~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/bitmap.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /lib/bitmap.c (Version linux-6.11.5) and /lib/bitmap.c (Version linux-6.7.12)


  1 // SPDX-License-Identifier: GPL-2.0-only            1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*                                                  2 /*
  3  * lib/bitmap.c                                     3  * lib/bitmap.c
  4  * Helper functions for bitmap.h.                   4  * Helper functions for bitmap.h.
  5  */                                                 5  */
  6                                                     6 
  7 #include <linux/bitmap.h>                           7 #include <linux/bitmap.h>
  8 #include <linux/bitops.h>                           8 #include <linux/bitops.h>
  9 #include <linux/ctype.h>                            9 #include <linux/ctype.h>
 10 #include <linux/device.h>                          10 #include <linux/device.h>
 11 #include <linux/export.h>                          11 #include <linux/export.h>
 12 #include <linux/slab.h>                            12 #include <linux/slab.h>
 13                                                    13 
 14 /**                                                14 /**
 15  * DOC: bitmap introduction                        15  * DOC: bitmap introduction
 16  *                                                 16  *
 17  * bitmaps provide an array of bits, implement     17  * bitmaps provide an array of bits, implemented using an
 18  * array of unsigned longs.  The number of val     18  * array of unsigned longs.  The number of valid bits in a
 19  * given bitmap does _not_ need to be an exact     19  * given bitmap does _not_ need to be an exact multiple of
 20  * BITS_PER_LONG.                                  20  * BITS_PER_LONG.
 21  *                                                 21  *
 22  * The possible unused bits in the last, parti     22  * The possible unused bits in the last, partially used word
 23  * of a bitmap are 'don't care'.  The implemen     23  * of a bitmap are 'don't care'.  The implementation makes
 24  * no particular effort to keep them zero.  It     24  * no particular effort to keep them zero.  It ensures that
 25  * their value will not affect the results of      25  * their value will not affect the results of any operation.
 26  * The bitmap operations that return Boolean (     26  * The bitmap operations that return Boolean (bitmap_empty,
 27  * for example) or scalar (bitmap_weight, for      27  * for example) or scalar (bitmap_weight, for example) results
 28  * carefully filter out these unused bits from     28  * carefully filter out these unused bits from impacting their
 29  * results.                                        29  * results.
 30  *                                                 30  *
 31  * The byte ordering of bitmaps is more natura     31  * The byte ordering of bitmaps is more natural on little
 32  * endian architectures.  See the big-endian h     32  * endian architectures.  See the big-endian headers
 33  * include/asm-ppc64/bitops.h and include/asm-     33  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 34  * for the best explanations of this ordering.     34  * for the best explanations of this ordering.
 35  */                                                35  */
 36                                                    36 
 37 bool __bitmap_equal(const unsigned long *bitma     37 bool __bitmap_equal(const unsigned long *bitmap1,
 38                     const unsigned long *bitma     38                     const unsigned long *bitmap2, unsigned int bits)
 39 {                                                  39 {
 40         unsigned int k, lim = bits/BITS_PER_LO     40         unsigned int k, lim = bits/BITS_PER_LONG;
 41         for (k = 0; k < lim; ++k)                  41         for (k = 0; k < lim; ++k)
 42                 if (bitmap1[k] != bitmap2[k])      42                 if (bitmap1[k] != bitmap2[k])
 43                         return false;              43                         return false;
 44                                                    44 
 45         if (bits % BITS_PER_LONG)                  45         if (bits % BITS_PER_LONG)
 46                 if ((bitmap1[k] ^ bitmap2[k])      46                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 47                         return false;              47                         return false;
 48                                                    48 
 49         return true;                               49         return true;
 50 }                                                  50 }
 51 EXPORT_SYMBOL(__bitmap_equal);                     51 EXPORT_SYMBOL(__bitmap_equal);
 52                                                    52 
 53 bool __bitmap_or_equal(const unsigned long *bi     53 bool __bitmap_or_equal(const unsigned long *bitmap1,
 54                        const unsigned long *bi     54                        const unsigned long *bitmap2,
 55                        const unsigned long *bi     55                        const unsigned long *bitmap3,
 56                        unsigned int bits)          56                        unsigned int bits)
 57 {                                                  57 {
 58         unsigned int k, lim = bits / BITS_PER_     58         unsigned int k, lim = bits / BITS_PER_LONG;
 59         unsigned long tmp;                         59         unsigned long tmp;
 60                                                    60 
 61         for (k = 0; k < lim; ++k) {                61         for (k = 0; k < lim; ++k) {
 62                 if ((bitmap1[k] | bitmap2[k])      62                 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 63                         return false;              63                         return false;
 64         }                                          64         }
 65                                                    65 
 66         if (!(bits % BITS_PER_LONG))               66         if (!(bits % BITS_PER_LONG))
 67                 return true;                       67                 return true;
 68                                                    68 
 69         tmp = (bitmap1[k] | bitmap2[k]) ^ bitm     69         tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 70         return (tmp & BITMAP_LAST_WORD_MASK(bi     70         return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 71 }                                                  71 }
 72                                                    72 
 73 void __bitmap_complement(unsigned long *dst, c     73 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 74 {                                                  74 {
 75         unsigned int k, lim = BITS_TO_LONGS(bi     75         unsigned int k, lim = BITS_TO_LONGS(bits);
 76         for (k = 0; k < lim; ++k)                  76         for (k = 0; k < lim; ++k)
 77                 dst[k] = ~src[k];                  77                 dst[k] = ~src[k];
 78 }                                                  78 }
 79 EXPORT_SYMBOL(__bitmap_complement);                79 EXPORT_SYMBOL(__bitmap_complement);
 80                                                    80 
 81 /**                                                81 /**
 82  * __bitmap_shift_right - logical right shift      82  * __bitmap_shift_right - logical right shift of the bits in a bitmap
 83  *   @dst : destination bitmap                     83  *   @dst : destination bitmap
 84  *   @src : source bitmap                          84  *   @src : source bitmap
 85  *   @shift : shift by this many bits              85  *   @shift : shift by this many bits
 86  *   @nbits : bitmap size, in bits                 86  *   @nbits : bitmap size, in bits
 87  *                                                 87  *
 88  * Shifting right (dividing) means moving bits     88  * Shifting right (dividing) means moving bits in the MS -> LS bit
 89  * direction.  Zeros are fed into the vacated      89  * direction.  Zeros are fed into the vacated MS positions and the
 90  * LS bits shifted off the bottom are lost.        90  * LS bits shifted off the bottom are lost.
 91  */                                                91  */
 92 void __bitmap_shift_right(unsigned long *dst,      92 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 93                         unsigned shift, unsign     93                         unsigned shift, unsigned nbits)
 94 {                                                  94 {
 95         unsigned k, lim = BITS_TO_LONGS(nbits)     95         unsigned k, lim = BITS_TO_LONGS(nbits);
 96         unsigned off = shift/BITS_PER_LONG, re     96         unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 97         unsigned long mask = BITMAP_LAST_WORD_     97         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 98         for (k = 0; off + k < lim; ++k) {          98         for (k = 0; off + k < lim; ++k) {
 99                 unsigned long upper, lower;        99                 unsigned long upper, lower;
100                                                   100 
101                 /*                                101                 /*
102                  * If shift is not word aligne    102                  * If shift is not word aligned, take lower rem bits of
103                  * word above and make them th    103                  * word above and make them the top rem bits of result.
104                  */                               104                  */
105                 if (!rem || off + k + 1 >= lim    105                 if (!rem || off + k + 1 >= lim)
106                         upper = 0;                106                         upper = 0;
107                 else {                            107                 else {
108                         upper = src[off + k +     108                         upper = src[off + k + 1];
109                         if (off + k + 1 == lim    109                         if (off + k + 1 == lim - 1)
110                                 upper &= mask;    110                                 upper &= mask;
111                         upper <<= (BITS_PER_LO    111                         upper <<= (BITS_PER_LONG - rem);
112                 }                                 112                 }
113                 lower = src[off + k];             113                 lower = src[off + k];
114                 if (off + k == lim - 1)           114                 if (off + k == lim - 1)
115                         lower &= mask;            115                         lower &= mask;
116                 lower >>= rem;                    116                 lower >>= rem;
117                 dst[k] = lower | upper;           117                 dst[k] = lower | upper;
118         }                                         118         }
119         if (off)                                  119         if (off)
120                 memset(&dst[lim - off], 0, off    120                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121 }                                                 121 }
122 EXPORT_SYMBOL(__bitmap_shift_right);              122 EXPORT_SYMBOL(__bitmap_shift_right);
123                                                   123 
124                                                   124 
125 /**                                               125 /**
126  * __bitmap_shift_left - logical left shift of    126  * __bitmap_shift_left - logical left shift of the bits in a bitmap
127  *   @dst : destination bitmap                    127  *   @dst : destination bitmap
128  *   @src : source bitmap                         128  *   @src : source bitmap
129  *   @shift : shift by this many bits             129  *   @shift : shift by this many bits
130  *   @nbits : bitmap size, in bits                130  *   @nbits : bitmap size, in bits
131  *                                                131  *
132  * Shifting left (multiplying) means moving bi    132  * Shifting left (multiplying) means moving bits in the LS -> MS
133  * direction.  Zeros are fed into the vacated     133  * direction.  Zeros are fed into the vacated LS bit positions
134  * and those MS bits shifted off the top are l    134  * and those MS bits shifted off the top are lost.
135  */                                               135  */
136                                                   136 
137 void __bitmap_shift_left(unsigned long *dst, c    137 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138                         unsigned int shift, un    138                         unsigned int shift, unsigned int nbits)
139 {                                                 139 {
140         int k;                                    140         int k;
141         unsigned int lim = BITS_TO_LONGS(nbits    141         unsigned int lim = BITS_TO_LONGS(nbits);
142         unsigned int off = shift/BITS_PER_LONG    142         unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143         for (k = lim - off - 1; k >= 0; --k) {    143         for (k = lim - off - 1; k >= 0; --k) {
144                 unsigned long upper, lower;       144                 unsigned long upper, lower;
145                                                   145 
146                 /*                                146                 /*
147                  * If shift is not word aligne    147                  * If shift is not word aligned, take upper rem bits of
148                  * word below and make them th    148                  * word below and make them the bottom rem bits of result.
149                  */                               149                  */
150                 if (rem && k > 0)                 150                 if (rem && k > 0)
151                         lower = src[k - 1] >>     151                         lower = src[k - 1] >> (BITS_PER_LONG - rem);
152                 else                              152                 else
153                         lower = 0;                153                         lower = 0;
154                 upper = src[k] << rem;            154                 upper = src[k] << rem;
155                 dst[k + off] = lower | upper;     155                 dst[k + off] = lower | upper;
156         }                                         156         }
157         if (off)                                  157         if (off)
158                 memset(dst, 0, off*sizeof(unsi    158                 memset(dst, 0, off*sizeof(unsigned long));
159 }                                                 159 }
160 EXPORT_SYMBOL(__bitmap_shift_left);               160 EXPORT_SYMBOL(__bitmap_shift_left);
161                                                   161 
162 /**                                               162 /**
163  * bitmap_cut() - remove bit region from bitma    163  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164  * @dst: destination bitmap, might overlap wit    164  * @dst: destination bitmap, might overlap with src
165  * @src: source bitmap                            165  * @src: source bitmap
166  * @first: start bit of region to be removed      166  * @first: start bit of region to be removed
167  * @cut: number of bits to remove                 167  * @cut: number of bits to remove
168  * @nbits: bitmap size, in bits                   168  * @nbits: bitmap size, in bits
169  *                                                169  *
170  * Set the n-th bit of @dst iff the n-th bit o    170  * Set the n-th bit of @dst iff the n-th bit of @src is set and
171  * n is less than @first, or the m-th bit of @    171  * n is less than @first, or the m-th bit of @src is set for any
172  * m such that @first <= n < nbits, and m = n     172  * m such that @first <= n < nbits, and m = n + @cut.
173  *                                                173  *
174  * In pictures, example for a big-endian 32-bi    174  * In pictures, example for a big-endian 32-bit architecture:
175  *                                                175  *
176  * The @src bitmap is::                           176  * The @src bitmap is::
177  *                                                177  *
178  *   31                                   63      178  *   31                                   63
179  *   |                                    |       179  *   |                                    |
180  *   10000000 11000001 11110010 00010101  1000    180  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181  *                   |  |              |          181  *                   |  |              |                                    |
182  *                  16  14             0          182  *                  16  14             0                                   32
183  *                                                183  *
184  * if @cut is 3, and @first is 14, bits 14-16     184  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185  *                                                185  *
186  *   31                                   63      186  *   31                                   63
187  *   |                                    |       187  *   |                                    |
188  *   10110000 00011000 00110010 00010101  0001    188  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189  *                      |              |          189  *                      |              |                                    |
190  *                      14 (bit 17     0          190  *                      14 (bit 17     0                                   32
191  *                          from @src)            191  *                          from @src)
192  *                                                192  *
193  * Note that @dst and @src might overlap parti    193  * Note that @dst and @src might overlap partially or entirely.
194  *                                                194  *
195  * This is implemented in the obvious way, wit    195  * This is implemented in the obvious way, with a shift and carry
196  * step for each moved bit. Optimisation is le    196  * step for each moved bit. Optimisation is left as an exercise
197  * for the compiler.                              197  * for the compiler.
198  */                                               198  */
199 void bitmap_cut(unsigned long *dst, const unsi    199 void bitmap_cut(unsigned long *dst, const unsigned long *src,
200                 unsigned int first, unsigned i    200                 unsigned int first, unsigned int cut, unsigned int nbits)
201 {                                                 201 {
202         unsigned int len = BITS_TO_LONGS(nbits    202         unsigned int len = BITS_TO_LONGS(nbits);
203         unsigned long keep = 0, carry;            203         unsigned long keep = 0, carry;
204         int i;                                    204         int i;
205                                                   205 
206         if (first % BITS_PER_LONG) {              206         if (first % BITS_PER_LONG) {
207                 keep = src[first / BITS_PER_LO    207                 keep = src[first / BITS_PER_LONG] &
208                        (~0UL >> (BITS_PER_LONG    208                        (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209         }                                         209         }
210                                                   210 
211         memmove(dst, src, len * sizeof(*dst));    211         memmove(dst, src, len * sizeof(*dst));
212                                                   212 
213         while (cut--) {                           213         while (cut--) {
214                 for (i = first / BITS_PER_LONG    214                 for (i = first / BITS_PER_LONG; i < len; i++) {
215                         if (i < len - 1)          215                         if (i < len - 1)
216                                 carry = dst[i     216                                 carry = dst[i + 1] & 1UL;
217                         else                      217                         else
218                                 carry = 0;        218                                 carry = 0;
219                                                   219 
220                         dst[i] = (dst[i] >> 1)    220                         dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221                 }                                 221                 }
222         }                                         222         }
223                                                   223 
224         dst[first / BITS_PER_LONG] &= ~0UL <<     224         dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225         dst[first / BITS_PER_LONG] |= keep;       225         dst[first / BITS_PER_LONG] |= keep;
226 }                                                 226 }
227 EXPORT_SYMBOL(bitmap_cut);                        227 EXPORT_SYMBOL(bitmap_cut);
228                                                   228 
229 bool __bitmap_and(unsigned long *dst, const un    229 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230                                 const unsigned    230                                 const unsigned long *bitmap2, unsigned int bits)
231 {                                                 231 {
232         unsigned int k;                           232         unsigned int k;
233         unsigned int lim = bits/BITS_PER_LONG;    233         unsigned int lim = bits/BITS_PER_LONG;
234         unsigned long result = 0;                 234         unsigned long result = 0;
235                                                   235 
236         for (k = 0; k < lim; k++)                 236         for (k = 0; k < lim; k++)
237                 result |= (dst[k] = bitmap1[k]    237                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238         if (bits % BITS_PER_LONG)                 238         if (bits % BITS_PER_LONG)
239                 result |= (dst[k] = bitmap1[k]    239                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240                            BITMAP_LAST_WORD_MA    240                            BITMAP_LAST_WORD_MASK(bits));
241         return result != 0;                       241         return result != 0;
242 }                                                 242 }
243 EXPORT_SYMBOL(__bitmap_and);                      243 EXPORT_SYMBOL(__bitmap_and);
244                                                   244 
245 void __bitmap_or(unsigned long *dst, const uns    245 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246                                 const unsigned    246                                 const unsigned long *bitmap2, unsigned int bits)
247 {                                                 247 {
248         unsigned int k;                           248         unsigned int k;
249         unsigned int nr = BITS_TO_LONGS(bits);    249         unsigned int nr = BITS_TO_LONGS(bits);
250                                                   250 
251         for (k = 0; k < nr; k++)                  251         for (k = 0; k < nr; k++)
252                 dst[k] = bitmap1[k] | bitmap2[    252                 dst[k] = bitmap1[k] | bitmap2[k];
253 }                                                 253 }
254 EXPORT_SYMBOL(__bitmap_or);                       254 EXPORT_SYMBOL(__bitmap_or);
255                                                   255 
256 void __bitmap_xor(unsigned long *dst, const un    256 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257                                 const unsigned    257                                 const unsigned long *bitmap2, unsigned int bits)
258 {                                                 258 {
259         unsigned int k;                           259         unsigned int k;
260         unsigned int nr = BITS_TO_LONGS(bits);    260         unsigned int nr = BITS_TO_LONGS(bits);
261                                                   261 
262         for (k = 0; k < nr; k++)                  262         for (k = 0; k < nr; k++)
263                 dst[k] = bitmap1[k] ^ bitmap2[    263                 dst[k] = bitmap1[k] ^ bitmap2[k];
264 }                                                 264 }
265 EXPORT_SYMBOL(__bitmap_xor);                      265 EXPORT_SYMBOL(__bitmap_xor);
266                                                   266 
267 bool __bitmap_andnot(unsigned long *dst, const    267 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268                                 const unsigned    268                                 const unsigned long *bitmap2, unsigned int bits)
269 {                                                 269 {
270         unsigned int k;                           270         unsigned int k;
271         unsigned int lim = bits/BITS_PER_LONG;    271         unsigned int lim = bits/BITS_PER_LONG;
272         unsigned long result = 0;                 272         unsigned long result = 0;
273                                                   273 
274         for (k = 0; k < lim; k++)                 274         for (k = 0; k < lim; k++)
275                 result |= (dst[k] = bitmap1[k]    275                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276         if (bits % BITS_PER_LONG)                 276         if (bits % BITS_PER_LONG)
277                 result |= (dst[k] = bitmap1[k]    277                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278                            BITMAP_LAST_WORD_MA    278                            BITMAP_LAST_WORD_MASK(bits));
279         return result != 0;                       279         return result != 0;
280 }                                                 280 }
281 EXPORT_SYMBOL(__bitmap_andnot);                   281 EXPORT_SYMBOL(__bitmap_andnot);
282                                                   282 
283 void __bitmap_replace(unsigned long *dst,         283 void __bitmap_replace(unsigned long *dst,
284                       const unsigned long *old    284                       const unsigned long *old, const unsigned long *new,
285                       const unsigned long *mas    285                       const unsigned long *mask, unsigned int nbits)
286 {                                                 286 {
287         unsigned int k;                           287         unsigned int k;
288         unsigned int nr = BITS_TO_LONGS(nbits)    288         unsigned int nr = BITS_TO_LONGS(nbits);
289                                                   289 
290         for (k = 0; k < nr; k++)                  290         for (k = 0; k < nr; k++)
291                 dst[k] = (old[k] & ~mask[k]) |    291                 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292 }                                                 292 }
293 EXPORT_SYMBOL(__bitmap_replace);                  293 EXPORT_SYMBOL(__bitmap_replace);
294                                                   294 
295 bool __bitmap_intersects(const unsigned long *    295 bool __bitmap_intersects(const unsigned long *bitmap1,
296                          const unsigned long *    296                          const unsigned long *bitmap2, unsigned int bits)
297 {                                                 297 {
298         unsigned int k, lim = bits/BITS_PER_LO    298         unsigned int k, lim = bits/BITS_PER_LONG;
299         for (k = 0; k < lim; ++k)                 299         for (k = 0; k < lim; ++k)
300                 if (bitmap1[k] & bitmap2[k])      300                 if (bitmap1[k] & bitmap2[k])
301                         return true;              301                         return true;
302                                                   302 
303         if (bits % BITS_PER_LONG)                 303         if (bits % BITS_PER_LONG)
304                 if ((bitmap1[k] & bitmap2[k])     304                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305                         return true;              305                         return true;
306         return false;                             306         return false;
307 }                                                 307 }
308 EXPORT_SYMBOL(__bitmap_intersects);               308 EXPORT_SYMBOL(__bitmap_intersects);
309                                                   309 
310 bool __bitmap_subset(const unsigned long *bitm    310 bool __bitmap_subset(const unsigned long *bitmap1,
311                      const unsigned long *bitm    311                      const unsigned long *bitmap2, unsigned int bits)
312 {                                                 312 {
313         unsigned int k, lim = bits/BITS_PER_LO    313         unsigned int k, lim = bits/BITS_PER_LONG;
314         for (k = 0; k < lim; ++k)                 314         for (k = 0; k < lim; ++k)
315                 if (bitmap1[k] & ~bitmap2[k])     315                 if (bitmap1[k] & ~bitmap2[k])
316                         return false;             316                         return false;
317                                                   317 
318         if (bits % BITS_PER_LONG)                 318         if (bits % BITS_PER_LONG)
319                 if ((bitmap1[k] & ~bitmap2[k])    319                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320                         return false;             320                         return false;
321         return true;                              321         return true;
322 }                                                 322 }
323 EXPORT_SYMBOL(__bitmap_subset);                   323 EXPORT_SYMBOL(__bitmap_subset);
324                                                   324 
325 #define BITMAP_WEIGHT(FETCH, bits)      \         325 #define BITMAP_WEIGHT(FETCH, bits)      \
326 ({                                                326 ({                                                                              \
327         unsigned int __bits = (bits), idx, w =    327         unsigned int __bits = (bits), idx, w = 0;                               \
328                                                   328                                                                                 \
329         for (idx = 0; idx < __bits / BITS_PER_    329         for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)                      \
330                 w += hweight_long(FETCH);         330                 w += hweight_long(FETCH);                                       \
331                                                   331                                                                                 \
332         if (__bits % BITS_PER_LONG)               332         if (__bits % BITS_PER_LONG)                                             \
333                 w += hweight_long((FETCH) & BI    333                 w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));     \
334                                                   334                                                                                 \
335         w;                                        335         w;                                                                      \
336 })                                                336 })
337                                                   337 
338 unsigned int __bitmap_weight(const unsigned lo    338 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339 {                                                 339 {
340         return BITMAP_WEIGHT(bitmap[idx], bits    340         return BITMAP_WEIGHT(bitmap[idx], bits);
341 }                                                 341 }
342 EXPORT_SYMBOL(__bitmap_weight);                   342 EXPORT_SYMBOL(__bitmap_weight);
343                                                   343 
344 unsigned int __bitmap_weight_and(const unsigne    344 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345                                 const unsigned    345                                 const unsigned long *bitmap2, unsigned int bits)
346 {                                                 346 {
347         return BITMAP_WEIGHT(bitmap1[idx] & bi    347         return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
348 }                                                 348 }
349 EXPORT_SYMBOL(__bitmap_weight_and);               349 EXPORT_SYMBOL(__bitmap_weight_and);
350                                                   350 
351 unsigned int __bitmap_weight_andnot(const unsi << 
352                                 const unsigned << 
353 {                                              << 
354         return BITMAP_WEIGHT(bitmap1[idx] & ~b << 
355 }                                              << 
356 EXPORT_SYMBOL(__bitmap_weight_andnot);         << 
357                                                << 
358 void __bitmap_set(unsigned long *map, unsigned    351 void __bitmap_set(unsigned long *map, unsigned int start, int len)
359 {                                                 352 {
360         unsigned long *p = map + BIT_WORD(star    353         unsigned long *p = map + BIT_WORD(start);
361         const unsigned int size = start + len;    354         const unsigned int size = start + len;
362         int bits_to_set = BITS_PER_LONG - (sta    355         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
363         unsigned long mask_to_set = BITMAP_FIR    356         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
364                                                   357 
365         while (len - bits_to_set >= 0) {          358         while (len - bits_to_set >= 0) {
366                 *p |= mask_to_set;                359                 *p |= mask_to_set;
367                 len -= bits_to_set;               360                 len -= bits_to_set;
368                 bits_to_set = BITS_PER_LONG;      361                 bits_to_set = BITS_PER_LONG;
369                 mask_to_set = ~0UL;               362                 mask_to_set = ~0UL;
370                 p++;                              363                 p++;
371         }                                         364         }
372         if (len) {                                365         if (len) {
373                 mask_to_set &= BITMAP_LAST_WOR    366                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
374                 *p |= mask_to_set;                367                 *p |= mask_to_set;
375         }                                         368         }
376 }                                                 369 }
377 EXPORT_SYMBOL(__bitmap_set);                      370 EXPORT_SYMBOL(__bitmap_set);
378                                                   371 
379 void __bitmap_clear(unsigned long *map, unsign    372 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
380 {                                                 373 {
381         unsigned long *p = map + BIT_WORD(star    374         unsigned long *p = map + BIT_WORD(start);
382         const unsigned int size = start + len;    375         const unsigned int size = start + len;
383         int bits_to_clear = BITS_PER_LONG - (s    376         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
384         unsigned long mask_to_clear = BITMAP_F    377         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
385                                                   378 
386         while (len - bits_to_clear >= 0) {        379         while (len - bits_to_clear >= 0) {
387                 *p &= ~mask_to_clear;             380                 *p &= ~mask_to_clear;
388                 len -= bits_to_clear;             381                 len -= bits_to_clear;
389                 bits_to_clear = BITS_PER_LONG;    382                 bits_to_clear = BITS_PER_LONG;
390                 mask_to_clear = ~0UL;             383                 mask_to_clear = ~0UL;
391                 p++;                              384                 p++;
392         }                                         385         }
393         if (len) {                                386         if (len) {
394                 mask_to_clear &= BITMAP_LAST_W    387                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
395                 *p &= ~mask_to_clear;             388                 *p &= ~mask_to_clear;
396         }                                         389         }
397 }                                                 390 }
398 EXPORT_SYMBOL(__bitmap_clear);                    391 EXPORT_SYMBOL(__bitmap_clear);
399                                                   392 
400 /**                                               393 /**
401  * bitmap_find_next_zero_area_off - find a con    394  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
402  * @map: The address to base the search on        395  * @map: The address to base the search on
403  * @size: The bitmap size in bits                 396  * @size: The bitmap size in bits
404  * @start: The bitnumber to start searching at    397  * @start: The bitnumber to start searching at
405  * @nr: The number of zeroed bits we're lookin    398  * @nr: The number of zeroed bits we're looking for
406  * @align_mask: Alignment mask for zero area      399  * @align_mask: Alignment mask for zero area
407  * @align_offset: Alignment offset for zero ar    400  * @align_offset: Alignment offset for zero area.
408  *                                                401  *
409  * The @align_mask should be one less than a p    402  * The @align_mask should be one less than a power of 2; the effect is that
410  * the bit offset of all zero areas this funct    403  * the bit offset of all zero areas this function finds plus @align_offset
411  * is multiple of that power of 2.                404  * is multiple of that power of 2.
412  */                                               405  */
413 unsigned long bitmap_find_next_zero_area_off(u    406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
414                                              u    407                                              unsigned long size,
415                                              u    408                                              unsigned long start,
416                                              u    409                                              unsigned int nr,
417                                              u    410                                              unsigned long align_mask,
418                                              u    411                                              unsigned long align_offset)
419 {                                                 412 {
420         unsigned long index, end, i;              413         unsigned long index, end, i;
421 again:                                            414 again:
422         index = find_next_zero_bit(map, size,     415         index = find_next_zero_bit(map, size, start);
423                                                   416 
424         /* Align allocation */                    417         /* Align allocation */
425         index = __ALIGN_MASK(index + align_off    418         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
426                                                   419 
427         end = index + nr;                         420         end = index + nr;
428         if (end > size)                           421         if (end > size)
429                 return end;                       422                 return end;
430         i = find_next_bit(map, end, index);       423         i = find_next_bit(map, end, index);
431         if (i < end) {                            424         if (i < end) {
432                 start = i + 1;                    425                 start = i + 1;
433                 goto again;                       426                 goto again;
434         }                                         427         }
435         return index;                             428         return index;
436 }                                                 429 }
437 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);    430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
438                                                   431 
439 /**                                               432 /**
440  * bitmap_pos_to_ord - find ordinal of set bit    433  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
441  *      @buf: pointer to a bitmap                 434  *      @buf: pointer to a bitmap
442  *      @pos: a bit position in @buf (0 <= @po    435  *      @pos: a bit position in @buf (0 <= @pos < @nbits)
443  *      @nbits: number of valid bit positions     436  *      @nbits: number of valid bit positions in @buf
444  *                                                437  *
445  * Map the bit at position @pos in @buf (of le    438  * Map the bit at position @pos in @buf (of length @nbits) to the
446  * ordinal of which set bit it is.  If it is n    439  * ordinal of which set bit it is.  If it is not set or if @pos
447  * is not a valid bit position, map to -1.        440  * is not a valid bit position, map to -1.
448  *                                                441  *
449  * If for example, just bits 4 through 7 are s    442  * If for example, just bits 4 through 7 are set in @buf, then @pos
450  * values 4 through 7 will get mapped to 0 thr    443  * values 4 through 7 will get mapped to 0 through 3, respectively,
451  * and other @pos values will get mapped to -1    444  * and other @pos values will get mapped to -1.  When @pos value 7
452  * gets mapped to (returns) @ord value 3 in th    445  * gets mapped to (returns) @ord value 3 in this example, that means
453  * that bit 7 is the 3rd (starting with 0th) s    446  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
454  *                                                447  *
455  * The bit positions 0 through @bits are valid    448  * The bit positions 0 through @bits are valid positions in @buf.
456  */                                               449  */
457 static int bitmap_pos_to_ord(const unsigned lo    450 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
458 {                                                 451 {
459         if (pos >= nbits || !test_bit(pos, buf    452         if (pos >= nbits || !test_bit(pos, buf))
460                 return -1;                        453                 return -1;
461                                                   454 
462         return bitmap_weight(buf, pos);           455         return bitmap_weight(buf, pos);
463 }                                                 456 }
464                                                   457 
465 /**                                               458 /**
466  * bitmap_remap - Apply map defined by a pair     459  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
467  *      @dst: remapped result                     460  *      @dst: remapped result
468  *      @src: subset to be remapped               461  *      @src: subset to be remapped
469  *      @old: defines domain of map               462  *      @old: defines domain of map
470  *      @new: defines range of map                463  *      @new: defines range of map
471  *      @nbits: number of bits in each of thes    464  *      @nbits: number of bits in each of these bitmaps
472  *                                                465  *
473  * Let @old and @new define a mapping of bit p    466  * Let @old and @new define a mapping of bit positions, such that
474  * whatever position is held by the n-th set b    467  * whatever position is held by the n-th set bit in @old is mapped
475  * to the n-th set bit in @new.  In the more g    468  * to the n-th set bit in @new.  In the more general case, allowing
476  * for the possibility that the weight 'w' of     469  * for the possibility that the weight 'w' of @new is less than the
477  * weight of @old, map the position of the n-t    470  * weight of @old, map the position of the n-th set bit in @old to
478  * the position of the m-th set bit in @new, w    471  * the position of the m-th set bit in @new, where m == n % w.
479  *                                                472  *
480  * If either of the @old and @new bitmaps are     473  * If either of the @old and @new bitmaps are empty, or if @src and
481  * @dst point to the same location, then this     474  * @dst point to the same location, then this routine copies @src
482  * to @dst.                                       475  * to @dst.
483  *                                                476  *
484  * The positions of unset bits in @old are map    477  * The positions of unset bits in @old are mapped to themselves
485  * (the identity map).                            478  * (the identity map).
486  *                                                479  *
487  * Apply the above specified mapping to @src,     480  * Apply the above specified mapping to @src, placing the result in
488  * @dst, clearing any bits previously set in @    481  * @dst, clearing any bits previously set in @dst.
489  *                                                482  *
490  * For example, lets say that @old has bits 4     483  * For example, lets say that @old has bits 4 through 7 set, and
491  * @new has bits 12 through 15 set.  This defi    484  * @new has bits 12 through 15 set.  This defines the mapping of bit
492  * position 4 to 12, 5 to 13, 6 to 14 and 7 to    485  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
493  * bit positions unchanged.  So if say @src co    486  * bit positions unchanged.  So if say @src comes into this routine
494  * with bits 1, 5 and 7 set, then @dst should     487  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
495  * 13 and 15 set.                                 488  * 13 and 15 set.
496  */                                               489  */
497 void bitmap_remap(unsigned long *dst, const un    490 void bitmap_remap(unsigned long *dst, const unsigned long *src,
498                 const unsigned long *old, cons    491                 const unsigned long *old, const unsigned long *new,
499                 unsigned int nbits)               492                 unsigned int nbits)
500 {                                                 493 {
501         unsigned int oldbit, w;                   494         unsigned int oldbit, w;
502                                                   495 
503         if (dst == src)         /* following d    496         if (dst == src)         /* following doesn't handle inplace remaps */
504                 return;                           497                 return;
505         bitmap_zero(dst, nbits);                  498         bitmap_zero(dst, nbits);
506                                                   499 
507         w = bitmap_weight(new, nbits);            500         w = bitmap_weight(new, nbits);
508         for_each_set_bit(oldbit, src, nbits) {    501         for_each_set_bit(oldbit, src, nbits) {
509                 int n = bitmap_pos_to_ord(old,    502                 int n = bitmap_pos_to_ord(old, oldbit, nbits);
510                                                   503 
511                 if (n < 0 || w == 0)              504                 if (n < 0 || w == 0)
512                         set_bit(oldbit, dst);     505                         set_bit(oldbit, dst);   /* identity map */
513                 else                              506                 else
514                         set_bit(find_nth_bit(n    507                         set_bit(find_nth_bit(new, nbits, n % w), dst);
515         }                                         508         }
516 }                                                 509 }
517 EXPORT_SYMBOL(bitmap_remap);                      510 EXPORT_SYMBOL(bitmap_remap);
518                                                   511 
519 /**                                               512 /**
520  * bitmap_bitremap - Apply map defined by a pa    513  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
521  *      @oldbit: bit position to be mapped        514  *      @oldbit: bit position to be mapped
522  *      @old: defines domain of map               515  *      @old: defines domain of map
523  *      @new: defines range of map                516  *      @new: defines range of map
524  *      @bits: number of bits in each of these    517  *      @bits: number of bits in each of these bitmaps
525  *                                                518  *
526  * Let @old and @new define a mapping of bit p    519  * Let @old and @new define a mapping of bit positions, such that
527  * whatever position is held by the n-th set b    520  * whatever position is held by the n-th set bit in @old is mapped
528  * to the n-th set bit in @new.  In the more g    521  * to the n-th set bit in @new.  In the more general case, allowing
529  * for the possibility that the weight 'w' of     522  * for the possibility that the weight 'w' of @new is less than the
530  * weight of @old, map the position of the n-t    523  * weight of @old, map the position of the n-th set bit in @old to
531  * the position of the m-th set bit in @new, w    524  * the position of the m-th set bit in @new, where m == n % w.
532  *                                                525  *
533  * The positions of unset bits in @old are map    526  * The positions of unset bits in @old are mapped to themselves
534  * (the identity map).                            527  * (the identity map).
535  *                                                528  *
536  * Apply the above specified mapping to bit po    529  * Apply the above specified mapping to bit position @oldbit, returning
537  * the new bit position.                          530  * the new bit position.
538  *                                                531  *
539  * For example, lets say that @old has bits 4     532  * For example, lets say that @old has bits 4 through 7 set, and
540  * @new has bits 12 through 15 set.  This defi    533  * @new has bits 12 through 15 set.  This defines the mapping of bit
541  * position 4 to 12, 5 to 13, 6 to 14 and 7 to    534  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
542  * bit positions unchanged.  So if say @oldbit    535  * bit positions unchanged.  So if say @oldbit is 5, then this routine
543  * returns 13.                                    536  * returns 13.
544  */                                               537  */
545 int bitmap_bitremap(int oldbit, const unsigned    538 int bitmap_bitremap(int oldbit, const unsigned long *old,
546                                 const unsigned    539                                 const unsigned long *new, int bits)
547 {                                                 540 {
548         int w = bitmap_weight(new, bits);         541         int w = bitmap_weight(new, bits);
549         int n = bitmap_pos_to_ord(old, oldbit,    542         int n = bitmap_pos_to_ord(old, oldbit, bits);
550         if (n < 0 || w == 0)                      543         if (n < 0 || w == 0)
551                 return oldbit;                    544                 return oldbit;
552         else                                      545         else
553                 return find_nth_bit(new, bits,    546                 return find_nth_bit(new, bits, n % w);
554 }                                                 547 }
555 EXPORT_SYMBOL(bitmap_bitremap);                   548 EXPORT_SYMBOL(bitmap_bitremap);
556                                                   549 
557 #ifdef CONFIG_NUMA                                550 #ifdef CONFIG_NUMA
558 /**                                               551 /**
559  * bitmap_onto - translate one bitmap relative    552  * bitmap_onto - translate one bitmap relative to another
560  *      @dst: resulting translated bitmap         553  *      @dst: resulting translated bitmap
561  *      @orig: original untranslated bitmap       554  *      @orig: original untranslated bitmap
562  *      @relmap: bitmap relative to which tran    555  *      @relmap: bitmap relative to which translated
563  *      @bits: number of bits in each of these    556  *      @bits: number of bits in each of these bitmaps
564  *                                                557  *
565  * Set the n-th bit of @dst iff there exists s    558  * Set the n-th bit of @dst iff there exists some m such that the
566  * n-th bit of @relmap is set, the m-th bit of    559  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
567  * the n-th bit of @relmap is also the m-th _s    560  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
568  * (If you understood the previous sentence th    561  * (If you understood the previous sentence the first time your
569  * read it, you're overqualified for your curr    562  * read it, you're overqualified for your current job.)
570  *                                                563  *
571  * In other words, @orig is mapped onto (surje    564  * In other words, @orig is mapped onto (surjectively) @dst,
572  * using the map { <n, m> | the n-th bit of @r    565  * using the map { <n, m> | the n-th bit of @relmap is the
573  * m-th set bit of @relmap }.                     566  * m-th set bit of @relmap }.
574  *                                                567  *
575  * Any set bits in @orig above bit number W, w    568  * Any set bits in @orig above bit number W, where W is the
576  * weight of (number of set bits in) @relmap a    569  * weight of (number of set bits in) @relmap are mapped nowhere.
577  * In particular, if for all bits m set in @or    570  * In particular, if for all bits m set in @orig, m >= W, then
578  * @dst will end up empty.  In situations wher    571  * @dst will end up empty.  In situations where the possibility
579  * of such an empty result is not desired, one    572  * of such an empty result is not desired, one way to avoid it is
580  * to use the bitmap_fold() operator, below, t    573  * to use the bitmap_fold() operator, below, to first fold the
581  * @orig bitmap over itself so that all its se    574  * @orig bitmap over itself so that all its set bits x are in the
582  * range 0 <= x < W.  The bitmap_fold() operat    575  * range 0 <= x < W.  The bitmap_fold() operator does this by
583  * setting the bit (m % W) in @dst, for each b    576  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
584  *                                                577  *
585  * Example [1] for bitmap_onto():                 578  * Example [1] for bitmap_onto():
586  *  Let's say @relmap has bits 30-39 set, and     579  *  Let's say @relmap has bits 30-39 set, and @orig has bits
587  *  1, 3, 5, 7, 9 and 11 set.  Then on return     580  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
588  *  @dst will have bits 31, 33, 35, 37 and 39     581  *  @dst will have bits 31, 33, 35, 37 and 39 set.
589  *                                                582  *
590  *  When bit 0 is set in @orig, it means turn     583  *  When bit 0 is set in @orig, it means turn on the bit in
591  *  @dst corresponding to whatever is the firs    584  *  @dst corresponding to whatever is the first bit (if any)
592  *  that is turned on in @relmap.  Since bit 0    585  *  that is turned on in @relmap.  Since bit 0 was off in the
593  *  above example, we leave off that bit (bit     586  *  above example, we leave off that bit (bit 30) in @dst.
594  *                                                587  *
595  *  When bit 1 is set in @orig (as in the abov    588  *  When bit 1 is set in @orig (as in the above example), it
596  *  means turn on the bit in @dst correspondin    589  *  means turn on the bit in @dst corresponding to whatever
597  *  is the second bit that is turned on in @re    590  *  is the second bit that is turned on in @relmap.  The second
598  *  bit in @relmap that was turned on in the a    591  *  bit in @relmap that was turned on in the above example was
599  *  bit 31, so we turned on bit 31 in @dst.       592  *  bit 31, so we turned on bit 31 in @dst.
600  *                                                593  *
601  *  Similarly, we turned on bits 33, 35, 37 an    594  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
602  *  because they were the 4th, 6th, 8th and 10    595  *  because they were the 4th, 6th, 8th and 10th set bits
603  *  set in @relmap, and the 4th, 6th, 8th and     596  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
604  *  @orig (i.e. bits 3, 5, 7 and 9) were also     597  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
605  *                                                598  *
606  *  When bit 11 is set in @orig, it means turn    599  *  When bit 11 is set in @orig, it means turn on the bit in
607  *  @dst corresponding to whatever is the twel    600  *  @dst corresponding to whatever is the twelfth bit that is
608  *  turned on in @relmap.  In the above exampl    601  *  turned on in @relmap.  In the above example, there were
609  *  only ten bits turned on in @relmap (30..39    602  *  only ten bits turned on in @relmap (30..39), so that bit
610  *  11 was set in @orig had no affect on @dst.    603  *  11 was set in @orig had no affect on @dst.
611  *                                                604  *
612  * Example [2] for bitmap_fold() + bitmap_onto    605  * Example [2] for bitmap_fold() + bitmap_onto():
613  *  Let's say @relmap has these ten bits set::    606  *  Let's say @relmap has these ten bits set::
614  *                                                607  *
615  *              40 41 42 43 45 48 53 61 74 95     608  *              40 41 42 43 45 48 53 61 74 95
616  *                                                609  *
617  *  (for the curious, that's 40 plus the first    610  *  (for the curious, that's 40 plus the first ten terms of the
618  *  Fibonacci sequence.)                          611  *  Fibonacci sequence.)
619  *                                                612  *
620  *  Further lets say we use the following code    613  *  Further lets say we use the following code, invoking
621  *  bitmap_fold() then bitmap_onto, as suggest    614  *  bitmap_fold() then bitmap_onto, as suggested above to
622  *  avoid the possibility of an empty @dst res    615  *  avoid the possibility of an empty @dst result::
623  *                                                616  *
624  *      unsigned long *tmp;     // a temporary    617  *      unsigned long *tmp;     // a temporary bitmap's bits
625  *                                                618  *
626  *      bitmap_fold(tmp, orig, bitmap_weight(r    619  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
627  *      bitmap_onto(dst, tmp, relmap, bits);      620  *      bitmap_onto(dst, tmp, relmap, bits);
628  *                                                621  *
629  *  Then this table shows what various values     622  *  Then this table shows what various values of @dst would be, for
630  *  various @orig's.  I list the zero-based po    623  *  various @orig's.  I list the zero-based positions of each set bit.
631  *  The tmp column shows the intermediate resu    624  *  The tmp column shows the intermediate result, as computed by
632  *  using bitmap_fold() to fold the @orig bitm    625  *  using bitmap_fold() to fold the @orig bitmap modulo ten
633  *  (the weight of @relmap):                      626  *  (the weight of @relmap):
634  *                                                627  *
635  *      =============== ============== =======    628  *      =============== ============== =================
636  *      @orig           tmp            @dst       629  *      @orig           tmp            @dst
637  *      0                0             40         630  *      0                0             40
638  *      1                1             41         631  *      1                1             41
639  *      9                9             95         632  *      9                9             95
640  *      10               0             40 [#f1    633  *      10               0             40 [#f1]_
641  *      1 3 5 7          1 3 5 7       41 43 4    634  *      1 3 5 7          1 3 5 7       41 43 48 61
642  *      0 1 2 3 4        0 1 2 3 4     40 41 4    635  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
643  *      0 9 18 27        0 9 8 7       40 61 7    636  *      0 9 18 27        0 9 8 7       40 61 74 95
644  *      0 10 20 30       0             40         637  *      0 10 20 30       0             40
645  *      0 11 22 33       0 1 2 3       40 41 4    638  *      0 11 22 33       0 1 2 3       40 41 42 43
646  *      0 12 24 36       0 2 4 6       40 42 4    639  *      0 12 24 36       0 2 4 6       40 42 45 53
647  *      78 102 211       1 2 8         41 42 7    640  *      78 102 211       1 2 8         41 42 74 [#f1]_
648  *      =============== ============== =======    641  *      =============== ============== =================
649  *                                                642  *
650  * .. [#f1]                                       643  * .. [#f1]
651  *                                                644  *
652  *     For these marked lines, if we hadn't fi    645  *     For these marked lines, if we hadn't first done bitmap_fold()
653  *     into tmp, then the @dst result would ha    646  *     into tmp, then the @dst result would have been empty.
654  *                                                647  *
655  * If either of @orig or @relmap is empty (no     648  * If either of @orig or @relmap is empty (no set bits), then @dst
656  * will be returned empty.                        649  * will be returned empty.
657  *                                                650  *
658  * If (as explained above) the only set bits i    651  * If (as explained above) the only set bits in @orig are in positions
659  * m where m >= W, (where W is the weight of @    652  * m where m >= W, (where W is the weight of @relmap) then @dst will
660  * once again be returned empty.                  653  * once again be returned empty.
661  *                                                654  *
662  * All bits in @dst not set by the above rule     655  * All bits in @dst not set by the above rule are cleared.
663  */                                               656  */
664 void bitmap_onto(unsigned long *dst, const uns    657 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
665                         const unsigned long *r    658                         const unsigned long *relmap, unsigned int bits)
666 {                                                 659 {
667         unsigned int n, m;      /* same meanin    660         unsigned int n, m;      /* same meaning as in above comment */
668                                                   661 
669         if (dst == orig)        /* following d    662         if (dst == orig)        /* following doesn't handle inplace mappings */
670                 return;                           663                 return;
671         bitmap_zero(dst, bits);                   664         bitmap_zero(dst, bits);
672                                                   665 
673         /*                                        666         /*
674          * The following code is a more effici    667          * The following code is a more efficient, but less
675          * obvious, equivalent to the loop:       668          * obvious, equivalent to the loop:
676          *      for (m = 0; m < bitmap_weight(    669          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
677          *              n = find_nth_bit(orig,    670          *              n = find_nth_bit(orig, bits, m);
678          *              if (test_bit(m, orig))    671          *              if (test_bit(m, orig))
679          *                      set_bit(n, dst    672          *                      set_bit(n, dst);
680          *      }                                 673          *      }
681          */                                       674          */
682                                                   675 
683         m = 0;                                    676         m = 0;
684         for_each_set_bit(n, relmap, bits) {       677         for_each_set_bit(n, relmap, bits) {
685                 /* m == bitmap_pos_to_ord(relm    678                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
686                 if (test_bit(m, orig))            679                 if (test_bit(m, orig))
687                         set_bit(n, dst);          680                         set_bit(n, dst);
688                 m++;                              681                 m++;
689         }                                         682         }
690 }                                                 683 }
691                                                   684 
692 /**                                               685 /**
693  * bitmap_fold - fold larger bitmap into small    686  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
694  *      @dst: resulting smaller bitmap            687  *      @dst: resulting smaller bitmap
695  *      @orig: original larger bitmap             688  *      @orig: original larger bitmap
696  *      @sz: specified size                       689  *      @sz: specified size
697  *      @nbits: number of bits in each of thes    690  *      @nbits: number of bits in each of these bitmaps
698  *                                                691  *
699  * For each bit oldbit in @orig, set bit oldbi    692  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
700  * Clear all other bits in @dst.  See further     693  * Clear all other bits in @dst.  See further the comment and
701  * Example [2] for bitmap_onto() for why and h    694  * Example [2] for bitmap_onto() for why and how to use this.
702  */                                               695  */
703 void bitmap_fold(unsigned long *dst, const uns    696 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
704                         unsigned int sz, unsig    697                         unsigned int sz, unsigned int nbits)
705 {                                                 698 {
706         unsigned int oldbit;                      699         unsigned int oldbit;
707                                                   700 
708         if (dst == orig)        /* following d    701         if (dst == orig)        /* following doesn't handle inplace mappings */
709                 return;                           702                 return;
710         bitmap_zero(dst, nbits);                  703         bitmap_zero(dst, nbits);
711                                                   704 
712         for_each_set_bit(oldbit, orig, nbits)     705         for_each_set_bit(oldbit, orig, nbits)
713                 set_bit(oldbit % sz, dst);        706                 set_bit(oldbit % sz, dst);
714 }                                                 707 }
715 #endif /* CONFIG_NUMA */                          708 #endif /* CONFIG_NUMA */
716                                                   709 
717 unsigned long *bitmap_alloc(unsigned int nbits    710 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
718 {                                                 711 {
719         return kmalloc_array(BITS_TO_LONGS(nbi    712         return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
720                              flags);              713                              flags);
721 }                                                 714 }
722 EXPORT_SYMBOL(bitmap_alloc);                      715 EXPORT_SYMBOL(bitmap_alloc);
723                                                   716 
724 unsigned long *bitmap_zalloc(unsigned int nbit    717 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
725 {                                                 718 {
726         return bitmap_alloc(nbits, flags | __G    719         return bitmap_alloc(nbits, flags | __GFP_ZERO);
727 }                                                 720 }
728 EXPORT_SYMBOL(bitmap_zalloc);                     721 EXPORT_SYMBOL(bitmap_zalloc);
729                                                   722 
730 unsigned long *bitmap_alloc_node(unsigned int     723 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
731 {                                                 724 {
732         return kmalloc_array_node(BITS_TO_LONG    725         return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
733                                   flags, node)    726                                   flags, node);
734 }                                                 727 }
735 EXPORT_SYMBOL(bitmap_alloc_node);                 728 EXPORT_SYMBOL(bitmap_alloc_node);
736                                                   729 
737 unsigned long *bitmap_zalloc_node(unsigned int    730 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
738 {                                                 731 {
739         return bitmap_alloc_node(nbits, flags     732         return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
740 }                                                 733 }
741 EXPORT_SYMBOL(bitmap_zalloc_node);                734 EXPORT_SYMBOL(bitmap_zalloc_node);
742                                                   735 
743 void bitmap_free(const unsigned long *bitmap)     736 void bitmap_free(const unsigned long *bitmap)
744 {                                                 737 {
745         kfree(bitmap);                            738         kfree(bitmap);
746 }                                                 739 }
747 EXPORT_SYMBOL(bitmap_free);                       740 EXPORT_SYMBOL(bitmap_free);
748                                                   741 
749 static void devm_bitmap_free(void *data)          742 static void devm_bitmap_free(void *data)
750 {                                                 743 {
751         unsigned long *bitmap = data;             744         unsigned long *bitmap = data;
752                                                   745 
753         bitmap_free(bitmap);                      746         bitmap_free(bitmap);
754 }                                                 747 }
755                                                   748 
756 unsigned long *devm_bitmap_alloc(struct device    749 unsigned long *devm_bitmap_alloc(struct device *dev,
757                                  unsigned int     750                                  unsigned int nbits, gfp_t flags)
758 {                                                 751 {
759         unsigned long *bitmap;                    752         unsigned long *bitmap;
760         int ret;                                  753         int ret;
761                                                   754 
762         bitmap = bitmap_alloc(nbits, flags);      755         bitmap = bitmap_alloc(nbits, flags);
763         if (!bitmap)                              756         if (!bitmap)
764                 return NULL;                      757                 return NULL;
765                                                   758 
766         ret = devm_add_action_or_reset(dev, de    759         ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
767         if (ret)                                  760         if (ret)
768                 return NULL;                      761                 return NULL;
769                                                   762 
770         return bitmap;                            763         return bitmap;
771 }                                                 764 }
772 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);             765 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
773                                                   766 
774 unsigned long *devm_bitmap_zalloc(struct devic    767 unsigned long *devm_bitmap_zalloc(struct device *dev,
775                                   unsigned int    768                                   unsigned int nbits, gfp_t flags)
776 {                                                 769 {
777         return devm_bitmap_alloc(dev, nbits, f    770         return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
778 }                                                 771 }
779 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);            772 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
780                                                   773 
781 #if BITS_PER_LONG == 64                           774 #if BITS_PER_LONG == 64
782 /**                                               775 /**
783  * bitmap_from_arr32 - copy the contents of u3    776  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
784  *      @bitmap: array of unsigned longs, the     777  *      @bitmap: array of unsigned longs, the destination bitmap
785  *      @buf: array of u32 (in host byte order    778  *      @buf: array of u32 (in host byte order), the source bitmap
786  *      @nbits: number of bits in @bitmap         779  *      @nbits: number of bits in @bitmap
787  */                                               780  */
788 void bitmap_from_arr32(unsigned long *bitmap,     781 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
789 {                                                 782 {
790         unsigned int i, halfwords;                783         unsigned int i, halfwords;
791                                                   784 
792         halfwords = DIV_ROUND_UP(nbits, 32);      785         halfwords = DIV_ROUND_UP(nbits, 32);
793         for (i = 0; i < halfwords; i++) {         786         for (i = 0; i < halfwords; i++) {
794                 bitmap[i/2] = (unsigned long)     787                 bitmap[i/2] = (unsigned long) buf[i];
795                 if (++i < halfwords)              788                 if (++i < halfwords)
796                         bitmap[i/2] |= ((unsig    789                         bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
797         }                                         790         }
798                                                   791 
799         /* Clear tail bits in last word beyond    792         /* Clear tail bits in last word beyond nbits. */
800         if (nbits % BITS_PER_LONG)                793         if (nbits % BITS_PER_LONG)
801                 bitmap[(halfwords - 1) / 2] &=    794                 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
802 }                                                 795 }
803 EXPORT_SYMBOL(bitmap_from_arr32);                 796 EXPORT_SYMBOL(bitmap_from_arr32);
804                                                   797 
805 /**                                               798 /**
806  * bitmap_to_arr32 - copy the contents of bitm    799  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
807  *      @buf: array of u32 (in host byte order    800  *      @buf: array of u32 (in host byte order), the dest bitmap
808  *      @bitmap: array of unsigned longs, the     801  *      @bitmap: array of unsigned longs, the source bitmap
809  *      @nbits: number of bits in @bitmap         802  *      @nbits: number of bits in @bitmap
810  */                                               803  */
811 void bitmap_to_arr32(u32 *buf, const unsigned     804 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
812 {                                                 805 {
813         unsigned int i, halfwords;                806         unsigned int i, halfwords;
814                                                   807 
815         halfwords = DIV_ROUND_UP(nbits, 32);      808         halfwords = DIV_ROUND_UP(nbits, 32);
816         for (i = 0; i < halfwords; i++) {         809         for (i = 0; i < halfwords; i++) {
817                 buf[i] = (u32) (bitmap[i/2] &     810                 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
818                 if (++i < halfwords)              811                 if (++i < halfwords)
819                         buf[i] = (u32) (bitmap    812                         buf[i] = (u32) (bitmap[i/2] >> 32);
820         }                                         813         }
821                                                   814 
822         /* Clear tail bits in last element of     815         /* Clear tail bits in last element of array beyond nbits. */
823         if (nbits % BITS_PER_LONG)                816         if (nbits % BITS_PER_LONG)
824                 buf[halfwords - 1] &= (u32) (U    817                 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
825 }                                                 818 }
826 EXPORT_SYMBOL(bitmap_to_arr32);                   819 EXPORT_SYMBOL(bitmap_to_arr32);
827 #endif                                            820 #endif
828                                                   821 
829 #if BITS_PER_LONG == 32                           822 #if BITS_PER_LONG == 32
830 /**                                               823 /**
831  * bitmap_from_arr64 - copy the contents of u6    824  * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
832  *      @bitmap: array of unsigned longs, the     825  *      @bitmap: array of unsigned longs, the destination bitmap
833  *      @buf: array of u64 (in host byte order    826  *      @buf: array of u64 (in host byte order), the source bitmap
834  *      @nbits: number of bits in @bitmap         827  *      @nbits: number of bits in @bitmap
835  */                                               828  */
836 void bitmap_from_arr64(unsigned long *bitmap,     829 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
837 {                                                 830 {
838         int n;                                    831         int n;
839                                                   832 
840         for (n = nbits; n > 0; n -= 64) {         833         for (n = nbits; n > 0; n -= 64) {
841                 u64 val = *buf++;                 834                 u64 val = *buf++;
842                                                   835 
843                 *bitmap++ = val;                  836                 *bitmap++ = val;
844                 if (n > 32)                       837                 if (n > 32)
845                         *bitmap++ = val >> 32;    838                         *bitmap++ = val >> 32;
846         }                                         839         }
847                                                   840 
848         /*                                        841         /*
849          * Clear tail bits in the last word be    842          * Clear tail bits in the last word beyond nbits.
850          *                                        843          *
851          * Negative index is OK because here w    844          * Negative index is OK because here we point to the word next
852          * to the last word of the bitmap, exc    845          * to the last word of the bitmap, except for nbits == 0, which
853          * is tested implicitly.                  846          * is tested implicitly.
854          */                                       847          */
855         if (nbits % BITS_PER_LONG)                848         if (nbits % BITS_PER_LONG)
856                 bitmap[-1] &= BITMAP_LAST_WORD    849                 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
857 }                                                 850 }
858 EXPORT_SYMBOL(bitmap_from_arr64);                 851 EXPORT_SYMBOL(bitmap_from_arr64);
859                                                   852 
860 /**                                               853 /**
861  * bitmap_to_arr64 - copy the contents of bitm    854  * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
862  *      @buf: array of u64 (in host byte order    855  *      @buf: array of u64 (in host byte order), the dest bitmap
863  *      @bitmap: array of unsigned longs, the     856  *      @bitmap: array of unsigned longs, the source bitmap
864  *      @nbits: number of bits in @bitmap         857  *      @nbits: number of bits in @bitmap
865  */                                               858  */
866 void bitmap_to_arr64(u64 *buf, const unsigned     859 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
867 {                                                 860 {
868         const unsigned long *end = bitmap + BI    861         const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
869                                                   862 
870         while (bitmap < end) {                    863         while (bitmap < end) {
871                 *buf = *bitmap++;                 864                 *buf = *bitmap++;
872                 if (bitmap < end)                 865                 if (bitmap < end)
873                         *buf |= (u64)(*bitmap+    866                         *buf |= (u64)(*bitmap++) << 32;
874                 buf++;                            867                 buf++;
875         }                                         868         }
876                                                   869 
877         /* Clear tail bits in the last element    870         /* Clear tail bits in the last element of array beyond nbits. */
878         if (nbits % 64)                           871         if (nbits % 64)
879                 buf[-1] &= GENMASK_ULL((nbits     872                 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
880 }                                                 873 }
881 EXPORT_SYMBOL(bitmap_to_arr64);                   874 EXPORT_SYMBOL(bitmap_to_arr64);
882 #endif                                            875 #endif
883                                                   876 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php