1 /* Small bzip2 deflate implementation, by 1 /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). 2 2 3 Based on bzip2 decompression code by J 3 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), 4 which also acknowledges contributions 4 which also acknowledges contributions by Mike Burrows, David Wheeler, 5 Peter Fenwick, Alistair Moffat, Radfor 5 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, 6 Robert Sedgewick, and Jon L. Bentley. 6 Robert Sedgewick, and Jon L. Bentley. 7 7 8 This code is licensed under the LGPLv2 8 This code is licensed under the LGPLv2: 9 LGPL (http://www.gnu.org/copyl 9 LGPL (http://www.gnu.org/copyleft/lgpl.html 10 */ 10 */ 11 11 12 /* 12 /* 13 Size and speed optimizations by Manuel 13 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). 14 14 15 More efficient reading of Huffman code 15 More efficient reading of Huffman codes, a streamlined read_bunzip() 16 function, and various other tweaks. I 16 function, and various other tweaks. In (limited) tests, approximately 17 20% faster than bzcat on x86 and about 17 20% faster than bzcat on x86 and about 10% faster on arm. 18 18 19 Note that about 2/3 of the time is spe 19 Note that about 2/3 of the time is spent in read_unzip() reversing 20 the Burrows-Wheeler transformation. M 20 the Burrows-Wheeler transformation. Much of that time is delay 21 resulting from cache misses. 21 resulting from cache misses. 22 22 23 I would ask that anyone benefiting fro 23 I would ask that anyone benefiting from this work, especially those 24 using it in commercial products, consi 24 using it in commercial products, consider making a donation to my local 25 non-profit hospice organization in the 25 non-profit hospice organization in the name of the woman I loved, who 26 passed away Feb. 12, 2003. 26 passed away Feb. 12, 2003. 27 27 28 In memory of Toni W. Hagan 28 In memory of Toni W. Hagan 29 29 30 Hospice of Acadiana, Inc. 30 Hospice of Acadiana, Inc. 31 2600 Johnston St., Suite 200 31 2600 Johnston St., Suite 200 32 Lafayette, LA 70503-3240 32 Lafayette, LA 70503-3240 33 33 34 Phone (337) 232-1234 or 1-800- 34 Phone (337) 232-1234 or 1-800-738-2226 35 Fax (337) 232-1297 35 Fax (337) 232-1297 36 36 37 https://www.hospiceacadiana.co !! 37 http://www.hospiceacadiana.com/ 38 38 39 Manuel 39 Manuel 40 */ 40 */ 41 41 42 /* 42 /* 43 Made it fit for running in Linux Kerne 43 Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) 44 */ 44 */ 45 45 46 46 47 #ifdef STATIC 47 #ifdef STATIC 48 #define PREBOOT 48 #define PREBOOT 49 #else 49 #else 50 #include <linux/decompress/bunzip2.h> 50 #include <linux/decompress/bunzip2.h> 51 #endif /* STATIC */ 51 #endif /* STATIC */ 52 52 53 #include <linux/decompress/mm.h> 53 #include <linux/decompress/mm.h> 54 #include <linux/crc32poly.h> << 55 54 56 #ifndef INT_MAX 55 #ifndef INT_MAX 57 #define INT_MAX 0x7fffffff 56 #define INT_MAX 0x7fffffff 58 #endif 57 #endif 59 58 60 /* Constants for Huffman coding */ 59 /* Constants for Huffman coding */ 61 #define MAX_GROUPS 6 60 #define MAX_GROUPS 6 62 #define GROUP_SIZE 50 /* 64 61 #define GROUP_SIZE 50 /* 64 would have been more efficient */ 63 #define MAX_HUFCODE_BITS 20 /* Lon 62 #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ 64 #define MAX_SYMBOLS 258 /* 256 63 #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ 65 #define SYMBOL_RUNA 0 64 #define SYMBOL_RUNA 0 66 #define SYMBOL_RUNB 1 65 #define SYMBOL_RUNB 1 67 66 68 /* Status return values */ 67 /* Status return values */ 69 #define RETVAL_OK 0 68 #define RETVAL_OK 0 70 #define RETVAL_LAST_BLOCK (-1) 69 #define RETVAL_LAST_BLOCK (-1) 71 #define RETVAL_NOT_BZIP_DATA (-2) 70 #define RETVAL_NOT_BZIP_DATA (-2) 72 #define RETVAL_UNEXPECTED_INPUT_EOF (-3) 71 #define RETVAL_UNEXPECTED_INPUT_EOF (-3) 73 #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) 72 #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) 74 #define RETVAL_DATA_ERROR (-5) 73 #define RETVAL_DATA_ERROR (-5) 75 #define RETVAL_OUT_OF_MEMORY (-6) 74 #define RETVAL_OUT_OF_MEMORY (-6) 76 #define RETVAL_OBSOLETE_INPUT (-7) 75 #define RETVAL_OBSOLETE_INPUT (-7) 77 76 78 /* Other housekeeping constants */ 77 /* Other housekeeping constants */ 79 #define BZIP2_IOBUF_SIZE 4096 78 #define BZIP2_IOBUF_SIZE 4096 80 79 81 /* This is what we know about each Huffman cod 80 /* This is what we know about each Huffman coding group */ 82 struct group_data { 81 struct group_data { 83 /* We have an extra slot at the end of !! 82 /* We have an extra slot at the end of limit[] for a sentinal value. */ 84 int limit[MAX_HUFCODE_BITS+1]; 83 int limit[MAX_HUFCODE_BITS+1]; 85 int base[MAX_HUFCODE_BITS]; 84 int base[MAX_HUFCODE_BITS]; 86 int permute[MAX_SYMBOLS]; 85 int permute[MAX_SYMBOLS]; 87 int minLen, maxLen; 86 int minLen, maxLen; 88 }; 87 }; 89 88 90 /* Structure holding all the housekeeping data 89 /* Structure holding all the housekeeping data, including IO buffers and 91 memory that persists between calls to bunzi 90 memory that persists between calls to bunzip */ 92 struct bunzip_data { 91 struct bunzip_data { 93 /* State for interrupting output loop 92 /* State for interrupting output loop */ 94 int writeCopies, writePos, writeRunCou 93 int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; 95 /* I/O tracking data (file handles, bu 94 /* I/O tracking data (file handles, buffers, positions, etc.) */ 96 long (*fill)(void*, unsigned long); 95 long (*fill)(void*, unsigned long); 97 long inbufCount, inbufPos /*, outbufPo 96 long inbufCount, inbufPos /*, outbufPos*/; 98 unsigned char *inbuf /*,*outbuf*/; 97 unsigned char *inbuf /*,*outbuf*/; 99 unsigned int inbufBitCount, inbufBits; 98 unsigned int inbufBitCount, inbufBits; 100 /* The CRC values stored in the block 99 /* The CRC values stored in the block header and calculated from the 101 data */ 100 data */ 102 unsigned int crc32Table[256], headerCR 101 unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; 103 /* Intermediate buffer and its size (i 102 /* Intermediate buffer and its size (in bytes) */ 104 unsigned int *dbuf, dbufSize; 103 unsigned int *dbuf, dbufSize; 105 /* These things are a bit too big to g 104 /* These things are a bit too big to go on the stack */ 106 unsigned char selectors[32768]; 105 unsigned char selectors[32768]; /* nSelectors = 15 bits */ 107 struct group_data groups[MAX_GROUPS]; 106 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ 108 int io_error; /* non 107 int io_error; /* non-zero if we have IO error */ 109 int byteCount[256]; 108 int byteCount[256]; 110 unsigned char symToByte[256], mtfSymbo 109 unsigned char symToByte[256], mtfSymbol[256]; 111 }; 110 }; 112 111 113 112 114 /* Return the next nnn bits of input. All rea 113 /* Return the next nnn bits of input. All reads from the compressed input 115 are done through this function. All reads 114 are done through this function. All reads are big endian */ 116 static unsigned int INIT get_bits(struct bunzi 115 static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) 117 { 116 { 118 unsigned int bits = 0; 117 unsigned int bits = 0; 119 118 120 /* If we need to get more data from th 119 /* If we need to get more data from the byte buffer, do so. 121 (Loop getting one byte at a time to 120 (Loop getting one byte at a time to enforce endianness and avoid 122 unaligned access.) */ 121 unaligned access.) */ 123 while (bd->inbufBitCount < bits_wanted 122 while (bd->inbufBitCount < bits_wanted) { 124 /* If we need to read more dat 123 /* If we need to read more data from file into byte buffer, do 125 so */ 124 so */ 126 if (bd->inbufPos == bd->inbufC 125 if (bd->inbufPos == bd->inbufCount) { 127 if (bd->io_error) 126 if (bd->io_error) 128 return 0; 127 return 0; 129 bd->inbufCount = bd->f 128 bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); 130 if (bd->inbufCount <= 129 if (bd->inbufCount <= 0) { 131 bd->io_error = 130 bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; 132 return 0; 131 return 0; 133 } 132 } 134 bd->inbufPos = 0; 133 bd->inbufPos = 0; 135 } 134 } 136 /* Avoid 32-bit overflow (dump 135 /* Avoid 32-bit overflow (dump bit buffer to top of output) */ 137 if (bd->inbufBitCount >= 24) { 136 if (bd->inbufBitCount >= 24) { 138 bits = bd->inbufBits&( 137 bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); 139 bits_wanted -= bd->inb 138 bits_wanted -= bd->inbufBitCount; 140 bits <<= bits_wanted; 139 bits <<= bits_wanted; 141 bd->inbufBitCount = 0; 140 bd->inbufBitCount = 0; 142 } 141 } 143 /* Grab next 8 bits of input f 142 /* Grab next 8 bits of input from buffer. */ 144 bd->inbufBits = (bd->inbufBits 143 bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; 145 bd->inbufBitCount += 8; 144 bd->inbufBitCount += 8; 146 } 145 } 147 /* Calculate result */ 146 /* Calculate result */ 148 bd->inbufBitCount -= bits_wanted; 147 bd->inbufBitCount -= bits_wanted; 149 bits |= (bd->inbufBits >> bd->inbufBit 148 bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); 150 149 151 return bits; 150 return bits; 152 } 151 } 153 152 154 /* Unpacks the next block and sets up for the 153 /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ 155 154 156 static int INIT get_next_block(struct bunzip_d 155 static int INIT get_next_block(struct bunzip_data *bd) 157 { 156 { 158 struct group_data *hufGroup = NULL; 157 struct group_data *hufGroup = NULL; 159 int *base = NULL; 158 int *base = NULL; 160 int *limit = NULL; 159 int *limit = NULL; 161 int dbufCount, nextSym, dbufSize, grou 160 int dbufCount, nextSym, dbufSize, groupCount, selector, 162 i, j, k, t, runPos, symCount, 161 i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount; 163 unsigned char uc, *symToByte, *mtfSymb 162 unsigned char uc, *symToByte, *mtfSymbol, *selectors; 164 unsigned int *dbuf, origPtr; 163 unsigned int *dbuf, origPtr; 165 164 166 dbuf = bd->dbuf; 165 dbuf = bd->dbuf; 167 dbufSize = bd->dbufSize; 166 dbufSize = bd->dbufSize; 168 selectors = bd->selectors; 167 selectors = bd->selectors; 169 byteCount = bd->byteCount; 168 byteCount = bd->byteCount; 170 symToByte = bd->symToByte; 169 symToByte = bd->symToByte; 171 mtfSymbol = bd->mtfSymbol; 170 mtfSymbol = bd->mtfSymbol; 172 171 173 /* Read in header signature and CRC, t 172 /* Read in header signature and CRC, then validate signature. 174 (last block signature means CRC is 173 (last block signature means CRC is for whole file, return now) */ 175 i = get_bits(bd, 24); 174 i = get_bits(bd, 24); 176 j = get_bits(bd, 24); 175 j = get_bits(bd, 24); 177 bd->headerCRC = get_bits(bd, 32); 176 bd->headerCRC = get_bits(bd, 32); 178 if ((i == 0x177245) && (j == 0x385090) 177 if ((i == 0x177245) && (j == 0x385090)) 179 return RETVAL_LAST_BLOCK; 178 return RETVAL_LAST_BLOCK; 180 if ((i != 0x314159) || (j != 0x265359) 179 if ((i != 0x314159) || (j != 0x265359)) 181 return RETVAL_NOT_BZIP_DATA; 180 return RETVAL_NOT_BZIP_DATA; 182 /* We can add support for blockRandomi 181 /* We can add support for blockRandomised if anybody complains. 183 There was some code for this in bus 182 There was some code for this in busybox 1.0.0-pre3, but nobody ever 184 noticed that it didn't actually wor 183 noticed that it didn't actually work. */ 185 if (get_bits(bd, 1)) 184 if (get_bits(bd, 1)) 186 return RETVAL_OBSOLETE_INPUT; 185 return RETVAL_OBSOLETE_INPUT; 187 origPtr = get_bits(bd, 24); 186 origPtr = get_bits(bd, 24); 188 if (origPtr >= dbufSize) 187 if (origPtr >= dbufSize) 189 return RETVAL_DATA_ERROR; 188 return RETVAL_DATA_ERROR; 190 /* mapping table: if some byte values 189 /* mapping table: if some byte values are never used (encoding things 191 like ascii text), the compression c 190 like ascii text), the compression code removes the gaps to have fewer 192 symbols to deal with, and writes a 191 symbols to deal with, and writes a sparse bitfield indicating which 193 values were present. We make a tra 192 values were present. We make a translation table to convert the 194 symbols back to the corresponding b 193 symbols back to the corresponding bytes. */ 195 t = get_bits(bd, 16); 194 t = get_bits(bd, 16); 196 symTotal = 0; 195 symTotal = 0; 197 for (i = 0; i < 16; i++) { 196 for (i = 0; i < 16; i++) { 198 if (t&(1 << (15-i))) { 197 if (t&(1 << (15-i))) { 199 k = get_bits(bd, 16); 198 k = get_bits(bd, 16); 200 for (j = 0; j < 16; j+ 199 for (j = 0; j < 16; j++) 201 if (k&(1 << (1 200 if (k&(1 << (15-j))) 202 symToB 201 symToByte[symTotal++] = (16*i)+j; 203 } 202 } 204 } 203 } 205 /* How many different Huffman coding g 204 /* How many different Huffman coding groups does this block use? */ 206 groupCount = get_bits(bd, 3); 205 groupCount = get_bits(bd, 3); 207 if (groupCount < 2 || groupCount > MAX 206 if (groupCount < 2 || groupCount > MAX_GROUPS) 208 return RETVAL_DATA_ERROR; 207 return RETVAL_DATA_ERROR; 209 /* nSelectors: Every GROUP_SIZE many s 208 /* nSelectors: Every GROUP_SIZE many symbols we select a new 210 Huffman coding group. Read in the 209 Huffman coding group. Read in the group selector list, 211 which is stored as MTF encoded bit 210 which is stored as MTF encoded bit runs. (MTF = Move To 212 Front, as each value is used it's m 211 Front, as each value is used it's moved to the start of the 213 list.) */ 212 list.) */ 214 nSelectors = get_bits(bd, 15); 213 nSelectors = get_bits(bd, 15); 215 if (!nSelectors) 214 if (!nSelectors) 216 return RETVAL_DATA_ERROR; 215 return RETVAL_DATA_ERROR; 217 for (i = 0; i < groupCount; i++) 216 for (i = 0; i < groupCount; i++) 218 mtfSymbol[i] = i; 217 mtfSymbol[i] = i; 219 for (i = 0; i < nSelectors; i++) { 218 for (i = 0; i < nSelectors; i++) { 220 /* Get next value */ 219 /* Get next value */ 221 for (j = 0; get_bits(bd, 1); j 220 for (j = 0; get_bits(bd, 1); j++) 222 if (j >= groupCount) 221 if (j >= groupCount) 223 return RETVAL_ 222 return RETVAL_DATA_ERROR; 224 /* Decode MTF to get the next 223 /* Decode MTF to get the next selector */ 225 uc = mtfSymbol[j]; 224 uc = mtfSymbol[j]; 226 for (; j; j--) 225 for (; j; j--) 227 mtfSymbol[j] = mtfSymb 226 mtfSymbol[j] = mtfSymbol[j-1]; 228 mtfSymbol[0] = selectors[i] = 227 mtfSymbol[0] = selectors[i] = uc; 229 } 228 } 230 /* Read the Huffman coding tables for 229 /* Read the Huffman coding tables for each group, which code 231 for symTotal literal symbols, plus 230 for symTotal literal symbols, plus two run symbols (RUNA, 232 RUNB) */ 231 RUNB) */ 233 symCount = symTotal+2; 232 symCount = symTotal+2; 234 for (j = 0; j < groupCount; j++) { 233 for (j = 0; j < groupCount; j++) { 235 unsigned char length[MAX_SYMBO !! 234 unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; 236 unsigned short temp[MAX_HUFCOD << 237 int minLen, maxLen, pp; 235 int minLen, maxLen, pp; 238 /* Read Huffman code lengths f 236 /* Read Huffman code lengths for each symbol. They're 239 stored in a way similar to 237 stored in a way similar to mtf; record a starting 240 value for the first symbol, 238 value for the first symbol, and an offset from the 241 previous value for everys s 239 previous value for everys symbol after that. 242 (Subtracting 1 before the l 240 (Subtracting 1 before the loop and then adding it 243 back at the end is an optim 241 back at the end is an optimization that makes the 244 test inside the loop simple 242 test inside the loop simpler: symbol length 0 245 becomes negative, so an uns 243 becomes negative, so an unsigned inequality catches 246 it.) */ 244 it.) */ 247 t = get_bits(bd, 5)-1; 245 t = get_bits(bd, 5)-1; 248 for (i = 0; i < symCount; i++) 246 for (i = 0; i < symCount; i++) { 249 for (;;) { 247 for (;;) { 250 if (((unsigned 248 if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) 251 return 249 return RETVAL_DATA_ERROR; 252 250 253 /* If first bi 251 /* If first bit is 0, stop. Else 254 second bit 252 second bit indicates whether to 255 increment o 253 increment or decrement the value. 256 Optimizatio 254 Optimization: grab 2 bits and unget 257 the second 255 the second if the first was 0. */ 258 256 259 k = get_bits(b 257 k = get_bits(bd, 2); 260 if (k < 2) { 258 if (k < 2) { 261 bd->in 259 bd->inbufBitCount++; 262 break; 260 break; 263 } 261 } 264 /* Add one if 262 /* Add one if second bit 1, else 265 * subtract 1. 263 * subtract 1. Avoids if/else */ 266 t += (((k+1)&2 264 t += (((k+1)&2)-1); 267 } 265 } 268 /* Correct for the ini 266 /* Correct for the initial -1, to get the 269 * final symbol length 267 * final symbol length */ 270 length[i] = t+1; 268 length[i] = t+1; 271 } 269 } 272 /* Find largest and smallest l 270 /* Find largest and smallest lengths in this group */ 273 minLen = maxLen = length[0]; 271 minLen = maxLen = length[0]; 274 272 275 for (i = 1; i < symCount; i++) 273 for (i = 1; i < symCount; i++) { 276 if (length[i] > maxLen 274 if (length[i] > maxLen) 277 maxLen = lengt 275 maxLen = length[i]; 278 else if (length[i] < m 276 else if (length[i] < minLen) 279 minLen = lengt 277 minLen = length[i]; 280 } 278 } 281 279 282 /* Calculate permute[], base[] 280 /* Calculate permute[], base[], and limit[] tables from 283 * length[]. 281 * length[]. 284 * 282 * 285 * permute[] is the lookup tab 283 * permute[] is the lookup table for converting 286 * Huffman coded symbols into 284 * Huffman coded symbols into decoded symbols. base[] 287 * is the amount to subtract f 285 * is the amount to subtract from the value of a 288 * Huffman symbol of a given l 286 * Huffman symbol of a given length when using 289 * permute[]. 287 * permute[]. 290 * 288 * 291 * limit[] indicates the large 289 * limit[] indicates the largest numerical value a 292 * symbol with a given number 290 * symbol with a given number of bits can have. This 293 * is how the Huffman codes ca 291 * is how the Huffman codes can vary in length: each 294 * code with a value > limit[l 292 * code with a value > limit[length] needs another 295 * bit. 293 * bit. 296 */ 294 */ 297 hufGroup = bd->groups+j; 295 hufGroup = bd->groups+j; 298 hufGroup->minLen = minLen; 296 hufGroup->minLen = minLen; 299 hufGroup->maxLen = maxLen; 297 hufGroup->maxLen = maxLen; 300 /* Note that minLen can't be s 298 /* Note that minLen can't be smaller than 1, so we 301 adjust the base and limit a 299 adjust the base and limit array pointers so we're 302 not always wasting the firs 300 not always wasting the first entry. We do this 303 again when using them (duri 301 again when using them (during symbol decoding).*/ 304 base = hufGroup->base-1; 302 base = hufGroup->base-1; 305 limit = hufGroup->limit-1; 303 limit = hufGroup->limit-1; 306 /* Calculate permute[]. Concu 304 /* Calculate permute[]. Concurrently, initialize 307 * temp[] and limit[]. */ 305 * temp[] and limit[]. */ 308 pp = 0; 306 pp = 0; 309 for (i = minLen; i <= maxLen; 307 for (i = minLen; i <= maxLen; i++) { 310 temp[i] = limit[i] = 0 308 temp[i] = limit[i] = 0; 311 for (t = 0; t < symCou 309 for (t = 0; t < symCount; t++) 312 if (length[t] 310 if (length[t] == i) 313 hufGro 311 hufGroup->permute[pp++] = t; 314 } 312 } 315 /* Count symbols coded for at 313 /* Count symbols coded for at each bit length */ 316 for (i = 0; i < symCount; i++) 314 for (i = 0; i < symCount; i++) 317 temp[length[i]]++; 315 temp[length[i]]++; 318 /* Calculate limit[] (the larg 316 /* Calculate limit[] (the largest symbol-coding value 319 *at each bit length, which is 317 *at each bit length, which is (previous limit << 320 *1)+symbols at this level), a 318 *1)+symbols at this level), and base[] (number of 321 *symbols to ignore at each bi 319 *symbols to ignore at each bit length, which is limit 322 *minus the cumulative count o 320 *minus the cumulative count of symbols coded for 323 *already). */ 321 *already). */ 324 pp = t = 0; 322 pp = t = 0; 325 for (i = minLen; i < maxLen; i 323 for (i = minLen; i < maxLen; i++) { 326 pp += temp[i]; 324 pp += temp[i]; 327 /* We read the largest 325 /* We read the largest possible symbol size 328 and then unget bits 326 and then unget bits after determining how 329 many we need, and t 327 many we need, and those extra bits could be 330 set to anything. ( 328 set to anything. (They're noise from 331 future symbols.) A 329 future symbols.) At each level we're 332 really only interes 330 really only interested in the first few 333 bits, so here we se 331 bits, so here we set all the trailing 334 to-be-ignored bits 332 to-be-ignored bits to 1 so they don't 335 affect the value > 333 affect the value > limit[length] 336 comparison. */ 334 comparison. */ 337 limit[i] = (pp << (max 335 limit[i] = (pp << (maxLen - i)) - 1; 338 pp <<= 1; 336 pp <<= 1; 339 base[i+1] = pp-(t += t 337 base[i+1] = pp-(t += temp[i]); 340 } 338 } 341 limit[maxLen+1] = INT_MAX; /* !! 339 limit[maxLen+1] = INT_MAX; /* Sentinal value for 342 * 340 * reading next sym. */ 343 limit[maxLen] = pp+temp[maxLen 341 limit[maxLen] = pp+temp[maxLen]-1; 344 base[minLen] = 0; 342 base[minLen] = 0; 345 } 343 } 346 /* We've finished reading and digestin 344 /* We've finished reading and digesting the block header. Now 347 read this block's Huffman coded sym 345 read this block's Huffman coded symbols from the file and 348 undo the Huffman coding and run len 346 undo the Huffman coding and run length encoding, saving the 349 result into dbuf[dbufCount++] = uc 347 result into dbuf[dbufCount++] = uc */ 350 348 351 /* Initialize symbol occurrence counte 349 /* Initialize symbol occurrence counters and symbol Move To 352 * Front table */ 350 * Front table */ 353 for (i = 0; i < 256; i++) { 351 for (i = 0; i < 256; i++) { 354 byteCount[i] = 0; 352 byteCount[i] = 0; 355 mtfSymbol[i] = (unsigned char) 353 mtfSymbol[i] = (unsigned char)i; 356 } 354 } 357 /* Loop through compressed symbols. */ 355 /* Loop through compressed symbols. */ 358 runPos = dbufCount = symCount = select 356 runPos = dbufCount = symCount = selector = 0; 359 for (;;) { 357 for (;;) { 360 /* Determine which Huffman cod 358 /* Determine which Huffman coding group to use. */ 361 if (!(symCount--)) { 359 if (!(symCount--)) { 362 symCount = GROUP_SIZE- 360 symCount = GROUP_SIZE-1; 363 if (selector >= nSelec 361 if (selector >= nSelectors) 364 return RETVAL_ 362 return RETVAL_DATA_ERROR; 365 hufGroup = bd->groups+ 363 hufGroup = bd->groups+selectors[selector++]; 366 base = hufGroup->base- 364 base = hufGroup->base-1; 367 limit = hufGroup->limi 365 limit = hufGroup->limit-1; 368 } 366 } 369 /* Read next Huffman-coded sym 367 /* Read next Huffman-coded symbol. */ 370 /* Note: It is far cheaper to 368 /* Note: It is far cheaper to read maxLen bits and 371 back up than it is to read 369 back up than it is to read minLen bits and then an 372 additional bit at a time, t 370 additional bit at a time, testing as we go. 373 Because there is a trailing 371 Because there is a trailing last block (with file 374 CRC), there is no danger of 372 CRC), there is no danger of the overread causing an 375 unexpected EOF for a valid 373 unexpected EOF for a valid compressed file. As a 376 further optimization, we do 374 further optimization, we do the read inline 377 (falling back to a call to 375 (falling back to a call to get_bits if the buffer 378 runs dry). The following ( 376 runs dry). The following (up to got_huff_bits:) is 379 equivalent to j = get_bits( 377 equivalent to j = get_bits(bd, hufGroup->maxLen); 380 */ 378 */ 381 while (bd->inbufBitCount < huf 379 while (bd->inbufBitCount < hufGroup->maxLen) { 382 if (bd->inbufPos == bd 380 if (bd->inbufPos == bd->inbufCount) { 383 j = get_bits(b 381 j = get_bits(bd, hufGroup->maxLen); 384 goto got_huff_ 382 goto got_huff_bits; 385 } 383 } 386 bd->inbufBits = 384 bd->inbufBits = 387 (bd->inbufBits 385 (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; 388 bd->inbufBitCount += 8 386 bd->inbufBitCount += 8; 389 } !! 387 }; 390 bd->inbufBitCount -= hufGroup- 388 bd->inbufBitCount -= hufGroup->maxLen; 391 j = (bd->inbufBits >> bd->inbu 389 j = (bd->inbufBits >> bd->inbufBitCount)& 392 ((1 << hufGroup->maxLe 390 ((1 << hufGroup->maxLen)-1); 393 got_huff_bits: 391 got_huff_bits: 394 /* Figure how many bits are in !! 392 /* Figure how how many bits are in next symbol and 395 * unget extras */ 393 * unget extras */ 396 i = hufGroup->minLen; 394 i = hufGroup->minLen; 397 while (j > limit[i]) 395 while (j > limit[i]) 398 ++i; 396 ++i; 399 bd->inbufBitCount += (hufGroup 397 bd->inbufBitCount += (hufGroup->maxLen - i); 400 /* Huffman decode value to get 398 /* Huffman decode value to get nextSym (with bounds checking) */ 401 if ((i > hufGroup->maxLen) 399 if ((i > hufGroup->maxLen) 402 || (((unsigned)(j = (j 400 || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) 403 >= MAX_SYMBOLS 401 >= MAX_SYMBOLS)) 404 return RETVAL_DATA_ERR 402 return RETVAL_DATA_ERROR; 405 nextSym = hufGroup->permute[j] 403 nextSym = hufGroup->permute[j]; 406 /* We have now decoded the sym 404 /* We have now decoded the symbol, which indicates 407 either a new literal byte, 405 either a new literal byte, or a repeated run of the 408 most recent literal byte. 406 most recent literal byte. First, check if nextSym 409 indicates a repeated run, a 407 indicates a repeated run, and if so loop collecting 410 how many times to repeat th 408 how many times to repeat the last literal. */ 411 if (((unsigned)nextSym) <= SYM 409 if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ 412 /* If this is the star 410 /* If this is the start of a new run, zero out 413 * counter */ 411 * counter */ 414 if (!runPos) { 412 if (!runPos) { 415 runPos = 1; 413 runPos = 1; 416 t = 0; 414 t = 0; 417 } 415 } 418 /* Neat trick that sav 416 /* Neat trick that saves 1 symbol: instead of 419 or-ing 0 or 1 at ea 417 or-ing 0 or 1 at each bit position, add 1 420 or 2 instead. For 418 or 2 instead. For example, 1011 is 1 << 0 421 + 1 << 1 + 2 << 2. 419 + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1 422 + 1 << 2. You can 420 + 1 << 2. You can make any bit pattern 423 that way using 1 le 421 that way using 1 less symbol than the basic 424 or 0/1 method (exce 422 or 0/1 method (except all bits 0, which 425 would use no symbol 423 would use no symbols, but a run of length 0 426 doesn't mean anythi 424 doesn't mean anything in this context). 427 Thus space is saved 425 Thus space is saved. */ 428 t += (runPos << nextSy 426 t += (runPos << nextSym); 429 /* +runPos if RUNA; +2 427 /* +runPos if RUNA; +2*runPos if RUNB */ 430 428 431 runPos <<= 1; 429 runPos <<= 1; 432 continue; 430 continue; 433 } 431 } 434 /* When we hit the first non-r 432 /* When we hit the first non-run symbol after a run, 435 we now know how many times 433 we now know how many times to repeat the last 436 literal, so append that man 434 literal, so append that many copies to our buffer 437 of decoded symbols (dbuf) n 435 of decoded symbols (dbuf) now. (The last literal 438 used is the one at the head 436 used is the one at the head of the mtfSymbol 439 array.) */ 437 array.) */ 440 if (runPos) { 438 if (runPos) { 441 runPos = 0; 439 runPos = 0; 442 if (dbufCount+t >= dbu 440 if (dbufCount+t >= dbufSize) 443 return RETVAL_ 441 return RETVAL_DATA_ERROR; 444 442 445 uc = symToByte[mtfSymb 443 uc = symToByte[mtfSymbol[0]]; 446 byteCount[uc] += t; 444 byteCount[uc] += t; 447 while (t--) 445 while (t--) 448 dbuf[dbufCount 446 dbuf[dbufCount++] = uc; 449 } 447 } 450 /* Is this the terminating sym 448 /* Is this the terminating symbol? */ 451 if (nextSym > symTotal) 449 if (nextSym > symTotal) 452 break; 450 break; 453 /* At this point, nextSym indi 451 /* At this point, nextSym indicates a new literal 454 character. Subtract one to 452 character. Subtract one to get the position in the 455 MTF array at which this lit 453 MTF array at which this literal is currently to be 456 found. (Note that the resu 454 found. (Note that the result can't be -1 or 0, 457 because 0 and 1 are RUNA an 455 because 0 and 1 are RUNA and RUNB. But another 458 instance of the first symbo 456 instance of the first symbol in the mtf array, 459 position 0, would have been 457 position 0, would have been handled as part of a 460 run above. Therefore 1 unu 458 run above. Therefore 1 unused mtf position minus 2 461 non-literal nextSym values 459 non-literal nextSym values equals -1.) */ 462 if (dbufCount >= dbufSize) 460 if (dbufCount >= dbufSize) 463 return RETVAL_DATA_ERR 461 return RETVAL_DATA_ERROR; 464 i = nextSym - 1; 462 i = nextSym - 1; 465 uc = mtfSymbol[i]; 463 uc = mtfSymbol[i]; 466 /* Adjust the MTF array. Sinc 464 /* Adjust the MTF array. Since we typically expect to 467 *move only a small number of 465 *move only a small number of symbols, and are bound 468 *by 256 in any case, using me 466 *by 256 in any case, using memmove here would 469 *typically be bigger and slow 467 *typically be bigger and slower due to function call 470 *overhead and other assorted 468 *overhead and other assorted setup costs. */ 471 do { 469 do { 472 mtfSymbol[i] = mtfSymb 470 mtfSymbol[i] = mtfSymbol[i-1]; 473 } while (--i); 471 } while (--i); 474 mtfSymbol[0] = uc; 472 mtfSymbol[0] = uc; 475 uc = symToByte[uc]; 473 uc = symToByte[uc]; 476 /* We have our literal byte. 474 /* We have our literal byte. Save it into dbuf. */ 477 byteCount[uc]++; 475 byteCount[uc]++; 478 dbuf[dbufCount++] = (unsigned 476 dbuf[dbufCount++] = (unsigned int)uc; 479 } 477 } 480 /* At this point, we've read all the H 478 /* At this point, we've read all the Huffman-coded symbols 481 (and repeated runs) for this block 479 (and repeated runs) for this block from the input stream, 482 and decoded them into the intermedi 480 and decoded them into the intermediate buffer. There are 483 dbufCount many decoded bytes in dbu 481 dbufCount many decoded bytes in dbuf[]. Now undo the 484 Burrows-Wheeler transform on dbuf. 482 Burrows-Wheeler transform on dbuf. See 485 http://dogma.net/markn/articles/bwt 483 http://dogma.net/markn/articles/bwt/bwt.htm 486 */ 484 */ 487 /* Turn byteCount into cumulative occu 485 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ 488 j = 0; 486 j = 0; 489 for (i = 0; i < 256; i++) { 487 for (i = 0; i < 256; i++) { 490 k = j+byteCount[i]; 488 k = j+byteCount[i]; 491 byteCount[i] = j; 489 byteCount[i] = j; 492 j = k; 490 j = k; 493 } 491 } 494 /* Figure out what order dbuf would be 492 /* Figure out what order dbuf would be in if we sorted it. */ 495 for (i = 0; i < dbufCount; i++) { 493 for (i = 0; i < dbufCount; i++) { 496 uc = (unsigned char)(dbuf[i] & 494 uc = (unsigned char)(dbuf[i] & 0xff); 497 dbuf[byteCount[uc]] |= (i << 8 495 dbuf[byteCount[uc]] |= (i << 8); 498 byteCount[uc]++; 496 byteCount[uc]++; 499 } 497 } 500 /* Decode first byte by hand to initia 498 /* Decode first byte by hand to initialize "previous" byte. 501 Note that it doesn't get output, an 499 Note that it doesn't get output, and if the first three 502 characters are identical it doesn't 500 characters are identical it doesn't qualify as a run (hence 503 writeRunCountdown = 5). */ 501 writeRunCountdown = 5). */ 504 if (dbufCount) { 502 if (dbufCount) { 505 if (origPtr >= dbufCount) 503 if (origPtr >= dbufCount) 506 return RETVAL_DATA_ERR 504 return RETVAL_DATA_ERROR; 507 bd->writePos = dbuf[origPtr]; 505 bd->writePos = dbuf[origPtr]; 508 bd->writeCurrent = (unsigned c 506 bd->writeCurrent = (unsigned char)(bd->writePos&0xff); 509 bd->writePos >>= 8; 507 bd->writePos >>= 8; 510 bd->writeRunCountdown = 5; 508 bd->writeRunCountdown = 5; 511 } 509 } 512 bd->writeCount = dbufCount; 510 bd->writeCount = dbufCount; 513 511 514 return RETVAL_OK; 512 return RETVAL_OK; 515 } 513 } 516 514 517 /* Undo burrows-wheeler transform on intermedi 515 /* Undo burrows-wheeler transform on intermediate buffer to produce output. 518 If start_bunzip was initialized with out_fd 516 If start_bunzip was initialized with out_fd =-1, then up to len bytes of 519 data are written to outbuf. Return value i 517 data are written to outbuf. Return value is number of bytes written or 520 error (all errors are negative numbers). I 518 error (all errors are negative numbers). If out_fd!=-1, outbuf and len 521 are ignored, data is written to out_fd and 519 are ignored, data is written to out_fd and return is RETVAL_OK or error. 522 */ 520 */ 523 521 524 static int INIT read_bunzip(struct bunzip_data 522 static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) 525 { 523 { 526 const unsigned int *dbuf; 524 const unsigned int *dbuf; 527 int pos, xcurrent, previous, gotcount; 525 int pos, xcurrent, previous, gotcount; 528 526 529 /* If last read was short due to end o 527 /* If last read was short due to end of file, return last block now */ 530 if (bd->writeCount < 0) 528 if (bd->writeCount < 0) 531 return bd->writeCount; 529 return bd->writeCount; 532 530 533 gotcount = 0; 531 gotcount = 0; 534 dbuf = bd->dbuf; 532 dbuf = bd->dbuf; 535 pos = bd->writePos; 533 pos = bd->writePos; 536 xcurrent = bd->writeCurrent; 534 xcurrent = bd->writeCurrent; 537 535 538 /* We will always have pending decoded 536 /* We will always have pending decoded data to write into the output 539 buffer unless this is the very firs 537 buffer unless this is the very first call (in which case we haven't 540 Huffman-decoded a block into the in 538 Huffman-decoded a block into the intermediate buffer yet). */ 541 539 542 if (bd->writeCopies) { 540 if (bd->writeCopies) { 543 /* Inside the loop, writeCopie 541 /* Inside the loop, writeCopies means extra copies (beyond 1) */ 544 --bd->writeCopies; 542 --bd->writeCopies; 545 /* Loop outputting bytes */ 543 /* Loop outputting bytes */ 546 for (;;) { 544 for (;;) { 547 /* If the output buffe 545 /* If the output buffer is full, snapshot 548 * state and return */ 546 * state and return */ 549 if (gotcount >= len) { 547 if (gotcount >= len) { 550 bd->writePos = 548 bd->writePos = pos; 551 bd->writeCurre 549 bd->writeCurrent = xcurrent; 552 bd->writeCopie 550 bd->writeCopies++; 553 return len; 551 return len; 554 } 552 } 555 /* Write next byte int 553 /* Write next byte into output buffer, updating CRC */ 556 outbuf[gotcount++] = x 554 outbuf[gotcount++] = xcurrent; 557 bd->writeCRC = (((bd-> 555 bd->writeCRC = (((bd->writeCRC) << 8) 558 ^bd->crc32Tabl 556 ^bd->crc32Table[((bd->writeCRC) >> 24) 559 ^xcurrent]); 557 ^xcurrent]); 560 /* Loop now if we're o 558 /* Loop now if we're outputting multiple 561 * copies of this byte 559 * copies of this byte */ 562 if (bd->writeCopies) { 560 if (bd->writeCopies) { 563 --bd->writeCop 561 --bd->writeCopies; 564 continue; 562 continue; 565 } 563 } 566 decode_next_byte: 564 decode_next_byte: 567 if (!bd->writeCount--) 565 if (!bd->writeCount--) 568 break; 566 break; 569 /* Follow sequence vec 567 /* Follow sequence vector to undo 570 * Burrows-Wheeler tra 568 * Burrows-Wheeler transform */ 571 previous = xcurrent; 569 previous = xcurrent; 572 pos = dbuf[pos]; 570 pos = dbuf[pos]; 573 xcurrent = pos&0xff; 571 xcurrent = pos&0xff; 574 pos >>= 8; 572 pos >>= 8; 575 /* After 3 consecutive 573 /* After 3 consecutive copies of the same 576 byte, the 4th is a 574 byte, the 4th is a repeat count. We count 577 down from 4 instead 575 down from 4 instead *of counting up because 578 testing for non-zer 576 testing for non-zero is faster */ 579 if (--bd->writeRunCoun 577 if (--bd->writeRunCountdown) { 580 if (xcurrent ! 578 if (xcurrent != previous) 581 bd->wr 579 bd->writeRunCountdown = 4; 582 } else { 580 } else { 583 /* We have a r 581 /* We have a repeated run, this byte 584 * indicates t 582 * indicates the count */ 585 bd->writeCopie 583 bd->writeCopies = xcurrent; 586 xcurrent = pre 584 xcurrent = previous; 587 bd->writeRunCo 585 bd->writeRunCountdown = 5; 588 /* Sometimes t 586 /* Sometimes there are just 3 bytes 589 * (run length 587 * (run length 0) */ 590 if (!bd->write 588 if (!bd->writeCopies) 591 goto d 589 goto decode_next_byte; 592 /* Subtract th 590 /* Subtract the 1 copy we'd output 593 * anyway to g 591 * anyway to get extras */ 594 --bd->writeCop 592 --bd->writeCopies; 595 } 593 } 596 } 594 } 597 /* Decompression of this block 595 /* Decompression of this block completed successfully */ 598 bd->writeCRC = ~bd->writeCRC; 596 bd->writeCRC = ~bd->writeCRC; 599 bd->totalCRC = ((bd->totalCRC 597 bd->totalCRC = ((bd->totalCRC << 1) | 600 (bd->totalCRC 598 (bd->totalCRC >> 31)) ^ bd->writeCRC; 601 /* If this block had a CRC err 599 /* If this block had a CRC error, force file level CRC error. */ 602 if (bd->writeCRC != bd->header 600 if (bd->writeCRC != bd->headerCRC) { 603 bd->totalCRC = bd->hea 601 bd->totalCRC = bd->headerCRC+1; 604 return RETVAL_LAST_BLO 602 return RETVAL_LAST_BLOCK; 605 } 603 } 606 } 604 } 607 605 608 /* Refill the intermediate buffer by H 606 /* Refill the intermediate buffer by Huffman-decoding next 609 * block of input */ 607 * block of input */ 610 /* (previous is just a convenient unus 608 /* (previous is just a convenient unused temp variable here) */ 611 previous = get_next_block(bd); 609 previous = get_next_block(bd); 612 if (previous) { 610 if (previous) { 613 bd->writeCount = previous; 611 bd->writeCount = previous; 614 return (previous != RETVAL_LAS 612 return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; 615 } 613 } 616 bd->writeCRC = 0xffffffffUL; 614 bd->writeCRC = 0xffffffffUL; 617 pos = bd->writePos; 615 pos = bd->writePos; 618 xcurrent = bd->writeCurrent; 616 xcurrent = bd->writeCurrent; 619 goto decode_next_byte; 617 goto decode_next_byte; 620 } 618 } 621 619 622 static long INIT nofill(void *buf, unsigned lo 620 static long INIT nofill(void *buf, unsigned long len) 623 { 621 { 624 return -1; 622 return -1; 625 } 623 } 626 624 627 /* Allocate the structure, read file header. 625 /* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain 628 a complete bunzip file (len bytes long). I 626 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are 629 ignored, and data is read from file handle 627 ignored, and data is read from file handle into temporary buffer. */ 630 static int INIT start_bunzip(struct bunzip_dat 628 static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len, 631 long (*fill)(void 629 long (*fill)(void*, unsigned long)) 632 { 630 { 633 struct bunzip_data *bd; 631 struct bunzip_data *bd; 634 unsigned int i, j, c; 632 unsigned int i, j, c; 635 const unsigned int BZh0 = 633 const unsigned int BZh0 = 636 (((unsigned int)'B') << 24)+(( 634 (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) 637 +(((unsigned int)'h') << 8)+(u 635 +(((unsigned int)'h') << 8)+(unsigned int)''; 638 636 639 /* Figure out how much data to allocat 637 /* Figure out how much data to allocate */ 640 i = sizeof(struct bunzip_data); 638 i = sizeof(struct bunzip_data); 641 639 642 /* Allocate bunzip_data. Most fields 640 /* Allocate bunzip_data. Most fields initialize to zero. */ 643 bd = *bdp = malloc(i); 641 bd = *bdp = malloc(i); 644 if (!bd) 642 if (!bd) 645 return RETVAL_OUT_OF_MEMORY; 643 return RETVAL_OUT_OF_MEMORY; 646 memset(bd, 0, sizeof(struct bunzip_dat 644 memset(bd, 0, sizeof(struct bunzip_data)); 647 /* Setup input buffer */ 645 /* Setup input buffer */ 648 bd->inbuf = inbuf; 646 bd->inbuf = inbuf; 649 bd->inbufCount = len; 647 bd->inbufCount = len; 650 if (fill != NULL) 648 if (fill != NULL) 651 bd->fill = fill; 649 bd->fill = fill; 652 else 650 else 653 bd->fill = nofill; 651 bd->fill = nofill; 654 652 655 /* Init the CRC32 table (big endian) * 653 /* Init the CRC32 table (big endian) */ 656 for (i = 0; i < 256; i++) { 654 for (i = 0; i < 256; i++) { 657 c = i << 24; 655 c = i << 24; 658 for (j = 8; j; j--) 656 for (j = 8; j; j--) 659 c = c&0x80000000 ? (c !! 657 c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1); 660 bd->crc32Table[i] = c; 658 bd->crc32Table[i] = c; 661 } 659 } 662 660 663 /* Ensure that file starts with "BZh[' 661 /* Ensure that file starts with "BZh['1'-'9']." */ 664 i = get_bits(bd, 32); 662 i = get_bits(bd, 32); 665 if (((unsigned int)(i-BZh0-1)) >= 9) 663 if (((unsigned int)(i-BZh0-1)) >= 9) 666 return RETVAL_NOT_BZIP_DATA; 664 return RETVAL_NOT_BZIP_DATA; 667 665 668 /* Fourth byte (ascii '1'-'9'), indica 666 /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of 669 uncompressed data. Allocate interm 667 uncompressed data. Allocate intermediate buffer for block. */ 670 bd->dbufSize = 100000*(i-BZh0); 668 bd->dbufSize = 100000*(i-BZh0); 671 669 672 bd->dbuf = large_malloc(bd->dbufSize * 670 bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); 673 if (!bd->dbuf) 671 if (!bd->dbuf) 674 return RETVAL_OUT_OF_MEMORY; 672 return RETVAL_OUT_OF_MEMORY; 675 return RETVAL_OK; 673 return RETVAL_OK; 676 } 674 } 677 675 678 /* Example usage: decompress src_fd to dst_fd. 676 /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data, 679 not end of file.) */ 677 not end of file.) */ 680 STATIC int INIT bunzip2(unsigned char *buf, lo 678 STATIC int INIT bunzip2(unsigned char *buf, long len, 681 long (*fill)(void*, un 679 long (*fill)(void*, unsigned long), 682 long (*flush)(void*, u 680 long (*flush)(void*, unsigned long), 683 unsigned char *outbuf, 681 unsigned char *outbuf, 684 long *pos, 682 long *pos, 685 void(*error)(char *x)) 683 void(*error)(char *x)) 686 { 684 { 687 struct bunzip_data *bd; 685 struct bunzip_data *bd; 688 int i = -1; 686 int i = -1; 689 unsigned char *inbuf; 687 unsigned char *inbuf; 690 688 691 if (flush) 689 if (flush) 692 outbuf = malloc(BZIP2_IOBUF_SI 690 outbuf = malloc(BZIP2_IOBUF_SIZE); 693 691 694 if (!outbuf) { 692 if (!outbuf) { 695 error("Could not allocate outp 693 error("Could not allocate output buffer"); 696 return RETVAL_OUT_OF_MEMORY; 694 return RETVAL_OUT_OF_MEMORY; 697 } 695 } 698 if (buf) 696 if (buf) 699 inbuf = buf; 697 inbuf = buf; 700 else 698 else 701 inbuf = malloc(BZIP2_IOBUF_SIZ 699 inbuf = malloc(BZIP2_IOBUF_SIZE); 702 if (!inbuf) { 700 if (!inbuf) { 703 error("Could not allocate inpu 701 error("Could not allocate input buffer"); 704 i = RETVAL_OUT_OF_MEMORY; 702 i = RETVAL_OUT_OF_MEMORY; 705 goto exit_0; 703 goto exit_0; 706 } 704 } 707 i = start_bunzip(&bd, inbuf, len, fill 705 i = start_bunzip(&bd, inbuf, len, fill); 708 if (!i) { 706 if (!i) { 709 for (;;) { 707 for (;;) { 710 i = read_bunzip(bd, ou 708 i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); 711 if (i <= 0) 709 if (i <= 0) 712 break; 710 break; 713 if (!flush) 711 if (!flush) 714 outbuf += i; 712 outbuf += i; 715 else 713 else 716 if (i != flush 714 if (i != flush(outbuf, i)) { 717 i = RE 715 i = RETVAL_UNEXPECTED_OUTPUT_EOF; 718 break; 716 break; 719 } 717 } 720 } 718 } 721 } 719 } 722 /* Check CRC and release memory */ 720 /* Check CRC and release memory */ 723 if (i == RETVAL_LAST_BLOCK) { 721 if (i == RETVAL_LAST_BLOCK) { 724 if (bd->headerCRC != bd->total 722 if (bd->headerCRC != bd->totalCRC) 725 error("Data integrity 723 error("Data integrity error when decompressing."); 726 else 724 else 727 i = RETVAL_OK; 725 i = RETVAL_OK; 728 } else if (i == RETVAL_UNEXPECTED_OUTP 726 } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { 729 error("Compressed file ends un 727 error("Compressed file ends unexpectedly"); 730 } 728 } 731 if (!bd) 729 if (!bd) 732 goto exit_1; 730 goto exit_1; 733 if (bd->dbuf) 731 if (bd->dbuf) 734 large_free(bd->dbuf); 732 large_free(bd->dbuf); 735 if (pos) 733 if (pos) 736 *pos = bd->inbufPos; 734 *pos = bd->inbufPos; 737 free(bd); 735 free(bd); 738 exit_1: 736 exit_1: 739 if (!buf) 737 if (!buf) 740 free(inbuf); 738 free(inbuf); 741 exit_0: 739 exit_0: 742 if (flush) 740 if (flush) 743 free(outbuf); 741 free(outbuf); 744 return i; 742 return i; 745 } 743 } 746 744 747 #ifdef PREBOOT 745 #ifdef PREBOOT 748 STATIC int INIT __decompress(unsigned char *bu 746 STATIC int INIT __decompress(unsigned char *buf, long len, 749 long (*fill)(void*, un 747 long (*fill)(void*, unsigned long), 750 long (*flush)(void*, u 748 long (*flush)(void*, unsigned long), 751 unsigned char *outbuf, 749 unsigned char *outbuf, long olen, 752 long *pos, 750 long *pos, 753 void (*error)(char *x) 751 void (*error)(char *x)) 754 { 752 { 755 return bunzip2(buf, len - 4, fill, flu 753 return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error); 756 } 754 } 757 #endif 755 #endif 758 756
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.