1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * rational fractions 3 * rational fractions 4 * 4 * 5 * Copyright (C) 2009 emlix GmbH, Oskar Schirm 5 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com> 6 * Copyright (C) 2019 Trent Piepho <tpiepho@gm << 7 * 6 * 8 * helper functions when coping with rational 7 * helper functions when coping with rational numbers 9 */ 8 */ 10 9 11 #include <linux/rational.h> 10 #include <linux/rational.h> 12 #include <linux/compiler.h> 11 #include <linux/compiler.h> 13 #include <linux/export.h> 12 #include <linux/export.h> 14 #include <linux/minmax.h> << 15 #include <linux/limits.h> << 16 #include <linux/module.h> << 17 13 18 /* 14 /* 19 * calculate best rational approximation for a 15 * calculate best rational approximation for a given fraction 20 * taking into account restricted register siz 16 * taking into account restricted register size, e.g. to find 21 * appropriate values for a pll with 5 bit den 17 * appropriate values for a pll with 5 bit denominator and 22 * 8 bit numerator register fields, trying to 18 * 8 bit numerator register fields, trying to set up with a 23 * frequency ratio of 3.1415, one would say: 19 * frequency ratio of 3.1415, one would say: 24 * 20 * 25 * rational_best_approximation(31415, 10000, 21 * rational_best_approximation(31415, 10000, 26 * (1 << 8) - 1, (1 << 5) - 1, &n 22 * (1 << 8) - 1, (1 << 5) - 1, &n, &d); 27 * 23 * 28 * you may look at given_numerator as a fixed 24 * you may look at given_numerator as a fixed point number, 29 * with the fractional part size described in 25 * with the fractional part size described in given_denominator. 30 * 26 * 31 * for theoretical background, see: 27 * for theoretical background, see: 32 * https://en.wikipedia.org/wiki/Continued_fra !! 28 * http://en.wikipedia.org/wiki/Continued_fraction 33 */ 29 */ 34 30 35 void rational_best_approximation( 31 void rational_best_approximation( 36 unsigned long given_numerator, unsigne 32 unsigned long given_numerator, unsigned long given_denominator, 37 unsigned long max_numerator, unsigned 33 unsigned long max_numerator, unsigned long max_denominator, 38 unsigned long *best_numerator, unsigne 34 unsigned long *best_numerator, unsigned long *best_denominator) 39 { 35 { 40 /* n/d is the starting rational, which !! 36 unsigned long n, d, n0, d0, n1, d1; 41 * decreased each iteration using the << 42 * << 43 * dp is the value of d from the prior << 44 * << 45 * n2/d2, n1/d1, and n0/d0 are our suc << 46 * approximations of the rational. Th << 47 * the current, previous, and two prio << 48 * << 49 * a is current term of the continued << 50 */ << 51 unsigned long n, d, n0, d0, n1, d1, n2 << 52 n = given_numerator; 37 n = given_numerator; 53 d = given_denominator; 38 d = given_denominator; 54 n0 = d1 = 0; 39 n0 = d1 = 0; 55 n1 = d0 = 1; 40 n1 = d0 = 1; 56 << 57 for (;;) { 41 for (;;) { 58 unsigned long dp, a; !! 42 unsigned long t, a; 59 !! 43 if ((n1 > max_numerator) || (d1 > max_denominator)) { >> 44 n1 = n0; >> 45 d1 = d0; >> 46 break; >> 47 } 60 if (d == 0) 48 if (d == 0) 61 break; 49 break; 62 /* Find next term in continued !! 50 t = d; 63 * Euclidean algorithm. << 64 */ << 65 dp = d; << 66 a = n / d; 51 a = n / d; 67 d = n % d; 52 d = n % d; 68 n = dp; !! 53 n = t; 69 !! 54 t = n0 + a * n1; 70 /* Calculate the current ratio << 71 * convergent), n2/d2, using t << 72 * the two prior approximation << 73 */ << 74 n2 = n0 + a * n1; << 75 d2 = d0 + a * d1; << 76 << 77 /* If the current convergent e << 78 * return either the previous << 79 * largest semi-convergent, th << 80 * found below as 't'. << 81 */ << 82 if ((n2 > max_numerator) || (d << 83 unsigned long t = ULON << 84 << 85 if (d1) << 86 t = (max_denom << 87 if (n1) << 88 t = min(t, (ma << 89 << 90 /* This tests if the s << 91 * convergent. If d1 << 92 * is the 1st iteratio << 93 */ << 94 if (!d1 || 2u * t > a << 95 n1 = n0 + t * << 96 d1 = d0 + t * << 97 } << 98 break; << 99 } << 100 n0 = n1; 55 n0 = n1; 101 n1 = n2; !! 56 n1 = t; >> 57 t = d0 + a * d1; 102 d0 = d1; 58 d0 = d1; 103 d1 = d2; !! 59 d1 = t; 104 } 60 } 105 *best_numerator = n1; 61 *best_numerator = n1; 106 *best_denominator = d1; 62 *best_denominator = d1; 107 } 63 } 108 64 109 EXPORT_SYMBOL(rational_best_approximation); 65 EXPORT_SYMBOL(rational_best_approximation); 110 << 111 MODULE_DESCRIPTION("Rational fraction support << 112 MODULE_LICENSE("GPL v2"); << 113 66
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.