1 /* Small bzip2 deflate implementation, by 1 /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). 2 2 3 Based on bzip2 decompression code by J 3 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), 4 which also acknowledges contributions 4 which also acknowledges contributions by Mike Burrows, David Wheeler, 5 Peter Fenwick, Alistair Moffat, Radfor 5 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, 6 Robert Sedgewick, and Jon L. Bentley. 6 Robert Sedgewick, and Jon L. Bentley. 7 7 8 This code is licensed under the LGPLv2 8 This code is licensed under the LGPLv2: 9 LGPL (http://www.gnu.org/copyl 9 LGPL (http://www.gnu.org/copyleft/lgpl.html 10 */ 10 */ 11 11 12 /* 12 /* 13 Size and speed optimizations by Manuel 13 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). 14 14 15 More efficient reading of Huffman code 15 More efficient reading of Huffman codes, a streamlined read_bunzip() 16 function, and various other tweaks. I 16 function, and various other tweaks. In (limited) tests, approximately 17 20% faster than bzcat on x86 and about 17 20% faster than bzcat on x86 and about 10% faster on arm. 18 18 19 Note that about 2/3 of the time is spe 19 Note that about 2/3 of the time is spent in read_unzip() reversing 20 the Burrows-Wheeler transformation. M 20 the Burrows-Wheeler transformation. Much of that time is delay 21 resulting from cache misses. 21 resulting from cache misses. 22 22 23 I would ask that anyone benefiting fro 23 I would ask that anyone benefiting from this work, especially those 24 using it in commercial products, consi 24 using it in commercial products, consider making a donation to my local 25 non-profit hospice organization in the 25 non-profit hospice organization in the name of the woman I loved, who 26 passed away Feb. 12, 2003. 26 passed away Feb. 12, 2003. 27 27 28 In memory of Toni W. Hagan 28 In memory of Toni W. Hagan 29 29 30 Hospice of Acadiana, Inc. 30 Hospice of Acadiana, Inc. 31 2600 Johnston St., Suite 200 31 2600 Johnston St., Suite 200 32 Lafayette, LA 70503-3240 32 Lafayette, LA 70503-3240 33 33 34 Phone (337) 232-1234 or 1-800- 34 Phone (337) 232-1234 or 1-800-738-2226 35 Fax (337) 232-1297 35 Fax (337) 232-1297 36 36 37 https://www.hospiceacadiana.co 37 https://www.hospiceacadiana.com/ 38 38 39 Manuel 39 Manuel 40 */ 40 */ 41 41 42 /* 42 /* 43 Made it fit for running in Linux Kerne 43 Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) 44 */ 44 */ 45 45 46 46 47 #ifdef STATIC 47 #ifdef STATIC 48 #define PREBOOT 48 #define PREBOOT 49 #else 49 #else 50 #include <linux/decompress/bunzip2.h> 50 #include <linux/decompress/bunzip2.h> 51 #endif /* STATIC */ 51 #endif /* STATIC */ 52 52 53 #include <linux/decompress/mm.h> 53 #include <linux/decompress/mm.h> 54 #include <linux/crc32poly.h> 54 #include <linux/crc32poly.h> 55 55 56 #ifndef INT_MAX 56 #ifndef INT_MAX 57 #define INT_MAX 0x7fffffff 57 #define INT_MAX 0x7fffffff 58 #endif 58 #endif 59 59 60 /* Constants for Huffman coding */ 60 /* Constants for Huffman coding */ 61 #define MAX_GROUPS 6 61 #define MAX_GROUPS 6 62 #define GROUP_SIZE 50 /* 64 62 #define GROUP_SIZE 50 /* 64 would have been more efficient */ 63 #define MAX_HUFCODE_BITS 20 /* Lon 63 #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ 64 #define MAX_SYMBOLS 258 /* 256 64 #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ 65 #define SYMBOL_RUNA 0 65 #define SYMBOL_RUNA 0 66 #define SYMBOL_RUNB 1 66 #define SYMBOL_RUNB 1 67 67 68 /* Status return values */ 68 /* Status return values */ 69 #define RETVAL_OK 0 69 #define RETVAL_OK 0 70 #define RETVAL_LAST_BLOCK (-1) 70 #define RETVAL_LAST_BLOCK (-1) 71 #define RETVAL_NOT_BZIP_DATA (-2) 71 #define RETVAL_NOT_BZIP_DATA (-2) 72 #define RETVAL_UNEXPECTED_INPUT_EOF (-3) 72 #define RETVAL_UNEXPECTED_INPUT_EOF (-3) 73 #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) 73 #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) 74 #define RETVAL_DATA_ERROR (-5) 74 #define RETVAL_DATA_ERROR (-5) 75 #define RETVAL_OUT_OF_MEMORY (-6) 75 #define RETVAL_OUT_OF_MEMORY (-6) 76 #define RETVAL_OBSOLETE_INPUT (-7) 76 #define RETVAL_OBSOLETE_INPUT (-7) 77 77 78 /* Other housekeeping constants */ 78 /* Other housekeeping constants */ 79 #define BZIP2_IOBUF_SIZE 4096 79 #define BZIP2_IOBUF_SIZE 4096 80 80 81 /* This is what we know about each Huffman cod 81 /* This is what we know about each Huffman coding group */ 82 struct group_data { 82 struct group_data { 83 /* We have an extra slot at the end of 83 /* We have an extra slot at the end of limit[] for a sentinel value. */ 84 int limit[MAX_HUFCODE_BITS+1]; 84 int limit[MAX_HUFCODE_BITS+1]; 85 int base[MAX_HUFCODE_BITS]; 85 int base[MAX_HUFCODE_BITS]; 86 int permute[MAX_SYMBOLS]; 86 int permute[MAX_SYMBOLS]; 87 int minLen, maxLen; 87 int minLen, maxLen; 88 }; 88 }; 89 89 90 /* Structure holding all the housekeeping data 90 /* Structure holding all the housekeeping data, including IO buffers and 91 memory that persists between calls to bunzi 91 memory that persists between calls to bunzip */ 92 struct bunzip_data { 92 struct bunzip_data { 93 /* State for interrupting output loop 93 /* State for interrupting output loop */ 94 int writeCopies, writePos, writeRunCou 94 int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; 95 /* I/O tracking data (file handles, bu 95 /* I/O tracking data (file handles, buffers, positions, etc.) */ 96 long (*fill)(void*, unsigned long); 96 long (*fill)(void*, unsigned long); 97 long inbufCount, inbufPos /*, outbufPo 97 long inbufCount, inbufPos /*, outbufPos*/; 98 unsigned char *inbuf /*,*outbuf*/; 98 unsigned char *inbuf /*,*outbuf*/; 99 unsigned int inbufBitCount, inbufBits; 99 unsigned int inbufBitCount, inbufBits; 100 /* The CRC values stored in the block 100 /* The CRC values stored in the block header and calculated from the 101 data */ 101 data */ 102 unsigned int crc32Table[256], headerCR 102 unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; 103 /* Intermediate buffer and its size (i 103 /* Intermediate buffer and its size (in bytes) */ 104 unsigned int *dbuf, dbufSize; 104 unsigned int *dbuf, dbufSize; 105 /* These things are a bit too big to g 105 /* These things are a bit too big to go on the stack */ 106 unsigned char selectors[32768]; 106 unsigned char selectors[32768]; /* nSelectors = 15 bits */ 107 struct group_data groups[MAX_GROUPS]; 107 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ 108 int io_error; /* non 108 int io_error; /* non-zero if we have IO error */ 109 int byteCount[256]; 109 int byteCount[256]; 110 unsigned char symToByte[256], mtfSymbo 110 unsigned char symToByte[256], mtfSymbol[256]; 111 }; 111 }; 112 112 113 113 114 /* Return the next nnn bits of input. All rea 114 /* Return the next nnn bits of input. All reads from the compressed input 115 are done through this function. All reads 115 are done through this function. All reads are big endian */ 116 static unsigned int INIT get_bits(struct bunzi 116 static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) 117 { 117 { 118 unsigned int bits = 0; 118 unsigned int bits = 0; 119 119 120 /* If we need to get more data from th 120 /* If we need to get more data from the byte buffer, do so. 121 (Loop getting one byte at a time to 121 (Loop getting one byte at a time to enforce endianness and avoid 122 unaligned access.) */ 122 unaligned access.) */ 123 while (bd->inbufBitCount < bits_wanted 123 while (bd->inbufBitCount < bits_wanted) { 124 /* If we need to read more dat 124 /* If we need to read more data from file into byte buffer, do 125 so */ 125 so */ 126 if (bd->inbufPos == bd->inbufC 126 if (bd->inbufPos == bd->inbufCount) { 127 if (bd->io_error) 127 if (bd->io_error) 128 return 0; 128 return 0; 129 bd->inbufCount = bd->f 129 bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); 130 if (bd->inbufCount <= 130 if (bd->inbufCount <= 0) { 131 bd->io_error = 131 bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; 132 return 0; 132 return 0; 133 } 133 } 134 bd->inbufPos = 0; 134 bd->inbufPos = 0; 135 } 135 } 136 /* Avoid 32-bit overflow (dump 136 /* Avoid 32-bit overflow (dump bit buffer to top of output) */ 137 if (bd->inbufBitCount >= 24) { 137 if (bd->inbufBitCount >= 24) { 138 bits = bd->inbufBits&( 138 bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); 139 bits_wanted -= bd->inb 139 bits_wanted -= bd->inbufBitCount; 140 bits <<= bits_wanted; 140 bits <<= bits_wanted; 141 bd->inbufBitCount = 0; 141 bd->inbufBitCount = 0; 142 } 142 } 143 /* Grab next 8 bits of input f 143 /* Grab next 8 bits of input from buffer. */ 144 bd->inbufBits = (bd->inbufBits 144 bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; 145 bd->inbufBitCount += 8; 145 bd->inbufBitCount += 8; 146 } 146 } 147 /* Calculate result */ 147 /* Calculate result */ 148 bd->inbufBitCount -= bits_wanted; 148 bd->inbufBitCount -= bits_wanted; 149 bits |= (bd->inbufBits >> bd->inbufBit 149 bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); 150 150 151 return bits; 151 return bits; 152 } 152 } 153 153 154 /* Unpacks the next block and sets up for the 154 /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ 155 155 156 static int INIT get_next_block(struct bunzip_d 156 static int INIT get_next_block(struct bunzip_data *bd) 157 { 157 { 158 struct group_data *hufGroup = NULL; 158 struct group_data *hufGroup = NULL; 159 int *base = NULL; 159 int *base = NULL; 160 int *limit = NULL; 160 int *limit = NULL; 161 int dbufCount, nextSym, dbufSize, grou 161 int dbufCount, nextSym, dbufSize, groupCount, selector, 162 i, j, k, t, runPos, symCount, 162 i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount; 163 unsigned char uc, *symToByte, *mtfSymb 163 unsigned char uc, *symToByte, *mtfSymbol, *selectors; 164 unsigned int *dbuf, origPtr; 164 unsigned int *dbuf, origPtr; 165 165 166 dbuf = bd->dbuf; 166 dbuf = bd->dbuf; 167 dbufSize = bd->dbufSize; 167 dbufSize = bd->dbufSize; 168 selectors = bd->selectors; 168 selectors = bd->selectors; 169 byteCount = bd->byteCount; 169 byteCount = bd->byteCount; 170 symToByte = bd->symToByte; 170 symToByte = bd->symToByte; 171 mtfSymbol = bd->mtfSymbol; 171 mtfSymbol = bd->mtfSymbol; 172 172 173 /* Read in header signature and CRC, t 173 /* Read in header signature and CRC, then validate signature. 174 (last block signature means CRC is 174 (last block signature means CRC is for whole file, return now) */ 175 i = get_bits(bd, 24); 175 i = get_bits(bd, 24); 176 j = get_bits(bd, 24); 176 j = get_bits(bd, 24); 177 bd->headerCRC = get_bits(bd, 32); 177 bd->headerCRC = get_bits(bd, 32); 178 if ((i == 0x177245) && (j == 0x385090) 178 if ((i == 0x177245) && (j == 0x385090)) 179 return RETVAL_LAST_BLOCK; 179 return RETVAL_LAST_BLOCK; 180 if ((i != 0x314159) || (j != 0x265359) 180 if ((i != 0x314159) || (j != 0x265359)) 181 return RETVAL_NOT_BZIP_DATA; 181 return RETVAL_NOT_BZIP_DATA; 182 /* We can add support for blockRandomi 182 /* We can add support for blockRandomised if anybody complains. 183 There was some code for this in bus 183 There was some code for this in busybox 1.0.0-pre3, but nobody ever 184 noticed that it didn't actually wor 184 noticed that it didn't actually work. */ 185 if (get_bits(bd, 1)) 185 if (get_bits(bd, 1)) 186 return RETVAL_OBSOLETE_INPUT; 186 return RETVAL_OBSOLETE_INPUT; 187 origPtr = get_bits(bd, 24); 187 origPtr = get_bits(bd, 24); 188 if (origPtr >= dbufSize) 188 if (origPtr >= dbufSize) 189 return RETVAL_DATA_ERROR; 189 return RETVAL_DATA_ERROR; 190 /* mapping table: if some byte values 190 /* mapping table: if some byte values are never used (encoding things 191 like ascii text), the compression c 191 like ascii text), the compression code removes the gaps to have fewer 192 symbols to deal with, and writes a 192 symbols to deal with, and writes a sparse bitfield indicating which 193 values were present. We make a tra 193 values were present. We make a translation table to convert the 194 symbols back to the corresponding b 194 symbols back to the corresponding bytes. */ 195 t = get_bits(bd, 16); 195 t = get_bits(bd, 16); 196 symTotal = 0; 196 symTotal = 0; 197 for (i = 0; i < 16; i++) { 197 for (i = 0; i < 16; i++) { 198 if (t&(1 << (15-i))) { 198 if (t&(1 << (15-i))) { 199 k = get_bits(bd, 16); 199 k = get_bits(bd, 16); 200 for (j = 0; j < 16; j+ 200 for (j = 0; j < 16; j++) 201 if (k&(1 << (1 201 if (k&(1 << (15-j))) 202 symToB 202 symToByte[symTotal++] = (16*i)+j; 203 } 203 } 204 } 204 } 205 /* How many different Huffman coding g 205 /* How many different Huffman coding groups does this block use? */ 206 groupCount = get_bits(bd, 3); 206 groupCount = get_bits(bd, 3); 207 if (groupCount < 2 || groupCount > MAX 207 if (groupCount < 2 || groupCount > MAX_GROUPS) 208 return RETVAL_DATA_ERROR; 208 return RETVAL_DATA_ERROR; 209 /* nSelectors: Every GROUP_SIZE many s 209 /* nSelectors: Every GROUP_SIZE many symbols we select a new 210 Huffman coding group. Read in the 210 Huffman coding group. Read in the group selector list, 211 which is stored as MTF encoded bit 211 which is stored as MTF encoded bit runs. (MTF = Move To 212 Front, as each value is used it's m 212 Front, as each value is used it's moved to the start of the 213 list.) */ 213 list.) */ 214 nSelectors = get_bits(bd, 15); 214 nSelectors = get_bits(bd, 15); 215 if (!nSelectors) 215 if (!nSelectors) 216 return RETVAL_DATA_ERROR; 216 return RETVAL_DATA_ERROR; 217 for (i = 0; i < groupCount; i++) 217 for (i = 0; i < groupCount; i++) 218 mtfSymbol[i] = i; 218 mtfSymbol[i] = i; 219 for (i = 0; i < nSelectors; i++) { 219 for (i = 0; i < nSelectors; i++) { 220 /* Get next value */ 220 /* Get next value */ 221 for (j = 0; get_bits(bd, 1); j 221 for (j = 0; get_bits(bd, 1); j++) 222 if (j >= groupCount) 222 if (j >= groupCount) 223 return RETVAL_ 223 return RETVAL_DATA_ERROR; 224 /* Decode MTF to get the next 224 /* Decode MTF to get the next selector */ 225 uc = mtfSymbol[j]; 225 uc = mtfSymbol[j]; 226 for (; j; j--) 226 for (; j; j--) 227 mtfSymbol[j] = mtfSymb 227 mtfSymbol[j] = mtfSymbol[j-1]; 228 mtfSymbol[0] = selectors[i] = 228 mtfSymbol[0] = selectors[i] = uc; 229 } 229 } 230 /* Read the Huffman coding tables for 230 /* Read the Huffman coding tables for each group, which code 231 for symTotal literal symbols, plus 231 for symTotal literal symbols, plus two run symbols (RUNA, 232 RUNB) */ 232 RUNB) */ 233 symCount = symTotal+2; 233 symCount = symTotal+2; 234 for (j = 0; j < groupCount; j++) { 234 for (j = 0; j < groupCount; j++) { 235 unsigned char length[MAX_SYMBO 235 unsigned char length[MAX_SYMBOLS]; 236 unsigned short temp[MAX_HUFCOD 236 unsigned short temp[MAX_HUFCODE_BITS+1]; 237 int minLen, maxLen, pp; 237 int minLen, maxLen, pp; 238 /* Read Huffman code lengths f 238 /* Read Huffman code lengths for each symbol. They're 239 stored in a way similar to 239 stored in a way similar to mtf; record a starting 240 value for the first symbol, 240 value for the first symbol, and an offset from the 241 previous value for everys s 241 previous value for everys symbol after that. 242 (Subtracting 1 before the l 242 (Subtracting 1 before the loop and then adding it 243 back at the end is an optim 243 back at the end is an optimization that makes the 244 test inside the loop simple 244 test inside the loop simpler: symbol length 0 245 becomes negative, so an uns 245 becomes negative, so an unsigned inequality catches 246 it.) */ 246 it.) */ 247 t = get_bits(bd, 5)-1; 247 t = get_bits(bd, 5)-1; 248 for (i = 0; i < symCount; i++) 248 for (i = 0; i < symCount; i++) { 249 for (;;) { 249 for (;;) { 250 if (((unsigned 250 if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) 251 return 251 return RETVAL_DATA_ERROR; 252 252 253 /* If first bi 253 /* If first bit is 0, stop. Else 254 second bit 254 second bit indicates whether to 255 increment o 255 increment or decrement the value. 256 Optimizatio 256 Optimization: grab 2 bits and unget 257 the second 257 the second if the first was 0. */ 258 258 259 k = get_bits(b 259 k = get_bits(bd, 2); 260 if (k < 2) { 260 if (k < 2) { 261 bd->in 261 bd->inbufBitCount++; 262 break; 262 break; 263 } 263 } 264 /* Add one if 264 /* Add one if second bit 1, else 265 * subtract 1. 265 * subtract 1. Avoids if/else */ 266 t += (((k+1)&2 266 t += (((k+1)&2)-1); 267 } 267 } 268 /* Correct for the ini 268 /* Correct for the initial -1, to get the 269 * final symbol length 269 * final symbol length */ 270 length[i] = t+1; 270 length[i] = t+1; 271 } 271 } 272 /* Find largest and smallest l 272 /* Find largest and smallest lengths in this group */ 273 minLen = maxLen = length[0]; 273 minLen = maxLen = length[0]; 274 274 275 for (i = 1; i < symCount; i++) 275 for (i = 1; i < symCount; i++) { 276 if (length[i] > maxLen 276 if (length[i] > maxLen) 277 maxLen = lengt 277 maxLen = length[i]; 278 else if (length[i] < m 278 else if (length[i] < minLen) 279 minLen = lengt 279 minLen = length[i]; 280 } 280 } 281 281 282 /* Calculate permute[], base[] 282 /* Calculate permute[], base[], and limit[] tables from 283 * length[]. 283 * length[]. 284 * 284 * 285 * permute[] is the lookup tab 285 * permute[] is the lookup table for converting 286 * Huffman coded symbols into 286 * Huffman coded symbols into decoded symbols. base[] 287 * is the amount to subtract f 287 * is the amount to subtract from the value of a 288 * Huffman symbol of a given l 288 * Huffman symbol of a given length when using 289 * permute[]. 289 * permute[]. 290 * 290 * 291 * limit[] indicates the large 291 * limit[] indicates the largest numerical value a 292 * symbol with a given number 292 * symbol with a given number of bits can have. This 293 * is how the Huffman codes ca 293 * is how the Huffman codes can vary in length: each 294 * code with a value > limit[l 294 * code with a value > limit[length] needs another 295 * bit. 295 * bit. 296 */ 296 */ 297 hufGroup = bd->groups+j; 297 hufGroup = bd->groups+j; 298 hufGroup->minLen = minLen; 298 hufGroup->minLen = minLen; 299 hufGroup->maxLen = maxLen; 299 hufGroup->maxLen = maxLen; 300 /* Note that minLen can't be s 300 /* Note that minLen can't be smaller than 1, so we 301 adjust the base and limit a 301 adjust the base and limit array pointers so we're 302 not always wasting the firs 302 not always wasting the first entry. We do this 303 again when using them (duri 303 again when using them (during symbol decoding).*/ 304 base = hufGroup->base-1; 304 base = hufGroup->base-1; 305 limit = hufGroup->limit-1; 305 limit = hufGroup->limit-1; 306 /* Calculate permute[]. Concu 306 /* Calculate permute[]. Concurrently, initialize 307 * temp[] and limit[]. */ 307 * temp[] and limit[]. */ 308 pp = 0; 308 pp = 0; 309 for (i = minLen; i <= maxLen; 309 for (i = minLen; i <= maxLen; i++) { 310 temp[i] = limit[i] = 0 310 temp[i] = limit[i] = 0; 311 for (t = 0; t < symCou 311 for (t = 0; t < symCount; t++) 312 if (length[t] 312 if (length[t] == i) 313 hufGro 313 hufGroup->permute[pp++] = t; 314 } 314 } 315 /* Count symbols coded for at 315 /* Count symbols coded for at each bit length */ 316 for (i = 0; i < symCount; i++) 316 for (i = 0; i < symCount; i++) 317 temp[length[i]]++; 317 temp[length[i]]++; 318 /* Calculate limit[] (the larg 318 /* Calculate limit[] (the largest symbol-coding value 319 *at each bit length, which is 319 *at each bit length, which is (previous limit << 320 *1)+symbols at this level), a 320 *1)+symbols at this level), and base[] (number of 321 *symbols to ignore at each bi 321 *symbols to ignore at each bit length, which is limit 322 *minus the cumulative count o 322 *minus the cumulative count of symbols coded for 323 *already). */ 323 *already). */ 324 pp = t = 0; 324 pp = t = 0; 325 for (i = minLen; i < maxLen; i 325 for (i = minLen; i < maxLen; i++) { 326 pp += temp[i]; 326 pp += temp[i]; 327 /* We read the largest 327 /* We read the largest possible symbol size 328 and then unget bits 328 and then unget bits after determining how 329 many we need, and t 329 many we need, and those extra bits could be 330 set to anything. ( 330 set to anything. (They're noise from 331 future symbols.) A 331 future symbols.) At each level we're 332 really only interes 332 really only interested in the first few 333 bits, so here we se 333 bits, so here we set all the trailing 334 to-be-ignored bits 334 to-be-ignored bits to 1 so they don't 335 affect the value > 335 affect the value > limit[length] 336 comparison. */ 336 comparison. */ 337 limit[i] = (pp << (max 337 limit[i] = (pp << (maxLen - i)) - 1; 338 pp <<= 1; 338 pp <<= 1; 339 base[i+1] = pp-(t += t 339 base[i+1] = pp-(t += temp[i]); 340 } 340 } 341 limit[maxLen+1] = INT_MAX; /* 341 limit[maxLen+1] = INT_MAX; /* Sentinel value for 342 * 342 * reading next sym. */ 343 limit[maxLen] = pp+temp[maxLen 343 limit[maxLen] = pp+temp[maxLen]-1; 344 base[minLen] = 0; 344 base[minLen] = 0; 345 } 345 } 346 /* We've finished reading and digestin 346 /* We've finished reading and digesting the block header. Now 347 read this block's Huffman coded sym 347 read this block's Huffman coded symbols from the file and 348 undo the Huffman coding and run len 348 undo the Huffman coding and run length encoding, saving the 349 result into dbuf[dbufCount++] = uc 349 result into dbuf[dbufCount++] = uc */ 350 350 351 /* Initialize symbol occurrence counte 351 /* Initialize symbol occurrence counters and symbol Move To 352 * Front table */ 352 * Front table */ 353 for (i = 0; i < 256; i++) { 353 for (i = 0; i < 256; i++) { 354 byteCount[i] = 0; 354 byteCount[i] = 0; 355 mtfSymbol[i] = (unsigned char) 355 mtfSymbol[i] = (unsigned char)i; 356 } 356 } 357 /* Loop through compressed symbols. */ 357 /* Loop through compressed symbols. */ 358 runPos = dbufCount = symCount = select 358 runPos = dbufCount = symCount = selector = 0; 359 for (;;) { 359 for (;;) { 360 /* Determine which Huffman cod 360 /* Determine which Huffman coding group to use. */ 361 if (!(symCount--)) { 361 if (!(symCount--)) { 362 symCount = GROUP_SIZE- 362 symCount = GROUP_SIZE-1; 363 if (selector >= nSelec 363 if (selector >= nSelectors) 364 return RETVAL_ 364 return RETVAL_DATA_ERROR; 365 hufGroup = bd->groups+ 365 hufGroup = bd->groups+selectors[selector++]; 366 base = hufGroup->base- 366 base = hufGroup->base-1; 367 limit = hufGroup->limi 367 limit = hufGroup->limit-1; 368 } 368 } 369 /* Read next Huffman-coded sym 369 /* Read next Huffman-coded symbol. */ 370 /* Note: It is far cheaper to 370 /* Note: It is far cheaper to read maxLen bits and 371 back up than it is to read 371 back up than it is to read minLen bits and then an 372 additional bit at a time, t 372 additional bit at a time, testing as we go. 373 Because there is a trailing 373 Because there is a trailing last block (with file 374 CRC), there is no danger of 374 CRC), there is no danger of the overread causing an 375 unexpected EOF for a valid 375 unexpected EOF for a valid compressed file. As a 376 further optimization, we do 376 further optimization, we do the read inline 377 (falling back to a call to 377 (falling back to a call to get_bits if the buffer 378 runs dry). The following ( 378 runs dry). The following (up to got_huff_bits:) is 379 equivalent to j = get_bits( 379 equivalent to j = get_bits(bd, hufGroup->maxLen); 380 */ 380 */ 381 while (bd->inbufBitCount < huf 381 while (bd->inbufBitCount < hufGroup->maxLen) { 382 if (bd->inbufPos == bd 382 if (bd->inbufPos == bd->inbufCount) { 383 j = get_bits(b 383 j = get_bits(bd, hufGroup->maxLen); 384 goto got_huff_ 384 goto got_huff_bits; 385 } 385 } 386 bd->inbufBits = 386 bd->inbufBits = 387 (bd->inbufBits 387 (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; 388 bd->inbufBitCount += 8 388 bd->inbufBitCount += 8; 389 } 389 } 390 bd->inbufBitCount -= hufGroup- 390 bd->inbufBitCount -= hufGroup->maxLen; 391 j = (bd->inbufBits >> bd->inbu 391 j = (bd->inbufBits >> bd->inbufBitCount)& 392 ((1 << hufGroup->maxLe 392 ((1 << hufGroup->maxLen)-1); 393 got_huff_bits: 393 got_huff_bits: 394 /* Figure how many bits are in 394 /* Figure how many bits are in next symbol and 395 * unget extras */ 395 * unget extras */ 396 i = hufGroup->minLen; 396 i = hufGroup->minLen; 397 while (j > limit[i]) 397 while (j > limit[i]) 398 ++i; 398 ++i; 399 bd->inbufBitCount += (hufGroup 399 bd->inbufBitCount += (hufGroup->maxLen - i); 400 /* Huffman decode value to get 400 /* Huffman decode value to get nextSym (with bounds checking) */ 401 if ((i > hufGroup->maxLen) 401 if ((i > hufGroup->maxLen) 402 || (((unsigned)(j = (j 402 || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) 403 >= MAX_SYMBOLS 403 >= MAX_SYMBOLS)) 404 return RETVAL_DATA_ERR 404 return RETVAL_DATA_ERROR; 405 nextSym = hufGroup->permute[j] 405 nextSym = hufGroup->permute[j]; 406 /* We have now decoded the sym 406 /* We have now decoded the symbol, which indicates 407 either a new literal byte, 407 either a new literal byte, or a repeated run of the 408 most recent literal byte. 408 most recent literal byte. First, check if nextSym 409 indicates a repeated run, a 409 indicates a repeated run, and if so loop collecting 410 how many times to repeat th 410 how many times to repeat the last literal. */ 411 if (((unsigned)nextSym) <= SYM 411 if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ 412 /* If this is the star 412 /* If this is the start of a new run, zero out 413 * counter */ 413 * counter */ 414 if (!runPos) { 414 if (!runPos) { 415 runPos = 1; 415 runPos = 1; 416 t = 0; 416 t = 0; 417 } 417 } 418 /* Neat trick that sav 418 /* Neat trick that saves 1 symbol: instead of 419 or-ing 0 or 1 at ea 419 or-ing 0 or 1 at each bit position, add 1 420 or 2 instead. For 420 or 2 instead. For example, 1011 is 1 << 0 421 + 1 << 1 + 2 << 2. 421 + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1 422 + 1 << 2. You can 422 + 1 << 2. You can make any bit pattern 423 that way using 1 le 423 that way using 1 less symbol than the basic 424 or 0/1 method (exce 424 or 0/1 method (except all bits 0, which 425 would use no symbol 425 would use no symbols, but a run of length 0 426 doesn't mean anythi 426 doesn't mean anything in this context). 427 Thus space is saved 427 Thus space is saved. */ 428 t += (runPos << nextSy 428 t += (runPos << nextSym); 429 /* +runPos if RUNA; +2 429 /* +runPos if RUNA; +2*runPos if RUNB */ 430 430 431 runPos <<= 1; 431 runPos <<= 1; 432 continue; 432 continue; 433 } 433 } 434 /* When we hit the first non-r 434 /* When we hit the first non-run symbol after a run, 435 we now know how many times 435 we now know how many times to repeat the last 436 literal, so append that man 436 literal, so append that many copies to our buffer 437 of decoded symbols (dbuf) n 437 of decoded symbols (dbuf) now. (The last literal 438 used is the one at the head 438 used is the one at the head of the mtfSymbol 439 array.) */ 439 array.) */ 440 if (runPos) { 440 if (runPos) { 441 runPos = 0; 441 runPos = 0; 442 if (dbufCount+t >= dbu 442 if (dbufCount+t >= dbufSize) 443 return RETVAL_ 443 return RETVAL_DATA_ERROR; 444 444 445 uc = symToByte[mtfSymb 445 uc = symToByte[mtfSymbol[0]]; 446 byteCount[uc] += t; 446 byteCount[uc] += t; 447 while (t--) 447 while (t--) 448 dbuf[dbufCount 448 dbuf[dbufCount++] = uc; 449 } 449 } 450 /* Is this the terminating sym 450 /* Is this the terminating symbol? */ 451 if (nextSym > symTotal) 451 if (nextSym > symTotal) 452 break; 452 break; 453 /* At this point, nextSym indi 453 /* At this point, nextSym indicates a new literal 454 character. Subtract one to 454 character. Subtract one to get the position in the 455 MTF array at which this lit 455 MTF array at which this literal is currently to be 456 found. (Note that the resu 456 found. (Note that the result can't be -1 or 0, 457 because 0 and 1 are RUNA an 457 because 0 and 1 are RUNA and RUNB. But another 458 instance of the first symbo 458 instance of the first symbol in the mtf array, 459 position 0, would have been 459 position 0, would have been handled as part of a 460 run above. Therefore 1 unu 460 run above. Therefore 1 unused mtf position minus 2 461 non-literal nextSym values 461 non-literal nextSym values equals -1.) */ 462 if (dbufCount >= dbufSize) 462 if (dbufCount >= dbufSize) 463 return RETVAL_DATA_ERR 463 return RETVAL_DATA_ERROR; 464 i = nextSym - 1; 464 i = nextSym - 1; 465 uc = mtfSymbol[i]; 465 uc = mtfSymbol[i]; 466 /* Adjust the MTF array. Sinc 466 /* Adjust the MTF array. Since we typically expect to 467 *move only a small number of 467 *move only a small number of symbols, and are bound 468 *by 256 in any case, using me 468 *by 256 in any case, using memmove here would 469 *typically be bigger and slow 469 *typically be bigger and slower due to function call 470 *overhead and other assorted 470 *overhead and other assorted setup costs. */ 471 do { 471 do { 472 mtfSymbol[i] = mtfSymb 472 mtfSymbol[i] = mtfSymbol[i-1]; 473 } while (--i); 473 } while (--i); 474 mtfSymbol[0] = uc; 474 mtfSymbol[0] = uc; 475 uc = symToByte[uc]; 475 uc = symToByte[uc]; 476 /* We have our literal byte. 476 /* We have our literal byte. Save it into dbuf. */ 477 byteCount[uc]++; 477 byteCount[uc]++; 478 dbuf[dbufCount++] = (unsigned 478 dbuf[dbufCount++] = (unsigned int)uc; 479 } 479 } 480 /* At this point, we've read all the H 480 /* At this point, we've read all the Huffman-coded symbols 481 (and repeated runs) for this block 481 (and repeated runs) for this block from the input stream, 482 and decoded them into the intermedi 482 and decoded them into the intermediate buffer. There are 483 dbufCount many decoded bytes in dbu 483 dbufCount many decoded bytes in dbuf[]. Now undo the 484 Burrows-Wheeler transform on dbuf. 484 Burrows-Wheeler transform on dbuf. See 485 http://dogma.net/markn/articles/bwt 485 http://dogma.net/markn/articles/bwt/bwt.htm 486 */ 486 */ 487 /* Turn byteCount into cumulative occu 487 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ 488 j = 0; 488 j = 0; 489 for (i = 0; i < 256; i++) { 489 for (i = 0; i < 256; i++) { 490 k = j+byteCount[i]; 490 k = j+byteCount[i]; 491 byteCount[i] = j; 491 byteCount[i] = j; 492 j = k; 492 j = k; 493 } 493 } 494 /* Figure out what order dbuf would be 494 /* Figure out what order dbuf would be in if we sorted it. */ 495 for (i = 0; i < dbufCount; i++) { 495 for (i = 0; i < dbufCount; i++) { 496 uc = (unsigned char)(dbuf[i] & 496 uc = (unsigned char)(dbuf[i] & 0xff); 497 dbuf[byteCount[uc]] |= (i << 8 497 dbuf[byteCount[uc]] |= (i << 8); 498 byteCount[uc]++; 498 byteCount[uc]++; 499 } 499 } 500 /* Decode first byte by hand to initia 500 /* Decode first byte by hand to initialize "previous" byte. 501 Note that it doesn't get output, an 501 Note that it doesn't get output, and if the first three 502 characters are identical it doesn't 502 characters are identical it doesn't qualify as a run (hence 503 writeRunCountdown = 5). */ 503 writeRunCountdown = 5). */ 504 if (dbufCount) { 504 if (dbufCount) { 505 if (origPtr >= dbufCount) 505 if (origPtr >= dbufCount) 506 return RETVAL_DATA_ERR 506 return RETVAL_DATA_ERROR; 507 bd->writePos = dbuf[origPtr]; 507 bd->writePos = dbuf[origPtr]; 508 bd->writeCurrent = (unsigned c 508 bd->writeCurrent = (unsigned char)(bd->writePos&0xff); 509 bd->writePos >>= 8; 509 bd->writePos >>= 8; 510 bd->writeRunCountdown = 5; 510 bd->writeRunCountdown = 5; 511 } 511 } 512 bd->writeCount = dbufCount; 512 bd->writeCount = dbufCount; 513 513 514 return RETVAL_OK; 514 return RETVAL_OK; 515 } 515 } 516 516 517 /* Undo burrows-wheeler transform on intermedi 517 /* Undo burrows-wheeler transform on intermediate buffer to produce output. 518 If start_bunzip was initialized with out_fd 518 If start_bunzip was initialized with out_fd =-1, then up to len bytes of 519 data are written to outbuf. Return value i 519 data are written to outbuf. Return value is number of bytes written or 520 error (all errors are negative numbers). I 520 error (all errors are negative numbers). If out_fd!=-1, outbuf and len 521 are ignored, data is written to out_fd and 521 are ignored, data is written to out_fd and return is RETVAL_OK or error. 522 */ 522 */ 523 523 524 static int INIT read_bunzip(struct bunzip_data 524 static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) 525 { 525 { 526 const unsigned int *dbuf; 526 const unsigned int *dbuf; 527 int pos, xcurrent, previous, gotcount; 527 int pos, xcurrent, previous, gotcount; 528 528 529 /* If last read was short due to end o 529 /* If last read was short due to end of file, return last block now */ 530 if (bd->writeCount < 0) 530 if (bd->writeCount < 0) 531 return bd->writeCount; 531 return bd->writeCount; 532 532 533 gotcount = 0; 533 gotcount = 0; 534 dbuf = bd->dbuf; 534 dbuf = bd->dbuf; 535 pos = bd->writePos; 535 pos = bd->writePos; 536 xcurrent = bd->writeCurrent; 536 xcurrent = bd->writeCurrent; 537 537 538 /* We will always have pending decoded 538 /* We will always have pending decoded data to write into the output 539 buffer unless this is the very firs 539 buffer unless this is the very first call (in which case we haven't 540 Huffman-decoded a block into the in 540 Huffman-decoded a block into the intermediate buffer yet). */ 541 541 542 if (bd->writeCopies) { 542 if (bd->writeCopies) { 543 /* Inside the loop, writeCopie 543 /* Inside the loop, writeCopies means extra copies (beyond 1) */ 544 --bd->writeCopies; 544 --bd->writeCopies; 545 /* Loop outputting bytes */ 545 /* Loop outputting bytes */ 546 for (;;) { 546 for (;;) { 547 /* If the output buffe 547 /* If the output buffer is full, snapshot 548 * state and return */ 548 * state and return */ 549 if (gotcount >= len) { 549 if (gotcount >= len) { 550 bd->writePos = 550 bd->writePos = pos; 551 bd->writeCurre 551 bd->writeCurrent = xcurrent; 552 bd->writeCopie 552 bd->writeCopies++; 553 return len; 553 return len; 554 } 554 } 555 /* Write next byte int 555 /* Write next byte into output buffer, updating CRC */ 556 outbuf[gotcount++] = x 556 outbuf[gotcount++] = xcurrent; 557 bd->writeCRC = (((bd-> 557 bd->writeCRC = (((bd->writeCRC) << 8) 558 ^bd->crc32Tabl 558 ^bd->crc32Table[((bd->writeCRC) >> 24) 559 ^xcurrent]); 559 ^xcurrent]); 560 /* Loop now if we're o 560 /* Loop now if we're outputting multiple 561 * copies of this byte 561 * copies of this byte */ 562 if (bd->writeCopies) { 562 if (bd->writeCopies) { 563 --bd->writeCop 563 --bd->writeCopies; 564 continue; 564 continue; 565 } 565 } 566 decode_next_byte: 566 decode_next_byte: 567 if (!bd->writeCount--) 567 if (!bd->writeCount--) 568 break; 568 break; 569 /* Follow sequence vec 569 /* Follow sequence vector to undo 570 * Burrows-Wheeler tra 570 * Burrows-Wheeler transform */ 571 previous = xcurrent; 571 previous = xcurrent; 572 pos = dbuf[pos]; 572 pos = dbuf[pos]; 573 xcurrent = pos&0xff; 573 xcurrent = pos&0xff; 574 pos >>= 8; 574 pos >>= 8; 575 /* After 3 consecutive 575 /* After 3 consecutive copies of the same 576 byte, the 4th is a 576 byte, the 4th is a repeat count. We count 577 down from 4 instead 577 down from 4 instead *of counting up because 578 testing for non-zer 578 testing for non-zero is faster */ 579 if (--bd->writeRunCoun 579 if (--bd->writeRunCountdown) { 580 if (xcurrent ! 580 if (xcurrent != previous) 581 bd->wr 581 bd->writeRunCountdown = 4; 582 } else { 582 } else { 583 /* We have a r 583 /* We have a repeated run, this byte 584 * indicates t 584 * indicates the count */ 585 bd->writeCopie 585 bd->writeCopies = xcurrent; 586 xcurrent = pre 586 xcurrent = previous; 587 bd->writeRunCo 587 bd->writeRunCountdown = 5; 588 /* Sometimes t 588 /* Sometimes there are just 3 bytes 589 * (run length 589 * (run length 0) */ 590 if (!bd->write 590 if (!bd->writeCopies) 591 goto d 591 goto decode_next_byte; 592 /* Subtract th 592 /* Subtract the 1 copy we'd output 593 * anyway to g 593 * anyway to get extras */ 594 --bd->writeCop 594 --bd->writeCopies; 595 } 595 } 596 } 596 } 597 /* Decompression of this block 597 /* Decompression of this block completed successfully */ 598 bd->writeCRC = ~bd->writeCRC; 598 bd->writeCRC = ~bd->writeCRC; 599 bd->totalCRC = ((bd->totalCRC 599 bd->totalCRC = ((bd->totalCRC << 1) | 600 (bd->totalCRC 600 (bd->totalCRC >> 31)) ^ bd->writeCRC; 601 /* If this block had a CRC err 601 /* If this block had a CRC error, force file level CRC error. */ 602 if (bd->writeCRC != bd->header 602 if (bd->writeCRC != bd->headerCRC) { 603 bd->totalCRC = bd->hea 603 bd->totalCRC = bd->headerCRC+1; 604 return RETVAL_LAST_BLO 604 return RETVAL_LAST_BLOCK; 605 } 605 } 606 } 606 } 607 607 608 /* Refill the intermediate buffer by H 608 /* Refill the intermediate buffer by Huffman-decoding next 609 * block of input */ 609 * block of input */ 610 /* (previous is just a convenient unus 610 /* (previous is just a convenient unused temp variable here) */ 611 previous = get_next_block(bd); 611 previous = get_next_block(bd); 612 if (previous) { 612 if (previous) { 613 bd->writeCount = previous; 613 bd->writeCount = previous; 614 return (previous != RETVAL_LAS 614 return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; 615 } 615 } 616 bd->writeCRC = 0xffffffffUL; 616 bd->writeCRC = 0xffffffffUL; 617 pos = bd->writePos; 617 pos = bd->writePos; 618 xcurrent = bd->writeCurrent; 618 xcurrent = bd->writeCurrent; 619 goto decode_next_byte; 619 goto decode_next_byte; 620 } 620 } 621 621 622 static long INIT nofill(void *buf, unsigned lo 622 static long INIT nofill(void *buf, unsigned long len) 623 { 623 { 624 return -1; 624 return -1; 625 } 625 } 626 626 627 /* Allocate the structure, read file header. 627 /* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain 628 a complete bunzip file (len bytes long). I 628 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are 629 ignored, and data is read from file handle 629 ignored, and data is read from file handle into temporary buffer. */ 630 static int INIT start_bunzip(struct bunzip_dat 630 static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len, 631 long (*fill)(void 631 long (*fill)(void*, unsigned long)) 632 { 632 { 633 struct bunzip_data *bd; 633 struct bunzip_data *bd; 634 unsigned int i, j, c; 634 unsigned int i, j, c; 635 const unsigned int BZh0 = 635 const unsigned int BZh0 = 636 (((unsigned int)'B') << 24)+(( 636 (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) 637 +(((unsigned int)'h') << 8)+(u 637 +(((unsigned int)'h') << 8)+(unsigned int)''; 638 638 639 /* Figure out how much data to allocat 639 /* Figure out how much data to allocate */ 640 i = sizeof(struct bunzip_data); 640 i = sizeof(struct bunzip_data); 641 641 642 /* Allocate bunzip_data. Most fields 642 /* Allocate bunzip_data. Most fields initialize to zero. */ 643 bd = *bdp = malloc(i); 643 bd = *bdp = malloc(i); 644 if (!bd) 644 if (!bd) 645 return RETVAL_OUT_OF_MEMORY; 645 return RETVAL_OUT_OF_MEMORY; 646 memset(bd, 0, sizeof(struct bunzip_dat 646 memset(bd, 0, sizeof(struct bunzip_data)); 647 /* Setup input buffer */ 647 /* Setup input buffer */ 648 bd->inbuf = inbuf; 648 bd->inbuf = inbuf; 649 bd->inbufCount = len; 649 bd->inbufCount = len; 650 if (fill != NULL) 650 if (fill != NULL) 651 bd->fill = fill; 651 bd->fill = fill; 652 else 652 else 653 bd->fill = nofill; 653 bd->fill = nofill; 654 654 655 /* Init the CRC32 table (big endian) * 655 /* Init the CRC32 table (big endian) */ 656 for (i = 0; i < 256; i++) { 656 for (i = 0; i < 256; i++) { 657 c = i << 24; 657 c = i << 24; 658 for (j = 8; j; j--) 658 for (j = 8; j; j--) 659 c = c&0x80000000 ? (c 659 c = c&0x80000000 ? (c << 1)^(CRC32_POLY_BE) : (c << 1); 660 bd->crc32Table[i] = c; 660 bd->crc32Table[i] = c; 661 } 661 } 662 662 663 /* Ensure that file starts with "BZh[' 663 /* Ensure that file starts with "BZh['1'-'9']." */ 664 i = get_bits(bd, 32); 664 i = get_bits(bd, 32); 665 if (((unsigned int)(i-BZh0-1)) >= 9) 665 if (((unsigned int)(i-BZh0-1)) >= 9) 666 return RETVAL_NOT_BZIP_DATA; 666 return RETVAL_NOT_BZIP_DATA; 667 667 668 /* Fourth byte (ascii '1'-'9'), indica 668 /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of 669 uncompressed data. Allocate interm 669 uncompressed data. Allocate intermediate buffer for block. */ 670 bd->dbufSize = 100000*(i-BZh0); 670 bd->dbufSize = 100000*(i-BZh0); 671 671 672 bd->dbuf = large_malloc(bd->dbufSize * 672 bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); 673 if (!bd->dbuf) 673 if (!bd->dbuf) 674 return RETVAL_OUT_OF_MEMORY; 674 return RETVAL_OUT_OF_MEMORY; 675 return RETVAL_OK; 675 return RETVAL_OK; 676 } 676 } 677 677 678 /* Example usage: decompress src_fd to dst_fd. 678 /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data, 679 not end of file.) */ 679 not end of file.) */ 680 STATIC int INIT bunzip2(unsigned char *buf, lo 680 STATIC int INIT bunzip2(unsigned char *buf, long len, 681 long (*fill)(void*, un 681 long (*fill)(void*, unsigned long), 682 long (*flush)(void*, u 682 long (*flush)(void*, unsigned long), 683 unsigned char *outbuf, 683 unsigned char *outbuf, 684 long *pos, 684 long *pos, 685 void(*error)(char *x)) 685 void(*error)(char *x)) 686 { 686 { 687 struct bunzip_data *bd; 687 struct bunzip_data *bd; 688 int i = -1; 688 int i = -1; 689 unsigned char *inbuf; 689 unsigned char *inbuf; 690 690 691 if (flush) 691 if (flush) 692 outbuf = malloc(BZIP2_IOBUF_SI 692 outbuf = malloc(BZIP2_IOBUF_SIZE); 693 693 694 if (!outbuf) { 694 if (!outbuf) { 695 error("Could not allocate outp 695 error("Could not allocate output buffer"); 696 return RETVAL_OUT_OF_MEMORY; 696 return RETVAL_OUT_OF_MEMORY; 697 } 697 } 698 if (buf) 698 if (buf) 699 inbuf = buf; 699 inbuf = buf; 700 else 700 else 701 inbuf = malloc(BZIP2_IOBUF_SIZ 701 inbuf = malloc(BZIP2_IOBUF_SIZE); 702 if (!inbuf) { 702 if (!inbuf) { 703 error("Could not allocate inpu 703 error("Could not allocate input buffer"); 704 i = RETVAL_OUT_OF_MEMORY; 704 i = RETVAL_OUT_OF_MEMORY; 705 goto exit_0; 705 goto exit_0; 706 } 706 } 707 i = start_bunzip(&bd, inbuf, len, fill 707 i = start_bunzip(&bd, inbuf, len, fill); 708 if (!i) { 708 if (!i) { 709 for (;;) { 709 for (;;) { 710 i = read_bunzip(bd, ou 710 i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); 711 if (i <= 0) 711 if (i <= 0) 712 break; 712 break; 713 if (!flush) 713 if (!flush) 714 outbuf += i; 714 outbuf += i; 715 else 715 else 716 if (i != flush 716 if (i != flush(outbuf, i)) { 717 i = RE 717 i = RETVAL_UNEXPECTED_OUTPUT_EOF; 718 break; 718 break; 719 } 719 } 720 } 720 } 721 } 721 } 722 /* Check CRC and release memory */ 722 /* Check CRC and release memory */ 723 if (i == RETVAL_LAST_BLOCK) { 723 if (i == RETVAL_LAST_BLOCK) { 724 if (bd->headerCRC != bd->total 724 if (bd->headerCRC != bd->totalCRC) 725 error("Data integrity 725 error("Data integrity error when decompressing."); 726 else 726 else 727 i = RETVAL_OK; 727 i = RETVAL_OK; 728 } else if (i == RETVAL_UNEXPECTED_OUTP 728 } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { 729 error("Compressed file ends un 729 error("Compressed file ends unexpectedly"); 730 } 730 } 731 if (!bd) 731 if (!bd) 732 goto exit_1; 732 goto exit_1; 733 if (bd->dbuf) 733 if (bd->dbuf) 734 large_free(bd->dbuf); 734 large_free(bd->dbuf); 735 if (pos) 735 if (pos) 736 *pos = bd->inbufPos; 736 *pos = bd->inbufPos; 737 free(bd); 737 free(bd); 738 exit_1: 738 exit_1: 739 if (!buf) 739 if (!buf) 740 free(inbuf); 740 free(inbuf); 741 exit_0: 741 exit_0: 742 if (flush) 742 if (flush) 743 free(outbuf); 743 free(outbuf); 744 return i; 744 return i; 745 } 745 } 746 746 747 #ifdef PREBOOT 747 #ifdef PREBOOT 748 STATIC int INIT __decompress(unsigned char *bu 748 STATIC int INIT __decompress(unsigned char *buf, long len, 749 long (*fill)(void*, un 749 long (*fill)(void*, unsigned long), 750 long (*flush)(void*, u 750 long (*flush)(void*, unsigned long), 751 unsigned char *outbuf, 751 unsigned char *outbuf, long olen, 752 long *pos, 752 long *pos, 753 void (*error)(char *x) 753 void (*error)(char *x)) 754 { 754 { 755 return bunzip2(buf, len - 4, fill, flu 755 return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error); 756 } 756 } 757 #endif 757 #endif 758 758
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.