1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Test cases for SL[AOU]B/page initialization 3 * Test cases for SL[AOU]B/page initialization at alloc/free time. 4 */ 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 6 7 #include <linux/init.h> 7 #include <linux/init.h> 8 #include <linux/kernel.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 9 #include <linux/mm.h> 10 #include <linux/module.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 11 #include <linux/slab.h> 12 #include <linux/string.h> 12 #include <linux/string.h> 13 #include <linux/vmalloc.h> 13 #include <linux/vmalloc.h> 14 14 15 #define GARBAGE_INT (0x09A7BA9E) 15 #define GARBAGE_INT (0x09A7BA9E) 16 #define GARBAGE_BYTE (0x9E) 16 #define GARBAGE_BYTE (0x9E) 17 17 18 #define REPORT_FAILURES_IN_FN() \ 18 #define REPORT_FAILURES_IN_FN() \ 19 do { \ 19 do { \ 20 if (failures) \ 20 if (failures) \ 21 pr_info("%s failed %d 21 pr_info("%s failed %d out of %d times\n", \ 22 __func__, fail 22 __func__, failures, num_tests); \ 23 else \ 23 else \ 24 pr_info("all %d tests 24 pr_info("all %d tests in %s passed\n", \ 25 num_tests, __f 25 num_tests, __func__); \ 26 } while (0) 26 } while (0) 27 27 28 /* Calculate the number of uninitialized bytes 28 /* Calculate the number of uninitialized bytes in the buffer. */ 29 static int __init count_nonzero_bytes(void *pt 29 static int __init count_nonzero_bytes(void *ptr, size_t size) 30 { 30 { 31 int i, ret = 0; 31 int i, ret = 0; 32 unsigned char *p = (unsigned char *)pt 32 unsigned char *p = (unsigned char *)ptr; 33 33 34 for (i = 0; i < size; i++) 34 for (i = 0; i < size; i++) 35 if (p[i]) 35 if (p[i]) 36 ret++; 36 ret++; 37 return ret; 37 return ret; 38 } 38 } 39 39 40 /* Fill a buffer with garbage, skipping |skip| 40 /* Fill a buffer with garbage, skipping |skip| first bytes. */ 41 static void __init fill_with_garbage_skip(void 41 static void __init fill_with_garbage_skip(void *ptr, int size, size_t skip) 42 { 42 { 43 unsigned int *p = (unsigned int *)((ch 43 unsigned int *p = (unsigned int *)((char *)ptr + skip); 44 int i = 0; 44 int i = 0; 45 45 46 WARN_ON(skip > size); 46 WARN_ON(skip > size); 47 size -= skip; 47 size -= skip; 48 48 49 while (size >= sizeof(*p)) { 49 while (size >= sizeof(*p)) { 50 p[i] = GARBAGE_INT; 50 p[i] = GARBAGE_INT; 51 i++; 51 i++; 52 size -= sizeof(*p); 52 size -= sizeof(*p); 53 } 53 } 54 if (size) 54 if (size) 55 memset(&p[i], GARBAGE_BYTE, si 55 memset(&p[i], GARBAGE_BYTE, size); 56 } 56 } 57 57 58 static void __init fill_with_garbage(void *ptr 58 static void __init fill_with_garbage(void *ptr, size_t size) 59 { 59 { 60 fill_with_garbage_skip(ptr, size, 0); 60 fill_with_garbage_skip(ptr, size, 0); 61 } 61 } 62 62 63 static int __init do_alloc_pages_order(int ord 63 static int __init do_alloc_pages_order(int order, int *total_failures) 64 { 64 { 65 struct page *page; 65 struct page *page; 66 void *buf; 66 void *buf; 67 size_t size = PAGE_SIZE << order; 67 size_t size = PAGE_SIZE << order; 68 68 69 page = alloc_pages(GFP_KERNEL, order); 69 page = alloc_pages(GFP_KERNEL, order); 70 if (!page) << 71 goto err; << 72 buf = page_address(page); 70 buf = page_address(page); 73 fill_with_garbage(buf, size); 71 fill_with_garbage(buf, size); 74 __free_pages(page, order); 72 __free_pages(page, order); 75 73 76 page = alloc_pages(GFP_KERNEL, order); 74 page = alloc_pages(GFP_KERNEL, order); 77 if (!page) << 78 goto err; << 79 buf = page_address(page); 75 buf = page_address(page); 80 if (count_nonzero_bytes(buf, size)) 76 if (count_nonzero_bytes(buf, size)) 81 (*total_failures)++; 77 (*total_failures)++; 82 fill_with_garbage(buf, size); 78 fill_with_garbage(buf, size); 83 __free_pages(page, order); 79 __free_pages(page, order); 84 return 1; 80 return 1; 85 err: << 86 (*total_failures)++; << 87 return 1; << 88 } 81 } 89 82 90 /* Test the page allocator by calling alloc_pa 83 /* Test the page allocator by calling alloc_pages with different orders. */ 91 static int __init test_pages(int *total_failur 84 static int __init test_pages(int *total_failures) 92 { 85 { 93 int failures = 0, num_tests = 0; 86 int failures = 0, num_tests = 0; 94 int i; 87 int i; 95 88 96 for (i = 0; i < NR_PAGE_ORDERS; i++) !! 89 for (i = 0; i < 10; i++) 97 num_tests += do_alloc_pages_or 90 num_tests += do_alloc_pages_order(i, &failures); 98 91 99 REPORT_FAILURES_IN_FN(); 92 REPORT_FAILURES_IN_FN(); 100 *total_failures += failures; 93 *total_failures += failures; 101 return num_tests; 94 return num_tests; 102 } 95 } 103 96 104 /* Test kmalloc() with given parameters. */ 97 /* Test kmalloc() with given parameters. */ 105 static int __init do_kmalloc_size(size_t size, 98 static int __init do_kmalloc_size(size_t size, int *total_failures) 106 { 99 { 107 void *buf; 100 void *buf; 108 101 109 buf = kmalloc(size, GFP_KERNEL); 102 buf = kmalloc(size, GFP_KERNEL); 110 if (!buf) << 111 goto err; << 112 fill_with_garbage(buf, size); 103 fill_with_garbage(buf, size); 113 kfree(buf); 104 kfree(buf); 114 105 115 buf = kmalloc(size, GFP_KERNEL); 106 buf = kmalloc(size, GFP_KERNEL); 116 if (!buf) << 117 goto err; << 118 if (count_nonzero_bytes(buf, size)) 107 if (count_nonzero_bytes(buf, size)) 119 (*total_failures)++; 108 (*total_failures)++; 120 fill_with_garbage(buf, size); 109 fill_with_garbage(buf, size); 121 kfree(buf); 110 kfree(buf); 122 return 1; 111 return 1; 123 err: << 124 (*total_failures)++; << 125 return 1; << 126 } 112 } 127 113 128 /* Test vmalloc() with given parameters. */ 114 /* Test vmalloc() with given parameters. */ 129 static int __init do_vmalloc_size(size_t size, 115 static int __init do_vmalloc_size(size_t size, int *total_failures) 130 { 116 { 131 void *buf; 117 void *buf; 132 118 133 buf = vmalloc(size); 119 buf = vmalloc(size); 134 if (!buf) << 135 goto err; << 136 fill_with_garbage(buf, size); 120 fill_with_garbage(buf, size); 137 vfree(buf); 121 vfree(buf); 138 122 139 buf = vmalloc(size); 123 buf = vmalloc(size); 140 if (!buf) << 141 goto err; << 142 if (count_nonzero_bytes(buf, size)) 124 if (count_nonzero_bytes(buf, size)) 143 (*total_failures)++; 125 (*total_failures)++; 144 fill_with_garbage(buf, size); 126 fill_with_garbage(buf, size); 145 vfree(buf); 127 vfree(buf); 146 return 1; 128 return 1; 147 err: << 148 (*total_failures)++; << 149 return 1; << 150 } 129 } 151 130 152 /* Test kmalloc()/vmalloc() by allocating obje 131 /* Test kmalloc()/vmalloc() by allocating objects of different sizes. */ 153 static int __init test_kvmalloc(int *total_fai 132 static int __init test_kvmalloc(int *total_failures) 154 { 133 { 155 int failures = 0, num_tests = 0; 134 int failures = 0, num_tests = 0; 156 int i, size; 135 int i, size; 157 136 158 for (i = 0; i < 20; i++) { 137 for (i = 0; i < 20; i++) { 159 size = 1 << i; 138 size = 1 << i; 160 num_tests += do_kmalloc_size(s 139 num_tests += do_kmalloc_size(size, &failures); 161 num_tests += do_vmalloc_size(s 140 num_tests += do_vmalloc_size(size, &failures); 162 } 141 } 163 142 164 REPORT_FAILURES_IN_FN(); 143 REPORT_FAILURES_IN_FN(); 165 *total_failures += failures; 144 *total_failures += failures; 166 return num_tests; 145 return num_tests; 167 } 146 } 168 147 169 #define CTOR_BYTES (sizeof(unsigned int)) 148 #define CTOR_BYTES (sizeof(unsigned int)) 170 #define CTOR_PATTERN (0x41414141) 149 #define CTOR_PATTERN (0x41414141) 171 /* Initialize the first 4 bytes of the object. 150 /* Initialize the first 4 bytes of the object. */ 172 static void test_ctor(void *obj) 151 static void test_ctor(void *obj) 173 { 152 { 174 *(unsigned int *)obj = CTOR_PATTERN; 153 *(unsigned int *)obj = CTOR_PATTERN; 175 } 154 } 176 155 177 /* 156 /* 178 * Check the invariants for the buffer allocat 157 * Check the invariants for the buffer allocated from a slab cache. 179 * If the cache has a test constructor, the fi 158 * If the cache has a test constructor, the first 4 bytes of the object must 180 * always remain equal to CTOR_PATTERN. 159 * always remain equal to CTOR_PATTERN. 181 * If the cache isn't an RCU-typesafe one, or 160 * If the cache isn't an RCU-typesafe one, or if the allocation is done with 182 * __GFP_ZERO, then the object contents must b 161 * __GFP_ZERO, then the object contents must be zeroed after allocation. 183 * If the cache is an RCU-typesafe one, the ob 162 * If the cache is an RCU-typesafe one, the object contents must never be 184 * zeroed after the first use. This is checked 163 * zeroed after the first use. This is checked by memcmp() in 185 * do_kmem_cache_size(). 164 * do_kmem_cache_size(). 186 */ 165 */ 187 static bool __init check_buf(void *buf, int si 166 static bool __init check_buf(void *buf, int size, bool want_ctor, 188 bool want_rcu, bo 167 bool want_rcu, bool want_zero) 189 { 168 { 190 int bytes; 169 int bytes; 191 bool fail = false; 170 bool fail = false; 192 171 193 bytes = count_nonzero_bytes(buf, size) 172 bytes = count_nonzero_bytes(buf, size); 194 WARN_ON(want_ctor && want_zero); 173 WARN_ON(want_ctor && want_zero); 195 if (want_zero) 174 if (want_zero) 196 return bytes; 175 return bytes; 197 if (want_ctor) { 176 if (want_ctor) { 198 if (*(unsigned int *)buf != CT 177 if (*(unsigned int *)buf != CTOR_PATTERN) 199 fail = 1; 178 fail = 1; 200 } else { 179 } else { 201 if (bytes) 180 if (bytes) 202 fail = !want_rcu; 181 fail = !want_rcu; 203 } 182 } 204 return fail; 183 return fail; 205 } 184 } 206 185 207 #define BULK_SIZE 100 186 #define BULK_SIZE 100 208 static void *bulk_array[BULK_SIZE]; 187 static void *bulk_array[BULK_SIZE]; 209 188 210 /* 189 /* 211 * Test kmem_cache with given parameters: 190 * Test kmem_cache with given parameters: 212 * want_ctor - use a constructor; 191 * want_ctor - use a constructor; 213 * want_rcu - use SLAB_TYPESAFE_BY_RCU; 192 * want_rcu - use SLAB_TYPESAFE_BY_RCU; 214 * want_zero - use __GFP_ZERO. 193 * want_zero - use __GFP_ZERO. 215 */ 194 */ 216 static int __init do_kmem_cache_size(size_t si 195 static int __init do_kmem_cache_size(size_t size, bool want_ctor, 217 bool want 196 bool want_rcu, bool want_zero, 218 int *tota 197 int *total_failures) 219 { 198 { 220 struct kmem_cache *c; 199 struct kmem_cache *c; 221 int iter; 200 int iter; 222 bool fail = false; 201 bool fail = false; 223 gfp_t alloc_mask = GFP_KERNEL | (want_ 202 gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0); 224 void *buf, *buf_copy; 203 void *buf, *buf_copy; 225 204 226 c = kmem_cache_create("test_cache", si 205 c = kmem_cache_create("test_cache", size, 1, 227 want_rcu ? SLAB_ 206 want_rcu ? SLAB_TYPESAFE_BY_RCU : 0, 228 want_ctor ? test 207 want_ctor ? test_ctor : NULL); 229 for (iter = 0; iter < 10; iter++) { 208 for (iter = 0; iter < 10; iter++) { 230 /* Do a test of bulk allocatio 209 /* Do a test of bulk allocations */ 231 if (!want_rcu && !want_ctor) { 210 if (!want_rcu && !want_ctor) { 232 int ret; 211 int ret; 233 212 234 ret = kmem_cache_alloc 213 ret = kmem_cache_alloc_bulk(c, alloc_mask, BULK_SIZE, bulk_array); 235 if (!ret) { 214 if (!ret) { 236 fail = true; 215 fail = true; 237 } else { 216 } else { 238 int i; 217 int i; 239 for (i = 0; i 218 for (i = 0; i < ret; i++) 240 fail | 219 fail |= check_buf(bulk_array[i], size, want_ctor, want_rcu, want_zero); 241 kmem_cache_fre 220 kmem_cache_free_bulk(c, ret, bulk_array); 242 } 221 } 243 } 222 } 244 223 245 buf = kmem_cache_alloc(c, allo 224 buf = kmem_cache_alloc(c, alloc_mask); 246 /* Check that buf is zeroed, i 225 /* Check that buf is zeroed, if it must be. */ 247 fail |= check_buf(buf, size, w 226 fail |= check_buf(buf, size, want_ctor, want_rcu, want_zero); 248 fill_with_garbage_skip(buf, si 227 fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0); 249 228 250 if (!want_rcu) { 229 if (!want_rcu) { 251 kmem_cache_free(c, buf 230 kmem_cache_free(c, buf); 252 continue; 231 continue; 253 } 232 } 254 233 255 /* 234 /* 256 * If this is an RCU cache, us 235 * If this is an RCU cache, use a critical section to ensure we 257 * can touch objects after the 236 * can touch objects after they're freed. 258 */ 237 */ 259 rcu_read_lock(); 238 rcu_read_lock(); 260 /* 239 /* 261 * Copy the buffer to check th 240 * Copy the buffer to check that it's not wiped on 262 * free(). 241 * free(). 263 */ 242 */ 264 buf_copy = kmalloc(size, GFP_A 243 buf_copy = kmalloc(size, GFP_ATOMIC); 265 if (buf_copy) 244 if (buf_copy) 266 memcpy(buf_copy, buf, 245 memcpy(buf_copy, buf, size); 267 246 268 kmem_cache_free(c, buf); 247 kmem_cache_free(c, buf); 269 /* 248 /* 270 * Check that |buf| is intact 249 * Check that |buf| is intact after kmem_cache_free(). 271 * |want_zero| is false, becau 250 * |want_zero| is false, because we wrote garbage to 272 * the buffer already. 251 * the buffer already. 273 */ 252 */ 274 fail |= check_buf(buf, size, w 253 fail |= check_buf(buf, size, want_ctor, want_rcu, 275 false); 254 false); 276 if (buf_copy) { 255 if (buf_copy) { 277 fail |= (bool)memcmp(b 256 fail |= (bool)memcmp(buf, buf_copy, size); 278 kfree(buf_copy); 257 kfree(buf_copy); 279 } 258 } 280 rcu_read_unlock(); 259 rcu_read_unlock(); 281 } 260 } 282 kmem_cache_destroy(c); 261 kmem_cache_destroy(c); 283 262 284 *total_failures += fail; 263 *total_failures += fail; 285 return 1; 264 return 1; 286 } 265 } 287 266 288 /* 267 /* 289 * Check that the data written to an RCU-alloc 268 * Check that the data written to an RCU-allocated object survives 290 * reallocation. 269 * reallocation. 291 */ 270 */ 292 static int __init do_kmem_cache_rcu_persistent 271 static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures) 293 { 272 { 294 struct kmem_cache *c; 273 struct kmem_cache *c; 295 void *buf, *buf_contents, *saved_ptr; 274 void *buf, *buf_contents, *saved_ptr; 296 void **used_objects; 275 void **used_objects; 297 int i, iter, maxiter = 1024; 276 int i, iter, maxiter = 1024; 298 bool fail = false; 277 bool fail = false; 299 278 300 c = kmem_cache_create("test_cache", si 279 c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU, 301 NULL); 280 NULL); 302 buf = kmem_cache_alloc(c, GFP_KERNEL); 281 buf = kmem_cache_alloc(c, GFP_KERNEL); 303 if (!buf) << 304 goto out; << 305 saved_ptr = buf; 282 saved_ptr = buf; 306 fill_with_garbage(buf, size); 283 fill_with_garbage(buf, size); 307 buf_contents = kmalloc(size, GFP_KERNE 284 buf_contents = kmalloc(size, GFP_KERNEL); 308 if (!buf_contents) { !! 285 if (!buf_contents) 309 kmem_cache_free(c, buf); << 310 goto out; 286 goto out; 311 } << 312 used_objects = kmalloc_array(maxiter, 287 used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL); 313 if (!used_objects) { 288 if (!used_objects) { 314 kmem_cache_free(c, buf); << 315 kfree(buf_contents); 289 kfree(buf_contents); 316 goto out; 290 goto out; 317 } 291 } 318 memcpy(buf_contents, buf, size); 292 memcpy(buf_contents, buf, size); 319 kmem_cache_free(c, buf); 293 kmem_cache_free(c, buf); 320 /* 294 /* 321 * Run for a fixed number of iteration 295 * Run for a fixed number of iterations. If we never hit saved_ptr, 322 * assume the test passes. 296 * assume the test passes. 323 */ 297 */ 324 for (iter = 0; iter < maxiter; iter++) 298 for (iter = 0; iter < maxiter; iter++) { 325 buf = kmem_cache_alloc(c, GFP_ 299 buf = kmem_cache_alloc(c, GFP_KERNEL); 326 used_objects[iter] = buf; 300 used_objects[iter] = buf; 327 if (buf == saved_ptr) { 301 if (buf == saved_ptr) { 328 fail = memcmp(buf_cont 302 fail = memcmp(buf_contents, buf, size); 329 for (i = 0; i <= iter; 303 for (i = 0; i <= iter; i++) 330 kmem_cache_fre 304 kmem_cache_free(c, used_objects[i]); 331 goto free_out; 305 goto free_out; 332 } 306 } 333 } 307 } 334 308 335 for (iter = 0; iter < maxiter; iter++) << 336 kmem_cache_free(c, used_object << 337 << 338 free_out: 309 free_out: >> 310 kmem_cache_destroy(c); 339 kfree(buf_contents); 311 kfree(buf_contents); 340 kfree(used_objects); 312 kfree(used_objects); 341 out: 313 out: 342 kmem_cache_destroy(c); << 343 *total_failures += fail; 314 *total_failures += fail; 344 return 1; 315 return 1; 345 } 316 } 346 317 347 static int __init do_kmem_cache_size_bulk(int 318 static int __init do_kmem_cache_size_bulk(int size, int *total_failures) 348 { 319 { 349 struct kmem_cache *c; 320 struct kmem_cache *c; 350 int i, iter, maxiter = 1024; 321 int i, iter, maxiter = 1024; 351 int num, bytes; 322 int num, bytes; 352 bool fail = false; 323 bool fail = false; 353 void *objects[10]; 324 void *objects[10]; 354 325 355 c = kmem_cache_create("test_cache", si 326 c = kmem_cache_create("test_cache", size, size, 0, NULL); 356 for (iter = 0; (iter < maxiter) && !fa 327 for (iter = 0; (iter < maxiter) && !fail; iter++) { 357 num = kmem_cache_alloc_bulk(c, 328 num = kmem_cache_alloc_bulk(c, GFP_KERNEL, ARRAY_SIZE(objects), 358 ob 329 objects); 359 for (i = 0; i < num; i++) { 330 for (i = 0; i < num; i++) { 360 bytes = count_nonzero_ 331 bytes = count_nonzero_bytes(objects[i], size); 361 if (bytes) 332 if (bytes) 362 fail = true; 333 fail = true; 363 fill_with_garbage(obje 334 fill_with_garbage(objects[i], size); 364 } 335 } 365 336 366 if (num) 337 if (num) 367 kmem_cache_free_bulk(c 338 kmem_cache_free_bulk(c, num, objects); 368 } 339 } 369 kmem_cache_destroy(c); << 370 *total_failures += fail; 340 *total_failures += fail; 371 return 1; 341 return 1; 372 } 342 } 373 343 374 /* 344 /* 375 * Test kmem_cache allocation by creating cach 345 * Test kmem_cache allocation by creating caches of different sizes, with and 376 * without constructors, with and without SLAB 346 * without constructors, with and without SLAB_TYPESAFE_BY_RCU. 377 */ 347 */ 378 static int __init test_kmemcache(int *total_fa 348 static int __init test_kmemcache(int *total_failures) 379 { 349 { 380 int failures = 0, num_tests = 0; 350 int failures = 0, num_tests = 0; 381 int i, flags, size; 351 int i, flags, size; 382 bool ctor, rcu, zero; 352 bool ctor, rcu, zero; 383 353 384 for (i = 0; i < 10; i++) { 354 for (i = 0; i < 10; i++) { 385 size = 8 << i; 355 size = 8 << i; 386 for (flags = 0; flags < 8; fla 356 for (flags = 0; flags < 8; flags++) { 387 ctor = flags & 1; 357 ctor = flags & 1; 388 rcu = flags & 2; 358 rcu = flags & 2; 389 zero = flags & 4; 359 zero = flags & 4; 390 if (ctor & zero) 360 if (ctor & zero) 391 continue; 361 continue; 392 num_tests += do_kmem_c 362 num_tests += do_kmem_cache_size(size, ctor, rcu, zero, 393 363 &failures); 394 } 364 } 395 num_tests += do_kmem_cache_siz 365 num_tests += do_kmem_cache_size_bulk(size, &failures); 396 } 366 } 397 REPORT_FAILURES_IN_FN(); 367 REPORT_FAILURES_IN_FN(); 398 *total_failures += failures; 368 *total_failures += failures; 399 return num_tests; 369 return num_tests; 400 } 370 } 401 371 402 /* Test the behavior of SLAB_TYPESAFE_BY_RCU c 372 /* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */ 403 static int __init test_rcu_persistent(int *tot 373 static int __init test_rcu_persistent(int *total_failures) 404 { 374 { 405 int failures = 0, num_tests = 0; 375 int failures = 0, num_tests = 0; 406 int i, size; 376 int i, size; 407 377 408 for (i = 0; i < 10; i++) { 378 for (i = 0; i < 10; i++) { 409 size = 8 << i; 379 size = 8 << i; 410 num_tests += do_kmem_cache_rcu 380 num_tests += do_kmem_cache_rcu_persistent(size, &failures); 411 } 381 } 412 REPORT_FAILURES_IN_FN(); 382 REPORT_FAILURES_IN_FN(); 413 *total_failures += failures; 383 *total_failures += failures; 414 return num_tests; 384 return num_tests; 415 } 385 } 416 386 417 /* 387 /* 418 * Run the tests. Each test function returns t 388 * Run the tests. Each test function returns the number of executed tests and 419 * updates |failures| with the number of faile 389 * updates |failures| with the number of failed tests. 420 */ 390 */ 421 static int __init test_meminit_init(void) 391 static int __init test_meminit_init(void) 422 { 392 { 423 int failures = 0, num_tests = 0; 393 int failures = 0, num_tests = 0; 424 394 425 num_tests += test_pages(&failures); 395 num_tests += test_pages(&failures); 426 num_tests += test_kvmalloc(&failures); 396 num_tests += test_kvmalloc(&failures); 427 num_tests += test_kmemcache(&failures) 397 num_tests += test_kmemcache(&failures); 428 num_tests += test_rcu_persistent(&fail 398 num_tests += test_rcu_persistent(&failures); 429 399 430 if (failures == 0) 400 if (failures == 0) 431 pr_info("all %d tests passed!\ 401 pr_info("all %d tests passed!\n", num_tests); 432 else 402 else 433 pr_info("failures: %d out of % 403 pr_info("failures: %d out of %d\n", failures, num_tests); 434 404 435 return failures ? -EINVAL : 0; 405 return failures ? -EINVAL : 0; 436 } 406 } 437 module_init(test_meminit_init); 407 module_init(test_meminit_init); 438 408 439 MODULE_DESCRIPTION("Test cases for SL[AOU]B/pa << 440 MODULE_LICENSE("GPL"); 409 MODULE_LICENSE("GPL"); 441 410
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.