1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (C) 2003 Bernardo Innocenti <bern 3 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> 4 * 4 * 5 * Based on former do_div() implementation fro 5 * Based on former do_div() implementation from asm-parisc/div64.h: 6 * Copyright (C) 1999 Hewlett-Packard Co 6 * Copyright (C) 1999 Hewlett-Packard Co 7 * Copyright (C) 1999 David Mosberger-Tan 7 * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> 8 * 8 * 9 * 9 * 10 * Generic C version of 64bit/32bit division a 10 * Generic C version of 64bit/32bit division and modulo, with 11 * 64bit result and 32bit remainder. 11 * 64bit result and 32bit remainder. 12 * 12 * 13 * The fast case for (n>>32 == 0) is handled i 13 * The fast case for (n>>32 == 0) is handled inline by do_div(). 14 * 14 * 15 * Code generated for this function might be v 15 * Code generated for this function might be very inefficient 16 * for some CPUs. __div64_32() can be overridd 16 * for some CPUs. __div64_32() can be overridden by linking arch-specific 17 * assembly versions such as arch/ppc/lib/div6 17 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S 18 * or by defining a preprocessor macro in arch 18 * or by defining a preprocessor macro in arch/include/asm/div64.h. 19 */ 19 */ 20 20 21 #include <linux/bitops.h> 21 #include <linux/bitops.h> 22 #include <linux/export.h> 22 #include <linux/export.h> 23 #include <linux/math.h> 23 #include <linux/math.h> 24 #include <linux/math64.h> 24 #include <linux/math64.h> 25 #include <linux/minmax.h> 25 #include <linux/minmax.h> 26 #include <linux/log2.h> 26 #include <linux/log2.h> 27 27 28 /* Not needed on 64bit architectures */ 28 /* Not needed on 64bit architectures */ 29 #if BITS_PER_LONG == 32 29 #if BITS_PER_LONG == 32 30 30 31 #ifndef __div64_32 31 #ifndef __div64_32 32 uint32_t __attribute__((weak)) __div64_32(uint 32 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) 33 { 33 { 34 uint64_t rem = *n; 34 uint64_t rem = *n; 35 uint64_t b = base; 35 uint64_t b = base; 36 uint64_t res, d = 1; 36 uint64_t res, d = 1; 37 uint32_t high = rem >> 32; 37 uint32_t high = rem >> 32; 38 38 39 /* Reduce the thing a bit first */ 39 /* Reduce the thing a bit first */ 40 res = 0; 40 res = 0; 41 if (high >= base) { 41 if (high >= base) { 42 high /= base; 42 high /= base; 43 res = (uint64_t) high << 32; 43 res = (uint64_t) high << 32; 44 rem -= (uint64_t) (high*base) 44 rem -= (uint64_t) (high*base) << 32; 45 } 45 } 46 46 47 while ((int64_t)b > 0 && b < rem) { 47 while ((int64_t)b > 0 && b < rem) { 48 b = b+b; 48 b = b+b; 49 d = d+d; 49 d = d+d; 50 } 50 } 51 51 52 do { 52 do { 53 if (rem >= b) { 53 if (rem >= b) { 54 rem -= b; 54 rem -= b; 55 res += d; 55 res += d; 56 } 56 } 57 b >>= 1; 57 b >>= 1; 58 d >>= 1; 58 d >>= 1; 59 } while (d); 59 } while (d); 60 60 61 *n = res; 61 *n = res; 62 return rem; 62 return rem; 63 } 63 } 64 EXPORT_SYMBOL(__div64_32); 64 EXPORT_SYMBOL(__div64_32); 65 #endif 65 #endif 66 66 67 #ifndef div_s64_rem 67 #ifndef div_s64_rem 68 s64 div_s64_rem(s64 dividend, s32 divisor, s32 68 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) 69 { 69 { 70 u64 quotient; 70 u64 quotient; 71 71 72 if (dividend < 0) { 72 if (dividend < 0) { 73 quotient = div_u64_rem(-divide 73 quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); 74 *remainder = -*remainder; 74 *remainder = -*remainder; 75 if (divisor > 0) 75 if (divisor > 0) 76 quotient = -quotient; 76 quotient = -quotient; 77 } else { 77 } else { 78 quotient = div_u64_rem(dividen 78 quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); 79 if (divisor < 0) 79 if (divisor < 0) 80 quotient = -quotient; 80 quotient = -quotient; 81 } 81 } 82 return quotient; 82 return quotient; 83 } 83 } 84 EXPORT_SYMBOL(div_s64_rem); 84 EXPORT_SYMBOL(div_s64_rem); 85 #endif 85 #endif 86 86 87 /* 87 /* 88 * div64_u64_rem - unsigned 64bit divide with 88 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder 89 * @dividend: 64bit dividend 89 * @dividend: 64bit dividend 90 * @divisor: 64bit divisor 90 * @divisor: 64bit divisor 91 * @remainder: 64bit remainder 91 * @remainder: 64bit remainder 92 * 92 * 93 * This implementation is a comparable to algo 93 * This implementation is a comparable to algorithm used by div64_u64. 94 * But this operation, which includes math for 94 * But this operation, which includes math for calculating the remainder, 95 * is kept distinct to avoid slowing down the 95 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit 96 * systems. 96 * systems. 97 */ 97 */ 98 #ifndef div64_u64_rem 98 #ifndef div64_u64_rem 99 u64 div64_u64_rem(u64 dividend, u64 divisor, u 99 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) 100 { 100 { 101 u32 high = divisor >> 32; 101 u32 high = divisor >> 32; 102 u64 quot; 102 u64 quot; 103 103 104 if (high == 0) { 104 if (high == 0) { 105 u32 rem32; 105 u32 rem32; 106 quot = div_u64_rem(dividend, d 106 quot = div_u64_rem(dividend, divisor, &rem32); 107 *remainder = rem32; 107 *remainder = rem32; 108 } else { 108 } else { 109 int n = fls(high); 109 int n = fls(high); 110 quot = div_u64(dividend >> n, 110 quot = div_u64(dividend >> n, divisor >> n); 111 111 112 if (quot != 0) 112 if (quot != 0) 113 quot--; 113 quot--; 114 114 115 *remainder = dividend - quot * 115 *remainder = dividend - quot * divisor; 116 if (*remainder >= divisor) { 116 if (*remainder >= divisor) { 117 quot++; 117 quot++; 118 *remainder -= divisor; 118 *remainder -= divisor; 119 } 119 } 120 } 120 } 121 121 122 return quot; 122 return quot; 123 } 123 } 124 EXPORT_SYMBOL(div64_u64_rem); 124 EXPORT_SYMBOL(div64_u64_rem); 125 #endif 125 #endif 126 126 127 /* 127 /* 128 * div64_u64 - unsigned 64bit divide with 64bi 128 * div64_u64 - unsigned 64bit divide with 64bit divisor 129 * @dividend: 64bit dividend 129 * @dividend: 64bit dividend 130 * @divisor: 64bit divisor 130 * @divisor: 64bit divisor 131 * 131 * 132 * This implementation is a modified version o 132 * This implementation is a modified version of the algorithm proposed 133 * by the book 'Hacker's Delight'. The origin 133 * by the book 'Hacker's Delight'. The original source and full proof 134 * can be found here and is available for use 134 * can be found here and is available for use without restriction. 135 * 135 * 136 * 'http://www.hackersdelight.org/hdcodetxt/di 136 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' 137 */ 137 */ 138 #ifndef div64_u64 138 #ifndef div64_u64 139 u64 div64_u64(u64 dividend, u64 divisor) 139 u64 div64_u64(u64 dividend, u64 divisor) 140 { 140 { 141 u32 high = divisor >> 32; 141 u32 high = divisor >> 32; 142 u64 quot; 142 u64 quot; 143 143 144 if (high == 0) { 144 if (high == 0) { 145 quot = div_u64(dividend, divis 145 quot = div_u64(dividend, divisor); 146 } else { 146 } else { 147 int n = fls(high); 147 int n = fls(high); 148 quot = div_u64(dividend >> n, 148 quot = div_u64(dividend >> n, divisor >> n); 149 149 150 if (quot != 0) 150 if (quot != 0) 151 quot--; 151 quot--; 152 if ((dividend - quot * divisor 152 if ((dividend - quot * divisor) >= divisor) 153 quot++; 153 quot++; 154 } 154 } 155 155 156 return quot; 156 return quot; 157 } 157 } 158 EXPORT_SYMBOL(div64_u64); 158 EXPORT_SYMBOL(div64_u64); 159 #endif 159 #endif 160 160 161 #ifndef div64_s64 161 #ifndef div64_s64 162 s64 div64_s64(s64 dividend, s64 divisor) 162 s64 div64_s64(s64 dividend, s64 divisor) 163 { 163 { 164 s64 quot, t; 164 s64 quot, t; 165 165 166 quot = div64_u64(abs(dividend), abs(di 166 quot = div64_u64(abs(dividend), abs(divisor)); 167 t = (dividend ^ divisor) >> 63; 167 t = (dividend ^ divisor) >> 63; 168 168 169 return (quot ^ t) - t; 169 return (quot ^ t) - t; 170 } 170 } 171 EXPORT_SYMBOL(div64_s64); 171 EXPORT_SYMBOL(div64_s64); 172 #endif 172 #endif 173 173 174 #endif /* BITS_PER_LONG == 32 */ 174 #endif /* BITS_PER_LONG == 32 */ 175 175 176 /* 176 /* 177 * Iterative div/mod for use when dividend is 177 * Iterative div/mod for use when dividend is not expected to be much 178 * bigger than divisor. 178 * bigger than divisor. 179 */ 179 */ 180 u32 iter_div_u64_rem(u64 dividend, u32 divisor 180 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) 181 { 181 { 182 return __iter_div_u64_rem(dividend, di 182 return __iter_div_u64_rem(dividend, divisor, remainder); 183 } 183 } 184 EXPORT_SYMBOL(iter_div_u64_rem); 184 EXPORT_SYMBOL(iter_div_u64_rem); 185 185 186 #ifndef mul_u64_u64_div_u64 186 #ifndef mul_u64_u64_div_u64 187 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) 187 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) 188 { 188 { 189 if (ilog2(a) + ilog2(b) <= 62) !! 189 u64 res = 0, div, rem; 190 return div64_u64(a * b, c); !! 190 int shift; 191 191 192 #if defined(__SIZEOF_INT128__) !! 192 /* can a * b overflow ? */ 193 !! 193 if (ilog2(a) + ilog2(b) > 62) { 194 /* native 64x64=128 bits multiplicatio << 195 u128 prod = (u128)a * b; << 196 u64 n_lo = prod, n_hi = prod >> 64; << 197 << 198 #else << 199 << 200 /* perform a 64x64=128 bits multiplica << 201 u32 a_lo = a, a_hi = a >> 32, b_lo = b << 202 u64 x, y, z; << 203 << 204 x = (u64)a_lo * b_lo; << 205 y = (u64)a_lo * b_hi + (u32)(x >> 32); << 206 z = (u64)a_hi * b_hi + (u32)(y >> 32); << 207 y = (u64)a_hi * b_lo + (u32)y; << 208 z += (u32)(y >> 32); << 209 x = (y << 32) + (u32)x; << 210 << 211 u64 n_lo = x, n_hi = z; << 212 << 213 #endif << 214 << 215 /* make sure c is not zero, trigger ex << 216 #pragma GCC diagnostic push << 217 #pragma GCC diagnostic ignored "-Wdiv-by-zero" << 218 if (unlikely(c == 0)) << 219 return 1/0; << 220 #pragma GCC diagnostic pop << 221 << 222 int shift = __builtin_ctzll(c); << 223 << 224 /* try reducing the fraction in case t << 225 if ((n_hi >> shift) == 0) { << 226 u64 n = shift ? (n_lo >> shift << 227 << 228 return div64_u64(n, c >> shift << 229 /* 194 /* 230 * The remainder value if need !! 195 * Note that the algorithm after the if block below might lose 231 * res = div64_u64_rem(n, c !! 196 * some precision and the result is more exact for b > a. So 232 * rem = (rem << shift) + (n !! 197 * exchange a and b if a is bigger than b. >> 198 * >> 199 * For example with a = 43980465100800, b = 100000000, c = 1000000000 >> 200 * the below calculation doesn't modify b at all because div == 0 >> 201 * and then shift becomes 45 + 26 - 62 = 9 and so the result >> 202 * becomes 4398035251080. However with a and b swapped the exact >> 203 * result is calculated (i.e. 4398046510080). 233 */ 204 */ 234 } !! 205 if (a > b) 235 !! 206 swap(a, b); 236 if (n_hi >= c) { << 237 /* overflow: result is unrepre << 238 return -1; << 239 } << 240 << 241 /* Do the full 128 by 64 bits division << 242 << 243 shift = __builtin_clzll(c); << 244 c <<= shift; << 245 207 246 int p = 64 + shift; !! 208 /* 247 u64 res = 0; !! 209 * (b * a) / c is equal to 248 bool carry; !! 210 * 249 !! 211 * (b / c) * a + 250 do { !! 212 * (b % c) * a / c 251 carry = n_hi >> 63; !! 213 * 252 shift = carry ? 1 : __builtin_ !! 214 * if nothing overflows. Can the 1st multiplication 253 if (p < shift) !! 215 * overflow? Yes, but we do not care: this can only 254 break; !! 216 * happen if the end result can't fit in u64 anyway. 255 p -= shift; !! 217 * 256 n_hi <<= shift; !! 218 * So the code below does 257 n_hi |= n_lo >> (64 - shift); !! 219 * 258 n_lo <<= shift; !! 220 * res = (b / c) * a; 259 if (carry || (n_hi >= c)) { !! 221 * b = b % c; 260 n_hi -= c; !! 222 */ 261 res |= 1ULL << p; !! 223 div = div64_u64_rem(b, c, &rem); >> 224 res = div * a; >> 225 b = rem; >> 226 >> 227 shift = ilog2(a) + ilog2(b) - 62; >> 228 if (shift > 0) { >> 229 /* drop precision */ >> 230 b >>= shift; >> 231 c >>= shift; >> 232 if (!c) >> 233 return res; 262 } 234 } 263 } while (n_hi); !! 235 } 264 /* The remainder value if needed would << 265 236 266 return res; !! 237 return res + div64_u64(a * b, c); 267 } 238 } 268 EXPORT_SYMBOL(mul_u64_u64_div_u64); 239 EXPORT_SYMBOL(mul_u64_u64_div_u64); 269 #endif 240 #endif 270 241
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.