~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/zstd/common/fse.h

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /lib/zstd/common/fse.h (Version linux-6.12-rc7) and /lib/zstd/common/fse.h (Version linux-5.17.15)


  1 /* *******************************************      1 /* ******************************************************************
  2  * FSE : Finite State Entropy codec                 2  * FSE : Finite State Entropy codec
  3  * Public Prototypes declaration                    3  * Public Prototypes declaration
  4  * Copyright (c) Yann Collet, Facebook, Inc.        4  * Copyright (c) Yann Collet, Facebook, Inc.
  5  *                                                  5  *
  6  * You can contact the author at :                  6  * You can contact the author at :
  7  * - Source repository : https://github.com/Cy      7  * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
  8  *                                                  8  *
  9  * This source code is licensed under both the      9  * This source code is licensed under both the BSD-style license (found in the
 10  * LICENSE file in the root directory of this      10  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 11  * in the COPYING file in the root directory o     11  * in the COPYING file in the root directory of this source tree).
 12  * You may select, at your option, one of the      12  * You may select, at your option, one of the above-listed licenses.
 13 **********************************************     13 ****************************************************************** */
 14                                                    14 
 15                                                    15 
 16 #ifndef FSE_H                                      16 #ifndef FSE_H
 17 #define FSE_H                                      17 #define FSE_H
 18                                                    18 
 19                                                    19 
 20 /*-*****************************************       20 /*-*****************************************
 21 *  Dependencies                                    21 *  Dependencies
 22 ******************************************/        22 ******************************************/
 23 #include "zstd_deps.h"    /* size_t, ptrdiff_t     23 #include "zstd_deps.h"    /* size_t, ptrdiff_t */
 24                                                    24 
 25                                                    25 
 26 /*-*****************************************       26 /*-*****************************************
 27 *  FSE_PUBLIC_API : control library symbols vi     27 *  FSE_PUBLIC_API : control library symbols visibility
 28 ******************************************/        28 ******************************************/
 29 #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT     29 #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
 30 #  define FSE_PUBLIC_API __attribute__ ((visib     30 #  define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
 31 #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPO     31 #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1)   /* Visual expected */
 32 #  define FSE_PUBLIC_API __declspec(dllexport)     32 #  define FSE_PUBLIC_API __declspec(dllexport)
 33 #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPO     33 #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
 34 #  define FSE_PUBLIC_API __declspec(dllimport)     34 #  define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
 35 #else                                              35 #else
 36 #  define FSE_PUBLIC_API                           36 #  define FSE_PUBLIC_API
 37 #endif                                             37 #endif
 38                                                    38 
 39 /*------   Version   ------*/                      39 /*------   Version   ------*/
 40 #define FSE_VERSION_MAJOR    0                     40 #define FSE_VERSION_MAJOR    0
 41 #define FSE_VERSION_MINOR    9                     41 #define FSE_VERSION_MINOR    9
 42 #define FSE_VERSION_RELEASE  0                     42 #define FSE_VERSION_RELEASE  0
 43                                                    43 
 44 #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_     44 #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
 45 #define FSE_QUOTE(str) #str                        45 #define FSE_QUOTE(str) #str
 46 #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(st     46 #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
 47 #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOT     47 #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
 48                                                    48 
 49 #define FSE_VERSION_NUMBER  (FSE_VERSION_MAJOR     49 #define FSE_VERSION_NUMBER  (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
 50 FSE_PUBLIC_API unsigned FSE_versionNumber(void     50 FSE_PUBLIC_API unsigned FSE_versionNumber(void);   /*< library version number; to be used when checking dll version */
 51                                                    51 
 52                                                    52 
 53 /*-****************************************        53 /*-****************************************
 54 *  FSE simple functions                            54 *  FSE simple functions
 55 ******************************************/        55 ******************************************/
 56 /*! FSE_compress() :                               56 /*! FSE_compress() :
 57     Compress content of buffer 'src', of size      57     Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
 58     'dst' buffer must be already allocated. Co     58     'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
 59     @return : size of compressed data (<= dstC     59     @return : size of compressed data (<= dstCapacity).
 60     Special values : if return == 0, srcData i     60     Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
 61                      if return == 1, srcData i     61                      if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
 62                      if FSE_isError(return), c     62                      if FSE_isError(return), compression failed (more details using FSE_getErrorName())
 63 */                                                 63 */
 64 FSE_PUBLIC_API size_t FSE_compress(void* dst,      64 FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
 65                              const void* src,      65                              const void* src, size_t srcSize);
 66                                                    66 
 67 /*! FSE_decompress():                              67 /*! FSE_decompress():
 68     Decompress FSE data from buffer 'cSrc', of     68     Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
 69     into already allocated destination buffer      69     into already allocated destination buffer 'dst', of size 'dstCapacity'.
 70     @return : size of regenerated data (<= max     70     @return : size of regenerated data (<= maxDstSize),
 71               or an error code, which can be t     71               or an error code, which can be tested using FSE_isError() .
 72                                                    72 
 73     ** Important ** : FSE_decompress() does no     73     ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
 74     Why ? : making this distinction requires a     74     Why ? : making this distinction requires a header.
 75     Header management is intentionally delegat     75     Header management is intentionally delegated to the user layer, which can better manage special cases.
 76 */                                                 76 */
 77 FSE_PUBLIC_API size_t FSE_decompress(void* dst     77 FSE_PUBLIC_API size_t FSE_decompress(void* dst,  size_t dstCapacity,
 78                                const void* cSr     78                                const void* cSrc, size_t cSrcSize);
 79                                                    79 
 80                                                    80 
 81 /*-*****************************************       81 /*-*****************************************
 82 *  Tool functions                                  82 *  Tool functions
 83 ******************************************/        83 ******************************************/
 84 FSE_PUBLIC_API size_t FSE_compressBound(size_t     84 FSE_PUBLIC_API size_t FSE_compressBound(size_t size);       /* maximum compressed size */
 85                                                    85 
 86 /* Error Management */                             86 /* Error Management */
 87 FSE_PUBLIC_API unsigned    FSE_isError(size_t      87 FSE_PUBLIC_API unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
 88 FSE_PUBLIC_API const char* FSE_getErrorName(si     88 FSE_PUBLIC_API const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
 89                                                    89 
 90                                                    90 
 91 /*-*****************************************       91 /*-*****************************************
 92 *  FSE advanced functions                          92 *  FSE advanced functions
 93 ******************************************/        93 ******************************************/
 94 /*! FSE_compress2() :                              94 /*! FSE_compress2() :
 95     Same as FSE_compress(), but allows the sel     95     Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
 96     Both parameters can be defined as '' to me     96     Both parameters can be defined as '' to mean : use default value
 97     @return : size of compressed data              97     @return : size of compressed data
 98     Special values : if return == 0, srcData i     98     Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
 99                      if return == 1, srcData i     99                      if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
100                      if FSE_isError(return), i    100                      if FSE_isError(return), it's an error code.
101 */                                                101 */
102 FSE_PUBLIC_API size_t FSE_compress2 (void* dst    102 FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
103                                                   103 
104                                                   104 
105 /*-*****************************************      105 /*-*****************************************
106 *  FSE detailed API                               106 *  FSE detailed API
107 ******************************************/       107 ******************************************/
108 /*!                                               108 /*!
109 FSE_compress() does the following:                109 FSE_compress() does the following:
110 1. count symbol occurrence from source[] into     110 1. count symbol occurrence from source[] into table count[] (see hist.h)
111 2. normalize counters so that sum(count[]) ==     111 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
112 3. save normalized counters to memory buffer u    112 3. save normalized counters to memory buffer using writeNCount()
113 4. build encoding table 'CTable' from normaliz    113 4. build encoding table 'CTable' from normalized counters
114 5. encode the data stream using encoding table    114 5. encode the data stream using encoding table 'CTable'
115                                                   115 
116 FSE_decompress() does the following:              116 FSE_decompress() does the following:
117 1. read normalized counters with readNCount()     117 1. read normalized counters with readNCount()
118 2. build decoding table 'DTable' from normaliz    118 2. build decoding table 'DTable' from normalized counters
119 3. decode the data stream using decoding table    119 3. decode the data stream using decoding table 'DTable'
120                                                   120 
121 The following API allows targeting specific su    121 The following API allows targeting specific sub-functions for advanced tasks.
122 For example, it's possible to compress several    122 For example, it's possible to compress several blocks using the same 'CTable',
123 or to save and provide normalized distribution    123 or to save and provide normalized distribution using external method.
124 */                                                124 */
125                                                   125 
126 /* *** COMPRESSION *** */                         126 /* *** COMPRESSION *** */
127                                                   127 
128 /*! FSE_optimalTableLog():                        128 /*! FSE_optimalTableLog():
129     dynamically downsize 'tableLog' when condi    129     dynamically downsize 'tableLog' when conditions are met.
130     It saves CPU time, by using smaller tables    130     It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
131     @return : recommended tableLog (necessaril    131     @return : recommended tableLog (necessarily <= 'maxTableLog') */
132 FSE_PUBLIC_API unsigned FSE_optimalTableLog(un    132 FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
133                                                   133 
134 /*! FSE_normalizeCount():                         134 /*! FSE_normalizeCount():
135     normalize counts so that sum(count[]) == P    135     normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
136     'normalizedCounter' is a table of short, o    136     'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
137     useLowProbCount is a boolean parameter whi    137     useLowProbCount is a boolean parameter which trades off compressed size for
138     faster header decoding. When it is set to     138     faster header decoding. When it is set to 1, the compressed data will be slightly
139     smaller. And when it is set to 0, FSE_read    139     smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
140     faster. If you are compressing a small amo    140     faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
141     is a good default, since header deserializ    141     is a good default, since header deserialization makes a big speed difference.
142     Otherwise, useLowProbCount=1 is a good def    142     Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
143     @return : tableLog,                           143     @return : tableLog,
144               or an errorCode, which can be te    144               or an errorCode, which can be tested using FSE_isError() */
145 FSE_PUBLIC_API size_t FSE_normalizeCount(short    145 FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
146                     const unsigned* count, siz    146                     const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
147                                                   147 
148 /*! FSE_NCountWriteBound():                       148 /*! FSE_NCountWriteBound():
149     Provides the maximum possible size of an F    149     Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
150     Typically useful for allocation purpose. *    150     Typically useful for allocation purpose. */
151 FSE_PUBLIC_API size_t FSE_NCountWriteBound(uns    151 FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
152                                                   152 
153 /*! FSE_writeNCount():                            153 /*! FSE_writeNCount():
154     Compactly save 'normalizedCounter' into 'b    154     Compactly save 'normalizedCounter' into 'buffer'.
155     @return : size of the compressed table,       155     @return : size of the compressed table,
156               or an errorCode, which can be te    156               or an errorCode, which can be tested using FSE_isError(). */
157 FSE_PUBLIC_API size_t FSE_writeNCount (void* b    157 FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
158                                  const short*     158                                  const short* normalizedCounter,
159                                  unsigned maxS    159                                  unsigned maxSymbolValue, unsigned tableLog);
160                                                   160 
161 /*! Constructor and Destructor of FSE_CTable.     161 /*! Constructor and Destructor of FSE_CTable.
162     Note that FSE_CTable size depends on 'tabl    162     Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
163 typedef unsigned FSE_CTable;   /* don't alloca    163 typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
164 FSE_PUBLIC_API FSE_CTable* FSE_createCTable (u    164 FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog);
165 FSE_PUBLIC_API void        FSE_freeCTable (FSE    165 FSE_PUBLIC_API void        FSE_freeCTable (FSE_CTable* ct);
166                                                   166 
167 /*! FSE_buildCTable():                            167 /*! FSE_buildCTable():
168     Builds `ct`, which must be already allocat    168     Builds `ct`, which must be already allocated, using FSE_createCTable().
169     @return : 0, or an errorCode, which can be    169     @return : 0, or an errorCode, which can be tested using FSE_isError() */
170 FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTab    170 FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
171                                                   171 
172 /*! FSE_compress_usingCTable():                   172 /*! FSE_compress_usingCTable():
173     Compress `src` using `ct` into `dst` which    173     Compress `src` using `ct` into `dst` which must be already allocated.
174     @return : size of compressed data (<= `dst    174     @return : size of compressed data (<= `dstCapacity`),
175               or 0 if compressed data could no    175               or 0 if compressed data could not fit into `dst`,
176               or an errorCode, which can be te    176               or an errorCode, which can be tested using FSE_isError() */
177 FSE_PUBLIC_API size_t FSE_compress_usingCTable    177 FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
178                                                   178 
179 /*!                                               179 /*!
180 Tutorial :                                        180 Tutorial :
181 ----------                                        181 ----------
182 The first step is to count all symbols. FSE_co    182 The first step is to count all symbols. FSE_count() does this job very fast.
183 Result will be saved into 'count', a table of     183 Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
184 'src' is a table of bytes of size 'srcSize'. A    184 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
185 maxSymbolValuePtr[0] will be updated, with its    185 maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
186 FSE_count() will return the number of occurren    186 FSE_count() will return the number of occurrence of the most frequent symbol.
187 This can be used to know if there is a single     187 This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
188 If there is an error, the function will return    188 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
189                                                   189 
190 The next step is to normalize the frequencies.    190 The next step is to normalize the frequencies.
191 FSE_normalizeCount() will ensure that sum of f    191 FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
192 It also guarantees a minimum of 1 to any Symbo    192 It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
193 You can use 'tableLog'==0 to mean "use default    193 You can use 'tableLog'==0 to mean "use default tableLog value".
194 If you are unsure of which tableLog value to u    194 If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
195 which will provide the optimal valid tableLog     195 which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
196                                                   196 
197 The result of FSE_normalizeCount() will be sav    197 The result of FSE_normalizeCount() will be saved into a table,
198 called 'normalizedCounter', which is a table o    198 called 'normalizedCounter', which is a table of signed short.
199 'normalizedCounter' must be already allocated,    199 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
200 The return value is tableLog if everything pro    200 The return value is tableLog if everything proceeded as expected.
201 It is 0 if there is a single symbol within dis    201 It is 0 if there is a single symbol within distribution.
202 If there is an error (ex: invalid tableLog val    202 If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
203                                                   203 
204 'normalizedCounter' can be saved in a compact     204 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
205 'buffer' must be already allocated.               205 'buffer' must be already allocated.
206 For guaranteed success, buffer size must be at    206 For guaranteed success, buffer size must be at least FSE_headerBound().
207 The result of the function is the number of by    207 The result of the function is the number of bytes written into 'buffer'.
208 If there is an error, the function will return    208 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
209                                                   209 
210 'normalizedCounter' can then be used to create    210 'normalizedCounter' can then be used to create the compression table 'CTable'.
211 The space required by 'CTable' must be already    211 The space required by 'CTable' must be already allocated, using FSE_createCTable().
212 You can then use FSE_buildCTable() to fill 'CT    212 You can then use FSE_buildCTable() to fill 'CTable'.
213 If there is an error, both functions will retu    213 If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
214                                                   214 
215 'CTable' can then be used to compress 'src', w    215 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
216 Similar to FSE_count(), the convention is that    216 Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
217 The function returns the size of compressed da    217 The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
218 If it returns '', compressed data could not fi    218 If it returns '', compressed data could not fit into 'dst'.
219 If there is an error, the function will return    219 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
220 */                                                220 */
221                                                   221 
222                                                   222 
223 /* *** DECOMPRESSION *** */                       223 /* *** DECOMPRESSION *** */
224                                                   224 
225 /*! FSE_readNCount():                             225 /*! FSE_readNCount():
226     Read compactly saved 'normalizedCounter' f    226     Read compactly saved 'normalizedCounter' from 'rBuffer'.
227     @return : size read from 'rBuffer',           227     @return : size read from 'rBuffer',
228               or an errorCode, which can be te    228               or an errorCode, which can be tested using FSE_isError().
229               maxSymbolValuePtr[0] and tableLo    229               maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
230 FSE_PUBLIC_API size_t FSE_readNCount (short* n    230 FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
231                            unsigned* maxSymbol    231                            unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
232                            const void* rBuffer    232                            const void* rBuffer, size_t rBuffSize);
233                                                   233 
234 /*! FSE_readNCount_bmi2():                        234 /*! FSE_readNCount_bmi2():
235  * Same as FSE_readNCount() but pass bmi2=1 wh    235  * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
236  */                                               236  */
237 FSE_PUBLIC_API size_t FSE_readNCount_bmi2(shor    237 FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
238                            unsigned* maxSymbol    238                            unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
239                            const void* rBuffer    239                            const void* rBuffer, size_t rBuffSize, int bmi2);
240                                                   240 
241 /*! Constructor and Destructor of FSE_DTable.     241 /*! Constructor and Destructor of FSE_DTable.
242     Note that its size depends on 'tableLog' *    242     Note that its size depends on 'tableLog' */
243 typedef unsigned FSE_DTable;   /* don't alloca    243 typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
244 FSE_PUBLIC_API FSE_DTable* FSE_createDTable(un    244 FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
245 FSE_PUBLIC_API void        FSE_freeDTable(FSE_    245 FSE_PUBLIC_API void        FSE_freeDTable(FSE_DTable* dt);
246                                                   246 
247 /*! FSE_buildDTable():                            247 /*! FSE_buildDTable():
248     Builds 'dt', which must be already allocat    248     Builds 'dt', which must be already allocated, using FSE_createDTable().
249     return : 0, or an errorCode, which can be     249     return : 0, or an errorCode, which can be tested using FSE_isError() */
250 FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTa    250 FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
251                                                   251 
252 /*! FSE_decompress_usingDTable():                 252 /*! FSE_decompress_usingDTable():
253     Decompress compressed source `cSrc` of siz    253     Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
254     into `dst` which must be already allocated    254     into `dst` which must be already allocated.
255     @return : size of regenerated data (necess    255     @return : size of regenerated data (necessarily <= `dstCapacity`),
256               or an errorCode, which can be te    256               or an errorCode, which can be tested using FSE_isError() */
257 FSE_PUBLIC_API size_t FSE_decompress_usingDTab    257 FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
258                                                   258 
259 /*!                                               259 /*!
260 Tutorial :                                        260 Tutorial :
261 ----------                                        261 ----------
262 (Note : these functions only decompress FSE-co    262 (Note : these functions only decompress FSE-compressed blocks.
263  If block is uncompressed, use memcpy() instea    263  If block is uncompressed, use memcpy() instead
264  If block is a single repeated byte, use memse    264  If block is a single repeated byte, use memset() instead )
265                                                   265 
266 The first step is to obtain the normalized fre    266 The first step is to obtain the normalized frequencies of symbols.
267 This can be performed by FSE_readNCount() if i    267 This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
268 'normalizedCounter' must be already allocated,    268 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
269 In practice, that means it's necessary to know    269 In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
270 or size the table to handle worst case situati    270 or size the table to handle worst case situations (typically 256).
271 FSE_readNCount() will provide 'tableLog' and '    271 FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
272 The result of FSE_readNCount() is the number o    272 The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
273 Note that 'rBufferSize' must be at least 4 byt    273 Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
274 If there is an error, the function will return    274 If there is an error, the function will return an error code, which can be tested using FSE_isError().
275                                                   275 
276 The next step is to build the decompression ta    276 The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
277 This is performed by the function FSE_buildDTa    277 This is performed by the function FSE_buildDTable().
278 The space required by 'FSE_DTable' must be alr    278 The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
279 If there is an error, the function will return    279 If there is an error, the function will return an error code, which can be tested using FSE_isError().
280                                                   280 
281 `FSE_DTable` can then be used to decompress `c    281 `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
282 `cSrcSize` must be strictly correct, otherwise    282 `cSrcSize` must be strictly correct, otherwise decompression will fail.
283 FSE_decompress_usingDTable() result will tell     283 FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
284 If there is an error, the function will return    284 If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
285 */                                                285 */
286                                                   286 
287 #endif  /* FSE_H */                               287 #endif  /* FSE_H */
288                                                   288 
289 #if !defined(FSE_H_FSE_STATIC_LINKING_ONLY)       289 #if !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
290 #define FSE_H_FSE_STATIC_LINKING_ONLY             290 #define FSE_H_FSE_STATIC_LINKING_ONLY
291                                                   291 
292 /* *** Dependency *** */                          292 /* *** Dependency *** */
293 #include "bitstream.h"                            293 #include "bitstream.h"
294                                                   294 
295                                                   295 
296 /* *****************************************      296 /* *****************************************
297 *  Static allocation                              297 *  Static allocation
298 *******************************************/      298 *******************************************/
299 /* FSE buffer bounds */                           299 /* FSE buffer bounds */
300 #define FSE_NCOUNTBOUND 512                       300 #define FSE_NCOUNTBOUND 512
301 #define FSE_BLOCKBOUND(size) ((size) + ((size)    301 #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
302 #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOU    302 #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
303                                                   303 
304 /* It is possible to statically allocate FSE C    304 /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
305 #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSy    305 #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
306 #define FSE_DTABLE_SIZE_U32(maxTableLog)          306 #define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<(maxTableLog)))
307                                                   307 
308 /* or use the size to malloc() space directly.    308 /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
309 #define FSE_CTABLE_SIZE(maxTableLog, maxSymbol    309 #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue)   (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
310 #define FSE_DTABLE_SIZE(maxTableLog)              310 #define FSE_DTABLE_SIZE(maxTableLog)                   (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
311                                                   311 
312                                                   312 
313 /* *****************************************      313 /* *****************************************
314  *  FSE advanced API                              314  *  FSE advanced API
315  ***************************************** */     315  ***************************************** */
316                                                   316 
317 unsigned FSE_optimalTableLog_internal(unsigned    317 unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
318 /*< same as FSE_optimalTableLog(), which used     318 /*< same as FSE_optimalTableLog(), which used `minus==2` */
319                                                   319 
320 /* FSE_compress_wksp() :                          320 /* FSE_compress_wksp() :
321  * Same as FSE_compress2(), but using an exter    321  * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
322  * FSE_COMPRESS_WKSP_SIZE_U32() provides the m    322  * FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
323  */                                               323  */
324 #define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog    324 #define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue)   ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
325 size_t FSE_compress_wksp (void* dst, size_t ds    325 size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
326                                                   326 
327 size_t FSE_buildCTable_raw (FSE_CTable* ct, un    327 size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
328 /*< build a fake FSE_CTable, designed for a fl    328 /*< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
329                                                   329 
330 size_t FSE_buildCTable_rle (FSE_CTable* ct, un    330 size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
331 /*< build a fake FSE_CTable, designed to compr    331 /*< build a fake FSE_CTable, designed to compress always the same symbolValue */
332                                                   332 
333 /* FSE_buildCTable_wksp() :                       333 /* FSE_buildCTable_wksp() :
334  * Same as FSE_buildCTable(), but using an ext    334  * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
335  * `wkspSize` must be >= `FSE_BUILD_CTABLE_WOR    335  * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
336  * See FSE_buildCTable_wksp() for breakdown of << 
337  */                                               336  */
338 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(ma !! 337 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (maxSymbolValue + 2 + (1ull << (tableLog - 2)))
339 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSym    338 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
340 size_t FSE_buildCTable_wksp(FSE_CTable* ct, co    339 size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
341                                                   340 
342 #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog    341 #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
343 #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTabl    342 #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
344 FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE    343 FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
345 /*< Same as FSE_buildDTable(), using an extern    344 /*< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
346                                                   345 
347 size_t FSE_buildDTable_raw (FSE_DTable* dt, un    346 size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
348 /*< build a fake FSE_DTable, designed to read     347 /*< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
349                                                   348 
350 size_t FSE_buildDTable_rle (FSE_DTable* dt, un    349 size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
351 /*< build a fake FSE_DTable, designed to alway    350 /*< build a fake FSE_DTable, designed to always generate the same symbolValue */
352                                                   351 
353 #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableL    352 #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
354 #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog,     353 #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
355 size_t FSE_decompress_wksp(void* dst, size_t d    354 size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize);
356 /*< same as FSE_decompress(), using an externa    355 /*< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */
357                                                   356 
358 size_t FSE_decompress_wksp_bmi2(void* dst, siz    357 size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
359 /*< Same as FSE_decompress_wksp() but with dyn    358 /*< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */
360                                                   359 
361 typedef enum {                                    360 typedef enum {
362    FSE_repeat_none,  /*< Cannot use the previo    361    FSE_repeat_none,  /*< Cannot use the previous table */
363    FSE_repeat_check, /*< Can use the previous     362    FSE_repeat_check, /*< Can use the previous table but it must be checked */
364    FSE_repeat_valid  /*< Can use the previous     363    FSE_repeat_valid  /*< Can use the previous table and it is assumed to be valid */
365  } FSE_repeat;                                    364  } FSE_repeat;
366                                                   365 
367 /* *****************************************      366 /* *****************************************
368 *  FSE symbol compression API                     367 *  FSE symbol compression API
369 *******************************************/      368 *******************************************/
370 /*!                                               369 /*!
371    This API consists of small unitary function    370    This API consists of small unitary functions, which highly benefit from being inlined.
372    Hence their body are included in next secti    371    Hence their body are included in next section.
373 */                                                372 */
374 typedef struct {                                  373 typedef struct {
375     ptrdiff_t   value;                            374     ptrdiff_t   value;
376     const void* stateTable;                       375     const void* stateTable;
377     const void* symbolTT;                         376     const void* symbolTT;
378     unsigned    stateLog;                         377     unsigned    stateLog;
379 } FSE_CState_t;                                   378 } FSE_CState_t;
380                                                   379 
381 static void FSE_initCState(FSE_CState_t* CStat    380 static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
382                                                   381 
383 static void FSE_encodeSymbol(BIT_CStream_t* bi    382 static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
384                                                   383 
385 static void FSE_flushCState(BIT_CStream_t* bit    384 static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
386                                                   385 
387 /*<                                               386 /*<
388 These functions are inner components of FSE_co    387 These functions are inner components of FSE_compress_usingCTable().
389 They allow the creation of custom streams, mix    388 They allow the creation of custom streams, mixing multiple tables and bit sources.
390                                                   389 
391 A key property to keep in mind is that encodin    390 A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
392 So the first symbol you will encode is the las    391 So the first symbol you will encode is the last you will decode, like a LIFO stack.
393                                                   392 
394 You will need a few variables to track your CS    393 You will need a few variables to track your CStream. They are :
395                                                   394 
396 FSE_CTable    ct;         // Provided by FSE_b    395 FSE_CTable    ct;         // Provided by FSE_buildCTable()
397 BIT_CStream_t bitStream;  // bitStream trackin    396 BIT_CStream_t bitStream;  // bitStream tracking structure
398 FSE_CState_t  state;      // State tracking st    397 FSE_CState_t  state;      // State tracking structure (can have several)
399                                                   398 
400                                                   399 
401 The first thing to do is to init bitStream and    400 The first thing to do is to init bitStream and state.
402     size_t errorCode = BIT_initCStream(&bitStr    401     size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
403     FSE_initCState(&state, ct);                   402     FSE_initCState(&state, ct);
404                                                   403 
405 Note that BIT_initCStream() can produce an err    404 Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
406 You can then encode your input data, byte afte    405 You can then encode your input data, byte after byte.
407 FSE_encodeSymbol() outputs a maximum of 'table    406 FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
408 Remember decoding will be done in reverse dire    407 Remember decoding will be done in reverse direction.
409     FSE_encodeByte(&bitStream, &state, symbol)    408     FSE_encodeByte(&bitStream, &state, symbol);
410                                                   409 
411 At any time, you can also add any bit sequence    410 At any time, you can also add any bit sequence.
412 Note : maximum allowed nbBits is 25, for compa    411 Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
413     BIT_addBits(&bitStream, bitField, nbBits);    412     BIT_addBits(&bitStream, bitField, nbBits);
414                                                   413 
415 The above methods don't commit data to memory,    414 The above methods don't commit data to memory, they just store it into local register, for speed.
416 Local register size is 64-bits on 64-bits syst    415 Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
417 Writing data to memory is a manual operation,     416 Writing data to memory is a manual operation, performed by the flushBits function.
418     BIT_flushBits(&bitStream);                    417     BIT_flushBits(&bitStream);
419                                                   418 
420 Your last FSE encoding operation shall be to f    419 Your last FSE encoding operation shall be to flush your last state value(s).
421     FSE_flushState(&bitStream, &state);           420     FSE_flushState(&bitStream, &state);
422                                                   421 
423 Finally, you must close the bitStream.            422 Finally, you must close the bitStream.
424 The function returns the size of CStream in by    423 The function returns the size of CStream in bytes.
425 If data couldn't fit into dstBuffer, it will r    424 If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
426 If there is an error, it returns an errorCode     425 If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
427     size_t size = BIT_closeCStream(&bitStream)    426     size_t size = BIT_closeCStream(&bitStream);
428 */                                                427 */
429                                                   428 
430                                                   429 
431 /* *****************************************      430 /* *****************************************
432 *  FSE symbol decompression API                   431 *  FSE symbol decompression API
433 *******************************************/      432 *******************************************/
434 typedef struct {                                  433 typedef struct {
435     size_t      state;                            434     size_t      state;
436     const void* table;   /* precise table may     435     const void* table;   /* precise table may vary, depending on U16 */
437 } FSE_DState_t;                                   436 } FSE_DState_t;
438                                                   437 
439                                                   438 
440 static void     FSE_initDState(FSE_DState_t* D    439 static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
441                                                   440 
442 static unsigned char FSE_decodeSymbol(FSE_DSta    441 static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
443                                                   442 
444 static unsigned FSE_endOfDState(const FSE_DSta    443 static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
445                                                   444 
446 /*<                                               445 /*<
447 Let's now decompose FSE_decompress_usingDTable    446 Let's now decompose FSE_decompress_usingDTable() into its unitary components.
448 You will decode FSE-encoded symbols from the b    447 You will decode FSE-encoded symbols from the bitStream,
449 and also any other bitFields you put in, **in     448 and also any other bitFields you put in, **in reverse order**.
450                                                   449 
451 You will need a few variables to track your bi    450 You will need a few variables to track your bitStream. They are :
452                                                   451 
453 BIT_DStream_t DStream;    // Stream context       452 BIT_DStream_t DStream;    // Stream context
454 FSE_DState_t  DState;     // State context. Mu    453 FSE_DState_t  DState;     // State context. Multiple ones are possible
455 FSE_DTable*   DTablePtr;  // Decoding table, p    454 FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
456                                                   455 
457 The first thing to do is to init the bitStream    456 The first thing to do is to init the bitStream.
458     errorCode = BIT_initDStream(&DStream, srcB    457     errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
459                                                   458 
460 You should then retrieve your initial state(s)    459 You should then retrieve your initial state(s)
461 (in reverse flushing order if you have several    460 (in reverse flushing order if you have several ones) :
462     errorCode = FSE_initDState(&DState, &DStre    461     errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
463                                                   462 
464 You can then decode your data, symbol after sy    463 You can then decode your data, symbol after symbol.
465 For information the maximum number of bits rea    464 For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
466 Keep in mind that symbols are decoded in rever    465 Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
467     unsigned char symbol = FSE_decodeSymbol(&D    466     unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
468                                                   467 
469 You can retrieve any bitfield you eventually s    468 You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
470 Note : maximum allowed nbBits is 25, for 32-bi    469 Note : maximum allowed nbBits is 25, for 32-bits compatibility
471     size_t bitField = BIT_readBits(&DStream, n    470     size_t bitField = BIT_readBits(&DStream, nbBits);
472                                                   471 
473 All above operations only read from local regi    472 All above operations only read from local register (which size depends on size_t).
474 Refueling the register from memory is manually    473 Refueling the register from memory is manually performed by the reload method.
475     endSignal = FSE_reloadDStream(&DStream);      474     endSignal = FSE_reloadDStream(&DStream);
476                                                   475 
477 BIT_reloadDStream() result tells if there is s    476 BIT_reloadDStream() result tells if there is still some more data to read from DStream.
478 BIT_DStream_unfinished : there is still some d    477 BIT_DStream_unfinished : there is still some data left into the DStream.
479 BIT_DStream_endOfBuffer : Dstream reached end     478 BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
480 BIT_DStream_completed : Dstream reached its ex    479 BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
481 BIT_DStream_tooFar : Dstream went too far. Dec    480 BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
482                                                   481 
483 When reaching end of buffer (BIT_DStream_endOf    482 When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
484 to properly detect the exact end of stream.       483 to properly detect the exact end of stream.
485 After each decoded symbol, check if DStream is    484 After each decoded symbol, check if DStream is fully consumed using this simple test :
486     BIT_reloadDStream(&DStream) >= BIT_DStream    485     BIT_reloadDStream(&DStream) >= BIT_DStream_completed
487                                                   486 
488 When it's done, verify decompression is fully     487 When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
489 Checking if DStream has reached its end is per    488 Checking if DStream has reached its end is performed by :
490     BIT_endOfDStream(&DStream);                   489     BIT_endOfDStream(&DStream);
491 Check also the states. There might be some sym    490 Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
492     FSE_endOfDState(&DState);                     491     FSE_endOfDState(&DState);
493 */                                                492 */
494                                                   493 
495                                                   494 
496 /* *****************************************      495 /* *****************************************
497 *  FSE unsafe API                                 496 *  FSE unsafe API
498 *******************************************/      497 *******************************************/
499 static unsigned char FSE_decodeSymbolFast(FSE_    498 static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
500 /* faster, but works only if nbBits is always     499 /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
501                                                   500 
502                                                   501 
503 /* *****************************************      502 /* *****************************************
504 *  Implementation of inlined functions            503 *  Implementation of inlined functions
505 *******************************************/      504 *******************************************/
506 typedef struct {                                  505 typedef struct {
507     int deltaFindState;                           506     int deltaFindState;
508     U32 deltaNbBits;                              507     U32 deltaNbBits;
509 } FSE_symbolCompressionTransform; /* total 8 b    508 } FSE_symbolCompressionTransform; /* total 8 bytes */
510                                                   509 
511 MEM_STATIC void FSE_initCState(FSE_CState_t* s    510 MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
512 {                                                 511 {
513     const void* ptr = ct;                         512     const void* ptr = ct;
514     const U16* u16ptr = (const U16*) ptr;         513     const U16* u16ptr = (const U16*) ptr;
515     const U32 tableLog = MEM_read16(ptr);         514     const U32 tableLog = MEM_read16(ptr);
516     statePtr->value = (ptrdiff_t)1<<tableLog;     515     statePtr->value = (ptrdiff_t)1<<tableLog;
517     statePtr->stateTable = u16ptr+2;              516     statePtr->stateTable = u16ptr+2;
518     statePtr->symbolTT = ct + 1 + (tableLog ?     517     statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
519     statePtr->stateLog = tableLog;                518     statePtr->stateLog = tableLog;
520 }                                                 519 }
521                                                   520 
522                                                   521 
523 /*! FSE_initCState2() :                           522 /*! FSE_initCState2() :
524 *   Same as FSE_initCState(), but the first sy    523 *   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
525 *   uses the smallest state value possible, sa    524 *   uses the smallest state value possible, saving the cost of this symbol */
526 MEM_STATIC void FSE_initCState2(FSE_CState_t*     525 MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
527 {                                                 526 {
528     FSE_initCState(statePtr, ct);                 527     FSE_initCState(statePtr, ct);
529     {   const FSE_symbolCompressionTransform s    528     {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
530         const U16* stateTable = (const U16*)(s    529         const U16* stateTable = (const U16*)(statePtr->stateTable);
531         U32 nbBitsOut  = (U32)((symbolTT.delta    530         U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
532         statePtr->value = (nbBitsOut << 16) -     531         statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
533         statePtr->value = stateTable[(statePtr    532         statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
534     }                                             533     }
535 }                                                 534 }
536                                                   535 
537 MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t    536 MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
538 {                                                 537 {
539     FSE_symbolCompressionTransform const symbo    538     FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
540     const U16* const stateTable = (const U16*)    539     const U16* const stateTable = (const U16*)(statePtr->stateTable);
541     U32 const nbBitsOut  = (U32)((statePtr->va    540     U32 const nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
542     BIT_addBits(bitC, statePtr->value, nbBitsO    541     BIT_addBits(bitC, statePtr->value, nbBitsOut);
543     statePtr->value = stateTable[ (statePtr->v    542     statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
544 }                                                 543 }
545                                                   544 
546 MEM_STATIC void FSE_flushCState(BIT_CStream_t*    545 MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
547 {                                                 546 {
548     BIT_addBits(bitC, statePtr->value, statePt    547     BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
549     BIT_flushBits(bitC);                          548     BIT_flushBits(bitC);
550 }                                                 549 }
551                                                   550 
552                                                   551 
553 /* FSE_getMaxNbBits() :                           552 /* FSE_getMaxNbBits() :
554  * Approximate maximum cost of a symbol, in bi    553  * Approximate maximum cost of a symbol, in bits.
555  * Fractional get rounded up (i.e : a symbol w    554  * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
556  * note 1 : assume symbolValue is valid (<= ma    555  * note 1 : assume symbolValue is valid (<= maxSymbolValue)
557  * note 2 : if freq[symbolValue]==0, @return a    556  * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
558 MEM_STATIC U32 FSE_getMaxNbBits(const void* sy    557 MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
559 {                                                 558 {
560     const FSE_symbolCompressionTransform* symb    559     const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
561     return (symbolTT[symbolValue].deltaNbBits     560     return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
562 }                                                 561 }
563                                                   562 
564 /* FSE_bitCost() :                                563 /* FSE_bitCost() :
565  * Approximate symbol cost, as fractional valu    564  * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
566  * note 1 : assume symbolValue is valid (<= ma    565  * note 1 : assume symbolValue is valid (<= maxSymbolValue)
567  * note 2 : if freq[symbolValue]==0, @return a    566  * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
568 MEM_STATIC U32 FSE_bitCost(const void* symbolT    567 MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
569 {                                                 568 {
570     const FSE_symbolCompressionTransform* symb    569     const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
571     U32 const minNbBits = symbolTT[symbolValue    570     U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
572     U32 const threshold = (minNbBits+1) << 16;    571     U32 const threshold = (minNbBits+1) << 16;
573     assert(tableLog < 16);                        572     assert(tableLog < 16);
574     assert(accuracyLog < 31-tableLog);  /* ens    573     assert(accuracyLog < 31-tableLog);  /* ensure enough room for renormalization double shift */
575     {   U32 const tableSize = 1 << tableLog;      574     {   U32 const tableSize = 1 << tableLog;
576         U32 const deltaFromThreshold = thresho    575         U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
577         U32 const normalizedDeltaFromThreshold    576         U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog;   /* linear interpolation (very approximate) */
578         U32 const bitMultiplier = 1 << accurac    577         U32 const bitMultiplier = 1 << accuracyLog;
579         assert(symbolTT[symbolValue].deltaNbBi    578         assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
580         assert(normalizedDeltaFromThreshold <=    579         assert(normalizedDeltaFromThreshold <= bitMultiplier);
581         return (minNbBits+1)*bitMultiplier - n    580         return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
582     }                                             581     }
583 }                                                 582 }
584                                                   583 
585                                                   584 
586 /* ======    Decompression    ====== */           585 /* ======    Decompression    ====== */
587                                                   586 
588 typedef struct {                                  587 typedef struct {
589     U16 tableLog;                                 588     U16 tableLog;
590     U16 fastMode;                                 589     U16 fastMode;
591 } FSE_DTableHeader;   /* sizeof U32 */            590 } FSE_DTableHeader;   /* sizeof U32 */
592                                                   591 
593 typedef struct                                    592 typedef struct
594 {                                                 593 {
595     unsigned short newState;                      594     unsigned short newState;
596     unsigned char  symbol;                        595     unsigned char  symbol;
597     unsigned char  nbBits;                        596     unsigned char  nbBits;
598 } FSE_decode_t;   /* size == U32 */               597 } FSE_decode_t;   /* size == U32 */
599                                                   598 
600 MEM_STATIC void FSE_initDState(FSE_DState_t* D    599 MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
601 {                                                 600 {
602     const void* ptr = dt;                         601     const void* ptr = dt;
603     const FSE_DTableHeader* const DTableH = (c    602     const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
604     DStatePtr->state = BIT_readBits(bitD, DTab    603     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
605     BIT_reloadDStream(bitD);                      604     BIT_reloadDStream(bitD);
606     DStatePtr->table = dt + 1;                    605     DStatePtr->table = dt + 1;
607 }                                                 606 }
608                                                   607 
609 MEM_STATIC BYTE FSE_peekSymbol(const FSE_DStat    608 MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
610 {                                                 609 {
611     FSE_decode_t const DInfo = ((const FSE_dec    610     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
612     return DInfo.symbol;                          611     return DInfo.symbol;
613 }                                                 612 }
614                                                   613 
615 MEM_STATIC void FSE_updateState(FSE_DState_t*     614 MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
616 {                                                 615 {
617     FSE_decode_t const DInfo = ((const FSE_dec    616     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
618     U32 const nbBits = DInfo.nbBits;              617     U32 const nbBits = DInfo.nbBits;
619     size_t const lowBits = BIT_readBits(bitD,     618     size_t const lowBits = BIT_readBits(bitD, nbBits);
620     DStatePtr->state = DInfo.newState + lowBit    619     DStatePtr->state = DInfo.newState + lowBits;
621 }                                                 620 }
622                                                   621 
623 MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t*    622 MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
624 {                                                 623 {
625     FSE_decode_t const DInfo = ((const FSE_dec    624     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
626     U32 const nbBits = DInfo.nbBits;              625     U32 const nbBits = DInfo.nbBits;
627     BYTE const symbol = DInfo.symbol;             626     BYTE const symbol = DInfo.symbol;
628     size_t const lowBits = BIT_readBits(bitD,     627     size_t const lowBits = BIT_readBits(bitD, nbBits);
629                                                   628 
630     DStatePtr->state = DInfo.newState + lowBit    629     DStatePtr->state = DInfo.newState + lowBits;
631     return symbol;                                630     return symbol;
632 }                                                 631 }
633                                                   632 
634 /*! FSE_decodeSymbolFast() :                      633 /*! FSE_decodeSymbolFast() :
635     unsafe, only works if no symbol has a prob    634     unsafe, only works if no symbol has a probability > 50% */
636 MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DStat    635 MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
637 {                                                 636 {
638     FSE_decode_t const DInfo = ((const FSE_dec    637     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
639     U32 const nbBits = DInfo.nbBits;              638     U32 const nbBits = DInfo.nbBits;
640     BYTE const symbol = DInfo.symbol;             639     BYTE const symbol = DInfo.symbol;
641     size_t const lowBits = BIT_readBitsFast(bi    640     size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
642                                                   641 
643     DStatePtr->state = DInfo.newState + lowBit    642     DStatePtr->state = DInfo.newState + lowBits;
644     return symbol;                                643     return symbol;
645 }                                                 644 }
646                                                   645 
647 MEM_STATIC unsigned FSE_endOfDState(const FSE_    646 MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
648 {                                                 647 {
649     return DStatePtr->state == 0;                 648     return DStatePtr->state == 0;
650 }                                                 649 }
651                                                   650 
652                                                   651 
653                                                   652 
654 #ifndef FSE_COMMONDEFS_ONLY                       653 #ifndef FSE_COMMONDEFS_ONLY
655                                                   654 
656 /* *******************************************    655 /* **************************************************************
657 *  Tuning parameters                              656 *  Tuning parameters
658 **********************************************    657 ****************************************************************/
659 /*!MEMORY_USAGE :                                 658 /*!MEMORY_USAGE :
660 *  Memory usage formula : N->2^N Bytes (exampl    659 *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
661 *  Increasing memory usage improves compressio    660 *  Increasing memory usage improves compression ratio
662 *  Reduced memory usage can improve speed, due    661 *  Reduced memory usage can improve speed, due to cache effect
663 *  Recommended max value is 14, for 16KB, whic    662 *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
664 #ifndef FSE_MAX_MEMORY_USAGE                      663 #ifndef FSE_MAX_MEMORY_USAGE
665 #  define FSE_MAX_MEMORY_USAGE 14                 664 #  define FSE_MAX_MEMORY_USAGE 14
666 #endif                                            665 #endif
667 #ifndef FSE_DEFAULT_MEMORY_USAGE                  666 #ifndef FSE_DEFAULT_MEMORY_USAGE
668 #  define FSE_DEFAULT_MEMORY_USAGE 13             667 #  define FSE_DEFAULT_MEMORY_USAGE 13
669 #endif                                            668 #endif
670 #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY    669 #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
671 #  error "FSE_DEFAULT_MEMORY_USAGE must be <=     670 #  error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
672 #endif                                            671 #endif
673                                                   672 
674 /*!FSE_MAX_SYMBOL_VALUE :                         673 /*!FSE_MAX_SYMBOL_VALUE :
675 *  Maximum symbol value authorized.               674 *  Maximum symbol value authorized.
676 *  Required for proper stack allocation */        675 *  Required for proper stack allocation */
677 #ifndef FSE_MAX_SYMBOL_VALUE                      676 #ifndef FSE_MAX_SYMBOL_VALUE
678 #  define FSE_MAX_SYMBOL_VALUE 255                677 #  define FSE_MAX_SYMBOL_VALUE 255
679 #endif                                            678 #endif
680                                                   679 
681 /* *******************************************    680 /* **************************************************************
682 *  template functions type & suffix               681 *  template functions type & suffix
683 **********************************************    682 ****************************************************************/
684 #define FSE_FUNCTION_TYPE BYTE                    683 #define FSE_FUNCTION_TYPE BYTE
685 #define FSE_FUNCTION_EXTENSION                    684 #define FSE_FUNCTION_EXTENSION
686 #define FSE_DECODE_TYPE FSE_decode_t              685 #define FSE_DECODE_TYPE FSE_decode_t
687                                                   686 
688                                                   687 
689 #endif   /* !FSE_COMMONDEFS_ONLY */               688 #endif   /* !FSE_COMMONDEFS_ONLY */
690                                                   689 
691                                                   690 
692 /* *******************************************    691 /* ***************************************************************
693 *  Constants                                      692 *  Constants
694 **********************************************    693 *****************************************************************/
695 #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAG    694 #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
696 #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELO    695 #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
697 #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESI    696 #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
698 #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMO    697 #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
699 #define FSE_MIN_TABLELOG 5                        698 #define FSE_MIN_TABLELOG 5
700                                                   699 
701 #define FSE_TABLELOG_ABSOLUTE_MAX 15              700 #define FSE_TABLELOG_ABSOLUTE_MAX 15
702 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_M    701 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
703 #  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSO    702 #  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
704 #endif                                            703 #endif
705                                                   704 
706 #define FSE_TABLESTEP(tableSize) (((tableSize)    705 #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
707                                                   706 
708                                                   707 
709 #endif /* FSE_STATIC_LINKING_ONLY */              708 #endif /* FSE_STATIC_LINKING_ONLY */
710                                                   709 
711                                                   710 
712                                                   711 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php