~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/math/rational.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /lib/math/rational.c (Version linux-6.12-rc7) and /lib/math/rational.c (Version linux-5.12.19)


  1 // SPDX-License-Identifier: GPL-2.0                 1 // SPDX-License-Identifier: GPL-2.0
  2 /*                                                  2 /*
  3  * rational fractions                               3  * rational fractions
  4  *                                                  4  *
  5  * Copyright (C) 2009 emlix GmbH, Oskar Schirm      5  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
  6  * Copyright (C) 2019 Trent Piepho <tpiepho@gm      6  * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
  7  *                                                  7  *
  8  * helper functions when coping with rational       8  * helper functions when coping with rational numbers
  9  */                                                 9  */
 10                                                    10 
 11 #include <linux/rational.h>                        11 #include <linux/rational.h>
 12 #include <linux/compiler.h>                        12 #include <linux/compiler.h>
 13 #include <linux/export.h>                          13 #include <linux/export.h>
 14 #include <linux/minmax.h>                          14 #include <linux/minmax.h>
 15 #include <linux/limits.h>                          15 #include <linux/limits.h>
 16 #include <linux/module.h>                      << 
 17                                                    16 
 18 /*                                                 17 /*
 19  * calculate best rational approximation for a     18  * calculate best rational approximation for a given fraction
 20  * taking into account restricted register siz     19  * taking into account restricted register size, e.g. to find
 21  * appropriate values for a pll with 5 bit den     20  * appropriate values for a pll with 5 bit denominator and
 22  * 8 bit numerator register fields, trying to      21  * 8 bit numerator register fields, trying to set up with a
 23  * frequency ratio of 3.1415, one would say:       22  * frequency ratio of 3.1415, one would say:
 24  *                                                 23  *
 25  * rational_best_approximation(31415, 10000,       24  * rational_best_approximation(31415, 10000,
 26  *              (1 << 8) - 1, (1 << 5) - 1, &n     25  *              (1 << 8) - 1, (1 << 5) - 1, &n, &d);
 27  *                                                 26  *
 28  * you may look at given_numerator as a fixed      27  * you may look at given_numerator as a fixed point number,
 29  * with the fractional part size described in      28  * with the fractional part size described in given_denominator.
 30  *                                                 29  *
 31  * for theoretical background, see:                30  * for theoretical background, see:
 32  * https://en.wikipedia.org/wiki/Continued_fra     31  * https://en.wikipedia.org/wiki/Continued_fraction
 33  */                                                32  */
 34                                                    33 
 35 void rational_best_approximation(                  34 void rational_best_approximation(
 36         unsigned long given_numerator, unsigne     35         unsigned long given_numerator, unsigned long given_denominator,
 37         unsigned long max_numerator, unsigned      36         unsigned long max_numerator, unsigned long max_denominator,
 38         unsigned long *best_numerator, unsigne     37         unsigned long *best_numerator, unsigned long *best_denominator)
 39 {                                                  38 {
 40         /* n/d is the starting rational, which     39         /* n/d is the starting rational, which is continually
 41          * decreased each iteration using the      40          * decreased each iteration using the Euclidean algorithm.
 42          *                                         41          *
 43          * dp is the value of d from the prior     42          * dp is the value of d from the prior iteration.
 44          *                                         43          *
 45          * n2/d2, n1/d1, and n0/d0 are our suc     44          * n2/d2, n1/d1, and n0/d0 are our successively more accurate
 46          * approximations of the rational.  Th     45          * approximations of the rational.  They are, respectively,
 47          * the current, previous, and two prio     46          * the current, previous, and two prior iterations of it.
 48          *                                         47          *
 49          * a is current term of the continued      48          * a is current term of the continued fraction.
 50          */                                        49          */
 51         unsigned long n, d, n0, d0, n1, d1, n2     50         unsigned long n, d, n0, d0, n1, d1, n2, d2;
 52         n = given_numerator;                       51         n = given_numerator;
 53         d = given_denominator;                     52         d = given_denominator;
 54         n0 = d1 = 0;                               53         n0 = d1 = 0;
 55         n1 = d0 = 1;                               54         n1 = d0 = 1;
 56                                                    55 
 57         for (;;) {                                 56         for (;;) {
 58                 unsigned long dp, a;               57                 unsigned long dp, a;
 59                                                    58 
 60                 if (d == 0)                        59                 if (d == 0)
 61                         break;                     60                         break;
 62                 /* Find next term in continued     61                 /* Find next term in continued fraction, 'a', via
 63                  * Euclidean algorithm.            62                  * Euclidean algorithm.
 64                  */                                63                  */
 65                 dp = d;                            64                 dp = d;
 66                 a = n / d;                         65                 a = n / d;
 67                 d = n % d;                         66                 d = n % d;
 68                 n = dp;                            67                 n = dp;
 69                                                    68 
 70                 /* Calculate the current ratio     69                 /* Calculate the current rational approximation (aka
 71                  * convergent), n2/d2, using t     70                  * convergent), n2/d2, using the term just found and
 72                  * the two prior approximation     71                  * the two prior approximations.
 73                  */                                72                  */
 74                 n2 = n0 + a * n1;                  73                 n2 = n0 + a * n1;
 75                 d2 = d0 + a * d1;                  74                 d2 = d0 + a * d1;
 76                                                    75 
 77                 /* If the current convergent e     76                 /* If the current convergent exceeds the maxes, then
 78                  * return either the previous      77                  * return either the previous convergent or the
 79                  * largest semi-convergent, th     78                  * largest semi-convergent, the final term of which is
 80                  * found below as 't'.             79                  * found below as 't'.
 81                  */                                80                  */
 82                 if ((n2 > max_numerator) || (d     81                 if ((n2 > max_numerator) || (d2 > max_denominator)) {
 83                         unsigned long t = ULON     82                         unsigned long t = ULONG_MAX;
 84                                                    83 
 85                         if (d1)                    84                         if (d1)
 86                                 t = (max_denom     85                                 t = (max_denominator - d0) / d1;
 87                         if (n1)                    86                         if (n1)
 88                                 t = min(t, (ma     87                                 t = min(t, (max_numerator - n0) / n1);
 89                                                    88 
 90                         /* This tests if the s     89                         /* This tests if the semi-convergent is closer than the previous
 91                          * convergent.  If d1      90                          * convergent.  If d1 is zero there is no previous convergent as this
 92                          * is the 1st iteratio     91                          * is the 1st iteration, so always choose the semi-convergent.
 93                          */                        92                          */
 94                         if (!d1 || 2u * t > a      93                         if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
 95                                 n1 = n0 + t *      94                                 n1 = n0 + t * n1;
 96                                 d1 = d0 + t *      95                                 d1 = d0 + t * d1;
 97                         }                          96                         }
 98                         break;                     97                         break;
 99                 }                                  98                 }
100                 n0 = n1;                           99                 n0 = n1;
101                 n1 = n2;                          100                 n1 = n2;
102                 d0 = d1;                          101                 d0 = d1;
103                 d1 = d2;                          102                 d1 = d2;
104         }                                         103         }
105         *best_numerator = n1;                     104         *best_numerator = n1;
106         *best_denominator = d1;                   105         *best_denominator = d1;
107 }                                                 106 }
108                                                   107 
109 EXPORT_SYMBOL(rational_best_approximation);       108 EXPORT_SYMBOL(rational_best_approximation);
110                                                << 
111 MODULE_DESCRIPTION("Rational fraction support  << 
112 MODULE_LICENSE("GPL v2");                      << 
113                                                   109 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php