1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (C) 2003 Bernardo Innocenti <bern 3 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> 4 * 4 * 5 * Based on former do_div() implementation fro 5 * Based on former do_div() implementation from asm-parisc/div64.h: 6 * Copyright (C) 1999 Hewlett-Packard Co 6 * Copyright (C) 1999 Hewlett-Packard Co 7 * Copyright (C) 1999 David Mosberger-Tan 7 * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> 8 * 8 * 9 * 9 * 10 * Generic C version of 64bit/32bit division a 10 * Generic C version of 64bit/32bit division and modulo, with 11 * 64bit result and 32bit remainder. 11 * 64bit result and 32bit remainder. 12 * 12 * 13 * The fast case for (n>>32 == 0) is handled i 13 * The fast case for (n>>32 == 0) is handled inline by do_div(). 14 * 14 * 15 * Code generated for this function might be v 15 * Code generated for this function might be very inefficient 16 * for some CPUs. __div64_32() can be overridd 16 * for some CPUs. __div64_32() can be overridden by linking arch-specific 17 * assembly versions such as arch/ppc/lib/div6 17 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S 18 * or by defining a preprocessor macro in arch 18 * or by defining a preprocessor macro in arch/include/asm/div64.h. 19 */ 19 */ 20 20 21 #include <linux/bitops.h> 21 #include <linux/bitops.h> 22 #include <linux/export.h> 22 #include <linux/export.h> 23 #include <linux/math.h> 23 #include <linux/math.h> 24 #include <linux/math64.h> 24 #include <linux/math64.h> 25 #include <linux/minmax.h> 25 #include <linux/minmax.h> 26 #include <linux/log2.h> 26 #include <linux/log2.h> 27 27 28 /* Not needed on 64bit architectures */ 28 /* Not needed on 64bit architectures */ 29 #if BITS_PER_LONG == 32 29 #if BITS_PER_LONG == 32 30 30 31 #ifndef __div64_32 31 #ifndef __div64_32 32 uint32_t __attribute__((weak)) __div64_32(uint 32 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) 33 { 33 { 34 uint64_t rem = *n; 34 uint64_t rem = *n; 35 uint64_t b = base; 35 uint64_t b = base; 36 uint64_t res, d = 1; 36 uint64_t res, d = 1; 37 uint32_t high = rem >> 32; 37 uint32_t high = rem >> 32; 38 38 39 /* Reduce the thing a bit first */ 39 /* Reduce the thing a bit first */ 40 res = 0; 40 res = 0; 41 if (high >= base) { 41 if (high >= base) { 42 high /= base; 42 high /= base; 43 res = (uint64_t) high << 32; 43 res = (uint64_t) high << 32; 44 rem -= (uint64_t) (high*base) 44 rem -= (uint64_t) (high*base) << 32; 45 } 45 } 46 46 47 while ((int64_t)b > 0 && b < rem) { 47 while ((int64_t)b > 0 && b < rem) { 48 b = b+b; 48 b = b+b; 49 d = d+d; 49 d = d+d; 50 } 50 } 51 51 52 do { 52 do { 53 if (rem >= b) { 53 if (rem >= b) { 54 rem -= b; 54 rem -= b; 55 res += d; 55 res += d; 56 } 56 } 57 b >>= 1; 57 b >>= 1; 58 d >>= 1; 58 d >>= 1; 59 } while (d); 59 } while (d); 60 60 61 *n = res; 61 *n = res; 62 return rem; 62 return rem; 63 } 63 } 64 EXPORT_SYMBOL(__div64_32); 64 EXPORT_SYMBOL(__div64_32); 65 #endif 65 #endif 66 66 67 #ifndef div_s64_rem 67 #ifndef div_s64_rem 68 s64 div_s64_rem(s64 dividend, s32 divisor, s32 68 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) 69 { 69 { 70 u64 quotient; 70 u64 quotient; 71 71 72 if (dividend < 0) { 72 if (dividend < 0) { 73 quotient = div_u64_rem(-divide 73 quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); 74 *remainder = -*remainder; 74 *remainder = -*remainder; 75 if (divisor > 0) 75 if (divisor > 0) 76 quotient = -quotient; 76 quotient = -quotient; 77 } else { 77 } else { 78 quotient = div_u64_rem(dividen 78 quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); 79 if (divisor < 0) 79 if (divisor < 0) 80 quotient = -quotient; 80 quotient = -quotient; 81 } 81 } 82 return quotient; 82 return quotient; 83 } 83 } 84 EXPORT_SYMBOL(div_s64_rem); 84 EXPORT_SYMBOL(div_s64_rem); 85 #endif 85 #endif 86 86 87 /* 87 /* 88 * div64_u64_rem - unsigned 64bit divide with 88 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder 89 * @dividend: 64bit dividend 89 * @dividend: 64bit dividend 90 * @divisor: 64bit divisor 90 * @divisor: 64bit divisor 91 * @remainder: 64bit remainder 91 * @remainder: 64bit remainder 92 * 92 * 93 * This implementation is a comparable to algo 93 * This implementation is a comparable to algorithm used by div64_u64. 94 * But this operation, which includes math for 94 * But this operation, which includes math for calculating the remainder, 95 * is kept distinct to avoid slowing down the 95 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit 96 * systems. 96 * systems. 97 */ 97 */ 98 #ifndef div64_u64_rem 98 #ifndef div64_u64_rem 99 u64 div64_u64_rem(u64 dividend, u64 divisor, u 99 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) 100 { 100 { 101 u32 high = divisor >> 32; 101 u32 high = divisor >> 32; 102 u64 quot; 102 u64 quot; 103 103 104 if (high == 0) { 104 if (high == 0) { 105 u32 rem32; 105 u32 rem32; 106 quot = div_u64_rem(dividend, d 106 quot = div_u64_rem(dividend, divisor, &rem32); 107 *remainder = rem32; 107 *remainder = rem32; 108 } else { 108 } else { 109 int n = fls(high); 109 int n = fls(high); 110 quot = div_u64(dividend >> n, 110 quot = div_u64(dividend >> n, divisor >> n); 111 111 112 if (quot != 0) 112 if (quot != 0) 113 quot--; 113 quot--; 114 114 115 *remainder = dividend - quot * 115 *remainder = dividend - quot * divisor; 116 if (*remainder >= divisor) { 116 if (*remainder >= divisor) { 117 quot++; 117 quot++; 118 *remainder -= divisor; 118 *remainder -= divisor; 119 } 119 } 120 } 120 } 121 121 122 return quot; 122 return quot; 123 } 123 } 124 EXPORT_SYMBOL(div64_u64_rem); 124 EXPORT_SYMBOL(div64_u64_rem); 125 #endif 125 #endif 126 126 127 /* 127 /* 128 * div64_u64 - unsigned 64bit divide with 64bi 128 * div64_u64 - unsigned 64bit divide with 64bit divisor 129 * @dividend: 64bit dividend 129 * @dividend: 64bit dividend 130 * @divisor: 64bit divisor 130 * @divisor: 64bit divisor 131 * 131 * 132 * This implementation is a modified version o 132 * This implementation is a modified version of the algorithm proposed 133 * by the book 'Hacker's Delight'. The origin 133 * by the book 'Hacker's Delight'. The original source and full proof 134 * can be found here and is available for use 134 * can be found here and is available for use without restriction. 135 * 135 * 136 * 'http://www.hackersdelight.org/hdcodetxt/di 136 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' 137 */ 137 */ 138 #ifndef div64_u64 138 #ifndef div64_u64 139 u64 div64_u64(u64 dividend, u64 divisor) 139 u64 div64_u64(u64 dividend, u64 divisor) 140 { 140 { 141 u32 high = divisor >> 32; 141 u32 high = divisor >> 32; 142 u64 quot; 142 u64 quot; 143 143 144 if (high == 0) { 144 if (high == 0) { 145 quot = div_u64(dividend, divis 145 quot = div_u64(dividend, divisor); 146 } else { 146 } else { 147 int n = fls(high); 147 int n = fls(high); 148 quot = div_u64(dividend >> n, 148 quot = div_u64(dividend >> n, divisor >> n); 149 149 150 if (quot != 0) 150 if (quot != 0) 151 quot--; 151 quot--; 152 if ((dividend - quot * divisor 152 if ((dividend - quot * divisor) >= divisor) 153 quot++; 153 quot++; 154 } 154 } 155 155 156 return quot; 156 return quot; 157 } 157 } 158 EXPORT_SYMBOL(div64_u64); 158 EXPORT_SYMBOL(div64_u64); 159 #endif 159 #endif 160 160 161 #ifndef div64_s64 161 #ifndef div64_s64 162 s64 div64_s64(s64 dividend, s64 divisor) 162 s64 div64_s64(s64 dividend, s64 divisor) 163 { 163 { 164 s64 quot, t; 164 s64 quot, t; 165 165 166 quot = div64_u64(abs(dividend), abs(di 166 quot = div64_u64(abs(dividend), abs(divisor)); 167 t = (dividend ^ divisor) >> 63; 167 t = (dividend ^ divisor) >> 63; 168 168 169 return (quot ^ t) - t; 169 return (quot ^ t) - t; 170 } 170 } 171 EXPORT_SYMBOL(div64_s64); 171 EXPORT_SYMBOL(div64_s64); 172 #endif 172 #endif 173 173 174 #endif /* BITS_PER_LONG == 32 */ 174 #endif /* BITS_PER_LONG == 32 */ 175 175 176 /* 176 /* 177 * Iterative div/mod for use when dividend is 177 * Iterative div/mod for use when dividend is not expected to be much 178 * bigger than divisor. 178 * bigger than divisor. 179 */ 179 */ 180 u32 iter_div_u64_rem(u64 dividend, u32 divisor 180 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) 181 { 181 { 182 return __iter_div_u64_rem(dividend, di 182 return __iter_div_u64_rem(dividend, divisor, remainder); 183 } 183 } 184 EXPORT_SYMBOL(iter_div_u64_rem); 184 EXPORT_SYMBOL(iter_div_u64_rem); 185 185 186 #ifndef mul_u64_u64_div_u64 186 #ifndef mul_u64_u64_div_u64 187 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) 187 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) 188 { 188 { 189 if (ilog2(a) + ilog2(b) <= 62) 189 if (ilog2(a) + ilog2(b) <= 62) 190 return div64_u64(a * b, c); 190 return div64_u64(a * b, c); 191 191 192 #if defined(__SIZEOF_INT128__) 192 #if defined(__SIZEOF_INT128__) 193 193 194 /* native 64x64=128 bits multiplicatio 194 /* native 64x64=128 bits multiplication */ 195 u128 prod = (u128)a * b; 195 u128 prod = (u128)a * b; 196 u64 n_lo = prod, n_hi = prod >> 64; 196 u64 n_lo = prod, n_hi = prod >> 64; 197 197 198 #else 198 #else 199 199 200 /* perform a 64x64=128 bits multiplica 200 /* perform a 64x64=128 bits multiplication manually */ 201 u32 a_lo = a, a_hi = a >> 32, b_lo = b 201 u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32; 202 u64 x, y, z; 202 u64 x, y, z; 203 203 204 x = (u64)a_lo * b_lo; 204 x = (u64)a_lo * b_lo; 205 y = (u64)a_lo * b_hi + (u32)(x >> 32); 205 y = (u64)a_lo * b_hi + (u32)(x >> 32); 206 z = (u64)a_hi * b_hi + (u32)(y >> 32); 206 z = (u64)a_hi * b_hi + (u32)(y >> 32); 207 y = (u64)a_hi * b_lo + (u32)y; 207 y = (u64)a_hi * b_lo + (u32)y; 208 z += (u32)(y >> 32); 208 z += (u32)(y >> 32); 209 x = (y << 32) + (u32)x; 209 x = (y << 32) + (u32)x; 210 210 211 u64 n_lo = x, n_hi = z; 211 u64 n_lo = x, n_hi = z; 212 212 213 #endif 213 #endif 214 214 215 /* make sure c is not zero, trigger ex 215 /* make sure c is not zero, trigger exception otherwise */ 216 #pragma GCC diagnostic push 216 #pragma GCC diagnostic push 217 #pragma GCC diagnostic ignored "-Wdiv-by-zero" 217 #pragma GCC diagnostic ignored "-Wdiv-by-zero" 218 if (unlikely(c == 0)) 218 if (unlikely(c == 0)) 219 return 1/0; 219 return 1/0; 220 #pragma GCC diagnostic pop 220 #pragma GCC diagnostic pop 221 221 222 int shift = __builtin_ctzll(c); 222 int shift = __builtin_ctzll(c); 223 223 224 /* try reducing the fraction in case t 224 /* try reducing the fraction in case the dividend becomes <= 64 bits */ 225 if ((n_hi >> shift) == 0) { 225 if ((n_hi >> shift) == 0) { 226 u64 n = shift ? (n_lo >> shift 226 u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo; 227 227 228 return div64_u64(n, c >> shift 228 return div64_u64(n, c >> shift); 229 /* 229 /* 230 * The remainder value if need 230 * The remainder value if needed would be: 231 * res = div64_u64_rem(n, c 231 * res = div64_u64_rem(n, c >> shift, &rem); 232 * rem = (rem << shift) + (n 232 * rem = (rem << shift) + (n_lo - (n << shift)); 233 */ 233 */ 234 } 234 } 235 235 236 if (n_hi >= c) { 236 if (n_hi >= c) { 237 /* overflow: result is unrepre 237 /* overflow: result is unrepresentable in a u64 */ 238 return -1; 238 return -1; 239 } 239 } 240 240 241 /* Do the full 128 by 64 bits division 241 /* Do the full 128 by 64 bits division */ 242 242 243 shift = __builtin_clzll(c); 243 shift = __builtin_clzll(c); 244 c <<= shift; 244 c <<= shift; 245 245 246 int p = 64 + shift; 246 int p = 64 + shift; 247 u64 res = 0; 247 u64 res = 0; 248 bool carry; 248 bool carry; 249 249 250 do { 250 do { 251 carry = n_hi >> 63; 251 carry = n_hi >> 63; 252 shift = carry ? 1 : __builtin_ 252 shift = carry ? 1 : __builtin_clzll(n_hi); 253 if (p < shift) 253 if (p < shift) 254 break; 254 break; 255 p -= shift; 255 p -= shift; 256 n_hi <<= shift; 256 n_hi <<= shift; 257 n_hi |= n_lo >> (64 - shift); 257 n_hi |= n_lo >> (64 - shift); 258 n_lo <<= shift; 258 n_lo <<= shift; 259 if (carry || (n_hi >= c)) { 259 if (carry || (n_hi >= c)) { 260 n_hi -= c; 260 n_hi -= c; 261 res |= 1ULL << p; 261 res |= 1ULL << p; 262 } 262 } 263 } while (n_hi); 263 } while (n_hi); 264 /* The remainder value if needed would 264 /* The remainder value if needed would be n_hi << p */ 265 265 266 return res; 266 return res; 267 } 267 } 268 EXPORT_SYMBOL(mul_u64_u64_div_u64); 268 EXPORT_SYMBOL(mul_u64_u64_div_u64); 269 #endif 269 #endif 270 270
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.