orig, nbits) 983 for_each_set_bit(oldbit, orig, nbits) 713 set_bit(oldbit % sz, dst); 984 set_bit(oldbit % sz, dst); 714 } 985 } 715 #endif /* CONFIG_NUMA */ 986 #endif /* CONFIG_NUMA */ 716 987 717 unsigned long *bitmap_alloc(unsigned int nbits !! 988 /* 718 { !! 989 * Common code for bitmap_*_region() routines. 719 return kmalloc_array(BITS_TO_LONGS(nbi !! 990 * bitmap: array of unsigned longs corresponding to the bitmap 720 flags); !! 991 * pos: the beginning of the region 721 } !! 992 * order: region size (log base 2 of number of bits) 722 EXPORT_SYMBOL(bitmap_alloc); !! 993 * reg_op: operation(s) to perform on that region of bitmap >> 994 * >> 995 * Can set, verify and/or release a region of bits in a bitmap, >> 996 * depending on which combination of REG_OP_* flag bits is set. >> 997 * >> 998 * A region of a bitmap is a sequence of bits in the bitmap, of >> 999 * some size '1 << order' (a power of two), aligned to that same >> 1000 * '1 << order' power of two. >> 1001 * >> 1002 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). >> 1003 * Returns 0 in all other cases and reg_ops. >> 1004 */ 723 1005 724 unsigned long *bitmap_zalloc(unsigned int nbit !! 1006 enum { 725 { !! 1007 REG_OP_ISFREE, /* true if region is all zero bits */ 726 return bitmap_alloc(nbits, flags | __G !! 1008 REG_OP_ALLOC, /* set all bits in region */ >> 1009 REG_OP_RELEASE, /* clear all bits in region */ >> 1010 }; >> 1011 >> 1012 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) >> 1013 { >> 1014 int nbits_reg; /* number of bits in region */ >> 1015 int index; /* index first long of region in bitmap */ >> 1016 int offset; /* bit offset region in bitmap[index] */ >> 1017 int nlongs_reg; /* num longs spanned by region in bitmap */ >> 1018 int nbitsinlong; /* num bits of region in each spanned long */ >> 1019 unsigned long mask; /* bitmask for one long of region */ >> 1020 int i; /* scans bitmap by longs */ >> 1021 int ret = 0; /* return value */ >> 1022 >> 1023 /* >> 1024 * Either nlongs_reg == 1 (for small orders that fit in one long) >> 1025 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) >> 1026 */ >> 1027 nbits_reg = 1 << order; >> 1028 index = pos / BITS_PER_LONG; >> 1029 offset = pos - (index * BITS_PER_LONG); >> 1030 nlongs_reg = BITS_TO_LONGS(nbits_reg); >> 1031 nbitsinlong = min(nbits_reg, BITS_PER_LONG); >> 1032 >> 1033 /* >> 1034 * Can't do "mask = (1UL << nbitsinlong) - 1", as that >> 1035 * overflows if nbitsinlong == BITS_PER_LONG. >> 1036 */ >> 1037 mask = (1UL << (nbitsinlong - 1)); >> 1038 mask += mask - 1; >> 1039 mask <<= offset; >> 1040 >> 1041 switch (reg_op) { >> 1042 case REG_OP_ISFREE: >> 1043 for (i = 0; i < nlongs_reg; i++) { >> 1044 if (bitmap[index + i] & mask) >> 1045 goto done; >> 1046 } >> 1047 ret = 1; /* all bits in region free (zero) */ >> 1048 break; >> 1049 >> 1050 case REG_OP_ALLOC: >> 1051 for (i = 0; i < nlongs_reg; i++) >> 1052 bitmap[index + i] |= mask; >> 1053 break; >> 1054 >> 1055 case REG_OP_RELEASE: >> 1056 for (i = 0; i < nlongs_reg; i++) >> 1057 bitmap[index + i] &= ~mask; >> 1058 break; >> 1059 } >> 1060 done: >> 1061 return ret; 727 } 1062 } 728 EXPORT_SYMBOL(bitmap_zalloc); << 729 1063 730 unsigned long *bitmap_alloc_node(unsigned int !! 1064 /** >> 1065 * bitmap_find_free_region - find a contiguous aligned mem region >> 1066 * @bitmap: array of unsigned longs corresponding to the bitmap >> 1067 * @bits: number of bits in the bitmap >> 1068 * @order: region size (log base 2 of number of bits) to find >> 1069 * >> 1070 * Find a region of free (zero) bits in a @bitmap of @bits bits and >> 1071 * allocate them (set them to one). Only consider regions of length >> 1072 * a power (@order) of two, aligned to that power of two, which >> 1073 * makes the search algorithm much faster. >> 1074 * >> 1075 * Return the bit offset in bitmap of the allocated region, >> 1076 * or -errno on failure. >> 1077 */ >> 1078 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 731 { 1079 { 732 return kmalloc_array_node(BITS_TO_LONG !! 1080 unsigned int pos, end; /* scans bitmap by regions of size order */ 733 flags, node) !! 1081 >> 1082 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { >> 1083 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) >> 1084 continue; >> 1085 __reg_op(bitmap, pos, order, REG_OP_ALLOC); >> 1086 return pos; >> 1087 } >> 1088 return -ENOMEM; 734 } 1089 } 735 EXPORT_SYMBOL(bitmap_alloc_node); !! 1090 EXPORT_SYMBOL(bitmap_find_free_region); 736 1091 737 unsigned long *bitmap_zalloc_node(unsigned int !! 1092 /** >> 1093 * bitmap_release_region - release allocated bitmap region >> 1094 * @bitmap: array of unsigned longs corresponding to the bitmap >> 1095 * @pos: beginning of bit region to release >> 1096 * @order: region size (log base 2 of number of bits) to release >> 1097 * >> 1098 * This is the complement to __bitmap_find_free_region() and releases >> 1099 * the found region (by clearing it in the bitmap). >> 1100 * >> 1101 * No return value. >> 1102 */ >> 1103 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 738 { 1104 { 739 return bitmap_alloc_node(nbits, flags !! 1105 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 740 } 1106 } 741 EXPORT_SYMBOL(bitmap_zalloc_node); !! 1107 EXPORT_SYMBOL(bitmap_release_region); 742 1108 743 void bitmap_free(const unsigned long *bitmap) !! 1109 /** >> 1110 * bitmap_allocate_region - allocate bitmap region >> 1111 * @bitmap: array of unsigned longs corresponding to the bitmap >> 1112 * @pos: beginning of bit region to allocate >> 1113 * @order: region size (log base 2 of number of bits) to allocate >> 1114 * >> 1115 * Allocate (set bits in) a specified region of a bitmap. >> 1116 * >> 1117 * Return 0 on success, or %-EBUSY if specified region wasn't >> 1118 * free (not all bits were zero). >> 1119 */ >> 1120 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 744 { 1121 { 745 kfree(bitmap); !! 1122 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) >> 1123 return -EBUSY; >> 1124 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 746 } 1125 } 747 EXPORT_SYMBOL(bitmap_free); !! 1126 EXPORT_SYMBOL(bitmap_allocate_region); 748 1127 749 static void devm_bitmap_free(void *data) !! 1128 /** >> 1129 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. >> 1130 * @dst: destination buffer >> 1131 * @src: bitmap to copy >> 1132 * @nbits: number of bits in the bitmap >> 1133 * >> 1134 * Require nbits % BITS_PER_LONG == 0. >> 1135 */ >> 1136 #ifdef __BIG_ENDIAN >> 1137 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 750 { 1138 { 751 unsigned long *bitmap = data; !! 1139 unsigned int i; 752 1140 753 bitmap_free(bitmap); !! 1141 for (i = 0; i < nbits/BITS_PER_LONG; i++) { >> 1142 if (BITS_PER_LONG == 64) >> 1143 dst[i] = cpu_to_le64(src[i]); >> 1144 else >> 1145 dst[i] = cpu_to_le32(src[i]); >> 1146 } 754 } 1147 } >> 1148 EXPORT_SYMBOL(bitmap_copy_le); >> 1149 #endif 755 1150 756 unsigned long *devm_bitmap_alloc(struct device !! 1151 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 757 unsigned int << 758 { 1152 { 759 unsigned long *bitmap; !! 1153 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 760 int ret; !! 1154 flags); 761 !! 1155 } 762 bitmap = bitmap_alloc(nbits, flags); !! 1156 EXPORT_SYMBOL(bitmap_alloc); 763 if (!bitmap) << 764 return NULL; << 765 << 766 ret = devm_add_action_or_reset(dev, de << 767 if (ret) << 768 return NULL; << 769 1157 770 return bitmap; !! 1158 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) >> 1159 { >> 1160 return bitmap_alloc(nbits, flags | __GFP_ZERO); 771 } 1161 } 772 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); !! 1162 EXPORT_SYMBOL(bitmap_zalloc); 773 1163 774 unsigned long *devm_bitmap_zalloc(struct devic !! 1164 void bitmap_free(const unsigned long *bitmap) 775 unsigned int << 776 { 1165 { 777 return devm_bitmap_alloc(dev, nbits, f !! 1166 kfree(bitmap); 778 } 1167 } 779 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); !! 1168 EXPORT_SYMBOL(bitmap_free); 780 1169 781 #if BITS_PER_LONG == 64 1170 #if BITS_PER_LONG == 64 782 /** 1171 /** 783 * bitmap_from_arr32 - copy the contents of u3 1172 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 784 * @bitmap: array of unsigned longs, the 1173 * @bitmap: array of unsigned longs, the destination bitmap 785 * @buf: array of u32 (in host byte order 1174 * @buf: array of u32 (in host byte order), the source bitmap 786 * @nbits: number of bits in @bitmap 1175 * @nbits: number of bits in @bitmap 787 */ 1176 */ 788 void bitmap_from_arr32(unsigned long *bitmap, 1177 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 789 { 1178 { 790 unsigned int i, halfwords; 1179 unsigned int i, halfwords; 791 1180 792 halfwords = DIV_ROUND_UP(nbits, 32); 1181 halfwords = DIV_ROUND_UP(nbits, 32); 793 for (i = 0; i < halfwords; i++) { 1182 for (i = 0; i < halfwords; i++) { 794 bitmap[i/2] = (unsigned long) 1183 bitmap[i/2] = (unsigned long) buf[i]; 795 if (++i < halfwords) 1184 if (++i < halfwords) 796 bitmap[i/2] |= ((unsig 1185 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 797 } 1186 } 798 1187 799 /* Clear tail bits in last word beyond 1188 /* Clear tail bits in last word beyond nbits. */ 800 if (nbits % BITS_PER_LONG) 1189 if (nbits % BITS_PER_LONG) 801 bitmap[(halfwords - 1) / 2] &= 1190 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 802 } 1191 } 803 EXPORT_SYMBOL(bitmap_from_arr32); 1192 EXPORT_SYMBOL(bitmap_from_arr32); 804 1193 805 /** 1194 /** 806 * bitmap_to_arr32 - copy the contents of bitm 1195 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 807 * @buf: array of u32 (in host byte order 1196 * @buf: array of u32 (in host byte order), the dest bitmap 808 * @bitmap: array of unsigned longs, the 1197 * @bitmap: array of unsigned longs, the source bitmap 809 * @nbits: number of bits in @bitmap 1198 * @nbits: number of bits in @bitmap 810 */ 1199 */ 811 void bitmap_to_arr32(u32 *buf, const unsigned 1200 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 812 { 1201 { 813 unsigned int i, halfwords; 1202 unsigned int i, halfwords; 814 1203 815 halfwords = DIV_ROUND_UP(nbits, 32); 1204 halfwords = DIV_ROUND_UP(nbits, 32); 816 for (i = 0; i < halfwords; i++) { 1205 for (i = 0; i < halfwords; i++) { 817 buf[i] = (u32) (bitmap[i/2] & 1206 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 818 if (++i < halfwords) 1207 if (++i < halfwords) 819 buf[i] = (u32) (bitmap 1208 buf[i] = (u32) (bitmap[i/2] >> 32); 820 } 1209 } 821 1210 822 /* Clear tail bits in last element of 1211 /* Clear tail bits in last element of array beyond nbits. */ 823 if (nbits % BITS_PER_LONG) 1212 if (nbits % BITS_PER_LONG) 824 buf[halfwords - 1] &= (u32) (U 1213 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 825 } 1214 } 826 EXPORT_SYMBOL(bitmap_to_arr32); 1215 EXPORT_SYMBOL(bitmap_to_arr32); 827 #endif << 828 << 829 #if BITS_PER_LONG == 32 << 830 /** << 831 * bitmap_from_arr64 - copy the contents of u6 << 832 * @bitmap: array of unsigned longs, the << 833 * @buf: array of u64 (in host byte order << 834 * @nbits: number of bits in @bitmap << 835 */ << 836 void bitmap_from_arr64(unsigned long *bitmap, << 837 { << 838 int n; << 839 << 840 for (n = nbits; n > 0; n -= 64) { << 841 u64 val = *buf++; << 842 << 843 *bitmap++ = val; << 844 if (n > 32) << 845 *bitmap++ = val >> 32; << 846 } << 847 << 848 /* << 849 * Clear tail bits in the last word be << 850 * << 851 * Negative index is OK because here w << 852 * to the last word of the bitmap, exc << 853 * is tested implicitly. << 854 */ << 855 if (nbits % BITS_PER_LONG) << 856 bitmap[-1] &= BITMAP_LAST_WORD << 857 } << 858 EXPORT_SYMBOL(bitmap_from_arr64); << 859 1216 860 /** << 861 * bitmap_to_arr64 - copy the contents of bitm << 862 * @buf: array of u64 (in host byte order << 863 * @bitmap: array of unsigned longs, the << 864 * @nbits: number of bits in @bitmap << 865 */ << 866 void bitmap_to_arr64(u64 *buf, const unsigned << 867 { << 868 const unsigned long *end = bitmap + BI << 869 << 870 while (bitmap < end) { << 871 *buf = *bitmap++; << 872 if (bitmap < end) << 873 *buf |= (u64)(*bitmap+ << 874 buf++; << 875 } << 876 << 877 /* Clear tail bits in the last element << 878 if (nbits % 64) << 879 buf[-1] &= GENMASK_ULL((nbits << 880 } << 881 EXPORT_SYMBOL(bitmap_to_arr64); << 882 #endif 1217 #endif 883 1218
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.