1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (C) 2003 Bernardo Innocenti <bern 3 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> 4 * 4 * 5 * Based on former do_div() implementation fro 5 * Based on former do_div() implementation from asm-parisc/div64.h: 6 * Copyright (C) 1999 Hewlett-Packard Co 6 * Copyright (C) 1999 Hewlett-Packard Co 7 * Copyright (C) 1999 David Mosberger-Tan 7 * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> 8 * 8 * 9 * 9 * 10 * Generic C version of 64bit/32bit division a 10 * Generic C version of 64bit/32bit division and modulo, with 11 * 64bit result and 32bit remainder. 11 * 64bit result and 32bit remainder. 12 * 12 * 13 * The fast case for (n>>32 == 0) is handled i 13 * The fast case for (n>>32 == 0) is handled inline by do_div(). 14 * 14 * 15 * Code generated for this function might be v 15 * Code generated for this function might be very inefficient 16 * for some CPUs. __div64_32() can be overridd 16 * for some CPUs. __div64_32() can be overridden by linking arch-specific 17 * assembly versions such as arch/ppc/lib/div6 17 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S 18 * or by defining a preprocessor macro in arch 18 * or by defining a preprocessor macro in arch/include/asm/div64.h. 19 */ 19 */ 20 20 21 #include <linux/bitops.h> 21 #include <linux/bitops.h> 22 #include <linux/export.h> 22 #include <linux/export.h> 23 #include <linux/math.h> 23 #include <linux/math.h> 24 #include <linux/math64.h> 24 #include <linux/math64.h> 25 #include <linux/minmax.h> << 26 #include <linux/log2.h> 25 #include <linux/log2.h> 27 26 28 /* Not needed on 64bit architectures */ 27 /* Not needed on 64bit architectures */ 29 #if BITS_PER_LONG == 32 28 #if BITS_PER_LONG == 32 30 29 31 #ifndef __div64_32 30 #ifndef __div64_32 32 uint32_t __attribute__((weak)) __div64_32(uint 31 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) 33 { 32 { 34 uint64_t rem = *n; 33 uint64_t rem = *n; 35 uint64_t b = base; 34 uint64_t b = base; 36 uint64_t res, d = 1; 35 uint64_t res, d = 1; 37 uint32_t high = rem >> 32; 36 uint32_t high = rem >> 32; 38 37 39 /* Reduce the thing a bit first */ 38 /* Reduce the thing a bit first */ 40 res = 0; 39 res = 0; 41 if (high >= base) { 40 if (high >= base) { 42 high /= base; 41 high /= base; 43 res = (uint64_t) high << 32; 42 res = (uint64_t) high << 32; 44 rem -= (uint64_t) (high*base) 43 rem -= (uint64_t) (high*base) << 32; 45 } 44 } 46 45 47 while ((int64_t)b > 0 && b < rem) { 46 while ((int64_t)b > 0 && b < rem) { 48 b = b+b; 47 b = b+b; 49 d = d+d; 48 d = d+d; 50 } 49 } 51 50 52 do { 51 do { 53 if (rem >= b) { 52 if (rem >= b) { 54 rem -= b; 53 rem -= b; 55 res += d; 54 res += d; 56 } 55 } 57 b >>= 1; 56 b >>= 1; 58 d >>= 1; 57 d >>= 1; 59 } while (d); 58 } while (d); 60 59 61 *n = res; 60 *n = res; 62 return rem; 61 return rem; 63 } 62 } 64 EXPORT_SYMBOL(__div64_32); 63 EXPORT_SYMBOL(__div64_32); 65 #endif 64 #endif 66 65 67 #ifndef div_s64_rem 66 #ifndef div_s64_rem 68 s64 div_s64_rem(s64 dividend, s32 divisor, s32 67 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) 69 { 68 { 70 u64 quotient; 69 u64 quotient; 71 70 72 if (dividend < 0) { 71 if (dividend < 0) { 73 quotient = div_u64_rem(-divide 72 quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); 74 *remainder = -*remainder; 73 *remainder = -*remainder; 75 if (divisor > 0) 74 if (divisor > 0) 76 quotient = -quotient; 75 quotient = -quotient; 77 } else { 76 } else { 78 quotient = div_u64_rem(dividen 77 quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); 79 if (divisor < 0) 78 if (divisor < 0) 80 quotient = -quotient; 79 quotient = -quotient; 81 } 80 } 82 return quotient; 81 return quotient; 83 } 82 } 84 EXPORT_SYMBOL(div_s64_rem); 83 EXPORT_SYMBOL(div_s64_rem); 85 #endif 84 #endif 86 85 87 /* 86 /* 88 * div64_u64_rem - unsigned 64bit divide with 87 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder 89 * @dividend: 64bit dividend 88 * @dividend: 64bit dividend 90 * @divisor: 64bit divisor 89 * @divisor: 64bit divisor 91 * @remainder: 64bit remainder 90 * @remainder: 64bit remainder 92 * 91 * 93 * This implementation is a comparable to algo 92 * This implementation is a comparable to algorithm used by div64_u64. 94 * But this operation, which includes math for 93 * But this operation, which includes math for calculating the remainder, 95 * is kept distinct to avoid slowing down the 94 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit 96 * systems. 95 * systems. 97 */ 96 */ 98 #ifndef div64_u64_rem 97 #ifndef div64_u64_rem 99 u64 div64_u64_rem(u64 dividend, u64 divisor, u 98 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) 100 { 99 { 101 u32 high = divisor >> 32; 100 u32 high = divisor >> 32; 102 u64 quot; 101 u64 quot; 103 102 104 if (high == 0) { 103 if (high == 0) { 105 u32 rem32; 104 u32 rem32; 106 quot = div_u64_rem(dividend, d 105 quot = div_u64_rem(dividend, divisor, &rem32); 107 *remainder = rem32; 106 *remainder = rem32; 108 } else { 107 } else { 109 int n = fls(high); 108 int n = fls(high); 110 quot = div_u64(dividend >> n, 109 quot = div_u64(dividend >> n, divisor >> n); 111 110 112 if (quot != 0) 111 if (quot != 0) 113 quot--; 112 quot--; 114 113 115 *remainder = dividend - quot * 114 *remainder = dividend - quot * divisor; 116 if (*remainder >= divisor) { 115 if (*remainder >= divisor) { 117 quot++; 116 quot++; 118 *remainder -= divisor; 117 *remainder -= divisor; 119 } 118 } 120 } 119 } 121 120 122 return quot; 121 return quot; 123 } 122 } 124 EXPORT_SYMBOL(div64_u64_rem); 123 EXPORT_SYMBOL(div64_u64_rem); 125 #endif 124 #endif 126 125 127 /* 126 /* 128 * div64_u64 - unsigned 64bit divide with 64bi 127 * div64_u64 - unsigned 64bit divide with 64bit divisor 129 * @dividend: 64bit dividend 128 * @dividend: 64bit dividend 130 * @divisor: 64bit divisor 129 * @divisor: 64bit divisor 131 * 130 * 132 * This implementation is a modified version o 131 * This implementation is a modified version of the algorithm proposed 133 * by the book 'Hacker's Delight'. The origin 132 * by the book 'Hacker's Delight'. The original source and full proof 134 * can be found here and is available for use 133 * can be found here and is available for use without restriction. 135 * 134 * 136 * 'http://www.hackersdelight.org/hdcodetxt/di 135 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' 137 */ 136 */ 138 #ifndef div64_u64 137 #ifndef div64_u64 139 u64 div64_u64(u64 dividend, u64 divisor) 138 u64 div64_u64(u64 dividend, u64 divisor) 140 { 139 { 141 u32 high = divisor >> 32; 140 u32 high = divisor >> 32; 142 u64 quot; 141 u64 quot; 143 142 144 if (high == 0) { 143 if (high == 0) { 145 quot = div_u64(dividend, divis 144 quot = div_u64(dividend, divisor); 146 } else { 145 } else { 147 int n = fls(high); 146 int n = fls(high); 148 quot = div_u64(dividend >> n, 147 quot = div_u64(dividend >> n, divisor >> n); 149 148 150 if (quot != 0) 149 if (quot != 0) 151 quot--; 150 quot--; 152 if ((dividend - quot * divisor 151 if ((dividend - quot * divisor) >= divisor) 153 quot++; 152 quot++; 154 } 153 } 155 154 156 return quot; 155 return quot; 157 } 156 } 158 EXPORT_SYMBOL(div64_u64); 157 EXPORT_SYMBOL(div64_u64); 159 #endif 158 #endif 160 159 161 #ifndef div64_s64 160 #ifndef div64_s64 162 s64 div64_s64(s64 dividend, s64 divisor) 161 s64 div64_s64(s64 dividend, s64 divisor) 163 { 162 { 164 s64 quot, t; 163 s64 quot, t; 165 164 166 quot = div64_u64(abs(dividend), abs(di 165 quot = div64_u64(abs(dividend), abs(divisor)); 167 t = (dividend ^ divisor) >> 63; 166 t = (dividend ^ divisor) >> 63; 168 167 169 return (quot ^ t) - t; 168 return (quot ^ t) - t; 170 } 169 } 171 EXPORT_SYMBOL(div64_s64); 170 EXPORT_SYMBOL(div64_s64); 172 #endif 171 #endif 173 172 174 #endif /* BITS_PER_LONG == 32 */ 173 #endif /* BITS_PER_LONG == 32 */ 175 174 176 /* 175 /* 177 * Iterative div/mod for use when dividend is 176 * Iterative div/mod for use when dividend is not expected to be much 178 * bigger than divisor. 177 * bigger than divisor. 179 */ 178 */ 180 u32 iter_div_u64_rem(u64 dividend, u32 divisor 179 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) 181 { 180 { 182 return __iter_div_u64_rem(dividend, di 181 return __iter_div_u64_rem(dividend, divisor, remainder); 183 } 182 } 184 EXPORT_SYMBOL(iter_div_u64_rem); 183 EXPORT_SYMBOL(iter_div_u64_rem); 185 184 186 #ifndef mul_u64_u64_div_u64 185 #ifndef mul_u64_u64_div_u64 187 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) 186 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) 188 { 187 { 189 if (ilog2(a) + ilog2(b) <= 62) !! 188 u64 res = 0, div, rem; 190 return div64_u64(a * b, c); !! 189 int shift; 191 190 192 #if defined(__SIZEOF_INT128__) !! 191 /* can a * b overflow ? */ 193 !! 192 if (ilog2(a) + ilog2(b) > 62) { 194 /* native 64x64=128 bits multiplicatio << 195 u128 prod = (u128)a * b; << 196 u64 n_lo = prod, n_hi = prod >> 64; << 197 << 198 #else << 199 << 200 /* perform a 64x64=128 bits multiplica << 201 u32 a_lo = a, a_hi = a >> 32, b_lo = b << 202 u64 x, y, z; << 203 << 204 x = (u64)a_lo * b_lo; << 205 y = (u64)a_lo * b_hi + (u32)(x >> 32); << 206 z = (u64)a_hi * b_hi + (u32)(y >> 32); << 207 y = (u64)a_hi * b_lo + (u32)y; << 208 z += (u32)(y >> 32); << 209 x = (y << 32) + (u32)x; << 210 << 211 u64 n_lo = x, n_hi = z; << 212 << 213 #endif << 214 << 215 /* make sure c is not zero, trigger ex << 216 #pragma GCC diagnostic push << 217 #pragma GCC diagnostic ignored "-Wdiv-by-zero" << 218 if (unlikely(c == 0)) << 219 return 1/0; << 220 #pragma GCC diagnostic pop << 221 << 222 int shift = __builtin_ctzll(c); << 223 << 224 /* try reducing the fraction in case t << 225 if ((n_hi >> shift) == 0) { << 226 u64 n = shift ? (n_lo >> shift << 227 << 228 return div64_u64(n, c >> shift << 229 /* 193 /* 230 * The remainder value if need !! 194 * (b * a) / c is equal to 231 * res = div64_u64_rem(n, c !! 195 * 232 * rem = (rem << shift) + (n !! 196 * (b / c) * a + >> 197 * (b % c) * a / c >> 198 * >> 199 * if nothing overflows. Can the 1st multiplication >> 200 * overflow? Yes, but we do not care: this can only >> 201 * happen if the end result can't fit in u64 anyway. >> 202 * >> 203 * So the code below does >> 204 * >> 205 * res = (b / c) * a; >> 206 * b = b % c; 233 */ 207 */ 234 } !! 208 div = div64_u64_rem(b, c, &rem); 235 !! 209 res = div * a; 236 if (n_hi >= c) { !! 210 b = rem; 237 /* overflow: result is unrepre !! 211 238 return -1; !! 212 shift = ilog2(a) + ilog2(b) - 62; 239 } !! 213 if (shift > 0) { 240 !! 214 /* drop precision */ 241 /* Do the full 128 by 64 bits division !! 215 b >>= shift; 242 !! 216 c >>= shift; 243 shift = __builtin_clzll(c); !! 217 if (!c) 244 c <<= shift; !! 218 return res; 245 << 246 int p = 64 + shift; << 247 u64 res = 0; << 248 bool carry; << 249 << 250 do { << 251 carry = n_hi >> 63; << 252 shift = carry ? 1 : __builtin_ << 253 if (p < shift) << 254 break; << 255 p -= shift; << 256 n_hi <<= shift; << 257 n_hi |= n_lo >> (64 - shift); << 258 n_lo <<= shift; << 259 if (carry || (n_hi >= c)) { << 260 n_hi -= c; << 261 res |= 1ULL << p; << 262 } 219 } 263 } while (n_hi); !! 220 } 264 /* The remainder value if needed would << 265 221 266 return res; !! 222 return res + div64_u64(a * b, c); 267 } 223 } 268 EXPORT_SYMBOL(mul_u64_u64_div_u64); 224 EXPORT_SYMBOL(mul_u64_u64_div_u64); 269 #endif 225 #endif 270 226
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.