1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * linux/mm/filemap.c 2 * linux/mm/filemap.c 4 * 3 * 5 * Copyright (C) 1994-1999 Linus Torvalds 4 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 5 */ 7 6 8 /* 7 /* 9 * This file handles the generic file mmap sem 8 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /h 9 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differen 10 * the NFS filesystem used to do this differently, for example) 12 */ 11 */ 13 #include <linux/export.h> 12 #include <linux/export.h> 14 #include <linux/compiler.h> 13 #include <linux/compiler.h> 15 #include <linux/dax.h> 14 #include <linux/dax.h> 16 #include <linux/fs.h> 15 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 16 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 17 #include <linux/uaccess.h> 19 #include <linux/capability.h> 18 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 19 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 20 #include <linux/gfp.h> 22 #include <linux/mm.h> 21 #include <linux/mm.h> 23 #include <linux/swap.h> 22 #include <linux/swap.h> 24 #include <linux/swapops.h> << 25 #include <linux/syscalls.h> << 26 #include <linux/mman.h> 23 #include <linux/mman.h> 27 #include <linux/pagemap.h> 24 #include <linux/pagemap.h> 28 #include <linux/file.h> 25 #include <linux/file.h> 29 #include <linux/uio.h> 26 #include <linux/uio.h> 30 #include <linux/error-injection.h> << 31 #include <linux/hash.h> 27 #include <linux/hash.h> 32 #include <linux/writeback.h> 28 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 29 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 30 #include <linux/pagevec.h> >> 31 #include <linux/blkdev.h> 35 #include <linux/security.h> 32 #include <linux/security.h> 36 #include <linux/cpuset.h> 33 #include <linux/cpuset.h> >> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 37 #include <linux/hugetlb.h> 35 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 36 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> !! 37 #include <linux/cleancache.h> 40 #include <linux/rmap.h> 38 #include <linux/rmap.h> 41 #include <linux/delayacct.h> << 42 #include <linux/psi.h> << 43 #include <linux/ramfs.h> << 44 #include <linux/page_idle.h> << 45 #include <linux/migrate.h> << 46 #include <linux/pipe_fs_i.h> << 47 #include <linux/splice.h> << 48 #include <linux/rcupdate_wait.h> << 49 #include <linux/sched/mm.h> << 50 #include <asm/pgalloc.h> << 51 #include <asm/tlbflush.h> << 52 #include "internal.h" 39 #include "internal.h" 53 40 54 #define CREATE_TRACE_POINTS 41 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 42 #include <trace/events/filemap.h> 56 43 57 /* 44 /* 58 * FIXME: remove all knowledge of the buffer l 45 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 46 */ 60 #include <linux/buffer_head.h> /* for try_to_f 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 48 62 #include <asm/mman.h> 49 #include <asm/mman.h> 63 50 64 #include "swap.h" << 65 << 66 /* 51 /* 67 * Shared mappings implemented 30.11.1994. It' 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 53 * though. 69 * 54 * 70 * Shared mappings now work. 15.8.1995 Bruno. 55 * Shared mappings now work. 15.8.1995 Bruno. 71 * 56 * 72 * finished 'unifying' the page and buffer cac 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@ 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 59 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcan 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 61 */ 77 62 78 /* 63 /* 79 * Lock ordering: 64 * Lock ordering: 80 * 65 * 81 * ->i_mmap_rwsem (truncate_page 66 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->b !! 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 83 * ->swap_lock (exclusive_swa 68 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock !! 69 * ->mapping->tree_lock 85 * 70 * 86 * ->i_rwsem !! 71 * ->i_mutex 87 * ->invalidate_lock (acquired by f !! 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 88 * ->i_mmap_rwsem (truncate->unm << 89 * 73 * 90 * ->mmap_lock !! 74 * ->mmap_sem 91 * ->i_mmap_rwsem 75 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (vario 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependen !! 77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 94 * 78 * 95 * ->mmap_lock !! 79 * ->mmap_sem 96 * ->invalidate_lock (filemap_fault !! 80 * ->lock_page (access_process_vm) 97 * ->lock_page (filemap_fault << 98 * 81 * 99 * ->i_rwsem (generic_perfo !! 82 * ->i_mutex (generic_perform_write) 100 * ->mmap_lock (fault_in_read !! 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 101 * 84 * 102 * bdi->wb.list_lock 85 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeba 86 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single !! 87 * ->mapping->tree_lock (__sync_single_inode) 105 * 88 * 106 * ->i_mmap_rwsem 89 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) !! 90 * ->anon_vma.lock (vma_adjust) 108 * 91 * 109 * ->anon_vma.lock 92 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_ 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 94 * 112 * ->page_table_lock or pte_lock 95 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_ 96 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_ 97 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_ !! 98 * ->tree_lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_m !! 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_ran !! 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 118 * ->private_lock (folio_remove_ !! 101 * ->private_lock (page_remove_rmap->set_page_dirty) 119 * ->i_pages lock (folio_remove_ !! 102 * ->tree_lock (page_remove_rmap->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_ !! 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 121 * ->inode->i_lock (folio_remove_ !! 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 122 * ->memcg->move_lock (folio_remove_ !! 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 123 * bdi.wb->list_lock (zap_pte_range 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range !! 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) >> 109 * >> 110 * ->i_mmap_rwsem >> 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 126 */ 112 */ 127 113 128 static void mapping_set_update(struct xa_state !! 114 static int page_cache_tree_insert(struct address_space *mapping, 129 struct address_space *mapping) !! 115 struct page *page, void **shadowp) 130 { 116 { 131 if (dax_mapping(mapping) || shmem_mapp !! 117 struct radix_tree_node *node; 132 return; !! 118 void **slot; 133 xas_set_update(xas, workingset_update_ !! 119 int error; 134 xas_set_lru(xas, &shadow_nodes); !! 120 >> 121 error = __radix_tree_create(&mapping->page_tree, page->index, 0, >> 122 &node, &slot); >> 123 if (error) >> 124 return error; >> 125 if (*slot) { >> 126 void *p; >> 127 >> 128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); >> 129 if (!radix_tree_exceptional_entry(p)) >> 130 return -EEXIST; >> 131 >> 132 mapping->nrexceptional--; >> 133 if (!dax_mapping(mapping)) { >> 134 if (shadowp) >> 135 *shadowp = p; >> 136 } else { >> 137 /* DAX can replace empty locked entry with a hole */ >> 138 WARN_ON_ONCE(p != >> 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); >> 140 /* Wakeup waiters for exceptional entry lock */ >> 141 dax_wake_mapping_entry_waiter(mapping, page->index, p, >> 142 true); >> 143 } >> 144 } >> 145 __radix_tree_replace(&mapping->page_tree, node, slot, page, >> 146 workingset_update_node, mapping); >> 147 mapping->nrpages++; >> 148 return 0; 135 } 149 } 136 150 137 static void page_cache_delete(struct address_s !! 151 static void page_cache_tree_delete(struct address_space *mapping, 138 struct foli !! 152 struct page *page, void *shadow) 139 { 153 { 140 XA_STATE(xas, &mapping->i_pages, folio !! 154 int i, nr; 141 long nr = 1; << 142 155 143 mapping_set_update(&xas, mapping); !! 156 /* hugetlb pages are represented by one entry in the radix tree */ >> 157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 144 158 145 xas_set_order(&xas, folio->index, foli !! 159 VM_BUG_ON_PAGE(!PageLocked(page), page); 146 nr = folio_nr_pages(folio); !! 160 VM_BUG_ON_PAGE(PageTail(page), page); >> 161 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 147 162 148 VM_BUG_ON_FOLIO(!folio_test_locked(fol !! 163 for (i = 0; i < nr; i++) { >> 164 struct radix_tree_node *node; >> 165 void **slot; 149 166 150 xas_store(&xas, shadow); !! 167 __radix_tree_lookup(&mapping->page_tree, page->index + i, 151 xas_init_marks(&xas); !! 168 &node, &slot); 152 169 153 folio->mapping = NULL; !! 170 VM_BUG_ON_PAGE(!node && nr != 1, page); 154 /* Leave page->index set: truncation l !! 171 >> 172 radix_tree_clear_tags(&mapping->page_tree, node, slot); >> 173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, >> 174 workingset_update_node, mapping); >> 175 } >> 176 >> 177 if (shadow) { >> 178 mapping->nrexceptional += nr; >> 179 /* >> 180 * Make sure the nrexceptional update is committed before >> 181 * the nrpages update so that final truncate racing >> 182 * with reclaim does not see both counters 0 at the >> 183 * same time and miss a shadow entry. >> 184 */ >> 185 smp_wmb(); >> 186 } 155 mapping->nrpages -= nr; 187 mapping->nrpages -= nr; 156 } 188 } 157 189 158 static void filemap_unaccount_folio(struct add !! 190 /* 159 struct folio *folio) !! 191 * Delete a page from the page cache and free it. Caller has to make >> 192 * sure the page is locked and that nobody else uses it - or that usage >> 193 * is safe. The caller must hold the mapping's tree_lock. >> 194 */ >> 195 void __delete_from_page_cache(struct page *page, void *shadow) 160 { 196 { 161 long nr; !! 197 struct address_space *mapping = page->mapping; >> 198 int nr = hpage_nr_pages(page); >> 199 >> 200 trace_mm_filemap_delete_from_page_cache(page); >> 201 /* >> 202 * if we're uptodate, flush out into the cleancache, otherwise >> 203 * invalidate any existing cleancache entries. We can't leave >> 204 * stale data around in the cleancache once our page is gone >> 205 */ >> 206 if (PageUptodate(page) && PageMappedToDisk(page)) >> 207 cleancache_put_page(page); >> 208 else >> 209 cleancache_invalidate_page(mapping, page); >> 210 >> 211 VM_BUG_ON_PAGE(PageTail(page), page); >> 212 VM_BUG_ON_PAGE(page_mapped(page), page); >> 213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { >> 214 int mapcount; 162 215 163 VM_BUG_ON_FOLIO(folio_mapped(folio), f << 164 if (!IS_ENABLED(CONFIG_DEBUG_VM) && un << 165 pr_alert("BUG: Bad page cache 216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 166 current->comm, folio_ !! 217 current->comm, page_to_pfn(page)); 167 dump_page(&folio->page, "still !! 218 dump_page(page, "still mapped when deleted"); 168 dump_stack(); 219 dump_stack(); 169 add_taint(TAINT_BAD_PAGE, LOCK 220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 170 221 171 if (mapping_exiting(mapping) & !! 222 mapcount = page_mapcount(page); 172 int mapcount = folio_m !! 223 if (mapping_exiting(mapping) && 173 !! 224 page_count(page) >= mapcount + 2) { 174 if (folio_ref_count(fo !! 225 /* 175 /* !! 226 * All vmas have already been torn down, so it's 176 * All vmas ha !! 227 * a good bet that actually the page is unmapped, 177 * a good bet !! 228 * and we'd prefer not to leak it: if we're wrong, 178 * and we'd ra !! 229 * some other bad page check should catch it later. 179 * another bad !! 230 */ 180 */ !! 231 page_mapcount_reset(page); 181 atomic_set(&fo !! 232 page_ref_sub(page, mapcount); 182 folio_ref_sub( << 183 } << 184 } 233 } 185 } 234 } 186 235 187 /* hugetlb folios do not participate i !! 236 page_cache_tree_delete(mapping, page, shadow); 188 if (folio_test_hugetlb(folio)) << 189 return; << 190 237 191 nr = folio_nr_pages(folio); !! 238 page->mapping = NULL; >> 239 /* Leave page->index set: truncation lookup relies upon it */ 192 240 193 __lruvec_stat_mod_folio(folio, NR_FILE !! 241 /* hugetlb pages do not participate in page cache accounting. */ 194 if (folio_test_swapbacked(folio)) { !! 242 if (!PageHuge(page)) 195 __lruvec_stat_mod_folio(folio, !! 243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 196 if (folio_test_pmd_mappable(fo !! 244 if (PageSwapBacked(page)) { 197 __lruvec_stat_mod_foli !! 245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 198 } else if (folio_test_pmd_mappable(fol !! 246 if (PageTransHuge(page)) 199 __lruvec_stat_mod_folio(folio, !! 247 __dec_node_page_state(page, NR_SHMEM_THPS); 200 filemap_nr_thps_dec(mapping); !! 248 } else { >> 249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page); 201 } 250 } 202 251 203 /* 252 /* 204 * At this point folio must be either !! 253 * At this point page must be either written or cleaned by truncate. 205 * truncate. Dirty folio here signals !! 254 * Dirty page here signals a bug and loss of unwritten data. 206 * unwritten data - on ordinary filesy << 207 * << 208 * But it's harmless on in-memory file << 209 * occur when a driver which did get_u << 210 * before putting it, while the inode << 211 * 255 * 212 * Below fixes dirty accounting after !! 256 * This fixes dirty accounting after removing the page entirely but 213 * but leaves the dirty flag set: it h !! 257 * leaves PageDirty set: it has no effect for truncated page and 214 * folio and anyway will be cleared be !! 258 * anyway will be cleared before returning page into buddy allocator. 215 * buddy allocator. << 216 */ 259 */ 217 if (WARN_ON_ONCE(folio_test_dirty(foli !! 260 if (WARN_ON_ONCE(PageDirty(page))) 218 mapping_can_writeback !! 261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 219 folio_account_cleaned(folio, i << 220 } << 221 << 222 /* << 223 * Delete a page from the page cache and free << 224 * sure the page is locked and that nobody els << 225 * is safe. The caller must hold the i_pages << 226 */ << 227 void __filemap_remove_folio(struct folio *foli << 228 { << 229 struct address_space *mapping = folio- << 230 << 231 trace_mm_filemap_delete_from_page_cach << 232 filemap_unaccount_folio(mapping, folio << 233 page_cache_delete(mapping, folio, shad << 234 } << 235 << 236 void filemap_free_folio(struct address_space * << 237 { << 238 void (*free_folio)(struct folio *); << 239 int refs = 1; << 240 << 241 free_folio = mapping->a_ops->free_foli << 242 if (free_folio) << 243 free_folio(folio); << 244 << 245 if (folio_test_large(folio)) << 246 refs = folio_nr_pages(folio); << 247 folio_put_refs(folio, refs); << 248 } 262 } 249 263 250 /** 264 /** 251 * filemap_remove_folio - Remove folio from pa !! 265 * delete_from_page_cache - delete page from page cache 252 * @folio: The folio. !! 266 * @page: the page which the kernel is trying to remove from page cache 253 * 267 * 254 * This must be called only on folios that are !! 268 * This must be called only on pages that have been verified to be in the page 255 * verified to be in the page cache. It will !! 269 * cache and locked. It will never put the page into the free list, the caller 256 * the free list because the caller has a refe !! 270 * has a reference on the page. 257 */ !! 271 */ 258 void filemap_remove_folio(struct folio *folio) !! 272 void delete_from_page_cache(struct page *page) 259 { !! 273 { 260 struct address_space *mapping = folio- !! 274 struct address_space *mapping = page_mapping(page); 261 !! 275 unsigned long flags; 262 BUG_ON(!folio_test_locked(folio)); !! 276 void (*freepage)(struct page *); 263 spin_lock(&mapping->host->i_lock); << 264 xa_lock_irq(&mapping->i_pages); << 265 __filemap_remove_folio(folio, NULL); << 266 xa_unlock_irq(&mapping->i_pages); << 267 if (mapping_shrinkable(mapping)) << 268 inode_add_lru(mapping->host); << 269 spin_unlock(&mapping->host->i_lock); << 270 277 271 filemap_free_folio(mapping, folio); !! 278 BUG_ON(!PageLocked(page)); 272 } << 273 279 274 /* !! 280 freepage = mapping->a_ops->freepage; 275 * page_cache_delete_batch - delete several fo << 276 * @mapping: the mapping to which folios belon << 277 * @fbatch: batch of folios to delete << 278 * << 279 * The function walks over mapping->i_pages an << 280 * @fbatch from the mapping. The function expe << 281 * by page index and is optimised for it to be << 282 * It tolerates holes in @fbatch (mapping entr << 283 * modified). << 284 * << 285 * The function expects the i_pages lock to be << 286 */ << 287 static void page_cache_delete_batch(struct add << 288 struct folio_batc << 289 { << 290 XA_STATE(xas, &mapping->i_pages, fbatc << 291 long total_pages = 0; << 292 int i = 0; << 293 struct folio *folio; << 294 << 295 mapping_set_update(&xas, mapping); << 296 xas_for_each(&xas, folio, ULONG_MAX) { << 297 if (i >= folio_batch_count(fba << 298 break; << 299 281 300 /* A swap/dax/shadow entry got !! 282 spin_lock_irqsave(&mapping->tree_lock, flags); 301 if (xa_is_value(folio)) !! 283 __delete_from_page_cache(page, NULL); 302 continue; !! 284 spin_unlock_irqrestore(&mapping->tree_lock, flags); 303 /* << 304 * A page got inserted in our << 305 * pages locked so they are pr << 306 * If we see a page whose inde << 307 * means our page has been rem << 308 * possible because we're hold << 309 */ << 310 if (folio != fbatch->folios[i] << 311 VM_BUG_ON_FOLIO(folio- << 312 fbatch << 313 continue; << 314 } << 315 285 316 WARN_ON_ONCE(!folio_test_locke !! 286 if (freepage) >> 287 freepage(page); 317 288 318 folio->mapping = NULL; !! 289 if (PageTransHuge(page) && !PageHuge(page)) { 319 /* Leave folio->index set: tru !! 290 page_ref_sub(page, HPAGE_PMD_NR); 320 !! 291 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 321 i++; !! 292 } else { 322 xas_store(&xas, NULL); !! 293 put_page(page); 323 total_pages += folio_nr_pages( << 324 } 294 } 325 mapping->nrpages -= total_pages; << 326 } << 327 << 328 void delete_from_page_cache_batch(struct addre << 329 struct folio << 330 { << 331 int i; << 332 << 333 if (!folio_batch_count(fbatch)) << 334 return; << 335 << 336 spin_lock(&mapping->host->i_lock); << 337 xa_lock_irq(&mapping->i_pages); << 338 for (i = 0; i < folio_batch_count(fbat << 339 struct folio *folio = fbatch-> << 340 << 341 trace_mm_filemap_delete_from_p << 342 filemap_unaccount_folio(mappin << 343 } << 344 page_cache_delete_batch(mapping, fbatc << 345 xa_unlock_irq(&mapping->i_pages); << 346 if (mapping_shrinkable(mapping)) << 347 inode_add_lru(mapping->host); << 348 spin_unlock(&mapping->host->i_lock); << 349 << 350 for (i = 0; i < folio_batch_count(fbat << 351 filemap_free_folio(mapping, fb << 352 } 295 } >> 296 EXPORT_SYMBOL(delete_from_page_cache); 353 297 354 int filemap_check_errors(struct address_space 298 int filemap_check_errors(struct address_space *mapping) 355 { 299 { 356 int ret = 0; 300 int ret = 0; 357 /* Check for outstanding write errors 301 /* Check for outstanding write errors */ 358 if (test_bit(AS_ENOSPC, &mapping->flag 302 if (test_bit(AS_ENOSPC, &mapping->flags) && 359 test_and_clear_bit(AS_ENOSPC, &map 303 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 360 ret = -ENOSPC; 304 ret = -ENOSPC; 361 if (test_bit(AS_EIO, &mapping->flags) 305 if (test_bit(AS_EIO, &mapping->flags) && 362 test_and_clear_bit(AS_EIO, &mappin 306 test_and_clear_bit(AS_EIO, &mapping->flags)) 363 ret = -EIO; 307 ret = -EIO; 364 return ret; 308 return ret; 365 } 309 } 366 EXPORT_SYMBOL(filemap_check_errors); 310 EXPORT_SYMBOL(filemap_check_errors); 367 311 368 static int filemap_check_and_keep_errors(struc << 369 { << 370 /* Check for outstanding write errors << 371 if (test_bit(AS_EIO, &mapping->flags)) << 372 return -EIO; << 373 if (test_bit(AS_ENOSPC, &mapping->flag << 374 return -ENOSPC; << 375 return 0; << 376 } << 377 << 378 /** << 379 * filemap_fdatawrite_wbc - start writeback on << 380 * @mapping: address space structure to wri << 381 * @wbc: the writeback_control controll << 382 * << 383 * Call writepages on the mapping using the pr << 384 * writeout. << 385 * << 386 * Return: %0 on success, negative error code << 387 */ << 388 int filemap_fdatawrite_wbc(struct address_spac << 389 struct writeback_co << 390 { << 391 int ret; << 392 << 393 if (!mapping_can_writeback(mapping) || << 394 !mapping_tagged(mapping, PAGECACHE << 395 return 0; << 396 << 397 wbc_attach_fdatawrite_inode(wbc, mappi << 398 ret = do_writepages(mapping, wbc); << 399 wbc_detach_inode(wbc); << 400 return ret; << 401 } << 402 EXPORT_SYMBOL(filemap_fdatawrite_wbc); << 403 << 404 /** 312 /** 405 * __filemap_fdatawrite_range - start writebac 313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 406 * @mapping: address space structure to wri 314 * @mapping: address space structure to write 407 * @start: offset in bytes where the rang 315 * @start: offset in bytes where the range starts 408 * @end: offset in bytes where the rang 316 * @end: offset in bytes where the range ends (inclusive) 409 * @sync_mode: enable synchronous operation 317 * @sync_mode: enable synchronous operation 410 * 318 * 411 * Start writeback against all of a mapping's 319 * Start writeback against all of a mapping's dirty pages that lie 412 * within the byte offsets <start, end> inclus 320 * within the byte offsets <start, end> inclusive. 413 * 321 * 414 * If sync_mode is WB_SYNC_ALL then this is a 322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 415 * opposed to a regular memory cleansing write 323 * opposed to a regular memory cleansing writeback. The difference between 416 * these two operations is that if a dirty pag 324 * these two operations is that if a dirty page/buffer is encountered, it must 417 * be waited upon, and not just skipped over. 325 * be waited upon, and not just skipped over. 418 * << 419 * Return: %0 on success, negative error code << 420 */ 326 */ 421 int __filemap_fdatawrite_range(struct address_ 327 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 422 loff_t end, in 328 loff_t end, int sync_mode) 423 { 329 { >> 330 int ret; 424 struct writeback_control wbc = { 331 struct writeback_control wbc = { 425 .sync_mode = sync_mode, 332 .sync_mode = sync_mode, 426 .nr_to_write = LONG_MAX, 333 .nr_to_write = LONG_MAX, 427 .range_start = start, 334 .range_start = start, 428 .range_end = end, 335 .range_end = end, 429 }; 336 }; 430 337 431 return filemap_fdatawrite_wbc(mapping, !! 338 if (!mapping_cap_writeback_dirty(mapping)) >> 339 return 0; >> 340 >> 341 wbc_attach_fdatawrite_inode(&wbc, mapping->host); >> 342 ret = do_writepages(mapping, &wbc); >> 343 wbc_detach_inode(&wbc); >> 344 return ret; 432 } 345 } 433 346 434 static inline int __filemap_fdatawrite(struct 347 static inline int __filemap_fdatawrite(struct address_space *mapping, 435 int sync_mode) 348 int sync_mode) 436 { 349 { 437 return __filemap_fdatawrite_range(mapp 350 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 438 } 351 } 439 352 440 int filemap_fdatawrite(struct address_space *m 353 int filemap_fdatawrite(struct address_space *mapping) 441 { 354 { 442 return __filemap_fdatawrite(mapping, W 355 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 443 } 356 } 444 EXPORT_SYMBOL(filemap_fdatawrite); 357 EXPORT_SYMBOL(filemap_fdatawrite); 445 358 446 int filemap_fdatawrite_range(struct address_sp 359 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 447 loff_t end) 360 loff_t end) 448 { 361 { 449 return __filemap_fdatawrite_range(mapp 362 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 450 } 363 } 451 EXPORT_SYMBOL(filemap_fdatawrite_range); 364 EXPORT_SYMBOL(filemap_fdatawrite_range); 452 365 453 /** 366 /** 454 * filemap_flush - mostly a non-blocking flush 367 * filemap_flush - mostly a non-blocking flush 455 * @mapping: target address_space 368 * @mapping: target address_space 456 * 369 * 457 * This is a mostly non-blocking flush. Not s 370 * This is a mostly non-blocking flush. Not suitable for data-integrity 458 * purposes - I/O may not be started against a 371 * purposes - I/O may not be started against all dirty pages. 459 * << 460 * Return: %0 on success, negative error code << 461 */ 372 */ 462 int filemap_flush(struct address_space *mappin 373 int filemap_flush(struct address_space *mapping) 463 { 374 { 464 return __filemap_fdatawrite(mapping, W 375 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 465 } 376 } 466 EXPORT_SYMBOL(filemap_flush); 377 EXPORT_SYMBOL(filemap_flush); 467 378 468 /** !! 379 static int __filemap_fdatawait_range(struct address_space *mapping, 469 * filemap_range_has_page - check if a page ex << 470 * @mapping: address space within wh << 471 * @start_byte: offset in bytes where t << 472 * @end_byte: offset in bytes where t << 473 * << 474 * Find at least one page in the range supplie << 475 * direct writing in this range will trigger a << 476 * << 477 * Return: %true if at least one page exists i << 478 * %false otherwise. << 479 */ << 480 bool filemap_range_has_page(struct address_spa << 481 loff_t start_byte, << 482 { << 483 struct folio *folio; << 484 XA_STATE(xas, &mapping->i_pages, start << 485 pgoff_t max = end_byte >> PAGE_SHIFT; << 486 << 487 if (end_byte < start_byte) << 488 return false; << 489 << 490 rcu_read_lock(); << 491 for (;;) { << 492 folio = xas_find(&xas, max); << 493 if (xas_retry(&xas, folio)) << 494 continue; << 495 /* Shadow entries don't count << 496 if (xa_is_value(folio)) << 497 continue; << 498 /* << 499 * We don't need to try to pin << 500 * release the RCU lock anyway << 501 * there was a page here recen << 502 */ << 503 break; << 504 } << 505 rcu_read_unlock(); << 506 << 507 return folio != NULL; << 508 } << 509 EXPORT_SYMBOL(filemap_range_has_page); << 510 << 511 static void __filemap_fdatawait_range(struct a << 512 loff_t st 380 loff_t start_byte, loff_t end_byte) 513 { 381 { 514 pgoff_t index = start_byte >> PAGE_SHI 382 pgoff_t index = start_byte >> PAGE_SHIFT; 515 pgoff_t end = end_byte >> PAGE_SHIFT; 383 pgoff_t end = end_byte >> PAGE_SHIFT; 516 struct folio_batch fbatch; !! 384 struct pagevec pvec; 517 unsigned nr_folios; !! 385 int nr_pages; >> 386 int ret = 0; 518 387 519 folio_batch_init(&fbatch); !! 388 if (end_byte < start_byte) >> 389 goto out; 520 390 521 while (index <= end) { !! 391 pagevec_init(&pvec, 0); >> 392 while ((index <= end) && >> 393 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, >> 394 PAGECACHE_TAG_WRITEBACK, >> 395 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 522 unsigned i; 396 unsigned i; 523 397 524 nr_folios = filemap_get_folios !! 398 for (i = 0; i < nr_pages; i++) { 525 PAGECACHE_TAG_ !! 399 struct page *page = pvec.pages[i]; 526 400 527 if (!nr_folios) !! 401 /* until radix tree lookup accepts end_index */ 528 break; !! 402 if (page->index > end) 529 !! 403 continue; 530 for (i = 0; i < nr_folios; i++ << 531 struct folio *folio = << 532 404 533 folio_wait_writeback(f !! 405 wait_on_page_writeback(page); >> 406 if (TestClearPageError(page)) >> 407 ret = -EIO; 534 } 408 } 535 folio_batch_release(&fbatch); !! 409 pagevec_release(&pvec); 536 cond_resched(); 410 cond_resched(); 537 } 411 } >> 412 out: >> 413 return ret; 538 } 414 } 539 415 540 /** 416 /** 541 * filemap_fdatawait_range - wait for writebac 417 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structur 418 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where 419 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where 420 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 421 * 546 * Walk the list of under-writeback pages of t 422 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them 423 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 424 * the address space and return it. 549 * 425 * 550 * Since the error status of the address space 426 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the re 427 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 428 * reporting the error. 553 * << 554 * Return: error status of the address space. << 555 */ 429 */ 556 int filemap_fdatawait_range(struct address_spa 430 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 431 loff_t end_byte) 558 { 432 { 559 __filemap_fdatawait_range(mapping, sta !! 433 int ret, ret2; 560 return filemap_check_errors(mapping); << 561 } << 562 EXPORT_SYMBOL(filemap_fdatawait_range); << 563 434 564 /** !! 435 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 565 * filemap_fdatawait_range_keep_errors - wait !! 436 ret2 = filemap_check_errors(mapping); 566 * @mapping: address space structur !! 437 if (!ret) 567 * @start_byte: offset in bytes where !! 438 ret = ret2; 568 * @end_byte: offset in bytes where << 569 * << 570 * Walk the list of under-writeback pages of t << 571 * given range and wait for all of them. Unli << 572 * this function does not clear error status o << 573 * << 574 * Use this function if callers don't handle e << 575 * call sites are system-wide / filesystem-wid << 576 * fsfreeze(8) << 577 */ << 578 int filemap_fdatawait_range_keep_errors(struct << 579 loff_t start_byte, loff_t end_ << 580 { << 581 __filemap_fdatawait_range(mapping, sta << 582 return filemap_check_and_keep_errors(m << 583 } << 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_err << 585 << 586 /** << 587 * file_fdatawait_range - wait for writeback t << 588 * @file: file pointing to addre << 589 * @start_byte: offset in bytes where << 590 * @end_byte: offset in bytes where << 591 * << 592 * Walk the list of under-writeback pages of t << 593 * refers to, in the given range and wait for << 594 * status of the address space vs. the file->f << 595 * << 596 * Since the error status of the file is advan << 597 * callers are responsible for checking the re << 598 * reporting the error. << 599 * << 600 * Return: error status of the address space v << 601 */ << 602 int file_fdatawait_range(struct file *file, lo << 603 { << 604 struct address_space *mapping = file-> << 605 439 606 __filemap_fdatawait_range(mapping, sta !! 440 return ret; 607 return file_check_and_advance_wb_err(f << 608 } 441 } 609 EXPORT_SYMBOL(file_fdatawait_range); !! 442 EXPORT_SYMBOL(filemap_fdatawait_range); 610 443 611 /** 444 /** 612 * filemap_fdatawait_keep_errors - wait for wr 445 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait f 446 * @mapping: address space structure to wait for 614 * 447 * 615 * Walk the list of under-writeback pages of t 448 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_f 449 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address 450 * does not clear error status of the address space. 618 * 451 * 619 * Use this function if callers don't handle e 452 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wid 453 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 454 * fsfreeze(8) 622 * << 623 * Return: error status of the address space. << 624 */ 455 */ 625 int filemap_fdatawait_keep_errors(struct addre !! 456 void filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { << 627 __filemap_fdatawait_range(mapping, 0, << 628 return filemap_check_and_keep_errors(m << 629 } << 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); << 631 << 632 /* Returns true if writeback might be needed o << 633 static bool mapping_needs_writeback(struct add << 634 { << 635 return mapping->nrpages; << 636 } << 637 << 638 bool filemap_range_has_writeback(struct addres << 639 loff_t start_ << 640 { 457 { 641 XA_STATE(xas, &mapping->i_pages, start !! 458 loff_t i_size = i_size_read(mapping->host); 642 pgoff_t max = end_byte >> PAGE_SHIFT; << 643 struct folio *folio; << 644 459 645 if (end_byte < start_byte) !! 460 if (i_size == 0) 646 return false; !! 461 return; 647 462 648 rcu_read_lock(); !! 463 __filemap_fdatawait_range(mapping, 0, i_size - 1); 649 xas_for_each(&xas, folio, max) { << 650 if (xas_retry(&xas, folio)) << 651 continue; << 652 if (xa_is_value(folio)) << 653 continue; << 654 if (folio_test_dirty(folio) || << 655 folio_test_wri << 656 break; << 657 } << 658 rcu_read_unlock(); << 659 return folio != NULL; << 660 } 464 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback) << 662 465 663 /** 466 /** 664 * filemap_write_and_wait_range - write out & !! 467 * filemap_fdatawait - wait for all under-writeback pages to complete 665 * @mapping: the address_space for the page !! 468 * @mapping: address space structure to wait for 666 * @lstart: offset in bytes where the rang << 667 * @lend: offset in bytes where the rang << 668 * << 669 * Write out and wait upon file offsets lstart << 670 * 469 * 671 * Note that @lend is inclusive (describes the !! 470 * Walk the list of under-writeback pages of the given address space 672 * that this function can be used to write to !! 471 * and wait for all of them. Check error status of the address space >> 472 * and return it. 673 * 473 * 674 * Return: error status of the address space. !! 474 * Since the error status of the address space is cleared by this function, >> 475 * callers are responsible for checking the return value and handling and/or >> 476 * reporting the error. 675 */ 477 */ 676 int filemap_write_and_wait_range(struct addres !! 478 int filemap_fdatawait(struct address_space *mapping) 677 loff_t lstart << 678 { 479 { 679 int err = 0, err2; !! 480 loff_t i_size = i_size_read(mapping->host); 680 481 681 if (lend < lstart) !! 482 if (i_size == 0) 682 return 0; 483 return 0; 683 484 684 if (mapping_needs_writeback(mapping)) !! 485 return filemap_fdatawait_range(mapping, 0, i_size - 1); 685 err = __filemap_fdatawrite_ran !! 486 } 686 !! 487 EXPORT_SYMBOL(filemap_fdatawait); >> 488 >> 489 int filemap_write_and_wait(struct address_space *mapping) >> 490 { >> 491 int err = 0; >> 492 >> 493 if ((!dax_mapping(mapping) && mapping->nrpages) || >> 494 (dax_mapping(mapping) && mapping->nrexceptional)) { >> 495 err = filemap_fdatawrite(mapping); 687 /* 496 /* 688 * Even if the above returned 497 * Even if the above returned error, the pages may be 689 * written partially (e.g. -EN 498 * written partially (e.g. -ENOSPC), so we wait for it. 690 * But the -EIO is special cas 499 * But the -EIO is special case, it may indicate the worst 691 * thing (e.g. bug) happened, 500 * thing (e.g. bug) happened, so we avoid waiting for it. 692 */ 501 */ 693 if (err != -EIO) !! 502 if (err != -EIO) { 694 __filemap_fdatawait_ra !! 503 int err2 = filemap_fdatawait(mapping); >> 504 if (!err) >> 505 err = err2; >> 506 } >> 507 } else { >> 508 err = filemap_check_errors(mapping); 695 } 509 } 696 err2 = filemap_check_errors(mapping); << 697 if (!err) << 698 err = err2; << 699 return err; 510 return err; 700 } 511 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); !! 512 EXPORT_SYMBOL(filemap_write_and_wait); 702 << 703 void __filemap_set_wb_err(struct address_space << 704 { << 705 errseq_t eseq = errseq_set(&mapping->w << 706 << 707 trace_filemap_set_wb_err(mapping, eseq << 708 } << 709 EXPORT_SYMBOL(__filemap_set_wb_err); << 710 513 711 /** 514 /** 712 * file_check_and_advance_wb_err - report wb e !! 515 * filemap_write_and_wait_range - write out & wait on a file range 713 * and advance !! 516 * @mapping: the address_space for the pages 714 * @file: struct file on which the error is be << 715 * << 716 * When userland calls fsync (or something lik << 717 * want to report any writeback errors that oc << 718 * since the file was opened if there haven't << 719 * << 720 * Grab the wb_err from the mapping. If it mat << 721 * then just quickly return 0. The file is all << 722 * << 723 * If it doesn't match, then take the mapping << 724 * it and try to swap it into place. If it wor << 725 * to it with the new value, then update the f << 726 * portion. The error at this point must be re << 727 * (a'la fsync, or NFS COMMIT operation, etc.) << 728 * << 729 * While we handle mapping->wb_err with atomic << 730 * value is protected by the f_lock since we m << 731 * the latest value swapped in for this file d << 732 * << 733 * Return: %0 on success, negative error code << 734 */ << 735 int file_check_and_advance_wb_err(struct file << 736 { << 737 int err = 0; << 738 errseq_t old = READ_ONCE(file->f_wb_er << 739 struct address_space *mapping = file-> << 740 << 741 /* Locklessly handle the common case w << 742 if (errseq_check(&mapping->wb_err, old << 743 /* Something changed, must use << 744 spin_lock(&file->f_lock); << 745 old = file->f_wb_err; << 746 err = errseq_check_and_advance << 747 << 748 trace_file_check_and_advance_w << 749 spin_unlock(&file->f_lock); << 750 } << 751 << 752 /* << 753 * We're mostly using this function as << 754 * filemap_check_errors. Clear AS_EIO/ << 755 * that the legacy code would have had << 756 */ << 757 clear_bit(AS_EIO, &mapping->flags); << 758 clear_bit(AS_ENOSPC, &mapping->flags); << 759 return err; << 760 } << 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); << 762 << 763 /** << 764 * file_write_and_wait_range - write out & wai << 765 * @file: file pointing to address_space << 766 * @lstart: offset in bytes where the rang 517 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the rang 518 * @lend: offset in bytes where the range ends (inclusive) 768 * 519 * 769 * Write out and wait upon file offsets lstart 520 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 521 * 771 * Note that @lend is inclusive (describes the 522 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to 523 * that this function can be used to write to the very end-of-file (end = -1). 773 * << 774 * After writing out and waiting on the data, << 775 * f_wb_err cursor to the latest value, and re << 776 * << 777 * Return: %0 on success, negative error code << 778 */ 524 */ 779 int file_write_and_wait_range(struct file *fil !! 525 int filemap_write_and_wait_range(struct address_space *mapping, >> 526 loff_t lstart, loff_t lend) 780 { 527 { 781 int err = 0, err2; !! 528 int err = 0; 782 struct address_space *mapping = file-> << 783 << 784 if (lend < lstart) << 785 return 0; << 786 529 787 if (mapping_needs_writeback(mapping)) !! 530 if ((!dax_mapping(mapping) && mapping->nrpages) || >> 531 (dax_mapping(mapping) && mapping->nrexceptional)) { 788 err = __filemap_fdatawrite_ran 532 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 533 WB_SYNC_ALL); 790 /* See comment of filemap_writ 534 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) !! 535 if (err != -EIO) { 792 __filemap_fdatawait_ra !! 536 int err2 = filemap_fdatawait_range(mapping, >> 537 lstart, lend); >> 538 if (!err) >> 539 err = err2; >> 540 } >> 541 } else { >> 542 err = filemap_check_errors(mapping); 793 } 543 } 794 err2 = file_check_and_advance_wb_err(f << 795 if (!err) << 796 err = err2; << 797 return err; 544 return err; 798 } 545 } 799 EXPORT_SYMBOL(file_write_and_wait_range); !! 546 EXPORT_SYMBOL(filemap_write_and_wait_range); 800 547 801 /** 548 /** 802 * replace_page_cache_folio - replace a pageca !! 549 * replace_page_cache_page - replace a pagecache page with a new one 803 * @old: folio to be replaced !! 550 * @old: page to be replaced 804 * @new: folio to replace with !! 551 * @new: page to replace with 805 * !! 552 * @gfp_mask: allocation mode 806 * This function replaces a folio in the pagec !! 553 * 807 * success it acquires the pagecache reference !! 554 * This function replaces a page in the pagecache with a new one. On 808 * drops it for the old folio. Both the old a !! 555 * success it acquires the pagecache reference for the new page and 809 * locked. This function does not add the new !! 556 * drops it for the old page. Both the old and new pages must be >> 557 * locked. This function does not add the new page to the LRU, the 810 * caller must do that. 558 * caller must do that. 811 * 559 * 812 * The remove + add is atomic. This function !! 560 * The remove + add is atomic. The only way this function can fail is >> 561 * memory allocation failure. 813 */ 562 */ 814 void replace_page_cache_folio(struct folio *ol !! 563 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 815 { 564 { 816 struct address_space *mapping = old->m !! 565 int error; 817 void (*free_folio)(struct folio *) = m << 818 pgoff_t offset = old->index; << 819 XA_STATE(xas, &mapping->i_pages, offse << 820 << 821 VM_BUG_ON_FOLIO(!folio_test_locked(old << 822 VM_BUG_ON_FOLIO(!folio_test_locked(new << 823 VM_BUG_ON_FOLIO(new->mapping, new); << 824 << 825 folio_get(new); << 826 new->mapping = mapping; << 827 new->index = offset; << 828 << 829 mem_cgroup_replace_folio(old, new); << 830 << 831 xas_lock_irq(&xas); << 832 xas_store(&xas, new); << 833 << 834 old->mapping = NULL; << 835 /* hugetlb pages do not participate in << 836 if (!folio_test_hugetlb(old)) << 837 __lruvec_stat_sub_folio(old, N << 838 if (!folio_test_hugetlb(new)) << 839 __lruvec_stat_add_folio(new, N << 840 if (folio_test_swapbacked(old)) << 841 __lruvec_stat_sub_folio(old, N << 842 if (folio_test_swapbacked(new)) << 843 __lruvec_stat_add_folio(new, N << 844 xas_unlock_irq(&xas); << 845 if (free_folio) << 846 free_folio(old); << 847 folio_put(old); << 848 } << 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); << 850 << 851 noinline int __filemap_add_folio(struct addres << 852 struct folio *folio, pgoff_t i << 853 { << 854 XA_STATE(xas, &mapping->i_pages, index << 855 void *alloced_shadow = NULL; << 856 int alloced_order = 0; << 857 bool huge; << 858 long nr; << 859 << 860 VM_BUG_ON_FOLIO(!folio_test_locked(fol << 861 VM_BUG_ON_FOLIO(folio_test_swapbacked( << 862 VM_BUG_ON_FOLIO(folio_order(folio) < m << 863 folio); << 864 mapping_set_update(&xas, mapping); << 865 << 866 VM_BUG_ON_FOLIO(index & (folio_nr_page << 867 xas_set_order(&xas, index, folio_order << 868 huge = folio_test_hugetlb(folio); << 869 nr = folio_nr_pages(folio); << 870 << 871 gfp &= GFP_RECLAIM_MASK; << 872 folio_ref_add(folio, nr); << 873 folio->mapping = mapping; << 874 folio->index = xas.xa_index; << 875 << 876 for (;;) { << 877 int order = -1, split_order = << 878 void *entry, *old = NULL; << 879 << 880 xas_lock_irq(&xas); << 881 xas_for_each_conflict(&xas, en << 882 old = entry; << 883 if (!xa_is_value(entry << 884 xas_set_err(&x << 885 goto unlock; << 886 } << 887 /* << 888 * If a larger entry e << 889 * it will be the firs << 890 */ << 891 if (order == -1) << 892 order = xas_ge << 893 } << 894 566 895 /* entry may have changed befo !! 567 VM_BUG_ON_PAGE(!PageLocked(old), old); 896 if (alloced_order && (old != a !! 568 VM_BUG_ON_PAGE(!PageLocked(new), new); 897 xas_destroy(&xas); !! 569 VM_BUG_ON_PAGE(new->mapping, new); 898 alloced_order = 0; !! 570 899 } !! 571 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 900 !! 572 if (!error) { 901 if (old) { !! 573 struct address_space *mapping = old->mapping; 902 if (order > 0 && order !! 574 void (*freepage)(struct page *); 903 /* How to hand !! 575 unsigned long flags; 904 BUG_ON(shmem_m !! 576 905 if (!alloced_o !! 577 pgoff_t offset = old->index; 906 split_ !! 578 freepage = mapping->a_ops->freepage; 907 goto u !! 579 908 } !! 580 get_page(new); 909 xas_split(&xas !! 581 new->mapping = mapping; 910 xas_reset(&xas !! 582 new->index = offset; 911 } !! 583 912 if (shadowp) !! 584 spin_lock_irqsave(&mapping->tree_lock, flags); 913 *shadowp = old !! 585 __delete_from_page_cache(old, NULL); 914 } !! 586 error = page_cache_tree_insert(mapping, new, NULL); >> 587 BUG_ON(error); >> 588 >> 589 /* >> 590 * hugetlb pages do not participate in page cache accounting. >> 591 */ >> 592 if (!PageHuge(new)) >> 593 __inc_node_page_state(new, NR_FILE_PAGES); >> 594 if (PageSwapBacked(new)) >> 595 __inc_node_page_state(new, NR_SHMEM); >> 596 spin_unlock_irqrestore(&mapping->tree_lock, flags); >> 597 mem_cgroup_migrate(old, new); >> 598 radix_tree_preload_end(); >> 599 if (freepage) >> 600 freepage(old); >> 601 put_page(old); >> 602 } 915 603 916 xas_store(&xas, folio); !! 604 return error; 917 if (xas_error(&xas)) !! 605 } 918 goto unlock; !! 606 EXPORT_SYMBOL_GPL(replace_page_cache_page); 919 607 920 mapping->nrpages += nr; !! 608 static int __add_to_page_cache_locked(struct page *page, >> 609 struct address_space *mapping, >> 610 pgoff_t offset, gfp_t gfp_mask, >> 611 void **shadowp) >> 612 { >> 613 int huge = PageHuge(page); >> 614 struct mem_cgroup *memcg; >> 615 int error; 921 616 922 /* hugetlb pages do not partic !! 617 VM_BUG_ON_PAGE(!PageLocked(page), page); 923 if (!huge) { !! 618 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 924 __lruvec_stat_mod_foli << 925 if (folio_test_pmd_map << 926 __lruvec_stat_ << 927 << 928 } << 929 619 930 unlock: !! 620 if (!huge) { 931 xas_unlock_irq(&xas); !! 621 error = mem_cgroup_try_charge(page, current->mm, 932 !! 622 gfp_mask, &memcg, false); 933 /* split needed, alloc here an !! 623 if (error) 934 if (split_order) { !! 624 return error; 935 xas_split_alloc(&xas, !! 625 } 936 if (xas_error(&xas)) << 937 goto error; << 938 alloced_shadow = old; << 939 alloced_order = split_ << 940 xas_reset(&xas); << 941 continue; << 942 } << 943 626 944 if (!xas_nomem(&xas, gfp)) !! 627 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 945 break; !! 628 if (error) { >> 629 if (!huge) >> 630 mem_cgroup_cancel_charge(page, memcg, false); >> 631 return error; 946 } 632 } 947 633 948 if (xas_error(&xas)) !! 634 get_page(page); 949 goto error; !! 635 page->mapping = mapping; >> 636 page->index = offset; >> 637 >> 638 spin_lock_irq(&mapping->tree_lock); >> 639 error = page_cache_tree_insert(mapping, page, shadowp); >> 640 radix_tree_preload_end(); >> 641 if (unlikely(error)) >> 642 goto err_insert; 950 643 951 trace_mm_filemap_add_to_page_cache(fol !! 644 /* hugetlb pages do not participate in page cache accounting. */ >> 645 if (!huge) >> 646 __inc_node_page_state(page, NR_FILE_PAGES); >> 647 spin_unlock_irq(&mapping->tree_lock); >> 648 if (!huge) >> 649 mem_cgroup_commit_charge(page, memcg, false, false); >> 650 trace_mm_filemap_add_to_page_cache(page); 952 return 0; 651 return 0; 953 error: !! 652 err_insert: 954 folio->mapping = NULL; !! 653 page->mapping = NULL; 955 /* Leave page->index set: truncation r 654 /* Leave page->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); !! 655 spin_unlock_irq(&mapping->tree_lock); 957 return xas_error(&xas); !! 656 if (!huge) >> 657 mem_cgroup_cancel_charge(page, memcg, false); >> 658 put_page(page); >> 659 return error; 958 } 660 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERR << 960 661 961 int filemap_add_folio(struct address_space *ma !! 662 /** 962 pgoff_t index, !! 663 * add_to_page_cache_locked - add a locked page to the pagecache >> 664 * @page: page to add >> 665 * @mapping: the page's address_space >> 666 * @offset: page index >> 667 * @gfp_mask: page allocation mode >> 668 * >> 669 * This function is used to add a page to the pagecache. It must be locked. >> 670 * This function does not add the page to the LRU. The caller must do that. >> 671 */ >> 672 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, >> 673 pgoff_t offset, gfp_t gfp_mask) >> 674 { >> 675 return __add_to_page_cache_locked(page, mapping, offset, >> 676 gfp_mask, NULL); >> 677 } >> 678 EXPORT_SYMBOL(add_to_page_cache_locked); >> 679 >> 680 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, >> 681 pgoff_t offset, gfp_t gfp_mask) 963 { 682 { 964 void *shadow = NULL; 683 void *shadow = NULL; 965 int ret; 684 int ret; 966 685 967 ret = mem_cgroup_charge(folio, NULL, g !! 686 __SetPageLocked(page); 968 if (ret) !! 687 ret = __add_to_page_cache_locked(page, mapping, offset, 969 return ret; !! 688 gfp_mask, &shadow); 970 !! 689 if (unlikely(ret)) 971 __folio_set_locked(folio); !! 690 __ClearPageLocked(page); 972 ret = __filemap_add_folio(mapping, fol !! 691 else { 973 if (unlikely(ret)) { << 974 mem_cgroup_uncharge(folio); << 975 __folio_clear_locked(folio); << 976 } else { << 977 /* 692 /* 978 * The folio might have been e !! 693 * The page might have been evicted from cache only 979 * recently, in which case it 694 * recently, in which case it should be activated like 980 * any other repeatedly access !! 695 * any other repeatedly accessed page. 981 * The exception is folios get !! 696 * The exception is pages getting rewritten; evicting other 982 * data from the working set, 697 * data from the working set, only to cache data that will 983 * get overwritten with someth 698 * get overwritten with something else, is a waste of memory. 984 */ 699 */ 985 WARN_ON_ONCE(folio_test_active !! 700 if (!(gfp_mask & __GFP_WRITE) && 986 if (!(gfp & __GFP_WRITE) && sh !! 701 shadow && workingset_refault(shadow)) { 987 workingset_refault(fol !! 702 SetPageActive(page); 988 folio_add_lru(folio); !! 703 workingset_activation(page); >> 704 } else >> 705 ClearPageActive(page); >> 706 lru_cache_add(page); 989 } 707 } 990 return ret; 708 return ret; 991 } 709 } 992 EXPORT_SYMBOL_GPL(filemap_add_folio); !! 710 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 993 711 994 #ifdef CONFIG_NUMA 712 #ifdef CONFIG_NUMA 995 struct folio *filemap_alloc_folio_noprof(gfp_t !! 713 struct page *__page_cache_alloc(gfp_t gfp) 996 { 714 { 997 int n; 715 int n; 998 struct folio *folio; !! 716 struct page *page; 999 717 1000 if (cpuset_do_page_mem_spread()) { 718 if (cpuset_do_page_mem_spread()) { 1001 unsigned int cpuset_mems_cook 719 unsigned int cpuset_mems_cookie; 1002 do { 720 do { 1003 cpuset_mems_cookie = 721 cpuset_mems_cookie = read_mems_allowed_begin(); 1004 n = cpuset_mem_spread 722 n = cpuset_mem_spread_node(); 1005 folio = __folio_alloc !! 723 page = __alloc_pages_node(n, gfp, 0); 1006 } while (!folio && read_mems_ !! 724 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 1007 725 1008 return folio; !! 726 return page; 1009 } 727 } 1010 return folio_alloc_noprof(gfp, order) !! 728 return alloc_pages(gfp, 0); 1011 } 729 } 1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof); !! 730 EXPORT_SYMBOL(__page_cache_alloc); 1013 #endif 731 #endif 1014 732 1015 /* 733 /* 1016 * filemap_invalidate_lock_two - lock invalid << 1017 * << 1018 * Lock exclusively invalidate_lock of any pa << 1019 * << 1020 * @mapping1: the first mapping to lock << 1021 * @mapping2: the second mapping to lock << 1022 */ << 1023 void filemap_invalidate_lock_two(struct addre << 1024 struct addre << 1025 { << 1026 if (mapping1 > mapping2) << 1027 swap(mapping1, mapping2); << 1028 if (mapping1) << 1029 down_write(&mapping1->invalid << 1030 if (mapping2 && mapping1 != mapping2) << 1031 down_write_nested(&mapping2-> << 1032 } << 1033 EXPORT_SYMBOL(filemap_invalidate_lock_two); << 1034 << 1035 /* << 1036 * filemap_invalidate_unlock_two - unlock inv << 1037 * << 1038 * Unlock exclusive invalidate_lock of any pa << 1039 * << 1040 * @mapping1: the first mapping to unlock << 1041 * @mapping2: the second mapping to unlock << 1042 */ << 1043 void filemap_invalidate_unlock_two(struct add << 1044 struct add << 1045 { << 1046 if (mapping1) << 1047 up_write(&mapping1->invalidat << 1048 if (mapping2 && mapping1 != mapping2) << 1049 up_write(&mapping2->invalidat << 1050 } << 1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two); << 1052 << 1053 /* << 1054 * In order to wait for pages to become avail 734 * In order to wait for pages to become available there must be 1055 * waitqueues associated with pages. By using 735 * waitqueues associated with pages. By using a hash table of 1056 * waitqueues where the bucket discipline is 736 * waitqueues where the bucket discipline is to maintain all 1057 * waiters on the same queue and wake all whe 737 * waiters on the same queue and wake all when any of the pages 1058 * become available, and for the woken contex 738 * become available, and for the woken contexts to check to be 1059 * sure the appropriate page became available 739 * sure the appropriate page became available, this saves space 1060 * at a cost of "thundering herd" phenomena d 740 * at a cost of "thundering herd" phenomena during rare hash 1061 * collisions. 741 * collisions. 1062 */ 742 */ 1063 #define PAGE_WAIT_TABLE_BITS 8 743 #define PAGE_WAIT_TABLE_BITS 8 1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_ 744 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1065 static wait_queue_head_t folio_wait_table[PAG !! 745 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1066 746 1067 static wait_queue_head_t *folio_waitqueue(str !! 747 static wait_queue_head_t *page_waitqueue(struct page *page) 1068 { 748 { 1069 return &folio_wait_table[hash_ptr(fol !! 749 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1070 } 750 } 1071 751 1072 void __init pagecache_init(void) 752 void __init pagecache_init(void) 1073 { 753 { 1074 int i; 754 int i; 1075 755 1076 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; 756 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1077 init_waitqueue_head(&folio_wa !! 757 init_waitqueue_head(&page_wait_table[i]); 1078 758 1079 page_writeback_init(); 759 page_writeback_init(); 1080 } 760 } 1081 761 1082 /* !! 762 struct wait_page_key { 1083 * The page wait code treats the "wait->flags !! 763 struct page *page; 1084 * we have multiple different kinds of waits, !! 764 int bit_nr; 1085 * one. !! 765 int page_match; 1086 * !! 766 }; 1087 * We have: !! 767 1088 * !! 768 struct wait_page_queue { 1089 * (a) no special bits set: !! 769 struct page *page; 1090 * !! 770 int bit_nr; 1091 * We're just waiting for the bit to be !! 771 wait_queue_t wait; 1092 * calls the wakeup function, we set WQ_ !! 772 }; 1093 * and remove it from the wait queue. !! 773 1094 * !! 774 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) 1095 * Simple and straightforward. << 1096 * << 1097 * (b) WQ_FLAG_EXCLUSIVE: << 1098 * << 1099 * The waiter is waiting to get the lock << 1100 * be woken up to avoid any thundering h << 1101 * WQ_FLAG_WOKEN bit, wake it up, and re << 1102 * << 1103 * This is the traditional exclusive wai << 1104 * << 1105 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: << 1106 * << 1107 * The waiter is waiting to get the bit, << 1108 * lock to be transferred to it for fair << 1109 * cannot be taken, we stop walking the << 1110 * the waiter. << 1111 * << 1112 * This is the "fair lock handoff" case, << 1113 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to << 1114 * that it now has the lock. << 1115 */ << 1116 static int wake_page_function(wait_queue_entr << 1117 { 775 { 1118 unsigned int flags; << 1119 struct wait_page_key *key = arg; 776 struct wait_page_key *key = arg; 1120 struct wait_page_queue *wait_page 777 struct wait_page_queue *wait_page 1121 = container_of(wait, struct w 778 = container_of(wait, struct wait_page_queue, wait); 1122 779 1123 if (!wake_page_match(wait_page, key)) !! 780 if (wait_page->page != key->page) 1124 return 0; !! 781 return 0; 1125 !! 782 key->page_match = 1; 1126 /* << 1127 * If it's a lock handoff wait, we ge << 1128 * stop walking (and do not wake it u << 1129 */ << 1130 flags = wait->flags; << 1131 if (flags & WQ_FLAG_EXCLUSIVE) { << 1132 if (test_bit(key->bit_nr, &ke << 1133 return -1; << 1134 if (flags & WQ_FLAG_CUSTOM) { << 1135 if (test_and_set_bit( << 1136 return -1; << 1137 flags |= WQ_FLAG_DONE << 1138 } << 1139 } << 1140 783 1141 /* !! 784 if (wait_page->bit_nr != key->bit_nr) 1142 * We are holding the wait-queue lock !! 785 return 0; 1143 * is waiting for this will be checki !! 786 if (test_bit(key->bit_nr, &key->page->flags)) 1144 * any locking. !! 787 return 0; 1145 * << 1146 * So update the flags atomically, an << 1147 * afterwards to avoid any races. Thi << 1148 * with the load-acquire in folio_wai << 1149 */ << 1150 smp_store_release(&wait->flags, flags << 1151 wake_up_state(wait->private, mode); << 1152 788 1153 /* !! 789 return autoremove_wake_function(wait, mode, sync, key); 1154 * Ok, we have successfully done what << 1155 * and we can unconditionally remove << 1156 * << 1157 * Note that this pairs with the "fin << 1158 * waiter, and has to be the absolute << 1159 * After this list_del_init(&wait->en << 1160 * might be de-allocated and the proc << 1161 * exited. << 1162 */ << 1163 list_del_init_careful(&wait->entry); << 1164 return (flags & WQ_FLAG_EXCLUSIVE) != << 1165 } 790 } 1166 791 1167 static void folio_wake_bit(struct folio *foli !! 792 static void wake_up_page_bit(struct page *page, int bit_nr) 1168 { 793 { 1169 wait_queue_head_t *q = folio_waitqueu !! 794 wait_queue_head_t *q = page_waitqueue(page); 1170 struct wait_page_key key; 795 struct wait_page_key key; 1171 unsigned long flags; 796 unsigned long flags; 1172 797 1173 key.folio = folio; !! 798 key.page = page; 1174 key.bit_nr = bit_nr; 799 key.bit_nr = bit_nr; 1175 key.page_match = 0; 800 key.page_match = 0; 1176 801 1177 spin_lock_irqsave(&q->lock, flags); 802 spin_lock_irqsave(&q->lock, flags); 1178 __wake_up_locked_key(q, TASK_NORMAL, 803 __wake_up_locked_key(q, TASK_NORMAL, &key); 1179 << 1180 /* 804 /* 1181 * It's possible to miss clearing wai !! 805 * It is possible for other pages to have collided on the waitqueue 1182 * waiters, but the hashed waitqueue !! 806 * hash, so in that case check for a page match. That prevents a long- 1183 * That's okay, it's a rare case. The !! 807 * term waiter 1184 * 808 * 1185 * Note that, depending on the page p !! 809 * It is still possible to miss a case here, when we woke page waiters 1186 * other), the flag may be cleared in !! 810 * and removed them from the waitqueue, but there are still other 1187 * but that is not required for corre !! 811 * page waiters. 1188 */ !! 812 */ 1189 if (!waitqueue_active(q) || !key.page !! 813 if (!waitqueue_active(q) || !key.page_match) { 1190 folio_clear_waiters(folio); !! 814 ClearPageWaiters(page); 1191 !! 815 /* >> 816 * It's possible to miss clearing Waiters here, when we woke >> 817 * our page waiters, but the hashed waitqueue has waiters for >> 818 * other pages on it. >> 819 * >> 820 * That's okay, it's a rare case. The next waker will clear it. >> 821 */ >> 822 } 1192 spin_unlock_irqrestore(&q->lock, flag 823 spin_unlock_irqrestore(&q->lock, flags); 1193 } 824 } 1194 825 1195 /* !! 826 static void wake_up_page(struct page *page, int bit) 1196 * A choice of three behaviors for folio_wait << 1197 */ << 1198 enum behavior { << 1199 EXCLUSIVE, /* Hold ref to page a << 1200 * __folio_lock() wai << 1201 */ << 1202 SHARED, /* Hold ref to page a << 1203 * folio_wait_writeba << 1204 */ << 1205 DROP, /* Drop ref to page b << 1206 * like folio_put_wai << 1207 */ << 1208 }; << 1209 << 1210 /* << 1211 * Attempt to check (or get) the folio flag, << 1212 * if successful. << 1213 */ << 1214 static inline bool folio_trylock_flag(struct << 1215 struc << 1216 { 827 { 1217 if (wait->flags & WQ_FLAG_EXCLUSIVE) !! 828 if (!PageWaiters(page)) 1218 if (test_and_set_bit(bit_nr, !! 829 return; 1219 return false; !! 830 wake_up_page_bit(page, bit); 1220 } else if (test_bit(bit_nr, &folio->f << 1221 return false; << 1222 << 1223 wait->flags |= WQ_FLAG_WOKEN | WQ_FLA << 1224 return true; << 1225 } 831 } 1226 832 1227 /* How many times do we accept lock stealing !! 833 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1228 int sysctl_page_lock_unfairness = 5; !! 834 struct page *page, int bit_nr, int state, bool lock) 1229 << 1230 static inline int folio_wait_bit_common(struc << 1231 int state, enum behavior beha << 1232 { 835 { 1233 wait_queue_head_t *q = folio_waitqueu << 1234 int unfairness = sysctl_page_lock_unf << 1235 struct wait_page_queue wait_page; 836 struct wait_page_queue wait_page; 1236 wait_queue_entry_t *wait = &wait_page !! 837 wait_queue_t *wait = &wait_page.wait; 1237 bool thrashing = false; !! 838 int ret = 0; 1238 unsigned long pflags; << 1239 bool in_thrashing; << 1240 << 1241 if (bit_nr == PG_locked && << 1242 !folio_test_uptodate(folio) && fo << 1243 delayacct_thrashing_start(&in << 1244 psi_memstall_enter(&pflags); << 1245 thrashing = true; << 1246 } << 1247 839 1248 init_wait(wait); 840 init_wait(wait); 1249 wait->func = wake_page_function; 841 wait->func = wake_page_function; 1250 wait_page.folio = folio; !! 842 wait_page.page = page; 1251 wait_page.bit_nr = bit_nr; 843 wait_page.bit_nr = bit_nr; 1252 844 1253 repeat: << 1254 wait->flags = 0; << 1255 if (behavior == EXCLUSIVE) { << 1256 wait->flags = WQ_FLAG_EXCLUSI << 1257 if (--unfairness < 0) << 1258 wait->flags |= WQ_FLA << 1259 } << 1260 << 1261 /* << 1262 * Do one last check whether we can g << 1263 * page bit synchronously. << 1264 * << 1265 * Do the folio_set_waiters() marking << 1266 * to let any waker we _just_ missed << 1267 * need to wake us up (otherwise they << 1268 * even go to the slow case that look << 1269 * page queue), and add ourselves to << 1270 * queue if we need to sleep. << 1271 * << 1272 * This part needs to be done under t << 1273 * lock to avoid races. << 1274 */ << 1275 spin_lock_irq(&q->lock); << 1276 folio_set_waiters(folio); << 1277 if (!folio_trylock_flag(folio, bit_nr << 1278 __add_wait_queue_entry_tail(q << 1279 spin_unlock_irq(&q->lock); << 1280 << 1281 /* << 1282 * From now on, all the logic will be << 1283 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE << 1284 * see whether the page bit testing h << 1285 * been done by the wake function. << 1286 * << 1287 * We can drop our reference to the f << 1288 */ << 1289 if (behavior == DROP) << 1290 folio_put(folio); << 1291 << 1292 /* << 1293 * Note that until the "finish_wait() << 1294 * we see the WQ_FLAG_WOKEN flag, we << 1295 * be very careful with the 'wait->fl << 1296 * we may race with a waker that sets << 1297 */ << 1298 for (;;) { 845 for (;;) { 1299 unsigned int flags; !! 846 spin_lock_irq(&q->lock); >> 847 >> 848 if (likely(list_empty(&wait->task_list))) { >> 849 if (lock) >> 850 __add_wait_queue_tail_exclusive(q, wait); >> 851 else >> 852 __add_wait_queue(q, wait); >> 853 SetPageWaiters(page); >> 854 } 1300 855 1301 set_current_state(state); 856 set_current_state(state); 1302 857 1303 /* Loop until we've been woke !! 858 spin_unlock_irq(&q->lock); 1304 flags = smp_load_acquire(&wai << 1305 if (!(flags & WQ_FLAG_WOKEN)) << 1306 if (signal_pending_st << 1307 break; << 1308 859 >> 860 if (likely(test_bit(bit_nr, &page->flags))) { 1309 io_schedule(); 861 io_schedule(); 1310 continue; !! 862 if (unlikely(signal_pending_state(state, current))) { >> 863 ret = -EINTR; >> 864 break; >> 865 } 1311 } 866 } 1312 867 1313 /* If we were non-exclusive, !! 868 if (lock) { 1314 if (behavior != EXCLUSIVE) !! 869 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1315 break; !! 870 break; 1316 !! 871 } else { 1317 /* If the waker got the lock !! 872 if (!test_bit(bit_nr, &page->flags)) 1318 if (flags & WQ_FLAG_DONE) << 1319 break; << 1320 << 1321 /* << 1322 * Otherwise, if we're gettin << 1323 * try to get it ourselves. << 1324 * << 1325 * And if that fails, we'll h << 1326 */ << 1327 if (unlikely(test_and_set_bit << 1328 goto repeat; << 1329 << 1330 wait->flags |= WQ_FLAG_DONE; << 1331 break; << 1332 } << 1333 << 1334 /* << 1335 * If a signal happened, this 'finish << 1336 * waiter from the wait-queues, but t << 1337 * set. That's ok. The next wakeup wi << 1338 * to do it here would be difficult a << 1339 */ << 1340 finish_wait(q, wait); << 1341 << 1342 if (thrashing) { << 1343 delayacct_thrashing_end(&in_t << 1344 psi_memstall_leave(&pflags); << 1345 } << 1346 << 1347 /* << 1348 * NOTE! The wait->flags weren't stab << 1349 * 'finish_wait()', and we could have << 1350 * to a signal, and had a wakeup even << 1351 * test but before the 'finish_wait() << 1352 * << 1353 * So only after the finish_wait() ca << 1354 * if we got woken up or not, so we c << 1355 * return value based on that state w << 1356 * << 1357 * Also note that WQ_FLAG_WOKEN is su << 1358 * waiter, but an exclusive one requi << 1359 */ << 1360 if (behavior == EXCLUSIVE) << 1361 return wait->flags & WQ_FLAG_ << 1362 << 1363 return wait->flags & WQ_FLAG_WOKEN ? << 1364 } << 1365 << 1366 #ifdef CONFIG_MIGRATION << 1367 /** << 1368 * migration_entry_wait_on_locked - Wait for << 1369 * @entry: migration swap entry. << 1370 * @ptl: already locked ptl. This function wi << 1371 * << 1372 * Wait for a migration entry referencing the << 1373 * equivalent to put_and_wait_on_page_locked( << 1374 * this can be called without taking a refere << 1375 * should be called while holding the ptl for << 1376 * the page. << 1377 * << 1378 * Returns after unlocking the ptl. << 1379 * << 1380 * This follows the same logic as folio_wait_ << 1381 * there. << 1382 */ << 1383 void migration_entry_wait_on_locked(swp_entry << 1384 __releases(ptl) << 1385 { << 1386 struct wait_page_queue wait_page; << 1387 wait_queue_entry_t *wait = &wait_page << 1388 bool thrashing = false; << 1389 unsigned long pflags; << 1390 bool in_thrashing; << 1391 wait_queue_head_t *q; << 1392 struct folio *folio = pfn_swap_entry_ << 1393 << 1394 q = folio_waitqueue(folio); << 1395 if (!folio_test_uptodate(folio) && fo << 1396 delayacct_thrashing_start(&in << 1397 psi_memstall_enter(&pflags); << 1398 thrashing = true; << 1399 } << 1400 << 1401 init_wait(wait); << 1402 wait->func = wake_page_function; << 1403 wait_page.folio = folio; << 1404 wait_page.bit_nr = PG_locked; << 1405 wait->flags = 0; << 1406 << 1407 spin_lock_irq(&q->lock); << 1408 folio_set_waiters(folio); << 1409 if (!folio_trylock_flag(folio, PG_loc << 1410 __add_wait_queue_entry_tail(q << 1411 spin_unlock_irq(&q->lock); << 1412 << 1413 /* << 1414 * If a migration entry exists for th << 1415 * a valid reference to the page, and << 1416 * migration entry. So the page is va << 1417 */ << 1418 spin_unlock(ptl); << 1419 << 1420 for (;;) { << 1421 unsigned int flags; << 1422 << 1423 set_current_state(TASK_UNINTE << 1424 << 1425 /* Loop until we've been woke << 1426 flags = smp_load_acquire(&wai << 1427 if (!(flags & WQ_FLAG_WOKEN)) << 1428 if (signal_pending_st << 1429 break; 873 break; 1430 << 1431 io_schedule(); << 1432 continue; << 1433 } 874 } 1434 break; << 1435 } 875 } 1436 876 1437 finish_wait(q, wait); 877 finish_wait(q, wait); 1438 878 1439 if (thrashing) { !! 879 /* 1440 delayacct_thrashing_end(&in_t !! 880 * A signal could leave PageWaiters set. Clearing it here if 1441 psi_memstall_leave(&pflags); !! 881 * !waitqueue_active would be possible (by open-coding finish_wait), 1442 } !! 882 * but still fail to catch it in the case of wait hash collision. We 1443 } !! 883 * already can fail to clear wait hash collision cases, so don't 1444 #endif !! 884 * bother with signals either. >> 885 */ 1445 886 1446 void folio_wait_bit(struct folio *folio, int !! 887 return ret; 1447 { << 1448 folio_wait_bit_common(folio, bit_nr, << 1449 } 888 } 1450 EXPORT_SYMBOL(folio_wait_bit); << 1451 889 1452 int folio_wait_bit_killable(struct folio *fol !! 890 void wait_on_page_bit(struct page *page, int bit_nr) 1453 { 891 { 1454 return folio_wait_bit_common(folio, b !! 892 wait_queue_head_t *q = page_waitqueue(page); >> 893 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1455 } 894 } 1456 EXPORT_SYMBOL(folio_wait_bit_killable); !! 895 EXPORT_SYMBOL(wait_on_page_bit); 1457 896 1458 /** !! 897 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1459 * folio_put_wait_locked - Drop a reference a << 1460 * @folio: The folio to wait for. << 1461 * @state: The sleep state (TASK_KILLABLE, TA << 1462 * << 1463 * The caller should hold a reference on @fol << 1464 * become unlocked relatively soon, but do no << 1465 * (for example) by holding the reference whi << 1466 * come unlocked. After this function return << 1467 * dereference @folio. << 1468 * << 1469 * Return: 0 if the folio was unlocked or -EI << 1470 */ << 1471 static int folio_put_wait_locked(struct folio << 1472 { 898 { 1473 return folio_wait_bit_common(folio, P !! 899 wait_queue_head_t *q = page_waitqueue(page); >> 900 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1474 } 901 } 1475 902 1476 /** 903 /** 1477 * folio_add_wait_queue - Add an arbitrary wa !! 904 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1478 * @folio: Folio defining the wait queue of i !! 905 * @page: Page defining the wait queue of interest 1479 * @waiter: Waiter to add to the queue 906 * @waiter: Waiter to add to the queue 1480 * 907 * 1481 * Add an arbitrary @waiter to the wait queue !! 908 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1482 */ 909 */ 1483 void folio_add_wait_queue(struct folio *folio !! 910 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 1484 { 911 { 1485 wait_queue_head_t *q = folio_waitqueu !! 912 wait_queue_head_t *q = page_waitqueue(page); 1486 unsigned long flags; 913 unsigned long flags; 1487 914 1488 spin_lock_irqsave(&q->lock, flags); 915 spin_lock_irqsave(&q->lock, flags); 1489 __add_wait_queue_entry_tail(q, waiter !! 916 __add_wait_queue(q, waiter); 1490 folio_set_waiters(folio); !! 917 SetPageWaiters(page); 1491 spin_unlock_irqrestore(&q->lock, flag 918 spin_unlock_irqrestore(&q->lock, flags); 1492 } 919 } 1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue); !! 920 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1494 921 1495 /** !! 922 #ifndef clear_bit_unlock_is_negative_byte 1496 * folio_unlock - Unlock a locked folio. << 1497 * @folio: The folio. << 1498 * << 1499 * Unlocks the folio and wakes up any thread << 1500 * << 1501 * Context: May be called from interrupt or p << 1502 * called from NMI context. << 1503 */ << 1504 void folio_unlock(struct folio *folio) << 1505 { << 1506 /* Bit 7 allows x86 to check the byte << 1507 BUILD_BUG_ON(PG_waiters != 7); << 1508 BUILD_BUG_ON(PG_locked > 7); << 1509 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1510 if (folio_xor_flags_has_waiters(folio << 1511 folio_wake_bit(folio, PG_lock << 1512 } << 1513 EXPORT_SYMBOL(folio_unlock); << 1514 923 1515 /** !! 924 /* 1516 * folio_end_read - End read on a folio. !! 925 * PG_waiters is the high bit in the same byte as PG_lock. 1517 * @folio: The folio. << 1518 * @success: True if all reads completed succ << 1519 * << 1520 * When all reads against a folio have comple << 1521 * call this function to let the pagecache kn << 1522 * are outstanding. This will unlock the fol << 1523 * sleeping on the lock. The folio will also << 1524 * reads succeeded. << 1525 * << 1526 * Context: May be called from interrupt or p << 1527 * called from NMI context. << 1528 */ << 1529 void folio_end_read(struct folio *folio, bool << 1530 { << 1531 unsigned long mask = 1 << PG_locked; << 1532 << 1533 /* Must be in bottom byte for x86 to << 1534 BUILD_BUG_ON(PG_uptodate > 7); << 1535 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1536 VM_BUG_ON_FOLIO(folio_test_uptodate(f << 1537 << 1538 if (likely(success)) << 1539 mask |= 1 << PG_uptodate; << 1540 if (folio_xor_flags_has_waiters(folio << 1541 folio_wake_bit(folio, PG_lock << 1542 } << 1543 EXPORT_SYMBOL(folio_end_read); << 1544 << 1545 /** << 1546 * folio_end_private_2 - Clear PG_private_2 a << 1547 * @folio: The folio. << 1548 * 926 * 1549 * Clear the PG_private_2 bit on a folio and !! 927 * On x86 (and on many other architectures), we can clear PG_lock and 1550 * it. The folio reference held for PG_priva !! 928 * test the sign bit at the same time. But if the architecture does >> 929 * not support that special operation, we just do this all by hand >> 930 * instead. 1551 * 931 * 1552 * This is, for example, used when a netfs fo !! 932 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1553 * disk cache, thereby allowing writes to the !! 933 * being cleared, but a memory barrier should be unneccssary since it is 1554 * serialised. !! 934 * in the same byte as PG_locked. 1555 */ 935 */ 1556 void folio_end_private_2(struct folio *folio) !! 936 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1557 { 937 { 1558 VM_BUG_ON_FOLIO(!folio_test_private_2 !! 938 clear_bit_unlock(nr, mem); 1559 clear_bit_unlock(PG_private_2, folio_ !! 939 /* smp_mb__after_atomic(); */ 1560 folio_wake_bit(folio, PG_private_2); !! 940 return test_bit(PG_waiters, mem); 1561 folio_put(folio); << 1562 } 941 } 1563 EXPORT_SYMBOL(folio_end_private_2); !! 942 >> 943 #endif 1564 944 1565 /** 945 /** 1566 * folio_wait_private_2 - Wait for PG_private !! 946 * unlock_page - unlock a locked page 1567 * @folio: The folio to wait on. !! 947 * @page: the page 1568 * 948 * 1569 * Wait for PG_private_2 to be cleared on a f !! 949 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). >> 950 * Also wakes sleepers in wait_on_page_writeback() because the wakeup >> 951 * mechanism between PageLocked pages and PageWriteback pages is shared. >> 952 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. >> 953 * >> 954 * Note that this depends on PG_waiters being the sign bit in the byte >> 955 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to >> 956 * clear the PG_locked bit and test PG_waiters at the same time fairly >> 957 * portably (architectures that do LL/SC can test any bit, while x86 can >> 958 * test the sign bit). 1570 */ 959 */ 1571 void folio_wait_private_2(struct folio *folio !! 960 void unlock_page(struct page *page) 1572 { 961 { 1573 while (folio_test_private_2(folio)) !! 962 BUILD_BUG_ON(PG_waiters != 7); 1574 folio_wait_bit(folio, PG_priv !! 963 page = compound_head(page); >> 964 VM_BUG_ON_PAGE(!PageLocked(page), page); >> 965 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) >> 966 wake_up_page_bit(page, PG_locked); 1575 } 967 } 1576 EXPORT_SYMBOL(folio_wait_private_2); !! 968 EXPORT_SYMBOL(unlock_page); 1577 969 1578 /** 970 /** 1579 * folio_wait_private_2_killable - Wait for P !! 971 * end_page_writeback - end writeback against a page 1580 * @folio: The folio to wait on. !! 972 * @page: the page 1581 * << 1582 * Wait for PG_private_2 to be cleared on a f << 1583 * received by the calling task. << 1584 * << 1585 * Return: << 1586 * - 0 if successful. << 1587 * - -EINTR if a fatal signal was encountered << 1588 */ 973 */ 1589 int folio_wait_private_2_killable(struct foli !! 974 void end_page_writeback(struct page *page) 1590 { 975 { 1591 int ret = 0; !! 976 /* 1592 !! 977 * TestClearPageReclaim could be used here but it is an atomic 1593 while (folio_test_private_2(folio)) { !! 978 * operation and overkill in this particular case. Failing to 1594 ret = folio_wait_bit_killable !! 979 * shuffle a page marked for immediate reclaim is too mild to 1595 if (ret < 0) !! 980 * justify taking an atomic operation penalty at the end of 1596 break; !! 981 * ever page writeback. >> 982 */ >> 983 if (PageReclaim(page)) { >> 984 ClearPageReclaim(page); >> 985 rotate_reclaimable_page(page); 1597 } 986 } 1598 987 1599 return ret; !! 988 if (!test_clear_page_writeback(page)) >> 989 BUG(); >> 990 >> 991 smp_mb__after_atomic(); >> 992 wake_up_page(page, PG_writeback); 1600 } 993 } 1601 EXPORT_SYMBOL(folio_wait_private_2_killable); !! 994 EXPORT_SYMBOL(end_page_writeback); 1602 995 1603 /** !! 996 /* 1604 * folio_end_writeback - End writeback agains !! 997 * After completing I/O on a page, call this routine to update the page 1605 * @folio: The folio. !! 998 * flags appropriately 1606 * << 1607 * The folio must actually be under writeback << 1608 * << 1609 * Context: May be called from process or int << 1610 */ 999 */ 1611 void folio_end_writeback(struct folio *folio) !! 1000 void page_endio(struct page *page, bool is_write, int err) 1612 { 1001 { 1613 VM_BUG_ON_FOLIO(!folio_test_writeback !! 1002 if (!is_write) { >> 1003 if (!err) { >> 1004 SetPageUptodate(page); >> 1005 } else { >> 1006 ClearPageUptodate(page); >> 1007 SetPageError(page); >> 1008 } >> 1009 unlock_page(page); >> 1010 } else { >> 1011 if (err) { >> 1012 struct address_space *mapping; 1614 1013 1615 /* !! 1014 SetPageError(page); 1616 * folio_test_clear_reclaim() could b !! 1015 mapping = page_mapping(page); 1617 * atomic operation and overkill in t !! 1016 if (mapping) 1618 * to shuffle a folio marked for imme !! 1017 mapping_set_error(mapping, err); 1619 * a gain to justify taking an atomic !! 1018 } 1620 * end of every folio writeback. !! 1019 end_page_writeback(page); 1621 */ << 1622 if (folio_test_reclaim(folio)) { << 1623 folio_clear_reclaim(folio); << 1624 folio_rotate_reclaimable(foli << 1625 } 1020 } 1626 << 1627 /* << 1628 * Writeback does not hold a folio re << 1629 * on truncation to wait for the clea << 1630 * But here we must make sure that th << 1631 * reused before the folio_wake_bit() << 1632 */ << 1633 folio_get(folio); << 1634 if (__folio_end_writeback(folio)) << 1635 folio_wake_bit(folio, PG_writ << 1636 acct_reclaim_writeback(folio); << 1637 folio_put(folio); << 1638 } 1021 } 1639 EXPORT_SYMBOL(folio_end_writeback); !! 1022 EXPORT_SYMBOL_GPL(page_endio); 1640 1023 1641 /** 1024 /** 1642 * __folio_lock - Get a lock on the folio, as !! 1025 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1643 * @folio: The folio to lock !! 1026 * @__page: the page to lock 1644 */ 1027 */ 1645 void __folio_lock(struct folio *folio) !! 1028 void __lock_page(struct page *__page) 1646 { << 1647 folio_wait_bit_common(folio, PG_locke << 1648 EXCLUSIVE); << 1649 } << 1650 EXPORT_SYMBOL(__folio_lock); << 1651 << 1652 int __folio_lock_killable(struct folio *folio << 1653 { 1029 { 1654 return folio_wait_bit_common(folio, P !! 1030 struct page *page = compound_head(__page); 1655 EXCLU !! 1031 wait_queue_head_t *q = page_waitqueue(page); >> 1032 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1656 } 1033 } 1657 EXPORT_SYMBOL_GPL(__folio_lock_killable); !! 1034 EXPORT_SYMBOL(__lock_page); 1658 1035 1659 static int __folio_lock_async(struct folio *f !! 1036 int __lock_page_killable(struct page *__page) 1660 { 1037 { 1661 struct wait_queue_head *q = folio_wai !! 1038 struct page *page = compound_head(__page); 1662 int ret; !! 1039 wait_queue_head_t *q = page_waitqueue(page); 1663 !! 1040 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1664 wait->folio = folio; << 1665 wait->bit_nr = PG_locked; << 1666 << 1667 spin_lock_irq(&q->lock); << 1668 __add_wait_queue_entry_tail(q, &wait- << 1669 folio_set_waiters(folio); << 1670 ret = !folio_trylock(folio); << 1671 /* << 1672 * If we were successful now, we know << 1673 * waitqueue as we're still under the << 1674 * safe to remove and return success, << 1675 * isn't going to trigger. << 1676 */ << 1677 if (!ret) << 1678 __remove_wait_queue(q, &wait- << 1679 else << 1680 ret = -EIOCBQUEUED; << 1681 spin_unlock_irq(&q->lock); << 1682 return ret; << 1683 } 1041 } >> 1042 EXPORT_SYMBOL_GPL(__lock_page_killable); 1684 1043 1685 /* 1044 /* 1686 * Return values: 1045 * Return values: 1687 * 0 - folio is locked. !! 1046 * 1 - page is locked; mmap_sem is still held. 1688 * non-zero - folio is not locked. !! 1047 * 0 - page is not locked. 1689 * mmap_lock or per-VMA lock has been rel !! 1048 * mmap_sem has been released (up_read()), unless flags had both 1690 * vma_end_read()), unless flags had both !! 1049 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1691 * FAULT_FLAG_RETRY_NOWAIT set, in which !! 1050 * which case mmap_sem is still held. 1692 * !! 1051 * 1693 * If neither ALLOW_RETRY nor KILLABLE are se !! 1052 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1694 * with the folio locked and the mmap_lock/pe !! 1053 * with the page locked and the mmap_sem unperturbed. 1695 */ 1054 */ 1696 vm_fault_t __folio_lock_or_retry(struct folio !! 1055 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, >> 1056 unsigned int flags) 1697 { 1057 { 1698 unsigned int flags = vmf->flags; !! 1058 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1699 << 1700 if (fault_flag_allow_retry_first(flag << 1701 /* 1059 /* 1702 * CAUTION! In this case, mma !! 1060 * CAUTION! In this case, mmap_sem is not released 1703 * released even though retur !! 1061 * even though return 0. 1704 */ 1062 */ 1705 if (flags & FAULT_FLAG_RETRY_ 1063 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1706 return VM_FAULT_RETRY !! 1064 return 0; 1707 1065 1708 release_fault_lock(vmf); !! 1066 up_read(&mm->mmap_sem); 1709 if (flags & FAULT_FLAG_KILLAB 1067 if (flags & FAULT_FLAG_KILLABLE) 1710 folio_wait_locked_kil !! 1068 wait_on_page_locked_killable(page); 1711 else 1069 else 1712 folio_wait_locked(fol !! 1070 wait_on_page_locked(page); 1713 return VM_FAULT_RETRY; !! 1071 return 0; 1714 } << 1715 if (flags & FAULT_FLAG_KILLABLE) { << 1716 bool ret; << 1717 << 1718 ret = __folio_lock_killable(f << 1719 if (ret) { << 1720 release_fault_lock(vm << 1721 return VM_FAULT_RETRY << 1722 } << 1723 } else { 1072 } else { 1724 __folio_lock(folio); !! 1073 if (flags & FAULT_FLAG_KILLABLE) { 1725 } !! 1074 int ret; 1726 1075 1727 return 0; !! 1076 ret = __lock_page_killable(page); >> 1077 if (ret) { >> 1078 up_read(&mm->mmap_sem); >> 1079 return 0; >> 1080 } >> 1081 } else >> 1082 __lock_page(page); >> 1083 return 1; >> 1084 } 1728 } 1085 } 1729 1086 1730 /** 1087 /** 1731 * page_cache_next_miss() - Find the next gap !! 1088 * page_cache_next_hole - find the next hole (not-present entry) 1732 * @mapping: Mapping. !! 1089 * @mapping: mapping 1733 * @index: Index. !! 1090 * @index: index 1734 * @max_scan: Maximum range to search. !! 1091 * @max_scan: maximum range to search 1735 * !! 1092 * 1736 * Search the range [index, min(index + max_s !! 1093 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1737 * gap with the lowest index. !! 1094 * lowest indexed hole. 1738 * !! 1095 * 1739 * This function may be called under the rcu_ !! 1096 * Returns: the index of the hole if found, otherwise returns an index 1740 * not atomically search a snapshot of the ca !! 1097 * outside of the set specified (in which case 'return - index >= 1741 * For example, if a gap is created at index !! 1098 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1742 * created at index 10, page_cache_next_miss !! 1099 * be returned. 1743 * return 10 if called under the rcu_read_loc !! 1100 * 1744 * !! 1101 * page_cache_next_hole may be called under rcu_read_lock. However, 1745 * Return: The index of the gap if found, oth !! 1102 * like radix_tree_gang_lookup, this will not atomically search a 1746 * range specified (in which case 'return - i !! 1103 * snapshot of the tree at a single point in time. For example, if a 1747 * In the rare case of index wrap-around, 0 w !! 1104 * hole is created at index 5, then subsequently a hole is created at >> 1105 * index 10, page_cache_next_hole covering both indexes may return 10 >> 1106 * if called under rcu_read_lock. 1748 */ 1107 */ 1749 pgoff_t page_cache_next_miss(struct address_s !! 1108 pgoff_t page_cache_next_hole(struct address_space *mapping, 1750 pgoff_t index, u 1109 pgoff_t index, unsigned long max_scan) 1751 { 1110 { 1752 XA_STATE(xas, &mapping->i_pages, inde !! 1111 unsigned long i; 1753 1112 1754 while (max_scan--) { !! 1113 for (i = 0; i < max_scan; i++) { 1755 void *entry = xas_next(&xas); !! 1114 struct page *page; 1756 if (!entry || xa_is_value(ent !! 1115 1757 return xas.xa_index; !! 1116 page = radix_tree_lookup(&mapping->page_tree, index); 1758 if (xas.xa_index == 0) !! 1117 if (!page || radix_tree_exceptional_entry(page)) 1759 return 0; !! 1118 break; >> 1119 index++; >> 1120 if (index == 0) >> 1121 break; 1760 } 1122 } 1761 1123 1762 return index + max_scan; !! 1124 return index; 1763 } 1125 } 1764 EXPORT_SYMBOL(page_cache_next_miss); !! 1126 EXPORT_SYMBOL(page_cache_next_hole); 1765 1127 1766 /** 1128 /** 1767 * page_cache_prev_miss() - Find the previous !! 1129 * page_cache_prev_hole - find the prev hole (not-present entry) 1768 * @mapping: Mapping. !! 1130 * @mapping: mapping 1769 * @index: Index. !! 1131 * @index: index 1770 * @max_scan: Maximum range to search. !! 1132 * @max_scan: maximum range to search 1771 * !! 1133 * 1772 * Search the range [max(index - max_scan + 1 !! 1134 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1773 * gap with the highest index. !! 1135 * the first hole. 1774 * !! 1136 * 1775 * This function may be called under the rcu_ !! 1137 * Returns: the index of the hole if found, otherwise returns an index 1776 * not atomically search a snapshot of the ca !! 1138 * outside of the set specified (in which case 'index - return >= 1777 * For example, if a gap is created at index !! 1139 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1778 * created at index 5, page_cache_prev_miss() !! 1140 * will be returned. 1779 * return 5 if called under the rcu_read_lock !! 1141 * 1780 * !! 1142 * page_cache_prev_hole may be called under rcu_read_lock. However, 1781 * Return: The index of the gap if found, oth !! 1143 * like radix_tree_gang_lookup, this will not atomically search a 1782 * range specified (in which case 'index - re !! 1144 * snapshot of the tree at a single point in time. For example, if a 1783 * In the rare case of wrap-around, ULONG_MAX !! 1145 * hole is created at index 10, then subsequently a hole is created at >> 1146 * index 5, page_cache_prev_hole covering both indexes may return 5 if >> 1147 * called under rcu_read_lock. 1784 */ 1148 */ 1785 pgoff_t page_cache_prev_miss(struct address_s !! 1149 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1786 pgoff_t index, u 1150 pgoff_t index, unsigned long max_scan) 1787 { 1151 { 1788 XA_STATE(xas, &mapping->i_pages, inde !! 1152 unsigned long i; 1789 1153 1790 while (max_scan--) { !! 1154 for (i = 0; i < max_scan; i++) { 1791 void *entry = xas_prev(&xas); !! 1155 struct page *page; 1792 if (!entry || xa_is_value(ent !! 1156 >> 1157 page = radix_tree_lookup(&mapping->page_tree, index); >> 1158 if (!page || radix_tree_exceptional_entry(page)) 1793 break; 1159 break; 1794 if (xas.xa_index == ULONG_MAX !! 1160 index--; >> 1161 if (index == ULONG_MAX) 1795 break; 1162 break; 1796 } 1163 } 1797 1164 1798 return xas.xa_index; !! 1165 return index; 1799 } 1166 } 1800 EXPORT_SYMBOL(page_cache_prev_miss); !! 1167 EXPORT_SYMBOL(page_cache_prev_hole); 1801 << 1802 /* << 1803 * Lockless page cache protocol: << 1804 * On the lookup side: << 1805 * 1. Load the folio from i_pages << 1806 * 2. Increment the refcount if it's not zero << 1807 * 3. If the folio is not found by xas_reload << 1808 * << 1809 * On the removal side: << 1810 * A. Freeze the page (by zeroing the refcoun << 1811 * B. Remove the page from i_pages << 1812 * C. Return the page to the page allocator << 1813 * << 1814 * This means that any page may have its refe << 1815 * increased by a speculative page cache (or << 1816 * be allocated by another user before the RC << 1817 * Because the refcount temporarily acquired << 1818 * last refcount on the page, any page alloca << 1819 * folio_put(). << 1820 */ << 1821 1168 1822 /* !! 1169 /** 1823 * filemap_get_entry - Get a page cache entry !! 1170 * find_get_entry - find and get a page cache entry 1824 * @mapping: the address_space to search 1171 * @mapping: the address_space to search 1825 * @index: The page cache index. !! 1172 * @offset: the page cache index >> 1173 * >> 1174 * Looks up the page cache slot at @mapping & @offset. If there is a >> 1175 * page cache page, it is returned with an increased refcount. 1826 * 1176 * 1827 * Looks up the page cache entry at @mapping !! 1177 * If the slot holds a shadow entry of a previously evicted page, or a 1828 * it is returned with an increased refcount. !! 1178 * swap entry from shmem/tmpfs, it is returned. 1829 * of a previously evicted folio, or a swap e << 1830 * it is returned without further action. << 1831 * 1179 * 1832 * Return: The folio, swap or shadow entry, % !! 1180 * Otherwise, %NULL is returned. 1833 */ 1181 */ 1834 void *filemap_get_entry(struct address_space !! 1182 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1835 { 1183 { 1836 XA_STATE(xas, &mapping->i_pages, inde !! 1184 void **pagep; 1837 struct folio *folio; !! 1185 struct page *head, *page; 1838 1186 1839 rcu_read_lock(); 1187 rcu_read_lock(); 1840 repeat: 1188 repeat: 1841 xas_reset(&xas); !! 1189 page = NULL; 1842 folio = xas_load(&xas); !! 1190 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1843 if (xas_retry(&xas, folio)) !! 1191 if (pagep) { 1844 goto repeat; !! 1192 page = radix_tree_deref_slot(pagep); 1845 /* !! 1193 if (unlikely(!page)) 1846 * A shadow entry of a recently evict !! 1194 goto out; 1847 * shmem/tmpfs. Return it without at !! 1195 if (radix_tree_exception(page)) { 1848 */ !! 1196 if (radix_tree_deref_retry(page)) 1849 if (!folio || xa_is_value(folio)) !! 1197 goto repeat; 1850 goto out; !! 1198 /* >> 1199 * A shadow entry of a recently evicted page, >> 1200 * or a swap entry from shmem/tmpfs. Return >> 1201 * it without attempting to raise page count. >> 1202 */ >> 1203 goto out; >> 1204 } 1851 1205 1852 if (!folio_try_get(folio)) !! 1206 head = compound_head(page); 1853 goto repeat; !! 1207 if (!page_cache_get_speculative(head)) >> 1208 goto repeat; 1854 1209 1855 if (unlikely(folio != xas_reload(&xas !! 1210 /* The page was split under us? */ 1856 folio_put(folio); !! 1211 if (compound_head(page) != head) { 1857 goto repeat; !! 1212 put_page(head); >> 1213 goto repeat; >> 1214 } >> 1215 >> 1216 /* >> 1217 * Has the page moved? >> 1218 * This is part of the lockless pagecache protocol. See >> 1219 * include/linux/pagemap.h for details. >> 1220 */ >> 1221 if (unlikely(page != *pagep)) { >> 1222 put_page(head); >> 1223 goto repeat; >> 1224 } 1858 } 1225 } 1859 out: 1226 out: 1860 rcu_read_unlock(); 1227 rcu_read_unlock(); 1861 1228 1862 return folio; !! 1229 return page; >> 1230 } >> 1231 EXPORT_SYMBOL(find_get_entry); >> 1232 >> 1233 /** >> 1234 * find_lock_entry - locate, pin and lock a page cache entry >> 1235 * @mapping: the address_space to search >> 1236 * @offset: the page cache index >> 1237 * >> 1238 * Looks up the page cache slot at @mapping & @offset. If there is a >> 1239 * page cache page, it is returned locked and with an increased >> 1240 * refcount. >> 1241 * >> 1242 * If the slot holds a shadow entry of a previously evicted page, or a >> 1243 * swap entry from shmem/tmpfs, it is returned. >> 1244 * >> 1245 * Otherwise, %NULL is returned. >> 1246 * >> 1247 * find_lock_entry() may sleep. >> 1248 */ >> 1249 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) >> 1250 { >> 1251 struct page *page; >> 1252 >> 1253 repeat: >> 1254 page = find_get_entry(mapping, offset); >> 1255 if (page && !radix_tree_exception(page)) { >> 1256 lock_page(page); >> 1257 /* Has the page been truncated? */ >> 1258 if (unlikely(page_mapping(page) != mapping)) { >> 1259 unlock_page(page); >> 1260 put_page(page); >> 1261 goto repeat; >> 1262 } >> 1263 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); >> 1264 } >> 1265 return page; 1863 } 1266 } >> 1267 EXPORT_SYMBOL(find_lock_entry); 1864 1268 1865 /** 1269 /** 1866 * __filemap_get_folio - Find and get a refer !! 1270 * pagecache_get_page - find and get a page reference 1867 * @mapping: The address_space to search. !! 1271 * @mapping: the address_space to search 1868 * @index: The page index. !! 1272 * @offset: the page index 1869 * @fgp_flags: %FGP flags modify how the foli !! 1273 * @fgp_flags: PCG flags 1870 * @gfp: Memory allocation flags to use if %F !! 1274 * @gfp_mask: gfp mask to use for the page cache data page allocation >> 1275 * >> 1276 * Looks up the page cache slot at @mapping & @offset. >> 1277 * >> 1278 * PCG flags modify how the page is returned. 1871 * 1279 * 1872 * Looks up the page cache entry at @mapping !! 1280 * @fgp_flags can be: 1873 * 1281 * 1874 * If %FGP_LOCK or %FGP_CREAT are specified t !! 1282 * - FGP_ACCESSED: the page will be marked accessed 1875 * if the %GFP flags specified for %FGP_CREAT !! 1283 * - FGP_LOCK: Page is return locked >> 1284 * - FGP_CREAT: If page is not present then a new page is allocated using >> 1285 * @gfp_mask and added to the page cache and the VM's LRU >> 1286 * list. The page is returned locked and with an increased >> 1287 * refcount. Otherwise, NULL is returned. 1876 * 1288 * 1877 * If this function returns a folio, it is re !! 1289 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even >> 1290 * if the GFP flags specified for FGP_CREAT are atomic. 1878 * 1291 * 1879 * Return: The found folio or an ERR_PTR() ot !! 1292 * If there is a page cache page, it is returned with an increased refcount. 1880 */ 1293 */ 1881 struct folio *__filemap_get_folio(struct addr !! 1294 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1882 fgf_t fgp_flags, gfp_t gfp) !! 1295 int fgp_flags, gfp_t gfp_mask) 1883 { 1296 { 1884 struct folio *folio; !! 1297 struct page *page; 1885 1298 1886 repeat: 1299 repeat: 1887 folio = filemap_get_entry(mapping, in !! 1300 page = find_get_entry(mapping, offset); 1888 if (xa_is_value(folio)) !! 1301 if (radix_tree_exceptional_entry(page)) 1889 folio = NULL; !! 1302 page = NULL; 1890 if (!folio) !! 1303 if (!page) 1891 goto no_page; 1304 goto no_page; 1892 1305 1893 if (fgp_flags & FGP_LOCK) { 1306 if (fgp_flags & FGP_LOCK) { 1894 if (fgp_flags & FGP_NOWAIT) { 1307 if (fgp_flags & FGP_NOWAIT) { 1895 if (!folio_trylock(fo !! 1308 if (!trylock_page(page)) { 1896 folio_put(fol !! 1309 put_page(page); 1897 return ERR_PT !! 1310 return NULL; 1898 } 1311 } 1899 } else { 1312 } else { 1900 folio_lock(folio); !! 1313 lock_page(page); 1901 } 1314 } 1902 1315 1903 /* Has the page been truncate 1316 /* Has the page been truncated? */ 1904 if (unlikely(folio->mapping ! !! 1317 if (unlikely(page->mapping != mapping)) { 1905 folio_unlock(folio); !! 1318 unlock_page(page); 1906 folio_put(folio); !! 1319 put_page(page); 1907 goto repeat; 1320 goto repeat; 1908 } 1321 } 1909 VM_BUG_ON_FOLIO(!folio_contai !! 1322 VM_BUG_ON_PAGE(page->index != offset, page); 1910 } 1323 } 1911 1324 1912 if (fgp_flags & FGP_ACCESSED) !! 1325 if (page && (fgp_flags & FGP_ACCESSED)) 1913 folio_mark_accessed(folio); !! 1326 mark_page_accessed(page); 1914 else if (fgp_flags & FGP_WRITE) { << 1915 /* Clear idle flag for buffer << 1916 if (folio_test_idle(folio)) << 1917 folio_clear_idle(foli << 1918 } << 1919 1327 1920 if (fgp_flags & FGP_STABLE) << 1921 folio_wait_stable(folio); << 1922 no_page: 1328 no_page: 1923 if (!folio && (fgp_flags & FGP_CREAT) !! 1329 if (!page && (fgp_flags & FGP_CREAT)) { 1924 unsigned int min_order = mapp << 1925 unsigned int order = max(min_ << 1926 int err; 1330 int err; 1927 index = mapping_align_index(m !! 1331 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1928 !! 1332 gfp_mask |= __GFP_WRITE; 1929 if ((fgp_flags & FGP_WRITE) & << 1930 gfp |= __GFP_WRITE; << 1931 if (fgp_flags & FGP_NOFS) 1333 if (fgp_flags & FGP_NOFS) 1932 gfp &= ~__GFP_FS; !! 1334 gfp_mask &= ~__GFP_FS; 1933 if (fgp_flags & FGP_NOWAIT) { << 1934 gfp &= ~GFP_KERNEL; << 1935 gfp |= GFP_NOWAIT | _ << 1936 } << 1937 if (WARN_ON_ONCE(!(fgp_flags << 1938 fgp_flags |= FGP_LOCK << 1939 << 1940 if (order > mapping_max_folio << 1941 order = mapping_max_f << 1942 /* If we're not aligned, allo << 1943 if (index & ((1UL << order) - << 1944 order = __ffs(index); << 1945 << 1946 do { << 1947 gfp_t alloc_gfp = gfp << 1948 << 1949 err = -ENOMEM; << 1950 if (order > min_order << 1951 alloc_gfp |= << 1952 folio = filemap_alloc << 1953 if (!folio) << 1954 continue; << 1955 << 1956 /* Init accessed so a << 1957 if (fgp_flags & FGP_A << 1958 __folio_set_r << 1959 1335 1960 err = filemap_add_fol !! 1336 page = __page_cache_alloc(gfp_mask); 1961 if (!err) !! 1337 if (!page) 1962 break; !! 1338 return NULL; 1963 folio_put(folio); << 1964 folio = NULL; << 1965 } while (order-- > min_order) << 1966 << 1967 if (err == -EEXIST) << 1968 goto repeat; << 1969 if (err) << 1970 return ERR_PTR(err); << 1971 /* << 1972 * filemap_add_folio locks th << 1973 * we expect an unlocked page << 1974 */ << 1975 if (folio && (fgp_flags & FGP << 1976 folio_unlock(folio); << 1977 } << 1978 << 1979 if (!folio) << 1980 return ERR_PTR(-ENOENT); << 1981 return folio; << 1982 } << 1983 EXPORT_SYMBOL(__filemap_get_folio); << 1984 << 1985 static inline struct folio *find_get_entry(st << 1986 xa_mark_t mark) << 1987 { << 1988 struct folio *folio; << 1989 << 1990 retry: << 1991 if (mark == XA_PRESENT) << 1992 folio = xas_find(xas, max); << 1993 else << 1994 folio = xas_find_marked(xas, << 1995 1339 1996 if (xas_retry(xas, folio)) !! 1340 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1997 goto retry; !! 1341 fgp_flags |= FGP_LOCK; 1998 /* << 1999 * A shadow entry of a recently evict << 2000 * entry from shmem/tmpfs or a DAX en << 2001 * without attempting to raise page c << 2002 */ << 2003 if (!folio || xa_is_value(folio)) << 2004 return folio; << 2005 1342 2006 if (!folio_try_get(folio)) !! 1343 /* Init accessed so avoid atomic mark_page_accessed later */ 2007 goto reset; !! 1344 if (fgp_flags & FGP_ACCESSED) >> 1345 __SetPageReferenced(page); 2008 1346 2009 if (unlikely(folio != xas_reload(xas) !! 1347 err = add_to_page_cache_lru(page, mapping, offset, 2010 folio_put(folio); !! 1348 gfp_mask & GFP_RECLAIM_MASK); 2011 goto reset; !! 1349 if (unlikely(err)) { >> 1350 put_page(page); >> 1351 page = NULL; >> 1352 if (err == -EEXIST) >> 1353 goto repeat; >> 1354 } 2012 } 1355 } 2013 1356 2014 return folio; !! 1357 return page; 2015 reset: << 2016 xas_reset(xas); << 2017 goto retry; << 2018 } 1358 } >> 1359 EXPORT_SYMBOL(pagecache_get_page); 2019 1360 2020 /** 1361 /** 2021 * find_get_entries - gang pagecache lookup 1362 * find_get_entries - gang pagecache lookup 2022 * @mapping: The address_space to search 1363 * @mapping: The address_space to search 2023 * @start: The starting page cache index 1364 * @start: The starting page cache index 2024 * @end: The final page index (inclusi !! 1365 * @nr_entries: The maximum number of entries 2025 * @fbatch: Where the resulting entries a !! 1366 * @entries: Where the resulting entries are placed 2026 * @indices: The cache indices correspondi 1367 * @indices: The cache indices corresponding to the entries in @entries 2027 * 1368 * 2028 * find_get_entries() will search for and ret !! 1369 * find_get_entries() will search for and return a group of up to 2029 * the mapping. The entries are placed in @f !! 1370 * @nr_entries entries in the mapping. The entries are placed at 2030 * takes a reference on any actual folios it !! 1371 * @entries. find_get_entries() takes a reference against any actual 2031 * !! 1372 * pages it returns. 2032 * The entries have ascending indexes. The i !! 1373 * 2033 * due to not-present entries or large folios !! 1374 * The search returns a group of mapping-contiguous page cache entries >> 1375 * with ascending indexes. There may be holes in the indices due to >> 1376 * not-present pages. 2034 * 1377 * 2035 * Any shadow entries of evicted folios, or s !! 1378 * Any shadow entries of evicted pages, or swap entries from 2036 * shmem/tmpfs, are included in the returned 1379 * shmem/tmpfs, are included in the returned array. 2037 * 1380 * 2038 * Return: The number of entries which were f !! 1381 * find_get_entries() returns the number of pages and shadow entries >> 1382 * which were found. 2039 */ 1383 */ 2040 unsigned find_get_entries(struct address_spac !! 1384 unsigned find_get_entries(struct address_space *mapping, 2041 pgoff_t end, struct folio_bat !! 1385 pgoff_t start, unsigned int nr_entries, 2042 { !! 1386 struct page **entries, pgoff_t *indices) 2043 XA_STATE(xas, &mapping->i_pages, *sta !! 1387 { 2044 struct folio *folio; !! 1388 void **slot; >> 1389 unsigned int ret = 0; >> 1390 struct radix_tree_iter iter; >> 1391 >> 1392 if (!nr_entries) >> 1393 return 0; 2045 1394 2046 rcu_read_lock(); 1395 rcu_read_lock(); 2047 while ((folio = find_get_entry(&xas, !! 1396 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2048 indices[fbatch->nr] = xas.xa_ !! 1397 struct page *head, *page; 2049 if (!folio_batch_add(fbatch, !! 1398 repeat: 2050 break; !! 1399 page = radix_tree_deref_slot(slot); 2051 } !! 1400 if (unlikely(!page)) >> 1401 continue; >> 1402 if (radix_tree_exception(page)) { >> 1403 if (radix_tree_deref_retry(page)) { >> 1404 slot = radix_tree_iter_retry(&iter); >> 1405 continue; >> 1406 } >> 1407 /* >> 1408 * A shadow entry of a recently evicted page, a swap >> 1409 * entry from shmem/tmpfs or a DAX entry. Return it >> 1410 * without attempting to raise page count. >> 1411 */ >> 1412 goto export; >> 1413 } 2052 1414 2053 if (folio_batch_count(fbatch)) { !! 1415 head = compound_head(page); 2054 unsigned long nr; !! 1416 if (!page_cache_get_speculative(head)) 2055 int idx = folio_batch_count(f !! 1417 goto repeat; 2056 !! 1418 2057 folio = fbatch->folios[idx]; !! 1419 /* The page was split under us? */ 2058 if (!xa_is_value(folio)) !! 1420 if (compound_head(page) != head) { 2059 nr = folio_nr_pages(f !! 1421 put_page(head); 2060 else !! 1422 goto repeat; 2061 nr = 1 << xa_get_orde !! 1423 } 2062 *start = round_down(indices[i !! 1424 >> 1425 /* Has the page moved? */ >> 1426 if (unlikely(page != *slot)) { >> 1427 put_page(head); >> 1428 goto repeat; >> 1429 } >> 1430 export: >> 1431 indices[ret] = iter.index; >> 1432 entries[ret] = page; >> 1433 if (++ret == nr_entries) >> 1434 break; 2063 } 1435 } 2064 rcu_read_unlock(); 1436 rcu_read_unlock(); 2065 !! 1437 return ret; 2066 return folio_batch_count(fbatch); << 2067 } 1438 } 2068 1439 2069 /** 1440 /** 2070 * find_lock_entries - Find a batch of pageca !! 1441 * find_get_pages - gang pagecache lookup 2071 * @mapping: The address_space to search. !! 1442 * @mapping: The address_space to search 2072 * @start: The starting page cache index !! 1443 * @start: The starting page index 2073 * @end: The final page index (inclusi !! 1444 * @nr_pages: The maximum number of pages 2074 * @fbatch: Where the resulting entries a !! 1445 * @pages: Where the resulting pages are placed 2075 * @indices: The cache indices of the entr !! 1446 * 2076 * !! 1447 * find_get_pages() will search for and return a group of up to 2077 * find_lock_entries() will return a batch of !! 1448 * @nr_pages pages in the mapping. The pages are placed at @pages. 2078 * Swap, shadow and DAX entries are included. !! 1449 * find_get_pages() takes a reference against the returned pages. 2079 * locked and with an incremented refcount. !! 1450 * 2080 * by somebody else or under writeback are sk !! 1451 * The search returns a group of mapping-contiguous pages with ascending 2081 * partially outside the range are not return !! 1452 * indexes. There may be holes in the indices due to not-present pages. 2082 * << 2083 * The entries have ascending indexes. The i << 2084 * due to not-present entries, large folios, << 2085 * locked or folios under writeback. << 2086 * 1453 * 2087 * Return: The number of entries which were f !! 1454 * find_get_pages() returns the number of pages which were found. 2088 */ 1455 */ 2089 unsigned find_lock_entries(struct address_spa !! 1456 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 2090 pgoff_t end, struct folio_bat !! 1457 unsigned int nr_pages, struct page **pages) 2091 { 1458 { 2092 XA_STATE(xas, &mapping->i_pages, *sta !! 1459 struct radix_tree_iter iter; 2093 struct folio *folio; !! 1460 void **slot; >> 1461 unsigned ret = 0; >> 1462 >> 1463 if (unlikely(!nr_pages)) >> 1464 return 0; 2094 1465 2095 rcu_read_lock(); 1466 rcu_read_lock(); 2096 while ((folio = find_get_entry(&xas, !! 1467 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2097 unsigned long base; !! 1468 struct page *head, *page; 2098 unsigned long nr; !! 1469 repeat: 2099 !! 1470 page = radix_tree_deref_slot(slot); 2100 if (!xa_is_value(folio)) { !! 1471 if (unlikely(!page)) 2101 nr = folio_nr_pages(f !! 1472 continue; 2102 base = folio->index; !! 1473 2103 /* Omit large folio w !! 1474 if (radix_tree_exception(page)) { 2104 if (base < *start) !! 1475 if (radix_tree_deref_retry(page)) { 2105 goto put; !! 1476 slot = radix_tree_iter_retry(&iter); 2106 /* Omit large folio w << 2107 if (base + nr - 1 > e << 2108 goto put; << 2109 if (!folio_trylock(fo << 2110 goto put; << 2111 if (folio->mapping != << 2112 folio_test_writeb << 2113 goto unlock; << 2114 VM_BUG_ON_FOLIO(!foli << 2115 folio << 2116 } else { << 2117 nr = 1 << xas_get_ord << 2118 base = xas.xa_index & << 2119 /* Omit order>0 value << 2120 if (base < *start) << 2121 continue; 1477 continue; 2122 /* Omit order>0 value !! 1478 } 2123 if (base + nr - 1 > e !! 1479 /* 2124 break; !! 1480 * A shadow entry of a recently evicted page, >> 1481 * or a swap entry from shmem/tmpfs. Skip >> 1482 * over it. >> 1483 */ >> 1484 continue; 2125 } 1485 } 2126 1486 2127 /* Update start now so that l !! 1487 head = compound_head(page); 2128 *start = base + nr; !! 1488 if (!page_cache_get_speculative(head)) 2129 indices[fbatch->nr] = xas.xa_ !! 1489 goto repeat; 2130 if (!folio_batch_add(fbatch, !! 1490 >> 1491 /* The page was split under us? */ >> 1492 if (compound_head(page) != head) { >> 1493 put_page(head); >> 1494 goto repeat; >> 1495 } >> 1496 >> 1497 /* Has the page moved? */ >> 1498 if (unlikely(page != *slot)) { >> 1499 put_page(head); >> 1500 goto repeat; >> 1501 } >> 1502 >> 1503 pages[ret] = page; >> 1504 if (++ret == nr_pages) 2131 break; 1505 break; 2132 continue; << 2133 unlock: << 2134 folio_unlock(folio); << 2135 put: << 2136 folio_put(folio); << 2137 } 1506 } 2138 rcu_read_unlock(); << 2139 1507 2140 return folio_batch_count(fbatch); !! 1508 rcu_read_unlock(); >> 1509 return ret; 2141 } 1510 } 2142 1511 2143 /** 1512 /** 2144 * filemap_get_folios - Get a batch of folios !! 1513 * find_get_pages_contig - gang contiguous pagecache lookup 2145 * @mapping: The address_space to search 1514 * @mapping: The address_space to search 2146 * @start: The starting page index !! 1515 * @index: The starting page index 2147 * @end: The final page index (inclusi !! 1516 * @nr_pages: The maximum number of pages 2148 * @fbatch: The batch to fill. !! 1517 * @pages: Where the resulting pages are placed 2149 * 1518 * 2150 * Search for and return a batch of folios in !! 1519 * find_get_pages_contig() works exactly like find_get_pages(), except 2151 * index @start and up to index @end (inclusi !! 1520 * that the returned number of pages are guaranteed to be contiguous. 2152 * in @fbatch with an elevated reference coun << 2153 * 1521 * 2154 * Return: The number of folios which were fo !! 1522 * find_get_pages_contig() returns the number of pages which were found. 2155 * We also update @start to index the next fo << 2156 */ 1523 */ 2157 unsigned filemap_get_folios(struct address_sp !! 1524 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2158 pgoff_t end, struct folio_bat !! 1525 unsigned int nr_pages, struct page **pages) 2159 { 1526 { 2160 return filemap_get_folios_tag(mapping !! 1527 struct radix_tree_iter iter; >> 1528 void **slot; >> 1529 unsigned int ret = 0; >> 1530 >> 1531 if (unlikely(!nr_pages)) >> 1532 return 0; >> 1533 >> 1534 rcu_read_lock(); >> 1535 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { >> 1536 struct page *head, *page; >> 1537 repeat: >> 1538 page = radix_tree_deref_slot(slot); >> 1539 /* The hole, there no reason to continue */ >> 1540 if (unlikely(!page)) >> 1541 break; >> 1542 >> 1543 if (radix_tree_exception(page)) { >> 1544 if (radix_tree_deref_retry(page)) { >> 1545 slot = radix_tree_iter_retry(&iter); >> 1546 continue; >> 1547 } >> 1548 /* >> 1549 * A shadow entry of a recently evicted page, >> 1550 * or a swap entry from shmem/tmpfs. Stop >> 1551 * looking for contiguous pages. >> 1552 */ >> 1553 break; >> 1554 } >> 1555 >> 1556 head = compound_head(page); >> 1557 if (!page_cache_get_speculative(head)) >> 1558 goto repeat; >> 1559 >> 1560 /* The page was split under us? */ >> 1561 if (compound_head(page) != head) { >> 1562 put_page(head); >> 1563 goto repeat; >> 1564 } >> 1565 >> 1566 /* Has the page moved? */ >> 1567 if (unlikely(page != *slot)) { >> 1568 put_page(head); >> 1569 goto repeat; >> 1570 } >> 1571 >> 1572 /* >> 1573 * must check mapping and index after taking the ref. >> 1574 * otherwise we can get both false positives and false >> 1575 * negatives, which is just confusing to the caller. >> 1576 */ >> 1577 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { >> 1578 put_page(page); >> 1579 break; >> 1580 } >> 1581 >> 1582 pages[ret] = page; >> 1583 if (++ret == nr_pages) >> 1584 break; >> 1585 } >> 1586 rcu_read_unlock(); >> 1587 return ret; 2161 } 1588 } 2162 EXPORT_SYMBOL(filemap_get_folios); !! 1589 EXPORT_SYMBOL(find_get_pages_contig); 2163 1590 2164 /** 1591 /** 2165 * filemap_get_folios_contig - Get a batch of !! 1592 * find_get_pages_tag - find and return pages that match @tag 2166 * @mapping: The address_space to search !! 1593 * @mapping: the address_space to search 2167 * @start: The starting page index !! 1594 * @index: the starting page index 2168 * @end: The final page index (inclusi !! 1595 * @tag: the tag index 2169 * @fbatch: The batch to fill !! 1596 * @nr_pages: the maximum number of pages >> 1597 * @pages: where the resulting pages are placed 2170 * 1598 * 2171 * filemap_get_folios_contig() works exactly !! 1599 * Like find_get_pages, except we only return pages which are tagged with 2172 * except the returned folios are guaranteed !! 1600 * @tag. We update @index to index the next page for the traversal. 2173 * not return all contiguous folios if the ba << 2174 * << 2175 * Return: The number of folios found. << 2176 * Also update @start to be positioned for tr << 2177 */ 1601 */ 2178 !! 1602 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 2179 unsigned filemap_get_folios_contig(struct add !! 1603 int tag, unsigned int nr_pages, struct page **pages) 2180 pgoff_t *start, pgoff_t end, << 2181 { 1604 { 2182 XA_STATE(xas, &mapping->i_pages, *sta !! 1605 struct radix_tree_iter iter; 2183 unsigned long nr; !! 1606 void **slot; 2184 struct folio *folio; !! 1607 unsigned ret = 0; 2185 1608 2186 rcu_read_lock(); !! 1609 if (unlikely(!nr_pages)) >> 1610 return 0; 2187 1611 2188 for (folio = xas_load(&xas); folio && !! 1612 rcu_read_lock(); 2189 folio = xas_next(&xas !! 1613 radix_tree_for_each_tagged(slot, &mapping->page_tree, 2190 if (xas_retry(&xas, folio)) !! 1614 &iter, *index, tag) { >> 1615 struct page *head, *page; >> 1616 repeat: >> 1617 page = radix_tree_deref_slot(slot); >> 1618 if (unlikely(!page)) 2191 continue; 1619 continue; 2192 /* << 2193 * If the entry has been swap << 2194 * No current caller is looki << 2195 */ << 2196 if (xa_is_value(folio)) << 2197 goto update_start; << 2198 1620 2199 /* If we landed in the middle !! 1621 if (radix_tree_exception(page)) { 2200 if (xa_is_sibling(folio)) !! 1622 if (radix_tree_deref_retry(page)) { 2201 goto update_start; !! 1623 slot = radix_tree_iter_retry(&iter); 2202 !! 1624 continue; 2203 if (!folio_try_get(folio)) !! 1625 } 2204 goto retry; !! 1626 /* 2205 !! 1627 * A shadow entry of a recently evicted page. 2206 if (unlikely(folio != xas_rel !! 1628 * 2207 goto put_folio; !! 1629 * Those entries should never be tagged, but 2208 !! 1630 * this tree walk is lockless and the tags are 2209 if (!folio_batch_add(fbatch, !! 1631 * looked up in bulk, one radix tree node at a 2210 nr = folio_nr_pages(f !! 1632 * time, so there is a sizable window for page 2211 *start = folio->index !! 1633 * reclaim to evict a page we saw tagged. 2212 goto out; !! 1634 * >> 1635 * Skip over it. >> 1636 */ >> 1637 continue; 2213 } 1638 } 2214 continue; << 2215 put_folio: << 2216 folio_put(folio); << 2217 1639 2218 retry: !! 1640 head = compound_head(page); 2219 xas_reset(&xas); !! 1641 if (!page_cache_get_speculative(head)) 2220 } !! 1642 goto repeat; 2221 1643 2222 update_start: !! 1644 /* The page was split under us? */ 2223 nr = folio_batch_count(fbatch); !! 1645 if (compound_head(page) != head) { >> 1646 put_page(head); >> 1647 goto repeat; >> 1648 } 2224 1649 2225 if (nr) { !! 1650 /* Has the page moved? */ 2226 folio = fbatch->folios[nr - 1 !! 1651 if (unlikely(page != *slot)) { 2227 *start = folio_next_index(fol !! 1652 put_page(head); >> 1653 goto repeat; >> 1654 } >> 1655 >> 1656 pages[ret] = page; >> 1657 if (++ret == nr_pages) >> 1658 break; 2228 } 1659 } 2229 out: !! 1660 2230 rcu_read_unlock(); 1661 rcu_read_unlock(); 2231 return folio_batch_count(fbatch); !! 1662 >> 1663 if (ret) >> 1664 *index = pages[ret - 1]->index + 1; >> 1665 >> 1666 return ret; 2232 } 1667 } 2233 EXPORT_SYMBOL(filemap_get_folios_contig); !! 1668 EXPORT_SYMBOL(find_get_pages_tag); 2234 1669 2235 /** 1670 /** 2236 * filemap_get_folios_tag - Get a batch of fo !! 1671 * find_get_entries_tag - find and return entries that match @tag 2237 * @mapping: The address_space to search !! 1672 * @mapping: the address_space to search 2238 * @start: The starting page index !! 1673 * @start: the starting page cache index 2239 * @end: The final page index (inclusi !! 1674 * @tag: the tag index 2240 * @tag: The tag index !! 1675 * @nr_entries: the maximum number of entries 2241 * @fbatch: The batch to fill !! 1676 * @entries: where the resulting entries are placed 2242 * !! 1677 * @indices: the cache indices corresponding to the entries in @entries 2243 * The first folio may start before @start; i << 2244 * @start. The final folio may extend beyond << 2245 * contain @end. The folios have ascending i << 2246 * between the folios if there are indices wh << 2247 * page cache. If folios are added to or rem << 2248 * while this is running, they may or may not << 2249 * Only returns folios that are tagged with @ << 2250 * 1678 * 2251 * Return: The number of folios found. !! 1679 * Like find_get_entries, except we only return entries which are tagged with 2252 * Also update @start to index the next folio !! 1680 * @tag. 2253 */ 1681 */ 2254 unsigned filemap_get_folios_tag(struct addres !! 1682 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 2255 pgoff_t end, xa_mark_ !! 1683 int tag, unsigned int nr_entries, >> 1684 struct page **entries, pgoff_t *indices) 2256 { 1685 { 2257 XA_STATE(xas, &mapping->i_pages, *sta !! 1686 void **slot; 2258 struct folio *folio; !! 1687 unsigned int ret = 0; >> 1688 struct radix_tree_iter iter; >> 1689 >> 1690 if (!nr_entries) >> 1691 return 0; 2259 1692 2260 rcu_read_lock(); 1693 rcu_read_lock(); 2261 while ((folio = find_get_entry(&xas, !! 1694 radix_tree_for_each_tagged(slot, &mapping->page_tree, 2262 /* !! 1695 &iter, start, tag) { 2263 * Shadow entries should neve !! 1696 struct page *head, *page; 2264 * is lockless so there is a !! 1697 repeat: 2265 * a page we saw tagged. Skip !! 1698 page = radix_tree_deref_slot(slot); 2266 */ !! 1699 if (unlikely(!page)) 2267 if (xa_is_value(folio)) << 2268 continue; 1700 continue; 2269 if (!folio_batch_add(fbatch, !! 1701 if (radix_tree_exception(page)) { 2270 unsigned long nr = fo !! 1702 if (radix_tree_deref_retry(page)) { 2271 *start = folio->index !! 1703 slot = radix_tree_iter_retry(&iter); 2272 goto out; !! 1704 continue; >> 1705 } >> 1706 >> 1707 /* >> 1708 * A shadow entry of a recently evicted page, a swap >> 1709 * entry from shmem/tmpfs or a DAX entry. Return it >> 1710 * without attempting to raise page count. >> 1711 */ >> 1712 goto export; 2273 } 1713 } >> 1714 >> 1715 head = compound_head(page); >> 1716 if (!page_cache_get_speculative(head)) >> 1717 goto repeat; >> 1718 >> 1719 /* The page was split under us? */ >> 1720 if (compound_head(page) != head) { >> 1721 put_page(head); >> 1722 goto repeat; >> 1723 } >> 1724 >> 1725 /* Has the page moved? */ >> 1726 if (unlikely(page != *slot)) { >> 1727 put_page(head); >> 1728 goto repeat; >> 1729 } >> 1730 export: >> 1731 indices[ret] = iter.index; >> 1732 entries[ret] = page; >> 1733 if (++ret == nr_entries) >> 1734 break; 2274 } 1735 } 2275 /* << 2276 * We come here when there is no page << 2277 * overflow the index @start as it co << 2278 * breaks the iteration when there is << 2279 * already broke anyway. << 2280 */ << 2281 if (end == (pgoff_t)-1) << 2282 *start = (pgoff_t)-1; << 2283 else << 2284 *start = end + 1; << 2285 out: << 2286 rcu_read_unlock(); 1736 rcu_read_unlock(); 2287 !! 1737 return ret; 2288 return folio_batch_count(fbatch); << 2289 } 1738 } 2290 EXPORT_SYMBOL(filemap_get_folios_tag); !! 1739 EXPORT_SYMBOL(find_get_entries_tag); 2291 1740 2292 /* 1741 /* 2293 * CD/DVDs are error prone. When a medium err 1742 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2294 * a _large_ part of the i/o request. Imagine 1743 * a _large_ part of the i/o request. Imagine the worst scenario: 2295 * 1744 * 2296 * ---R_________________________________ 1745 * ---R__________________________________________B__________ 2297 * ^ reading here 1746 * ^ reading here ^ bad block(assume 4k) 2298 * 1747 * 2299 * read(R) => miss => readahead(R...B) => med 1748 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2300 * => failing the whole request => read(R) => 1749 * => failing the whole request => read(R) => read(R+1) => 2301 * readahead(R+1...B+1) => bang => read(R+2) 1750 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2302 * readahead(R+3...B+2) => bang => read(R+3) 1751 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2303 * readahead(R+4...B+3) => bang => read(R+4) 1752 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2304 * 1753 * 2305 * It is going insane. Fix it by quickly scal 1754 * It is going insane. Fix it by quickly scaling down the readahead size. 2306 */ 1755 */ 2307 static void shrink_readahead_size_eio(struct !! 1756 static void shrink_readahead_size_eio(struct file *filp, >> 1757 struct file_ra_state *ra) 2308 { 1758 { 2309 ra->ra_pages /= 4; 1759 ra->ra_pages /= 4; 2310 } 1760 } 2311 1761 2312 /* !! 1762 /** 2313 * filemap_get_read_batch - Get a batch of fo !! 1763 * do_generic_file_read - generic file read routine >> 1764 * @filp: the file to read >> 1765 * @ppos: current file position >> 1766 * @iter: data destination >> 1767 * @written: already copied 2314 * 1768 * 2315 * Get a batch of folios which represent a co !! 1769 * This is a generic file read routine, and uses the 2316 * the file. No exceptional entries will be !! 1770 * mapping->a_ops->readpage() function for the actual low-level stuff. 2317 * the middle of a folio, the entire folio wi !! 1771 * 2318 * folio in the batch may have the readahead !! 1772 * This is really ugly. But the goto's actually try to clarify some 2319 * clear so that the caller can take the appr !! 1773 * of the logic when it comes to error handling etc. 2320 */ 1774 */ 2321 static void filemap_get_read_batch(struct add !! 1775 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 2322 pgoff_t index, pgoff_t max, s !! 1776 struct iov_iter *iter, ssize_t written) 2323 { 1777 { 2324 XA_STATE(xas, &mapping->i_pages, inde << 2325 struct folio *folio; << 2326 << 2327 rcu_read_lock(); << 2328 for (folio = xas_load(&xas); folio; f << 2329 if (xas_retry(&xas, folio)) << 2330 continue; << 2331 if (xas.xa_index > max || xa_ << 2332 break; << 2333 if (xa_is_sibling(folio)) << 2334 break; << 2335 if (!folio_try_get(folio)) << 2336 goto retry; << 2337 << 2338 if (unlikely(folio != xas_rel << 2339 goto put_folio; << 2340 << 2341 if (!folio_batch_add(fbatch, << 2342 break; << 2343 if (!folio_test_uptodate(foli << 2344 break; << 2345 if (folio_test_readahead(foli << 2346 break; << 2347 xas_advance(&xas, folio_next_ << 2348 continue; << 2349 put_folio: << 2350 folio_put(folio); << 2351 retry: << 2352 xas_reset(&xas); << 2353 } << 2354 rcu_read_unlock(); << 2355 } << 2356 << 2357 static int filemap_read_folio(struct file *fi << 2358 struct folio *folio) << 2359 { << 2360 bool workingset = folio_test_workings << 2361 unsigned long pflags; << 2362 int error; << 2363 << 2364 /* Start the actual read. The read wi << 2365 if (unlikely(workingset)) << 2366 psi_memstall_enter(&pflags); << 2367 error = filler(file, folio); << 2368 if (unlikely(workingset)) << 2369 psi_memstall_leave(&pflags); << 2370 if (error) << 2371 return error; << 2372 << 2373 error = folio_wait_locked_killable(fo << 2374 if (error) << 2375 return error; << 2376 if (folio_test_uptodate(folio)) << 2377 return 0; << 2378 if (file) << 2379 shrink_readahead_size_eio(&fi << 2380 return -EIO; << 2381 } << 2382 << 2383 static bool filemap_range_uptodate(struct add << 2384 loff_t pos, size_t count, str << 2385 bool need_uptodate) << 2386 { << 2387 if (folio_test_uptodate(folio)) << 2388 return true; << 2389 /* pipes can't handle partially uptod << 2390 if (need_uptodate) << 2391 return false; << 2392 if (!mapping->a_ops->is_partially_upt << 2393 return false; << 2394 if (mapping->host->i_blkbits >= folio << 2395 return false; << 2396 << 2397 if (folio_pos(folio) > pos) { << 2398 count -= folio_pos(folio) - p << 2399 pos = 0; << 2400 } else { << 2401 pos -= folio_pos(folio); << 2402 } << 2403 << 2404 return mapping->a_ops->is_partially_u << 2405 } << 2406 << 2407 static int filemap_update_page(struct kiocb * << 2408 struct address_space *mapping << 2409 struct folio *folio, bool nee << 2410 { << 2411 int error; << 2412 << 2413 if (iocb->ki_flags & IOCB_NOWAIT) { << 2414 if (!filemap_invalidate_trylo << 2415 return -EAGAIN; << 2416 } else { << 2417 filemap_invalidate_lock_share << 2418 } << 2419 << 2420 if (!folio_trylock(folio)) { << 2421 error = -EAGAIN; << 2422 if (iocb->ki_flags & (IOCB_NO << 2423 goto unlock_mapping; << 2424 if (!(iocb->ki_flags & IOCB_W << 2425 filemap_invalidate_un << 2426 /* << 2427 * This is where we u << 2428 * previously submitt << 2429 */ << 2430 folio_put_wait_locked << 2431 return AOP_TRUNCATED_ << 2432 } << 2433 error = __folio_lock_async(fo << 2434 if (error) << 2435 goto unlock_mapping; << 2436 } << 2437 << 2438 error = AOP_TRUNCATED_PAGE; << 2439 if (!folio->mapping) << 2440 goto unlock; << 2441 << 2442 error = 0; << 2443 if (filemap_range_uptodate(mapping, i << 2444 need_uptod << 2445 goto unlock; << 2446 << 2447 error = -EAGAIN; << 2448 if (iocb->ki_flags & (IOCB_NOIO | IOC << 2449 goto unlock; << 2450 << 2451 error = filemap_read_folio(iocb->ki_f << 2452 folio); << 2453 goto unlock_mapping; << 2454 unlock: << 2455 folio_unlock(folio); << 2456 unlock_mapping: << 2457 filemap_invalidate_unlock_shared(mapp << 2458 if (error == AOP_TRUNCATED_PAGE) << 2459 folio_put(folio); << 2460 return error; << 2461 } << 2462 << 2463 static int filemap_create_folio(struct file * << 2464 struct address_space *mapping << 2465 struct folio_batch *fbatch) << 2466 { << 2467 struct folio *folio; << 2468 int error; << 2469 unsigned int min_order = mapping_min_ << 2470 pgoff_t index; << 2471 << 2472 folio = filemap_alloc_folio(mapping_g << 2473 if (!folio) << 2474 return -ENOMEM; << 2475 << 2476 /* << 2477 * Protect against truncate / hole pu << 2478 * here assures we cannot instantiate << 2479 * pagecache folios after evicting pa << 2480 * and before actually freeing blocks << 2481 * release invalidate_lock after inse << 2482 * the page cache as the locked folio << 2483 * synchronize with hole punching. Bu << 2484 * such as filemap_update_page() fill << 2485 * pages or ->readahead() that need t << 2486 * while mapping blocks for IO so let << 2487 * well to keep locking rules simple. << 2488 */ << 2489 filemap_invalidate_lock_shared(mappin << 2490 index = (pos >> (PAGE_SHIFT + min_ord << 2491 error = filemap_add_folio(mapping, fo << 2492 mapping_gfp_constrain << 2493 if (error == -EEXIST) << 2494 error = AOP_TRUNCATED_PAGE; << 2495 if (error) << 2496 goto error; << 2497 << 2498 error = filemap_read_folio(file, mapp << 2499 if (error) << 2500 goto error; << 2501 << 2502 filemap_invalidate_unlock_shared(mapp << 2503 folio_batch_add(fbatch, folio); << 2504 return 0; << 2505 error: << 2506 filemap_invalidate_unlock_shared(mapp << 2507 folio_put(folio); << 2508 return error; << 2509 } << 2510 << 2511 static int filemap_readahead(struct kiocb *io << 2512 struct address_space *mapping << 2513 pgoff_t last_index) << 2514 { << 2515 DEFINE_READAHEAD(ractl, file, &file-> << 2516 << 2517 if (iocb->ki_flags & IOCB_NOIO) << 2518 return -EAGAIN; << 2519 page_cache_async_ra(&ractl, folio, la << 2520 return 0; << 2521 } << 2522 << 2523 static int filemap_get_pages(struct kiocb *io << 2524 struct folio_batch *fbatch, b << 2525 { << 2526 struct file *filp = iocb->ki_filp; << 2527 struct address_space *mapping = filp- 1778 struct address_space *mapping = filp->f_mapping; >> 1779 struct inode *inode = mapping->host; 2528 struct file_ra_state *ra = &filp->f_r 1780 struct file_ra_state *ra = &filp->f_ra; 2529 pgoff_t index = iocb->ki_pos >> PAGE_ !! 1781 pgoff_t index; 2530 pgoff_t last_index; 1782 pgoff_t last_index; 2531 struct folio *folio; !! 1783 pgoff_t prev_index; 2532 unsigned int flags; !! 1784 unsigned long offset; /* offset into pagecache page */ 2533 int err = 0; !! 1785 unsigned int prev_offset; 2534 !! 1786 int error = 0; 2535 /* "last_index" is the index of the p << 2536 last_index = DIV_ROUND_UP(iocb->ki_po << 2537 retry: << 2538 if (fatal_signal_pending(current)) << 2539 return -EINTR; << 2540 << 2541 filemap_get_read_batch(mapping, index << 2542 if (!folio_batch_count(fbatch)) { << 2543 if (iocb->ki_flags & IOCB_NOI << 2544 return -EAGAIN; << 2545 if (iocb->ki_flags & IOCB_NOW << 2546 flags = memalloc_noio << 2547 page_cache_sync_readahead(map << 2548 last_index - << 2549 if (iocb->ki_flags & IOCB_NOW << 2550 memalloc_noio_restore << 2551 filemap_get_read_batch(mappin << 2552 } << 2553 if (!folio_batch_count(fbatch)) { << 2554 if (iocb->ki_flags & (IOCB_NO << 2555 return -EAGAIN; << 2556 err = filemap_create_folio(fi << 2557 if (err == AOP_TRUNCATED_PAGE << 2558 goto retry; << 2559 return err; << 2560 } << 2561 << 2562 folio = fbatch->folios[folio_batch_co << 2563 if (folio_test_readahead(folio)) { << 2564 err = filemap_readahead(iocb, << 2565 if (err) << 2566 goto err; << 2567 } << 2568 if (!folio_test_uptodate(folio)) { << 2569 if ((iocb->ki_flags & IOCB_WA << 2570 folio_batch_count(fbatch) << 2571 iocb->ki_flags |= IOC << 2572 err = filemap_update_page(ioc << 2573 nee << 2574 if (err) << 2575 goto err; << 2576 } << 2577 1787 2578 trace_mm_filemap_get_pages(mapping, i !! 1788 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2579 return 0; << 2580 err: << 2581 if (err < 0) << 2582 folio_put(folio); << 2583 if (likely(--fbatch->nr)) << 2584 return 0; 1789 return 0; 2585 if (err == AOP_TRUNCATED_PAGE) !! 1790 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2586 goto retry; << 2587 return err; << 2588 } << 2589 << 2590 static inline bool pos_same_folio(loff_t pos1 << 2591 { << 2592 unsigned int shift = folio_shift(foli << 2593 << 2594 return (pos1 >> shift == pos2 >> shif << 2595 } << 2596 << 2597 /** << 2598 * filemap_read - Read data from the page cac << 2599 * @iocb: The iocb to read. << 2600 * @iter: Destination for the data. << 2601 * @already_read: Number of bytes already rea << 2602 * << 2603 * Copies data from the page cache. If the d << 2604 * uses the readahead and read_folio address_ << 2605 * << 2606 * Return: Total number of bytes copied, incl << 2607 * the caller. If an error happens before an << 2608 * a negative error number. << 2609 */ << 2610 ssize_t filemap_read(struct kiocb *iocb, stru << 2611 ssize_t already_read) << 2612 { << 2613 struct file *filp = iocb->ki_filp; << 2614 struct file_ra_state *ra = &filp->f_r << 2615 struct address_space *mapping = filp- << 2616 struct inode *inode = mapping->host; << 2617 struct folio_batch fbatch; << 2618 int i, error = 0; << 2619 bool writably_mapped; << 2620 loff_t isize, end_offset; << 2621 loff_t last_pos = ra->prev_pos; << 2622 1791 2623 if (unlikely(iocb->ki_pos >= inode->i !! 1792 index = *ppos >> PAGE_SHIFT; 2624 return 0; !! 1793 prev_index = ra->prev_pos >> PAGE_SHIFT; 2625 if (unlikely(!iov_iter_count(iter))) !! 1794 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2626 return 0; !! 1795 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; >> 1796 offset = *ppos & ~PAGE_MASK; 2627 1797 2628 iov_iter_truncate(iter, inode->i_sb-> !! 1798 for (;;) { 2629 folio_batch_init(&fbatch); !! 1799 struct page *page; >> 1800 pgoff_t end_index; >> 1801 loff_t isize; >> 1802 unsigned long nr, ret; 2630 1803 2631 do { << 2632 cond_resched(); 1804 cond_resched(); >> 1805 find_page: >> 1806 if (fatal_signal_pending(current)) { >> 1807 error = -EINTR; >> 1808 goto out; >> 1809 } 2633 1810 >> 1811 page = find_get_page(mapping, index); >> 1812 if (!page) { >> 1813 page_cache_sync_readahead(mapping, >> 1814 ra, filp, >> 1815 index, last_index - index); >> 1816 page = find_get_page(mapping, index); >> 1817 if (unlikely(page == NULL)) >> 1818 goto no_cached_page; >> 1819 } >> 1820 if (PageReadahead(page)) { >> 1821 page_cache_async_readahead(mapping, >> 1822 ra, filp, page, >> 1823 index, last_index - index); >> 1824 } >> 1825 if (!PageUptodate(page)) { >> 1826 /* >> 1827 * See comment in do_read_cache_page on why >> 1828 * wait_on_page_locked is used to avoid unnecessarily >> 1829 * serialisations and why it's safe. >> 1830 */ >> 1831 error = wait_on_page_locked_killable(page); >> 1832 if (unlikely(error)) >> 1833 goto readpage_error; >> 1834 if (PageUptodate(page)) >> 1835 goto page_ok; >> 1836 >> 1837 if (inode->i_blkbits == PAGE_SHIFT || >> 1838 !mapping->a_ops->is_partially_uptodate) >> 1839 goto page_not_up_to_date; >> 1840 /* pipes can't handle partially uptodate pages */ >> 1841 if (unlikely(iter->type & ITER_PIPE)) >> 1842 goto page_not_up_to_date; >> 1843 if (!trylock_page(page)) >> 1844 goto page_not_up_to_date; >> 1845 /* Did it get truncated before we got the lock? */ >> 1846 if (!page->mapping) >> 1847 goto page_not_up_to_date_locked; >> 1848 if (!mapping->a_ops->is_partially_uptodate(page, >> 1849 offset, iter->count)) >> 1850 goto page_not_up_to_date_locked; >> 1851 unlock_page(page); >> 1852 } >> 1853 page_ok: 2634 /* 1854 /* 2635 * If we've already successfu !! 1855 * i_size must be checked after we know the page is Uptodate. 2636 * can no longer safely retur << 2637 * an async read NOWAIT at th << 2638 */ << 2639 if ((iocb->ki_flags & IOCB_WA << 2640 iocb->ki_flags |= IOC << 2641 << 2642 if (unlikely(iocb->ki_pos >= << 2643 break; << 2644 << 2645 error = filemap_get_pages(ioc << 2646 if (error < 0) << 2647 break; << 2648 << 2649 /* << 2650 * i_size must be checked aft << 2651 * 1856 * 2652 * Checking i_size after the 1857 * Checking i_size after the check allows us to calculate 2653 * the correct value for "nr" 1858 * the correct value for "nr", which means the zero-filled 2654 * part of the page is not co 1859 * part of the page is not copied back to userspace (unless 2655 * another truncate extends t 1860 * another truncate extends the file - this is desired though). 2656 */ 1861 */ >> 1862 2657 isize = i_size_read(inode); 1863 isize = i_size_read(inode); 2658 if (unlikely(iocb->ki_pos >= !! 1864 end_index = (isize - 1) >> PAGE_SHIFT; 2659 goto put_folios; !! 1865 if (unlikely(!isize || index > end_index)) { 2660 end_offset = min_t(loff_t, is !! 1866 put_page(page); >> 1867 goto out; >> 1868 } >> 1869 >> 1870 /* nr is the maximum number of bytes to copy from this page */ >> 1871 nr = PAGE_SIZE; >> 1872 if (index == end_index) { >> 1873 nr = ((isize - 1) & ~PAGE_MASK) + 1; >> 1874 if (nr <= offset) { >> 1875 put_page(page); >> 1876 goto out; >> 1877 } >> 1878 } >> 1879 nr = nr - offset; >> 1880 >> 1881 /* If users can be writing to this page using arbitrary >> 1882 * virtual addresses, take care about potential aliasing >> 1883 * before reading the page on the kernel side. >> 1884 */ >> 1885 if (mapping_writably_mapped(mapping)) >> 1886 flush_dcache_page(page); 2661 1887 2662 /* 1888 /* 2663 * Once we start copying data !! 1889 * When a sequential read accesses a page several times, 2664 * cachelines that might be c !! 1890 * only mark it as accessed the first time. 2665 */ 1891 */ 2666 writably_mapped = mapping_wri !! 1892 if (prev_index != index || offset != prev_offset) >> 1893 mark_page_accessed(page); >> 1894 prev_index = index; 2667 1895 2668 /* 1896 /* 2669 * When a read accesses the s !! 1897 * Ok, we have the page, and it's up-to-date, so 2670 * mark it as accessed the fi !! 1898 * now we can copy it to user space... 2671 */ 1899 */ 2672 if (!pos_same_folio(iocb->ki_ << 2673 fbatch.fo << 2674 folio_mark_accessed(f << 2675 << 2676 for (i = 0; i < folio_batch_c << 2677 struct folio *folio = << 2678 size_t fsize = folio_ << 2679 size_t offset = iocb- << 2680 size_t bytes = min_t( << 2681 << 2682 size_t copied; << 2683 1900 2684 if (end_offset < foli !! 1901 ret = copy_page_to_iter(page, offset, nr, iter); 2685 break; !! 1902 offset += ret; 2686 if (i > 0) !! 1903 index += offset >> PAGE_SHIFT; 2687 folio_mark_ac !! 1904 offset &= ~PAGE_MASK; 2688 /* !! 1905 prev_offset = offset; 2689 * If users can be wr << 2690 * virtual addresses, << 2691 * before reading the << 2692 */ << 2693 if (writably_mapped) << 2694 flush_dcache_ << 2695 1906 2696 copied = copy_folio_t !! 1907 put_page(page); >> 1908 written += ret; >> 1909 if (!iov_iter_count(iter)) >> 1910 goto out; >> 1911 if (ret < nr) { >> 1912 error = -EFAULT; >> 1913 goto out; >> 1914 } >> 1915 continue; 2697 1916 2698 already_read += copie !! 1917 page_not_up_to_date: 2699 iocb->ki_pos += copie !! 1918 /* Get exclusive access to the page ... */ 2700 last_pos = iocb->ki_p !! 1919 error = lock_page_killable(page); >> 1920 if (unlikely(error)) >> 1921 goto readpage_error; >> 1922 >> 1923 page_not_up_to_date_locked: >> 1924 /* Did it get truncated before we got the lock? */ >> 1925 if (!page->mapping) { >> 1926 unlock_page(page); >> 1927 put_page(page); >> 1928 continue; >> 1929 } 2701 1930 2702 if (copied < bytes) { !! 1931 /* Did somebody else fill it already? */ 2703 error = -EFAU !! 1932 if (PageUptodate(page)) { 2704 break; !! 1933 unlock_page(page); >> 1934 goto page_ok; >> 1935 } >> 1936 >> 1937 readpage: >> 1938 /* >> 1939 * A previous I/O error may have been due to temporary >> 1940 * failures, eg. multipath errors. >> 1941 * PG_error will be set again if readpage fails. >> 1942 */ >> 1943 ClearPageError(page); >> 1944 /* Start the actual read. The read will unlock the page. */ >> 1945 error = mapping->a_ops->readpage(filp, page); >> 1946 >> 1947 if (unlikely(error)) { >> 1948 if (error == AOP_TRUNCATED_PAGE) { >> 1949 put_page(page); >> 1950 error = 0; >> 1951 goto find_page; 2705 } 1952 } >> 1953 goto readpage_error; 2706 } 1954 } 2707 put_folios: << 2708 for (i = 0; i < folio_batch_c << 2709 folio_put(fbatch.foli << 2710 folio_batch_init(&fbatch); << 2711 } while (iov_iter_count(iter) && iocb << 2712 << 2713 file_accessed(filp); << 2714 ra->prev_pos = last_pos; << 2715 return already_read ? already_read : << 2716 } << 2717 EXPORT_SYMBOL_GPL(filemap_read); << 2718 1955 2719 int kiocb_write_and_wait(struct kiocb *iocb, !! 1956 if (!PageUptodate(page)) { 2720 { !! 1957 error = lock_page_killable(page); 2721 struct address_space *mapping = iocb- !! 1958 if (unlikely(error)) 2722 loff_t pos = iocb->ki_pos; !! 1959 goto readpage_error; 2723 loff_t end = pos + count - 1; !! 1960 if (!PageUptodate(page)) { 2724 !! 1961 if (page->mapping == NULL) { 2725 if (iocb->ki_flags & IOCB_NOWAIT) { !! 1962 /* 2726 if (filemap_range_needs_write !! 1963 * invalidate_mapping_pages got it 2727 return -EAGAIN; !! 1964 */ 2728 return 0; !! 1965 unlock_page(page); 2729 } !! 1966 put_page(page); >> 1967 goto find_page; >> 1968 } >> 1969 unlock_page(page); >> 1970 shrink_readahead_size_eio(filp, ra); >> 1971 error = -EIO; >> 1972 goto readpage_error; >> 1973 } >> 1974 unlock_page(page); >> 1975 } 2730 1976 2731 return filemap_write_and_wait_range(m !! 1977 goto page_ok; 2732 } << 2733 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); << 2734 1978 2735 int filemap_invalidate_pages(struct address_s !! 1979 readpage_error: 2736 loff_t pos, loff !! 1980 /* UHHUH! A synchronous read error occurred. Report it */ 2737 { !! 1981 put_page(page); 2738 int ret; !! 1982 goto out; 2739 1983 2740 if (nowait) { !! 1984 no_cached_page: 2741 /* we could block if there ar !! 1985 /* 2742 if (filemap_range_has_page(ma !! 1986 * Ok, it wasn't cached, so we need to create a new 2743 return -EAGAIN; !! 1987 * page.. 2744 } else { !! 1988 */ 2745 ret = filemap_write_and_wait_ !! 1989 page = page_cache_alloc_cold(mapping); 2746 if (ret) !! 1990 if (!page) { 2747 return ret; !! 1991 error = -ENOMEM; >> 1992 goto out; >> 1993 } >> 1994 error = add_to_page_cache_lru(page, mapping, index, >> 1995 mapping_gfp_constraint(mapping, GFP_KERNEL)); >> 1996 if (error) { >> 1997 put_page(page); >> 1998 if (error == -EEXIST) { >> 1999 error = 0; >> 2000 goto find_page; >> 2001 } >> 2002 goto out; >> 2003 } >> 2004 goto readpage; 2748 } 2005 } 2749 2006 2750 /* !! 2007 out: 2751 * After a write we want buffered rea !! 2008 ra->prev_pos = prev_index; 2752 * the new data. We invalidate clean !! 2009 ra->prev_pos <<= PAGE_SHIFT; 2753 * about to write. We do this *befor !! 2010 ra->prev_pos |= prev_offset; 2754 * without clobbering -EIOCBQUEUED fr << 2755 */ << 2756 return invalidate_inode_pages2_range( << 2757 << 2758 } << 2759 << 2760 int kiocb_invalidate_pages(struct kiocb *iocb << 2761 { << 2762 struct address_space *mapping = iocb- << 2763 2011 2764 return filemap_invalidate_pages(mappi !! 2012 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2765 iocb- !! 2013 file_accessed(filp); 2766 iocb- !! 2014 return written ? written : error; 2767 } 2015 } 2768 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); << 2769 2016 2770 /** 2017 /** 2771 * generic_file_read_iter - generic filesyste 2018 * generic_file_read_iter - generic filesystem read routine 2772 * @iocb: kernel I/O control block 2019 * @iocb: kernel I/O control block 2773 * @iter: destination for the data read 2020 * @iter: destination for the data read 2774 * 2021 * 2775 * This is the "read_iter()" routine for all 2022 * This is the "read_iter()" routine for all filesystems 2776 * that can use the page cache directly. 2023 * that can use the page cache directly. 2777 * << 2778 * The IOCB_NOWAIT flag in iocb->ki_flags ind << 2779 * be returned when no data can be read witho << 2780 * to complete; it doesn't prevent readahead. << 2781 * << 2782 * The IOCB_NOIO flag in iocb->ki_flags indic << 2783 * requests shall be made for the read or for << 2784 * can be read, -EAGAIN shall be returned. W << 2785 * triggered, a partial, possibly empty read << 2786 * << 2787 * Return: << 2788 * * number of bytes copied, even for partial << 2789 * * negative error code (or 0 if IOCB_NOIO) << 2790 */ 2024 */ 2791 ssize_t 2025 ssize_t 2792 generic_file_read_iter(struct kiocb *iocb, st 2026 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2793 { 2027 { 2794 size_t count = iov_iter_count(iter); !! 2028 struct file *file = iocb->ki_filp; 2795 ssize_t retval = 0; 2029 ssize_t retval = 0; >> 2030 size_t count = iov_iter_count(iter); 2796 2031 2797 if (!count) 2032 if (!count) 2798 return 0; /* skip atime */ !! 2033 goto out; /* skip atime */ 2799 2034 2800 if (iocb->ki_flags & IOCB_DIRECT) { 2035 if (iocb->ki_flags & IOCB_DIRECT) { 2801 struct file *file = iocb->ki_ << 2802 struct address_space *mapping 2036 struct address_space *mapping = file->f_mapping; 2803 struct inode *inode = mapping 2037 struct inode *inode = mapping->host; >> 2038 loff_t size; 2804 2039 2805 retval = kiocb_write_and_wait !! 2040 size = i_size_read(inode); >> 2041 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos, >> 2042 iocb->ki_pos + count - 1); 2806 if (retval < 0) 2043 if (retval < 0) 2807 return retval; !! 2044 goto out; >> 2045 2808 file_accessed(file); 2046 file_accessed(file); 2809 2047 2810 retval = mapping->a_ops->dire 2048 retval = mapping->a_ops->direct_IO(iocb, iter); 2811 if (retval >= 0) { 2049 if (retval >= 0) { 2812 iocb->ki_pos += retva 2050 iocb->ki_pos += retval; 2813 count -= retval; 2051 count -= retval; 2814 } 2052 } 2815 if (retval != -EIOCBQUEUED) !! 2053 iov_iter_revert(iter, count - iov_iter_count(iter)); 2816 iov_iter_revert(iter, << 2817 2054 2818 /* 2055 /* 2819 * Btrfs can have a short DIO 2056 * Btrfs can have a short DIO read if we encounter 2820 * compressed extents, so if 2057 * compressed extents, so if there was an error, or if 2821 * we've already read everyth 2058 * we've already read everything we wanted to, or if 2822 * there was a short read bec 2059 * there was a short read because we hit EOF, go ahead 2823 * and return. Otherwise fal 2060 * and return. Otherwise fallthrough to buffered io for 2824 * the rest of the read. Buf 2061 * the rest of the read. Buffered reads will not work for 2825 * DAX files, so don't bother 2062 * DAX files, so don't bother trying. 2826 */ 2063 */ 2827 if (retval < 0 || !count || I !! 2064 if (retval < 0 || !count || iocb->ki_pos >= size || 2828 return retval; !! 2065 IS_DAX(inode)) 2829 if (iocb->ki_pos >= i_size_re !! 2066 goto out; 2830 return retval; << 2831 } 2067 } 2832 2068 2833 return filemap_read(iocb, iter, retva !! 2069 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); >> 2070 out: >> 2071 return retval; 2834 } 2072 } 2835 EXPORT_SYMBOL(generic_file_read_iter); 2073 EXPORT_SYMBOL(generic_file_read_iter); 2836 2074 2837 /* !! 2075 #ifdef CONFIG_MMU 2838 * Splice subpages from a folio into a pipe. !! 2076 /** >> 2077 * page_cache_read - adds requested page to the page cache if not already there >> 2078 * @file: file to read >> 2079 * @offset: page index >> 2080 * @gfp_mask: memory allocation flags >> 2081 * >> 2082 * This adds the requested page to the page cache if it isn't already there, >> 2083 * and schedules an I/O to read in its contents from disk. 2839 */ 2084 */ 2840 size_t splice_folio_into_pipe(struct pipe_ino !! 2085 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2841 struct folio *f << 2842 { 2086 { >> 2087 struct address_space *mapping = file->f_mapping; 2843 struct page *page; 2088 struct page *page; 2844 size_t spliced = 0, offset = offset_i !! 2089 int ret; 2845 << 2846 page = folio_page(folio, offset / PAG << 2847 size = min(size, folio_size(folio) - << 2848 offset %= PAGE_SIZE; << 2849 << 2850 while (spliced < size && << 2851 !pipe_full(pipe->head, pipe->t << 2852 struct pipe_buffer *buf = pip << 2853 size_t part = min_t(size_t, P << 2854 << 2855 *buf = (struct pipe_buffer) { << 2856 .ops = &page_cache << 2857 .page = page, << 2858 .offset = offset, << 2859 .len = part, << 2860 }; << 2861 folio_get(folio); << 2862 pipe->head++; << 2863 page++; << 2864 spliced += part; << 2865 offset = 0; << 2866 } << 2867 << 2868 return spliced; << 2869 } << 2870 << 2871 /** << 2872 * filemap_splice_read - Splice data from a << 2873 * @in: The file to read from << 2874 * @ppos: Pointer to the file position to rea << 2875 * @pipe: The pipe to splice into << 2876 * @len: The amount to splice << 2877 * @flags: The SPLICE_F_* flags << 2878 * << 2879 * This function gets folios from a file's pa << 2880 * pipe. Readahead will be called as necessa << 2881 * be used for blockdevs also. << 2882 * << 2883 * Return: On success, the number of bytes re << 2884 * will be updated if appropriate; 0 will be << 2885 * to be read; -EAGAIN will be returned if th << 2886 * other negative error code will be returned << 2887 * if the pipe has insufficient space, we rea << 2888 * hole. << 2889 */ << 2890 ssize_t filemap_splice_read(struct file *in, << 2891 struct pipe_inode << 2892 size_t len, unsig << 2893 { << 2894 struct folio_batch fbatch; << 2895 struct kiocb iocb; << 2896 size_t total_spliced = 0, used, npage << 2897 loff_t isize, end_offset; << 2898 bool writably_mapped; << 2899 int i, error = 0; << 2900 << 2901 if (unlikely(*ppos >= in->f_mapping-> << 2902 return 0; << 2903 << 2904 init_sync_kiocb(&iocb, in); << 2905 iocb.ki_pos = *ppos; << 2906 << 2907 /* Work out how much data we can actu << 2908 used = pipe_occupancy(pipe->head, pip << 2909 npages = max_t(ssize_t, pipe->max_usa << 2910 len = min_t(size_t, len, npages * PAG << 2911 << 2912 folio_batch_init(&fbatch); << 2913 << 2914 do { << 2915 cond_resched(); << 2916 << 2917 if (*ppos >= i_size_read(in-> << 2918 break; << 2919 << 2920 iocb.ki_pos = *ppos; << 2921 error = filemap_get_pages(&io << 2922 if (error < 0) << 2923 break; << 2924 << 2925 /* << 2926 * i_size must be checked aft << 2927 * << 2928 * Checking i_size after the << 2929 * the correct value for "nr" << 2930 * part of the page is not co << 2931 * another truncate extends t << 2932 */ << 2933 isize = i_size_read(in->f_map << 2934 if (unlikely(*ppos >= isize)) << 2935 break; << 2936 end_offset = min_t(loff_t, is << 2937 << 2938 /* << 2939 * Once we start copying data << 2940 * cachelines that might be c << 2941 */ << 2942 writably_mapped = mapping_wri << 2943 << 2944 for (i = 0; i < folio_batch_c << 2945 struct folio *folio = << 2946 size_t n; << 2947 << 2948 if (folio_pos(folio) << 2949 goto out; << 2950 folio_mark_accessed(f << 2951 << 2952 /* << 2953 * If users can be wr << 2954 * virtual addresses, << 2955 * before reading the << 2956 */ << 2957 if (writably_mapped) << 2958 flush_dcache_ << 2959 << 2960 n = min_t(loff_t, len << 2961 n = splice_folio_into << 2962 if (!n) << 2963 goto out; << 2964 len -= n; << 2965 total_spliced += n; << 2966 *ppos += n; << 2967 in->f_ra.prev_pos = * << 2968 if (pipe_full(pipe->h << 2969 goto out; << 2970 } << 2971 << 2972 folio_batch_release(&fbatch); << 2973 } while (len); << 2974 << 2975 out: << 2976 folio_batch_release(&fbatch); << 2977 file_accessed(in); << 2978 << 2979 return total_spliced ? total_spliced << 2980 } << 2981 EXPORT_SYMBOL(filemap_splice_read); << 2982 << 2983 static inline loff_t folio_seek_hole_data(str << 2984 struct address_space *mapping << 2985 loff_t start, loff_t end, boo << 2986 { << 2987 const struct address_space_operations << 2988 size_t offset, bsz = i_blocksize(mapp << 2989 << 2990 if (xa_is_value(folio) || folio_test_ << 2991 return seek_data ? start : en << 2992 if (!ops->is_partially_uptodate) << 2993 return seek_data ? end : star << 2994 << 2995 xas_pause(xas); << 2996 rcu_read_unlock(); << 2997 folio_lock(folio); << 2998 if (unlikely(folio->mapping != mappin << 2999 goto unlock; << 3000 << 3001 offset = offset_in_folio(folio, start << 3002 2090 3003 do { 2091 do { 3004 if (ops->is_partially_uptodat !! 2092 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 3005 !! 2093 if (!page) 3006 break; !! 2094 return -ENOMEM; 3007 start = (start + bsz) & ~(bsz !! 2095 3008 offset += bsz; !! 2096 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 3009 } while (offset < folio_size(folio)); !! 2097 if (ret == 0) 3010 unlock: !! 2098 ret = mapping->a_ops->readpage(file, page); 3011 folio_unlock(folio); !! 2099 else if (ret == -EEXIST) 3012 rcu_read_lock(); !! 2100 ret = 0; /* losing race to add is OK */ 3013 return start; << 3014 } << 3015 2101 3016 static inline size_t seek_folio_size(struct x !! 2102 put_page(page); 3017 { << 3018 if (xa_is_value(folio)) << 3019 return PAGE_SIZE << xas_get_o << 3020 return folio_size(folio); << 3021 } << 3022 << 3023 /** << 3024 * mapping_seek_hole_data - Seek for SEEK_DAT << 3025 * @mapping: Address space to search. << 3026 * @start: First byte to consider. << 3027 * @end: Limit of search (exclusive). << 3028 * @whence: Either SEEK_HOLE or SEEK_DATA. << 3029 * << 3030 * If the page cache knows which blocks conta << 3031 * contain data, your filesystem can use this << 3032 * SEEK_HOLE and SEEK_DATA. This is useful f << 3033 * entirely memory-based such as tmpfs, and f << 3034 * unwritten extents. << 3035 * << 3036 * Return: The requested offset on success, o << 3037 * SEEK_DATA and there is no data after @star << 3038 * after @end - 1, so SEEK_HOLE returns @end << 3039 * and @end contain data. << 3040 */ << 3041 loff_t mapping_seek_hole_data(struct address_ << 3042 loff_t end, int whence) << 3043 { << 3044 XA_STATE(xas, &mapping->i_pages, star << 3045 pgoff_t max = (end - 1) >> PAGE_SHIFT << 3046 bool seek_data = (whence == SEEK_DATA << 3047 struct folio *folio; << 3048 << 3049 if (end <= start) << 3050 return -ENXIO; << 3051 2103 3052 rcu_read_lock(); !! 2104 } while (ret == AOP_TRUNCATED_PAGE); 3053 while ((folio = find_get_entry(&xas, << 3054 loff_t pos = (u64)xas.xa_inde << 3055 size_t seek_size; << 3056 << 3057 if (start < pos) { << 3058 if (!seek_data) << 3059 goto unlock; << 3060 start = pos; << 3061 } << 3062 2105 3063 seek_size = seek_folio_size(& !! 2106 return ret; 3064 pos = round_up((u64)pos + 1, << 3065 start = folio_seek_hole_data( << 3066 seek_data); << 3067 if (start < pos) << 3068 goto unlock; << 3069 if (start >= end) << 3070 break; << 3071 if (seek_size > PAGE_SIZE) << 3072 xas_set(&xas, pos >> << 3073 if (!xa_is_value(folio)) << 3074 folio_put(folio); << 3075 } << 3076 if (seek_data) << 3077 start = -ENXIO; << 3078 unlock: << 3079 rcu_read_unlock(); << 3080 if (folio && !xa_is_value(folio)) << 3081 folio_put(folio); << 3082 if (start > end) << 3083 return end; << 3084 return start; << 3085 } 2107 } 3086 2108 3087 #ifdef CONFIG_MMU << 3088 #define MMAP_LOTSAMISS (100) 2109 #define MMAP_LOTSAMISS (100) 3089 /* << 3090 * lock_folio_maybe_drop_mmap - lock the page << 3091 * @vmf - the vm_fault for this fault. << 3092 * @folio - the folio to lock. << 3093 * @fpin - the pointer to the file we may pin << 3094 * << 3095 * This works similar to lock_folio_or_retry << 3096 * mmap_lock. It differs in that it actually << 3097 * if it returns 1 and 0 if it couldn't lock << 3098 * to drop the mmap_lock then fpin will point << 3099 * needs to be fput()'ed at a later point. << 3100 */ << 3101 static int lock_folio_maybe_drop_mmap(struct << 3102 struct f << 3103 { << 3104 if (folio_trylock(folio)) << 3105 return 1; << 3106 << 3107 /* << 3108 * NOTE! This will make us return wit << 3109 * the fault lock still held. That's << 3110 * is supposed to work. We have way t << 3111 */ << 3112 if (vmf->flags & FAULT_FLAG_RETRY_NOW << 3113 return 0; << 3114 << 3115 *fpin = maybe_unlock_mmap_for_io(vmf, << 3116 if (vmf->flags & FAULT_FLAG_KILLABLE) << 3117 if (__folio_lock_killable(fol << 3118 /* << 3119 * We didn't have the << 3120 * fault lock, but al << 3121 * for fatal signals << 3122 * so we need to drop << 3123 * return 0 if we don << 3124 */ << 3125 if (*fpin == NULL) << 3126 release_fault << 3127 return 0; << 3128 } << 3129 } else << 3130 __folio_lock(folio); << 3131 << 3132 return 1; << 3133 } << 3134 2110 3135 /* 2111 /* 3136 * Synchronous readahead happens when we don' !! 2112 * Synchronous readahead happens when we don't even find 3137 * cache at all. We don't want to perform IO !! 2113 * a page in the page cache at all. 3138 * to drop the mmap sem we return the file th << 3139 * that. If we didn't pin a file then we ret << 3140 * returned needs to be fput()'ed when we're << 3141 */ 2114 */ 3142 static struct file *do_sync_mmap_readahead(st !! 2115 static void do_sync_mmap_readahead(struct vm_area_struct *vma, >> 2116 struct file_ra_state *ra, >> 2117 struct file *file, >> 2118 pgoff_t offset) 3143 { 2119 { 3144 struct file *file = vmf->vma->vm_file << 3145 struct file_ra_state *ra = &file->f_r << 3146 struct address_space *mapping = file- 2120 struct address_space *mapping = file->f_mapping; 3147 DEFINE_READAHEAD(ractl, file, ra, map << 3148 struct file *fpin = NULL; << 3149 unsigned long vm_flags = vmf->vma->vm << 3150 unsigned int mmap_miss; << 3151 << 3152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 3153 /* Use the readahead code, even if re << 3154 if ((vm_flags & VM_HUGEPAGE) && HPAGE << 3155 fpin = maybe_unlock_mmap_for_ << 3156 ractl._index &= ~((unsigned l << 3157 ra->size = HPAGE_PMD_NR; << 3158 /* << 3159 * Fetch two PMD folios, so w << 3160 * readahead, unless we've be << 3161 */ << 3162 if (!(vm_flags & VM_RAND_READ << 3163 ra->size *= 2; << 3164 ra->async_size = HPAGE_PMD_NR << 3165 page_cache_ra_order(&ractl, r << 3166 return fpin; << 3167 } << 3168 #endif << 3169 2121 3170 /* If we don't want any read-ahead, d 2122 /* If we don't want any read-ahead, don't bother */ 3171 if (vm_flags & VM_RAND_READ) !! 2123 if (vma->vm_flags & VM_RAND_READ) 3172 return fpin; !! 2124 return; 3173 if (!ra->ra_pages) 2125 if (!ra->ra_pages) 3174 return fpin; !! 2126 return; 3175 2127 3176 if (vm_flags & VM_SEQ_READ) { !! 2128 if (vma->vm_flags & VM_SEQ_READ) { 3177 fpin = maybe_unlock_mmap_for_ !! 2129 page_cache_sync_readahead(mapping, ra, file, offset, 3178 page_cache_sync_ra(&ractl, ra !! 2130 ra->ra_pages); 3179 return fpin; !! 2131 return; 3180 } 2132 } 3181 2133 3182 /* Avoid banging the cache line if no 2134 /* Avoid banging the cache line if not needed */ 3183 mmap_miss = READ_ONCE(ra->mmap_miss); !! 2135 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 3184 if (mmap_miss < MMAP_LOTSAMISS * 10) !! 2136 ra->mmap_miss++; 3185 WRITE_ONCE(ra->mmap_miss, ++m << 3186 2137 3187 /* 2138 /* 3188 * Do we miss much more than hit in t 2139 * Do we miss much more than hit in this file? If so, 3189 * stop bothering with read-ahead. It 2140 * stop bothering with read-ahead. It will only hurt. 3190 */ 2141 */ 3191 if (mmap_miss > MMAP_LOTSAMISS) !! 2142 if (ra->mmap_miss > MMAP_LOTSAMISS) 3192 return fpin; !! 2143 return; 3193 2144 3194 /* 2145 /* 3195 * mmap read-around 2146 * mmap read-around 3196 */ 2147 */ 3197 fpin = maybe_unlock_mmap_for_io(vmf, !! 2148 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 3198 ra->start = max_t(long, 0, vmf->pgoff << 3199 ra->size = ra->ra_pages; 2149 ra->size = ra->ra_pages; 3200 ra->async_size = ra->ra_pages / 4; 2150 ra->async_size = ra->ra_pages / 4; 3201 ractl._index = ra->start; !! 2151 ra_submit(ra, mapping, file); 3202 page_cache_ra_order(&ractl, ra, 0); << 3203 return fpin; << 3204 } 2152 } 3205 2153 3206 /* 2154 /* 3207 * Asynchronous readahead happens when we fin 2155 * Asynchronous readahead happens when we find the page and PG_readahead, 3208 * so we want to possibly extend the readahea !! 2156 * so we want to possibly extend the readahead further.. 3209 * was pinned if we have to drop the mmap_loc << 3210 */ 2157 */ 3211 static struct file *do_async_mmap_readahead(s !! 2158 static void do_async_mmap_readahead(struct vm_area_struct *vma, 3212 s !! 2159 struct file_ra_state *ra, >> 2160 struct file *file, >> 2161 struct page *page, >> 2162 pgoff_t offset) 3213 { 2163 { 3214 struct file *file = vmf->vma->vm_file !! 2164 struct address_space *mapping = file->f_mapping; 3215 struct file_ra_state *ra = &file->f_r << 3216 DEFINE_READAHEAD(ractl, file, ra, fil << 3217 struct file *fpin = NULL; << 3218 unsigned int mmap_miss; << 3219 2165 3220 /* If we don't want any read-ahead, d 2166 /* If we don't want any read-ahead, don't bother */ 3221 if (vmf->vma->vm_flags & VM_RAND_READ !! 2167 if (vma->vm_flags & VM_RAND_READ) 3222 return fpin; !! 2168 return; 3223 !! 2169 if (ra->mmap_miss > 0) 3224 mmap_miss = READ_ONCE(ra->mmap_miss); !! 2170 ra->mmap_miss--; 3225 if (mmap_miss) !! 2171 if (PageReadahead(page)) 3226 WRITE_ONCE(ra->mmap_miss, --m !! 2172 page_cache_async_readahead(mapping, ra, file, 3227 !! 2173 page, offset, ra->ra_pages); 3228 if (folio_test_readahead(folio)) { << 3229 fpin = maybe_unlock_mmap_for_ << 3230 page_cache_async_ra(&ractl, f << 3231 } << 3232 return fpin; << 3233 } << 3234 << 3235 static vm_fault_t filemap_fault_recheck_pte_n << 3236 { << 3237 struct vm_area_struct *vma = vmf->vma << 3238 vm_fault_t ret = 0; << 3239 pte_t *ptep; << 3240 << 3241 /* << 3242 * We might have COW'ed a pagecache f << 3243 * anon folio mapped. The original pa << 3244 * might have been evicted. During a << 3245 * the PTE, such as done in do_numa_p << 3246 * temporarily clear the PTE under PT << 3247 * "none" when not holding the PT loc << 3248 * << 3249 * Not rechecking the PTE under PT lo << 3250 * major fault in an mlock'ed region. << 3251 * scenario while holding the PT lock << 3252 * scenarios. Recheck the PTE without << 3253 * the number of times we hold PT loc << 3254 */ << 3255 if (!(vma->vm_flags & VM_LOCKED)) << 3256 return 0; << 3257 << 3258 if (!(vmf->flags & FAULT_FLAG_ORIG_PT << 3259 return 0; << 3260 << 3261 ptep = pte_offset_map_nolock(vma->vm_ << 3262 &vmf->pt << 3263 if (unlikely(!ptep)) << 3264 return VM_FAULT_NOPAGE; << 3265 << 3266 if (unlikely(!pte_none(ptep_get_lockl << 3267 ret = VM_FAULT_NOPAGE; << 3268 } else { << 3269 spin_lock(vmf->ptl); << 3270 if (unlikely(!pte_none(ptep_g << 3271 ret = VM_FAULT_NOPAGE << 3272 spin_unlock(vmf->ptl); << 3273 } << 3274 pte_unmap(ptep); << 3275 return ret; << 3276 } 2174 } 3277 2175 3278 /** 2176 /** 3279 * filemap_fault - read in file data for page 2177 * filemap_fault - read in file data for page fault handling 3280 * @vmf: struct vm_fault containing de 2178 * @vmf: struct vm_fault containing details of the fault 3281 * 2179 * 3282 * filemap_fault() is invoked via the vma ope 2180 * filemap_fault() is invoked via the vma operations vector for a 3283 * mapped memory region to read in file data 2181 * mapped memory region to read in file data during a page fault. 3284 * 2182 * 3285 * The goto's are kind of ugly, but this stre 2183 * The goto's are kind of ugly, but this streamlines the normal case of having 3286 * it in the page cache, and handles the spec 2184 * it in the page cache, and handles the special cases reasonably without 3287 * having a lot of duplicated code. 2185 * having a lot of duplicated code. 3288 * 2186 * 3289 * vma->vm_mm->mmap_lock must be held on entr !! 2187 * vma->vm_mm->mmap_sem must be held on entry. 3290 * 2188 * 3291 * If our return value has VM_FAULT_RETRY set !! 2189 * If our return value has VM_FAULT_RETRY set, it's because 3292 * may be dropped before doing I/O or by lock !! 2190 * lock_page_or_retry() returned 0. >> 2191 * The mmap_sem has usually been released in this case. >> 2192 * See __lock_page_or_retry() for the exception. 3293 * 2193 * 3294 * If our return value does not have VM_FAULT !! 2194 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 3295 * has not been released. 2195 * has not been released. 3296 * 2196 * 3297 * We never return with VM_FAULT_RETRY and a 2197 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3298 * << 3299 * Return: bitwise-OR of %VM_FAULT_ codes. << 3300 */ 2198 */ 3301 vm_fault_t filemap_fault(struct vm_fault *vmf !! 2199 int filemap_fault(struct vm_fault *vmf) 3302 { 2200 { 3303 int error; 2201 int error; 3304 struct file *file = vmf->vma->vm_file 2202 struct file *file = vmf->vma->vm_file; 3305 struct file *fpin = NULL; << 3306 struct address_space *mapping = file- 2203 struct address_space *mapping = file->f_mapping; >> 2204 struct file_ra_state *ra = &file->f_ra; 3307 struct inode *inode = mapping->host; 2205 struct inode *inode = mapping->host; 3308 pgoff_t max_idx, index = vmf->pgoff; !! 2206 pgoff_t offset = vmf->pgoff; 3309 struct folio *folio; !! 2207 pgoff_t max_off; 3310 vm_fault_t ret = 0; !! 2208 struct page *page; 3311 bool mapping_locked = false; !! 2209 int ret = 0; 3312 2210 3313 max_idx = DIV_ROUND_UP(i_size_read(in !! 2211 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3314 if (unlikely(index >= max_idx)) !! 2212 if (unlikely(offset >= max_off)) 3315 return VM_FAULT_SIGBUS; 2213 return VM_FAULT_SIGBUS; 3316 2214 3317 trace_mm_filemap_fault(mapping, index << 3318 << 3319 /* 2215 /* 3320 * Do we have something in the page c 2216 * Do we have something in the page cache already? 3321 */ 2217 */ 3322 folio = filemap_get_folio(mapping, in !! 2218 page = find_get_page(mapping, offset); 3323 if (likely(!IS_ERR(folio))) { !! 2219 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 3324 /* 2220 /* 3325 * We found the page, so try !! 2221 * We found the page, so try async readahead before 3326 * the lock. !! 2222 * waiting for the lock. 3327 */ 2223 */ 3328 if (!(vmf->flags & FAULT_FLAG !! 2224 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 3329 fpin = do_async_mmap_ !! 2225 } else if (!page) { 3330 if (unlikely(!folio_test_upto << 3331 filemap_invalidate_lo << 3332 mapping_locked = true << 3333 } << 3334 } else { << 3335 ret = filemap_fault_recheck_p << 3336 if (unlikely(ret)) << 3337 return ret; << 3338 << 3339 /* No page in the page cache 2226 /* No page in the page cache at all */ >> 2227 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 3340 count_vm_event(PGMAJFAULT); 2228 count_vm_event(PGMAJFAULT); 3341 count_memcg_event_mm(vmf->vma !! 2229 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT); 3342 ret = VM_FAULT_MAJOR; 2230 ret = VM_FAULT_MAJOR; 3343 fpin = do_sync_mmap_readahead << 3344 retry_find: 2231 retry_find: 3345 /* !! 2232 page = find_get_page(mapping, offset); 3346 * See comment in filemap_cre !! 2233 if (!page) 3347 * invalidate_lock !! 2234 goto no_cached_page; 3348 */ << 3349 if (!mapping_locked) { << 3350 filemap_invalidate_lo << 3351 mapping_locked = true << 3352 } << 3353 folio = __filemap_get_folio(m << 3354 FGP << 3355 vmf << 3356 if (IS_ERR(folio)) { << 3357 if (fpin) << 3358 goto out_retr << 3359 filemap_invalidate_un << 3360 return VM_FAULT_OOM; << 3361 } << 3362 } 2235 } 3363 2236 3364 if (!lock_folio_maybe_drop_mmap(vmf, !! 2237 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 3365 goto out_retry; !! 2238 put_page(page); >> 2239 return ret | VM_FAULT_RETRY; >> 2240 } 3366 2241 3367 /* Did it get truncated? */ 2242 /* Did it get truncated? */ 3368 if (unlikely(folio->mapping != mappin !! 2243 if (unlikely(page->mapping != mapping)) { 3369 folio_unlock(folio); !! 2244 unlock_page(page); 3370 folio_put(folio); !! 2245 put_page(page); 3371 goto retry_find; 2246 goto retry_find; 3372 } 2247 } 3373 VM_BUG_ON_FOLIO(!folio_contains(folio !! 2248 VM_BUG_ON_PAGE(page->index != offset, page); 3374 2249 3375 /* 2250 /* 3376 * We have a locked folio in the page !! 2251 * We have a locked page in the page cache, now we need to check 3377 * that it's up-to-date. If not, it i !! 2252 * that it's up-to-date. If not, it is going to be due to an error. 3378 * or because readahead was otherwise << 3379 */ 2253 */ 3380 if (unlikely(!folio_test_uptodate(fol !! 2254 if (unlikely(!PageUptodate(page))) 3381 /* << 3382 * If the invalidate lock is << 3383 * and uptodate and now it is << 3384 * didn't hold the page lock << 3385 * everything, get the invali << 3386 */ << 3387 if (!mapping_locked) { << 3388 folio_unlock(folio); << 3389 folio_put(folio); << 3390 goto retry_find; << 3391 } << 3392 << 3393 /* << 3394 * OK, the folio is really no << 3395 * VMA has the VM_RAND_READ f << 3396 * arose. Let's read it in di << 3397 */ << 3398 goto page_not_uptodate; 2255 goto page_not_uptodate; 3399 } << 3400 << 3401 /* << 3402 * We've made it this far and we had << 3403 * time to return to the upper layer << 3404 * redo the fault. << 3405 */ << 3406 if (fpin) { << 3407 folio_unlock(folio); << 3408 goto out_retry; << 3409 } << 3410 if (mapping_locked) << 3411 filemap_invalidate_unlock_sha << 3412 2256 3413 /* 2257 /* 3414 * Found the page and have a referenc 2258 * Found the page and have a reference on it. 3415 * We must recheck i_size under page 2259 * We must recheck i_size under page lock. 3416 */ 2260 */ 3417 max_idx = DIV_ROUND_UP(i_size_read(in !! 2261 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3418 if (unlikely(index >= max_idx)) { !! 2262 if (unlikely(offset >= max_off)) { 3419 folio_unlock(folio); !! 2263 unlock_page(page); 3420 folio_put(folio); !! 2264 put_page(page); 3421 return VM_FAULT_SIGBUS; 2265 return VM_FAULT_SIGBUS; 3422 } 2266 } 3423 2267 3424 vmf->page = folio_file_page(folio, in !! 2268 vmf->page = page; 3425 return ret | VM_FAULT_LOCKED; 2269 return ret | VM_FAULT_LOCKED; 3426 2270 >> 2271 no_cached_page: >> 2272 /* >> 2273 * We're only likely to ever get here if MADV_RANDOM is in >> 2274 * effect. >> 2275 */ >> 2276 error = page_cache_read(file, offset, vmf->gfp_mask); >> 2277 >> 2278 /* >> 2279 * The page we want has now been added to the page cache. >> 2280 * In the unlikely event that someone removed it in the >> 2281 * meantime, we'll just come back here and read it again. >> 2282 */ >> 2283 if (error >= 0) >> 2284 goto retry_find; >> 2285 >> 2286 /* >> 2287 * An error return from page_cache_read can result if the >> 2288 * system is low on memory, or a problem occurs while trying >> 2289 * to schedule I/O. >> 2290 */ >> 2291 if (error == -ENOMEM) >> 2292 return VM_FAULT_OOM; >> 2293 return VM_FAULT_SIGBUS; >> 2294 3427 page_not_uptodate: 2295 page_not_uptodate: 3428 /* 2296 /* 3429 * Umm, take care of errors if the pa 2297 * Umm, take care of errors if the page isn't up-to-date. 3430 * Try to re-read it _once_. We do th 2298 * Try to re-read it _once_. We do this synchronously, 3431 * because there really aren't any pe 2299 * because there really aren't any performance issues here 3432 * and we need to check for errors. 2300 * and we need to check for errors. 3433 */ 2301 */ 3434 fpin = maybe_unlock_mmap_for_io(vmf, !! 2302 ClearPageError(page); 3435 error = filemap_read_folio(file, mapp !! 2303 error = mapping->a_ops->readpage(file, page); 3436 if (fpin) !! 2304 if (!error) { 3437 goto out_retry; !! 2305 wait_on_page_locked(page); 3438 folio_put(folio); !! 2306 if (!PageUptodate(page)) >> 2307 error = -EIO; >> 2308 } >> 2309 put_page(page); 3439 2310 3440 if (!error || error == AOP_TRUNCATED_ 2311 if (!error || error == AOP_TRUNCATED_PAGE) 3441 goto retry_find; 2312 goto retry_find; 3442 filemap_invalidate_unlock_shared(mapp << 3443 2313 >> 2314 /* Things didn't work out. Return zero to tell the mm layer so. */ >> 2315 shrink_readahead_size_eio(file, ra); 3444 return VM_FAULT_SIGBUS; 2316 return VM_FAULT_SIGBUS; 3445 << 3446 out_retry: << 3447 /* << 3448 * We dropped the mmap_lock, we need << 3449 * re-find the vma and come back and << 3450 * page. << 3451 */ << 3452 if (!IS_ERR(folio)) << 3453 folio_put(folio); << 3454 if (mapping_locked) << 3455 filemap_invalidate_unlock_sha << 3456 if (fpin) << 3457 fput(fpin); << 3458 return ret | VM_FAULT_RETRY; << 3459 } 2317 } 3460 EXPORT_SYMBOL(filemap_fault); 2318 EXPORT_SYMBOL(filemap_fault); 3461 2319 3462 static bool filemap_map_pmd(struct vm_fault * !! 2320 void filemap_map_pages(struct vm_fault *vmf, 3463 pgoff_t start) !! 2321 pgoff_t start_pgoff, pgoff_t end_pgoff) 3464 { 2322 { 3465 struct mm_struct *mm = vmf->vma->vm_m !! 2323 struct radix_tree_iter iter; 3466 !! 2324 void **slot; 3467 /* Huge page is mapped? No need to pr !! 2325 struct file *file = vmf->vma->vm_file; 3468 if (pmd_trans_huge(*vmf->pmd)) { !! 2326 struct address_space *mapping = file->f_mapping; 3469 folio_unlock(folio); !! 2327 pgoff_t last_pgoff = start_pgoff; 3470 folio_put(folio); !! 2328 unsigned long max_idx; 3471 return true; !! 2329 struct page *head, *page; 3472 } << 3473 2330 3474 if (pmd_none(*vmf->pmd) && folio_test !! 2331 rcu_read_lock(); 3475 struct page *page = folio_fil !! 2332 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 3476 vm_fault_t ret = do_set_pmd(v !! 2333 start_pgoff) { 3477 if (!ret) { !! 2334 if (iter.index > end_pgoff) 3478 /* The page is mapped !! 2335 break; 3479 folio_unlock(folio); !! 2336 repeat: 3480 return true; !! 2337 page = radix_tree_deref_slot(slot); >> 2338 if (unlikely(!page)) >> 2339 goto next; >> 2340 if (radix_tree_exception(page)) { >> 2341 if (radix_tree_deref_retry(page)) { >> 2342 slot = radix_tree_iter_retry(&iter); >> 2343 continue; >> 2344 } >> 2345 goto next; 3481 } 2346 } 3482 } << 3483 2347 3484 if (pmd_none(*vmf->pmd) && vmf->preal !! 2348 head = compound_head(page); 3485 pmd_install(mm, vmf->pmd, &vm !! 2349 if (!page_cache_get_speculative(head)) >> 2350 goto repeat; 3486 2351 3487 return false; !! 2352 /* The page was split under us? */ 3488 } !! 2353 if (compound_head(page) != head) { >> 2354 put_page(head); >> 2355 goto repeat; >> 2356 } 3489 2357 3490 static struct folio *next_uptodate_folio(stru !! 2358 /* Has the page moved? */ 3491 struct address_space *mapping !! 2359 if (unlikely(page != *slot)) { 3492 { !! 2360 put_page(head); 3493 struct folio *folio = xas_next_entry( !! 2361 goto repeat; 3494 unsigned long max_idx; !! 2362 } 3495 2363 3496 do { !! 2364 if (!PageUptodate(page) || 3497 if (!folio) !! 2365 PageReadahead(page) || 3498 return NULL; !! 2366 PageHWPoison(page)) 3499 if (xas_retry(xas, folio)) << 3500 continue; << 3501 if (xa_is_value(folio)) << 3502 continue; << 3503 if (folio_test_locked(folio)) << 3504 continue; << 3505 if (!folio_try_get(folio)) << 3506 continue; << 3507 /* Has the page moved or been << 3508 if (unlikely(folio != xas_rel << 3509 goto skip; << 3510 if (!folio_test_uptodate(foli << 3511 goto skip; 2367 goto skip; 3512 if (!folio_trylock(folio)) !! 2368 if (!trylock_page(page)) 3513 goto skip; 2369 goto skip; 3514 if (folio->mapping != mapping !! 2370 3515 goto unlock; !! 2371 if (page->mapping != mapping || !PageUptodate(page)) 3516 if (!folio_test_uptodate(foli << 3517 goto unlock; 2372 goto unlock; >> 2373 3518 max_idx = DIV_ROUND_UP(i_size 2374 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3519 if (xas->xa_index >= max_idx) !! 2375 if (page->index >= max_idx) 3520 goto unlock; 2376 goto unlock; 3521 return folio; << 3522 unlock: << 3523 folio_unlock(folio); << 3524 skip: << 3525 folio_put(folio); << 3526 } while ((folio = xas_next_entry(xas, << 3527 << 3528 return NULL; << 3529 } << 3530 << 3531 /* << 3532 * Map page range [start_page, start_page + n << 3533 * start_page is gotten from start by folio_p << 3534 */ << 3535 static vm_fault_t filemap_map_folio_range(str << 3536 struct folio *folio, << 3537 unsigned long addr, u << 3538 unsigned long *rss, u << 3539 { << 3540 vm_fault_t ret = 0; << 3541 struct page *page = folio_page(folio, << 3542 unsigned int count = 0; << 3543 pte_t *old_ptep = vmf->pte; << 3544 << 3545 do { << 3546 if (PageHWPoison(page + count << 3547 goto skip; << 3548 2377 3549 /* !! 2378 if (file->f_ra.mmap_miss > 0) 3550 * If there are too many foli !! 2379 file->f_ra.mmap_miss--; 3551 * in a file, they will proba << 3552 * In such situation, read-ah << 3553 * Don't decrease mmap_miss i << 3554 * we can stop read-ahead. << 3555 */ << 3556 if (!folio_test_workingset(fo << 3557 (*mmap_miss)++; << 3558 2380 3559 /* !! 2381 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 3560 * NOTE: If there're PTE mark !! 2382 if (vmf->pte) 3561 * handled in the specific fa !! 2383 vmf->pte += iter.index - last_pgoff; 3562 * fault-around logic. !! 2384 last_pgoff = iter.index; 3563 */ !! 2385 if (alloc_set_pte(vmf, NULL, page)) 3564 if (!pte_none(ptep_get(&vmf-> !! 2386 goto unlock; 3565 goto skip; !! 2387 unlock_page(page); 3566 !! 2388 goto next; 3567 count++; !! 2389 unlock: 3568 continue; !! 2390 unlock_page(page); 3569 skip: 2391 skip: 3570 if (count) { !! 2392 put_page(page); 3571 set_pte_range(vmf, fo !! 2393 next: 3572 *rss += count; !! 2394 /* Huge page is mapped? No need to proceed. */ 3573 folio_ref_add(folio, !! 2395 if (pmd_trans_huge(*vmf->pmd)) 3574 if (in_range(vmf->add !! 2396 break; 3575 ret = VM_FAUL !! 2397 if (iter.index == end_pgoff) 3576 } !! 2398 break; 3577 << 3578 count++; << 3579 page += count; << 3580 vmf->pte += count; << 3581 addr += count * PAGE_SIZE; << 3582 count = 0; << 3583 } while (--nr_pages > 0); << 3584 << 3585 if (count) { << 3586 set_pte_range(vmf, folio, pag << 3587 *rss += count; << 3588 folio_ref_add(folio, count); << 3589 if (in_range(vmf->address, ad << 3590 ret = VM_FAULT_NOPAGE << 3591 } << 3592 << 3593 vmf->pte = old_ptep; << 3594 << 3595 return ret; << 3596 } << 3597 << 3598 static vm_fault_t filemap_map_order0_folio(st << 3599 struct folio *folio, unsigned << 3600 unsigned long *rss, unsigned << 3601 { << 3602 vm_fault_t ret = 0; << 3603 struct page *page = &folio->page; << 3604 << 3605 if (PageHWPoison(page)) << 3606 return ret; << 3607 << 3608 /* See comment of filemap_map_folio_r << 3609 if (!folio_test_workingset(folio)) << 3610 (*mmap_miss)++; << 3611 << 3612 /* << 3613 * NOTE: If there're PTE markers, we' << 3614 * handled in the specific fault path << 3615 * the fault-around logic. << 3616 */ << 3617 if (!pte_none(ptep_get(vmf->pte))) << 3618 return ret; << 3619 << 3620 if (vmf->address == addr) << 3621 ret = VM_FAULT_NOPAGE; << 3622 << 3623 set_pte_range(vmf, folio, page, 1, ad << 3624 (*rss)++; << 3625 folio_ref_inc(folio); << 3626 << 3627 return ret; << 3628 } << 3629 << 3630 vm_fault_t filemap_map_pages(struct vm_fault << 3631 pgoff_t start_pg << 3632 { << 3633 struct vm_area_struct *vma = vmf->vma << 3634 struct file *file = vma->vm_file; << 3635 struct address_space *mapping = file- << 3636 pgoff_t file_end, last_pgoff = start_ << 3637 unsigned long addr; << 3638 XA_STATE(xas, &mapping->i_pages, star << 3639 struct folio *folio; << 3640 vm_fault_t ret = 0; << 3641 unsigned long rss = 0; << 3642 unsigned int nr_pages = 0, mmap_miss << 3643 << 3644 rcu_read_lock(); << 3645 folio = next_uptodate_folio(&xas, map << 3646 if (!folio) << 3647 goto out; << 3648 << 3649 if (filemap_map_pmd(vmf, folio, start << 3650 ret = VM_FAULT_NOPAGE; << 3651 goto out; << 3652 } << 3653 << 3654 addr = vma->vm_start + ((start_pgoff << 3655 vmf->pte = pte_offset_map_lock(vma->v << 3656 if (!vmf->pte) { << 3657 folio_unlock(folio); << 3658 folio_put(folio); << 3659 goto out; << 3660 } 2399 } 3661 << 3662 file_end = DIV_ROUND_UP(i_size_read(m << 3663 if (end_pgoff > file_end) << 3664 end_pgoff = file_end; << 3665 << 3666 folio_type = mm_counter_file(folio); << 3667 do { << 3668 unsigned long end; << 3669 << 3670 addr += (xas.xa_index - last_ << 3671 vmf->pte += xas.xa_index - la << 3672 last_pgoff = xas.xa_index; << 3673 end = folio_next_index(folio) << 3674 nr_pages = min(end, end_pgoff << 3675 << 3676 if (!folio_test_large(folio)) << 3677 ret |= filemap_map_or << 3678 folio << 3679 else << 3680 ret |= filemap_map_fo << 3681 xas.x << 3682 nr_pa << 3683 << 3684 folio_unlock(folio); << 3685 folio_put(folio); << 3686 } while ((folio = next_uptodate_folio << 3687 add_mm_counter(vma->vm_mm, folio_type << 3688 pte_unmap_unlock(vmf->pte, vmf->ptl); << 3689 trace_mm_filemap_map_pages(mapping, s << 3690 out: << 3691 rcu_read_unlock(); 2400 rcu_read_unlock(); 3692 << 3693 mmap_miss_saved = READ_ONCE(file->f_r << 3694 if (mmap_miss >= mmap_miss_saved) << 3695 WRITE_ONCE(file->f_ra.mmap_mi << 3696 else << 3697 WRITE_ONCE(file->f_ra.mmap_mi << 3698 << 3699 return ret; << 3700 } 2401 } 3701 EXPORT_SYMBOL(filemap_map_pages); 2402 EXPORT_SYMBOL(filemap_map_pages); 3702 2403 3703 vm_fault_t filemap_page_mkwrite(struct vm_fau !! 2404 int filemap_page_mkwrite(struct vm_fault *vmf) 3704 { 2405 { 3705 struct address_space *mapping = vmf-> !! 2406 struct page *page = vmf->page; 3706 struct folio *folio = page_folio(vmf- !! 2407 struct inode *inode = file_inode(vmf->vma->vm_file); 3707 vm_fault_t ret = VM_FAULT_LOCKED; !! 2408 int ret = VM_FAULT_LOCKED; 3708 2409 3709 sb_start_pagefault(mapping->host->i_s !! 2410 sb_start_pagefault(inode->i_sb); 3710 file_update_time(vmf->vma->vm_file); 2411 file_update_time(vmf->vma->vm_file); 3711 folio_lock(folio); !! 2412 lock_page(page); 3712 if (folio->mapping != mapping) { !! 2413 if (page->mapping != inode->i_mapping) { 3713 folio_unlock(folio); !! 2414 unlock_page(page); 3714 ret = VM_FAULT_NOPAGE; 2415 ret = VM_FAULT_NOPAGE; 3715 goto out; 2416 goto out; 3716 } 2417 } 3717 /* 2418 /* 3718 * We mark the folio dirty already he !! 2419 * We mark the page dirty already here so that when freeze is in 3719 * progress, we are guaranteed that w 2420 * progress, we are guaranteed that writeback during freezing will 3720 * see the dirty folio and writeprote !! 2421 * see the dirty page and writeprotect it again. 3721 */ 2422 */ 3722 folio_mark_dirty(folio); !! 2423 set_page_dirty(page); 3723 folio_wait_stable(folio); !! 2424 wait_for_stable_page(page); 3724 out: 2425 out: 3725 sb_end_pagefault(mapping->host->i_sb) !! 2426 sb_end_pagefault(inode->i_sb); 3726 return ret; 2427 return ret; 3727 } 2428 } >> 2429 EXPORT_SYMBOL(filemap_page_mkwrite); 3728 2430 3729 const struct vm_operations_struct generic_fil 2431 const struct vm_operations_struct generic_file_vm_ops = { 3730 .fault = filemap_fault, 2432 .fault = filemap_fault, 3731 .map_pages = filemap_map_pages, 2433 .map_pages = filemap_map_pages, 3732 .page_mkwrite = filemap_page_mkwrit 2434 .page_mkwrite = filemap_page_mkwrite, 3733 }; 2435 }; 3734 2436 3735 /* This is used for a general mmap of a disk 2437 /* This is used for a general mmap of a disk file */ 3736 2438 3737 int generic_file_mmap(struct file *file, stru !! 2439 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3738 { 2440 { 3739 struct address_space *mapping = file- 2441 struct address_space *mapping = file->f_mapping; 3740 2442 3741 if (!mapping->a_ops->read_folio) !! 2443 if (!mapping->a_ops->readpage) 3742 return -ENOEXEC; 2444 return -ENOEXEC; 3743 file_accessed(file); 2445 file_accessed(file); 3744 vma->vm_ops = &generic_file_vm_ops; 2446 vma->vm_ops = &generic_file_vm_ops; 3745 return 0; 2447 return 0; 3746 } 2448 } 3747 2449 3748 /* 2450 /* 3749 * This is for filesystems which do not imple 2451 * This is for filesystems which do not implement ->writepage. 3750 */ 2452 */ 3751 int generic_file_readonly_mmap(struct file *f 2453 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3752 { 2454 { 3753 if (vma_is_shared_maywrite(vma)) !! 2455 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3754 return -EINVAL; 2456 return -EINVAL; 3755 return generic_file_mmap(file, vma); 2457 return generic_file_mmap(file, vma); 3756 } 2458 } 3757 #else 2459 #else 3758 vm_fault_t filemap_page_mkwrite(struct vm_fau !! 2460 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3759 { << 3760 return VM_FAULT_SIGBUS; << 3761 } << 3762 int generic_file_mmap(struct file *file, stru << 3763 { 2461 { 3764 return -ENOSYS; 2462 return -ENOSYS; 3765 } 2463 } 3766 int generic_file_readonly_mmap(struct file *f !! 2464 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3767 { 2465 { 3768 return -ENOSYS; 2466 return -ENOSYS; 3769 } 2467 } 3770 #endif /* CONFIG_MMU */ 2468 #endif /* CONFIG_MMU */ 3771 2469 3772 EXPORT_SYMBOL(filemap_page_mkwrite); << 3773 EXPORT_SYMBOL(generic_file_mmap); 2470 EXPORT_SYMBOL(generic_file_mmap); 3774 EXPORT_SYMBOL(generic_file_readonly_mmap); 2471 EXPORT_SYMBOL(generic_file_readonly_mmap); 3775 2472 3776 static struct folio *do_read_cache_folio(stru !! 2473 static struct page *wait_on_page_read(struct page *page) 3777 pgoff_t index, filler_t fille << 3778 { 2474 { 3779 struct folio *folio; !! 2475 if (!IS_ERR(page)) { 3780 int err; !! 2476 wait_on_page_locked(page); >> 2477 if (!PageUptodate(page)) { >> 2478 put_page(page); >> 2479 page = ERR_PTR(-EIO); >> 2480 } >> 2481 } >> 2482 return page; >> 2483 } 3781 2484 3782 if (!filler) !! 2485 static struct page *do_read_cache_page(struct address_space *mapping, 3783 filler = mapping->a_ops->read !! 2486 pgoff_t index, >> 2487 int (*filler)(void *, struct page *), >> 2488 void *data, >> 2489 gfp_t gfp) >> 2490 { >> 2491 struct page *page; >> 2492 int err; 3784 repeat: 2493 repeat: 3785 folio = filemap_get_folio(mapping, in !! 2494 page = find_get_page(mapping, index); 3786 if (IS_ERR(folio)) { !! 2495 if (!page) { 3787 folio = filemap_alloc_folio(g !! 2496 page = __page_cache_alloc(gfp | __GFP_COLD); 3788 m !! 2497 if (!page) 3789 if (!folio) << 3790 return ERR_PTR(-ENOME 2498 return ERR_PTR(-ENOMEM); 3791 index = mapping_align_index(m !! 2499 err = add_to_page_cache_lru(page, mapping, index, gfp); 3792 err = filemap_add_folio(mappi << 3793 if (unlikely(err)) { 2500 if (unlikely(err)) { 3794 folio_put(folio); !! 2501 put_page(page); 3795 if (err == -EEXIST) 2502 if (err == -EEXIST) 3796 goto repeat; 2503 goto repeat; 3797 /* Presumably ENOMEM !! 2504 /* Presumably ENOMEM for radix tree node */ 3798 return ERR_PTR(err); 2505 return ERR_PTR(err); 3799 } 2506 } 3800 2507 3801 goto filler; !! 2508 filler: >> 2509 err = filler(data, page); >> 2510 if (err < 0) { >> 2511 put_page(page); >> 2512 return ERR_PTR(err); >> 2513 } >> 2514 >> 2515 page = wait_on_page_read(page); >> 2516 if (IS_ERR(page)) >> 2517 return page; >> 2518 goto out; 3802 } 2519 } 3803 if (folio_test_uptodate(folio)) !! 2520 if (PageUptodate(page)) 3804 goto out; 2521 goto out; 3805 2522 3806 if (!folio_trylock(folio)) { !! 2523 /* 3807 folio_put_wait_locked(folio, !! 2524 * Page is not up to date and may be locked due one of the following 3808 goto repeat; !! 2525 * case a: Page is being filled and the page lock is held 3809 } !! 2526 * case b: Read/write error clearing the page uptodate status >> 2527 * case c: Truncation in progress (page locked) >> 2528 * case d: Reclaim in progress >> 2529 * >> 2530 * Case a, the page will be up to date when the page is unlocked. >> 2531 * There is no need to serialise on the page lock here as the page >> 2532 * is pinned so the lock gives no additional protection. Even if the >> 2533 * the page is truncated, the data is still valid if PageUptodate as >> 2534 * it's a race vs truncate race. >> 2535 * Case b, the page will not be up to date >> 2536 * Case c, the page may be truncated but in itself, the data may still >> 2537 * be valid after IO completes as it's a read vs truncate race. The >> 2538 * operation must restart if the page is not uptodate on unlock but >> 2539 * otherwise serialising on page lock to stabilise the mapping gives >> 2540 * no additional guarantees to the caller as the page lock is >> 2541 * released before return. >> 2542 * Case d, similar to truncation. If reclaim holds the page lock, it >> 2543 * will be a race with remove_mapping that determines if the mapping >> 2544 * is valid on unlock but otherwise the data is valid and there is >> 2545 * no need to serialise with page lock. >> 2546 * >> 2547 * As the page lock gives no additional guarantee, we optimistically >> 2548 * wait on the page to be unlocked and check if it's up to date and >> 2549 * use the page if it is. Otherwise, the page lock is required to >> 2550 * distinguish between the different cases. The motivation is that we >> 2551 * avoid spurious serialisations and wakeups when multiple processes >> 2552 * wait on the same page for IO to complete. >> 2553 */ >> 2554 wait_on_page_locked(page); >> 2555 if (PageUptodate(page)) >> 2556 goto out; >> 2557 >> 2558 /* Distinguish between all the cases under the safety of the lock */ >> 2559 lock_page(page); 3810 2560 3811 /* Folio was truncated from mapping * !! 2561 /* Case c or d, restart the operation */ 3812 if (!folio->mapping) { !! 2562 if (!page->mapping) { 3813 folio_unlock(folio); !! 2563 unlock_page(page); 3814 folio_put(folio); !! 2564 put_page(page); 3815 goto repeat; 2565 goto repeat; 3816 } 2566 } 3817 2567 3818 /* Someone else locked and filled the 2568 /* Someone else locked and filled the page in a very small window */ 3819 if (folio_test_uptodate(folio)) { !! 2569 if (PageUptodate(page)) { 3820 folio_unlock(folio); !! 2570 unlock_page(page); 3821 goto out; 2571 goto out; 3822 } 2572 } 3823 !! 2573 goto filler; 3824 filler: << 3825 err = filemap_read_folio(file, filler << 3826 if (err) { << 3827 folio_put(folio); << 3828 if (err == AOP_TRUNCATED_PAGE << 3829 goto repeat; << 3830 return ERR_PTR(err); << 3831 } << 3832 2574 3833 out: 2575 out: 3834 folio_mark_accessed(folio); !! 2576 mark_page_accessed(page); 3835 return folio; !! 2577 return page; 3836 } << 3837 << 3838 /** << 3839 * read_cache_folio - Read into page cache, f << 3840 * @mapping: The address_space to read from. << 3841 * @index: The index to read. << 3842 * @filler: Function to perform the read, or << 3843 * @file: Passed to filler function, may be N << 3844 * << 3845 * Read one page into the page cache. If it << 3846 * will contain @index, but it may not be the << 3847 * << 3848 * If the filler function returns an error, i << 3849 * caller. << 3850 * << 3851 * Context: May sleep. Expects mapping->inva << 3852 * Return: An uptodate folio on success, ERR_ << 3853 */ << 3854 struct folio *read_cache_folio(struct address << 3855 filler_t filler, struct file << 3856 { << 3857 return do_read_cache_folio(mapping, i << 3858 mapping_gfp_mask(mapp << 3859 } 2578 } 3860 EXPORT_SYMBOL(read_cache_folio); << 3861 2579 3862 /** 2580 /** 3863 * mapping_read_folio_gfp - Read into page ca !! 2581 * read_cache_page - read into page cache, fill it if needed 3864 * @mapping: The address_space for the fol !! 2582 * @mapping: the page's address_space 3865 * @index: The index that the allocated !! 2583 * @index: the page index 3866 * @gfp: The page allocator flags to u !! 2584 * @filler: function to perform the read 3867 * !! 2585 * @data: first arg to filler(data, page) function, often left as NULL 3868 * This is the same as "read_cache_folio(mapp << 3869 * any new memory allocations done using the << 3870 * << 3871 * The most likely error from this function i << 3872 * possible and so is EINTR. If ->read_folio << 3873 * that will be returned to the caller. << 3874 * 2586 * 3875 * The function expects mapping->invalidate_l !! 2587 * Read into the page cache. If a page already exists, and PageUptodate() is >> 2588 * not set, try to fill the page and wait for it to become unlocked. 3876 * 2589 * 3877 * Return: Uptodate folio on success, ERR_PTR !! 2590 * If the page does not get brought uptodate, return -EIO. 3878 */ 2591 */ 3879 struct folio *mapping_read_folio_gfp(struct a << 3880 pgoff_t index, gfp_t gfp) << 3881 { << 3882 return do_read_cache_folio(mapping, i << 3883 } << 3884 EXPORT_SYMBOL(mapping_read_folio_gfp); << 3885 << 3886 static struct page *do_read_cache_page(struct << 3887 pgoff_t index, filler_t *fill << 3888 { << 3889 struct folio *folio; << 3890 << 3891 folio = do_read_cache_folio(mapping, << 3892 if (IS_ERR(folio)) << 3893 return &folio->page; << 3894 return folio_file_page(folio, index); << 3895 } << 3896 << 3897 struct page *read_cache_page(struct address_s 2592 struct page *read_cache_page(struct address_space *mapping, 3898 pgoff_t index, filler !! 2593 pgoff_t index, >> 2594 int (*filler)(void *, struct page *), >> 2595 void *data) 3899 { 2596 { 3900 return do_read_cache_page(mapping, in !! 2597 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 3901 mapping_gfp_mask(mapp << 3902 } 2598 } 3903 EXPORT_SYMBOL(read_cache_page); 2599 EXPORT_SYMBOL(read_cache_page); 3904 2600 3905 /** 2601 /** 3906 * read_cache_page_gfp - read into page cache 2602 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3907 * @mapping: the page's address_space 2603 * @mapping: the page's address_space 3908 * @index: the page index 2604 * @index: the page index 3909 * @gfp: the page allocator flags to u 2605 * @gfp: the page allocator flags to use if allocating 3910 * 2606 * 3911 * This is the same as "read_mapping_page(map 2607 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3912 * any new page allocations done using the sp 2608 * any new page allocations done using the specified allocation flags. 3913 * 2609 * 3914 * If the page does not get brought uptodate, 2610 * If the page does not get brought uptodate, return -EIO. 3915 * << 3916 * The function expects mapping->invalidate_l << 3917 * << 3918 * Return: up to date page on success, ERR_PT << 3919 */ 2611 */ 3920 struct page *read_cache_page_gfp(struct addre 2612 struct page *read_cache_page_gfp(struct address_space *mapping, 3921 pgoff_t index 2613 pgoff_t index, 3922 gfp_t gfp) 2614 gfp_t gfp) 3923 { 2615 { 3924 return do_read_cache_page(mapping, in !! 2616 filler_t *filler = (filler_t *)mapping->a_ops->readpage; >> 2617 >> 2618 return do_read_cache_page(mapping, index, filler, NULL, gfp); 3925 } 2619 } 3926 EXPORT_SYMBOL(read_cache_page_gfp); 2620 EXPORT_SYMBOL(read_cache_page_gfp); 3927 2621 3928 /* 2622 /* 3929 * Warn about a page cache invalidation failu !! 2623 * Performs necessary checks before doing a write >> 2624 * >> 2625 * Can adjust writing position or amount of bytes to write. >> 2626 * Returns appropriate error code that caller should return or >> 2627 * zero in case that write should be allowed. 3930 */ 2628 */ 3931 static void dio_warn_stale_pagecache(struct f !! 2629 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 3932 { 2630 { 3933 static DEFINE_RATELIMIT_STATE(_rs, 86 !! 2631 struct file *file = iocb->ki_filp; 3934 char pathname[128]; !! 2632 struct inode *inode = file->f_mapping->host; 3935 char *path; !! 2633 unsigned long limit = rlimit(RLIMIT_FSIZE); >> 2634 loff_t pos; >> 2635 >> 2636 if (!iov_iter_count(from)) >> 2637 return 0; >> 2638 >> 2639 /* FIXME: this is for backwards compatibility with 2.4 */ >> 2640 if (iocb->ki_flags & IOCB_APPEND) >> 2641 iocb->ki_pos = i_size_read(inode); 3936 2642 3937 errseq_set(&filp->f_mapping->wb_err, !! 2643 pos = iocb->ki_pos; 3938 if (__ratelimit(&_rs)) { !! 2644 3939 path = file_path(filp, pathna !! 2645 if (limit != RLIM_INFINITY) { 3940 if (IS_ERR(path)) !! 2646 if (iocb->ki_pos >= limit) { 3941 path = "(unknown)"; !! 2647 send_sig(SIGXFSZ, current, 0); 3942 pr_crit("Page cache invalidat !! 2648 return -EFBIG; 3943 pr_crit("File: %s PID: %d Com !! 2649 } 3944 current->comm); !! 2650 iov_iter_truncate(from, limit - (unsigned long)pos); 3945 } 2651 } >> 2652 >> 2653 /* >> 2654 * LFS rule >> 2655 */ >> 2656 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && >> 2657 !(file->f_flags & O_LARGEFILE))) { >> 2658 if (pos >= MAX_NON_LFS) >> 2659 return -EFBIG; >> 2660 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); >> 2661 } >> 2662 >> 2663 /* >> 2664 * Are we about to exceed the fs block limit ? >> 2665 * >> 2666 * If we have written data it becomes a short write. If we have >> 2667 * exceeded without writing data we send a signal and return EFBIG. >> 2668 * Linus frestrict idea will clean these up nicely.. >> 2669 */ >> 2670 if (unlikely(pos >= inode->i_sb->s_maxbytes)) >> 2671 return -EFBIG; >> 2672 >> 2673 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); >> 2674 return iov_iter_count(from); >> 2675 } >> 2676 EXPORT_SYMBOL(generic_write_checks); >> 2677 >> 2678 int pagecache_write_begin(struct file *file, struct address_space *mapping, >> 2679 loff_t pos, unsigned len, unsigned flags, >> 2680 struct page **pagep, void **fsdata) >> 2681 { >> 2682 const struct address_space_operations *aops = mapping->a_ops; >> 2683 >> 2684 return aops->write_begin(file, mapping, pos, len, flags, >> 2685 pagep, fsdata); 3946 } 2686 } >> 2687 EXPORT_SYMBOL(pagecache_write_begin); 3947 2688 3948 void kiocb_invalidate_post_direct_write(struc !! 2689 int pagecache_write_end(struct file *file, struct address_space *mapping, >> 2690 loff_t pos, unsigned len, unsigned copied, >> 2691 struct page *page, void *fsdata) 3949 { 2692 { 3950 struct address_space *mapping = iocb- !! 2693 const struct address_space_operations *aops = mapping->a_ops; 3951 2694 3952 if (mapping->nrpages && !! 2695 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3953 invalidate_inode_pages2_range(map << 3954 iocb->ki_pos >> PAGE_ << 3955 (iocb->ki_pos + count << 3956 dio_warn_stale_pagecache(iocb << 3957 } 2696 } >> 2697 EXPORT_SYMBOL(pagecache_write_end); 3958 2698 3959 ssize_t 2699 ssize_t 3960 generic_file_direct_write(struct kiocb *iocb, 2700 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3961 { 2701 { 3962 struct address_space *mapping = iocb- !! 2702 struct file *file = iocb->ki_filp; 3963 size_t write_len = iov_iter_count(fro !! 2703 struct address_space *mapping = file->f_mapping; 3964 ssize_t written; !! 2704 struct inode *inode = mapping->host; >> 2705 loff_t pos = iocb->ki_pos; >> 2706 ssize_t written; >> 2707 size_t write_len; >> 2708 pgoff_t end; >> 2709 >> 2710 write_len = iov_iter_count(from); >> 2711 end = (pos + write_len - 1) >> PAGE_SHIFT; >> 2712 >> 2713 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); >> 2714 if (written) >> 2715 goto out; 3965 2716 3966 /* 2717 /* >> 2718 * After a write we want buffered reads to be sure to go to disk to get >> 2719 * the new data. We invalidate clean cached page from the region we're >> 2720 * about to write. We do this *before* the write so that we can return >> 2721 * without clobbering -EIOCBQUEUED from ->direct_IO(). >> 2722 */ >> 2723 written = invalidate_inode_pages2_range(mapping, >> 2724 pos >> PAGE_SHIFT, end); >> 2725 /* 3967 * If a page can not be invalidated, 2726 * If a page can not be invalidated, return 0 to fall back 3968 * to buffered write. 2727 * to buffered write. 3969 */ 2728 */ 3970 written = kiocb_invalidate_pages(iocb << 3971 if (written) { 2729 if (written) { 3972 if (written == -EBUSY) 2730 if (written == -EBUSY) 3973 return 0; 2731 return 0; 3974 return written; !! 2732 goto out; 3975 } 2733 } 3976 2734 3977 written = mapping->a_ops->direct_IO(i 2735 written = mapping->a_ops->direct_IO(iocb, from); 3978 2736 3979 /* 2737 /* 3980 * Finally, try again to invalidate c 2738 * Finally, try again to invalidate clean pages which might have been 3981 * cached by non-direct readahead, or 2739 * cached by non-direct readahead, or faulted in by get_user_pages() 3982 * if the source of the write was an 2740 * if the source of the write was an mmap'ed region of the file 3983 * we're writing. Either one is a pr 2741 * we're writing. Either one is a pretty crazy thing to do, 3984 * so we don't support it 100%. If t 2742 * so we don't support it 100%. If this invalidation 3985 * fails, tough, the write still work 2743 * fails, tough, the write still worked... 3986 * << 3987 * Most of the time we do not need th << 3988 * the invalidation for us. However t << 3989 * do not end up with dio_complete() << 3990 * them by removing it completely. << 3991 * << 3992 * Noticeable example is a blkdev_dir << 3993 * << 3994 * Skip invalidation for async writes << 3995 */ 2744 */ 3996 if (written > 0) { !! 2745 invalidate_inode_pages2_range(mapping, 3997 struct inode *inode = mapping !! 2746 pos >> PAGE_SHIFT, end); 3998 loff_t pos = iocb->ki_pos; << 3999 2747 4000 kiocb_invalidate_post_direct_ !! 2748 if (written > 0) { 4001 pos += written; 2749 pos += written; 4002 write_len -= written; 2750 write_len -= written; 4003 if (pos > i_size_read(inode) 2751 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4004 i_size_write(inode, p 2752 i_size_write(inode, pos); 4005 mark_inode_dirty(inod 2753 mark_inode_dirty(inode); 4006 } 2754 } 4007 iocb->ki_pos = pos; 2755 iocb->ki_pos = pos; 4008 } 2756 } 4009 if (written != -EIOCBQUEUED) !! 2757 iov_iter_revert(from, write_len - iov_iter_count(from)); 4010 iov_iter_revert(from, write_l !! 2758 out: 4011 return written; 2759 return written; 4012 } 2760 } 4013 EXPORT_SYMBOL(generic_file_direct_write); 2761 EXPORT_SYMBOL(generic_file_direct_write); 4014 2762 4015 ssize_t generic_perform_write(struct kiocb *i !! 2763 /* >> 2764 * Find or create a page at the given pagecache position. Return the locked >> 2765 * page. This function is specifically for buffered writes. >> 2766 */ >> 2767 struct page *grab_cache_page_write_begin(struct address_space *mapping, >> 2768 pgoff_t index, unsigned flags) >> 2769 { >> 2770 struct page *page; >> 2771 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; >> 2772 >> 2773 if (flags & AOP_FLAG_NOFS) >> 2774 fgp_flags |= FGP_NOFS; >> 2775 >> 2776 page = pagecache_get_page(mapping, index, fgp_flags, >> 2777 mapping_gfp_mask(mapping)); >> 2778 if (page) >> 2779 wait_for_stable_page(page); >> 2780 >> 2781 return page; >> 2782 } >> 2783 EXPORT_SYMBOL(grab_cache_page_write_begin); >> 2784 >> 2785 ssize_t generic_perform_write(struct file *file, >> 2786 struct iov_iter *i, loff_t pos) 4016 { 2787 { 4017 struct file *file = iocb->ki_filp; << 4018 loff_t pos = iocb->ki_pos; << 4019 struct address_space *mapping = file- 2788 struct address_space *mapping = file->f_mapping; 4020 const struct address_space_operations 2789 const struct address_space_operations *a_ops = mapping->a_ops; 4021 size_t chunk = mapping_max_folio_size << 4022 long status = 0; 2790 long status = 0; 4023 ssize_t written = 0; 2791 ssize_t written = 0; >> 2792 unsigned int flags = 0; 4024 2793 4025 do { 2794 do { 4026 struct folio *folio; !! 2795 struct page *page; 4027 size_t offset; /* Of !! 2796 unsigned long offset; /* Offset into pagecache page */ 4028 size_t bytes; /* By !! 2797 unsigned long bytes; /* Bytes to write to page */ 4029 size_t copied; /* By 2798 size_t copied; /* Bytes copied from user */ 4030 void *fsdata = NULL; !! 2799 void *fsdata; 4031 2800 4032 bytes = iov_iter_count(i); !! 2801 offset = (pos & (PAGE_SIZE - 1)); 4033 retry: !! 2802 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4034 offset = pos & (chunk - 1); !! 2803 iov_iter_count(i)); 4035 bytes = min(chunk - offset, b << 4036 balance_dirty_pages_ratelimit << 4037 2804 >> 2805 again: 4038 /* 2806 /* 4039 * Bring in the user page tha 2807 * Bring in the user page that we will copy from _first_. 4040 * Otherwise there's a nasty 2808 * Otherwise there's a nasty deadlock on copying from the 4041 * same page as we're writing 2809 * same page as we're writing to, without it being marked 4042 * up-to-date. 2810 * up-to-date. >> 2811 * >> 2812 * Not only is this an optimisation, but it is also required >> 2813 * to check that the address is actually valid, when atomic >> 2814 * usercopies are used, below. 4043 */ 2815 */ 4044 if (unlikely(fault_in_iov_ite !! 2816 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 4045 status = -EFAULT; 2817 status = -EFAULT; 4046 break; 2818 break; 4047 } 2819 } 4048 2820 4049 if (fatal_signal_pending(curr 2821 if (fatal_signal_pending(current)) { 4050 status = -EINTR; 2822 status = -EINTR; 4051 break; 2823 break; 4052 } 2824 } 4053 2825 4054 status = a_ops->write_begin(f !! 2826 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 4055 !! 2827 &page, &fsdata); 4056 if (unlikely(status < 0)) 2828 if (unlikely(status < 0)) 4057 break; 2829 break; 4058 2830 4059 offset = offset_in_folio(foli << 4060 if (bytes > folio_size(folio) << 4061 bytes = folio_size(fo << 4062 << 4063 if (mapping_writably_mapped(m 2831 if (mapping_writably_mapped(mapping)) 4064 flush_dcache_folio(fo !! 2832 flush_dcache_page(page); 4065 2833 4066 copied = copy_folio_from_iter !! 2834 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 4067 flush_dcache_folio(folio); !! 2835 flush_dcache_page(page); 4068 2836 4069 status = a_ops->write_end(fil 2837 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4070 !! 2838 page, fsdata); 4071 if (unlikely(status != copied !! 2839 if (unlikely(status < 0)) 4072 iov_iter_revert(i, co !! 2840 break; 4073 if (unlikely(status < !! 2841 copied = status; 4074 break; !! 2842 4075 } << 4076 cond_resched(); 2843 cond_resched(); 4077 2844 4078 if (unlikely(status == 0)) { !! 2845 iov_iter_advance(i, copied); >> 2846 if (unlikely(copied == 0)) { 4079 /* 2847 /* 4080 * A short copy made !! 2848 * If we were unable to copy any data at all, we must 4081 * thing entirely. M !! 2849 * fall back to a single segment length write. 4082 * halfway through, m !! 2850 * 4083 * might be severe me !! 2851 * If we didn't fallback here, we could livelock >> 2852 * because not all segments in the iov can be copied at >> 2853 * once without a pagefault. 4084 */ 2854 */ 4085 if (chunk > PAGE_SIZE !! 2855 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4086 chunk /= 2; !! 2856 iov_iter_single_seg_count(i)); 4087 if (copied) { !! 2857 goto again; 4088 bytes = copie << 4089 goto retry; << 4090 } << 4091 } else { << 4092 pos += status; << 4093 written += status; << 4094 } 2858 } >> 2859 pos += copied; >> 2860 written += copied; >> 2861 >> 2862 balance_dirty_pages_ratelimited(mapping); 4095 } while (iov_iter_count(i)); 2863 } while (iov_iter_count(i)); 4096 2864 4097 if (!written) !! 2865 return written ? written : status; 4098 return status; << 4099 iocb->ki_pos += written; << 4100 return written; << 4101 } 2866 } 4102 EXPORT_SYMBOL(generic_perform_write); 2867 EXPORT_SYMBOL(generic_perform_write); 4103 2868 4104 /** 2869 /** 4105 * __generic_file_write_iter - write data to 2870 * __generic_file_write_iter - write data to a file 4106 * @iocb: IO state structure (file, off 2871 * @iocb: IO state structure (file, offset, etc.) 4107 * @from: iov_iter with data to write 2872 * @from: iov_iter with data to write 4108 * 2873 * 4109 * This function does all the work needed for 2874 * This function does all the work needed for actually writing data to a 4110 * file. It does all basic checks, removes SU 2875 * file. It does all basic checks, removes SUID from the file, updates 4111 * modification times and calls proper subrou 2876 * modification times and calls proper subroutines depending on whether we 4112 * do direct IO or a standard buffered write. 2877 * do direct IO or a standard buffered write. 4113 * 2878 * 4114 * It expects i_rwsem to be grabbed unless we !! 2879 * It expects i_mutex to be grabbed unless we work on a block device or similar 4115 * object which does not need locking at all. 2880 * object which does not need locking at all. 4116 * 2881 * 4117 * This function does *not* take care of sync 2882 * This function does *not* take care of syncing data in case of O_SYNC write. 4118 * A caller has to handle it. This is mainly 2883 * A caller has to handle it. This is mainly due to the fact that we want to 4119 * avoid syncing under i_rwsem. !! 2884 * avoid syncing under i_mutex. 4120 * << 4121 * Return: << 4122 * * number of bytes written, even for trunca << 4123 * * negative error code if no data has been << 4124 */ 2885 */ 4125 ssize_t __generic_file_write_iter(struct kioc 2886 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4126 { 2887 { 4127 struct file *file = iocb->ki_filp; 2888 struct file *file = iocb->ki_filp; 4128 struct address_space *mapping = file- !! 2889 struct address_space * mapping = file->f_mapping; 4129 struct inode *inode = mapping->host; !! 2890 struct inode *inode = mapping->host; 4130 ssize_t ret; !! 2891 ssize_t written = 0; 4131 !! 2892 ssize_t err; 4132 ret = file_remove_privs(file); !! 2893 ssize_t status; 4133 if (ret) !! 2894 4134 return ret; !! 2895 /* We can write back this queue in page reclaim */ >> 2896 current->backing_dev_info = inode_to_bdi(inode); >> 2897 err = file_remove_privs(file); >> 2898 if (err) >> 2899 goto out; 4135 2900 4136 ret = file_update_time(file); !! 2901 err = file_update_time(file); 4137 if (ret) !! 2902 if (err) 4138 return ret; !! 2903 goto out; 4139 2904 4140 if (iocb->ki_flags & IOCB_DIRECT) { 2905 if (iocb->ki_flags & IOCB_DIRECT) { 4141 ret = generic_file_direct_wri !! 2906 loff_t pos, endbyte; >> 2907 >> 2908 written = generic_file_direct_write(iocb, from); 4142 /* 2909 /* 4143 * If the write stopped short 2910 * If the write stopped short of completing, fall back to 4144 * buffered writes. Some fil 2911 * buffered writes. Some filesystems do this for writes to 4145 * holes, for example. For D 2912 * holes, for example. For DAX files, a buffered write will 4146 * not succeed (even if it di 2913 * not succeed (even if it did, DAX does not handle dirty 4147 * page-cache pages correctly 2914 * page-cache pages correctly). 4148 */ 2915 */ 4149 if (ret < 0 || !iov_iter_coun !! 2916 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4150 return ret; !! 2917 goto out; 4151 return direct_write_fallback( << 4152 generic_perfo << 4153 } << 4154 2918 4155 return generic_perform_write(iocb, fr !! 2919 status = generic_perform_write(file, from, pos = iocb->ki_pos); >> 2920 /* >> 2921 * If generic_perform_write() returned a synchronous error >> 2922 * then we want to return the number of bytes which were >> 2923 * direct-written, or the error code if that was zero. Note >> 2924 * that this differs from normal direct-io semantics, which >> 2925 * will return -EFOO even if some bytes were written. >> 2926 */ >> 2927 if (unlikely(status < 0)) { >> 2928 err = status; >> 2929 goto out; >> 2930 } >> 2931 /* >> 2932 * We need to ensure that the page cache pages are written to >> 2933 * disk and invalidated to preserve the expected O_DIRECT >> 2934 * semantics. >> 2935 */ >> 2936 endbyte = pos + status - 1; >> 2937 err = filemap_write_and_wait_range(mapping, pos, endbyte); >> 2938 if (err == 0) { >> 2939 iocb->ki_pos = endbyte + 1; >> 2940 written += status; >> 2941 invalidate_mapping_pages(mapping, >> 2942 pos >> PAGE_SHIFT, >> 2943 endbyte >> PAGE_SHIFT); >> 2944 } else { >> 2945 /* >> 2946 * We don't know how much we wrote, so just return >> 2947 * the number of bytes which were direct-written >> 2948 */ >> 2949 } >> 2950 } else { >> 2951 written = generic_perform_write(file, from, iocb->ki_pos); >> 2952 if (likely(written > 0)) >> 2953 iocb->ki_pos += written; >> 2954 } >> 2955 out: >> 2956 current->backing_dev_info = NULL; >> 2957 return written ? written : err; 4156 } 2958 } 4157 EXPORT_SYMBOL(__generic_file_write_iter); 2959 EXPORT_SYMBOL(__generic_file_write_iter); 4158 2960 4159 /** 2961 /** 4160 * generic_file_write_iter - write data to a 2962 * generic_file_write_iter - write data to a file 4161 * @iocb: IO state structure 2963 * @iocb: IO state structure 4162 * @from: iov_iter with data to write 2964 * @from: iov_iter with data to write 4163 * 2965 * 4164 * This is a wrapper around __generic_file_wr 2966 * This is a wrapper around __generic_file_write_iter() to be used by most 4165 * filesystems. It takes care of syncing the 2967 * filesystems. It takes care of syncing the file in case of O_SYNC file 4166 * and acquires i_rwsem as needed. !! 2968 * and acquires i_mutex as needed. 4167 * Return: << 4168 * * negative error code if no data has been << 4169 * vfs_fsync_range() failed for a synchrono << 4170 * * number of bytes written, even for trunca << 4171 */ 2969 */ 4172 ssize_t generic_file_write_iter(struct kiocb 2970 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4173 { 2971 { 4174 struct file *file = iocb->ki_filp; 2972 struct file *file = iocb->ki_filp; 4175 struct inode *inode = file->f_mapping 2973 struct inode *inode = file->f_mapping->host; 4176 ssize_t ret; 2974 ssize_t ret; 4177 2975 4178 inode_lock(inode); 2976 inode_lock(inode); 4179 ret = generic_write_checks(iocb, from 2977 ret = generic_write_checks(iocb, from); 4180 if (ret > 0) 2978 if (ret > 0) 4181 ret = __generic_file_write_it 2979 ret = __generic_file_write_iter(iocb, from); 4182 inode_unlock(inode); 2980 inode_unlock(inode); 4183 2981 4184 if (ret > 0) 2982 if (ret > 0) 4185 ret = generic_write_sync(iocb 2983 ret = generic_write_sync(iocb, ret); 4186 return ret; 2984 return ret; 4187 } 2985 } 4188 EXPORT_SYMBOL(generic_file_write_iter); 2986 EXPORT_SYMBOL(generic_file_write_iter); 4189 2987 4190 /** 2988 /** 4191 * filemap_release_folio() - Release fs-speci !! 2989 * try_to_release_page() - release old fs-specific metadata on a page 4192 * @folio: The folio which the kernel is tryi << 4193 * @gfp: Memory allocation flags (and I/O mod << 4194 * 2990 * 4195 * The address_space is trying to release any !! 2991 * @page: the page which the kernel is trying to free 4196 * (presumably at folio->private). !! 2992 * @gfp_mask: memory allocation flags (and I/O mode) 4197 * 2993 * 4198 * This will also be called if the private_2 !! 2994 * The address_space is to try to release any data against the page 4199 * indicating that the folio has other metada !! 2995 * (presumably at page->private). If the release was successful, return '1'. >> 2996 * Otherwise return zero. 4200 * 2997 * 4201 * The @gfp argument specifies whether I/O ma !! 2998 * This may also be called if PG_fscache is set on a page, indicating that the 4202 * this page (__GFP_IO), and whether the call !! 2999 * page is known to the local caching routines. 4203 * (__GFP_RECLAIM & __GFP_FS). !! 3000 * >> 3001 * The @gfp_mask argument specifies whether I/O may be performed to release >> 3002 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 4204 * 3003 * 4205 * Return: %true if the release was successfu << 4206 */ << 4207 bool filemap_release_folio(struct folio *foli << 4208 { << 4209 struct address_space * const mapping << 4210 << 4211 BUG_ON(!folio_test_locked(folio)); << 4212 if (!folio_needs_release(folio)) << 4213 return true; << 4214 if (folio_test_writeback(folio)) << 4215 return false; << 4216 << 4217 if (mapping && mapping->a_ops->releas << 4218 return mapping->a_ops->releas << 4219 return try_to_free_buffers(folio); << 4220 } << 4221 EXPORT_SYMBOL(filemap_release_folio); << 4222 << 4223 /** << 4224 * filemap_invalidate_inode - Invalidate/forc << 4225 * @inode: The inode to flush << 4226 * @flush: Set to write back rather than simp << 4227 * @start: First byte to in range. << 4228 * @end: Last byte in range (inclusive), or L << 4229 * onwards. << 4230 * << 4231 * Invalidate all the folios on an inode that << 4232 * range, possibly writing them back first. << 4233 * undertaken, the invalidate lock is held to << 4234 * installed. << 4235 */ << 4236 int filemap_invalidate_inode(struct inode *in << 4237 loff_t start, lo << 4238 { << 4239 struct address_space *mapping = inode << 4240 pgoff_t first = start >> PAGE_SHIFT; << 4241 pgoff_t last = end >> PAGE_SHIFT; << 4242 pgoff_t nr = end == LLONG_MAX ? ULONG << 4243 << 4244 if (!mapping || !mapping->nrpages || << 4245 goto out; << 4246 << 4247 /* Prevent new folios from being adde << 4248 filemap_invalidate_lock(mapping); << 4249 << 4250 if (!mapping->nrpages) << 4251 goto unlock; << 4252 << 4253 unmap_mapping_pages(mapping, first, n << 4254 << 4255 /* Write back the data if we're asked << 4256 if (flush) { << 4257 struct writeback_control wbc << 4258 .sync_mode = WB_ << 4259 .nr_to_write = LON << 4260 .range_start = sta << 4261 .range_end = end << 4262 }; << 4263 << 4264 filemap_fdatawrite_wbc(mappin << 4265 } << 4266 << 4267 /* Wait for writeback to complete on << 4268 invalidate_inode_pages2_range(mapping << 4269 << 4270 unlock: << 4271 filemap_invalidate_unlock(mapping); << 4272 out: << 4273 return filemap_check_errors(mapping); << 4274 } << 4275 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); << 4276 << 4277 #ifdef CONFIG_CACHESTAT_SYSCALL << 4278 /** << 4279 * filemap_cachestat() - compute the page cac << 4280 * @mapping: The mapping to compute the st << 4281 * @first_index: The starting page cac << 4282 * @last_index: The final page index (inclusi << 4283 * @cs: the cachestat struct to write the res << 4284 * << 4285 * This will query the page cache statistics << 4286 * page range of [first_index, last_index] (i << 4287 * queried include: number of dirty pages, nu << 4288 * writeback, and the number of (recently) ev << 4289 */ 3004 */ 4290 static void filemap_cachestat(struct address_ !! 3005 int try_to_release_page(struct page *page, gfp_t gfp_mask) 4291 pgoff_t first_index, pgoff_t << 4292 { 3006 { 4293 XA_STATE(xas, &mapping->i_pages, firs !! 3007 struct address_space * const mapping = page->mapping; 4294 struct folio *folio; << 4295 3008 4296 /* Flush stats (and potentially sleep !! 3009 BUG_ON(!PageLocked(page)); 4297 mem_cgroup_flush_stats_ratelimited(NU !! 3010 if (PageWriteback(page)) 4298 !! 3011 return 0; 4299 rcu_read_lock(); << 4300 xas_for_each(&xas, folio, last_index) << 4301 int order; << 4302 unsigned long nr_pages; << 4303 pgoff_t folio_first_index, fo << 4304 << 4305 /* << 4306 * Don't deref the folio. It << 4307 * get freed (and reused) und << 4308 * << 4309 * We *could* pin it, but tha << 4310 * what should be a fast and << 4311 * << 4312 * Instead, derive all inform << 4313 * the rcu-protected xarray. << 4314 */ << 4315 << 4316 if (xas_retry(&xas, folio)) << 4317 continue; << 4318 << 4319 order = xas_get_order(&xas); << 4320 nr_pages = 1 << order; << 4321 folio_first_index = round_dow << 4322 folio_last_index = folio_firs << 4323 << 4324 /* Folios might straddle the << 4325 if (folio_first_index < first << 4326 nr_pages -= first_ind << 4327 << 4328 if (folio_last_index > last_i << 4329 nr_pages -= folio_las << 4330 << 4331 if (xa_is_value(folio)) { << 4332 /* page is evicted */ << 4333 void *shadow = (void << 4334 bool workingset; /* n << 4335 << 4336 cs->nr_evicted += nr_ << 4337 << 4338 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ << 4339 if (shmem_mapping(map << 4340 /* shmem file << 4341 swp_entry_t s << 4342 << 4343 /* swapin err << 4344 if (non_swap_ << 4345 goto << 4346 << 4347 /* << 4348 * Getting a << 4349 * inode mean << 4350 * shmem_unus << 4351 * ensures sw << 4352 * freeing th << 4353 * we can rac << 4354 * invalidati << 4355 * a shadow i << 4356 */ << 4357 shadow = get_ << 4358 if (!shadow) << 4359 goto << 4360 } << 4361 #endif << 4362 if (workingset_test_r << 4363 cs->nr_recent << 4364 << 4365 goto resched; << 4366 } << 4367 << 4368 /* page is in cache */ << 4369 cs->nr_cache += nr_pages; << 4370 << 4371 if (xas_get_mark(&xas, PAGECA << 4372 cs->nr_dirty += nr_pa << 4373 << 4374 if (xas_get_mark(&xas, PAGECA << 4375 cs->nr_writeback += n << 4376 3012 4377 resched: !! 3013 if (mapping && mapping->a_ops->releasepage) 4378 if (need_resched()) { !! 3014 return mapping->a_ops->releasepage(page, gfp_mask); 4379 xas_pause(&xas); !! 3015 return try_to_free_buffers(page); 4380 cond_resched_rcu(); << 4381 } << 4382 } << 4383 rcu_read_unlock(); << 4384 } 3016 } 4385 3017 4386 /* !! 3018 EXPORT_SYMBOL(try_to_release_page); 4387 * The cachestat(2) system call. << 4388 * << 4389 * cachestat() returns the page cache statist << 4390 * bytes range specified by `off` and `len`: << 4391 * number of dirty pages, number of pages mar << 4392 * number of evicted pages, and number of rec << 4393 * << 4394 * An evicted page is a page that is previous << 4395 * but has been evicted since. A page is rece << 4396 * eviction was recent enough that its reentr << 4397 * indicate that it is actively being used by << 4398 * there is memory pressure on the system. << 4399 * << 4400 * `off` and `len` must be non-negative integ << 4401 * the queried range is [`off`, `off` + `len` << 4402 * we will query in the range from `off` to t << 4403 * << 4404 * The `flags` argument is unused for now, bu << 4405 * extensibility. User should pass 0 (i.e no << 4406 * << 4407 * Currently, hugetlbfs is not supported. << 4408 * << 4409 * Because the status of a page can change af << 4410 * but before it returns to the application, << 4411 * contain stale information. << 4412 * << 4413 * return values: << 4414 * zero - success << 4415 * -EFAULT - cstat or cstat_range points << 4416 * -EINVAL - invalid flags << 4417 * -EBADF - invalid file descriptor << 4418 * -EOPNOTSUPP - file descriptor is of a hug << 4419 */ << 4420 SYSCALL_DEFINE4(cachestat, unsigned int, fd, << 4421 struct cachestat_range __user << 4422 struct cachestat __user *, cs << 4423 { << 4424 struct fd f = fdget(fd); << 4425 struct address_space *mapping; << 4426 struct cachestat_range csr; << 4427 struct cachestat cs; << 4428 pgoff_t first_index, last_index; << 4429 << 4430 if (!fd_file(f)) << 4431 return -EBADF; << 4432 << 4433 if (copy_from_user(&csr, cstat_range, << 4434 sizeof(struct cachest << 4435 fdput(f); << 4436 return -EFAULT; << 4437 } << 4438 << 4439 /* hugetlbfs is not supported */ << 4440 if (is_file_hugepages(fd_file(f))) { << 4441 fdput(f); << 4442 return -EOPNOTSUPP; << 4443 } << 4444 << 4445 if (flags != 0) { << 4446 fdput(f); << 4447 return -EINVAL; << 4448 } << 4449 << 4450 first_index = csr.off >> PAGE_SHIFT; << 4451 last_index = << 4452 csr.len == 0 ? ULONG_MAX : (c << 4453 memset(&cs, 0, sizeof(struct cachesta << 4454 mapping = fd_file(f)->f_mapping; << 4455 filemap_cachestat(mapping, first_inde << 4456 fdput(f); << 4457 << 4458 if (copy_to_user(cstat, &cs, sizeof(s << 4459 return -EFAULT; << 4460 << 4461 return 0; << 4462 } << 4463 #endif /* CONFIG_CACHESTAT_SYSCALL */ << 4464 3019
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.