1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 Red Black Trees 3 Red Black Trees 4 (C) 1999 Andrea Arcangeli <andrea@suse.de> 4 (C) 1999 Andrea Arcangeli <andrea@suse.de> 5 (C) 2002 David Woodhouse <dwmw2@infradead.o 5 (C) 2002 David Woodhouse <dwmw2@infradead.org> 6 (C) 2012 Michel Lespinasse <walken@google.c 6 (C) 2012 Michel Lespinasse <walken@google.com> 7 7 8 8 9 linux/lib/rbtree.c 9 linux/lib/rbtree.c 10 */ 10 */ 11 11 12 #include <linux/rbtree_augmented.h> 12 #include <linux/rbtree_augmented.h> 13 #include <linux/export.h> 13 #include <linux/export.h> 14 14 15 /* 15 /* 16 * red-black trees properties: https://en.wik !! 16 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree 17 * 17 * 18 * 1) A node is either red or black 18 * 1) A node is either red or black 19 * 2) The root is black 19 * 2) The root is black 20 * 3) All leaves (NULL) are black 20 * 3) All leaves (NULL) are black 21 * 4) Both children of every red node are bla 21 * 4) Both children of every red node are black 22 * 5) Every simple path from root to leaves c 22 * 5) Every simple path from root to leaves contains the same number 23 * of black nodes. 23 * of black nodes. 24 * 24 * 25 * 4 and 5 give the O(log n) guarantee, since 25 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two 26 * consecutive red nodes in a path and every 26 * consecutive red nodes in a path and every red node is therefore followed by 27 * a black. So if B is the number of black no 27 * a black. So if B is the number of black nodes on every simple path (as per 28 * 5), then the longest possible path due to 28 * 5), then the longest possible path due to 4 is 2B. 29 * 29 * 30 * We shall indicate color with case, where b 30 * We shall indicate color with case, where black nodes are uppercase and red 31 * nodes will be lowercase. Unknown color nod 31 * nodes will be lowercase. Unknown color nodes shall be drawn as red within 32 * parentheses and have some accompanying tex 32 * parentheses and have some accompanying text comment. 33 */ 33 */ 34 34 35 /* 35 /* 36 * Notes on lockless lookups: 36 * Notes on lockless lookups: 37 * 37 * 38 * All stores to the tree structure (rb_left a 38 * All stores to the tree structure (rb_left and rb_right) must be done using 39 * WRITE_ONCE(). And we must not inadvertently 39 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the 40 * tree structure as seen in program order. 40 * tree structure as seen in program order. 41 * 41 * 42 * These two requirements will allow lockless 42 * These two requirements will allow lockless iteration of the tree -- not 43 * correct iteration mind you, tree rotations 43 * correct iteration mind you, tree rotations are not atomic so a lookup might 44 * miss entire subtrees. 44 * miss entire subtrees. 45 * 45 * 46 * But they do guarantee that any such travers 46 * But they do guarantee that any such traversal will only see valid elements 47 * and that it will indeed complete -- does no 47 * and that it will indeed complete -- does not get stuck in a loop. 48 * 48 * 49 * It also guarantees that if the lookup retur 49 * It also guarantees that if the lookup returns an element it is the 'correct' 50 * one. But not returning an element does _NOT 50 * one. But not returning an element does _NOT_ mean it's not present. 51 * 51 * 52 * NOTE: 52 * NOTE: 53 * 53 * 54 * Stores to __rb_parent_color are not importa 54 * Stores to __rb_parent_color are not important for simple lookups so those 55 * are left undone as of now. Nor did I check 55 * are left undone as of now. Nor did I check for loops involving parent 56 * pointers. 56 * pointers. 57 */ 57 */ 58 58 59 static inline void rb_set_black(struct rb_node 59 static inline void rb_set_black(struct rb_node *rb) 60 { 60 { 61 rb->__rb_parent_color += RB_BLACK; !! 61 rb->__rb_parent_color |= RB_BLACK; 62 } 62 } 63 63 64 static inline struct rb_node *rb_red_parent(st 64 static inline struct rb_node *rb_red_parent(struct rb_node *red) 65 { 65 { 66 return (struct rb_node *)red->__rb_par 66 return (struct rb_node *)red->__rb_parent_color; 67 } 67 } 68 68 69 /* 69 /* 70 * Helper function for rotations: 70 * Helper function for rotations: 71 * - old's parent and color get assigned to ne 71 * - old's parent and color get assigned to new 72 * - old gets assigned new as a parent and 'co 72 * - old gets assigned new as a parent and 'color' as a color. 73 */ 73 */ 74 static inline void 74 static inline void 75 __rb_rotate_set_parents(struct rb_node *old, s 75 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, 76 struct rb_root *root, 76 struct rb_root *root, int color) 77 { 77 { 78 struct rb_node *parent = rb_parent(old 78 struct rb_node *parent = rb_parent(old); 79 new->__rb_parent_color = old->__rb_par 79 new->__rb_parent_color = old->__rb_parent_color; 80 rb_set_parent_color(old, new, color); 80 rb_set_parent_color(old, new, color); 81 __rb_change_child(old, new, parent, ro 81 __rb_change_child(old, new, parent, root); 82 } 82 } 83 83 84 static __always_inline void 84 static __always_inline void 85 __rb_insert(struct rb_node *node, struct rb_ro 85 __rb_insert(struct rb_node *node, struct rb_root *root, 86 void (*augment_rotate)(struct rb_n 86 void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) 87 { 87 { 88 struct rb_node *parent = rb_red_parent 88 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; 89 89 90 while (true) { 90 while (true) { 91 /* 91 /* 92 * Loop invariant: node is red 92 * Loop invariant: node is red. 93 */ 93 */ 94 if (unlikely(!parent)) { 94 if (unlikely(!parent)) { 95 /* 95 /* 96 * The inserted node i 96 * The inserted node is root. Either this is the 97 * first node, or we r 97 * first node, or we recursed at Case 1 below and 98 * are no longer viola 98 * are no longer violating 4). 99 */ 99 */ 100 rb_set_parent_color(no 100 rb_set_parent_color(node, NULL, RB_BLACK); 101 break; 101 break; 102 } 102 } 103 103 104 /* 104 /* 105 * If there is a black parent, 105 * If there is a black parent, we are done. 106 * Otherwise, take some correc 106 * Otherwise, take some corrective action as, 107 * per 4), we don't want a red 107 * per 4), we don't want a red root or two 108 * consecutive red nodes. 108 * consecutive red nodes. 109 */ 109 */ 110 if(rb_is_black(parent)) 110 if(rb_is_black(parent)) 111 break; 111 break; 112 112 113 gparent = rb_red_parent(parent 113 gparent = rb_red_parent(parent); 114 114 115 tmp = gparent->rb_right; 115 tmp = gparent->rb_right; 116 if (parent != tmp) { /* par 116 if (parent != tmp) { /* parent == gparent->rb_left */ 117 if (tmp && rb_is_red(t 117 if (tmp && rb_is_red(tmp)) { 118 /* 118 /* 119 * Case 1 - no 119 * Case 1 - node's uncle is red (color flips). 120 * 120 * 121 * G 121 * G g 122 * / \ 122 * / \ / \ 123 * p u 123 * p u --> P U 124 * / 124 * / / 125 * n 125 * n n 126 * 126 * 127 * However, si 127 * However, since g's parent might be red, and 128 * 4) does not 128 * 4) does not allow this, we need to recurse 129 * at g. 129 * at g. 130 */ 130 */ 131 rb_set_parent_ 131 rb_set_parent_color(tmp, gparent, RB_BLACK); 132 rb_set_parent_ 132 rb_set_parent_color(parent, gparent, RB_BLACK); 133 node = gparent 133 node = gparent; 134 parent = rb_pa 134 parent = rb_parent(node); 135 rb_set_parent_ 135 rb_set_parent_color(node, parent, RB_RED); 136 continue; 136 continue; 137 } 137 } 138 138 139 tmp = parent->rb_right 139 tmp = parent->rb_right; 140 if (node == tmp) { 140 if (node == tmp) { 141 /* 141 /* 142 * Case 2 - no 142 * Case 2 - node's uncle is black and node is 143 * the parent' 143 * the parent's right child (left rotate at parent). 144 * 144 * 145 * G 145 * G G 146 * / \ 146 * / \ / \ 147 * p U - 147 * p U --> n U 148 * \ 148 * \ / 149 * n 149 * n p 150 * 150 * 151 * This still 151 * This still leaves us in violation of 4), the 152 * continuatio 152 * continuation into Case 3 will fix that. 153 */ 153 */ 154 tmp = node->rb 154 tmp = node->rb_left; 155 WRITE_ONCE(par 155 WRITE_ONCE(parent->rb_right, tmp); 156 WRITE_ONCE(nod 156 WRITE_ONCE(node->rb_left, parent); 157 if (tmp) 157 if (tmp) 158 rb_set 158 rb_set_parent_color(tmp, parent, 159 159 RB_BLACK); 160 rb_set_parent_ 160 rb_set_parent_color(parent, node, RB_RED); 161 augment_rotate 161 augment_rotate(parent, node); 162 parent = node; 162 parent = node; 163 tmp = node->rb 163 tmp = node->rb_right; 164 } 164 } 165 165 166 /* 166 /* 167 * Case 3 - node's unc 167 * Case 3 - node's uncle is black and node is 168 * the parent's left c 168 * the parent's left child (right rotate at gparent). 169 * 169 * 170 * G 170 * G P 171 * / \ / 171 * / \ / \ 172 * p U --> n 172 * p U --> n g 173 * / 173 * / \ 174 * n 174 * n U 175 */ 175 */ 176 WRITE_ONCE(gparent->rb 176 WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */ 177 WRITE_ONCE(parent->rb_ 177 WRITE_ONCE(parent->rb_right, gparent); 178 if (tmp) 178 if (tmp) 179 rb_set_parent_ 179 rb_set_parent_color(tmp, gparent, RB_BLACK); 180 __rb_rotate_set_parent 180 __rb_rotate_set_parents(gparent, parent, root, RB_RED); 181 augment_rotate(gparent 181 augment_rotate(gparent, parent); 182 break; 182 break; 183 } else { 183 } else { 184 tmp = gparent->rb_left 184 tmp = gparent->rb_left; 185 if (tmp && rb_is_red(t 185 if (tmp && rb_is_red(tmp)) { 186 /* Case 1 - co 186 /* Case 1 - color flips */ 187 rb_set_parent_ 187 rb_set_parent_color(tmp, gparent, RB_BLACK); 188 rb_set_parent_ 188 rb_set_parent_color(parent, gparent, RB_BLACK); 189 node = gparent 189 node = gparent; 190 parent = rb_pa 190 parent = rb_parent(node); 191 rb_set_parent_ 191 rb_set_parent_color(node, parent, RB_RED); 192 continue; 192 continue; 193 } 193 } 194 194 195 tmp = parent->rb_left; 195 tmp = parent->rb_left; 196 if (node == tmp) { 196 if (node == tmp) { 197 /* Case 2 - ri 197 /* Case 2 - right rotate at parent */ 198 tmp = node->rb 198 tmp = node->rb_right; 199 WRITE_ONCE(par 199 WRITE_ONCE(parent->rb_left, tmp); 200 WRITE_ONCE(nod 200 WRITE_ONCE(node->rb_right, parent); 201 if (tmp) 201 if (tmp) 202 rb_set 202 rb_set_parent_color(tmp, parent, 203 203 RB_BLACK); 204 rb_set_parent_ 204 rb_set_parent_color(parent, node, RB_RED); 205 augment_rotate 205 augment_rotate(parent, node); 206 parent = node; 206 parent = node; 207 tmp = node->rb 207 tmp = node->rb_left; 208 } 208 } 209 209 210 /* Case 3 - left rotat 210 /* Case 3 - left rotate at gparent */ 211 WRITE_ONCE(gparent->rb 211 WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */ 212 WRITE_ONCE(parent->rb_ 212 WRITE_ONCE(parent->rb_left, gparent); 213 if (tmp) 213 if (tmp) 214 rb_set_parent_ 214 rb_set_parent_color(tmp, gparent, RB_BLACK); 215 __rb_rotate_set_parent 215 __rb_rotate_set_parents(gparent, parent, root, RB_RED); 216 augment_rotate(gparent 216 augment_rotate(gparent, parent); 217 break; 217 break; 218 } 218 } 219 } 219 } 220 } 220 } 221 221 222 /* 222 /* 223 * Inline version for rb_erase() use - we want 223 * Inline version for rb_erase() use - we want to be able to inline 224 * and eliminate the dummy_rotate callback the 224 * and eliminate the dummy_rotate callback there 225 */ 225 */ 226 static __always_inline void 226 static __always_inline void 227 ____rb_erase_color(struct rb_node *parent, str 227 ____rb_erase_color(struct rb_node *parent, struct rb_root *root, 228 void (*augment_rotate)(struct rb_node 228 void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) 229 { 229 { 230 struct rb_node *node = NULL, *sibling, 230 struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; 231 231 232 while (true) { 232 while (true) { 233 /* 233 /* 234 * Loop invariants: 234 * Loop invariants: 235 * - node is black (or NULL on 235 * - node is black (or NULL on first iteration) 236 * - node is not the root (par 236 * - node is not the root (parent is not NULL) 237 * - All leaf paths going thro 237 * - All leaf paths going through parent and node have a 238 * black node count that is 238 * black node count that is 1 lower than other leaf paths. 239 */ 239 */ 240 sibling = parent->rb_right; 240 sibling = parent->rb_right; 241 if (node != sibling) { /* nod 241 if (node != sibling) { /* node == parent->rb_left */ 242 if (rb_is_red(sibling) 242 if (rb_is_red(sibling)) { 243 /* 243 /* 244 * Case 1 - le 244 * Case 1 - left rotate at parent 245 * 245 * 246 * P 246 * P S 247 * / \ 247 * / \ / \ 248 * N s 248 * N s --> p Sr 249 * / \ 249 * / \ / \ 250 * Sl Sr 250 * Sl Sr N Sl 251 */ 251 */ 252 tmp1 = sibling 252 tmp1 = sibling->rb_left; 253 WRITE_ONCE(par 253 WRITE_ONCE(parent->rb_right, tmp1); 254 WRITE_ONCE(sib 254 WRITE_ONCE(sibling->rb_left, parent); 255 rb_set_parent_ 255 rb_set_parent_color(tmp1, parent, RB_BLACK); 256 __rb_rotate_se 256 __rb_rotate_set_parents(parent, sibling, root, 257 257 RB_RED); 258 augment_rotate 258 augment_rotate(parent, sibling); 259 sibling = tmp1 259 sibling = tmp1; 260 } 260 } 261 tmp1 = sibling->rb_rig 261 tmp1 = sibling->rb_right; 262 if (!tmp1 || rb_is_bla 262 if (!tmp1 || rb_is_black(tmp1)) { 263 tmp2 = sibling 263 tmp2 = sibling->rb_left; 264 if (!tmp2 || r 264 if (!tmp2 || rb_is_black(tmp2)) { 265 /* 265 /* 266 * Cas 266 * Case 2 - sibling color flip 267 * (p 267 * (p could be either color here) 268 * 268 * 269 * 269 * (p) (p) 270 * 270 * / \ / \ 271 * N 271 * N S --> N s 272 * 272 * / \ / \ 273 * 273 * Sl Sr Sl Sr 274 * 274 * 275 * Thi 275 * This leaves us violating 5) which 276 * can 276 * can be fixed by flipping p to black 277 * if 277 * if it was red, or by recursing at p. 278 * p i 278 * p is red when coming from Case 1. 279 */ 279 */ 280 rb_set 280 rb_set_parent_color(sibling, parent, 281 281 RB_RED); 282 if (rb 282 if (rb_is_red(parent)) 283 283 rb_set_black(parent); 284 else { 284 else { 285 285 node = parent; 286 286 parent = rb_parent(node); 287 287 if (parent) 288 288 continue; 289 } 289 } 290 break; 290 break; 291 } 291 } 292 /* 292 /* 293 * Case 3 - ri 293 * Case 3 - right rotate at sibling 294 * (p could be 294 * (p could be either color here) 295 * 295 * 296 * (p) 296 * (p) (p) 297 * / \ 297 * / \ / \ 298 * N S - 298 * N S --> N sl 299 * / \ 299 * / \ \ 300 * sl sr !! 300 * sl Sr S 301 * 301 * \ 302 * !! 302 * Sr 303 * 303 * 304 * Note: p mig 304 * Note: p might be red, and then both 305 * p and sl ar 305 * p and sl are red after rotation(which 306 * breaks prop 306 * breaks property 4). This is fixed in 307 * Case 4 (in 307 * Case 4 (in __rb_rotate_set_parents() 308 * whi 308 * which set sl the color of p 309 * and 309 * and set p RB_BLACK) 310 * 310 * 311 * (p) 311 * (p) (sl) 312 * / \ 312 * / \ / \ 313 * N sl - 313 * N sl --> P S 314 * \ 314 * \ / \ 315 * S !! 315 * S N Sr 316 * \ 316 * \ 317 * sr !! 317 * Sr 318 */ 318 */ 319 tmp1 = tmp2->r 319 tmp1 = tmp2->rb_right; 320 WRITE_ONCE(sib 320 WRITE_ONCE(sibling->rb_left, tmp1); 321 WRITE_ONCE(tmp 321 WRITE_ONCE(tmp2->rb_right, sibling); 322 WRITE_ONCE(par 322 WRITE_ONCE(parent->rb_right, tmp2); 323 if (tmp1) 323 if (tmp1) 324 rb_set 324 rb_set_parent_color(tmp1, sibling, 325 325 RB_BLACK); 326 augment_rotate 326 augment_rotate(sibling, tmp2); 327 tmp1 = sibling 327 tmp1 = sibling; 328 sibling = tmp2 328 sibling = tmp2; 329 } 329 } 330 /* 330 /* 331 * Case 4 - left rotat 331 * Case 4 - left rotate at parent + color flips 332 * (p and sl could be 332 * (p and sl could be either color here. 333 * After rotation, p 333 * After rotation, p becomes black, s acquires 334 * p's color, and sl 334 * p's color, and sl keeps its color) 335 * 335 * 336 * (p) 336 * (p) (s) 337 * / \ 337 * / \ / \ 338 * N S --> 338 * N S --> P Sr 339 * / \ 339 * / \ / \ 340 * (sl) sr N 340 * (sl) sr N (sl) 341 */ 341 */ 342 tmp2 = sibling->rb_lef 342 tmp2 = sibling->rb_left; 343 WRITE_ONCE(parent->rb_ 343 WRITE_ONCE(parent->rb_right, tmp2); 344 WRITE_ONCE(sibling->rb 344 WRITE_ONCE(sibling->rb_left, parent); 345 rb_set_parent_color(tm 345 rb_set_parent_color(tmp1, sibling, RB_BLACK); 346 if (tmp2) 346 if (tmp2) 347 rb_set_parent( 347 rb_set_parent(tmp2, parent); 348 __rb_rotate_set_parent 348 __rb_rotate_set_parents(parent, sibling, root, 349 349 RB_BLACK); 350 augment_rotate(parent, 350 augment_rotate(parent, sibling); 351 break; 351 break; 352 } else { 352 } else { 353 sibling = parent->rb_l 353 sibling = parent->rb_left; 354 if (rb_is_red(sibling) 354 if (rb_is_red(sibling)) { 355 /* Case 1 - ri 355 /* Case 1 - right rotate at parent */ 356 tmp1 = sibling 356 tmp1 = sibling->rb_right; 357 WRITE_ONCE(par 357 WRITE_ONCE(parent->rb_left, tmp1); 358 WRITE_ONCE(sib 358 WRITE_ONCE(sibling->rb_right, parent); 359 rb_set_parent_ 359 rb_set_parent_color(tmp1, parent, RB_BLACK); 360 __rb_rotate_se 360 __rb_rotate_set_parents(parent, sibling, root, 361 361 RB_RED); 362 augment_rotate 362 augment_rotate(parent, sibling); 363 sibling = tmp1 363 sibling = tmp1; 364 } 364 } 365 tmp1 = sibling->rb_lef 365 tmp1 = sibling->rb_left; 366 if (!tmp1 || rb_is_bla 366 if (!tmp1 || rb_is_black(tmp1)) { 367 tmp2 = sibling 367 tmp2 = sibling->rb_right; 368 if (!tmp2 || r 368 if (!tmp2 || rb_is_black(tmp2)) { 369 /* Cas 369 /* Case 2 - sibling color flip */ 370 rb_set 370 rb_set_parent_color(sibling, parent, 371 371 RB_RED); 372 if (rb 372 if (rb_is_red(parent)) 373 373 rb_set_black(parent); 374 else { 374 else { 375 375 node = parent; 376 376 parent = rb_parent(node); 377 377 if (parent) 378 378 continue; 379 } 379 } 380 break; 380 break; 381 } 381 } 382 /* Case 3 - le 382 /* Case 3 - left rotate at sibling */ 383 tmp1 = tmp2->r 383 tmp1 = tmp2->rb_left; 384 WRITE_ONCE(sib 384 WRITE_ONCE(sibling->rb_right, tmp1); 385 WRITE_ONCE(tmp 385 WRITE_ONCE(tmp2->rb_left, sibling); 386 WRITE_ONCE(par 386 WRITE_ONCE(parent->rb_left, tmp2); 387 if (tmp1) 387 if (tmp1) 388 rb_set 388 rb_set_parent_color(tmp1, sibling, 389 389 RB_BLACK); 390 augment_rotate 390 augment_rotate(sibling, tmp2); 391 tmp1 = sibling 391 tmp1 = sibling; 392 sibling = tmp2 392 sibling = tmp2; 393 } 393 } 394 /* Case 4 - right rota 394 /* Case 4 - right rotate at parent + color flips */ 395 tmp2 = sibling->rb_rig 395 tmp2 = sibling->rb_right; 396 WRITE_ONCE(parent->rb_ 396 WRITE_ONCE(parent->rb_left, tmp2); 397 WRITE_ONCE(sibling->rb 397 WRITE_ONCE(sibling->rb_right, parent); 398 rb_set_parent_color(tm 398 rb_set_parent_color(tmp1, sibling, RB_BLACK); 399 if (tmp2) 399 if (tmp2) 400 rb_set_parent( 400 rb_set_parent(tmp2, parent); 401 __rb_rotate_set_parent 401 __rb_rotate_set_parents(parent, sibling, root, 402 402 RB_BLACK); 403 augment_rotate(parent, 403 augment_rotate(parent, sibling); 404 break; 404 break; 405 } 405 } 406 } 406 } 407 } 407 } 408 408 409 /* Non-inline version for rb_erase_augmented() 409 /* Non-inline version for rb_erase_augmented() use */ 410 void __rb_erase_color(struct rb_node *parent, 410 void __rb_erase_color(struct rb_node *parent, struct rb_root *root, 411 void (*augment_rotate)(struct rb_node 411 void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) 412 { 412 { 413 ____rb_erase_color(parent, root, augme 413 ____rb_erase_color(parent, root, augment_rotate); 414 } 414 } 415 EXPORT_SYMBOL(__rb_erase_color); 415 EXPORT_SYMBOL(__rb_erase_color); 416 416 417 /* 417 /* 418 * Non-augmented rbtree manipulation functions 418 * Non-augmented rbtree manipulation functions. 419 * 419 * 420 * We use dummy augmented callbacks here, and 420 * We use dummy augmented callbacks here, and have the compiler optimize them 421 * out of the rb_insert_color() and rb_erase() 421 * out of the rb_insert_color() and rb_erase() function definitions. 422 */ 422 */ 423 423 424 static inline void dummy_propagate(struct rb_n 424 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} 425 static inline void dummy_copy(struct rb_node * 425 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} 426 static inline void dummy_rotate(struct rb_node 426 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} 427 427 428 static const struct rb_augment_callbacks dummy 428 static const struct rb_augment_callbacks dummy_callbacks = { 429 .propagate = dummy_propagate, 429 .propagate = dummy_propagate, 430 .copy = dummy_copy, 430 .copy = dummy_copy, 431 .rotate = dummy_rotate 431 .rotate = dummy_rotate 432 }; 432 }; 433 433 434 void rb_insert_color(struct rb_node *node, str 434 void rb_insert_color(struct rb_node *node, struct rb_root *root) 435 { 435 { 436 __rb_insert(node, root, dummy_rotate); 436 __rb_insert(node, root, dummy_rotate); 437 } 437 } 438 EXPORT_SYMBOL(rb_insert_color); 438 EXPORT_SYMBOL(rb_insert_color); 439 439 440 void rb_erase(struct rb_node *node, struct rb_ 440 void rb_erase(struct rb_node *node, struct rb_root *root) 441 { 441 { 442 struct rb_node *rebalance; 442 struct rb_node *rebalance; 443 rebalance = __rb_erase_augmented(node, 443 rebalance = __rb_erase_augmented(node, root, &dummy_callbacks); 444 if (rebalance) 444 if (rebalance) 445 ____rb_erase_color(rebalance, 445 ____rb_erase_color(rebalance, root, dummy_rotate); 446 } 446 } 447 EXPORT_SYMBOL(rb_erase); 447 EXPORT_SYMBOL(rb_erase); 448 448 449 /* 449 /* 450 * Augmented rbtree manipulation functions. 450 * Augmented rbtree manipulation functions. 451 * 451 * 452 * This instantiates the same __always_inline 452 * This instantiates the same __always_inline functions as in the non-augmented 453 * case, but this time with user-defined callb 453 * case, but this time with user-defined callbacks. 454 */ 454 */ 455 455 456 void __rb_insert_augmented(struct rb_node *nod 456 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, 457 void (*augment_rotate)(struct rb_node 457 void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) 458 { 458 { 459 __rb_insert(node, root, augment_rotate 459 __rb_insert(node, root, augment_rotate); 460 } 460 } 461 EXPORT_SYMBOL(__rb_insert_augmented); 461 EXPORT_SYMBOL(__rb_insert_augmented); 462 462 463 /* 463 /* 464 * This function returns the first node (in so 464 * This function returns the first node (in sort order) of the tree. 465 */ 465 */ 466 struct rb_node *rb_first(const struct rb_root 466 struct rb_node *rb_first(const struct rb_root *root) 467 { 467 { 468 struct rb_node *n; 468 struct rb_node *n; 469 469 470 n = root->rb_node; 470 n = root->rb_node; 471 if (!n) 471 if (!n) 472 return NULL; 472 return NULL; 473 while (n->rb_left) 473 while (n->rb_left) 474 n = n->rb_left; 474 n = n->rb_left; 475 return n; 475 return n; 476 } 476 } 477 EXPORT_SYMBOL(rb_first); 477 EXPORT_SYMBOL(rb_first); 478 478 479 struct rb_node *rb_last(const struct rb_root * 479 struct rb_node *rb_last(const struct rb_root *root) 480 { 480 { 481 struct rb_node *n; 481 struct rb_node *n; 482 482 483 n = root->rb_node; 483 n = root->rb_node; 484 if (!n) 484 if (!n) 485 return NULL; 485 return NULL; 486 while (n->rb_right) 486 while (n->rb_right) 487 n = n->rb_right; 487 n = n->rb_right; 488 return n; 488 return n; 489 } 489 } 490 EXPORT_SYMBOL(rb_last); 490 EXPORT_SYMBOL(rb_last); 491 491 492 struct rb_node *rb_next(const struct rb_node * 492 struct rb_node *rb_next(const struct rb_node *node) 493 { 493 { 494 struct rb_node *parent; 494 struct rb_node *parent; 495 495 496 if (RB_EMPTY_NODE(node)) 496 if (RB_EMPTY_NODE(node)) 497 return NULL; 497 return NULL; 498 498 499 /* 499 /* 500 * If we have a right-hand child, go d 500 * If we have a right-hand child, go down and then left as far 501 * as we can. 501 * as we can. 502 */ 502 */ 503 if (node->rb_right) { 503 if (node->rb_right) { 504 node = node->rb_right; 504 node = node->rb_right; 505 while (node->rb_left) 505 while (node->rb_left) 506 node = node->rb_left; !! 506 node=node->rb_left; 507 return (struct rb_node *)node; 507 return (struct rb_node *)node; 508 } 508 } 509 509 510 /* 510 /* 511 * No right-hand children. Everything 511 * No right-hand children. Everything down and left is smaller than us, 512 * so any 'next' node must be in the g 512 * so any 'next' node must be in the general direction of our parent. 513 * Go up the tree; any time the ancest 513 * Go up the tree; any time the ancestor is a right-hand child of its 514 * parent, keep going up. First time i 514 * parent, keep going up. First time it's a left-hand child of its 515 * parent, said parent is our 'next' n 515 * parent, said parent is our 'next' node. 516 */ 516 */ 517 while ((parent = rb_parent(node)) && n 517 while ((parent = rb_parent(node)) && node == parent->rb_right) 518 node = parent; 518 node = parent; 519 519 520 return parent; 520 return parent; 521 } 521 } 522 EXPORT_SYMBOL(rb_next); 522 EXPORT_SYMBOL(rb_next); 523 523 524 struct rb_node *rb_prev(const struct rb_node * 524 struct rb_node *rb_prev(const struct rb_node *node) 525 { 525 { 526 struct rb_node *parent; 526 struct rb_node *parent; 527 527 528 if (RB_EMPTY_NODE(node)) 528 if (RB_EMPTY_NODE(node)) 529 return NULL; 529 return NULL; 530 530 531 /* 531 /* 532 * If we have a left-hand child, go do 532 * If we have a left-hand child, go down and then right as far 533 * as we can. 533 * as we can. 534 */ 534 */ 535 if (node->rb_left) { 535 if (node->rb_left) { 536 node = node->rb_left; 536 node = node->rb_left; 537 while (node->rb_right) 537 while (node->rb_right) 538 node = node->rb_right; !! 538 node=node->rb_right; 539 return (struct rb_node *)node; 539 return (struct rb_node *)node; 540 } 540 } 541 541 542 /* 542 /* 543 * No left-hand children. Go up till w 543 * No left-hand children. Go up till we find an ancestor which 544 * is a right-hand child of its parent 544 * is a right-hand child of its parent. 545 */ 545 */ 546 while ((parent = rb_parent(node)) && n 546 while ((parent = rb_parent(node)) && node == parent->rb_left) 547 node = parent; 547 node = parent; 548 548 549 return parent; 549 return parent; 550 } 550 } 551 EXPORT_SYMBOL(rb_prev); 551 EXPORT_SYMBOL(rb_prev); 552 552 553 void rb_replace_node(struct rb_node *victim, s 553 void rb_replace_node(struct rb_node *victim, struct rb_node *new, 554 struct rb_root *root) 554 struct rb_root *root) 555 { 555 { 556 struct rb_node *parent = rb_parent(vic 556 struct rb_node *parent = rb_parent(victim); 557 557 558 /* Copy the pointers/colour from the v 558 /* Copy the pointers/colour from the victim to the replacement */ 559 *new = *victim; 559 *new = *victim; 560 560 561 /* Set the surrounding nodes to point 561 /* Set the surrounding nodes to point to the replacement */ 562 if (victim->rb_left) 562 if (victim->rb_left) 563 rb_set_parent(victim->rb_left, 563 rb_set_parent(victim->rb_left, new); 564 if (victim->rb_right) 564 if (victim->rb_right) 565 rb_set_parent(victim->rb_right 565 rb_set_parent(victim->rb_right, new); 566 __rb_change_child(victim, new, parent, 566 __rb_change_child(victim, new, parent, root); 567 } 567 } 568 EXPORT_SYMBOL(rb_replace_node); 568 EXPORT_SYMBOL(rb_replace_node); 569 569 570 void rb_replace_node_rcu(struct rb_node *victi 570 void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, 571 struct rb_root *root) 571 struct rb_root *root) 572 { 572 { 573 struct rb_node *parent = rb_parent(vic 573 struct rb_node *parent = rb_parent(victim); 574 574 575 /* Copy the pointers/colour from the v 575 /* Copy the pointers/colour from the victim to the replacement */ 576 *new = *victim; 576 *new = *victim; 577 577 578 /* Set the surrounding nodes to point 578 /* Set the surrounding nodes to point to the replacement */ 579 if (victim->rb_left) 579 if (victim->rb_left) 580 rb_set_parent(victim->rb_left, 580 rb_set_parent(victim->rb_left, new); 581 if (victim->rb_right) 581 if (victim->rb_right) 582 rb_set_parent(victim->rb_right 582 rb_set_parent(victim->rb_right, new); 583 583 584 /* Set the parent's pointer to the new 584 /* Set the parent's pointer to the new node last after an RCU barrier 585 * so that the pointers onwards are se 585 * so that the pointers onwards are seen to be set correctly when doing 586 * an RCU walk over the tree. 586 * an RCU walk over the tree. 587 */ 587 */ 588 __rb_change_child_rcu(victim, new, par 588 __rb_change_child_rcu(victim, new, parent, root); 589 } 589 } 590 EXPORT_SYMBOL(rb_replace_node_rcu); 590 EXPORT_SYMBOL(rb_replace_node_rcu); 591 591 592 static struct rb_node *rb_left_deepest_node(co 592 static struct rb_node *rb_left_deepest_node(const struct rb_node *node) 593 { 593 { 594 for (;;) { 594 for (;;) { 595 if (node->rb_left) 595 if (node->rb_left) 596 node = node->rb_left; 596 node = node->rb_left; 597 else if (node->rb_right) 597 else if (node->rb_right) 598 node = node->rb_right; 598 node = node->rb_right; 599 else 599 else 600 return (struct rb_node 600 return (struct rb_node *)node; 601 } 601 } 602 } 602 } 603 603 604 struct rb_node *rb_next_postorder(const struct 604 struct rb_node *rb_next_postorder(const struct rb_node *node) 605 { 605 { 606 const struct rb_node *parent; 606 const struct rb_node *parent; 607 if (!node) 607 if (!node) 608 return NULL; 608 return NULL; 609 parent = rb_parent(node); 609 parent = rb_parent(node); 610 610 611 /* If we're sitting on node, we've alr 611 /* If we're sitting on node, we've already seen our children */ 612 if (parent && node == parent->rb_left 612 if (parent && node == parent->rb_left && parent->rb_right) { 613 /* If we are the parent's left 613 /* If we are the parent's left node, go to the parent's right 614 * node then all the way down 614 * node then all the way down to the left */ 615 return rb_left_deepest_node(pa 615 return rb_left_deepest_node(parent->rb_right); 616 } else 616 } else 617 /* Otherwise we are the parent 617 /* Otherwise we are the parent's right node, and the parent 618 * should be next */ 618 * should be next */ 619 return (struct rb_node *)paren 619 return (struct rb_node *)parent; 620 } 620 } 621 EXPORT_SYMBOL(rb_next_postorder); 621 EXPORT_SYMBOL(rb_next_postorder); 622 622 623 struct rb_node *rb_first_postorder(const struc 623 struct rb_node *rb_first_postorder(const struct rb_root *root) 624 { 624 { 625 if (!root->rb_node) 625 if (!root->rb_node) 626 return NULL; 626 return NULL; 627 627 628 return rb_left_deepest_node(root->rb_n 628 return rb_left_deepest_node(root->rb_node); 629 } 629 } 630 EXPORT_SYMBOL(rb_first_postorder); 630 EXPORT_SYMBOL(rb_first_postorder); 631 631
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.