1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 Red Black Trees 2 Red Black Trees 4 (C) 1999 Andrea Arcangeli <andrea@suse.de> 3 (C) 1999 Andrea Arcangeli <andrea@suse.de> 5 (C) 2002 David Woodhouse <dwmw2@infradead.o 4 (C) 2002 David Woodhouse <dwmw2@infradead.org> 6 (C) 2012 Michel Lespinasse <walken@google.c 5 (C) 2012 Michel Lespinasse <walken@google.com> 7 6 >> 7 This program is free software; you can redistribute it and/or modify >> 8 it under the terms of the GNU General Public License as published by >> 9 the Free Software Foundation; either version 2 of the License, or >> 10 (at your option) any later version. >> 11 >> 12 This program is distributed in the hope that it will be useful, >> 13 but WITHOUT ANY WARRANTY; without even the implied warranty of >> 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the >> 15 GNU General Public License for more details. >> 16 >> 17 You should have received a copy of the GNU General Public License >> 18 along with this program; if not, write to the Free Software >> 19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 8 20 9 linux/lib/rbtree.c 21 linux/lib/rbtree.c 10 */ 22 */ 11 23 12 #include <linux/rbtree_augmented.h> 24 #include <linux/rbtree_augmented.h> 13 #include <linux/export.h> 25 #include <linux/export.h> 14 26 15 /* 27 /* 16 * red-black trees properties: https://en.wik !! 28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree 17 * 29 * 18 * 1) A node is either red or black 30 * 1) A node is either red or black 19 * 2) The root is black 31 * 2) The root is black 20 * 3) All leaves (NULL) are black 32 * 3) All leaves (NULL) are black 21 * 4) Both children of every red node are bla 33 * 4) Both children of every red node are black 22 * 5) Every simple path from root to leaves c 34 * 5) Every simple path from root to leaves contains the same number 23 * of black nodes. 35 * of black nodes. 24 * 36 * 25 * 4 and 5 give the O(log n) guarantee, since 37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two 26 * consecutive red nodes in a path and every 38 * consecutive red nodes in a path and every red node is therefore followed by 27 * a black. So if B is the number of black no 39 * a black. So if B is the number of black nodes on every simple path (as per 28 * 5), then the longest possible path due to 40 * 5), then the longest possible path due to 4 is 2B. 29 * 41 * 30 * We shall indicate color with case, where b 42 * We shall indicate color with case, where black nodes are uppercase and red 31 * nodes will be lowercase. Unknown color nod 43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within 32 * parentheses and have some accompanying tex 44 * parentheses and have some accompanying text comment. 33 */ 45 */ 34 46 35 /* << 36 * Notes on lockless lookups: << 37 * << 38 * All stores to the tree structure (rb_left a << 39 * WRITE_ONCE(). And we must not inadvertently << 40 * tree structure as seen in program order. << 41 * << 42 * These two requirements will allow lockless << 43 * correct iteration mind you, tree rotations << 44 * miss entire subtrees. << 45 * << 46 * But they do guarantee that any such travers << 47 * and that it will indeed complete -- does no << 48 * << 49 * It also guarantees that if the lookup retur << 50 * one. But not returning an element does _NOT << 51 * << 52 * NOTE: << 53 * << 54 * Stores to __rb_parent_color are not importa << 55 * are left undone as of now. Nor did I check << 56 * pointers. << 57 */ << 58 << 59 static inline void rb_set_black(struct rb_node 47 static inline void rb_set_black(struct rb_node *rb) 60 { 48 { 61 rb->__rb_parent_color += RB_BLACK; !! 49 rb->__rb_parent_color |= RB_BLACK; 62 } 50 } 63 51 64 static inline struct rb_node *rb_red_parent(st 52 static inline struct rb_node *rb_red_parent(struct rb_node *red) 65 { 53 { 66 return (struct rb_node *)red->__rb_par 54 return (struct rb_node *)red->__rb_parent_color; 67 } 55 } 68 56 69 /* 57 /* 70 * Helper function for rotations: 58 * Helper function for rotations: 71 * - old's parent and color get assigned to ne 59 * - old's parent and color get assigned to new 72 * - old gets assigned new as a parent and 'co 60 * - old gets assigned new as a parent and 'color' as a color. 73 */ 61 */ 74 static inline void 62 static inline void 75 __rb_rotate_set_parents(struct rb_node *old, s 63 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, 76 struct rb_root *root, 64 struct rb_root *root, int color) 77 { 65 { 78 struct rb_node *parent = rb_parent(old 66 struct rb_node *parent = rb_parent(old); 79 new->__rb_parent_color = old->__rb_par 67 new->__rb_parent_color = old->__rb_parent_color; 80 rb_set_parent_color(old, new, color); 68 rb_set_parent_color(old, new, color); 81 __rb_change_child(old, new, parent, ro 69 __rb_change_child(old, new, parent, root); 82 } 70 } 83 71 84 static __always_inline void 72 static __always_inline void 85 __rb_insert(struct rb_node *node, struct rb_ro 73 __rb_insert(struct rb_node *node, struct rb_root *root, 86 void (*augment_rotate)(struct rb_n 74 void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) 87 { 75 { 88 struct rb_node *parent = rb_red_parent 76 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; 89 77 90 while (true) { 78 while (true) { 91 /* 79 /* 92 * Loop invariant: node is red !! 80 * Loop invariant: node is red >> 81 * >> 82 * If there is a black parent, we are done. >> 83 * Otherwise, take some corrective action as we don't >> 84 * want a red root or two consecutive red nodes. 93 */ 85 */ 94 if (unlikely(!parent)) { !! 86 if (!parent) { 95 /* << 96 * The inserted node i << 97 * first node, or we r << 98 * are no longer viola << 99 */ << 100 rb_set_parent_color(no 87 rb_set_parent_color(node, NULL, RB_BLACK); 101 break; 88 break; 102 } !! 89 } else if (rb_is_black(parent)) 103 << 104 /* << 105 * If there is a black parent, << 106 * Otherwise, take some correc << 107 * per 4), we don't want a red << 108 * consecutive red nodes. << 109 */ << 110 if(rb_is_black(parent)) << 111 break; 90 break; 112 91 113 gparent = rb_red_parent(parent 92 gparent = rb_red_parent(parent); 114 93 115 tmp = gparent->rb_right; 94 tmp = gparent->rb_right; 116 if (parent != tmp) { /* par 95 if (parent != tmp) { /* parent == gparent->rb_left */ 117 if (tmp && rb_is_red(t 96 if (tmp && rb_is_red(tmp)) { 118 /* 97 /* 119 * Case 1 - no !! 98 * Case 1 - color flips 120 * 99 * 121 * G 100 * G g 122 * / \ 101 * / \ / \ 123 * p u 102 * p u --> P U 124 * / 103 * / / 125 * n !! 104 * n N 126 * 105 * 127 * However, si 106 * However, since g's parent might be red, and 128 * 4) does not 107 * 4) does not allow this, we need to recurse 129 * at g. 108 * at g. 130 */ 109 */ 131 rb_set_parent_ 110 rb_set_parent_color(tmp, gparent, RB_BLACK); 132 rb_set_parent_ 111 rb_set_parent_color(parent, gparent, RB_BLACK); 133 node = gparent 112 node = gparent; 134 parent = rb_pa 113 parent = rb_parent(node); 135 rb_set_parent_ 114 rb_set_parent_color(node, parent, RB_RED); 136 continue; 115 continue; 137 } 116 } 138 117 139 tmp = parent->rb_right 118 tmp = parent->rb_right; 140 if (node == tmp) { 119 if (node == tmp) { 141 /* 120 /* 142 * Case 2 - no !! 121 * Case 2 - left rotate at parent 143 * the parent' << 144 * 122 * 145 * G 123 * G G 146 * / \ 124 * / \ / \ 147 * p U - 125 * p U --> n U 148 * \ 126 * \ / 149 * n 127 * n p 150 * 128 * 151 * This still 129 * This still leaves us in violation of 4), the 152 * continuatio 130 * continuation into Case 3 will fix that. 153 */ 131 */ 154 tmp = node->rb !! 132 parent->rb_right = tmp = node->rb_left; 155 WRITE_ONCE(par !! 133 node->rb_left = parent; 156 WRITE_ONCE(nod << 157 if (tmp) 134 if (tmp) 158 rb_set 135 rb_set_parent_color(tmp, parent, 159 136 RB_BLACK); 160 rb_set_parent_ 137 rb_set_parent_color(parent, node, RB_RED); 161 augment_rotate 138 augment_rotate(parent, node); 162 parent = node; 139 parent = node; 163 tmp = node->rb 140 tmp = node->rb_right; 164 } 141 } 165 142 166 /* 143 /* 167 * Case 3 - node's unc !! 144 * Case 3 - right rotate at gparent 168 * the parent's left c << 169 * 145 * 170 * G 146 * G P 171 * / \ / 147 * / \ / \ 172 * p U --> n 148 * p U --> n g 173 * / 149 * / \ 174 * n 150 * n U 175 */ 151 */ 176 WRITE_ONCE(gparent->rb !! 152 gparent->rb_left = tmp; /* == parent->rb_right */ 177 WRITE_ONCE(parent->rb_ !! 153 parent->rb_right = gparent; 178 if (tmp) 154 if (tmp) 179 rb_set_parent_ 155 rb_set_parent_color(tmp, gparent, RB_BLACK); 180 __rb_rotate_set_parent 156 __rb_rotate_set_parents(gparent, parent, root, RB_RED); 181 augment_rotate(gparent 157 augment_rotate(gparent, parent); 182 break; 158 break; 183 } else { 159 } else { 184 tmp = gparent->rb_left 160 tmp = gparent->rb_left; 185 if (tmp && rb_is_red(t 161 if (tmp && rb_is_red(tmp)) { 186 /* Case 1 - co 162 /* Case 1 - color flips */ 187 rb_set_parent_ 163 rb_set_parent_color(tmp, gparent, RB_BLACK); 188 rb_set_parent_ 164 rb_set_parent_color(parent, gparent, RB_BLACK); 189 node = gparent 165 node = gparent; 190 parent = rb_pa 166 parent = rb_parent(node); 191 rb_set_parent_ 167 rb_set_parent_color(node, parent, RB_RED); 192 continue; 168 continue; 193 } 169 } 194 170 195 tmp = parent->rb_left; 171 tmp = parent->rb_left; 196 if (node == tmp) { 172 if (node == tmp) { 197 /* Case 2 - ri 173 /* Case 2 - right rotate at parent */ 198 tmp = node->rb !! 174 parent->rb_left = tmp = node->rb_right; 199 WRITE_ONCE(par !! 175 node->rb_right = parent; 200 WRITE_ONCE(nod << 201 if (tmp) 176 if (tmp) 202 rb_set 177 rb_set_parent_color(tmp, parent, 203 178 RB_BLACK); 204 rb_set_parent_ 179 rb_set_parent_color(parent, node, RB_RED); 205 augment_rotate 180 augment_rotate(parent, node); 206 parent = node; 181 parent = node; 207 tmp = node->rb 182 tmp = node->rb_left; 208 } 183 } 209 184 210 /* Case 3 - left rotat 185 /* Case 3 - left rotate at gparent */ 211 WRITE_ONCE(gparent->rb !! 186 gparent->rb_right = tmp; /* == parent->rb_left */ 212 WRITE_ONCE(parent->rb_ !! 187 parent->rb_left = gparent; 213 if (tmp) 188 if (tmp) 214 rb_set_parent_ 189 rb_set_parent_color(tmp, gparent, RB_BLACK); 215 __rb_rotate_set_parent 190 __rb_rotate_set_parents(gparent, parent, root, RB_RED); 216 augment_rotate(gparent 191 augment_rotate(gparent, parent); 217 break; 192 break; 218 } 193 } 219 } 194 } 220 } 195 } 221 196 222 /* 197 /* 223 * Inline version for rb_erase() use - we want 198 * Inline version for rb_erase() use - we want to be able to inline 224 * and eliminate the dummy_rotate callback the 199 * and eliminate the dummy_rotate callback there 225 */ 200 */ 226 static __always_inline void 201 static __always_inline void 227 ____rb_erase_color(struct rb_node *parent, str 202 ____rb_erase_color(struct rb_node *parent, struct rb_root *root, 228 void (*augment_rotate)(struct rb_node 203 void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) 229 { 204 { 230 struct rb_node *node = NULL, *sibling, 205 struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; 231 206 232 while (true) { 207 while (true) { 233 /* 208 /* 234 * Loop invariants: 209 * Loop invariants: 235 * - node is black (or NULL on 210 * - node is black (or NULL on first iteration) 236 * - node is not the root (par 211 * - node is not the root (parent is not NULL) 237 * - All leaf paths going thro 212 * - All leaf paths going through parent and node have a 238 * black node count that is 213 * black node count that is 1 lower than other leaf paths. 239 */ 214 */ 240 sibling = parent->rb_right; 215 sibling = parent->rb_right; 241 if (node != sibling) { /* nod 216 if (node != sibling) { /* node == parent->rb_left */ 242 if (rb_is_red(sibling) 217 if (rb_is_red(sibling)) { 243 /* 218 /* 244 * Case 1 - le 219 * Case 1 - left rotate at parent 245 * 220 * 246 * P 221 * P S 247 * / \ 222 * / \ / \ 248 * N s 223 * N s --> p Sr 249 * / \ 224 * / \ / \ 250 * Sl Sr 225 * Sl Sr N Sl 251 */ 226 */ 252 tmp1 = sibling !! 227 parent->rb_right = tmp1 = sibling->rb_left; 253 WRITE_ONCE(par !! 228 sibling->rb_left = parent; 254 WRITE_ONCE(sib << 255 rb_set_parent_ 229 rb_set_parent_color(tmp1, parent, RB_BLACK); 256 __rb_rotate_se 230 __rb_rotate_set_parents(parent, sibling, root, 257 231 RB_RED); 258 augment_rotate 232 augment_rotate(parent, sibling); 259 sibling = tmp1 233 sibling = tmp1; 260 } 234 } 261 tmp1 = sibling->rb_rig 235 tmp1 = sibling->rb_right; 262 if (!tmp1 || rb_is_bla 236 if (!tmp1 || rb_is_black(tmp1)) { 263 tmp2 = sibling 237 tmp2 = sibling->rb_left; 264 if (!tmp2 || r 238 if (!tmp2 || rb_is_black(tmp2)) { 265 /* 239 /* 266 * Cas 240 * Case 2 - sibling color flip 267 * (p 241 * (p could be either color here) 268 * 242 * 269 * 243 * (p) (p) 270 * 244 * / \ / \ 271 * N 245 * N S --> N s 272 * 246 * / \ / \ 273 * 247 * Sl Sr Sl Sr 274 * 248 * 275 * Thi 249 * This leaves us violating 5) which 276 * can 250 * can be fixed by flipping p to black 277 * if 251 * if it was red, or by recursing at p. 278 * p i 252 * p is red when coming from Case 1. 279 */ 253 */ 280 rb_set 254 rb_set_parent_color(sibling, parent, 281 255 RB_RED); 282 if (rb 256 if (rb_is_red(parent)) 283 257 rb_set_black(parent); 284 else { 258 else { 285 259 node = parent; 286 260 parent = rb_parent(node); 287 261 if (parent) 288 262 continue; 289 } 263 } 290 break; 264 break; 291 } 265 } 292 /* 266 /* 293 * Case 3 - ri 267 * Case 3 - right rotate at sibling 294 * (p could be 268 * (p could be either color here) 295 * 269 * 296 * (p) 270 * (p) (p) 297 * / \ 271 * / \ / \ 298 * N S - !! 272 * N S --> N Sl 299 * / \ 273 * / \ \ 300 * sl sr !! 274 * sl Sr s 301 * 275 * \ 302 * !! 276 * Sr 303 * << 304 * Note: p mig << 305 * p and sl ar << 306 * breaks prop << 307 * Case 4 (in << 308 * whi << 309 * and << 310 * << 311 * (p) << 312 * / \ << 313 * N sl - << 314 * \ << 315 * S << 316 * \ << 317 * sr << 318 */ 277 */ 319 tmp1 = tmp2->r !! 278 sibling->rb_left = tmp1 = tmp2->rb_right; 320 WRITE_ONCE(sib !! 279 tmp2->rb_right = sibling; 321 WRITE_ONCE(tmp !! 280 parent->rb_right = tmp2; 322 WRITE_ONCE(par << 323 if (tmp1) 281 if (tmp1) 324 rb_set 282 rb_set_parent_color(tmp1, sibling, 325 283 RB_BLACK); 326 augment_rotate 284 augment_rotate(sibling, tmp2); 327 tmp1 = sibling 285 tmp1 = sibling; 328 sibling = tmp2 286 sibling = tmp2; 329 } 287 } 330 /* 288 /* 331 * Case 4 - left rotat 289 * Case 4 - left rotate at parent + color flips 332 * (p and sl could be 290 * (p and sl could be either color here. 333 * After rotation, p 291 * After rotation, p becomes black, s acquires 334 * p's color, and sl 292 * p's color, and sl keeps its color) 335 * 293 * 336 * (p) 294 * (p) (s) 337 * / \ 295 * / \ / \ 338 * N S --> 296 * N S --> P Sr 339 * / \ 297 * / \ / \ 340 * (sl) sr N 298 * (sl) sr N (sl) 341 */ 299 */ 342 tmp2 = sibling->rb_lef !! 300 parent->rb_right = tmp2 = sibling->rb_left; 343 WRITE_ONCE(parent->rb_ !! 301 sibling->rb_left = parent; 344 WRITE_ONCE(sibling->rb << 345 rb_set_parent_color(tm 302 rb_set_parent_color(tmp1, sibling, RB_BLACK); 346 if (tmp2) 303 if (tmp2) 347 rb_set_parent( 304 rb_set_parent(tmp2, parent); 348 __rb_rotate_set_parent 305 __rb_rotate_set_parents(parent, sibling, root, 349 306 RB_BLACK); 350 augment_rotate(parent, 307 augment_rotate(parent, sibling); 351 break; 308 break; 352 } else { 309 } else { 353 sibling = parent->rb_l 310 sibling = parent->rb_left; 354 if (rb_is_red(sibling) 311 if (rb_is_red(sibling)) { 355 /* Case 1 - ri 312 /* Case 1 - right rotate at parent */ 356 tmp1 = sibling !! 313 parent->rb_left = tmp1 = sibling->rb_right; 357 WRITE_ONCE(par !! 314 sibling->rb_right = parent; 358 WRITE_ONCE(sib << 359 rb_set_parent_ 315 rb_set_parent_color(tmp1, parent, RB_BLACK); 360 __rb_rotate_se 316 __rb_rotate_set_parents(parent, sibling, root, 361 317 RB_RED); 362 augment_rotate 318 augment_rotate(parent, sibling); 363 sibling = tmp1 319 sibling = tmp1; 364 } 320 } 365 tmp1 = sibling->rb_lef 321 tmp1 = sibling->rb_left; 366 if (!tmp1 || rb_is_bla 322 if (!tmp1 || rb_is_black(tmp1)) { 367 tmp2 = sibling 323 tmp2 = sibling->rb_right; 368 if (!tmp2 || r 324 if (!tmp2 || rb_is_black(tmp2)) { 369 /* Cas 325 /* Case 2 - sibling color flip */ 370 rb_set 326 rb_set_parent_color(sibling, parent, 371 327 RB_RED); 372 if (rb 328 if (rb_is_red(parent)) 373 329 rb_set_black(parent); 374 else { 330 else { 375 331 node = parent; 376 332 parent = rb_parent(node); 377 333 if (parent) 378 334 continue; 379 } 335 } 380 break; 336 break; 381 } 337 } 382 /* Case 3 - le !! 338 /* Case 3 - right rotate at sibling */ 383 tmp1 = tmp2->r !! 339 sibling->rb_right = tmp1 = tmp2->rb_left; 384 WRITE_ONCE(sib !! 340 tmp2->rb_left = sibling; 385 WRITE_ONCE(tmp !! 341 parent->rb_left = tmp2; 386 WRITE_ONCE(par << 387 if (tmp1) 342 if (tmp1) 388 rb_set 343 rb_set_parent_color(tmp1, sibling, 389 344 RB_BLACK); 390 augment_rotate 345 augment_rotate(sibling, tmp2); 391 tmp1 = sibling 346 tmp1 = sibling; 392 sibling = tmp2 347 sibling = tmp2; 393 } 348 } 394 /* Case 4 - right rota !! 349 /* Case 4 - left rotate at parent + color flips */ 395 tmp2 = sibling->rb_rig !! 350 parent->rb_left = tmp2 = sibling->rb_right; 396 WRITE_ONCE(parent->rb_ !! 351 sibling->rb_right = parent; 397 WRITE_ONCE(sibling->rb << 398 rb_set_parent_color(tm 352 rb_set_parent_color(tmp1, sibling, RB_BLACK); 399 if (tmp2) 353 if (tmp2) 400 rb_set_parent( 354 rb_set_parent(tmp2, parent); 401 __rb_rotate_set_parent 355 __rb_rotate_set_parents(parent, sibling, root, 402 356 RB_BLACK); 403 augment_rotate(parent, 357 augment_rotate(parent, sibling); 404 break; 358 break; 405 } 359 } 406 } 360 } 407 } 361 } 408 362 409 /* Non-inline version for rb_erase_augmented() 363 /* Non-inline version for rb_erase_augmented() use */ 410 void __rb_erase_color(struct rb_node *parent, 364 void __rb_erase_color(struct rb_node *parent, struct rb_root *root, 411 void (*augment_rotate)(struct rb_node 365 void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) 412 { 366 { 413 ____rb_erase_color(parent, root, augme 367 ____rb_erase_color(parent, root, augment_rotate); 414 } 368 } 415 EXPORT_SYMBOL(__rb_erase_color); 369 EXPORT_SYMBOL(__rb_erase_color); 416 370 417 /* 371 /* 418 * Non-augmented rbtree manipulation functions 372 * Non-augmented rbtree manipulation functions. 419 * 373 * 420 * We use dummy augmented callbacks here, and 374 * We use dummy augmented callbacks here, and have the compiler optimize them 421 * out of the rb_insert_color() and rb_erase() 375 * out of the rb_insert_color() and rb_erase() function definitions. 422 */ 376 */ 423 377 424 static inline void dummy_propagate(struct rb_n 378 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} 425 static inline void dummy_copy(struct rb_node * 379 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} 426 static inline void dummy_rotate(struct rb_node 380 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} 427 381 428 static const struct rb_augment_callbacks dummy 382 static const struct rb_augment_callbacks dummy_callbacks = { 429 .propagate = dummy_propagate, !! 383 dummy_propagate, dummy_copy, dummy_rotate 430 .copy = dummy_copy, << 431 .rotate = dummy_rotate << 432 }; 384 }; 433 385 434 void rb_insert_color(struct rb_node *node, str 386 void rb_insert_color(struct rb_node *node, struct rb_root *root) 435 { 387 { 436 __rb_insert(node, root, dummy_rotate); 388 __rb_insert(node, root, dummy_rotate); 437 } 389 } 438 EXPORT_SYMBOL(rb_insert_color); 390 EXPORT_SYMBOL(rb_insert_color); 439 391 440 void rb_erase(struct rb_node *node, struct rb_ 392 void rb_erase(struct rb_node *node, struct rb_root *root) 441 { 393 { 442 struct rb_node *rebalance; 394 struct rb_node *rebalance; 443 rebalance = __rb_erase_augmented(node, 395 rebalance = __rb_erase_augmented(node, root, &dummy_callbacks); 444 if (rebalance) 396 if (rebalance) 445 ____rb_erase_color(rebalance, 397 ____rb_erase_color(rebalance, root, dummy_rotate); 446 } 398 } 447 EXPORT_SYMBOL(rb_erase); 399 EXPORT_SYMBOL(rb_erase); 448 400 449 /* 401 /* 450 * Augmented rbtree manipulation functions. 402 * Augmented rbtree manipulation functions. 451 * 403 * 452 * This instantiates the same __always_inline 404 * This instantiates the same __always_inline functions as in the non-augmented 453 * case, but this time with user-defined callb 405 * case, but this time with user-defined callbacks. 454 */ 406 */ 455 407 456 void __rb_insert_augmented(struct rb_node *nod 408 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, 457 void (*augment_rotate)(struct rb_node 409 void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) 458 { 410 { 459 __rb_insert(node, root, augment_rotate 411 __rb_insert(node, root, augment_rotate); 460 } 412 } 461 EXPORT_SYMBOL(__rb_insert_augmented); 413 EXPORT_SYMBOL(__rb_insert_augmented); 462 414 463 /* 415 /* 464 * This function returns the first node (in so 416 * This function returns the first node (in sort order) of the tree. 465 */ 417 */ 466 struct rb_node *rb_first(const struct rb_root 418 struct rb_node *rb_first(const struct rb_root *root) 467 { 419 { 468 struct rb_node *n; 420 struct rb_node *n; 469 421 470 n = root->rb_node; 422 n = root->rb_node; 471 if (!n) 423 if (!n) 472 return NULL; 424 return NULL; 473 while (n->rb_left) 425 while (n->rb_left) 474 n = n->rb_left; 426 n = n->rb_left; 475 return n; 427 return n; 476 } 428 } 477 EXPORT_SYMBOL(rb_first); 429 EXPORT_SYMBOL(rb_first); 478 430 479 struct rb_node *rb_last(const struct rb_root * 431 struct rb_node *rb_last(const struct rb_root *root) 480 { 432 { 481 struct rb_node *n; 433 struct rb_node *n; 482 434 483 n = root->rb_node; 435 n = root->rb_node; 484 if (!n) 436 if (!n) 485 return NULL; 437 return NULL; 486 while (n->rb_right) 438 while (n->rb_right) 487 n = n->rb_right; 439 n = n->rb_right; 488 return n; 440 return n; 489 } 441 } 490 EXPORT_SYMBOL(rb_last); 442 EXPORT_SYMBOL(rb_last); 491 443 492 struct rb_node *rb_next(const struct rb_node * 444 struct rb_node *rb_next(const struct rb_node *node) 493 { 445 { 494 struct rb_node *parent; 446 struct rb_node *parent; 495 447 496 if (RB_EMPTY_NODE(node)) 448 if (RB_EMPTY_NODE(node)) 497 return NULL; 449 return NULL; 498 450 499 /* 451 /* 500 * If we have a right-hand child, go d 452 * If we have a right-hand child, go down and then left as far 501 * as we can. 453 * as we can. 502 */ 454 */ 503 if (node->rb_right) { 455 if (node->rb_right) { 504 node = node->rb_right; !! 456 node = node->rb_right; 505 while (node->rb_left) 457 while (node->rb_left) 506 node = node->rb_left; !! 458 node=node->rb_left; 507 return (struct rb_node *)node; 459 return (struct rb_node *)node; 508 } 460 } 509 461 510 /* 462 /* 511 * No right-hand children. Everything 463 * No right-hand children. Everything down and left is smaller than us, 512 * so any 'next' node must be in the g 464 * so any 'next' node must be in the general direction of our parent. 513 * Go up the tree; any time the ancest 465 * Go up the tree; any time the ancestor is a right-hand child of its 514 * parent, keep going up. First time i 466 * parent, keep going up. First time it's a left-hand child of its 515 * parent, said parent is our 'next' n 467 * parent, said parent is our 'next' node. 516 */ 468 */ 517 while ((parent = rb_parent(node)) && n 469 while ((parent = rb_parent(node)) && node == parent->rb_right) 518 node = parent; 470 node = parent; 519 471 520 return parent; 472 return parent; 521 } 473 } 522 EXPORT_SYMBOL(rb_next); 474 EXPORT_SYMBOL(rb_next); 523 475 524 struct rb_node *rb_prev(const struct rb_node * 476 struct rb_node *rb_prev(const struct rb_node *node) 525 { 477 { 526 struct rb_node *parent; 478 struct rb_node *parent; 527 479 528 if (RB_EMPTY_NODE(node)) 480 if (RB_EMPTY_NODE(node)) 529 return NULL; 481 return NULL; 530 482 531 /* 483 /* 532 * If we have a left-hand child, go do 484 * If we have a left-hand child, go down and then right as far 533 * as we can. 485 * as we can. 534 */ 486 */ 535 if (node->rb_left) { 487 if (node->rb_left) { 536 node = node->rb_left; !! 488 node = node->rb_left; 537 while (node->rb_right) 489 while (node->rb_right) 538 node = node->rb_right; !! 490 node=node->rb_right; 539 return (struct rb_node *)node; 491 return (struct rb_node *)node; 540 } 492 } 541 493 542 /* 494 /* 543 * No left-hand children. Go up till w 495 * No left-hand children. Go up till we find an ancestor which 544 * is a right-hand child of its parent 496 * is a right-hand child of its parent. 545 */ 497 */ 546 while ((parent = rb_parent(node)) && n 498 while ((parent = rb_parent(node)) && node == parent->rb_left) 547 node = parent; 499 node = parent; 548 500 549 return parent; 501 return parent; 550 } 502 } 551 EXPORT_SYMBOL(rb_prev); 503 EXPORT_SYMBOL(rb_prev); 552 504 553 void rb_replace_node(struct rb_node *victim, s 505 void rb_replace_node(struct rb_node *victim, struct rb_node *new, 554 struct rb_root *root) 506 struct rb_root *root) 555 { 507 { 556 struct rb_node *parent = rb_parent(vic 508 struct rb_node *parent = rb_parent(victim); 557 509 558 /* Copy the pointers/colour from the v << 559 *new = *victim; << 560 << 561 /* Set the surrounding nodes to point 510 /* Set the surrounding nodes to point to the replacement */ >> 511 __rb_change_child(victim, new, parent, root); 562 if (victim->rb_left) 512 if (victim->rb_left) 563 rb_set_parent(victim->rb_left, 513 rb_set_parent(victim->rb_left, new); 564 if (victim->rb_right) 514 if (victim->rb_right) 565 rb_set_parent(victim->rb_right 515 rb_set_parent(victim->rb_right, new); 566 __rb_change_child(victim, new, parent, << 567 } << 568 EXPORT_SYMBOL(rb_replace_node); << 569 << 570 void rb_replace_node_rcu(struct rb_node *victi << 571 struct rb_root *root) << 572 { << 573 struct rb_node *parent = rb_parent(vic << 574 516 575 /* Copy the pointers/colour from the v 517 /* Copy the pointers/colour from the victim to the replacement */ 576 *new = *victim; 518 *new = *victim; 577 << 578 /* Set the surrounding nodes to point << 579 if (victim->rb_left) << 580 rb_set_parent(victim->rb_left, << 581 if (victim->rb_right) << 582 rb_set_parent(victim->rb_right << 583 << 584 /* Set the parent's pointer to the new << 585 * so that the pointers onwards are se << 586 * an RCU walk over the tree. << 587 */ << 588 __rb_change_child_rcu(victim, new, par << 589 } 519 } 590 EXPORT_SYMBOL(rb_replace_node_rcu); !! 520 EXPORT_SYMBOL(rb_replace_node); 591 << 592 static struct rb_node *rb_left_deepest_node(co << 593 { << 594 for (;;) { << 595 if (node->rb_left) << 596 node = node->rb_left; << 597 else if (node->rb_right) << 598 node = node->rb_right; << 599 else << 600 return (struct rb_node << 601 } << 602 } << 603 << 604 struct rb_node *rb_next_postorder(const struct << 605 { << 606 const struct rb_node *parent; << 607 if (!node) << 608 return NULL; << 609 parent = rb_parent(node); << 610 << 611 /* If we're sitting on node, we've alr << 612 if (parent && node == parent->rb_left << 613 /* If we are the parent's left << 614 * node then all the way down << 615 return rb_left_deepest_node(pa << 616 } else << 617 /* Otherwise we are the parent << 618 * should be next */ << 619 return (struct rb_node *)paren << 620 } << 621 EXPORT_SYMBOL(rb_next_postorder); << 622 << 623 struct rb_node *rb_first_postorder(const struc << 624 { << 625 if (!root->rb_node) << 626 return NULL; << 627 << 628 return rb_left_deepest_node(root->rb_n << 629 } << 630 EXPORT_SYMBOL(rb_first_postorder); << 631 521
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.