1 /* ******************************************* 1 /* ****************************************************************** 2 * FSE : Finite State Entropy codec 2 * FSE : Finite State Entropy codec 3 * Public Prototypes declaration 3 * Public Prototypes declaration 4 * Copyright (c) Yann Collet, Facebook, Inc. 4 * Copyright (c) Yann Collet, Facebook, Inc. 5 * 5 * 6 * You can contact the author at : 6 * You can contact the author at : 7 * - Source repository : https://github.com/Cy 7 * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy 8 * 8 * 9 * This source code is licensed under both the 9 * This source code is licensed under both the BSD-style license (found in the 10 * LICENSE file in the root directory of this 10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 11 * in the COPYING file in the root directory o 11 * in the COPYING file in the root directory of this source tree). 12 * You may select, at your option, one of the 12 * You may select, at your option, one of the above-listed licenses. 13 ********************************************** 13 ****************************************************************** */ 14 14 15 15 16 #ifndef FSE_H 16 #ifndef FSE_H 17 #define FSE_H 17 #define FSE_H 18 18 19 19 20 /*-***************************************** 20 /*-***************************************** 21 * Dependencies 21 * Dependencies 22 ******************************************/ 22 ******************************************/ 23 #include "zstd_deps.h" /* size_t, ptrdiff_t 23 #include "zstd_deps.h" /* size_t, ptrdiff_t */ 24 24 25 25 26 /*-***************************************** 26 /*-***************************************** 27 * FSE_PUBLIC_API : control library symbols vi 27 * FSE_PUBLIC_API : control library symbols visibility 28 ******************************************/ 28 ******************************************/ 29 #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT 29 #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) 30 # define FSE_PUBLIC_API __attribute__ ((visib 30 # define FSE_PUBLIC_API __attribute__ ((visibility ("default"))) 31 #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPO 31 #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ 32 # define FSE_PUBLIC_API __declspec(dllexport) 32 # define FSE_PUBLIC_API __declspec(dllexport) 33 #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPO 33 #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) 34 # define FSE_PUBLIC_API __declspec(dllimport) 34 # define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ 35 #else 35 #else 36 # define FSE_PUBLIC_API 36 # define FSE_PUBLIC_API 37 #endif 37 #endif 38 38 39 /*------ Version ------*/ 39 /*------ Version ------*/ 40 #define FSE_VERSION_MAJOR 0 40 #define FSE_VERSION_MAJOR 0 41 #define FSE_VERSION_MINOR 9 41 #define FSE_VERSION_MINOR 9 42 #define FSE_VERSION_RELEASE 0 42 #define FSE_VERSION_RELEASE 0 43 43 44 #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_ 44 #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE 45 #define FSE_QUOTE(str) #str 45 #define FSE_QUOTE(str) #str 46 #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(st 46 #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) 47 #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOT 47 #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) 48 48 49 #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR 49 #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE) 50 FSE_PUBLIC_API unsigned FSE_versionNumber(void 50 FSE_PUBLIC_API unsigned FSE_versionNumber(void); /*< library version number; to be used when checking dll version */ 51 51 52 52 53 /*-**************************************** 53 /*-**************************************** 54 * FSE simple functions 54 * FSE simple functions 55 ******************************************/ 55 ******************************************/ 56 /*! FSE_compress() : 56 /*! FSE_compress() : 57 Compress content of buffer 'src', of size 57 Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'. 58 'dst' buffer must be already allocated. Co 58 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize). 59 @return : size of compressed data (<= dstC 59 @return : size of compressed data (<= dstCapacity). 60 Special values : if return == 0, srcData i 60 Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!! 61 if return == 1, srcData i 61 if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead. 62 if FSE_isError(return), c 62 if FSE_isError(return), compression failed (more details using FSE_getErrorName()) 63 */ 63 */ 64 FSE_PUBLIC_API size_t FSE_compress(void* dst, 64 FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity, 65 const void* src, 65 const void* src, size_t srcSize); 66 66 67 /*! FSE_decompress(): 67 /*! FSE_decompress(): 68 Decompress FSE data from buffer 'cSrc', of 68 Decompress FSE data from buffer 'cSrc', of size 'cSrcSize', 69 into already allocated destination buffer 69 into already allocated destination buffer 'dst', of size 'dstCapacity'. 70 @return : size of regenerated data (<= max 70 @return : size of regenerated data (<= maxDstSize), 71 or an error code, which can be t 71 or an error code, which can be tested using FSE_isError() . 72 72 73 ** Important ** : FSE_decompress() does no 73 ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!! 74 Why ? : making this distinction requires a 74 Why ? : making this distinction requires a header. 75 Header management is intentionally delegat 75 Header management is intentionally delegated to the user layer, which can better manage special cases. 76 */ 76 */ 77 FSE_PUBLIC_API size_t FSE_decompress(void* dst 77 FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity, 78 const void* cSr 78 const void* cSrc, size_t cSrcSize); 79 79 80 80 81 /*-***************************************** 81 /*-***************************************** 82 * Tool functions 82 * Tool functions 83 ******************************************/ 83 ******************************************/ 84 FSE_PUBLIC_API size_t FSE_compressBound(size_t 84 FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ 85 85 86 /* Error Management */ 86 /* Error Management */ 87 FSE_PUBLIC_API unsigned FSE_isError(size_t 87 FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ 88 FSE_PUBLIC_API const char* FSE_getErrorName(si 88 FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ 89 89 90 90 91 /*-***************************************** 91 /*-***************************************** 92 * FSE advanced functions 92 * FSE advanced functions 93 ******************************************/ 93 ******************************************/ 94 /*! FSE_compress2() : 94 /*! FSE_compress2() : 95 Same as FSE_compress(), but allows the sel 95 Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog' 96 Both parameters can be defined as '' to me 96 Both parameters can be defined as '' to mean : use default value 97 @return : size of compressed data 97 @return : size of compressed data 98 Special values : if return == 0, srcData i 98 Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!! 99 if return == 1, srcData i 99 if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression. 100 if FSE_isError(return), i 100 if FSE_isError(return), it's an error code. 101 */ 101 */ 102 FSE_PUBLIC_API size_t FSE_compress2 (void* dst 102 FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); 103 103 104 104 105 /*-***************************************** 105 /*-***************************************** 106 * FSE detailed API 106 * FSE detailed API 107 ******************************************/ 107 ******************************************/ 108 /*! 108 /*! 109 FSE_compress() does the following: 109 FSE_compress() does the following: 110 1. count symbol occurrence from source[] into 110 1. count symbol occurrence from source[] into table count[] (see hist.h) 111 2. normalize counters so that sum(count[]) == 111 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) 112 3. save normalized counters to memory buffer u 112 3. save normalized counters to memory buffer using writeNCount() 113 4. build encoding table 'CTable' from normaliz 113 4. build encoding table 'CTable' from normalized counters 114 5. encode the data stream using encoding table 114 5. encode the data stream using encoding table 'CTable' 115 115 116 FSE_decompress() does the following: 116 FSE_decompress() does the following: 117 1. read normalized counters with readNCount() 117 1. read normalized counters with readNCount() 118 2. build decoding table 'DTable' from normaliz 118 2. build decoding table 'DTable' from normalized counters 119 3. decode the data stream using decoding table 119 3. decode the data stream using decoding table 'DTable' 120 120 121 The following API allows targeting specific su 121 The following API allows targeting specific sub-functions for advanced tasks. 122 For example, it's possible to compress several 122 For example, it's possible to compress several blocks using the same 'CTable', 123 or to save and provide normalized distribution 123 or to save and provide normalized distribution using external method. 124 */ 124 */ 125 125 126 /* *** COMPRESSION *** */ 126 /* *** COMPRESSION *** */ 127 127 128 /*! FSE_optimalTableLog(): 128 /*! FSE_optimalTableLog(): 129 dynamically downsize 'tableLog' when condi 129 dynamically downsize 'tableLog' when conditions are met. 130 It saves CPU time, by using smaller tables 130 It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. 131 @return : recommended tableLog (necessaril 131 @return : recommended tableLog (necessarily <= 'maxTableLog') */ 132 FSE_PUBLIC_API unsigned FSE_optimalTableLog(un 132 FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); 133 133 134 /*! FSE_normalizeCount(): 134 /*! FSE_normalizeCount(): 135 normalize counts so that sum(count[]) == P 135 normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) 136 'normalizedCounter' is a table of short, o 136 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). 137 useLowProbCount is a boolean parameter whi 137 useLowProbCount is a boolean parameter which trades off compressed size for 138 faster header decoding. When it is set to 138 faster header decoding. When it is set to 1, the compressed data will be slightly 139 smaller. And when it is set to 0, FSE_read 139 smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be 140 faster. If you are compressing a small amo 140 faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0 141 is a good default, since header deserializ 141 is a good default, since header deserialization makes a big speed difference. 142 Otherwise, useLowProbCount=1 is a good def 142 Otherwise, useLowProbCount=1 is a good default, since the speed difference is small. 143 @return : tableLog, 143 @return : tableLog, 144 or an errorCode, which can be te 144 or an errorCode, which can be tested using FSE_isError() */ 145 FSE_PUBLIC_API size_t FSE_normalizeCount(short 145 FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, 146 const unsigned* count, siz 146 const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount); 147 147 148 /*! FSE_NCountWriteBound(): 148 /*! FSE_NCountWriteBound(): 149 Provides the maximum possible size of an F 149 Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. 150 Typically useful for allocation purpose. * 150 Typically useful for allocation purpose. */ 151 FSE_PUBLIC_API size_t FSE_NCountWriteBound(uns 151 FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); 152 152 153 /*! FSE_writeNCount(): 153 /*! FSE_writeNCount(): 154 Compactly save 'normalizedCounter' into 'b 154 Compactly save 'normalizedCounter' into 'buffer'. 155 @return : size of the compressed table, 155 @return : size of the compressed table, 156 or an errorCode, which can be te 156 or an errorCode, which can be tested using FSE_isError(). */ 157 FSE_PUBLIC_API size_t FSE_writeNCount (void* b 157 FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, 158 const short* 158 const short* normalizedCounter, 159 unsigned maxS 159 unsigned maxSymbolValue, unsigned tableLog); 160 160 161 /*! Constructor and Destructor of FSE_CTable. 161 /*! Constructor and Destructor of FSE_CTable. 162 Note that FSE_CTable size depends on 'tabl 162 Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ 163 typedef unsigned FSE_CTable; /* don't alloca 163 typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ 164 FSE_PUBLIC_API FSE_CTable* FSE_createCTable (u 164 FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog); 165 FSE_PUBLIC_API void FSE_freeCTable (FSE 165 FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct); 166 166 167 /*! FSE_buildCTable(): 167 /*! FSE_buildCTable(): 168 Builds `ct`, which must be already allocat 168 Builds `ct`, which must be already allocated, using FSE_createCTable(). 169 @return : 0, or an errorCode, which can be 169 @return : 0, or an errorCode, which can be tested using FSE_isError() */ 170 FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTab 170 FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); 171 171 172 /*! FSE_compress_usingCTable(): 172 /*! FSE_compress_usingCTable(): 173 Compress `src` using `ct` into `dst` which 173 Compress `src` using `ct` into `dst` which must be already allocated. 174 @return : size of compressed data (<= `dst 174 @return : size of compressed data (<= `dstCapacity`), 175 or 0 if compressed data could no 175 or 0 if compressed data could not fit into `dst`, 176 or an errorCode, which can be te 176 or an errorCode, which can be tested using FSE_isError() */ 177 FSE_PUBLIC_API size_t FSE_compress_usingCTable 177 FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); 178 178 179 /*! 179 /*! 180 Tutorial : 180 Tutorial : 181 ---------- 181 ---------- 182 The first step is to count all symbols. FSE_co 182 The first step is to count all symbols. FSE_count() does this job very fast. 183 Result will be saved into 'count', a table of 183 Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. 184 'src' is a table of bytes of size 'srcSize'. A 184 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] 185 maxSymbolValuePtr[0] will be updated, with its 185 maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) 186 FSE_count() will return the number of occurren 186 FSE_count() will return the number of occurrence of the most frequent symbol. 187 This can be used to know if there is a single 187 This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. 188 If there is an error, the function will return 188 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). 189 189 190 The next step is to normalize the frequencies. 190 The next step is to normalize the frequencies. 191 FSE_normalizeCount() will ensure that sum of f 191 FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. 192 It also guarantees a minimum of 1 to any Symbo 192 It also guarantees a minimum of 1 to any Symbol with frequency >= 1. 193 You can use 'tableLog'==0 to mean "use default 193 You can use 'tableLog'==0 to mean "use default tableLog value". 194 If you are unsure of which tableLog value to u 194 If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), 195 which will provide the optimal valid tableLog 195 which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). 196 196 197 The result of FSE_normalizeCount() will be sav 197 The result of FSE_normalizeCount() will be saved into a table, 198 called 'normalizedCounter', which is a table o 198 called 'normalizedCounter', which is a table of signed short. 199 'normalizedCounter' must be already allocated, 199 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. 200 The return value is tableLog if everything pro 200 The return value is tableLog if everything proceeded as expected. 201 It is 0 if there is a single symbol within dis 201 It is 0 if there is a single symbol within distribution. 202 If there is an error (ex: invalid tableLog val 202 If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). 203 203 204 'normalizedCounter' can be saved in a compact 204 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). 205 'buffer' must be already allocated. 205 'buffer' must be already allocated. 206 For guaranteed success, buffer size must be at 206 For guaranteed success, buffer size must be at least FSE_headerBound(). 207 The result of the function is the number of by 207 The result of the function is the number of bytes written into 'buffer'. 208 If there is an error, the function will return 208 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). 209 209 210 'normalizedCounter' can then be used to create 210 'normalizedCounter' can then be used to create the compression table 'CTable'. 211 The space required by 'CTable' must be already 211 The space required by 'CTable' must be already allocated, using FSE_createCTable(). 212 You can then use FSE_buildCTable() to fill 'CT 212 You can then use FSE_buildCTable() to fill 'CTable'. 213 If there is an error, both functions will retu 213 If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). 214 214 215 'CTable' can then be used to compress 'src', w 215 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). 216 Similar to FSE_count(), the convention is that 216 Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' 217 The function returns the size of compressed da 217 The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. 218 If it returns '', compressed data could not fi 218 If it returns '', compressed data could not fit into 'dst'. 219 If there is an error, the function will return 219 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). 220 */ 220 */ 221 221 222 222 223 /* *** DECOMPRESSION *** */ 223 /* *** DECOMPRESSION *** */ 224 224 225 /*! FSE_readNCount(): 225 /*! FSE_readNCount(): 226 Read compactly saved 'normalizedCounter' f 226 Read compactly saved 'normalizedCounter' from 'rBuffer'. 227 @return : size read from 'rBuffer', 227 @return : size read from 'rBuffer', 228 or an errorCode, which can be te 228 or an errorCode, which can be tested using FSE_isError(). 229 maxSymbolValuePtr[0] and tableLo 229 maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ 230 FSE_PUBLIC_API size_t FSE_readNCount (short* n 230 FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, 231 unsigned* maxSymbol 231 unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, 232 const void* rBuffer 232 const void* rBuffer, size_t rBuffSize); 233 233 234 /*! FSE_readNCount_bmi2(): 234 /*! FSE_readNCount_bmi2(): 235 * Same as FSE_readNCount() but pass bmi2=1 wh 235 * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise. 236 */ 236 */ 237 FSE_PUBLIC_API size_t FSE_readNCount_bmi2(shor 237 FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter, 238 unsigned* maxSymbol 238 unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, 239 const void* rBuffer 239 const void* rBuffer, size_t rBuffSize, int bmi2); 240 240 241 /*! Constructor and Destructor of FSE_DTable. 241 /*! Constructor and Destructor of FSE_DTable. 242 Note that its size depends on 'tableLog' * 242 Note that its size depends on 'tableLog' */ 243 typedef unsigned FSE_DTable; /* don't alloca 243 typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ 244 FSE_PUBLIC_API FSE_DTable* FSE_createDTable(un 244 FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog); 245 FSE_PUBLIC_API void FSE_freeDTable(FSE_ 245 FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt); 246 246 247 /*! FSE_buildDTable(): 247 /*! FSE_buildDTable(): 248 Builds 'dt', which must be already allocat 248 Builds 'dt', which must be already allocated, using FSE_createDTable(). 249 return : 0, or an errorCode, which can be 249 return : 0, or an errorCode, which can be tested using FSE_isError() */ 250 FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTa 250 FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); 251 251 252 /*! FSE_decompress_usingDTable(): 252 /*! FSE_decompress_usingDTable(): 253 Decompress compressed source `cSrc` of siz 253 Decompress compressed source `cSrc` of size `cSrcSize` using `dt` 254 into `dst` which must be already allocated 254 into `dst` which must be already allocated. 255 @return : size of regenerated data (necess 255 @return : size of regenerated data (necessarily <= `dstCapacity`), 256 or an errorCode, which can be te 256 or an errorCode, which can be tested using FSE_isError() */ 257 FSE_PUBLIC_API size_t FSE_decompress_usingDTab 257 FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt); 258 258 259 /*! 259 /*! 260 Tutorial : 260 Tutorial : 261 ---------- 261 ---------- 262 (Note : these functions only decompress FSE-co 262 (Note : these functions only decompress FSE-compressed blocks. 263 If block is uncompressed, use memcpy() instea 263 If block is uncompressed, use memcpy() instead 264 If block is a single repeated byte, use memse 264 If block is a single repeated byte, use memset() instead ) 265 265 266 The first step is to obtain the normalized fre 266 The first step is to obtain the normalized frequencies of symbols. 267 This can be performed by FSE_readNCount() if i 267 This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). 268 'normalizedCounter' must be already allocated, 268 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. 269 In practice, that means it's necessary to know 269 In practice, that means it's necessary to know 'maxSymbolValue' beforehand, 270 or size the table to handle worst case situati 270 or size the table to handle worst case situations (typically 256). 271 FSE_readNCount() will provide 'tableLog' and ' 271 FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. 272 The result of FSE_readNCount() is the number o 272 The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. 273 Note that 'rBufferSize' must be at least 4 byt 273 Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. 274 If there is an error, the function will return 274 If there is an error, the function will return an error code, which can be tested using FSE_isError(). 275 275 276 The next step is to build the decompression ta 276 The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. 277 This is performed by the function FSE_buildDTa 277 This is performed by the function FSE_buildDTable(). 278 The space required by 'FSE_DTable' must be alr 278 The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). 279 If there is an error, the function will return 279 If there is an error, the function will return an error code, which can be tested using FSE_isError(). 280 280 281 `FSE_DTable` can then be used to decompress `c 281 `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). 282 `cSrcSize` must be strictly correct, otherwise 282 `cSrcSize` must be strictly correct, otherwise decompression will fail. 283 FSE_decompress_usingDTable() result will tell 283 FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). 284 If there is an error, the function will return 284 If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) 285 */ 285 */ 286 286 287 #endif /* FSE_H */ 287 #endif /* FSE_H */ 288 288 289 #if !defined(FSE_H_FSE_STATIC_LINKING_ONLY) 289 #if !defined(FSE_H_FSE_STATIC_LINKING_ONLY) 290 #define FSE_H_FSE_STATIC_LINKING_ONLY 290 #define FSE_H_FSE_STATIC_LINKING_ONLY 291 291 292 /* *** Dependency *** */ 292 /* *** Dependency *** */ 293 #include "bitstream.h" 293 #include "bitstream.h" 294 294 295 295 296 /* ***************************************** 296 /* ***************************************** 297 * Static allocation 297 * Static allocation 298 *******************************************/ 298 *******************************************/ 299 /* FSE buffer bounds */ 299 /* FSE buffer bounds */ 300 #define FSE_NCOUNTBOUND 512 300 #define FSE_NCOUNTBOUND 512 301 #define FSE_BLOCKBOUND(size) ((size) + ((size) 301 #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */) 302 #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOU 302 #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ 303 303 304 /* It is possible to statically allocate FSE C 304 /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ 305 #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSy 305 #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2)) 306 #define FSE_DTABLE_SIZE_U32(maxTableLog) 306 #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog))) 307 307 308 /* or use the size to malloc() space directly. 308 /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */ 309 #define FSE_CTABLE_SIZE(maxTableLog, maxSymbol 309 #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable)) 310 #define FSE_DTABLE_SIZE(maxTableLog) 310 #define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable)) 311 311 312 312 313 /* ***************************************** 313 /* ***************************************** 314 * FSE advanced API 314 * FSE advanced API 315 ***************************************** */ 315 ***************************************** */ 316 316 317 unsigned FSE_optimalTableLog_internal(unsigned 317 unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); 318 /*< same as FSE_optimalTableLog(), which used 318 /*< same as FSE_optimalTableLog(), which used `minus==2` */ 319 319 320 /* FSE_compress_wksp() : 320 /* FSE_compress_wksp() : 321 * Same as FSE_compress2(), but using an exter 321 * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`). 322 * FSE_COMPRESS_WKSP_SIZE_U32() provides the m 322 * FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable. 323 */ 323 */ 324 #define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog 324 #define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) ) 325 size_t FSE_compress_wksp (void* dst, size_t ds 325 size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); 326 326 327 size_t FSE_buildCTable_raw (FSE_CTable* ct, un 327 size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits); 328 /*< build a fake FSE_CTable, designed for a fl 328 /*< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */ 329 329 330 size_t FSE_buildCTable_rle (FSE_CTable* ct, un 330 size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); 331 /*< build a fake FSE_CTable, designed to compr 331 /*< build a fake FSE_CTable, designed to compress always the same symbolValue */ 332 332 333 /* FSE_buildCTable_wksp() : 333 /* FSE_buildCTable_wksp() : 334 * Same as FSE_buildCTable(), but using an ext 334 * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). 335 * `wkspSize` must be >= `FSE_BUILD_CTABLE_WOR 335 * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`. 336 * See FSE_buildCTable_wksp() for breakdown of << 337 */ 336 */ 338 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(ma !! 337 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (maxSymbolValue + 2 + (1ull << (tableLog - 2))) 339 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSym 338 #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)) 340 size_t FSE_buildCTable_wksp(FSE_CTable* ct, co 339 size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); 341 340 342 #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog 341 #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8) 343 #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTabl 342 #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned)) 344 FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE 343 FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); 345 /*< Same as FSE_buildDTable(), using an extern 344 /*< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */ 346 345 347 size_t FSE_buildDTable_raw (FSE_DTable* dt, un 346 size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits); 348 /*< build a fake FSE_DTable, designed to read 347 /*< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */ 349 348 350 size_t FSE_buildDTable_rle (FSE_DTable* dt, un 349 size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue); 351 /*< build a fake FSE_DTable, designed to alway 350 /*< build a fake FSE_DTable, designed to always generate the same symbolValue */ 352 351 353 #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableL 352 #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1) 354 #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, 353 #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned)) 355 size_t FSE_decompress_wksp(void* dst, size_t d 354 size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize); 356 /*< same as FSE_decompress(), using an externa 355 /*< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */ 357 356 358 size_t FSE_decompress_wksp_bmi2(void* dst, siz 357 size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2); 359 /*< Same as FSE_decompress_wksp() but with dyn 358 /*< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */ 360 359 361 typedef enum { 360 typedef enum { 362 FSE_repeat_none, /*< Cannot use the previo 361 FSE_repeat_none, /*< Cannot use the previous table */ 363 FSE_repeat_check, /*< Can use the previous 362 FSE_repeat_check, /*< Can use the previous table but it must be checked */ 364 FSE_repeat_valid /*< Can use the previous 363 FSE_repeat_valid /*< Can use the previous table and it is assumed to be valid */ 365 } FSE_repeat; 364 } FSE_repeat; 366 365 367 /* ***************************************** 366 /* ***************************************** 368 * FSE symbol compression API 367 * FSE symbol compression API 369 *******************************************/ 368 *******************************************/ 370 /*! 369 /*! 371 This API consists of small unitary function 370 This API consists of small unitary functions, which highly benefit from being inlined. 372 Hence their body are included in next secti 371 Hence their body are included in next section. 373 */ 372 */ 374 typedef struct { 373 typedef struct { 375 ptrdiff_t value; 374 ptrdiff_t value; 376 const void* stateTable; 375 const void* stateTable; 377 const void* symbolTT; 376 const void* symbolTT; 378 unsigned stateLog; 377 unsigned stateLog; 379 } FSE_CState_t; 378 } FSE_CState_t; 380 379 381 static void FSE_initCState(FSE_CState_t* CStat 380 static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct); 382 381 383 static void FSE_encodeSymbol(BIT_CStream_t* bi 382 static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol); 384 383 385 static void FSE_flushCState(BIT_CStream_t* bit 384 static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr); 386 385 387 /*< 386 /*< 388 These functions are inner components of FSE_co 387 These functions are inner components of FSE_compress_usingCTable(). 389 They allow the creation of custom streams, mix 388 They allow the creation of custom streams, mixing multiple tables and bit sources. 390 389 391 A key property to keep in mind is that encodin 390 A key property to keep in mind is that encoding and decoding are done **in reverse direction**. 392 So the first symbol you will encode is the las 391 So the first symbol you will encode is the last you will decode, like a LIFO stack. 393 392 394 You will need a few variables to track your CS 393 You will need a few variables to track your CStream. They are : 395 394 396 FSE_CTable ct; // Provided by FSE_b 395 FSE_CTable ct; // Provided by FSE_buildCTable() 397 BIT_CStream_t bitStream; // bitStream trackin 396 BIT_CStream_t bitStream; // bitStream tracking structure 398 FSE_CState_t state; // State tracking st 397 FSE_CState_t state; // State tracking structure (can have several) 399 398 400 399 401 The first thing to do is to init bitStream and 400 The first thing to do is to init bitStream and state. 402 size_t errorCode = BIT_initCStream(&bitStr 401 size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize); 403 FSE_initCState(&state, ct); 402 FSE_initCState(&state, ct); 404 403 405 Note that BIT_initCStream() can produce an err 404 Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError(); 406 You can then encode your input data, byte afte 405 You can then encode your input data, byte after byte. 407 FSE_encodeSymbol() outputs a maximum of 'table 406 FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time. 408 Remember decoding will be done in reverse dire 407 Remember decoding will be done in reverse direction. 409 FSE_encodeByte(&bitStream, &state, symbol) 408 FSE_encodeByte(&bitStream, &state, symbol); 410 409 411 At any time, you can also add any bit sequence 410 At any time, you can also add any bit sequence. 412 Note : maximum allowed nbBits is 25, for compa 411 Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders 413 BIT_addBits(&bitStream, bitField, nbBits); 412 BIT_addBits(&bitStream, bitField, nbBits); 414 413 415 The above methods don't commit data to memory, 414 The above methods don't commit data to memory, they just store it into local register, for speed. 416 Local register size is 64-bits on 64-bits syst 415 Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). 417 Writing data to memory is a manual operation, 416 Writing data to memory is a manual operation, performed by the flushBits function. 418 BIT_flushBits(&bitStream); 417 BIT_flushBits(&bitStream); 419 418 420 Your last FSE encoding operation shall be to f 419 Your last FSE encoding operation shall be to flush your last state value(s). 421 FSE_flushState(&bitStream, &state); 420 FSE_flushState(&bitStream, &state); 422 421 423 Finally, you must close the bitStream. 422 Finally, you must close the bitStream. 424 The function returns the size of CStream in by 423 The function returns the size of CStream in bytes. 425 If data couldn't fit into dstBuffer, it will r 424 If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible) 426 If there is an error, it returns an errorCode 425 If there is an error, it returns an errorCode (which can be tested using FSE_isError()). 427 size_t size = BIT_closeCStream(&bitStream) 426 size_t size = BIT_closeCStream(&bitStream); 428 */ 427 */ 429 428 430 429 431 /* ***************************************** 430 /* ***************************************** 432 * FSE symbol decompression API 431 * FSE symbol decompression API 433 *******************************************/ 432 *******************************************/ 434 typedef struct { 433 typedef struct { 435 size_t state; 434 size_t state; 436 const void* table; /* precise table may 435 const void* table; /* precise table may vary, depending on U16 */ 437 } FSE_DState_t; 436 } FSE_DState_t; 438 437 439 438 440 static void FSE_initDState(FSE_DState_t* D 439 static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt); 441 440 442 static unsigned char FSE_decodeSymbol(FSE_DSta 441 static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); 443 442 444 static unsigned FSE_endOfDState(const FSE_DSta 443 static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr); 445 444 446 /*< 445 /*< 447 Let's now decompose FSE_decompress_usingDTable 446 Let's now decompose FSE_decompress_usingDTable() into its unitary components. 448 You will decode FSE-encoded symbols from the b 447 You will decode FSE-encoded symbols from the bitStream, 449 and also any other bitFields you put in, **in 448 and also any other bitFields you put in, **in reverse order**. 450 449 451 You will need a few variables to track your bi 450 You will need a few variables to track your bitStream. They are : 452 451 453 BIT_DStream_t DStream; // Stream context 452 BIT_DStream_t DStream; // Stream context 454 FSE_DState_t DState; // State context. Mu 453 FSE_DState_t DState; // State context. Multiple ones are possible 455 FSE_DTable* DTablePtr; // Decoding table, p 454 FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable() 456 455 457 The first thing to do is to init the bitStream 456 The first thing to do is to init the bitStream. 458 errorCode = BIT_initDStream(&DStream, srcB 457 errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize); 459 458 460 You should then retrieve your initial state(s) 459 You should then retrieve your initial state(s) 461 (in reverse flushing order if you have several 460 (in reverse flushing order if you have several ones) : 462 errorCode = FSE_initDState(&DState, &DStre 461 errorCode = FSE_initDState(&DState, &DStream, DTablePtr); 463 462 464 You can then decode your data, symbol after sy 463 You can then decode your data, symbol after symbol. 465 For information the maximum number of bits rea 464 For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'. 466 Keep in mind that symbols are decoded in rever 465 Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out). 467 unsigned char symbol = FSE_decodeSymbol(&D 466 unsigned char symbol = FSE_decodeSymbol(&DState, &DStream); 468 467 469 You can retrieve any bitfield you eventually s 468 You can retrieve any bitfield you eventually stored into the bitStream (in reverse order) 470 Note : maximum allowed nbBits is 25, for 32-bi 469 Note : maximum allowed nbBits is 25, for 32-bits compatibility 471 size_t bitField = BIT_readBits(&DStream, n 470 size_t bitField = BIT_readBits(&DStream, nbBits); 472 471 473 All above operations only read from local regi 472 All above operations only read from local register (which size depends on size_t). 474 Refueling the register from memory is manually 473 Refueling the register from memory is manually performed by the reload method. 475 endSignal = FSE_reloadDStream(&DStream); 474 endSignal = FSE_reloadDStream(&DStream); 476 475 477 BIT_reloadDStream() result tells if there is s 476 BIT_reloadDStream() result tells if there is still some more data to read from DStream. 478 BIT_DStream_unfinished : there is still some d 477 BIT_DStream_unfinished : there is still some data left into the DStream. 479 BIT_DStream_endOfBuffer : Dstream reached end 478 BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled. 480 BIT_DStream_completed : Dstream reached its ex 479 BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed. 481 BIT_DStream_tooFar : Dstream went too far. Dec 480 BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted. 482 481 483 When reaching end of buffer (BIT_DStream_endOf 482 When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop, 484 to properly detect the exact end of stream. 483 to properly detect the exact end of stream. 485 After each decoded symbol, check if DStream is 484 After each decoded symbol, check if DStream is fully consumed using this simple test : 486 BIT_reloadDStream(&DStream) >= BIT_DStream 485 BIT_reloadDStream(&DStream) >= BIT_DStream_completed 487 486 488 When it's done, verify decompression is fully 487 When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. 489 Checking if DStream has reached its end is per 488 Checking if DStream has reached its end is performed by : 490 BIT_endOfDStream(&DStream); 489 BIT_endOfDStream(&DStream); 491 Check also the states. There might be some sym 490 Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. 492 FSE_endOfDState(&DState); 491 FSE_endOfDState(&DState); 493 */ 492 */ 494 493 495 494 496 /* ***************************************** 495 /* ***************************************** 497 * FSE unsafe API 496 * FSE unsafe API 498 *******************************************/ 497 *******************************************/ 499 static unsigned char FSE_decodeSymbolFast(FSE_ 498 static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); 500 /* faster, but works only if nbBits is always 499 /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ 501 500 502 501 503 /* ***************************************** 502 /* ***************************************** 504 * Implementation of inlined functions 503 * Implementation of inlined functions 505 *******************************************/ 504 *******************************************/ 506 typedef struct { 505 typedef struct { 507 int deltaFindState; 506 int deltaFindState; 508 U32 deltaNbBits; 507 U32 deltaNbBits; 509 } FSE_symbolCompressionTransform; /* total 8 b 508 } FSE_symbolCompressionTransform; /* total 8 bytes */ 510 509 511 MEM_STATIC void FSE_initCState(FSE_CState_t* s 510 MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) 512 { 511 { 513 const void* ptr = ct; 512 const void* ptr = ct; 514 const U16* u16ptr = (const U16*) ptr; 513 const U16* u16ptr = (const U16*) ptr; 515 const U32 tableLog = MEM_read16(ptr); 514 const U32 tableLog = MEM_read16(ptr); 516 statePtr->value = (ptrdiff_t)1<<tableLog; 515 statePtr->value = (ptrdiff_t)1<<tableLog; 517 statePtr->stateTable = u16ptr+2; 516 statePtr->stateTable = u16ptr+2; 518 statePtr->symbolTT = ct + 1 + (tableLog ? 517 statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); 519 statePtr->stateLog = tableLog; 518 statePtr->stateLog = tableLog; 520 } 519 } 521 520 522 521 523 /*! FSE_initCState2() : 522 /*! FSE_initCState2() : 524 * Same as FSE_initCState(), but the first sy 523 * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) 525 * uses the smallest state value possible, sa 524 * uses the smallest state value possible, saving the cost of this symbol */ 526 MEM_STATIC void FSE_initCState2(FSE_CState_t* 525 MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) 527 { 526 { 528 FSE_initCState(statePtr, ct); 527 FSE_initCState(statePtr, ct); 529 { const FSE_symbolCompressionTransform s 528 { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; 530 const U16* stateTable = (const U16*)(s 529 const U16* stateTable = (const U16*)(statePtr->stateTable); 531 U32 nbBitsOut = (U32)((symbolTT.delta 530 U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); 532 statePtr->value = (nbBitsOut << 16) - 531 statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; 533 statePtr->value = stateTable[(statePtr 532 statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; 534 } 533 } 535 } 534 } 536 535 537 MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t 536 MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) 538 { 537 { 539 FSE_symbolCompressionTransform const symbo 538 FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; 540 const U16* const stateTable = (const U16*) 539 const U16* const stateTable = (const U16*)(statePtr->stateTable); 541 U32 const nbBitsOut = (U32)((statePtr->va 540 U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); 542 BIT_addBits(bitC, statePtr->value, nbBitsO 541 BIT_addBits(bitC, statePtr->value, nbBitsOut); 543 statePtr->value = stateTable[ (statePtr->v 542 statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; 544 } 543 } 545 544 546 MEM_STATIC void FSE_flushCState(BIT_CStream_t* 545 MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) 547 { 546 { 548 BIT_addBits(bitC, statePtr->value, statePt 547 BIT_addBits(bitC, statePtr->value, statePtr->stateLog); 549 BIT_flushBits(bitC); 548 BIT_flushBits(bitC); 550 } 549 } 551 550 552 551 553 /* FSE_getMaxNbBits() : 552 /* FSE_getMaxNbBits() : 554 * Approximate maximum cost of a symbol, in bi 553 * Approximate maximum cost of a symbol, in bits. 555 * Fractional get rounded up (i.e : a symbol w 554 * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) 556 * note 1 : assume symbolValue is valid (<= ma 555 * note 1 : assume symbolValue is valid (<= maxSymbolValue) 557 * note 2 : if freq[symbolValue]==0, @return a 556 * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ 558 MEM_STATIC U32 FSE_getMaxNbBits(const void* sy 557 MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) 559 { 558 { 560 const FSE_symbolCompressionTransform* symb 559 const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; 561 return (symbolTT[symbolValue].deltaNbBits 560 return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; 562 } 561 } 563 562 564 /* FSE_bitCost() : 563 /* FSE_bitCost() : 565 * Approximate symbol cost, as fractional valu 564 * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) 566 * note 1 : assume symbolValue is valid (<= ma 565 * note 1 : assume symbolValue is valid (<= maxSymbolValue) 567 * note 2 : if freq[symbolValue]==0, @return a 566 * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ 568 MEM_STATIC U32 FSE_bitCost(const void* symbolT 567 MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) 569 { 568 { 570 const FSE_symbolCompressionTransform* symb 569 const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; 571 U32 const minNbBits = symbolTT[symbolValue 570 U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; 572 U32 const threshold = (minNbBits+1) << 16; 571 U32 const threshold = (minNbBits+1) << 16; 573 assert(tableLog < 16); 572 assert(tableLog < 16); 574 assert(accuracyLog < 31-tableLog); /* ens 573 assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ 575 { U32 const tableSize = 1 << tableLog; 574 { U32 const tableSize = 1 << tableLog; 576 U32 const deltaFromThreshold = thresho 575 U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); 577 U32 const normalizedDeltaFromThreshold 576 U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ 578 U32 const bitMultiplier = 1 << accurac 577 U32 const bitMultiplier = 1 << accuracyLog; 579 assert(symbolTT[symbolValue].deltaNbBi 578 assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); 580 assert(normalizedDeltaFromThreshold <= 579 assert(normalizedDeltaFromThreshold <= bitMultiplier); 581 return (minNbBits+1)*bitMultiplier - n 580 return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; 582 } 581 } 583 } 582 } 584 583 585 584 586 /* ====== Decompression ====== */ 585 /* ====== Decompression ====== */ 587 586 588 typedef struct { 587 typedef struct { 589 U16 tableLog; 588 U16 tableLog; 590 U16 fastMode; 589 U16 fastMode; 591 } FSE_DTableHeader; /* sizeof U32 */ 590 } FSE_DTableHeader; /* sizeof U32 */ 592 591 593 typedef struct 592 typedef struct 594 { 593 { 595 unsigned short newState; 594 unsigned short newState; 596 unsigned char symbol; 595 unsigned char symbol; 597 unsigned char nbBits; 596 unsigned char nbBits; 598 } FSE_decode_t; /* size == U32 */ 597 } FSE_decode_t; /* size == U32 */ 599 598 600 MEM_STATIC void FSE_initDState(FSE_DState_t* D 599 MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) 601 { 600 { 602 const void* ptr = dt; 601 const void* ptr = dt; 603 const FSE_DTableHeader* const DTableH = (c 602 const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; 604 DStatePtr->state = BIT_readBits(bitD, DTab 603 DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); 605 BIT_reloadDStream(bitD); 604 BIT_reloadDStream(bitD); 606 DStatePtr->table = dt + 1; 605 DStatePtr->table = dt + 1; 607 } 606 } 608 607 609 MEM_STATIC BYTE FSE_peekSymbol(const FSE_DStat 608 MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) 610 { 609 { 611 FSE_decode_t const DInfo = ((const FSE_dec 610 FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; 612 return DInfo.symbol; 611 return DInfo.symbol; 613 } 612 } 614 613 615 MEM_STATIC void FSE_updateState(FSE_DState_t* 614 MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) 616 { 615 { 617 FSE_decode_t const DInfo = ((const FSE_dec 616 FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; 618 U32 const nbBits = DInfo.nbBits; 617 U32 const nbBits = DInfo.nbBits; 619 size_t const lowBits = BIT_readBits(bitD, 618 size_t const lowBits = BIT_readBits(bitD, nbBits); 620 DStatePtr->state = DInfo.newState + lowBit 619 DStatePtr->state = DInfo.newState + lowBits; 621 } 620 } 622 621 623 MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* 622 MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) 624 { 623 { 625 FSE_decode_t const DInfo = ((const FSE_dec 624 FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; 626 U32 const nbBits = DInfo.nbBits; 625 U32 const nbBits = DInfo.nbBits; 627 BYTE const symbol = DInfo.symbol; 626 BYTE const symbol = DInfo.symbol; 628 size_t const lowBits = BIT_readBits(bitD, 627 size_t const lowBits = BIT_readBits(bitD, nbBits); 629 628 630 DStatePtr->state = DInfo.newState + lowBit 629 DStatePtr->state = DInfo.newState + lowBits; 631 return symbol; 630 return symbol; 632 } 631 } 633 632 634 /*! FSE_decodeSymbolFast() : 633 /*! FSE_decodeSymbolFast() : 635 unsafe, only works if no symbol has a prob 634 unsafe, only works if no symbol has a probability > 50% */ 636 MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DStat 635 MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) 637 { 636 { 638 FSE_decode_t const DInfo = ((const FSE_dec 637 FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; 639 U32 const nbBits = DInfo.nbBits; 638 U32 const nbBits = DInfo.nbBits; 640 BYTE const symbol = DInfo.symbol; 639 BYTE const symbol = DInfo.symbol; 641 size_t const lowBits = BIT_readBitsFast(bi 640 size_t const lowBits = BIT_readBitsFast(bitD, nbBits); 642 641 643 DStatePtr->state = DInfo.newState + lowBit 642 DStatePtr->state = DInfo.newState + lowBits; 644 return symbol; 643 return symbol; 645 } 644 } 646 645 647 MEM_STATIC unsigned FSE_endOfDState(const FSE_ 646 MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) 648 { 647 { 649 return DStatePtr->state == 0; 648 return DStatePtr->state == 0; 650 } 649 } 651 650 652 651 653 652 654 #ifndef FSE_COMMONDEFS_ONLY 653 #ifndef FSE_COMMONDEFS_ONLY 655 654 656 /* ******************************************* 655 /* ************************************************************** 657 * Tuning parameters 656 * Tuning parameters 658 ********************************************** 657 ****************************************************************/ 659 /*!MEMORY_USAGE : 658 /*!MEMORY_USAGE : 660 * Memory usage formula : N->2^N Bytes (exampl 659 * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) 661 * Increasing memory usage improves compressio 660 * Increasing memory usage improves compression ratio 662 * Reduced memory usage can improve speed, due 661 * Reduced memory usage can improve speed, due to cache effect 663 * Recommended max value is 14, for 16KB, whic 662 * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ 664 #ifndef FSE_MAX_MEMORY_USAGE 663 #ifndef FSE_MAX_MEMORY_USAGE 665 # define FSE_MAX_MEMORY_USAGE 14 664 # define FSE_MAX_MEMORY_USAGE 14 666 #endif 665 #endif 667 #ifndef FSE_DEFAULT_MEMORY_USAGE 666 #ifndef FSE_DEFAULT_MEMORY_USAGE 668 # define FSE_DEFAULT_MEMORY_USAGE 13 667 # define FSE_DEFAULT_MEMORY_USAGE 13 669 #endif 668 #endif 670 #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY 669 #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE) 671 # error "FSE_DEFAULT_MEMORY_USAGE must be <= 670 # error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE" 672 #endif 671 #endif 673 672 674 /*!FSE_MAX_SYMBOL_VALUE : 673 /*!FSE_MAX_SYMBOL_VALUE : 675 * Maximum symbol value authorized. 674 * Maximum symbol value authorized. 676 * Required for proper stack allocation */ 675 * Required for proper stack allocation */ 677 #ifndef FSE_MAX_SYMBOL_VALUE 676 #ifndef FSE_MAX_SYMBOL_VALUE 678 # define FSE_MAX_SYMBOL_VALUE 255 677 # define FSE_MAX_SYMBOL_VALUE 255 679 #endif 678 #endif 680 679 681 /* ******************************************* 680 /* ************************************************************** 682 * template functions type & suffix 681 * template functions type & suffix 683 ********************************************** 682 ****************************************************************/ 684 #define FSE_FUNCTION_TYPE BYTE 683 #define FSE_FUNCTION_TYPE BYTE 685 #define FSE_FUNCTION_EXTENSION 684 #define FSE_FUNCTION_EXTENSION 686 #define FSE_DECODE_TYPE FSE_decode_t 685 #define FSE_DECODE_TYPE FSE_decode_t 687 686 688 687 689 #endif /* !FSE_COMMONDEFS_ONLY */ 688 #endif /* !FSE_COMMONDEFS_ONLY */ 690 689 691 690 692 /* ******************************************* 691 /* *************************************************************** 693 * Constants 692 * Constants 694 ********************************************** 693 *****************************************************************/ 695 #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAG 694 #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) 696 #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELO 695 #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG) 697 #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESI 696 #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1) 698 #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMO 697 #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2) 699 #define FSE_MIN_TABLELOG 5 698 #define FSE_MIN_TABLELOG 5 700 699 701 #define FSE_TABLELOG_ABSOLUTE_MAX 15 700 #define FSE_TABLELOG_ABSOLUTE_MAX 15 702 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_M 701 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX 703 # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSO 702 # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" 704 #endif 703 #endif 705 704 706 #define FSE_TABLESTEP(tableSize) (((tableSize) 705 #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3) 707 706 708 707 709 #endif /* FSE_STATIC_LINKING_ONLY */ 708 #endif /* FSE_STATIC_LINKING_ONLY */ 710 709 711 710 712 711
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.