1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * linux/mm/filemap.c 2 * linux/mm/filemap.c 4 * 3 * 5 * Copyright (C) 1994-1999 Linus Torvalds 4 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 5 */ 7 6 8 /* 7 /* 9 * This file handles the generic file mmap sem 8 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /h 9 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differen 10 * the NFS filesystem used to do this differently, for example) 12 */ 11 */ 13 #include <linux/export.h> 12 #include <linux/export.h> 14 #include <linux/compiler.h> 13 #include <linux/compiler.h> 15 #include <linux/dax.h> 14 #include <linux/dax.h> 16 #include <linux/fs.h> 15 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 16 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 17 #include <linux/uaccess.h> 19 #include <linux/capability.h> 18 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 19 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 20 #include <linux/gfp.h> 22 #include <linux/mm.h> 21 #include <linux/mm.h> 23 #include <linux/swap.h> 22 #include <linux/swap.h> 24 #include <linux/swapops.h> << 25 #include <linux/syscalls.h> << 26 #include <linux/mman.h> 23 #include <linux/mman.h> 27 #include <linux/pagemap.h> 24 #include <linux/pagemap.h> 28 #include <linux/file.h> 25 #include <linux/file.h> 29 #include <linux/uio.h> 26 #include <linux/uio.h> 30 #include <linux/error-injection.h> << 31 #include <linux/hash.h> 27 #include <linux/hash.h> 32 #include <linux/writeback.h> 28 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 29 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 30 #include <linux/pagevec.h> >> 31 #include <linux/blkdev.h> 35 #include <linux/security.h> 32 #include <linux/security.h> 36 #include <linux/cpuset.h> 33 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 34 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 35 #include <linux/memcontrol.h> >> 36 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 37 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 38 #include <linux/rmap.h> 41 #include <linux/delayacct.h> << 42 #include <linux/psi.h> << 43 #include <linux/ramfs.h> << 44 #include <linux/page_idle.h> << 45 #include <linux/migrate.h> << 46 #include <linux/pipe_fs_i.h> << 47 #include <linux/splice.h> << 48 #include <linux/rcupdate_wait.h> << 49 #include <linux/sched/mm.h> << 50 #include <asm/pgalloc.h> << 51 #include <asm/tlbflush.h> << 52 #include "internal.h" 39 #include "internal.h" 53 40 54 #define CREATE_TRACE_POINTS 41 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 42 #include <trace/events/filemap.h> 56 43 57 /* 44 /* 58 * FIXME: remove all knowledge of the buffer l 45 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 46 */ 60 #include <linux/buffer_head.h> /* for try_to_f 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 48 62 #include <asm/mman.h> 49 #include <asm/mman.h> 63 50 64 #include "swap.h" << 65 << 66 /* 51 /* 67 * Shared mappings implemented 30.11.1994. It' 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 53 * though. 69 * 54 * 70 * Shared mappings now work. 15.8.1995 Bruno. 55 * Shared mappings now work. 15.8.1995 Bruno. 71 * 56 * 72 * finished 'unifying' the page and buffer cac 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@ 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 59 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcan 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 61 */ 77 62 78 /* 63 /* 79 * Lock ordering: 64 * Lock ordering: 80 * 65 * 81 * ->i_mmap_rwsem (truncate_page 66 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->b !! 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 83 * ->swap_lock (exclusive_swa 68 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock 69 * ->i_pages lock 85 * 70 * 86 * ->i_rwsem !! 71 * ->i_mutex 87 * ->invalidate_lock (acquired by f !! 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 88 * ->i_mmap_rwsem (truncate->unm << 89 * 73 * 90 * ->mmap_lock !! 74 * ->mmap_sem 91 * ->i_mmap_rwsem 75 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (vario 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependen 77 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 94 * 78 * 95 * ->mmap_lock !! 79 * ->mmap_sem 96 * ->invalidate_lock (filemap_fault !! 80 * ->lock_page (access_process_vm) 97 * ->lock_page (filemap_fault << 98 * 81 * 99 * ->i_rwsem (generic_perfo !! 82 * ->i_mutex (generic_perform_write) 100 * ->mmap_lock (fault_in_read !! 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 101 * 84 * 102 * bdi->wb.list_lock 85 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeba 86 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single 87 * ->i_pages lock (__sync_single_inode) 105 * 88 * 106 * ->i_mmap_rwsem 89 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) !! 90 * ->anon_vma.lock (vma_adjust) 108 * 91 * 109 * ->anon_vma.lock 92 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_ 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 94 * 112 * ->page_table_lock or pte_lock 95 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_ 96 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_ 97 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_ 98 * ->i_pages lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_m !! 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_ran !! 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 118 * ->private_lock (folio_remove_ !! 101 * ->private_lock (page_remove_rmap->set_page_dirty) 119 * ->i_pages lock (folio_remove_ !! 102 * ->i_pages lock (page_remove_rmap->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_ !! 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 121 * ->inode->i_lock (folio_remove_ !! 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 122 * ->memcg->move_lock (folio_remove_ !! 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 123 * bdi.wb->list_lock (zap_pte_range 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range !! 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) >> 109 * >> 110 * ->i_mmap_rwsem >> 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 126 */ 112 */ 127 113 128 static void mapping_set_update(struct xa_state !! 114 static int page_cache_tree_insert(struct address_space *mapping, 129 struct address_space *mapping) !! 115 struct page *page, void **shadowp) 130 { 116 { 131 if (dax_mapping(mapping) || shmem_mapp !! 117 struct radix_tree_node *node; 132 return; !! 118 void **slot; 133 xas_set_update(xas, workingset_update_ !! 119 int error; 134 xas_set_lru(xas, &shadow_nodes); !! 120 >> 121 error = __radix_tree_create(&mapping->i_pages, page->index, 0, >> 122 &node, &slot); >> 123 if (error) >> 124 return error; >> 125 if (*slot) { >> 126 void *p; >> 127 >> 128 p = radix_tree_deref_slot_protected(slot, >> 129 &mapping->i_pages.xa_lock); >> 130 if (!radix_tree_exceptional_entry(p)) >> 131 return -EEXIST; >> 132 >> 133 mapping->nrexceptional--; >> 134 if (shadowp) >> 135 *shadowp = p; >> 136 } >> 137 __radix_tree_replace(&mapping->i_pages, node, slot, page, >> 138 workingset_lookup_update(mapping)); >> 139 mapping->nrpages++; >> 140 return 0; 135 } 141 } 136 142 137 static void page_cache_delete(struct address_s !! 143 static void page_cache_tree_delete(struct address_space *mapping, 138 struct foli !! 144 struct page *page, void *shadow) 139 { 145 { 140 XA_STATE(xas, &mapping->i_pages, folio !! 146 int i, nr; 141 long nr = 1; << 142 147 143 mapping_set_update(&xas, mapping); !! 148 /* hugetlb pages are represented by one entry in the radix tree */ >> 149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 144 150 145 xas_set_order(&xas, folio->index, foli !! 151 VM_BUG_ON_PAGE(!PageLocked(page), page); 146 nr = folio_nr_pages(folio); !! 152 VM_BUG_ON_PAGE(PageTail(page), page); >> 153 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 147 154 148 VM_BUG_ON_FOLIO(!folio_test_locked(fol !! 155 for (i = 0; i < nr; i++) { >> 156 struct radix_tree_node *node; >> 157 void **slot; 149 158 150 xas_store(&xas, shadow); !! 159 __radix_tree_lookup(&mapping->i_pages, page->index + i, 151 xas_init_marks(&xas); !! 160 &node, &slot); 152 161 153 folio->mapping = NULL; !! 162 VM_BUG_ON_PAGE(!node && nr != 1, page); >> 163 >> 164 radix_tree_clear_tags(&mapping->i_pages, node, slot); >> 165 __radix_tree_replace(&mapping->i_pages, node, slot, shadow, >> 166 workingset_lookup_update(mapping)); >> 167 } >> 168 >> 169 page->mapping = NULL; 154 /* Leave page->index set: truncation l 170 /* Leave page->index set: truncation lookup relies upon it */ >> 171 >> 172 if (shadow) { >> 173 mapping->nrexceptional += nr; >> 174 /* >> 175 * Make sure the nrexceptional update is committed before >> 176 * the nrpages update so that final truncate racing >> 177 * with reclaim does not see both counters 0 at the >> 178 * same time and miss a shadow entry. >> 179 */ >> 180 smp_wmb(); >> 181 } 155 mapping->nrpages -= nr; 182 mapping->nrpages -= nr; 156 } 183 } 157 184 158 static void filemap_unaccount_folio(struct add !! 185 static void unaccount_page_cache_page(struct address_space *mapping, 159 struct folio *folio) !! 186 struct page *page) 160 { 187 { 161 long nr; !! 188 int nr; >> 189 >> 190 /* >> 191 * if we're uptodate, flush out into the cleancache, otherwise >> 192 * invalidate any existing cleancache entries. We can't leave >> 193 * stale data around in the cleancache once our page is gone >> 194 */ >> 195 if (PageUptodate(page) && PageMappedToDisk(page)) >> 196 cleancache_put_page(page); >> 197 else >> 198 cleancache_invalidate_page(mapping, page); >> 199 >> 200 VM_BUG_ON_PAGE(PageTail(page), page); >> 201 VM_BUG_ON_PAGE(page_mapped(page), page); >> 202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { >> 203 int mapcount; 162 204 163 VM_BUG_ON_FOLIO(folio_mapped(folio), f << 164 if (!IS_ENABLED(CONFIG_DEBUG_VM) && un << 165 pr_alert("BUG: Bad page cache 205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 166 current->comm, folio_ !! 206 current->comm, page_to_pfn(page)); 167 dump_page(&folio->page, "still !! 207 dump_page(page, "still mapped when deleted"); 168 dump_stack(); 208 dump_stack(); 169 add_taint(TAINT_BAD_PAGE, LOCK 209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 170 210 171 if (mapping_exiting(mapping) & !! 211 mapcount = page_mapcount(page); 172 int mapcount = folio_m !! 212 if (mapping_exiting(mapping) && 173 !! 213 page_count(page) >= mapcount + 2) { 174 if (folio_ref_count(fo !! 214 /* 175 /* !! 215 * All vmas have already been torn down, so it's 176 * All vmas ha !! 216 * a good bet that actually the page is unmapped, 177 * a good bet !! 217 * and we'd prefer not to leak it: if we're wrong, 178 * and we'd ra !! 218 * some other bad page check should catch it later. 179 * another bad !! 219 */ 180 */ !! 220 page_mapcount_reset(page); 181 atomic_set(&fo !! 221 page_ref_sub(page, mapcount); 182 folio_ref_sub( << 183 } << 184 } 222 } 185 } 223 } 186 224 187 /* hugetlb folios do not participate i !! 225 /* hugetlb pages do not participate in page cache accounting. */ 188 if (folio_test_hugetlb(folio)) !! 226 if (PageHuge(page)) 189 return; 227 return; 190 228 191 nr = folio_nr_pages(folio); !! 229 nr = hpage_nr_pages(page); 192 230 193 __lruvec_stat_mod_folio(folio, NR_FILE !! 231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 194 if (folio_test_swapbacked(folio)) { !! 232 if (PageSwapBacked(page)) { 195 __lruvec_stat_mod_folio(folio, !! 233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 196 if (folio_test_pmd_mappable(fo !! 234 if (PageTransHuge(page)) 197 __lruvec_stat_mod_foli !! 235 __dec_node_page_state(page, NR_SHMEM_THPS); 198 } else if (folio_test_pmd_mappable(fol !! 236 } else { 199 __lruvec_stat_mod_folio(folio, !! 237 VM_BUG_ON_PAGE(PageTransHuge(page), page); 200 filemap_nr_thps_dec(mapping); << 201 } 238 } 202 239 203 /* 240 /* 204 * At this point folio must be either !! 241 * At this point page must be either written or cleaned by 205 * truncate. Dirty folio here signals !! 242 * truncate. Dirty page here signals a bug and loss of 206 * unwritten data - on ordinary filesy !! 243 * unwritten data. 207 * << 208 * But it's harmless on in-memory file << 209 * occur when a driver which did get_u << 210 * before putting it, while the inode << 211 * 244 * 212 * Below fixes dirty accounting after !! 245 * This fixes dirty accounting after removing the page entirely 213 * but leaves the dirty flag set: it h !! 246 * but leaves PageDirty set: it has no effect for truncated 214 * folio and anyway will be cleared be !! 247 * page and anyway will be cleared before returning page into 215 * buddy allocator. 248 * buddy allocator. 216 */ 249 */ 217 if (WARN_ON_ONCE(folio_test_dirty(foli !! 250 if (WARN_ON_ONCE(PageDirty(page))) 218 mapping_can_writeback !! 251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 219 folio_account_cleaned(folio, i << 220 } 252 } 221 253 222 /* 254 /* 223 * Delete a page from the page cache and free 255 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody els 256 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages 257 * is safe. The caller must hold the i_pages lock. 226 */ 258 */ 227 void __filemap_remove_folio(struct folio *foli !! 259 void __delete_from_page_cache(struct page *page, void *shadow) 228 { 260 { 229 struct address_space *mapping = folio- !! 261 struct address_space *mapping = page->mapping; >> 262 >> 263 trace_mm_filemap_delete_from_page_cache(page); 230 264 231 trace_mm_filemap_delete_from_page_cach !! 265 unaccount_page_cache_page(mapping, page); 232 filemap_unaccount_folio(mapping, folio !! 266 page_cache_tree_delete(mapping, page, shadow); 233 page_cache_delete(mapping, folio, shad << 234 } 267 } 235 268 236 void filemap_free_folio(struct address_space * !! 269 static void page_cache_free_page(struct address_space *mapping, >> 270 struct page *page) 237 { 271 { 238 void (*free_folio)(struct folio *); !! 272 void (*freepage)(struct page *); 239 int refs = 1; << 240 273 241 free_folio = mapping->a_ops->free_foli !! 274 freepage = mapping->a_ops->freepage; 242 if (free_folio) !! 275 if (freepage) 243 free_folio(folio); !! 276 freepage(page); 244 277 245 if (folio_test_large(folio)) !! 278 if (PageTransHuge(page) && !PageHuge(page)) { 246 refs = folio_nr_pages(folio); !! 279 page_ref_sub(page, HPAGE_PMD_NR); 247 folio_put_refs(folio, refs); !! 280 VM_BUG_ON_PAGE(page_count(page) <= 0, page); >> 281 } else { >> 282 put_page(page); >> 283 } 248 } 284 } 249 285 250 /** 286 /** 251 * filemap_remove_folio - Remove folio from pa !! 287 * delete_from_page_cache - delete page from page cache 252 * @folio: The folio. !! 288 * @page: the page which the kernel is trying to remove from page cache 253 * 289 * 254 * This must be called only on folios that are !! 290 * This must be called only on pages that have been verified to be in the page 255 * verified to be in the page cache. It will !! 291 * cache and locked. It will never put the page into the free list, the caller 256 * the free list because the caller has a refe !! 292 * has a reference on the page. 257 */ 293 */ 258 void filemap_remove_folio(struct folio *folio) !! 294 void delete_from_page_cache(struct page *page) 259 { 295 { 260 struct address_space *mapping = folio- !! 296 struct address_space *mapping = page_mapping(page); 261 !! 297 unsigned long flags; 262 BUG_ON(!folio_test_locked(folio)); << 263 spin_lock(&mapping->host->i_lock); << 264 xa_lock_irq(&mapping->i_pages); << 265 __filemap_remove_folio(folio, NULL); << 266 xa_unlock_irq(&mapping->i_pages); << 267 if (mapping_shrinkable(mapping)) << 268 inode_add_lru(mapping->host); << 269 spin_unlock(&mapping->host->i_lock); << 270 << 271 filemap_free_folio(mapping, folio); << 272 } << 273 298 274 /* !! 299 BUG_ON(!PageLocked(page)); 275 * page_cache_delete_batch - delete several fo !! 300 xa_lock_irqsave(&mapping->i_pages, flags); 276 * @mapping: the mapping to which folios belon !! 301 __delete_from_page_cache(page, NULL); 277 * @fbatch: batch of folios to delete !! 302 xa_unlock_irqrestore(&mapping->i_pages, flags); 278 * !! 303 279 * The function walks over mapping->i_pages an !! 304 page_cache_free_page(mapping, page); 280 * @fbatch from the mapping. The function expe !! 305 } 281 * by page index and is optimised for it to be !! 306 EXPORT_SYMBOL(delete_from_page_cache); 282 * It tolerates holes in @fbatch (mapping entr !! 307 283 * modified). !! 308 /* >> 309 * page_cache_tree_delete_batch - delete several pages from page cache >> 310 * @mapping: the mapping to which pages belong >> 311 * @pvec: pagevec with pages to delete >> 312 * >> 313 * The function walks over mapping->i_pages and removes pages passed in @pvec >> 314 * from the mapping. The function expects @pvec to be sorted by page index. >> 315 * It tolerates holes in @pvec (mapping entries at those indices are not >> 316 * modified). The function expects only THP head pages to be present in the >> 317 * @pvec and takes care to delete all corresponding tail pages from the >> 318 * mapping as well. 284 * 319 * 285 * The function expects the i_pages lock to be 320 * The function expects the i_pages lock to be held. 286 */ 321 */ 287 static void page_cache_delete_batch(struct add !! 322 static void 288 struct folio_batc !! 323 page_cache_tree_delete_batch(struct address_space *mapping, 289 { !! 324 struct pagevec *pvec) 290 XA_STATE(xas, &mapping->i_pages, fbatc !! 325 { 291 long total_pages = 0; !! 326 struct radix_tree_iter iter; 292 int i = 0; !! 327 void **slot; 293 struct folio *folio; !! 328 int total_pages = 0; 294 !! 329 int i = 0, tail_pages = 0; 295 mapping_set_update(&xas, mapping); !! 330 struct page *page; 296 xas_for_each(&xas, folio, ULONG_MAX) { !! 331 pgoff_t start; 297 if (i >= folio_batch_count(fba << 298 break; << 299 332 300 /* A swap/dax/shadow entry got !! 333 start = pvec->pages[0]->index; 301 if (xa_is_value(folio)) !! 334 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 302 continue; !! 335 if (i >= pagevec_count(pvec) && !tail_pages) 303 /* !! 336 break; 304 * A page got inserted in our !! 337 page = radix_tree_deref_slot_protected(slot, 305 * pages locked so they are pr !! 338 &mapping->i_pages.xa_lock); 306 * If we see a page whose inde !! 339 if (radix_tree_exceptional_entry(page)) 307 * means our page has been rem << 308 * possible because we're hold << 309 */ << 310 if (folio != fbatch->folios[i] << 311 VM_BUG_ON_FOLIO(folio- << 312 fbatch << 313 continue; 340 continue; >> 341 if (!tail_pages) { >> 342 /* >> 343 * Some page got inserted in our range? Skip it. We >> 344 * have our pages locked so they are protected from >> 345 * being removed. >> 346 */ >> 347 if (page != pvec->pages[i]) >> 348 continue; >> 349 WARN_ON_ONCE(!PageLocked(page)); >> 350 if (PageTransHuge(page) && !PageHuge(page)) >> 351 tail_pages = HPAGE_PMD_NR - 1; >> 352 page->mapping = NULL; >> 353 /* >> 354 * Leave page->index set: truncation lookup relies >> 355 * upon it >> 356 */ >> 357 i++; >> 358 } else { >> 359 tail_pages--; 314 } 360 } 315 !! 361 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot); 316 WARN_ON_ONCE(!folio_test_locke !! 362 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL, 317 !! 363 workingset_lookup_update(mapping)); 318 folio->mapping = NULL; !! 364 total_pages++; 319 /* Leave folio->index set: tru << 320 << 321 i++; << 322 xas_store(&xas, NULL); << 323 total_pages += folio_nr_pages( << 324 } 365 } 325 mapping->nrpages -= total_pages; 366 mapping->nrpages -= total_pages; 326 } 367 } 327 368 328 void delete_from_page_cache_batch(struct addre 369 void delete_from_page_cache_batch(struct address_space *mapping, 329 struct folio !! 370 struct pagevec *pvec) 330 { 371 { 331 int i; 372 int i; >> 373 unsigned long flags; 332 374 333 if (!folio_batch_count(fbatch)) !! 375 if (!pagevec_count(pvec)) 334 return; 376 return; 335 377 336 spin_lock(&mapping->host->i_lock); !! 378 xa_lock_irqsave(&mapping->i_pages, flags); 337 xa_lock_irq(&mapping->i_pages); !! 379 for (i = 0; i < pagevec_count(pvec); i++) { 338 for (i = 0; i < folio_batch_count(fbat !! 380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 339 struct folio *folio = fbatch-> << 340 381 341 trace_mm_filemap_delete_from_p !! 382 unaccount_page_cache_page(mapping, pvec->pages[i]); 342 filemap_unaccount_folio(mappin << 343 } 383 } 344 page_cache_delete_batch(mapping, fbatc !! 384 page_cache_tree_delete_batch(mapping, pvec); 345 xa_unlock_irq(&mapping->i_pages); !! 385 xa_unlock_irqrestore(&mapping->i_pages, flags); 346 if (mapping_shrinkable(mapping)) << 347 inode_add_lru(mapping->host); << 348 spin_unlock(&mapping->host->i_lock); << 349 386 350 for (i = 0; i < folio_batch_count(fbat !! 387 for (i = 0; i < pagevec_count(pvec); i++) 351 filemap_free_folio(mapping, fb !! 388 page_cache_free_page(mapping, pvec->pages[i]); 352 } 389 } 353 390 354 int filemap_check_errors(struct address_space 391 int filemap_check_errors(struct address_space *mapping) 355 { 392 { 356 int ret = 0; 393 int ret = 0; 357 /* Check for outstanding write errors 394 /* Check for outstanding write errors */ 358 if (test_bit(AS_ENOSPC, &mapping->flag 395 if (test_bit(AS_ENOSPC, &mapping->flags) && 359 test_and_clear_bit(AS_ENOSPC, &map 396 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 360 ret = -ENOSPC; 397 ret = -ENOSPC; 361 if (test_bit(AS_EIO, &mapping->flags) 398 if (test_bit(AS_EIO, &mapping->flags) && 362 test_and_clear_bit(AS_EIO, &mappin 399 test_and_clear_bit(AS_EIO, &mapping->flags)) 363 ret = -EIO; 400 ret = -EIO; 364 return ret; 401 return ret; 365 } 402 } 366 EXPORT_SYMBOL(filemap_check_errors); 403 EXPORT_SYMBOL(filemap_check_errors); 367 404 368 static int filemap_check_and_keep_errors(struc 405 static int filemap_check_and_keep_errors(struct address_space *mapping) 369 { 406 { 370 /* Check for outstanding write errors 407 /* Check for outstanding write errors */ 371 if (test_bit(AS_EIO, &mapping->flags)) 408 if (test_bit(AS_EIO, &mapping->flags)) 372 return -EIO; 409 return -EIO; 373 if (test_bit(AS_ENOSPC, &mapping->flag 410 if (test_bit(AS_ENOSPC, &mapping->flags)) 374 return -ENOSPC; 411 return -ENOSPC; 375 return 0; 412 return 0; 376 } 413 } 377 414 378 /** 415 /** 379 * filemap_fdatawrite_wbc - start writeback on << 380 * @mapping: address space structure to wri << 381 * @wbc: the writeback_control controll << 382 * << 383 * Call writepages on the mapping using the pr << 384 * writeout. << 385 * << 386 * Return: %0 on success, negative error code << 387 */ << 388 int filemap_fdatawrite_wbc(struct address_spac << 389 struct writeback_co << 390 { << 391 int ret; << 392 << 393 if (!mapping_can_writeback(mapping) || << 394 !mapping_tagged(mapping, PAGECACHE << 395 return 0; << 396 << 397 wbc_attach_fdatawrite_inode(wbc, mappi << 398 ret = do_writepages(mapping, wbc); << 399 wbc_detach_inode(wbc); << 400 return ret; << 401 } << 402 EXPORT_SYMBOL(filemap_fdatawrite_wbc); << 403 << 404 /** << 405 * __filemap_fdatawrite_range - start writebac 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 406 * @mapping: address space structure to wri 417 * @mapping: address space structure to write 407 * @start: offset in bytes where the rang 418 * @start: offset in bytes where the range starts 408 * @end: offset in bytes where the rang 419 * @end: offset in bytes where the range ends (inclusive) 409 * @sync_mode: enable synchronous operation 420 * @sync_mode: enable synchronous operation 410 * 421 * 411 * Start writeback against all of a mapping's 422 * Start writeback against all of a mapping's dirty pages that lie 412 * within the byte offsets <start, end> inclus 423 * within the byte offsets <start, end> inclusive. 413 * 424 * 414 * If sync_mode is WB_SYNC_ALL then this is a 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 415 * opposed to a regular memory cleansing write 426 * opposed to a regular memory cleansing writeback. The difference between 416 * these two operations is that if a dirty pag 427 * these two operations is that if a dirty page/buffer is encountered, it must 417 * be waited upon, and not just skipped over. 428 * be waited upon, and not just skipped over. 418 * << 419 * Return: %0 on success, negative error code << 420 */ 429 */ 421 int __filemap_fdatawrite_range(struct address_ 430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 422 loff_t end, in 431 loff_t end, int sync_mode) 423 { 432 { >> 433 int ret; 424 struct writeback_control wbc = { 434 struct writeback_control wbc = { 425 .sync_mode = sync_mode, 435 .sync_mode = sync_mode, 426 .nr_to_write = LONG_MAX, 436 .nr_to_write = LONG_MAX, 427 .range_start = start, 437 .range_start = start, 428 .range_end = end, 438 .range_end = end, 429 }; 439 }; 430 440 431 return filemap_fdatawrite_wbc(mapping, !! 441 if (!mapping_cap_writeback_dirty(mapping)) >> 442 return 0; >> 443 >> 444 wbc_attach_fdatawrite_inode(&wbc, mapping->host); >> 445 ret = do_writepages(mapping, &wbc); >> 446 wbc_detach_inode(&wbc); >> 447 return ret; 432 } 448 } 433 449 434 static inline int __filemap_fdatawrite(struct 450 static inline int __filemap_fdatawrite(struct address_space *mapping, 435 int sync_mode) 451 int sync_mode) 436 { 452 { 437 return __filemap_fdatawrite_range(mapp 453 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 438 } 454 } 439 455 440 int filemap_fdatawrite(struct address_space *m 456 int filemap_fdatawrite(struct address_space *mapping) 441 { 457 { 442 return __filemap_fdatawrite(mapping, W 458 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 443 } 459 } 444 EXPORT_SYMBOL(filemap_fdatawrite); 460 EXPORT_SYMBOL(filemap_fdatawrite); 445 461 446 int filemap_fdatawrite_range(struct address_sp 462 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 447 loff_t end) 463 loff_t end) 448 { 464 { 449 return __filemap_fdatawrite_range(mapp 465 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 450 } 466 } 451 EXPORT_SYMBOL(filemap_fdatawrite_range); 467 EXPORT_SYMBOL(filemap_fdatawrite_range); 452 468 453 /** 469 /** 454 * filemap_flush - mostly a non-blocking flush 470 * filemap_flush - mostly a non-blocking flush 455 * @mapping: target address_space 471 * @mapping: target address_space 456 * 472 * 457 * This is a mostly non-blocking flush. Not s 473 * This is a mostly non-blocking flush. Not suitable for data-integrity 458 * purposes - I/O may not be started against a 474 * purposes - I/O may not be started against all dirty pages. 459 * << 460 * Return: %0 on success, negative error code << 461 */ 475 */ 462 int filemap_flush(struct address_space *mappin 476 int filemap_flush(struct address_space *mapping) 463 { 477 { 464 return __filemap_fdatawrite(mapping, W 478 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 465 } 479 } 466 EXPORT_SYMBOL(filemap_flush); 480 EXPORT_SYMBOL(filemap_flush); 467 481 468 /** 482 /** 469 * filemap_range_has_page - check if a page ex 483 * filemap_range_has_page - check if a page exists in range. 470 * @mapping: address space within wh 484 * @mapping: address space within which to check 471 * @start_byte: offset in bytes where t 485 * @start_byte: offset in bytes where the range starts 472 * @end_byte: offset in bytes where t 486 * @end_byte: offset in bytes where the range ends (inclusive) 473 * 487 * 474 * Find at least one page in the range supplie 488 * Find at least one page in the range supplied, usually used to check if 475 * direct writing in this range will trigger a 489 * direct writing in this range will trigger a writeback. 476 * << 477 * Return: %true if at least one page exists i << 478 * %false otherwise. << 479 */ 490 */ 480 bool filemap_range_has_page(struct address_spa 491 bool filemap_range_has_page(struct address_space *mapping, 481 loff_t start_byte, 492 loff_t start_byte, loff_t end_byte) 482 { 493 { 483 struct folio *folio; !! 494 pgoff_t index = start_byte >> PAGE_SHIFT; 484 XA_STATE(xas, &mapping->i_pages, start !! 495 pgoff_t end = end_byte >> PAGE_SHIFT; 485 pgoff_t max = end_byte >> PAGE_SHIFT; !! 496 struct page *page; 486 497 487 if (end_byte < start_byte) 498 if (end_byte < start_byte) 488 return false; 499 return false; 489 500 490 rcu_read_lock(); !! 501 if (mapping->nrpages == 0) 491 for (;;) { !! 502 return false; 492 folio = xas_find(&xas, max); << 493 if (xas_retry(&xas, folio)) << 494 continue; << 495 /* Shadow entries don't count << 496 if (xa_is_value(folio)) << 497 continue; << 498 /* << 499 * We don't need to try to pin << 500 * release the RCU lock anyway << 501 * there was a page here recen << 502 */ << 503 break; << 504 } << 505 rcu_read_unlock(); << 506 503 507 return folio != NULL; !! 504 if (!find_get_pages_range(mapping, &index, end, 1, &page)) >> 505 return false; >> 506 put_page(page); >> 507 return true; 508 } 508 } 509 EXPORT_SYMBOL(filemap_range_has_page); 509 EXPORT_SYMBOL(filemap_range_has_page); 510 510 511 static void __filemap_fdatawait_range(struct a 511 static void __filemap_fdatawait_range(struct address_space *mapping, 512 loff_t st 512 loff_t start_byte, loff_t end_byte) 513 { 513 { 514 pgoff_t index = start_byte >> PAGE_SHI 514 pgoff_t index = start_byte >> PAGE_SHIFT; 515 pgoff_t end = end_byte >> PAGE_SHIFT; 515 pgoff_t end = end_byte >> PAGE_SHIFT; 516 struct folio_batch fbatch; !! 516 struct pagevec pvec; 517 unsigned nr_folios; !! 517 int nr_pages; 518 518 519 folio_batch_init(&fbatch); !! 519 if (end_byte < start_byte) >> 520 return; 520 521 >> 522 pagevec_init(&pvec); 521 while (index <= end) { 523 while (index <= end) { 522 unsigned i; 524 unsigned i; 523 525 524 nr_folios = filemap_get_folios !! 526 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 525 PAGECACHE_TAG_ !! 527 end, PAGECACHE_TAG_WRITEBACK); 526 !! 528 if (!nr_pages) 527 if (!nr_folios) << 528 break; 529 break; 529 530 530 for (i = 0; i < nr_folios; i++ !! 531 for (i = 0; i < nr_pages; i++) { 531 struct folio *folio = !! 532 struct page *page = pvec.pages[i]; 532 533 533 folio_wait_writeback(f !! 534 wait_on_page_writeback(page); >> 535 ClearPageError(page); 534 } 536 } 535 folio_batch_release(&fbatch); !! 537 pagevec_release(&pvec); 536 cond_resched(); 538 cond_resched(); 537 } 539 } 538 } 540 } 539 541 540 /** 542 /** 541 * filemap_fdatawait_range - wait for writebac 543 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structur 544 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where 545 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where 546 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 547 * 546 * Walk the list of under-writeback pages of t 548 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them 549 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 550 * the address space and return it. 549 * 551 * 550 * Since the error status of the address space 552 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the re 553 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 554 * reporting the error. 553 * << 554 * Return: error status of the address space. << 555 */ 555 */ 556 int filemap_fdatawait_range(struct address_spa 556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 557 loff_t end_byte) 558 { 558 { 559 __filemap_fdatawait_range(mapping, sta 559 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 560 return filemap_check_errors(mapping); 561 } 561 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 562 EXPORT_SYMBOL(filemap_fdatawait_range); 563 563 564 /** 564 /** 565 * filemap_fdatawait_range_keep_errors - wait << 566 * @mapping: address space structur << 567 * @start_byte: offset in bytes where << 568 * @end_byte: offset in bytes where << 569 * << 570 * Walk the list of under-writeback pages of t << 571 * given range and wait for all of them. Unli << 572 * this function does not clear error status o << 573 * << 574 * Use this function if callers don't handle e << 575 * call sites are system-wide / filesystem-wid << 576 * fsfreeze(8) << 577 */ << 578 int filemap_fdatawait_range_keep_errors(struct << 579 loff_t start_byte, loff_t end_ << 580 { << 581 __filemap_fdatawait_range(mapping, sta << 582 return filemap_check_and_keep_errors(m << 583 } << 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_err << 585 << 586 /** << 587 * file_fdatawait_range - wait for writeback t 565 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to addre 566 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where 567 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where 568 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 569 * 592 * Walk the list of under-writeback pages of t 570 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for 571 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f 572 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 573 * 596 * Since the error status of the file is advan 574 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the re 575 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 576 * reporting the error. 599 * << 600 * Return: error status of the address space v << 601 */ 577 */ 602 int file_fdatawait_range(struct file *file, lo 578 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 579 { 604 struct address_space *mapping = file-> 580 struct address_space *mapping = file->f_mapping; 605 581 606 __filemap_fdatawait_range(mapping, sta 582 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(f 583 return file_check_and_advance_wb_err(file); 608 } 584 } 609 EXPORT_SYMBOL(file_fdatawait_range); 585 EXPORT_SYMBOL(file_fdatawait_range); 610 586 611 /** 587 /** 612 * filemap_fdatawait_keep_errors - wait for wr 588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait f 589 * @mapping: address space structure to wait for 614 * 590 * 615 * Walk the list of under-writeback pages of t 591 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_f 592 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address 593 * does not clear error status of the address space. 618 * 594 * 619 * Use this function if callers don't handle e 595 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wid 596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 597 * fsfreeze(8) 622 * << 623 * Return: error status of the address space. << 624 */ 598 */ 625 int filemap_fdatawait_keep_errors(struct addre 599 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 600 { 627 __filemap_fdatawait_range(mapping, 0, 601 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(m 602 return filemap_check_and_keep_errors(mapping); 629 } 603 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 604 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 605 632 /* Returns true if writeback might be needed o << 633 static bool mapping_needs_writeback(struct add 606 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 607 { 635 return mapping->nrpages; !! 608 return (!dax_mapping(mapping) && mapping->nrpages) || >> 609 (dax_mapping(mapping) && mapping->nrexceptional); 636 } 610 } 637 611 638 bool filemap_range_has_writeback(struct addres !! 612 int filemap_write_and_wait(struct address_space *mapping) 639 loff_t start_ << 640 { 613 { 641 XA_STATE(xas, &mapping->i_pages, start !! 614 int err = 0; 642 pgoff_t max = end_byte >> PAGE_SHIFT; << 643 struct folio *folio; << 644 << 645 if (end_byte < start_byte) << 646 return false; << 647 615 648 rcu_read_lock(); !! 616 if (mapping_needs_writeback(mapping)) { 649 xas_for_each(&xas, folio, max) { !! 617 err = filemap_fdatawrite(mapping); 650 if (xas_retry(&xas, folio)) !! 618 /* 651 continue; !! 619 * Even if the above returned error, the pages may be 652 if (xa_is_value(folio)) !! 620 * written partially (e.g. -ENOSPC), so we wait for it. 653 continue; !! 621 * But the -EIO is special case, it may indicate the worst 654 if (folio_test_dirty(folio) || !! 622 * thing (e.g. bug) happened, so we avoid waiting for it. 655 folio_test_wri !! 623 */ 656 break; !! 624 if (err != -EIO) { >> 625 int err2 = filemap_fdatawait(mapping); >> 626 if (!err) >> 627 err = err2; >> 628 } else { >> 629 /* Clear any previously stored errors */ >> 630 filemap_check_errors(mapping); >> 631 } >> 632 } else { >> 633 err = filemap_check_errors(mapping); 657 } 634 } 658 rcu_read_unlock(); !! 635 return err; 659 return folio != NULL; << 660 } 636 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback) !! 637 EXPORT_SYMBOL(filemap_write_and_wait); 662 638 663 /** 639 /** 664 * filemap_write_and_wait_range - write out & 640 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the page 641 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the rang 642 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the rang 643 * @lend: offset in bytes where the range ends (inclusive) 668 * 644 * 669 * Write out and wait upon file offsets lstart 645 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 646 * 671 * Note that @lend is inclusive (describes the 647 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to 648 * that this function can be used to write to the very end-of-file (end = -1). 673 * << 674 * Return: error status of the address space. << 675 */ 649 */ 676 int filemap_write_and_wait_range(struct addres 650 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart 651 loff_t lstart, loff_t lend) 678 { 652 { 679 int err = 0, err2; !! 653 int err = 0; 680 << 681 if (lend < lstart) << 682 return 0; << 683 654 684 if (mapping_needs_writeback(mapping)) 655 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_ran 656 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 657 WB_SYNC_ALL); 687 /* !! 658 /* See comment of filemap_write_and_wait() */ 688 * Even if the above returned !! 659 if (err != -EIO) { 689 * written partially (e.g. -EN !! 660 int err2 = filemap_fdatawait_range(mapping, 690 * But the -EIO is special cas !! 661 lstart, lend); 691 * thing (e.g. bug) happened, !! 662 if (!err) 692 */ !! 663 err = err2; 693 if (err != -EIO) !! 664 } else { 694 __filemap_fdatawait_ra !! 665 /* Clear any previously stored errors */ >> 666 filemap_check_errors(mapping); >> 667 } >> 668 } else { >> 669 err = filemap_check_errors(mapping); 695 } 670 } 696 err2 = filemap_check_errors(mapping); << 697 if (!err) << 698 err = err2; << 699 return err; 671 return err; 700 } 672 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 673 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 674 703 void __filemap_set_wb_err(struct address_space 675 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 676 { 705 errseq_t eseq = errseq_set(&mapping->w 677 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 678 707 trace_filemap_set_wb_err(mapping, eseq 679 trace_filemap_set_wb_err(mapping, eseq); 708 } 680 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 681 EXPORT_SYMBOL(__filemap_set_wb_err); 710 682 711 /** 683 /** 712 * file_check_and_advance_wb_err - report wb e 684 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance 685 * and advance wb_err to current one 714 * @file: struct file on which the error is be 686 * @file: struct file on which the error is being reported 715 * 687 * 716 * When userland calls fsync (or something lik 688 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that oc 689 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't 690 * since the file was opened if there haven't been any). 719 * 691 * 720 * Grab the wb_err from the mapping. If it mat 692 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all 693 * then just quickly return 0. The file is all caught up. 722 * 694 * 723 * If it doesn't match, then take the mapping 695 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it wor 696 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f 697 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be re 698 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.) 699 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 700 * 729 * While we handle mapping->wb_err with atomic 701 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we m 702 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file d 703 * the latest value swapped in for this file descriptor. 732 * << 733 * Return: %0 on success, negative error code << 734 */ 704 */ 735 int file_check_and_advance_wb_err(struct file 705 int file_check_and_advance_wb_err(struct file *file) 736 { 706 { 737 int err = 0; 707 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_er 708 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file-> 709 struct address_space *mapping = file->f_mapping; 740 710 741 /* Locklessly handle the common case w 711 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old 712 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use 713 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 714 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 715 old = file->f_wb_err; 746 err = errseq_check_and_advance 716 err = errseq_check_and_advance(&mapping->wb_err, 747 717 &file->f_wb_err); 748 trace_file_check_and_advance_w 718 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 719 spin_unlock(&file->f_lock); 750 } 720 } 751 721 752 /* 722 /* 753 * We're mostly using this function as 723 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/ 724 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had 725 * that the legacy code would have had on these flags. 756 */ 726 */ 757 clear_bit(AS_EIO, &mapping->flags); 727 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 728 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 729 return err; 760 } 730 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 731 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 732 763 /** 733 /** 764 * file_write_and_wait_range - write out & wai 734 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space 735 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the rang 736 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the rang 737 * @lend: offset in bytes where the range ends (inclusive) 768 * 738 * 769 * Write out and wait upon file offsets lstart 739 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 740 * 771 * Note that @lend is inclusive (describes the 741 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to 742 * that this function can be used to write to the very end-of-file (end = -1). 773 * 743 * 774 * After writing out and waiting on the data, 744 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and re 745 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * << 777 * Return: %0 on success, negative error code << 778 */ 746 */ 779 int file_write_and_wait_range(struct file *fil 747 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 748 { 781 int err = 0, err2; 749 int err = 0, err2; 782 struct address_space *mapping = file-> 750 struct address_space *mapping = file->f_mapping; 783 751 784 if (lend < lstart) << 785 return 0; << 786 << 787 if (mapping_needs_writeback(mapping)) 752 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_ran 753 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 754 WB_SYNC_ALL); 790 /* See comment of filemap_writ 755 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 756 if (err != -EIO) 792 __filemap_fdatawait_ra 757 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 758 } 794 err2 = file_check_and_advance_wb_err(f 759 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 760 if (!err) 796 err = err2; 761 err = err2; 797 return err; 762 return err; 798 } 763 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 764 EXPORT_SYMBOL(file_write_and_wait_range); 800 765 801 /** 766 /** 802 * replace_page_cache_folio - replace a pageca !! 767 * replace_page_cache_page - replace a pagecache page with a new one 803 * @old: folio to be replaced !! 768 * @old: page to be replaced 804 * @new: folio to replace with !! 769 * @new: page to replace with 805 * !! 770 * @gfp_mask: allocation mode 806 * This function replaces a folio in the pagec !! 771 * 807 * success it acquires the pagecache reference !! 772 * This function replaces a page in the pagecache with a new one. On 808 * drops it for the old folio. Both the old a !! 773 * success it acquires the pagecache reference for the new page and 809 * locked. This function does not add the new !! 774 * drops it for the old page. Both the old and new pages must be >> 775 * locked. This function does not add the new page to the LRU, the 810 * caller must do that. 776 * caller must do that. 811 * 777 * 812 * The remove + add is atomic. This function !! 778 * The remove + add is atomic. The only way this function can fail is >> 779 * memory allocation failure. 813 */ 780 */ 814 void replace_page_cache_folio(struct folio *ol !! 781 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 815 { 782 { 816 struct address_space *mapping = old->m !! 783 int error; 817 void (*free_folio)(struct folio *) = m << 818 pgoff_t offset = old->index; << 819 XA_STATE(xas, &mapping->i_pages, offse << 820 << 821 VM_BUG_ON_FOLIO(!folio_test_locked(old << 822 VM_BUG_ON_FOLIO(!folio_test_locked(new << 823 VM_BUG_ON_FOLIO(new->mapping, new); << 824 << 825 folio_get(new); << 826 new->mapping = mapping; << 827 new->index = offset; << 828 << 829 mem_cgroup_replace_folio(old, new); << 830 << 831 xas_lock_irq(&xas); << 832 xas_store(&xas, new); << 833 << 834 old->mapping = NULL; << 835 /* hugetlb pages do not participate in << 836 if (!folio_test_hugetlb(old)) << 837 __lruvec_stat_sub_folio(old, N << 838 if (!folio_test_hugetlb(new)) << 839 __lruvec_stat_add_folio(new, N << 840 if (folio_test_swapbacked(old)) << 841 __lruvec_stat_sub_folio(old, N << 842 if (folio_test_swapbacked(new)) << 843 __lruvec_stat_add_folio(new, N << 844 xas_unlock_irq(&xas); << 845 if (free_folio) << 846 free_folio(old); << 847 folio_put(old); << 848 } << 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); << 850 << 851 noinline int __filemap_add_folio(struct addres << 852 struct folio *folio, pgoff_t i << 853 { << 854 XA_STATE(xas, &mapping->i_pages, index << 855 void *alloced_shadow = NULL; << 856 int alloced_order = 0; << 857 bool huge; << 858 long nr; << 859 << 860 VM_BUG_ON_FOLIO(!folio_test_locked(fol << 861 VM_BUG_ON_FOLIO(folio_test_swapbacked( << 862 VM_BUG_ON_FOLIO(folio_order(folio) < m << 863 folio); << 864 mapping_set_update(&xas, mapping); << 865 << 866 VM_BUG_ON_FOLIO(index & (folio_nr_page << 867 xas_set_order(&xas, index, folio_order << 868 huge = folio_test_hugetlb(folio); << 869 nr = folio_nr_pages(folio); << 870 << 871 gfp &= GFP_RECLAIM_MASK; << 872 folio_ref_add(folio, nr); << 873 folio->mapping = mapping; << 874 folio->index = xas.xa_index; << 875 << 876 for (;;) { << 877 int order = -1, split_order = << 878 void *entry, *old = NULL; << 879 << 880 xas_lock_irq(&xas); << 881 xas_for_each_conflict(&xas, en << 882 old = entry; << 883 if (!xa_is_value(entry << 884 xas_set_err(&x << 885 goto unlock; << 886 } << 887 /* << 888 * If a larger entry e << 889 * it will be the firs << 890 */ << 891 if (order == -1) << 892 order = xas_ge << 893 } << 894 << 895 /* entry may have changed befo << 896 if (alloced_order && (old != a << 897 xas_destroy(&xas); << 898 alloced_order = 0; << 899 } << 900 << 901 if (old) { << 902 if (order > 0 && order << 903 /* How to hand << 904 BUG_ON(shmem_m << 905 if (!alloced_o << 906 split_ << 907 goto u << 908 } << 909 xas_split(&xas << 910 xas_reset(&xas << 911 } << 912 if (shadowp) << 913 *shadowp = old << 914 } << 915 784 916 xas_store(&xas, folio); !! 785 VM_BUG_ON_PAGE(!PageLocked(old), old); 917 if (xas_error(&xas)) !! 786 VM_BUG_ON_PAGE(!PageLocked(new), new); 918 goto unlock; !! 787 VM_BUG_ON_PAGE(new->mapping, new); >> 788 >> 789 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK); >> 790 if (!error) { >> 791 struct address_space *mapping = old->mapping; >> 792 void (*freepage)(struct page *); >> 793 unsigned long flags; >> 794 >> 795 pgoff_t offset = old->index; >> 796 freepage = mapping->a_ops->freepage; >> 797 >> 798 get_page(new); >> 799 new->mapping = mapping; >> 800 new->index = offset; >> 801 >> 802 xa_lock_irqsave(&mapping->i_pages, flags); >> 803 __delete_from_page_cache(old, NULL); >> 804 error = page_cache_tree_insert(mapping, new, NULL); >> 805 BUG_ON(error); >> 806 >> 807 /* >> 808 * hugetlb pages do not participate in page cache accounting. >> 809 */ >> 810 if (!PageHuge(new)) >> 811 __inc_node_page_state(new, NR_FILE_PAGES); >> 812 if (PageSwapBacked(new)) >> 813 __inc_node_page_state(new, NR_SHMEM); >> 814 xa_unlock_irqrestore(&mapping->i_pages, flags); >> 815 mem_cgroup_migrate(old, new); >> 816 radix_tree_preload_end(); >> 817 if (freepage) >> 818 freepage(old); >> 819 put_page(old); >> 820 } 919 821 920 mapping->nrpages += nr; !! 822 return error; >> 823 } >> 824 EXPORT_SYMBOL_GPL(replace_page_cache_page); 921 825 922 /* hugetlb pages do not partic !! 826 static int __add_to_page_cache_locked(struct page *page, 923 if (!huge) { !! 827 struct address_space *mapping, 924 __lruvec_stat_mod_foli !! 828 pgoff_t offset, gfp_t gfp_mask, 925 if (folio_test_pmd_map !! 829 void **shadowp) 926 __lruvec_stat_ !! 830 { 927 !! 831 int huge = PageHuge(page); 928 } !! 832 struct mem_cgroup *memcg; >> 833 int error; 929 834 930 unlock: !! 835 VM_BUG_ON_PAGE(!PageLocked(page), page); 931 xas_unlock_irq(&xas); !! 836 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 932 837 933 /* split needed, alloc here an !! 838 if (!huge) { 934 if (split_order) { !! 839 error = mem_cgroup_try_charge(page, current->mm, 935 xas_split_alloc(&xas, !! 840 gfp_mask, &memcg, false); 936 if (xas_error(&xas)) !! 841 if (error) 937 goto error; !! 842 return error; 938 alloced_shadow = old; !! 843 } 939 alloced_order = split_ << 940 xas_reset(&xas); << 941 continue; << 942 } << 943 844 944 if (!xas_nomem(&xas, gfp)) !! 845 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK); 945 break; !! 846 if (error) { >> 847 if (!huge) >> 848 mem_cgroup_cancel_charge(page, memcg, false); >> 849 return error; 946 } 850 } 947 851 948 if (xas_error(&xas)) !! 852 get_page(page); 949 goto error; !! 853 page->mapping = mapping; >> 854 page->index = offset; 950 855 951 trace_mm_filemap_add_to_page_cache(fol !! 856 xa_lock_irq(&mapping->i_pages); >> 857 error = page_cache_tree_insert(mapping, page, shadowp); >> 858 radix_tree_preload_end(); >> 859 if (unlikely(error)) >> 860 goto err_insert; >> 861 >> 862 /* hugetlb pages do not participate in page cache accounting. */ >> 863 if (!huge) >> 864 __inc_node_page_state(page, NR_FILE_PAGES); >> 865 xa_unlock_irq(&mapping->i_pages); >> 866 if (!huge) >> 867 mem_cgroup_commit_charge(page, memcg, false, false); >> 868 trace_mm_filemap_add_to_page_cache(page); 952 return 0; 869 return 0; 953 error: !! 870 err_insert: 954 folio->mapping = NULL; !! 871 page->mapping = NULL; 955 /* Leave page->index set: truncation r 872 /* Leave page->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); !! 873 xa_unlock_irq(&mapping->i_pages); 957 return xas_error(&xas); !! 874 if (!huge) >> 875 mem_cgroup_cancel_charge(page, memcg, false); >> 876 put_page(page); >> 877 return error; >> 878 } >> 879 >> 880 /** >> 881 * add_to_page_cache_locked - add a locked page to the pagecache >> 882 * @page: page to add >> 883 * @mapping: the page's address_space >> 884 * @offset: page index >> 885 * @gfp_mask: page allocation mode >> 886 * >> 887 * This function is used to add a page to the pagecache. It must be locked. >> 888 * This function does not add the page to the LRU. The caller must do that. >> 889 */ >> 890 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, >> 891 pgoff_t offset, gfp_t gfp_mask) >> 892 { >> 893 return __add_to_page_cache_locked(page, mapping, offset, >> 894 gfp_mask, NULL); 958 } 895 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERR !! 896 EXPORT_SYMBOL(add_to_page_cache_locked); 960 897 961 int filemap_add_folio(struct address_space *ma !! 898 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 962 pgoff_t index, !! 899 pgoff_t offset, gfp_t gfp_mask) 963 { 900 { 964 void *shadow = NULL; 901 void *shadow = NULL; 965 int ret; 902 int ret; 966 903 967 ret = mem_cgroup_charge(folio, NULL, g !! 904 __SetPageLocked(page); 968 if (ret) !! 905 ret = __add_to_page_cache_locked(page, mapping, offset, 969 return ret; !! 906 gfp_mask, &shadow); 970 !! 907 if (unlikely(ret)) 971 __folio_set_locked(folio); !! 908 __ClearPageLocked(page); 972 ret = __filemap_add_folio(mapping, fol !! 909 else { 973 if (unlikely(ret)) { << 974 mem_cgroup_uncharge(folio); << 975 __folio_clear_locked(folio); << 976 } else { << 977 /* 910 /* 978 * The folio might have been e !! 911 * The page might have been evicted from cache only 979 * recently, in which case it 912 * recently, in which case it should be activated like 980 * any other repeatedly access !! 913 * any other repeatedly accessed page. 981 * The exception is folios get !! 914 * The exception is pages getting rewritten; evicting other 982 * data from the working set, 915 * data from the working set, only to cache data that will 983 * get overwritten with someth 916 * get overwritten with something else, is a waste of memory. 984 */ 917 */ 985 WARN_ON_ONCE(folio_test_active !! 918 if (!(gfp_mask & __GFP_WRITE) && 986 if (!(gfp & __GFP_WRITE) && sh !! 919 shadow && workingset_refault(shadow)) { 987 workingset_refault(fol !! 920 SetPageActive(page); 988 folio_add_lru(folio); !! 921 workingset_activation(page); >> 922 } else >> 923 ClearPageActive(page); >> 924 lru_cache_add(page); 989 } 925 } 990 return ret; 926 return ret; 991 } 927 } 992 EXPORT_SYMBOL_GPL(filemap_add_folio); !! 928 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 993 929 994 #ifdef CONFIG_NUMA 930 #ifdef CONFIG_NUMA 995 struct folio *filemap_alloc_folio_noprof(gfp_t !! 931 struct page *__page_cache_alloc(gfp_t gfp) 996 { 932 { 997 int n; 933 int n; 998 struct folio *folio; !! 934 struct page *page; 999 935 1000 if (cpuset_do_page_mem_spread()) { 936 if (cpuset_do_page_mem_spread()) { 1001 unsigned int cpuset_mems_cook 937 unsigned int cpuset_mems_cookie; 1002 do { 938 do { 1003 cpuset_mems_cookie = 939 cpuset_mems_cookie = read_mems_allowed_begin(); 1004 n = cpuset_mem_spread 940 n = cpuset_mem_spread_node(); 1005 folio = __folio_alloc !! 941 page = __alloc_pages_node(n, gfp, 0); 1006 } while (!folio && read_mems_ !! 942 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 1007 943 1008 return folio; !! 944 return page; 1009 } 945 } 1010 return folio_alloc_noprof(gfp, order) !! 946 return alloc_pages(gfp, 0); 1011 } 947 } 1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof); !! 948 EXPORT_SYMBOL(__page_cache_alloc); 1013 #endif 949 #endif 1014 950 1015 /* 951 /* 1016 * filemap_invalidate_lock_two - lock invalid << 1017 * << 1018 * Lock exclusively invalidate_lock of any pa << 1019 * << 1020 * @mapping1: the first mapping to lock << 1021 * @mapping2: the second mapping to lock << 1022 */ << 1023 void filemap_invalidate_lock_two(struct addre << 1024 struct addre << 1025 { << 1026 if (mapping1 > mapping2) << 1027 swap(mapping1, mapping2); << 1028 if (mapping1) << 1029 down_write(&mapping1->invalid << 1030 if (mapping2 && mapping1 != mapping2) << 1031 down_write_nested(&mapping2-> << 1032 } << 1033 EXPORT_SYMBOL(filemap_invalidate_lock_two); << 1034 << 1035 /* << 1036 * filemap_invalidate_unlock_two - unlock inv << 1037 * << 1038 * Unlock exclusive invalidate_lock of any pa << 1039 * << 1040 * @mapping1: the first mapping to unlock << 1041 * @mapping2: the second mapping to unlock << 1042 */ << 1043 void filemap_invalidate_unlock_two(struct add << 1044 struct add << 1045 { << 1046 if (mapping1) << 1047 up_write(&mapping1->invalidat << 1048 if (mapping2 && mapping1 != mapping2) << 1049 up_write(&mapping2->invalidat << 1050 } << 1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two); << 1052 << 1053 /* << 1054 * In order to wait for pages to become avail 952 * In order to wait for pages to become available there must be 1055 * waitqueues associated with pages. By using 953 * waitqueues associated with pages. By using a hash table of 1056 * waitqueues where the bucket discipline is 954 * waitqueues where the bucket discipline is to maintain all 1057 * waiters on the same queue and wake all whe 955 * waiters on the same queue and wake all when any of the pages 1058 * become available, and for the woken contex 956 * become available, and for the woken contexts to check to be 1059 * sure the appropriate page became available 957 * sure the appropriate page became available, this saves space 1060 * at a cost of "thundering herd" phenomena d 958 * at a cost of "thundering herd" phenomena during rare hash 1061 * collisions. 959 * collisions. 1062 */ 960 */ 1063 #define PAGE_WAIT_TABLE_BITS 8 961 #define PAGE_WAIT_TABLE_BITS 8 1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_ 962 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1065 static wait_queue_head_t folio_wait_table[PAG !! 963 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1066 964 1067 static wait_queue_head_t *folio_waitqueue(str !! 965 static wait_queue_head_t *page_waitqueue(struct page *page) 1068 { 966 { 1069 return &folio_wait_table[hash_ptr(fol !! 967 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1070 } 968 } 1071 969 1072 void __init pagecache_init(void) 970 void __init pagecache_init(void) 1073 { 971 { 1074 int i; 972 int i; 1075 973 1076 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; 974 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1077 init_waitqueue_head(&folio_wa !! 975 init_waitqueue_head(&page_wait_table[i]); 1078 976 1079 page_writeback_init(); 977 page_writeback_init(); 1080 } 978 } 1081 979 1082 /* !! 980 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 1083 * The page wait code treats the "wait->flags !! 981 struct wait_page_key { 1084 * we have multiple different kinds of waits, !! 982 struct page *page; 1085 * one. !! 983 int bit_nr; 1086 * !! 984 int page_match; 1087 * We have: !! 985 }; 1088 * !! 986 1089 * (a) no special bits set: !! 987 struct wait_page_queue { 1090 * !! 988 struct page *page; 1091 * We're just waiting for the bit to be !! 989 int bit_nr; 1092 * calls the wakeup function, we set WQ_ !! 990 wait_queue_entry_t wait; 1093 * and remove it from the wait queue. !! 991 }; 1094 * !! 992 1095 * Simple and straightforward. << 1096 * << 1097 * (b) WQ_FLAG_EXCLUSIVE: << 1098 * << 1099 * The waiter is waiting to get the lock << 1100 * be woken up to avoid any thundering h << 1101 * WQ_FLAG_WOKEN bit, wake it up, and re << 1102 * << 1103 * This is the traditional exclusive wai << 1104 * << 1105 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: << 1106 * << 1107 * The waiter is waiting to get the bit, << 1108 * lock to be transferred to it for fair << 1109 * cannot be taken, we stop walking the << 1110 * the waiter. << 1111 * << 1112 * This is the "fair lock handoff" case, << 1113 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to << 1114 * that it now has the lock. << 1115 */ << 1116 static int wake_page_function(wait_queue_entr 993 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1117 { 994 { 1118 unsigned int flags; << 1119 struct wait_page_key *key = arg; 995 struct wait_page_key *key = arg; 1120 struct wait_page_queue *wait_page 996 struct wait_page_queue *wait_page 1121 = container_of(wait, struct w 997 = container_of(wait, struct wait_page_queue, wait); 1122 998 1123 if (!wake_page_match(wait_page, key)) !! 999 if (wait_page->page != key->page) 1124 return 0; !! 1000 return 0; >> 1001 key->page_match = 1; 1125 1002 1126 /* !! 1003 if (wait_page->bit_nr != key->bit_nr) 1127 * If it's a lock handoff wait, we ge !! 1004 return 0; 1128 * stop walking (and do not wake it u << 1129 */ << 1130 flags = wait->flags; << 1131 if (flags & WQ_FLAG_EXCLUSIVE) { << 1132 if (test_bit(key->bit_nr, &ke << 1133 return -1; << 1134 if (flags & WQ_FLAG_CUSTOM) { << 1135 if (test_and_set_bit( << 1136 return -1; << 1137 flags |= WQ_FLAG_DONE << 1138 } << 1139 } << 1140 1005 1141 /* !! 1006 /* Stop walking if it's locked */ 1142 * We are holding the wait-queue lock !! 1007 if (test_bit(key->bit_nr, &key->page->flags)) 1143 * is waiting for this will be checki !! 1008 return -1; 1144 * any locking. << 1145 * << 1146 * So update the flags atomically, an << 1147 * afterwards to avoid any races. Thi << 1148 * with the load-acquire in folio_wai << 1149 */ << 1150 smp_store_release(&wait->flags, flags << 1151 wake_up_state(wait->private, mode); << 1152 1009 1153 /* !! 1010 return autoremove_wake_function(wait, mode, sync, key); 1154 * Ok, we have successfully done what << 1155 * and we can unconditionally remove << 1156 * << 1157 * Note that this pairs with the "fin << 1158 * waiter, and has to be the absolute << 1159 * After this list_del_init(&wait->en << 1160 * might be de-allocated and the proc << 1161 * exited. << 1162 */ << 1163 list_del_init_careful(&wait->entry); << 1164 return (flags & WQ_FLAG_EXCLUSIVE) != << 1165 } 1011 } 1166 1012 1167 static void folio_wake_bit(struct folio *foli !! 1013 static void wake_up_page_bit(struct page *page, int bit_nr) 1168 { 1014 { 1169 wait_queue_head_t *q = folio_waitqueu !! 1015 wait_queue_head_t *q = page_waitqueue(page); 1170 struct wait_page_key key; 1016 struct wait_page_key key; 1171 unsigned long flags; 1017 unsigned long flags; >> 1018 wait_queue_entry_t bookmark; 1172 1019 1173 key.folio = folio; !! 1020 key.page = page; 1174 key.bit_nr = bit_nr; 1021 key.bit_nr = bit_nr; 1175 key.page_match = 0; 1022 key.page_match = 0; 1176 1023 >> 1024 bookmark.flags = 0; >> 1025 bookmark.private = NULL; >> 1026 bookmark.func = NULL; >> 1027 INIT_LIST_HEAD(&bookmark.entry); >> 1028 1177 spin_lock_irqsave(&q->lock, flags); 1029 spin_lock_irqsave(&q->lock, flags); 1178 __wake_up_locked_key(q, TASK_NORMAL, !! 1030 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); >> 1031 >> 1032 while (bookmark.flags & WQ_FLAG_BOOKMARK) { >> 1033 /* >> 1034 * Take a breather from holding the lock, >> 1035 * allow pages that finish wake up asynchronously >> 1036 * to acquire the lock and remove themselves >> 1037 * from wait queue >> 1038 */ >> 1039 spin_unlock_irqrestore(&q->lock, flags); >> 1040 cpu_relax(); >> 1041 spin_lock_irqsave(&q->lock, flags); >> 1042 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); >> 1043 } 1179 1044 1180 /* 1045 /* 1181 * It's possible to miss clearing wai !! 1046 * It is possible for other pages to have collided on the waitqueue 1182 * waiters, but the hashed waitqueue !! 1047 * hash, so in that case check for a page match. That prevents a long- 1183 * That's okay, it's a rare case. The !! 1048 * term waiter 1184 * 1049 * 1185 * Note that, depending on the page p !! 1050 * It is still possible to miss a case here, when we woke page waiters 1186 * other), the flag may be cleared in !! 1051 * and removed them from the waitqueue, but there are still other 1187 * but that is not required for corre !! 1052 * page waiters. 1188 */ !! 1053 */ 1189 if (!waitqueue_active(q) || !key.page !! 1054 if (!waitqueue_active(q) || !key.page_match) { 1190 folio_clear_waiters(folio); !! 1055 ClearPageWaiters(page); 1191 !! 1056 /* >> 1057 * It's possible to miss clearing Waiters here, when we woke >> 1058 * our page waiters, but the hashed waitqueue has waiters for >> 1059 * other pages on it. >> 1060 * >> 1061 * That's okay, it's a rare case. The next waker will clear it. >> 1062 */ >> 1063 } 1192 spin_unlock_irqrestore(&q->lock, flag 1064 spin_unlock_irqrestore(&q->lock, flags); 1193 } 1065 } 1194 1066 1195 /* !! 1067 static void wake_up_page(struct page *page, int bit) 1196 * A choice of three behaviors for folio_wait << 1197 */ << 1198 enum behavior { << 1199 EXCLUSIVE, /* Hold ref to page a << 1200 * __folio_lock() wai << 1201 */ << 1202 SHARED, /* Hold ref to page a << 1203 * folio_wait_writeba << 1204 */ << 1205 DROP, /* Drop ref to page b << 1206 * like folio_put_wai << 1207 */ << 1208 }; << 1209 << 1210 /* << 1211 * Attempt to check (or get) the folio flag, << 1212 * if successful. << 1213 */ << 1214 static inline bool folio_trylock_flag(struct << 1215 struc << 1216 { 1068 { 1217 if (wait->flags & WQ_FLAG_EXCLUSIVE) !! 1069 if (!PageWaiters(page)) 1218 if (test_and_set_bit(bit_nr, !! 1070 return; 1219 return false; !! 1071 wake_up_page_bit(page, bit); 1220 } else if (test_bit(bit_nr, &folio->f << 1221 return false; << 1222 << 1223 wait->flags |= WQ_FLAG_WOKEN | WQ_FLA << 1224 return true; << 1225 } 1072 } 1226 1073 1227 /* How many times do we accept lock stealing !! 1074 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1228 int sysctl_page_lock_unfairness = 5; !! 1075 struct page *page, int bit_nr, int state, bool lock) 1229 << 1230 static inline int folio_wait_bit_common(struc << 1231 int state, enum behavior beha << 1232 { 1076 { 1233 wait_queue_head_t *q = folio_waitqueu << 1234 int unfairness = sysctl_page_lock_unf << 1235 struct wait_page_queue wait_page; 1077 struct wait_page_queue wait_page; 1236 wait_queue_entry_t *wait = &wait_page 1078 wait_queue_entry_t *wait = &wait_page.wait; 1237 bool thrashing = false; !! 1079 int ret = 0; 1238 unsigned long pflags; << 1239 bool in_thrashing; << 1240 << 1241 if (bit_nr == PG_locked && << 1242 !folio_test_uptodate(folio) && fo << 1243 delayacct_thrashing_start(&in << 1244 psi_memstall_enter(&pflags); << 1245 thrashing = true; << 1246 } << 1247 1080 1248 init_wait(wait); 1081 init_wait(wait); >> 1082 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; 1249 wait->func = wake_page_function; 1083 wait->func = wake_page_function; 1250 wait_page.folio = folio; !! 1084 wait_page.page = page; 1251 wait_page.bit_nr = bit_nr; 1085 wait_page.bit_nr = bit_nr; 1252 1086 1253 repeat: << 1254 wait->flags = 0; << 1255 if (behavior == EXCLUSIVE) { << 1256 wait->flags = WQ_FLAG_EXCLUSI << 1257 if (--unfairness < 0) << 1258 wait->flags |= WQ_FLA << 1259 } << 1260 << 1261 /* << 1262 * Do one last check whether we can g << 1263 * page bit synchronously. << 1264 * << 1265 * Do the folio_set_waiters() marking << 1266 * to let any waker we _just_ missed << 1267 * need to wake us up (otherwise they << 1268 * even go to the slow case that look << 1269 * page queue), and add ourselves to << 1270 * queue if we need to sleep. << 1271 * << 1272 * This part needs to be done under t << 1273 * lock to avoid races. << 1274 */ << 1275 spin_lock_irq(&q->lock); << 1276 folio_set_waiters(folio); << 1277 if (!folio_trylock_flag(folio, bit_nr << 1278 __add_wait_queue_entry_tail(q << 1279 spin_unlock_irq(&q->lock); << 1280 << 1281 /* << 1282 * From now on, all the logic will be << 1283 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE << 1284 * see whether the page bit testing h << 1285 * been done by the wake function. << 1286 * << 1287 * We can drop our reference to the f << 1288 */ << 1289 if (behavior == DROP) << 1290 folio_put(folio); << 1291 << 1292 /* << 1293 * Note that until the "finish_wait() << 1294 * we see the WQ_FLAG_WOKEN flag, we << 1295 * be very careful with the 'wait->fl << 1296 * we may race with a waker that sets << 1297 */ << 1298 for (;;) { 1087 for (;;) { 1299 unsigned int flags; !! 1088 spin_lock_irq(&q->lock); >> 1089 >> 1090 if (likely(list_empty(&wait->entry))) { >> 1091 __add_wait_queue_entry_tail(q, wait); >> 1092 SetPageWaiters(page); >> 1093 } 1300 1094 1301 set_current_state(state); 1095 set_current_state(state); 1302 1096 1303 /* Loop until we've been woke !! 1097 spin_unlock_irq(&q->lock); 1304 flags = smp_load_acquire(&wai << 1305 if (!(flags & WQ_FLAG_WOKEN)) << 1306 if (signal_pending_st << 1307 break; << 1308 1098 >> 1099 if (likely(test_bit(bit_nr, &page->flags))) { 1309 io_schedule(); 1100 io_schedule(); 1310 continue; << 1311 } 1101 } 1312 1102 1313 /* If we were non-exclusive, !! 1103 if (lock) { 1314 if (behavior != EXCLUSIVE) !! 1104 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1315 break; !! 1105 break; >> 1106 } else { >> 1107 if (!test_bit(bit_nr, &page->flags)) >> 1108 break; >> 1109 } 1316 1110 1317 /* If the waker got the lock !! 1111 if (unlikely(signal_pending_state(state, current))) { 1318 if (flags & WQ_FLAG_DONE) !! 1112 ret = -EINTR; 1319 break; 1113 break; 1320 !! 1114 } 1321 /* << 1322 * Otherwise, if we're gettin << 1323 * try to get it ourselves. << 1324 * << 1325 * And if that fails, we'll h << 1326 */ << 1327 if (unlikely(test_and_set_bit << 1328 goto repeat; << 1329 << 1330 wait->flags |= WQ_FLAG_DONE; << 1331 break; << 1332 } 1115 } 1333 1116 1334 /* << 1335 * If a signal happened, this 'finish << 1336 * waiter from the wait-queues, but t << 1337 * set. That's ok. The next wakeup wi << 1338 * to do it here would be difficult a << 1339 */ << 1340 finish_wait(q, wait); 1117 finish_wait(q, wait); 1341 1118 1342 if (thrashing) { << 1343 delayacct_thrashing_end(&in_t << 1344 psi_memstall_leave(&pflags); << 1345 } << 1346 << 1347 /* << 1348 * NOTE! The wait->flags weren't stab << 1349 * 'finish_wait()', and we could have << 1350 * to a signal, and had a wakeup even << 1351 * test but before the 'finish_wait() << 1352 * << 1353 * So only after the finish_wait() ca << 1354 * if we got woken up or not, so we c << 1355 * return value based on that state w << 1356 * << 1357 * Also note that WQ_FLAG_WOKEN is su << 1358 * waiter, but an exclusive one requi << 1359 */ << 1360 if (behavior == EXCLUSIVE) << 1361 return wait->flags & WQ_FLAG_ << 1362 << 1363 return wait->flags & WQ_FLAG_WOKEN ? << 1364 } << 1365 << 1366 #ifdef CONFIG_MIGRATION << 1367 /** << 1368 * migration_entry_wait_on_locked - Wait for << 1369 * @entry: migration swap entry. << 1370 * @ptl: already locked ptl. This function wi << 1371 * << 1372 * Wait for a migration entry referencing the << 1373 * equivalent to put_and_wait_on_page_locked( << 1374 * this can be called without taking a refere << 1375 * should be called while holding the ptl for << 1376 * the page. << 1377 * << 1378 * Returns after unlocking the ptl. << 1379 * << 1380 * This follows the same logic as folio_wait_ << 1381 * there. << 1382 */ << 1383 void migration_entry_wait_on_locked(swp_entry << 1384 __releases(ptl) << 1385 { << 1386 struct wait_page_queue wait_page; << 1387 wait_queue_entry_t *wait = &wait_page << 1388 bool thrashing = false; << 1389 unsigned long pflags; << 1390 bool in_thrashing; << 1391 wait_queue_head_t *q; << 1392 struct folio *folio = pfn_swap_entry_ << 1393 << 1394 q = folio_waitqueue(folio); << 1395 if (!folio_test_uptodate(folio) && fo << 1396 delayacct_thrashing_start(&in << 1397 psi_memstall_enter(&pflags); << 1398 thrashing = true; << 1399 } << 1400 << 1401 init_wait(wait); << 1402 wait->func = wake_page_function; << 1403 wait_page.folio = folio; << 1404 wait_page.bit_nr = PG_locked; << 1405 wait->flags = 0; << 1406 << 1407 spin_lock_irq(&q->lock); << 1408 folio_set_waiters(folio); << 1409 if (!folio_trylock_flag(folio, PG_loc << 1410 __add_wait_queue_entry_tail(q << 1411 spin_unlock_irq(&q->lock); << 1412 << 1413 /* 1119 /* 1414 * If a migration entry exists for th !! 1120 * A signal could leave PageWaiters set. Clearing it here if 1415 * a valid reference to the page, and !! 1121 * !waitqueue_active would be possible (by open-coding finish_wait), 1416 * migration entry. So the page is va !! 1122 * but still fail to catch it in the case of wait hash collision. We >> 1123 * already can fail to clear wait hash collision cases, so don't >> 1124 * bother with signals either. 1417 */ 1125 */ 1418 spin_unlock(ptl); << 1419 << 1420 for (;;) { << 1421 unsigned int flags; << 1422 << 1423 set_current_state(TASK_UNINTE << 1424 << 1425 /* Loop until we've been woke << 1426 flags = smp_load_acquire(&wai << 1427 if (!(flags & WQ_FLAG_WOKEN)) << 1428 if (signal_pending_st << 1429 break; << 1430 << 1431 io_schedule(); << 1432 continue; << 1433 } << 1434 break; << 1435 } << 1436 << 1437 finish_wait(q, wait); << 1438 << 1439 if (thrashing) { << 1440 delayacct_thrashing_end(&in_t << 1441 psi_memstall_leave(&pflags); << 1442 } << 1443 } << 1444 #endif << 1445 1126 1446 void folio_wait_bit(struct folio *folio, int !! 1127 return ret; 1447 { << 1448 folio_wait_bit_common(folio, bit_nr, << 1449 } 1128 } 1450 EXPORT_SYMBOL(folio_wait_bit); << 1451 1129 1452 int folio_wait_bit_killable(struct folio *fol !! 1130 void wait_on_page_bit(struct page *page, int bit_nr) 1453 { 1131 { 1454 return folio_wait_bit_common(folio, b !! 1132 wait_queue_head_t *q = page_waitqueue(page); >> 1133 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1455 } 1134 } 1456 EXPORT_SYMBOL(folio_wait_bit_killable); !! 1135 EXPORT_SYMBOL(wait_on_page_bit); 1457 1136 1458 /** !! 1137 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1459 * folio_put_wait_locked - Drop a reference a << 1460 * @folio: The folio to wait for. << 1461 * @state: The sleep state (TASK_KILLABLE, TA << 1462 * << 1463 * The caller should hold a reference on @fol << 1464 * become unlocked relatively soon, but do no << 1465 * (for example) by holding the reference whi << 1466 * come unlocked. After this function return << 1467 * dereference @folio. << 1468 * << 1469 * Return: 0 if the folio was unlocked or -EI << 1470 */ << 1471 static int folio_put_wait_locked(struct folio << 1472 { 1138 { 1473 return folio_wait_bit_common(folio, P !! 1139 wait_queue_head_t *q = page_waitqueue(page); >> 1140 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1474 } 1141 } >> 1142 EXPORT_SYMBOL(wait_on_page_bit_killable); 1475 1143 1476 /** 1144 /** 1477 * folio_add_wait_queue - Add an arbitrary wa !! 1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1478 * @folio: Folio defining the wait queue of i !! 1146 * @page: Page defining the wait queue of interest 1479 * @waiter: Waiter to add to the queue 1147 * @waiter: Waiter to add to the queue 1480 * 1148 * 1481 * Add an arbitrary @waiter to the wait queue !! 1149 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1482 */ 1150 */ 1483 void folio_add_wait_queue(struct folio *folio !! 1151 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1484 { 1152 { 1485 wait_queue_head_t *q = folio_waitqueu !! 1153 wait_queue_head_t *q = page_waitqueue(page); 1486 unsigned long flags; 1154 unsigned long flags; 1487 1155 1488 spin_lock_irqsave(&q->lock, flags); 1156 spin_lock_irqsave(&q->lock, flags); 1489 __add_wait_queue_entry_tail(q, waiter 1157 __add_wait_queue_entry_tail(q, waiter); 1490 folio_set_waiters(folio); !! 1158 SetPageWaiters(page); 1491 spin_unlock_irqrestore(&q->lock, flag 1159 spin_unlock_irqrestore(&q->lock, flags); 1492 } 1160 } 1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue); !! 1161 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1494 << 1495 /** << 1496 * folio_unlock - Unlock a locked folio. << 1497 * @folio: The folio. << 1498 * << 1499 * Unlocks the folio and wakes up any thread << 1500 * << 1501 * Context: May be called from interrupt or p << 1502 * called from NMI context. << 1503 */ << 1504 void folio_unlock(struct folio *folio) << 1505 { << 1506 /* Bit 7 allows x86 to check the byte << 1507 BUILD_BUG_ON(PG_waiters != 7); << 1508 BUILD_BUG_ON(PG_locked > 7); << 1509 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1510 if (folio_xor_flags_has_waiters(folio << 1511 folio_wake_bit(folio, PG_lock << 1512 } << 1513 EXPORT_SYMBOL(folio_unlock); << 1514 1162 1515 /** !! 1163 #ifndef clear_bit_unlock_is_negative_byte 1516 * folio_end_read - End read on a folio. << 1517 * @folio: The folio. << 1518 * @success: True if all reads completed succ << 1519 * << 1520 * When all reads against a folio have comple << 1521 * call this function to let the pagecache kn << 1522 * are outstanding. This will unlock the fol << 1523 * sleeping on the lock. The folio will also << 1524 * reads succeeded. << 1525 * << 1526 * Context: May be called from interrupt or p << 1527 * called from NMI context. << 1528 */ << 1529 void folio_end_read(struct folio *folio, bool << 1530 { << 1531 unsigned long mask = 1 << PG_locked; << 1532 << 1533 /* Must be in bottom byte for x86 to << 1534 BUILD_BUG_ON(PG_uptodate > 7); << 1535 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1536 VM_BUG_ON_FOLIO(folio_test_uptodate(f << 1537 << 1538 if (likely(success)) << 1539 mask |= 1 << PG_uptodate; << 1540 if (folio_xor_flags_has_waiters(folio << 1541 folio_wake_bit(folio, PG_lock << 1542 } << 1543 EXPORT_SYMBOL(folio_end_read); << 1544 1164 1545 /** !! 1165 /* 1546 * folio_end_private_2 - Clear PG_private_2 a !! 1166 * PG_waiters is the high bit in the same byte as PG_lock. 1547 * @folio: The folio. << 1548 * 1167 * 1549 * Clear the PG_private_2 bit on a folio and !! 1168 * On x86 (and on many other architectures), we can clear PG_lock and 1550 * it. The folio reference held for PG_priva !! 1169 * test the sign bit at the same time. But if the architecture does >> 1170 * not support that special operation, we just do this all by hand >> 1171 * instead. 1551 * 1172 * 1552 * This is, for example, used when a netfs fo !! 1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1553 * disk cache, thereby allowing writes to the !! 1174 * being cleared, but a memory barrier should be unneccssary since it is 1554 * serialised. !! 1175 * in the same byte as PG_locked. 1555 */ 1176 */ 1556 void folio_end_private_2(struct folio *folio) !! 1177 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1557 { 1178 { 1558 VM_BUG_ON_FOLIO(!folio_test_private_2 !! 1179 clear_bit_unlock(nr, mem); 1559 clear_bit_unlock(PG_private_2, folio_ !! 1180 /* smp_mb__after_atomic(); */ 1560 folio_wake_bit(folio, PG_private_2); !! 1181 return test_bit(PG_waiters, mem); 1561 folio_put(folio); << 1562 } 1182 } 1563 EXPORT_SYMBOL(folio_end_private_2); !! 1183 >> 1184 #endif 1564 1185 1565 /** 1186 /** 1566 * folio_wait_private_2 - Wait for PG_private !! 1187 * unlock_page - unlock a locked page 1567 * @folio: The folio to wait on. !! 1188 * @page: the page 1568 * 1189 * 1569 * Wait for PG_private_2 to be cleared on a f !! 1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). >> 1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup >> 1192 * mechanism between PageLocked pages and PageWriteback pages is shared. >> 1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. >> 1194 * >> 1195 * Note that this depends on PG_waiters being the sign bit in the byte >> 1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to >> 1197 * clear the PG_locked bit and test PG_waiters at the same time fairly >> 1198 * portably (architectures that do LL/SC can test any bit, while x86 can >> 1199 * test the sign bit). 1570 */ 1200 */ 1571 void folio_wait_private_2(struct folio *folio !! 1201 void unlock_page(struct page *page) 1572 { 1202 { 1573 while (folio_test_private_2(folio)) !! 1203 BUILD_BUG_ON(PG_waiters != 7); 1574 folio_wait_bit(folio, PG_priv !! 1204 page = compound_head(page); >> 1205 VM_BUG_ON_PAGE(!PageLocked(page), page); >> 1206 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) >> 1207 wake_up_page_bit(page, PG_locked); 1575 } 1208 } 1576 EXPORT_SYMBOL(folio_wait_private_2); !! 1209 EXPORT_SYMBOL(unlock_page); 1577 1210 1578 /** 1211 /** 1579 * folio_wait_private_2_killable - Wait for P !! 1212 * end_page_writeback - end writeback against a page 1580 * @folio: The folio to wait on. !! 1213 * @page: the page 1581 * << 1582 * Wait for PG_private_2 to be cleared on a f << 1583 * received by the calling task. << 1584 * << 1585 * Return: << 1586 * - 0 if successful. << 1587 * - -EINTR if a fatal signal was encountered << 1588 */ 1214 */ 1589 int folio_wait_private_2_killable(struct foli !! 1215 void end_page_writeback(struct page *page) 1590 { 1216 { 1591 int ret = 0; !! 1217 /* 1592 !! 1218 * TestClearPageReclaim could be used here but it is an atomic 1593 while (folio_test_private_2(folio)) { !! 1219 * operation and overkill in this particular case. Failing to 1594 ret = folio_wait_bit_killable !! 1220 * shuffle a page marked for immediate reclaim is too mild to 1595 if (ret < 0) !! 1221 * justify taking an atomic operation penalty at the end of 1596 break; !! 1222 * ever page writeback. >> 1223 */ >> 1224 if (PageReclaim(page)) { >> 1225 ClearPageReclaim(page); >> 1226 rotate_reclaimable_page(page); 1597 } 1227 } 1598 1228 1599 return ret; !! 1229 if (!test_clear_page_writeback(page)) >> 1230 BUG(); >> 1231 >> 1232 smp_mb__after_atomic(); >> 1233 wake_up_page(page, PG_writeback); 1600 } 1234 } 1601 EXPORT_SYMBOL(folio_wait_private_2_killable); !! 1235 EXPORT_SYMBOL(end_page_writeback); 1602 1236 1603 /** !! 1237 /* 1604 * folio_end_writeback - End writeback agains !! 1238 * After completing I/O on a page, call this routine to update the page 1605 * @folio: The folio. !! 1239 * flags appropriately 1606 * << 1607 * The folio must actually be under writeback << 1608 * << 1609 * Context: May be called from process or int << 1610 */ 1240 */ 1611 void folio_end_writeback(struct folio *folio) !! 1241 void page_endio(struct page *page, bool is_write, int err) 1612 { 1242 { 1613 VM_BUG_ON_FOLIO(!folio_test_writeback !! 1243 if (!is_write) { >> 1244 if (!err) { >> 1245 SetPageUptodate(page); >> 1246 } else { >> 1247 ClearPageUptodate(page); >> 1248 SetPageError(page); >> 1249 } >> 1250 unlock_page(page); >> 1251 } else { >> 1252 if (err) { >> 1253 struct address_space *mapping; 1614 1254 1615 /* !! 1255 SetPageError(page); 1616 * folio_test_clear_reclaim() could b !! 1256 mapping = page_mapping(page); 1617 * atomic operation and overkill in t !! 1257 if (mapping) 1618 * to shuffle a folio marked for imme !! 1258 mapping_set_error(mapping, err); 1619 * a gain to justify taking an atomic !! 1259 } 1620 * end of every folio writeback. !! 1260 end_page_writeback(page); 1621 */ << 1622 if (folio_test_reclaim(folio)) { << 1623 folio_clear_reclaim(folio); << 1624 folio_rotate_reclaimable(foli << 1625 } 1261 } 1626 << 1627 /* << 1628 * Writeback does not hold a folio re << 1629 * on truncation to wait for the clea << 1630 * But here we must make sure that th << 1631 * reused before the folio_wake_bit() << 1632 */ << 1633 folio_get(folio); << 1634 if (__folio_end_writeback(folio)) << 1635 folio_wake_bit(folio, PG_writ << 1636 acct_reclaim_writeback(folio); << 1637 folio_put(folio); << 1638 } 1262 } 1639 EXPORT_SYMBOL(folio_end_writeback); !! 1263 EXPORT_SYMBOL_GPL(page_endio); 1640 1264 1641 /** 1265 /** 1642 * __folio_lock - Get a lock on the folio, as !! 1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1643 * @folio: The folio to lock !! 1267 * @__page: the page to lock 1644 */ 1268 */ 1645 void __folio_lock(struct folio *folio) !! 1269 void __lock_page(struct page *__page) 1646 { << 1647 folio_wait_bit_common(folio, PG_locke << 1648 EXCLUSIVE); << 1649 } << 1650 EXPORT_SYMBOL(__folio_lock); << 1651 << 1652 int __folio_lock_killable(struct folio *folio << 1653 { 1270 { 1654 return folio_wait_bit_common(folio, P !! 1271 struct page *page = compound_head(__page); 1655 EXCLU !! 1272 wait_queue_head_t *q = page_waitqueue(page); >> 1273 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1656 } 1274 } 1657 EXPORT_SYMBOL_GPL(__folio_lock_killable); !! 1275 EXPORT_SYMBOL(__lock_page); 1658 1276 1659 static int __folio_lock_async(struct folio *f !! 1277 int __lock_page_killable(struct page *__page) 1660 { 1278 { 1661 struct wait_queue_head *q = folio_wai !! 1279 struct page *page = compound_head(__page); 1662 int ret; !! 1280 wait_queue_head_t *q = page_waitqueue(page); 1663 !! 1281 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1664 wait->folio = folio; << 1665 wait->bit_nr = PG_locked; << 1666 << 1667 spin_lock_irq(&q->lock); << 1668 __add_wait_queue_entry_tail(q, &wait- << 1669 folio_set_waiters(folio); << 1670 ret = !folio_trylock(folio); << 1671 /* << 1672 * If we were successful now, we know << 1673 * waitqueue as we're still under the << 1674 * safe to remove and return success, << 1675 * isn't going to trigger. << 1676 */ << 1677 if (!ret) << 1678 __remove_wait_queue(q, &wait- << 1679 else << 1680 ret = -EIOCBQUEUED; << 1681 spin_unlock_irq(&q->lock); << 1682 return ret; << 1683 } 1282 } >> 1283 EXPORT_SYMBOL_GPL(__lock_page_killable); 1684 1284 1685 /* 1285 /* 1686 * Return values: 1286 * Return values: 1687 * 0 - folio is locked. !! 1287 * 1 - page is locked; mmap_sem is still held. 1688 * non-zero - folio is not locked. !! 1288 * 0 - page is not locked. 1689 * mmap_lock or per-VMA lock has been rel !! 1289 * mmap_sem has been released (up_read()), unless flags had both 1690 * vma_end_read()), unless flags had both !! 1290 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1691 * FAULT_FLAG_RETRY_NOWAIT set, in which !! 1291 * which case mmap_sem is still held. 1692 * !! 1292 * 1693 * If neither ALLOW_RETRY nor KILLABLE are se !! 1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1694 * with the folio locked and the mmap_lock/pe !! 1294 * with the page locked and the mmap_sem unperturbed. 1695 */ 1295 */ 1696 vm_fault_t __folio_lock_or_retry(struct folio !! 1296 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, >> 1297 unsigned int flags) 1697 { 1298 { 1698 unsigned int flags = vmf->flags; !! 1299 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1699 << 1700 if (fault_flag_allow_retry_first(flag << 1701 /* 1300 /* 1702 * CAUTION! In this case, mma !! 1301 * CAUTION! In this case, mmap_sem is not released 1703 * released even though retur !! 1302 * even though return 0. 1704 */ 1303 */ 1705 if (flags & FAULT_FLAG_RETRY_ 1304 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1706 return VM_FAULT_RETRY !! 1305 return 0; 1707 1306 1708 release_fault_lock(vmf); !! 1307 up_read(&mm->mmap_sem); 1709 if (flags & FAULT_FLAG_KILLAB 1308 if (flags & FAULT_FLAG_KILLABLE) 1710 folio_wait_locked_kil !! 1309 wait_on_page_locked_killable(page); 1711 else 1310 else 1712 folio_wait_locked(fol !! 1311 wait_on_page_locked(page); 1713 return VM_FAULT_RETRY; !! 1312 return 0; 1714 } << 1715 if (flags & FAULT_FLAG_KILLABLE) { << 1716 bool ret; << 1717 << 1718 ret = __folio_lock_killable(f << 1719 if (ret) { << 1720 release_fault_lock(vm << 1721 return VM_FAULT_RETRY << 1722 } << 1723 } else { 1313 } else { 1724 __folio_lock(folio); !! 1314 if (flags & FAULT_FLAG_KILLABLE) { 1725 } !! 1315 int ret; 1726 1316 1727 return 0; !! 1317 ret = __lock_page_killable(page); >> 1318 if (ret) { >> 1319 up_read(&mm->mmap_sem); >> 1320 return 0; >> 1321 } >> 1322 } else >> 1323 __lock_page(page); >> 1324 return 1; >> 1325 } 1728 } 1326 } 1729 1327 1730 /** 1328 /** 1731 * page_cache_next_miss() - Find the next gap !! 1329 * page_cache_next_hole - find the next hole (not-present entry) 1732 * @mapping: Mapping. !! 1330 * @mapping: mapping 1733 * @index: Index. !! 1331 * @index: index 1734 * @max_scan: Maximum range to search. !! 1332 * @max_scan: maximum range to search 1735 * !! 1333 * 1736 * Search the range [index, min(index + max_s !! 1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1737 * gap with the lowest index. !! 1335 * lowest indexed hole. 1738 * !! 1336 * 1739 * This function may be called under the rcu_ !! 1337 * Returns: the index of the hole if found, otherwise returns an index 1740 * not atomically search a snapshot of the ca !! 1338 * outside of the set specified (in which case 'return - index >= 1741 * For example, if a gap is created at index !! 1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1742 * created at index 10, page_cache_next_miss !! 1340 * be returned. 1743 * return 10 if called under the rcu_read_loc !! 1341 * 1744 * !! 1342 * page_cache_next_hole may be called under rcu_read_lock. However, 1745 * Return: The index of the gap if found, oth !! 1343 * like radix_tree_gang_lookup, this will not atomically search a 1746 * range specified (in which case 'return - i !! 1344 * snapshot of the tree at a single point in time. For example, if a 1747 * In the rare case of index wrap-around, 0 w !! 1345 * hole is created at index 5, then subsequently a hole is created at >> 1346 * index 10, page_cache_next_hole covering both indexes may return 10 >> 1347 * if called under rcu_read_lock. 1748 */ 1348 */ 1749 pgoff_t page_cache_next_miss(struct address_s !! 1349 pgoff_t page_cache_next_hole(struct address_space *mapping, 1750 pgoff_t index, u 1350 pgoff_t index, unsigned long max_scan) 1751 { 1351 { 1752 XA_STATE(xas, &mapping->i_pages, inde !! 1352 unsigned long i; 1753 1353 1754 while (max_scan--) { !! 1354 for (i = 0; i < max_scan; i++) { 1755 void *entry = xas_next(&xas); !! 1355 struct page *page; 1756 if (!entry || xa_is_value(ent !! 1356 1757 return xas.xa_index; !! 1357 page = radix_tree_lookup(&mapping->i_pages, index); 1758 if (xas.xa_index == 0) !! 1358 if (!page || radix_tree_exceptional_entry(page)) 1759 return 0; !! 1359 break; >> 1360 index++; >> 1361 if (index == 0) >> 1362 break; 1760 } 1363 } 1761 1364 1762 return index + max_scan; !! 1365 return index; 1763 } 1366 } 1764 EXPORT_SYMBOL(page_cache_next_miss); !! 1367 EXPORT_SYMBOL(page_cache_next_hole); 1765 1368 1766 /** 1369 /** 1767 * page_cache_prev_miss() - Find the previous !! 1370 * page_cache_prev_hole - find the prev hole (not-present entry) 1768 * @mapping: Mapping. !! 1371 * @mapping: mapping 1769 * @index: Index. !! 1372 * @index: index 1770 * @max_scan: Maximum range to search. !! 1373 * @max_scan: maximum range to search 1771 * !! 1374 * 1772 * Search the range [max(index - max_scan + 1 !! 1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1773 * gap with the highest index. !! 1376 * the first hole. 1774 * !! 1377 * 1775 * This function may be called under the rcu_ !! 1378 * Returns: the index of the hole if found, otherwise returns an index 1776 * not atomically search a snapshot of the ca !! 1379 * outside of the set specified (in which case 'index - return >= 1777 * For example, if a gap is created at index !! 1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1778 * created at index 5, page_cache_prev_miss() !! 1381 * will be returned. 1779 * return 5 if called under the rcu_read_lock !! 1382 * 1780 * !! 1383 * page_cache_prev_hole may be called under rcu_read_lock. However, 1781 * Return: The index of the gap if found, oth !! 1384 * like radix_tree_gang_lookup, this will not atomically search a 1782 * range specified (in which case 'index - re !! 1385 * snapshot of the tree at a single point in time. For example, if a 1783 * In the rare case of wrap-around, ULONG_MAX !! 1386 * hole is created at index 10, then subsequently a hole is created at >> 1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if >> 1388 * called under rcu_read_lock. 1784 */ 1389 */ 1785 pgoff_t page_cache_prev_miss(struct address_s !! 1390 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1786 pgoff_t index, u 1391 pgoff_t index, unsigned long max_scan) 1787 { 1392 { 1788 XA_STATE(xas, &mapping->i_pages, inde !! 1393 unsigned long i; >> 1394 >> 1395 for (i = 0; i < max_scan; i++) { >> 1396 struct page *page; 1789 1397 1790 while (max_scan--) { !! 1398 page = radix_tree_lookup(&mapping->i_pages, index); 1791 void *entry = xas_prev(&xas); !! 1399 if (!page || radix_tree_exceptional_entry(page)) 1792 if (!entry || xa_is_value(ent << 1793 break; 1400 break; 1794 if (xas.xa_index == ULONG_MAX !! 1401 index--; >> 1402 if (index == ULONG_MAX) 1795 break; 1403 break; 1796 } 1404 } 1797 1405 1798 return xas.xa_index; !! 1406 return index; 1799 } 1407 } 1800 EXPORT_SYMBOL(page_cache_prev_miss); !! 1408 EXPORT_SYMBOL(page_cache_prev_hole); 1801 << 1802 /* << 1803 * Lockless page cache protocol: << 1804 * On the lookup side: << 1805 * 1. Load the folio from i_pages << 1806 * 2. Increment the refcount if it's not zero << 1807 * 3. If the folio is not found by xas_reload << 1808 * << 1809 * On the removal side: << 1810 * A. Freeze the page (by zeroing the refcoun << 1811 * B. Remove the page from i_pages << 1812 * C. Return the page to the page allocator << 1813 * << 1814 * This means that any page may have its refe << 1815 * increased by a speculative page cache (or << 1816 * be allocated by another user before the RC << 1817 * Because the refcount temporarily acquired << 1818 * last refcount on the page, any page alloca << 1819 * folio_put(). << 1820 */ << 1821 1409 1822 /* !! 1410 /** 1823 * filemap_get_entry - Get a page cache entry !! 1411 * find_get_entry - find and get a page cache entry 1824 * @mapping: the address_space to search 1412 * @mapping: the address_space to search 1825 * @index: The page cache index. !! 1413 * @offset: the page cache index 1826 * 1414 * 1827 * Looks up the page cache entry at @mapping !! 1415 * Looks up the page cache slot at @mapping & @offset. If there is a 1828 * it is returned with an increased refcount. !! 1416 * page cache page, it is returned with an increased refcount. 1829 * of a previously evicted folio, or a swap e << 1830 * it is returned without further action. << 1831 * 1417 * 1832 * Return: The folio, swap or shadow entry, % !! 1418 * If the slot holds a shadow entry of a previously evicted page, or a >> 1419 * swap entry from shmem/tmpfs, it is returned. >> 1420 * >> 1421 * Otherwise, %NULL is returned. 1833 */ 1422 */ 1834 void *filemap_get_entry(struct address_space !! 1423 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1835 { 1424 { 1836 XA_STATE(xas, &mapping->i_pages, inde !! 1425 void **pagep; 1837 struct folio *folio; !! 1426 struct page *head, *page; 1838 1427 1839 rcu_read_lock(); 1428 rcu_read_lock(); 1840 repeat: 1429 repeat: 1841 xas_reset(&xas); !! 1430 page = NULL; 1842 folio = xas_load(&xas); !! 1431 pagep = radix_tree_lookup_slot(&mapping->i_pages, offset); 1843 if (xas_retry(&xas, folio)) !! 1432 if (pagep) { 1844 goto repeat; !! 1433 page = radix_tree_deref_slot(pagep); 1845 /* !! 1434 if (unlikely(!page)) 1846 * A shadow entry of a recently evict !! 1435 goto out; 1847 * shmem/tmpfs. Return it without at !! 1436 if (radix_tree_exception(page)) { 1848 */ !! 1437 if (radix_tree_deref_retry(page)) 1849 if (!folio || xa_is_value(folio)) !! 1438 goto repeat; 1850 goto out; !! 1439 /* >> 1440 * A shadow entry of a recently evicted page, >> 1441 * or a swap entry from shmem/tmpfs. Return >> 1442 * it without attempting to raise page count. >> 1443 */ >> 1444 goto out; >> 1445 } 1851 1446 1852 if (!folio_try_get(folio)) !! 1447 head = compound_head(page); 1853 goto repeat; !! 1448 if (!page_cache_get_speculative(head)) >> 1449 goto repeat; 1854 1450 1855 if (unlikely(folio != xas_reload(&xas !! 1451 /* The page was split under us? */ 1856 folio_put(folio); !! 1452 if (compound_head(page) != head) { 1857 goto repeat; !! 1453 put_page(head); >> 1454 goto repeat; >> 1455 } >> 1456 >> 1457 /* >> 1458 * Has the page moved? >> 1459 * This is part of the lockless pagecache protocol. See >> 1460 * include/linux/pagemap.h for details. >> 1461 */ >> 1462 if (unlikely(page != *pagep)) { >> 1463 put_page(head); >> 1464 goto repeat; >> 1465 } 1858 } 1466 } 1859 out: 1467 out: 1860 rcu_read_unlock(); 1468 rcu_read_unlock(); 1861 1469 1862 return folio; !! 1470 return page; >> 1471 } >> 1472 EXPORT_SYMBOL(find_get_entry); >> 1473 >> 1474 /** >> 1475 * find_lock_entry - locate, pin and lock a page cache entry >> 1476 * @mapping: the address_space to search >> 1477 * @offset: the page cache index >> 1478 * >> 1479 * Looks up the page cache slot at @mapping & @offset. If there is a >> 1480 * page cache page, it is returned locked and with an increased >> 1481 * refcount. >> 1482 * >> 1483 * If the slot holds a shadow entry of a previously evicted page, or a >> 1484 * swap entry from shmem/tmpfs, it is returned. >> 1485 * >> 1486 * Otherwise, %NULL is returned. >> 1487 * >> 1488 * find_lock_entry() may sleep. >> 1489 */ >> 1490 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) >> 1491 { >> 1492 struct page *page; >> 1493 >> 1494 repeat: >> 1495 page = find_get_entry(mapping, offset); >> 1496 if (page && !radix_tree_exception(page)) { >> 1497 lock_page(page); >> 1498 /* Has the page been truncated? */ >> 1499 if (unlikely(page_mapping(page) != mapping)) { >> 1500 unlock_page(page); >> 1501 put_page(page); >> 1502 goto repeat; >> 1503 } >> 1504 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); >> 1505 } >> 1506 return page; 1863 } 1507 } >> 1508 EXPORT_SYMBOL(find_lock_entry); 1864 1509 1865 /** 1510 /** 1866 * __filemap_get_folio - Find and get a refer !! 1511 * pagecache_get_page - find and get a page reference 1867 * @mapping: The address_space to search. !! 1512 * @mapping: the address_space to search 1868 * @index: The page index. !! 1513 * @offset: the page index 1869 * @fgp_flags: %FGP flags modify how the foli !! 1514 * @fgp_flags: PCG flags 1870 * @gfp: Memory allocation flags to use if %F !! 1515 * @gfp_mask: gfp mask to use for the page cache data page allocation >> 1516 * >> 1517 * Looks up the page cache slot at @mapping & @offset. 1871 * 1518 * 1872 * Looks up the page cache entry at @mapping !! 1519 * PCG flags modify how the page is returned. 1873 * 1520 * 1874 * If %FGP_LOCK or %FGP_CREAT are specified t !! 1521 * @fgp_flags can be: 1875 * if the %GFP flags specified for %FGP_CREAT << 1876 * 1522 * 1877 * If this function returns a folio, it is re !! 1523 * - FGP_ACCESSED: the page will be marked accessed >> 1524 * - FGP_LOCK: Page is return locked >> 1525 * - FGP_CREAT: If page is not present then a new page is allocated using >> 1526 * @gfp_mask and added to the page cache and the VM's LRU >> 1527 * list. The page is returned locked and with an increased >> 1528 * refcount. Otherwise, NULL is returned. 1878 * 1529 * 1879 * Return: The found folio or an ERR_PTR() ot !! 1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even >> 1531 * if the GFP flags specified for FGP_CREAT are atomic. >> 1532 * >> 1533 * If there is a page cache page, it is returned with an increased refcount. 1880 */ 1534 */ 1881 struct folio *__filemap_get_folio(struct addr !! 1535 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1882 fgf_t fgp_flags, gfp_t gfp) !! 1536 int fgp_flags, gfp_t gfp_mask) 1883 { 1537 { 1884 struct folio *folio; !! 1538 struct page *page; 1885 1539 1886 repeat: 1540 repeat: 1887 folio = filemap_get_entry(mapping, in !! 1541 page = find_get_entry(mapping, offset); 1888 if (xa_is_value(folio)) !! 1542 if (radix_tree_exceptional_entry(page)) 1889 folio = NULL; !! 1543 page = NULL; 1890 if (!folio) !! 1544 if (!page) 1891 goto no_page; 1545 goto no_page; 1892 1546 1893 if (fgp_flags & FGP_LOCK) { 1547 if (fgp_flags & FGP_LOCK) { 1894 if (fgp_flags & FGP_NOWAIT) { 1548 if (fgp_flags & FGP_NOWAIT) { 1895 if (!folio_trylock(fo !! 1549 if (!trylock_page(page)) { 1896 folio_put(fol !! 1550 put_page(page); 1897 return ERR_PT !! 1551 return NULL; 1898 } 1552 } 1899 } else { 1553 } else { 1900 folio_lock(folio); !! 1554 lock_page(page); 1901 } 1555 } 1902 1556 1903 /* Has the page been truncate 1557 /* Has the page been truncated? */ 1904 if (unlikely(folio->mapping ! !! 1558 if (unlikely(page->mapping != mapping)) { 1905 folio_unlock(folio); !! 1559 unlock_page(page); 1906 folio_put(folio); !! 1560 put_page(page); 1907 goto repeat; 1561 goto repeat; 1908 } 1562 } 1909 VM_BUG_ON_FOLIO(!folio_contai !! 1563 VM_BUG_ON_PAGE(page->index != offset, page); 1910 } 1564 } 1911 1565 1912 if (fgp_flags & FGP_ACCESSED) !! 1566 if (page && (fgp_flags & FGP_ACCESSED)) 1913 folio_mark_accessed(folio); !! 1567 mark_page_accessed(page); 1914 else if (fgp_flags & FGP_WRITE) { << 1915 /* Clear idle flag for buffer << 1916 if (folio_test_idle(folio)) << 1917 folio_clear_idle(foli << 1918 } << 1919 1568 1920 if (fgp_flags & FGP_STABLE) << 1921 folio_wait_stable(folio); << 1922 no_page: 1569 no_page: 1923 if (!folio && (fgp_flags & FGP_CREAT) !! 1570 if (!page && (fgp_flags & FGP_CREAT)) { 1924 unsigned int min_order = mapp << 1925 unsigned int order = max(min_ << 1926 int err; 1571 int err; 1927 index = mapping_align_index(m !! 1572 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1928 !! 1573 gfp_mask |= __GFP_WRITE; 1929 if ((fgp_flags & FGP_WRITE) & << 1930 gfp |= __GFP_WRITE; << 1931 if (fgp_flags & FGP_NOFS) 1574 if (fgp_flags & FGP_NOFS) 1932 gfp &= ~__GFP_FS; !! 1575 gfp_mask &= ~__GFP_FS; 1933 if (fgp_flags & FGP_NOWAIT) { << 1934 gfp &= ~GFP_KERNEL; << 1935 gfp |= GFP_NOWAIT | _ << 1936 } << 1937 if (WARN_ON_ONCE(!(fgp_flags << 1938 fgp_flags |= FGP_LOCK << 1939 << 1940 if (order > mapping_max_folio << 1941 order = mapping_max_f << 1942 /* If we're not aligned, allo << 1943 if (index & ((1UL << order) - << 1944 order = __ffs(index); << 1945 << 1946 do { << 1947 gfp_t alloc_gfp = gfp << 1948 << 1949 err = -ENOMEM; << 1950 if (order > min_order << 1951 alloc_gfp |= << 1952 folio = filemap_alloc << 1953 if (!folio) << 1954 continue; << 1955 << 1956 /* Init accessed so a << 1957 if (fgp_flags & FGP_A << 1958 __folio_set_r << 1959 << 1960 err = filemap_add_fol << 1961 if (!err) << 1962 break; << 1963 folio_put(folio); << 1964 folio = NULL; << 1965 } while (order-- > min_order) << 1966 << 1967 if (err == -EEXIST) << 1968 goto repeat; << 1969 if (err) << 1970 return ERR_PTR(err); << 1971 /* << 1972 * filemap_add_folio locks th << 1973 * we expect an unlocked page << 1974 */ << 1975 if (folio && (fgp_flags & FGP << 1976 folio_unlock(folio); << 1977 } << 1978 1576 1979 if (!folio) !! 1577 page = __page_cache_alloc(gfp_mask); 1980 return ERR_PTR(-ENOENT); !! 1578 if (!page) 1981 return folio; !! 1579 return NULL; 1982 } << 1983 EXPORT_SYMBOL(__filemap_get_folio); << 1984 << 1985 static inline struct folio *find_get_entry(st << 1986 xa_mark_t mark) << 1987 { << 1988 struct folio *folio; << 1989 << 1990 retry: << 1991 if (mark == XA_PRESENT) << 1992 folio = xas_find(xas, max); << 1993 else << 1994 folio = xas_find_marked(xas, << 1995 1580 1996 if (xas_retry(xas, folio)) !! 1581 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1997 goto retry; !! 1582 fgp_flags |= FGP_LOCK; 1998 /* << 1999 * A shadow entry of a recently evict << 2000 * entry from shmem/tmpfs or a DAX en << 2001 * without attempting to raise page c << 2002 */ << 2003 if (!folio || xa_is_value(folio)) << 2004 return folio; << 2005 1583 2006 if (!folio_try_get(folio)) !! 1584 /* Init accessed so avoid atomic mark_page_accessed later */ 2007 goto reset; !! 1585 if (fgp_flags & FGP_ACCESSED) >> 1586 __SetPageReferenced(page); 2008 1587 2009 if (unlikely(folio != xas_reload(xas) !! 1588 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 2010 folio_put(folio); !! 1589 if (unlikely(err)) { 2011 goto reset; !! 1590 put_page(page); >> 1591 page = NULL; >> 1592 if (err == -EEXIST) >> 1593 goto repeat; >> 1594 } 2012 } 1595 } 2013 1596 2014 return folio; !! 1597 return page; 2015 reset: << 2016 xas_reset(xas); << 2017 goto retry; << 2018 } 1598 } >> 1599 EXPORT_SYMBOL(pagecache_get_page); 2019 1600 2020 /** 1601 /** 2021 * find_get_entries - gang pagecache lookup 1602 * find_get_entries - gang pagecache lookup 2022 * @mapping: The address_space to search 1603 * @mapping: The address_space to search 2023 * @start: The starting page cache index 1604 * @start: The starting page cache index 2024 * @end: The final page index (inclusi !! 1605 * @nr_entries: The maximum number of entries 2025 * @fbatch: Where the resulting entries a !! 1606 * @entries: Where the resulting entries are placed 2026 * @indices: The cache indices correspondi 1607 * @indices: The cache indices corresponding to the entries in @entries 2027 * 1608 * 2028 * find_get_entries() will search for and ret !! 1609 * find_get_entries() will search for and return a group of up to 2029 * the mapping. The entries are placed in @f !! 1610 * @nr_entries entries in the mapping. The entries are placed at 2030 * takes a reference on any actual folios it !! 1611 * @entries. find_get_entries() takes a reference against any actual >> 1612 * pages it returns. >> 1613 * >> 1614 * The search returns a group of mapping-contiguous page cache entries >> 1615 * with ascending indexes. There may be holes in the indices due to >> 1616 * not-present pages. 2031 * 1617 * 2032 * The entries have ascending indexes. The i !! 1618 * Any shadow entries of evicted pages, or swap entries from 2033 * due to not-present entries or large folios << 2034 * << 2035 * Any shadow entries of evicted folios, or s << 2036 * shmem/tmpfs, are included in the returned 1619 * shmem/tmpfs, are included in the returned array. 2037 * 1620 * 2038 * Return: The number of entries which were f !! 1621 * find_get_entries() returns the number of pages and shadow entries >> 1622 * which were found. 2039 */ 1623 */ 2040 unsigned find_get_entries(struct address_spac !! 1624 unsigned find_get_entries(struct address_space *mapping, 2041 pgoff_t end, struct folio_bat !! 1625 pgoff_t start, unsigned int nr_entries, 2042 { !! 1626 struct page **entries, pgoff_t *indices) 2043 XA_STATE(xas, &mapping->i_pages, *sta !! 1627 { 2044 struct folio *folio; !! 1628 void **slot; 2045 !! 1629 unsigned int ret = 0; 2046 rcu_read_lock(); !! 1630 struct radix_tree_iter iter; 2047 while ((folio = find_get_entry(&xas, << 2048 indices[fbatch->nr] = xas.xa_ << 2049 if (!folio_batch_add(fbatch, << 2050 break; << 2051 } << 2052 << 2053 if (folio_batch_count(fbatch)) { << 2054 unsigned long nr; << 2055 int idx = folio_batch_count(f << 2056 << 2057 folio = fbatch->folios[idx]; << 2058 if (!xa_is_value(folio)) << 2059 nr = folio_nr_pages(f << 2060 else << 2061 nr = 1 << xa_get_orde << 2062 *start = round_down(indices[i << 2063 } << 2064 rcu_read_unlock(); << 2065 << 2066 return folio_batch_count(fbatch); << 2067 } << 2068 1631 2069 /** !! 1632 if (!nr_entries) 2070 * find_lock_entries - Find a batch of pageca !! 1633 return 0; 2071 * @mapping: The address_space to search. << 2072 * @start: The starting page cache index << 2073 * @end: The final page index (inclusi << 2074 * @fbatch: Where the resulting entries a << 2075 * @indices: The cache indices of the entr << 2076 * << 2077 * find_lock_entries() will return a batch of << 2078 * Swap, shadow and DAX entries are included. << 2079 * locked and with an incremented refcount. << 2080 * by somebody else or under writeback are sk << 2081 * partially outside the range are not return << 2082 * << 2083 * The entries have ascending indexes. The i << 2084 * due to not-present entries, large folios, << 2085 * locked or folios under writeback. << 2086 * << 2087 * Return: The number of entries which were f << 2088 */ << 2089 unsigned find_lock_entries(struct address_spa << 2090 pgoff_t end, struct folio_bat << 2091 { << 2092 XA_STATE(xas, &mapping->i_pages, *sta << 2093 struct folio *folio; << 2094 1634 2095 rcu_read_lock(); 1635 rcu_read_lock(); 2096 while ((folio = find_get_entry(&xas, !! 1636 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 2097 unsigned long base; !! 1637 struct page *head, *page; 2098 unsigned long nr; !! 1638 repeat: 2099 !! 1639 page = radix_tree_deref_slot(slot); 2100 if (!xa_is_value(folio)) { !! 1640 if (unlikely(!page)) 2101 nr = folio_nr_pages(f !! 1641 continue; 2102 base = folio->index; !! 1642 if (radix_tree_exception(page)) { 2103 /* Omit large folio w !! 1643 if (radix_tree_deref_retry(page)) { 2104 if (base < *start) !! 1644 slot = radix_tree_iter_retry(&iter); 2105 goto put; << 2106 /* Omit large folio w << 2107 if (base + nr - 1 > e << 2108 goto put; << 2109 if (!folio_trylock(fo << 2110 goto put; << 2111 if (folio->mapping != << 2112 folio_test_writeb << 2113 goto unlock; << 2114 VM_BUG_ON_FOLIO(!foli << 2115 folio << 2116 } else { << 2117 nr = 1 << xas_get_ord << 2118 base = xas.xa_index & << 2119 /* Omit order>0 value << 2120 if (base < *start) << 2121 continue; 1645 continue; 2122 /* Omit order>0 value !! 1646 } 2123 if (base + nr - 1 > e !! 1647 /* 2124 break; !! 1648 * A shadow entry of a recently evicted page, a swap >> 1649 * entry from shmem/tmpfs or a DAX entry. Return it >> 1650 * without attempting to raise page count. >> 1651 */ >> 1652 goto export; >> 1653 } >> 1654 >> 1655 head = compound_head(page); >> 1656 if (!page_cache_get_speculative(head)) >> 1657 goto repeat; >> 1658 >> 1659 /* The page was split under us? */ >> 1660 if (compound_head(page) != head) { >> 1661 put_page(head); >> 1662 goto repeat; 2125 } 1663 } 2126 1664 2127 /* Update start now so that l !! 1665 /* Has the page moved? */ 2128 *start = base + nr; !! 1666 if (unlikely(page != *slot)) { 2129 indices[fbatch->nr] = xas.xa_ !! 1667 put_page(head); 2130 if (!folio_batch_add(fbatch, !! 1668 goto repeat; >> 1669 } >> 1670 export: >> 1671 indices[ret] = iter.index; >> 1672 entries[ret] = page; >> 1673 if (++ret == nr_entries) 2131 break; 1674 break; 2132 continue; << 2133 unlock: << 2134 folio_unlock(folio); << 2135 put: << 2136 folio_put(folio); << 2137 } 1675 } 2138 rcu_read_unlock(); 1676 rcu_read_unlock(); 2139 !! 1677 return ret; 2140 return folio_batch_count(fbatch); << 2141 } << 2142 << 2143 /** << 2144 * filemap_get_folios - Get a batch of folios << 2145 * @mapping: The address_space to search << 2146 * @start: The starting page index << 2147 * @end: The final page index (inclusi << 2148 * @fbatch: The batch to fill. << 2149 * << 2150 * Search for and return a batch of folios in << 2151 * index @start and up to index @end (inclusi << 2152 * in @fbatch with an elevated reference coun << 2153 * << 2154 * Return: The number of folios which were fo << 2155 * We also update @start to index the next fo << 2156 */ << 2157 unsigned filemap_get_folios(struct address_sp << 2158 pgoff_t end, struct folio_bat << 2159 { << 2160 return filemap_get_folios_tag(mapping << 2161 } 1678 } 2162 EXPORT_SYMBOL(filemap_get_folios); << 2163 1679 2164 /** 1680 /** 2165 * filemap_get_folios_contig - Get a batch of !! 1681 * find_get_pages_range - gang pagecache lookup 2166 * @mapping: The address_space to search 1682 * @mapping: The address_space to search 2167 * @start: The starting page index 1683 * @start: The starting page index 2168 * @end: The final page index (inclusi 1684 * @end: The final page index (inclusive) 2169 * @fbatch: The batch to fill !! 1685 * @nr_pages: The maximum number of pages >> 1686 * @pages: Where the resulting pages are placed 2170 * 1687 * 2171 * filemap_get_folios_contig() works exactly !! 1688 * find_get_pages_range() will search for and return a group of up to @nr_pages 2172 * except the returned folios are guaranteed !! 1689 * pages in the mapping starting at index @start and up to index @end 2173 * not return all contiguous folios if the ba !! 1690 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2174 * !! 1691 * a reference against the returned pages. 2175 * Return: The number of folios found. !! 1692 * 2176 * Also update @start to be positioned for tr !! 1693 * The search returns a group of mapping-contiguous pages with ascending 2177 */ !! 1694 * indexes. There may be holes in the indices due to not-present pages. >> 1695 * We also update @start to index the next page for the traversal. >> 1696 * >> 1697 * find_get_pages_range() returns the number of pages which were found. If this >> 1698 * number is smaller than @nr_pages, the end of specified range has been >> 1699 * reached. >> 1700 */ >> 1701 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, >> 1702 pgoff_t end, unsigned int nr_pages, >> 1703 struct page **pages) >> 1704 { >> 1705 struct radix_tree_iter iter; >> 1706 void **slot; >> 1707 unsigned ret = 0; 2178 1708 2179 unsigned filemap_get_folios_contig(struct add !! 1709 if (unlikely(!nr_pages)) 2180 pgoff_t *start, pgoff_t end, !! 1710 return 0; 2181 { << 2182 XA_STATE(xas, &mapping->i_pages, *sta << 2183 unsigned long nr; << 2184 struct folio *folio; << 2185 1711 2186 rcu_read_lock(); 1712 rcu_read_lock(); >> 1713 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) { >> 1714 struct page *head, *page; 2187 1715 2188 for (folio = xas_load(&xas); folio && !! 1716 if (iter.index > end) 2189 folio = xas_next(&xas !! 1717 break; 2190 if (xas_retry(&xas, folio)) !! 1718 repeat: >> 1719 page = radix_tree_deref_slot(slot); >> 1720 if (unlikely(!page)) 2191 continue; 1721 continue; 2192 /* << 2193 * If the entry has been swap << 2194 * No current caller is looki << 2195 */ << 2196 if (xa_is_value(folio)) << 2197 goto update_start; << 2198 1722 2199 /* If we landed in the middle !! 1723 if (radix_tree_exception(page)) { 2200 if (xa_is_sibling(folio)) !! 1724 if (radix_tree_deref_retry(page)) { 2201 goto update_start; !! 1725 slot = radix_tree_iter_retry(&iter); 2202 !! 1726 continue; 2203 if (!folio_try_get(folio)) !! 1727 } 2204 goto retry; !! 1728 /* 2205 !! 1729 * A shadow entry of a recently evicted page, 2206 if (unlikely(folio != xas_rel !! 1730 * or a swap entry from shmem/tmpfs. Skip 2207 goto put_folio; !! 1731 * over it. 2208 !! 1732 */ 2209 if (!folio_batch_add(fbatch, !! 1733 continue; 2210 nr = folio_nr_pages(f << 2211 *start = folio->index << 2212 goto out; << 2213 } 1734 } 2214 continue; << 2215 put_folio: << 2216 folio_put(folio); << 2217 << 2218 retry: << 2219 xas_reset(&xas); << 2220 } << 2221 1735 2222 update_start: !! 1736 head = compound_head(page); 2223 nr = folio_batch_count(fbatch); !! 1737 if (!page_cache_get_speculative(head)) >> 1738 goto repeat; 2224 1739 2225 if (nr) { !! 1740 /* The page was split under us? */ 2226 folio = fbatch->folios[nr - 1 !! 1741 if (compound_head(page) != head) { 2227 *start = folio_next_index(fol !! 1742 put_page(head); 2228 } !! 1743 goto repeat; 2229 out: !! 1744 } 2230 rcu_read_unlock(); << 2231 return folio_batch_count(fbatch); << 2232 } << 2233 EXPORT_SYMBOL(filemap_get_folios_contig); << 2234 1745 2235 /** !! 1746 /* Has the page moved? */ 2236 * filemap_get_folios_tag - Get a batch of fo !! 1747 if (unlikely(page != *slot)) { 2237 * @mapping: The address_space to search !! 1748 put_page(head); 2238 * @start: The starting page index !! 1749 goto repeat; 2239 * @end: The final page index (inclusi !! 1750 } 2240 * @tag: The tag index << 2241 * @fbatch: The batch to fill << 2242 * << 2243 * The first folio may start before @start; i << 2244 * @start. The final folio may extend beyond << 2245 * contain @end. The folios have ascending i << 2246 * between the folios if there are indices wh << 2247 * page cache. If folios are added to or rem << 2248 * while this is running, they may or may not << 2249 * Only returns folios that are tagged with @ << 2250 * << 2251 * Return: The number of folios found. << 2252 * Also update @start to index the next folio << 2253 */ << 2254 unsigned filemap_get_folios_tag(struct addres << 2255 pgoff_t end, xa_mark_ << 2256 { << 2257 XA_STATE(xas, &mapping->i_pages, *sta << 2258 struct folio *folio; << 2259 1751 2260 rcu_read_lock(); !! 1752 pages[ret] = page; 2261 while ((folio = find_get_entry(&xas, !! 1753 if (++ret == nr_pages) { 2262 /* !! 1754 *start = pages[ret - 1]->index + 1; 2263 * Shadow entries should neve << 2264 * is lockless so there is a << 2265 * a page we saw tagged. Skip << 2266 */ << 2267 if (xa_is_value(folio)) << 2268 continue; << 2269 if (!folio_batch_add(fbatch, << 2270 unsigned long nr = fo << 2271 *start = folio->index << 2272 goto out; 1755 goto out; 2273 } 1756 } 2274 } 1757 } >> 1758 2275 /* 1759 /* 2276 * We come here when there is no page 1760 * We come here when there is no page beyond @end. We take care to not 2277 * overflow the index @start as it co 1761 * overflow the index @start as it confuses some of the callers. This 2278 * breaks the iteration when there is !! 1762 * breaks the iteration when there is page at index -1 but that is 2279 * already broke anyway. !! 1763 * already broken anyway. 2280 */ 1764 */ 2281 if (end == (pgoff_t)-1) 1765 if (end == (pgoff_t)-1) 2282 *start = (pgoff_t)-1; 1766 *start = (pgoff_t)-1; 2283 else 1767 else 2284 *start = end + 1; 1768 *start = end + 1; 2285 out: 1769 out: 2286 rcu_read_unlock(); 1770 rcu_read_unlock(); 2287 1771 2288 return folio_batch_count(fbatch); !! 1772 return ret; 2289 } 1773 } 2290 EXPORT_SYMBOL(filemap_get_folios_tag); << 2291 1774 2292 /* !! 1775 /** 2293 * CD/DVDs are error prone. When a medium err !! 1776 * find_get_pages_contig - gang contiguous pagecache lookup 2294 * a _large_ part of the i/o request. Imagine !! 1777 * @mapping: The address_space to search 2295 * !! 1778 * @index: The starting page index 2296 * ---R_________________________________ !! 1779 * @nr_pages: The maximum number of pages 2297 * ^ reading here !! 1780 * @pages: Where the resulting pages are placed 2298 * 1781 * 2299 * read(R) => miss => readahead(R...B) => med !! 1782 * find_get_pages_contig() works exactly like find_get_pages(), except 2300 * => failing the whole request => read(R) => !! 1783 * that the returned number of pages are guaranteed to be contiguous. 2301 * readahead(R+1...B+1) => bang => read(R+2) << 2302 * readahead(R+3...B+2) => bang => read(R+3) << 2303 * readahead(R+4...B+3) => bang => read(R+4) << 2304 * 1784 * 2305 * It is going insane. Fix it by quickly scal !! 1785 * find_get_pages_contig() returns the number of pages which were found. 2306 */ 1786 */ 2307 static void shrink_readahead_size_eio(struct !! 1787 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, >> 1788 unsigned int nr_pages, struct page **pages) 2308 { 1789 { 2309 ra->ra_pages /= 4; !! 1790 struct radix_tree_iter iter; 2310 } !! 1791 void **slot; >> 1792 unsigned int ret = 0; 2311 1793 2312 /* !! 1794 if (unlikely(!nr_pages)) 2313 * filemap_get_read_batch - Get a batch of fo !! 1795 return 0; 2314 * << 2315 * Get a batch of folios which represent a co << 2316 * the file. No exceptional entries will be << 2317 * the middle of a folio, the entire folio wi << 2318 * folio in the batch may have the readahead << 2319 * clear so that the caller can take the appr << 2320 */ << 2321 static void filemap_get_read_batch(struct add << 2322 pgoff_t index, pgoff_t max, s << 2323 { << 2324 XA_STATE(xas, &mapping->i_pages, inde << 2325 struct folio *folio; << 2326 1796 2327 rcu_read_lock(); 1797 rcu_read_lock(); 2328 for (folio = xas_load(&xas); folio; f !! 1798 radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) { 2329 if (xas_retry(&xas, folio)) !! 1799 struct page *head, *page; 2330 continue; !! 1800 repeat: 2331 if (xas.xa_index > max || xa_ !! 1801 page = radix_tree_deref_slot(slot); >> 1802 /* The hole, there no reason to continue */ >> 1803 if (unlikely(!page)) 2332 break; 1804 break; 2333 if (xa_is_sibling(folio)) !! 1805 >> 1806 if (radix_tree_exception(page)) { >> 1807 if (radix_tree_deref_retry(page)) { >> 1808 slot = radix_tree_iter_retry(&iter); >> 1809 continue; >> 1810 } >> 1811 /* >> 1812 * A shadow entry of a recently evicted page, >> 1813 * or a swap entry from shmem/tmpfs. Stop >> 1814 * looking for contiguous pages. >> 1815 */ 2334 break; 1816 break; 2335 if (!folio_try_get(folio)) !! 1817 } 2336 goto retry; << 2337 1818 2338 if (unlikely(folio != xas_rel !! 1819 head = compound_head(page); 2339 goto put_folio; !! 1820 if (!page_cache_get_speculative(head)) >> 1821 goto repeat; 2340 1822 2341 if (!folio_batch_add(fbatch, !! 1823 /* The page was split under us? */ 2342 break; !! 1824 if (compound_head(page) != head) { 2343 if (!folio_test_uptodate(foli !! 1825 put_page(head); >> 1826 goto repeat; >> 1827 } >> 1828 >> 1829 /* Has the page moved? */ >> 1830 if (unlikely(page != *slot)) { >> 1831 put_page(head); >> 1832 goto repeat; >> 1833 } >> 1834 >> 1835 /* >> 1836 * must check mapping and index after taking the ref. >> 1837 * otherwise we can get both false positives and false >> 1838 * negatives, which is just confusing to the caller. >> 1839 */ >> 1840 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { >> 1841 put_page(page); 2344 break; 1842 break; 2345 if (folio_test_readahead(foli !! 1843 } >> 1844 >> 1845 pages[ret] = page; >> 1846 if (++ret == nr_pages) 2346 break; 1847 break; 2347 xas_advance(&xas, folio_next_ << 2348 continue; << 2349 put_folio: << 2350 folio_put(folio); << 2351 retry: << 2352 xas_reset(&xas); << 2353 } 1848 } 2354 rcu_read_unlock(); 1849 rcu_read_unlock(); >> 1850 return ret; 2355 } 1851 } >> 1852 EXPORT_SYMBOL(find_get_pages_contig); 2356 1853 2357 static int filemap_read_folio(struct file *fi !! 1854 /** 2358 struct folio *folio) !! 1855 * find_get_pages_range_tag - find and return pages in given range matching @tag 2359 { !! 1856 * @mapping: the address_space to search 2360 bool workingset = folio_test_workings !! 1857 * @index: the starting page index 2361 unsigned long pflags; !! 1858 * @end: The final page index (inclusive) 2362 int error; !! 1859 * @tag: the tag index 2363 !! 1860 * @nr_pages: the maximum number of pages 2364 /* Start the actual read. The read wi !! 1861 * @pages: where the resulting pages are placed 2365 if (unlikely(workingset)) !! 1862 * 2366 psi_memstall_enter(&pflags); !! 1863 * Like find_get_pages, except we only return pages which are tagged with 2367 error = filler(file, folio); !! 1864 * @tag. We update @index to index the next page for the traversal. 2368 if (unlikely(workingset)) !! 1865 */ 2369 psi_memstall_leave(&pflags); !! 1866 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2370 if (error) !! 1867 pgoff_t end, int tag, unsigned int nr_pages, 2371 return error; !! 1868 struct page **pages) >> 1869 { >> 1870 struct radix_tree_iter iter; >> 1871 void **slot; >> 1872 unsigned ret = 0; 2372 1873 2373 error = folio_wait_locked_killable(fo !! 1874 if (unlikely(!nr_pages)) 2374 if (error) << 2375 return error; << 2376 if (folio_test_uptodate(folio)) << 2377 return 0; 1875 return 0; 2378 if (file) << 2379 shrink_readahead_size_eio(&fi << 2380 return -EIO; << 2381 } << 2382 << 2383 static bool filemap_range_uptodate(struct add << 2384 loff_t pos, size_t count, str << 2385 bool need_uptodate) << 2386 { << 2387 if (folio_test_uptodate(folio)) << 2388 return true; << 2389 /* pipes can't handle partially uptod << 2390 if (need_uptodate) << 2391 return false; << 2392 if (!mapping->a_ops->is_partially_upt << 2393 return false; << 2394 if (mapping->host->i_blkbits >= folio << 2395 return false; << 2396 << 2397 if (folio_pos(folio) > pos) { << 2398 count -= folio_pos(folio) - p << 2399 pos = 0; << 2400 } else { << 2401 pos -= folio_pos(folio); << 2402 } << 2403 << 2404 return mapping->a_ops->is_partially_u << 2405 } << 2406 1876 2407 static int filemap_update_page(struct kiocb * !! 1877 rcu_read_lock(); 2408 struct address_space *mapping !! 1878 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) { 2409 struct folio *folio, bool nee !! 1879 struct page *head, *page; 2410 { << 2411 int error; << 2412 1880 2413 if (iocb->ki_flags & IOCB_NOWAIT) { !! 1881 if (iter.index > end) 2414 if (!filemap_invalidate_trylo !! 1882 break; 2415 return -EAGAIN; !! 1883 repeat: 2416 } else { !! 1884 page = radix_tree_deref_slot(slot); 2417 filemap_invalidate_lock_share !! 1885 if (unlikely(!page)) 2418 } !! 1886 continue; 2419 1887 2420 if (!folio_trylock(folio)) { !! 1888 if (radix_tree_exception(page)) { 2421 error = -EAGAIN; !! 1889 if (radix_tree_deref_retry(page)) { 2422 if (iocb->ki_flags & (IOCB_NO !! 1890 slot = radix_tree_iter_retry(&iter); 2423 goto unlock_mapping; !! 1891 continue; 2424 if (!(iocb->ki_flags & IOCB_W !! 1892 } 2425 filemap_invalidate_un << 2426 /* 1893 /* 2427 * This is where we u !! 1894 * A shadow entry of a recently evicted page. 2428 * previously submitt !! 1895 * >> 1896 * Those entries should never be tagged, but >> 1897 * this tree walk is lockless and the tags are >> 1898 * looked up in bulk, one radix tree node at a >> 1899 * time, so there is a sizable window for page >> 1900 * reclaim to evict a page we saw tagged. >> 1901 * >> 1902 * Skip over it. 2429 */ 1903 */ 2430 folio_put_wait_locked !! 1904 continue; 2431 return AOP_TRUNCATED_ << 2432 } 1905 } 2433 error = __folio_lock_async(fo << 2434 if (error) << 2435 goto unlock_mapping; << 2436 } << 2437 1906 2438 error = AOP_TRUNCATED_PAGE; !! 1907 head = compound_head(page); 2439 if (!folio->mapping) !! 1908 if (!page_cache_get_speculative(head)) 2440 goto unlock; !! 1909 goto repeat; 2441 1910 2442 error = 0; !! 1911 /* The page was split under us? */ 2443 if (filemap_range_uptodate(mapping, i !! 1912 if (compound_head(page) != head) { 2444 need_uptod !! 1913 put_page(head); 2445 goto unlock; !! 1914 goto repeat; >> 1915 } 2446 1916 2447 error = -EAGAIN; !! 1917 /* Has the page moved? */ 2448 if (iocb->ki_flags & (IOCB_NOIO | IOC !! 1918 if (unlikely(page != *slot)) { 2449 goto unlock; !! 1919 put_page(head); >> 1920 goto repeat; >> 1921 } 2450 1922 2451 error = filemap_read_folio(iocb->ki_f !! 1923 pages[ret] = page; 2452 folio); !! 1924 if (++ret == nr_pages) { 2453 goto unlock_mapping; !! 1925 *index = pages[ret - 1]->index + 1; 2454 unlock: !! 1926 goto out; 2455 folio_unlock(folio); !! 1927 } 2456 unlock_mapping: !! 1928 } 2457 filemap_invalidate_unlock_shared(mapp !! 1929 2458 if (error == AOP_TRUNCATED_PAGE) !! 1930 /* 2459 folio_put(folio); !! 1931 * We come here when we got at @end. We take care to not overflow the 2460 return error; !! 1932 * index @index as it confuses some of the callers. This breaks the >> 1933 * iteration when there is page at index -1 but that is already broken >> 1934 * anyway. >> 1935 */ >> 1936 if (end == (pgoff_t)-1) >> 1937 *index = (pgoff_t)-1; >> 1938 else >> 1939 *index = end + 1; >> 1940 out: >> 1941 rcu_read_unlock(); >> 1942 >> 1943 return ret; 2461 } 1944 } >> 1945 EXPORT_SYMBOL(find_get_pages_range_tag); 2462 1946 2463 static int filemap_create_folio(struct file * !! 1947 /** 2464 struct address_space *mapping !! 1948 * find_get_entries_tag - find and return entries that match @tag 2465 struct folio_batch *fbatch) !! 1949 * @mapping: the address_space to search >> 1950 * @start: the starting page cache index >> 1951 * @tag: the tag index >> 1952 * @nr_entries: the maximum number of entries >> 1953 * @entries: where the resulting entries are placed >> 1954 * @indices: the cache indices corresponding to the entries in @entries >> 1955 * >> 1956 * Like find_get_entries, except we only return entries which are tagged with >> 1957 * @tag. >> 1958 */ >> 1959 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, >> 1960 int tag, unsigned int nr_entries, >> 1961 struct page **entries, pgoff_t *indices) 2466 { 1962 { 2467 struct folio *folio; !! 1963 void **slot; 2468 int error; !! 1964 unsigned int ret = 0; 2469 unsigned int min_order = mapping_min_ !! 1965 struct radix_tree_iter iter; 2470 pgoff_t index; << 2471 1966 2472 folio = filemap_alloc_folio(mapping_g !! 1967 if (!nr_entries) 2473 if (!folio) !! 1968 return 0; 2474 return -ENOMEM; << 2475 << 2476 /* << 2477 * Protect against truncate / hole pu << 2478 * here assures we cannot instantiate << 2479 * pagecache folios after evicting pa << 2480 * and before actually freeing blocks << 2481 * release invalidate_lock after inse << 2482 * the page cache as the locked folio << 2483 * synchronize with hole punching. Bu << 2484 * such as filemap_update_page() fill << 2485 * pages or ->readahead() that need t << 2486 * while mapping blocks for IO so let << 2487 * well to keep locking rules simple. << 2488 */ << 2489 filemap_invalidate_lock_shared(mappin << 2490 index = (pos >> (PAGE_SHIFT + min_ord << 2491 error = filemap_add_folio(mapping, fo << 2492 mapping_gfp_constrain << 2493 if (error == -EEXIST) << 2494 error = AOP_TRUNCATED_PAGE; << 2495 if (error) << 2496 goto error; << 2497 1969 2498 error = filemap_read_folio(file, mapp !! 1970 rcu_read_lock(); 2499 if (error) !! 1971 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) { 2500 goto error; !! 1972 struct page *head, *page; >> 1973 repeat: >> 1974 page = radix_tree_deref_slot(slot); >> 1975 if (unlikely(!page)) >> 1976 continue; >> 1977 if (radix_tree_exception(page)) { >> 1978 if (radix_tree_deref_retry(page)) { >> 1979 slot = radix_tree_iter_retry(&iter); >> 1980 continue; >> 1981 } 2501 1982 2502 filemap_invalidate_unlock_shared(mapp !! 1983 /* 2503 folio_batch_add(fbatch, folio); !! 1984 * A shadow entry of a recently evicted page, a swap 2504 return 0; !! 1985 * entry from shmem/tmpfs or a DAX entry. Return it 2505 error: !! 1986 * without attempting to raise page count. 2506 filemap_invalidate_unlock_shared(mapp !! 1987 */ 2507 folio_put(folio); !! 1988 goto export; 2508 return error; !! 1989 } 2509 } << 2510 1990 2511 static int filemap_readahead(struct kiocb *io !! 1991 head = compound_head(page); 2512 struct address_space *mapping !! 1992 if (!page_cache_get_speculative(head)) 2513 pgoff_t last_index) !! 1993 goto repeat; 2514 { << 2515 DEFINE_READAHEAD(ractl, file, &file-> << 2516 << 2517 if (iocb->ki_flags & IOCB_NOIO) << 2518 return -EAGAIN; << 2519 page_cache_async_ra(&ractl, folio, la << 2520 return 0; << 2521 } << 2522 1994 2523 static int filemap_get_pages(struct kiocb *io !! 1995 /* The page was split under us? */ 2524 struct folio_batch *fbatch, b !! 1996 if (compound_head(page) != head) { 2525 { !! 1997 put_page(head); 2526 struct file *filp = iocb->ki_filp; !! 1998 goto repeat; 2527 struct address_space *mapping = filp- !! 1999 } 2528 struct file_ra_state *ra = &filp->f_r << 2529 pgoff_t index = iocb->ki_pos >> PAGE_ << 2530 pgoff_t last_index; << 2531 struct folio *folio; << 2532 unsigned int flags; << 2533 int err = 0; << 2534 2000 2535 /* "last_index" is the index of the p !! 2001 /* Has the page moved? */ 2536 last_index = DIV_ROUND_UP(iocb->ki_po !! 2002 if (unlikely(page != *slot)) { 2537 retry: !! 2003 put_page(head); 2538 if (fatal_signal_pending(current)) !! 2004 goto repeat; 2539 return -EINTR; !! 2005 } 2540 !! 2006 export: 2541 filemap_get_read_batch(mapping, index !! 2007 indices[ret] = iter.index; 2542 if (!folio_batch_count(fbatch)) { !! 2008 entries[ret] = page; 2543 if (iocb->ki_flags & IOCB_NOI !! 2009 if (++ret == nr_entries) 2544 return -EAGAIN; !! 2010 break; 2545 if (iocb->ki_flags & IOCB_NOW << 2546 flags = memalloc_noio << 2547 page_cache_sync_readahead(map << 2548 last_index - << 2549 if (iocb->ki_flags & IOCB_NOW << 2550 memalloc_noio_restore << 2551 filemap_get_read_batch(mappin << 2552 } << 2553 if (!folio_batch_count(fbatch)) { << 2554 if (iocb->ki_flags & (IOCB_NO << 2555 return -EAGAIN; << 2556 err = filemap_create_folio(fi << 2557 if (err == AOP_TRUNCATED_PAGE << 2558 goto retry; << 2559 return err; << 2560 } << 2561 << 2562 folio = fbatch->folios[folio_batch_co << 2563 if (folio_test_readahead(folio)) { << 2564 err = filemap_readahead(iocb, << 2565 if (err) << 2566 goto err; << 2567 } << 2568 if (!folio_test_uptodate(folio)) { << 2569 if ((iocb->ki_flags & IOCB_WA << 2570 folio_batch_count(fbatch) << 2571 iocb->ki_flags |= IOC << 2572 err = filemap_update_page(ioc << 2573 nee << 2574 if (err) << 2575 goto err; << 2576 } 2011 } 2577 !! 2012 rcu_read_unlock(); 2578 trace_mm_filemap_get_pages(mapping, i !! 2013 return ret; 2579 return 0; << 2580 err: << 2581 if (err < 0) << 2582 folio_put(folio); << 2583 if (likely(--fbatch->nr)) << 2584 return 0; << 2585 if (err == AOP_TRUNCATED_PAGE) << 2586 goto retry; << 2587 return err; << 2588 } 2014 } >> 2015 EXPORT_SYMBOL(find_get_entries_tag); 2589 2016 2590 static inline bool pos_same_folio(loff_t pos1 !! 2017 /* >> 2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail >> 2019 * a _large_ part of the i/o request. Imagine the worst scenario: >> 2020 * >> 2021 * ---R__________________________________________B__________ >> 2022 * ^ reading here ^ bad block(assume 4k) >> 2023 * >> 2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries >> 2025 * => failing the whole request => read(R) => read(R+1) => >> 2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => >> 2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => >> 2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... >> 2029 * >> 2030 * It is going insane. Fix it by quickly scaling down the readahead size. >> 2031 */ >> 2032 static void shrink_readahead_size_eio(struct file *filp, >> 2033 struct file_ra_state *ra) 2591 { 2034 { 2592 unsigned int shift = folio_shift(foli !! 2035 ra->ra_pages /= 4; 2593 << 2594 return (pos1 >> shift == pos2 >> shif << 2595 } 2036 } 2596 2037 2597 /** 2038 /** 2598 * filemap_read - Read data from the page cac !! 2039 * generic_file_buffered_read - generic file read routine 2599 * @iocb: The iocb to read. !! 2040 * @iocb: the iocb to read 2600 * @iter: Destination for the data. !! 2041 * @iter: data destination 2601 * @already_read: Number of bytes already rea !! 2042 * @written: already copied 2602 * !! 2043 * 2603 * Copies data from the page cache. If the d !! 2044 * This is a generic file read routine, and uses the 2604 * uses the readahead and read_folio address_ !! 2045 * mapping->a_ops->readpage() function for the actual low-level stuff. 2605 * !! 2046 * 2606 * Return: Total number of bytes copied, incl !! 2047 * This is really ugly. But the goto's actually try to clarify some 2607 * the caller. If an error happens before an !! 2048 * of the logic when it comes to error handling etc. 2608 * a negative error number. << 2609 */ 2049 */ 2610 ssize_t filemap_read(struct kiocb *iocb, stru !! 2050 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2611 ssize_t already_read) !! 2051 struct iov_iter *iter, ssize_t written) 2612 { 2052 { 2613 struct file *filp = iocb->ki_filp; 2053 struct file *filp = iocb->ki_filp; 2614 struct file_ra_state *ra = &filp->f_r << 2615 struct address_space *mapping = filp- 2054 struct address_space *mapping = filp->f_mapping; 2616 struct inode *inode = mapping->host; 2055 struct inode *inode = mapping->host; 2617 struct folio_batch fbatch; !! 2056 struct file_ra_state *ra = &filp->f_ra; 2618 int i, error = 0; !! 2057 loff_t *ppos = &iocb->ki_pos; 2619 bool writably_mapped; !! 2058 pgoff_t index; 2620 loff_t isize, end_offset; !! 2059 pgoff_t last_index; 2621 loff_t last_pos = ra->prev_pos; !! 2060 pgoff_t prev_index; >> 2061 unsigned long offset; /* offset into pagecache page */ >> 2062 unsigned int prev_offset; >> 2063 int error = 0; 2622 2064 2623 if (unlikely(iocb->ki_pos >= inode->i !! 2065 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2624 return 0; 2066 return 0; 2625 if (unlikely(!iov_iter_count(iter))) !! 2067 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2626 return 0; << 2627 << 2628 iov_iter_truncate(iter, inode->i_sb-> << 2629 folio_batch_init(&fbatch); << 2630 2068 2631 do { !! 2069 index = *ppos >> PAGE_SHIFT; 2632 cond_resched(); !! 2070 prev_index = ra->prev_pos >> PAGE_SHIFT; >> 2071 prev_offset = ra->prev_pos & (PAGE_SIZE-1); >> 2072 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; >> 2073 offset = *ppos & ~PAGE_MASK; 2633 2074 2634 /* !! 2075 for (;;) { 2635 * If we've already successfu !! 2076 struct page *page; 2636 * can no longer safely retur !! 2077 pgoff_t end_index; 2637 * an async read NOWAIT at th !! 2078 loff_t isize; 2638 */ !! 2079 unsigned long nr, ret; 2639 if ((iocb->ki_flags & IOCB_WA << 2640 iocb->ki_flags |= IOC << 2641 2080 2642 if (unlikely(iocb->ki_pos >= !! 2081 cond_resched(); 2643 break; !! 2082 find_page: >> 2083 if (fatal_signal_pending(current)) { >> 2084 error = -EINTR; >> 2085 goto out; >> 2086 } 2644 2087 2645 error = filemap_get_pages(ioc !! 2088 page = find_get_page(mapping, index); 2646 if (error < 0) !! 2089 if (!page) { 2647 break; !! 2090 if (iocb->ki_flags & IOCB_NOWAIT) >> 2091 goto would_block; >> 2092 page_cache_sync_readahead(mapping, >> 2093 ra, filp, >> 2094 index, last_index - index); >> 2095 page = find_get_page(mapping, index); >> 2096 if (unlikely(page == NULL)) >> 2097 goto no_cached_page; >> 2098 } >> 2099 if (PageReadahead(page)) { >> 2100 page_cache_async_readahead(mapping, >> 2101 ra, filp, page, >> 2102 index, last_index - index); >> 2103 } >> 2104 if (!PageUptodate(page)) { >> 2105 if (iocb->ki_flags & IOCB_NOWAIT) { >> 2106 put_page(page); >> 2107 goto would_block; >> 2108 } 2648 2109 >> 2110 /* >> 2111 * See comment in do_read_cache_page on why >> 2112 * wait_on_page_locked is used to avoid unnecessarily >> 2113 * serialisations and why it's safe. >> 2114 */ >> 2115 error = wait_on_page_locked_killable(page); >> 2116 if (unlikely(error)) >> 2117 goto readpage_error; >> 2118 if (PageUptodate(page)) >> 2119 goto page_ok; >> 2120 >> 2121 if (inode->i_blkbits == PAGE_SHIFT || >> 2122 !mapping->a_ops->is_partially_uptodate) >> 2123 goto page_not_up_to_date; >> 2124 /* pipes can't handle partially uptodate pages */ >> 2125 if (unlikely(iter->type & ITER_PIPE)) >> 2126 goto page_not_up_to_date; >> 2127 if (!trylock_page(page)) >> 2128 goto page_not_up_to_date; >> 2129 /* Did it get truncated before we got the lock? */ >> 2130 if (!page->mapping) >> 2131 goto page_not_up_to_date_locked; >> 2132 if (!mapping->a_ops->is_partially_uptodate(page, >> 2133 offset, iter->count)) >> 2134 goto page_not_up_to_date_locked; >> 2135 unlock_page(page); >> 2136 } >> 2137 page_ok: 2649 /* 2138 /* 2650 * i_size must be checked aft !! 2139 * i_size must be checked after we know the page is Uptodate. 2651 * 2140 * 2652 * Checking i_size after the 2141 * Checking i_size after the check allows us to calculate 2653 * the correct value for "nr" 2142 * the correct value for "nr", which means the zero-filled 2654 * part of the page is not co 2143 * part of the page is not copied back to userspace (unless 2655 * another truncate extends t 2144 * another truncate extends the file - this is desired though). 2656 */ 2145 */ >> 2146 2657 isize = i_size_read(inode); 2147 isize = i_size_read(inode); 2658 if (unlikely(iocb->ki_pos >= !! 2148 end_index = (isize - 1) >> PAGE_SHIFT; 2659 goto put_folios; !! 2149 if (unlikely(!isize || index > end_index)) { 2660 end_offset = min_t(loff_t, is !! 2150 put_page(page); >> 2151 goto out; >> 2152 } >> 2153 >> 2154 /* nr is the maximum number of bytes to copy from this page */ >> 2155 nr = PAGE_SIZE; >> 2156 if (index == end_index) { >> 2157 nr = ((isize - 1) & ~PAGE_MASK) + 1; >> 2158 if (nr <= offset) { >> 2159 put_page(page); >> 2160 goto out; >> 2161 } >> 2162 } >> 2163 nr = nr - offset; >> 2164 >> 2165 /* If users can be writing to this page using arbitrary >> 2166 * virtual addresses, take care about potential aliasing >> 2167 * before reading the page on the kernel side. >> 2168 */ >> 2169 if (mapping_writably_mapped(mapping)) >> 2170 flush_dcache_page(page); 2661 2171 2662 /* 2172 /* 2663 * Once we start copying data !! 2173 * When a sequential read accesses a page several times, 2664 * cachelines that might be c !! 2174 * only mark it as accessed the first time. 2665 */ 2175 */ 2666 writably_mapped = mapping_wri !! 2176 if (prev_index != index || offset != prev_offset) >> 2177 mark_page_accessed(page); >> 2178 prev_index = index; 2667 2179 2668 /* 2180 /* 2669 * When a read accesses the s !! 2181 * Ok, we have the page, and it's up-to-date, so 2670 * mark it as accessed the fi !! 2182 * now we can copy it to user space... 2671 */ 2183 */ 2672 if (!pos_same_folio(iocb->ki_ << 2673 fbatch.fo << 2674 folio_mark_accessed(f << 2675 << 2676 for (i = 0; i < folio_batch_c << 2677 struct folio *folio = << 2678 size_t fsize = folio_ << 2679 size_t offset = iocb- << 2680 size_t bytes = min_t( << 2681 << 2682 size_t copied; << 2683 2184 2684 if (end_offset < foli !! 2185 ret = copy_page_to_iter(page, offset, nr, iter); 2685 break; !! 2186 offset += ret; 2686 if (i > 0) !! 2187 index += offset >> PAGE_SHIFT; 2687 folio_mark_ac !! 2188 offset &= ~PAGE_MASK; 2688 /* !! 2189 prev_offset = offset; 2689 * If users can be wr << 2690 * virtual addresses, << 2691 * before reading the << 2692 */ << 2693 if (writably_mapped) << 2694 flush_dcache_ << 2695 2190 2696 copied = copy_folio_t !! 2191 put_page(page); >> 2192 written += ret; >> 2193 if (!iov_iter_count(iter)) >> 2194 goto out; >> 2195 if (ret < nr) { >> 2196 error = -EFAULT; >> 2197 goto out; >> 2198 } >> 2199 continue; 2697 2200 2698 already_read += copie !! 2201 page_not_up_to_date: 2699 iocb->ki_pos += copie !! 2202 /* Get exclusive access to the page ... */ 2700 last_pos = iocb->ki_p !! 2203 error = lock_page_killable(page); >> 2204 if (unlikely(error)) >> 2205 goto readpage_error; >> 2206 >> 2207 page_not_up_to_date_locked: >> 2208 /* Did it get truncated before we got the lock? */ >> 2209 if (!page->mapping) { >> 2210 unlock_page(page); >> 2211 put_page(page); >> 2212 continue; >> 2213 } 2701 2214 2702 if (copied < bytes) { !! 2215 /* Did somebody else fill it already? */ 2703 error = -EFAU !! 2216 if (PageUptodate(page)) { 2704 break; !! 2217 unlock_page(page); >> 2218 goto page_ok; >> 2219 } >> 2220 >> 2221 readpage: >> 2222 /* >> 2223 * A previous I/O error may have been due to temporary >> 2224 * failures, eg. multipath errors. >> 2225 * PG_error will be set again if readpage fails. >> 2226 */ >> 2227 ClearPageError(page); >> 2228 /* Start the actual read. The read will unlock the page. */ >> 2229 error = mapping->a_ops->readpage(filp, page); >> 2230 >> 2231 if (unlikely(error)) { >> 2232 if (error == AOP_TRUNCATED_PAGE) { >> 2233 put_page(page); >> 2234 error = 0; >> 2235 goto find_page; 2705 } 2236 } >> 2237 goto readpage_error; 2706 } 2238 } 2707 put_folios: << 2708 for (i = 0; i < folio_batch_c << 2709 folio_put(fbatch.foli << 2710 folio_batch_init(&fbatch); << 2711 } while (iov_iter_count(iter) && iocb << 2712 << 2713 file_accessed(filp); << 2714 ra->prev_pos = last_pos; << 2715 return already_read ? already_read : << 2716 } << 2717 EXPORT_SYMBOL_GPL(filemap_read); << 2718 << 2719 int kiocb_write_and_wait(struct kiocb *iocb, << 2720 { << 2721 struct address_space *mapping = iocb- << 2722 loff_t pos = iocb->ki_pos; << 2723 loff_t end = pos + count - 1; << 2724 2239 2725 if (iocb->ki_flags & IOCB_NOWAIT) { !! 2240 if (!PageUptodate(page)) { 2726 if (filemap_range_needs_write !! 2241 error = lock_page_killable(page); 2727 return -EAGAIN; !! 2242 if (unlikely(error)) 2728 return 0; !! 2243 goto readpage_error; 2729 } !! 2244 if (!PageUptodate(page)) { >> 2245 if (page->mapping == NULL) { >> 2246 /* >> 2247 * invalidate_mapping_pages got it >> 2248 */ >> 2249 unlock_page(page); >> 2250 put_page(page); >> 2251 goto find_page; >> 2252 } >> 2253 unlock_page(page); >> 2254 shrink_readahead_size_eio(filp, ra); >> 2255 error = -EIO; >> 2256 goto readpage_error; >> 2257 } >> 2258 unlock_page(page); >> 2259 } 2730 2260 2731 return filemap_write_and_wait_range(m !! 2261 goto page_ok; 2732 } << 2733 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); << 2734 2262 2735 int filemap_invalidate_pages(struct address_s !! 2263 readpage_error: 2736 loff_t pos, loff !! 2264 /* UHHUH! A synchronous read error occurred. Report it */ 2737 { !! 2265 put_page(page); 2738 int ret; !! 2266 goto out; 2739 2267 2740 if (nowait) { !! 2268 no_cached_page: 2741 /* we could block if there ar !! 2269 /* 2742 if (filemap_range_has_page(ma !! 2270 * Ok, it wasn't cached, so we need to create a new 2743 return -EAGAIN; !! 2271 * page.. 2744 } else { !! 2272 */ 2745 ret = filemap_write_and_wait_ !! 2273 page = page_cache_alloc(mapping); 2746 if (ret) !! 2274 if (!page) { 2747 return ret; !! 2275 error = -ENOMEM; >> 2276 goto out; >> 2277 } >> 2278 error = add_to_page_cache_lru(page, mapping, index, >> 2279 mapping_gfp_constraint(mapping, GFP_KERNEL)); >> 2280 if (error) { >> 2281 put_page(page); >> 2282 if (error == -EEXIST) { >> 2283 error = 0; >> 2284 goto find_page; >> 2285 } >> 2286 goto out; >> 2287 } >> 2288 goto readpage; 2748 } 2289 } 2749 2290 2750 /* !! 2291 would_block: 2751 * After a write we want buffered rea !! 2292 error = -EAGAIN; 2752 * the new data. We invalidate clean !! 2293 out: 2753 * about to write. We do this *befor !! 2294 ra->prev_pos = prev_index; 2754 * without clobbering -EIOCBQUEUED fr !! 2295 ra->prev_pos <<= PAGE_SHIFT; 2755 */ !! 2296 ra->prev_pos |= prev_offset; 2756 return invalidate_inode_pages2_range( << 2757 << 2758 } << 2759 << 2760 int kiocb_invalidate_pages(struct kiocb *iocb << 2761 { << 2762 struct address_space *mapping = iocb- << 2763 2297 2764 return filemap_invalidate_pages(mappi !! 2298 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2765 iocb- !! 2299 file_accessed(filp); 2766 iocb- !! 2300 return written ? written : error; 2767 } 2301 } 2768 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); << 2769 2302 2770 /** 2303 /** 2771 * generic_file_read_iter - generic filesyste 2304 * generic_file_read_iter - generic filesystem read routine 2772 * @iocb: kernel I/O control block 2305 * @iocb: kernel I/O control block 2773 * @iter: destination for the data read 2306 * @iter: destination for the data read 2774 * 2307 * 2775 * This is the "read_iter()" routine for all 2308 * This is the "read_iter()" routine for all filesystems 2776 * that can use the page cache directly. 2309 * that can use the page cache directly. 2777 * << 2778 * The IOCB_NOWAIT flag in iocb->ki_flags ind << 2779 * be returned when no data can be read witho << 2780 * to complete; it doesn't prevent readahead. << 2781 * << 2782 * The IOCB_NOIO flag in iocb->ki_flags indic << 2783 * requests shall be made for the read or for << 2784 * can be read, -EAGAIN shall be returned. W << 2785 * triggered, a partial, possibly empty read << 2786 * << 2787 * Return: << 2788 * * number of bytes copied, even for partial << 2789 * * negative error code (or 0 if IOCB_NOIO) << 2790 */ 2310 */ 2791 ssize_t 2311 ssize_t 2792 generic_file_read_iter(struct kiocb *iocb, st 2312 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2793 { 2313 { 2794 size_t count = iov_iter_count(iter); 2314 size_t count = iov_iter_count(iter); 2795 ssize_t retval = 0; 2315 ssize_t retval = 0; 2796 2316 2797 if (!count) 2317 if (!count) 2798 return 0; /* skip atime */ !! 2318 goto out; /* skip atime */ 2799 2319 2800 if (iocb->ki_flags & IOCB_DIRECT) { 2320 if (iocb->ki_flags & IOCB_DIRECT) { 2801 struct file *file = iocb->ki_ 2321 struct file *file = iocb->ki_filp; 2802 struct address_space *mapping 2322 struct address_space *mapping = file->f_mapping; 2803 struct inode *inode = mapping 2323 struct inode *inode = mapping->host; >> 2324 loff_t size; >> 2325 >> 2326 size = i_size_read(inode); >> 2327 if (iocb->ki_flags & IOCB_NOWAIT) { >> 2328 if (filemap_range_has_page(mapping, iocb->ki_pos, >> 2329 iocb->ki_pos + count - 1)) >> 2330 return -EAGAIN; >> 2331 } else { >> 2332 retval = filemap_write_and_wait_range(mapping, >> 2333 iocb->ki_pos, >> 2334 iocb->ki_pos + count - 1); >> 2335 if (retval < 0) >> 2336 goto out; >> 2337 } 2804 2338 2805 retval = kiocb_write_and_wait << 2806 if (retval < 0) << 2807 return retval; << 2808 file_accessed(file); 2339 file_accessed(file); 2809 2340 2810 retval = mapping->a_ops->dire 2341 retval = mapping->a_ops->direct_IO(iocb, iter); 2811 if (retval >= 0) { 2342 if (retval >= 0) { 2812 iocb->ki_pos += retva 2343 iocb->ki_pos += retval; 2813 count -= retval; 2344 count -= retval; 2814 } 2345 } 2815 if (retval != -EIOCBQUEUED) !! 2346 iov_iter_revert(iter, count - iov_iter_count(iter)); 2816 iov_iter_revert(iter, << 2817 2347 2818 /* 2348 /* 2819 * Btrfs can have a short DIO 2349 * Btrfs can have a short DIO read if we encounter 2820 * compressed extents, so if 2350 * compressed extents, so if there was an error, or if 2821 * we've already read everyth 2351 * we've already read everything we wanted to, or if 2822 * there was a short read bec 2352 * there was a short read because we hit EOF, go ahead 2823 * and return. Otherwise fal 2353 * and return. Otherwise fallthrough to buffered io for 2824 * the rest of the read. Buf 2354 * the rest of the read. Buffered reads will not work for 2825 * DAX files, so don't bother 2355 * DAX files, so don't bother trying. 2826 */ 2356 */ 2827 if (retval < 0 || !count || I !! 2357 if (retval < 0 || !count || iocb->ki_pos >= size || 2828 return retval; !! 2358 IS_DAX(inode)) 2829 if (iocb->ki_pos >= i_size_re !! 2359 goto out; 2830 return retval; << 2831 } 2360 } 2832 2361 2833 return filemap_read(iocb, iter, retva !! 2362 retval = generic_file_buffered_read(iocb, iter, retval); >> 2363 out: >> 2364 return retval; 2834 } 2365 } 2835 EXPORT_SYMBOL(generic_file_read_iter); 2366 EXPORT_SYMBOL(generic_file_read_iter); 2836 2367 2837 /* !! 2368 #ifdef CONFIG_MMU 2838 * Splice subpages from a folio into a pipe. !! 2369 /** >> 2370 * page_cache_read - adds requested page to the page cache if not already there >> 2371 * @file: file to read >> 2372 * @offset: page index >> 2373 * @gfp_mask: memory allocation flags >> 2374 * >> 2375 * This adds the requested page to the page cache if it isn't already there, >> 2376 * and schedules an I/O to read in its contents from disk. 2839 */ 2377 */ 2840 size_t splice_folio_into_pipe(struct pipe_ino !! 2378 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2841 struct folio *f << 2842 { 2379 { >> 2380 struct address_space *mapping = file->f_mapping; 2843 struct page *page; 2381 struct page *page; 2844 size_t spliced = 0, offset = offset_i !! 2382 int ret; 2845 << 2846 page = folio_page(folio, offset / PAG << 2847 size = min(size, folio_size(folio) - << 2848 offset %= PAGE_SIZE; << 2849 << 2850 while (spliced < size && << 2851 !pipe_full(pipe->head, pipe->t << 2852 struct pipe_buffer *buf = pip << 2853 size_t part = min_t(size_t, P << 2854 << 2855 *buf = (struct pipe_buffer) { << 2856 .ops = &page_cache << 2857 .page = page, << 2858 .offset = offset, << 2859 .len = part, << 2860 }; << 2861 folio_get(folio); << 2862 pipe->head++; << 2863 page++; << 2864 spliced += part; << 2865 offset = 0; << 2866 } << 2867 << 2868 return spliced; << 2869 } << 2870 << 2871 /** << 2872 * filemap_splice_read - Splice data from a << 2873 * @in: The file to read from << 2874 * @ppos: Pointer to the file position to rea << 2875 * @pipe: The pipe to splice into << 2876 * @len: The amount to splice << 2877 * @flags: The SPLICE_F_* flags << 2878 * << 2879 * This function gets folios from a file's pa << 2880 * pipe. Readahead will be called as necessa << 2881 * be used for blockdevs also. << 2882 * << 2883 * Return: On success, the number of bytes re << 2884 * will be updated if appropriate; 0 will be << 2885 * to be read; -EAGAIN will be returned if th << 2886 * other negative error code will be returned << 2887 * if the pipe has insufficient space, we rea << 2888 * hole. << 2889 */ << 2890 ssize_t filemap_splice_read(struct file *in, << 2891 struct pipe_inode << 2892 size_t len, unsig << 2893 { << 2894 struct folio_batch fbatch; << 2895 struct kiocb iocb; << 2896 size_t total_spliced = 0, used, npage << 2897 loff_t isize, end_offset; << 2898 bool writably_mapped; << 2899 int i, error = 0; << 2900 << 2901 if (unlikely(*ppos >= in->f_mapping-> << 2902 return 0; << 2903 << 2904 init_sync_kiocb(&iocb, in); << 2905 iocb.ki_pos = *ppos; << 2906 << 2907 /* Work out how much data we can actu << 2908 used = pipe_occupancy(pipe->head, pip << 2909 npages = max_t(ssize_t, pipe->max_usa << 2910 len = min_t(size_t, len, npages * PAG << 2911 << 2912 folio_batch_init(&fbatch); << 2913 << 2914 do { << 2915 cond_resched(); << 2916 << 2917 if (*ppos >= i_size_read(in-> << 2918 break; << 2919 << 2920 iocb.ki_pos = *ppos; << 2921 error = filemap_get_pages(&io << 2922 if (error < 0) << 2923 break; << 2924 << 2925 /* << 2926 * i_size must be checked aft << 2927 * << 2928 * Checking i_size after the << 2929 * the correct value for "nr" << 2930 * part of the page is not co << 2931 * another truncate extends t << 2932 */ << 2933 isize = i_size_read(in->f_map << 2934 if (unlikely(*ppos >= isize)) << 2935 break; << 2936 end_offset = min_t(loff_t, is << 2937 << 2938 /* << 2939 * Once we start copying data << 2940 * cachelines that might be c << 2941 */ << 2942 writably_mapped = mapping_wri << 2943 << 2944 for (i = 0; i < folio_batch_c << 2945 struct folio *folio = << 2946 size_t n; << 2947 << 2948 if (folio_pos(folio) << 2949 goto out; << 2950 folio_mark_accessed(f << 2951 << 2952 /* << 2953 * If users can be wr << 2954 * virtual addresses, << 2955 * before reading the << 2956 */ << 2957 if (writably_mapped) << 2958 flush_dcache_ << 2959 << 2960 n = min_t(loff_t, len << 2961 n = splice_folio_into << 2962 if (!n) << 2963 goto out; << 2964 len -= n; << 2965 total_spliced += n; << 2966 *ppos += n; << 2967 in->f_ra.prev_pos = * << 2968 if (pipe_full(pipe->h << 2969 goto out; << 2970 } << 2971 << 2972 folio_batch_release(&fbatch); << 2973 } while (len); << 2974 << 2975 out: << 2976 folio_batch_release(&fbatch); << 2977 file_accessed(in); << 2978 << 2979 return total_spliced ? total_spliced << 2980 } << 2981 EXPORT_SYMBOL(filemap_splice_read); << 2982 << 2983 static inline loff_t folio_seek_hole_data(str << 2984 struct address_space *mapping << 2985 loff_t start, loff_t end, boo << 2986 { << 2987 const struct address_space_operations << 2988 size_t offset, bsz = i_blocksize(mapp << 2989 << 2990 if (xa_is_value(folio) || folio_test_ << 2991 return seek_data ? start : en << 2992 if (!ops->is_partially_uptodate) << 2993 return seek_data ? end : star << 2994 << 2995 xas_pause(xas); << 2996 rcu_read_unlock(); << 2997 folio_lock(folio); << 2998 if (unlikely(folio->mapping != mappin << 2999 goto unlock; << 3000 << 3001 offset = offset_in_folio(folio, start << 3002 2383 3003 do { 2384 do { 3004 if (ops->is_partially_uptodat !! 2385 page = __page_cache_alloc(gfp_mask); 3005 !! 2386 if (!page) 3006 break; !! 2387 return -ENOMEM; 3007 start = (start + bsz) & ~(bsz !! 2388 3008 offset += bsz; !! 2389 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 3009 } while (offset < folio_size(folio)); !! 2390 if (ret == 0) 3010 unlock: !! 2391 ret = mapping->a_ops->readpage(file, page); 3011 folio_unlock(folio); !! 2392 else if (ret == -EEXIST) 3012 rcu_read_lock(); !! 2393 ret = 0; /* losing race to add is OK */ 3013 return start; << 3014 } << 3015 2394 3016 static inline size_t seek_folio_size(struct x !! 2395 put_page(page); 3017 { << 3018 if (xa_is_value(folio)) << 3019 return PAGE_SIZE << xas_get_o << 3020 return folio_size(folio); << 3021 } << 3022 << 3023 /** << 3024 * mapping_seek_hole_data - Seek for SEEK_DAT << 3025 * @mapping: Address space to search. << 3026 * @start: First byte to consider. << 3027 * @end: Limit of search (exclusive). << 3028 * @whence: Either SEEK_HOLE or SEEK_DATA. << 3029 * << 3030 * If the page cache knows which blocks conta << 3031 * contain data, your filesystem can use this << 3032 * SEEK_HOLE and SEEK_DATA. This is useful f << 3033 * entirely memory-based such as tmpfs, and f << 3034 * unwritten extents. << 3035 * << 3036 * Return: The requested offset on success, o << 3037 * SEEK_DATA and there is no data after @star << 3038 * after @end - 1, so SEEK_HOLE returns @end << 3039 * and @end contain data. << 3040 */ << 3041 loff_t mapping_seek_hole_data(struct address_ << 3042 loff_t end, int whence) << 3043 { << 3044 XA_STATE(xas, &mapping->i_pages, star << 3045 pgoff_t max = (end - 1) >> PAGE_SHIFT << 3046 bool seek_data = (whence == SEEK_DATA << 3047 struct folio *folio; << 3048 << 3049 if (end <= start) << 3050 return -ENXIO; << 3051 2396 3052 rcu_read_lock(); !! 2397 } while (ret == AOP_TRUNCATED_PAGE); 3053 while ((folio = find_get_entry(&xas, << 3054 loff_t pos = (u64)xas.xa_inde << 3055 size_t seek_size; << 3056 << 3057 if (start < pos) { << 3058 if (!seek_data) << 3059 goto unlock; << 3060 start = pos; << 3061 } << 3062 2398 3063 seek_size = seek_folio_size(& !! 2399 return ret; 3064 pos = round_up((u64)pos + 1, << 3065 start = folio_seek_hole_data( << 3066 seek_data); << 3067 if (start < pos) << 3068 goto unlock; << 3069 if (start >= end) << 3070 break; << 3071 if (seek_size > PAGE_SIZE) << 3072 xas_set(&xas, pos >> << 3073 if (!xa_is_value(folio)) << 3074 folio_put(folio); << 3075 } << 3076 if (seek_data) << 3077 start = -ENXIO; << 3078 unlock: << 3079 rcu_read_unlock(); << 3080 if (folio && !xa_is_value(folio)) << 3081 folio_put(folio); << 3082 if (start > end) << 3083 return end; << 3084 return start; << 3085 } 2400 } 3086 2401 3087 #ifdef CONFIG_MMU << 3088 #define MMAP_LOTSAMISS (100) 2402 #define MMAP_LOTSAMISS (100) 3089 /* << 3090 * lock_folio_maybe_drop_mmap - lock the page << 3091 * @vmf - the vm_fault for this fault. << 3092 * @folio - the folio to lock. << 3093 * @fpin - the pointer to the file we may pin << 3094 * << 3095 * This works similar to lock_folio_or_retry << 3096 * mmap_lock. It differs in that it actually << 3097 * if it returns 1 and 0 if it couldn't lock << 3098 * to drop the mmap_lock then fpin will point << 3099 * needs to be fput()'ed at a later point. << 3100 */ << 3101 static int lock_folio_maybe_drop_mmap(struct << 3102 struct f << 3103 { << 3104 if (folio_trylock(folio)) << 3105 return 1; << 3106 << 3107 /* << 3108 * NOTE! This will make us return wit << 3109 * the fault lock still held. That's << 3110 * is supposed to work. We have way t << 3111 */ << 3112 if (vmf->flags & FAULT_FLAG_RETRY_NOW << 3113 return 0; << 3114 << 3115 *fpin = maybe_unlock_mmap_for_io(vmf, << 3116 if (vmf->flags & FAULT_FLAG_KILLABLE) << 3117 if (__folio_lock_killable(fol << 3118 /* << 3119 * We didn't have the << 3120 * fault lock, but al << 3121 * for fatal signals << 3122 * so we need to drop << 3123 * return 0 if we don << 3124 */ << 3125 if (*fpin == NULL) << 3126 release_fault << 3127 return 0; << 3128 } << 3129 } else << 3130 __folio_lock(folio); << 3131 << 3132 return 1; << 3133 } << 3134 2403 3135 /* 2404 /* 3136 * Synchronous readahead happens when we don' !! 2405 * Synchronous readahead happens when we don't even find 3137 * cache at all. We don't want to perform IO !! 2406 * a page in the page cache at all. 3138 * to drop the mmap sem we return the file th << 3139 * that. If we didn't pin a file then we ret << 3140 * returned needs to be fput()'ed when we're << 3141 */ 2407 */ 3142 static struct file *do_sync_mmap_readahead(st !! 2408 static void do_sync_mmap_readahead(struct vm_area_struct *vma, >> 2409 struct file_ra_state *ra, >> 2410 struct file *file, >> 2411 pgoff_t offset) 3143 { 2412 { 3144 struct file *file = vmf->vma->vm_file << 3145 struct file_ra_state *ra = &file->f_r << 3146 struct address_space *mapping = file- 2413 struct address_space *mapping = file->f_mapping; 3147 DEFINE_READAHEAD(ractl, file, ra, map << 3148 struct file *fpin = NULL; << 3149 unsigned long vm_flags = vmf->vma->vm << 3150 unsigned int mmap_miss; << 3151 << 3152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 3153 /* Use the readahead code, even if re << 3154 if ((vm_flags & VM_HUGEPAGE) && HPAGE << 3155 fpin = maybe_unlock_mmap_for_ << 3156 ractl._index &= ~((unsigned l << 3157 ra->size = HPAGE_PMD_NR; << 3158 /* << 3159 * Fetch two PMD folios, so w << 3160 * readahead, unless we've be << 3161 */ << 3162 if (!(vm_flags & VM_RAND_READ << 3163 ra->size *= 2; << 3164 ra->async_size = HPAGE_PMD_NR << 3165 page_cache_ra_order(&ractl, r << 3166 return fpin; << 3167 } << 3168 #endif << 3169 2414 3170 /* If we don't want any read-ahead, d 2415 /* If we don't want any read-ahead, don't bother */ 3171 if (vm_flags & VM_RAND_READ) !! 2416 if (vma->vm_flags & VM_RAND_READ) 3172 return fpin; !! 2417 return; 3173 if (!ra->ra_pages) 2418 if (!ra->ra_pages) 3174 return fpin; !! 2419 return; 3175 2420 3176 if (vm_flags & VM_SEQ_READ) { !! 2421 if (vma->vm_flags & VM_SEQ_READ) { 3177 fpin = maybe_unlock_mmap_for_ !! 2422 page_cache_sync_readahead(mapping, ra, file, offset, 3178 page_cache_sync_ra(&ractl, ra !! 2423 ra->ra_pages); 3179 return fpin; !! 2424 return; 3180 } 2425 } 3181 2426 3182 /* Avoid banging the cache line if no 2427 /* Avoid banging the cache line if not needed */ 3183 mmap_miss = READ_ONCE(ra->mmap_miss); !! 2428 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 3184 if (mmap_miss < MMAP_LOTSAMISS * 10) !! 2429 ra->mmap_miss++; 3185 WRITE_ONCE(ra->mmap_miss, ++m << 3186 2430 3187 /* 2431 /* 3188 * Do we miss much more than hit in t 2432 * Do we miss much more than hit in this file? If so, 3189 * stop bothering with read-ahead. It 2433 * stop bothering with read-ahead. It will only hurt. 3190 */ 2434 */ 3191 if (mmap_miss > MMAP_LOTSAMISS) !! 2435 if (ra->mmap_miss > MMAP_LOTSAMISS) 3192 return fpin; !! 2436 return; 3193 2437 3194 /* 2438 /* 3195 * mmap read-around 2439 * mmap read-around 3196 */ 2440 */ 3197 fpin = maybe_unlock_mmap_for_io(vmf, !! 2441 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 3198 ra->start = max_t(long, 0, vmf->pgoff << 3199 ra->size = ra->ra_pages; 2442 ra->size = ra->ra_pages; 3200 ra->async_size = ra->ra_pages / 4; 2443 ra->async_size = ra->ra_pages / 4; 3201 ractl._index = ra->start; !! 2444 ra_submit(ra, mapping, file); 3202 page_cache_ra_order(&ractl, ra, 0); << 3203 return fpin; << 3204 } 2445 } 3205 2446 3206 /* 2447 /* 3207 * Asynchronous readahead happens when we fin 2448 * Asynchronous readahead happens when we find the page and PG_readahead, 3208 * so we want to possibly extend the readahea !! 2449 * so we want to possibly extend the readahead further.. 3209 * was pinned if we have to drop the mmap_loc << 3210 */ 2450 */ 3211 static struct file *do_async_mmap_readahead(s !! 2451 static void do_async_mmap_readahead(struct vm_area_struct *vma, 3212 s !! 2452 struct file_ra_state *ra, >> 2453 struct file *file, >> 2454 struct page *page, >> 2455 pgoff_t offset) 3213 { 2456 { 3214 struct file *file = vmf->vma->vm_file !! 2457 struct address_space *mapping = file->f_mapping; 3215 struct file_ra_state *ra = &file->f_r << 3216 DEFINE_READAHEAD(ractl, file, ra, fil << 3217 struct file *fpin = NULL; << 3218 unsigned int mmap_miss; << 3219 2458 3220 /* If we don't want any read-ahead, d 2459 /* If we don't want any read-ahead, don't bother */ 3221 if (vmf->vma->vm_flags & VM_RAND_READ !! 2460 if (vma->vm_flags & VM_RAND_READ) 3222 return fpin; !! 2461 return; 3223 !! 2462 if (ra->mmap_miss > 0) 3224 mmap_miss = READ_ONCE(ra->mmap_miss); !! 2463 ra->mmap_miss--; 3225 if (mmap_miss) !! 2464 if (PageReadahead(page)) 3226 WRITE_ONCE(ra->mmap_miss, --m !! 2465 page_cache_async_readahead(mapping, ra, file, 3227 !! 2466 page, offset, ra->ra_pages); 3228 if (folio_test_readahead(folio)) { << 3229 fpin = maybe_unlock_mmap_for_ << 3230 page_cache_async_ra(&ractl, f << 3231 } << 3232 return fpin; << 3233 } << 3234 << 3235 static vm_fault_t filemap_fault_recheck_pte_n << 3236 { << 3237 struct vm_area_struct *vma = vmf->vma << 3238 vm_fault_t ret = 0; << 3239 pte_t *ptep; << 3240 << 3241 /* << 3242 * We might have COW'ed a pagecache f << 3243 * anon folio mapped. The original pa << 3244 * might have been evicted. During a << 3245 * the PTE, such as done in do_numa_p << 3246 * temporarily clear the PTE under PT << 3247 * "none" when not holding the PT loc << 3248 * << 3249 * Not rechecking the PTE under PT lo << 3250 * major fault in an mlock'ed region. << 3251 * scenario while holding the PT lock << 3252 * scenarios. Recheck the PTE without << 3253 * the number of times we hold PT loc << 3254 */ << 3255 if (!(vma->vm_flags & VM_LOCKED)) << 3256 return 0; << 3257 << 3258 if (!(vmf->flags & FAULT_FLAG_ORIG_PT << 3259 return 0; << 3260 << 3261 ptep = pte_offset_map_nolock(vma->vm_ << 3262 &vmf->pt << 3263 if (unlikely(!ptep)) << 3264 return VM_FAULT_NOPAGE; << 3265 << 3266 if (unlikely(!pte_none(ptep_get_lockl << 3267 ret = VM_FAULT_NOPAGE; << 3268 } else { << 3269 spin_lock(vmf->ptl); << 3270 if (unlikely(!pte_none(ptep_g << 3271 ret = VM_FAULT_NOPAGE << 3272 spin_unlock(vmf->ptl); << 3273 } << 3274 pte_unmap(ptep); << 3275 return ret; << 3276 } 2467 } 3277 2468 3278 /** 2469 /** 3279 * filemap_fault - read in file data for page 2470 * filemap_fault - read in file data for page fault handling 3280 * @vmf: struct vm_fault containing de 2471 * @vmf: struct vm_fault containing details of the fault 3281 * 2472 * 3282 * filemap_fault() is invoked via the vma ope 2473 * filemap_fault() is invoked via the vma operations vector for a 3283 * mapped memory region to read in file data 2474 * mapped memory region to read in file data during a page fault. 3284 * 2475 * 3285 * The goto's are kind of ugly, but this stre 2476 * The goto's are kind of ugly, but this streamlines the normal case of having 3286 * it in the page cache, and handles the spec 2477 * it in the page cache, and handles the special cases reasonably without 3287 * having a lot of duplicated code. 2478 * having a lot of duplicated code. 3288 * 2479 * 3289 * vma->vm_mm->mmap_lock must be held on entr !! 2480 * vma->vm_mm->mmap_sem must be held on entry. 3290 * 2481 * 3291 * If our return value has VM_FAULT_RETRY set !! 2482 * If our return value has VM_FAULT_RETRY set, it's because 3292 * may be dropped before doing I/O or by lock !! 2483 * lock_page_or_retry() returned 0. >> 2484 * The mmap_sem has usually been released in this case. >> 2485 * See __lock_page_or_retry() for the exception. 3293 * 2486 * 3294 * If our return value does not have VM_FAULT !! 2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 3295 * has not been released. 2488 * has not been released. 3296 * 2489 * 3297 * We never return with VM_FAULT_RETRY and a 2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3298 * << 3299 * Return: bitwise-OR of %VM_FAULT_ codes. << 3300 */ 2491 */ 3301 vm_fault_t filemap_fault(struct vm_fault *vmf 2492 vm_fault_t filemap_fault(struct vm_fault *vmf) 3302 { 2493 { 3303 int error; 2494 int error; 3304 struct file *file = vmf->vma->vm_file 2495 struct file *file = vmf->vma->vm_file; 3305 struct file *fpin = NULL; << 3306 struct address_space *mapping = file- 2496 struct address_space *mapping = file->f_mapping; >> 2497 struct file_ra_state *ra = &file->f_ra; 3307 struct inode *inode = mapping->host; 2498 struct inode *inode = mapping->host; 3308 pgoff_t max_idx, index = vmf->pgoff; !! 2499 pgoff_t offset = vmf->pgoff; 3309 struct folio *folio; !! 2500 pgoff_t max_off; >> 2501 struct page *page; 3310 vm_fault_t ret = 0; 2502 vm_fault_t ret = 0; 3311 bool mapping_locked = false; << 3312 2503 3313 max_idx = DIV_ROUND_UP(i_size_read(in !! 2504 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3314 if (unlikely(index >= max_idx)) !! 2505 if (unlikely(offset >= max_off)) 3315 return VM_FAULT_SIGBUS; 2506 return VM_FAULT_SIGBUS; 3316 2507 3317 trace_mm_filemap_fault(mapping, index << 3318 << 3319 /* 2508 /* 3320 * Do we have something in the page c 2509 * Do we have something in the page cache already? 3321 */ 2510 */ 3322 folio = filemap_get_folio(mapping, in !! 2511 page = find_get_page(mapping, offset); 3323 if (likely(!IS_ERR(folio))) { !! 2512 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 3324 /* 2513 /* 3325 * We found the page, so try !! 2514 * We found the page, so try async readahead before 3326 * the lock. !! 2515 * waiting for the lock. 3327 */ 2516 */ 3328 if (!(vmf->flags & FAULT_FLAG !! 2517 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 3329 fpin = do_async_mmap_ !! 2518 } else if (!page) { 3330 if (unlikely(!folio_test_upto << 3331 filemap_invalidate_lo << 3332 mapping_locked = true << 3333 } << 3334 } else { << 3335 ret = filemap_fault_recheck_p << 3336 if (unlikely(ret)) << 3337 return ret; << 3338 << 3339 /* No page in the page cache 2519 /* No page in the page cache at all */ >> 2520 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 3340 count_vm_event(PGMAJFAULT); 2521 count_vm_event(PGMAJFAULT); 3341 count_memcg_event_mm(vmf->vma 2522 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3342 ret = VM_FAULT_MAJOR; 2523 ret = VM_FAULT_MAJOR; 3343 fpin = do_sync_mmap_readahead << 3344 retry_find: 2524 retry_find: 3345 /* !! 2525 page = find_get_page(mapping, offset); 3346 * See comment in filemap_cre !! 2526 if (!page) 3347 * invalidate_lock !! 2527 goto no_cached_page; 3348 */ << 3349 if (!mapping_locked) { << 3350 filemap_invalidate_lo << 3351 mapping_locked = true << 3352 } << 3353 folio = __filemap_get_folio(m << 3354 FGP << 3355 vmf << 3356 if (IS_ERR(folio)) { << 3357 if (fpin) << 3358 goto out_retr << 3359 filemap_invalidate_un << 3360 return VM_FAULT_OOM; << 3361 } << 3362 } 2528 } 3363 2529 3364 if (!lock_folio_maybe_drop_mmap(vmf, !! 2530 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 3365 goto out_retry; !! 2531 put_page(page); >> 2532 return ret | VM_FAULT_RETRY; >> 2533 } 3366 2534 3367 /* Did it get truncated? */ 2535 /* Did it get truncated? */ 3368 if (unlikely(folio->mapping != mappin !! 2536 if (unlikely(page->mapping != mapping)) { 3369 folio_unlock(folio); !! 2537 unlock_page(page); 3370 folio_put(folio); !! 2538 put_page(page); 3371 goto retry_find; 2539 goto retry_find; 3372 } 2540 } 3373 VM_BUG_ON_FOLIO(!folio_contains(folio !! 2541 VM_BUG_ON_PAGE(page->index != offset, page); 3374 2542 3375 /* 2543 /* 3376 * We have a locked folio in the page !! 2544 * We have a locked page in the page cache, now we need to check 3377 * that it's up-to-date. If not, it i !! 2545 * that it's up-to-date. If not, it is going to be due to an error. 3378 * or because readahead was otherwise << 3379 */ 2546 */ 3380 if (unlikely(!folio_test_uptodate(fol !! 2547 if (unlikely(!PageUptodate(page))) 3381 /* << 3382 * If the invalidate lock is << 3383 * and uptodate and now it is << 3384 * didn't hold the page lock << 3385 * everything, get the invali << 3386 */ << 3387 if (!mapping_locked) { << 3388 folio_unlock(folio); << 3389 folio_put(folio); << 3390 goto retry_find; << 3391 } << 3392 << 3393 /* << 3394 * OK, the folio is really no << 3395 * VMA has the VM_RAND_READ f << 3396 * arose. Let's read it in di << 3397 */ << 3398 goto page_not_uptodate; 2548 goto page_not_uptodate; 3399 } << 3400 << 3401 /* << 3402 * We've made it this far and we had << 3403 * time to return to the upper layer << 3404 * redo the fault. << 3405 */ << 3406 if (fpin) { << 3407 folio_unlock(folio); << 3408 goto out_retry; << 3409 } << 3410 if (mapping_locked) << 3411 filemap_invalidate_unlock_sha << 3412 2549 3413 /* 2550 /* 3414 * Found the page and have a referenc 2551 * Found the page and have a reference on it. 3415 * We must recheck i_size under page 2552 * We must recheck i_size under page lock. 3416 */ 2553 */ 3417 max_idx = DIV_ROUND_UP(i_size_read(in !! 2554 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3418 if (unlikely(index >= max_idx)) { !! 2555 if (unlikely(offset >= max_off)) { 3419 folio_unlock(folio); !! 2556 unlock_page(page); 3420 folio_put(folio); !! 2557 put_page(page); 3421 return VM_FAULT_SIGBUS; 2558 return VM_FAULT_SIGBUS; 3422 } 2559 } 3423 2560 3424 vmf->page = folio_file_page(folio, in !! 2561 vmf->page = page; 3425 return ret | VM_FAULT_LOCKED; 2562 return ret | VM_FAULT_LOCKED; 3426 2563 >> 2564 no_cached_page: >> 2565 /* >> 2566 * We're only likely to ever get here if MADV_RANDOM is in >> 2567 * effect. >> 2568 */ >> 2569 error = page_cache_read(file, offset, vmf->gfp_mask); >> 2570 >> 2571 /* >> 2572 * The page we want has now been added to the page cache. >> 2573 * In the unlikely event that someone removed it in the >> 2574 * meantime, we'll just come back here and read it again. >> 2575 */ >> 2576 if (error >= 0) >> 2577 goto retry_find; >> 2578 >> 2579 /* >> 2580 * An error return from page_cache_read can result if the >> 2581 * system is low on memory, or a problem occurs while trying >> 2582 * to schedule I/O. >> 2583 */ >> 2584 if (error == -ENOMEM) >> 2585 return VM_FAULT_OOM; >> 2586 return VM_FAULT_SIGBUS; >> 2587 3427 page_not_uptodate: 2588 page_not_uptodate: 3428 /* 2589 /* 3429 * Umm, take care of errors if the pa 2590 * Umm, take care of errors if the page isn't up-to-date. 3430 * Try to re-read it _once_. We do th 2591 * Try to re-read it _once_. We do this synchronously, 3431 * because there really aren't any pe 2592 * because there really aren't any performance issues here 3432 * and we need to check for errors. 2593 * and we need to check for errors. 3433 */ 2594 */ 3434 fpin = maybe_unlock_mmap_for_io(vmf, !! 2595 ClearPageError(page); 3435 error = filemap_read_folio(file, mapp !! 2596 error = mapping->a_ops->readpage(file, page); 3436 if (fpin) !! 2597 if (!error) { 3437 goto out_retry; !! 2598 wait_on_page_locked(page); 3438 folio_put(folio); !! 2599 if (!PageUptodate(page)) >> 2600 error = -EIO; >> 2601 } >> 2602 put_page(page); 3439 2603 3440 if (!error || error == AOP_TRUNCATED_ 2604 if (!error || error == AOP_TRUNCATED_PAGE) 3441 goto retry_find; 2605 goto retry_find; 3442 filemap_invalidate_unlock_shared(mapp << 3443 2606 >> 2607 /* Things didn't work out. Return zero to tell the mm layer so. */ >> 2608 shrink_readahead_size_eio(file, ra); 3444 return VM_FAULT_SIGBUS; 2609 return VM_FAULT_SIGBUS; 3445 << 3446 out_retry: << 3447 /* << 3448 * We dropped the mmap_lock, we need << 3449 * re-find the vma and come back and << 3450 * page. << 3451 */ << 3452 if (!IS_ERR(folio)) << 3453 folio_put(folio); << 3454 if (mapping_locked) << 3455 filemap_invalidate_unlock_sha << 3456 if (fpin) << 3457 fput(fpin); << 3458 return ret | VM_FAULT_RETRY; << 3459 } 2610 } 3460 EXPORT_SYMBOL(filemap_fault); 2611 EXPORT_SYMBOL(filemap_fault); 3461 2612 3462 static bool filemap_map_pmd(struct vm_fault * !! 2613 void filemap_map_pages(struct vm_fault *vmf, 3463 pgoff_t start) !! 2614 pgoff_t start_pgoff, pgoff_t end_pgoff) 3464 { 2615 { 3465 struct mm_struct *mm = vmf->vma->vm_m !! 2616 struct radix_tree_iter iter; 3466 !! 2617 void **slot; 3467 /* Huge page is mapped? No need to pr !! 2618 struct file *file = vmf->vma->vm_file; 3468 if (pmd_trans_huge(*vmf->pmd)) { !! 2619 struct address_space *mapping = file->f_mapping; 3469 folio_unlock(folio); !! 2620 pgoff_t last_pgoff = start_pgoff; 3470 folio_put(folio); !! 2621 unsigned long max_idx; 3471 return true; !! 2622 struct page *head, *page; 3472 } << 3473 2623 3474 if (pmd_none(*vmf->pmd) && folio_test !! 2624 rcu_read_lock(); 3475 struct page *page = folio_fil !! 2625 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) { 3476 vm_fault_t ret = do_set_pmd(v !! 2626 if (iter.index > end_pgoff) 3477 if (!ret) { !! 2627 break; 3478 /* The page is mapped !! 2628 repeat: 3479 folio_unlock(folio); !! 2629 page = radix_tree_deref_slot(slot); 3480 return true; !! 2630 if (unlikely(!page)) >> 2631 goto next; >> 2632 if (radix_tree_exception(page)) { >> 2633 if (radix_tree_deref_retry(page)) { >> 2634 slot = radix_tree_iter_retry(&iter); >> 2635 continue; >> 2636 } >> 2637 goto next; 3481 } 2638 } 3482 } << 3483 2639 3484 if (pmd_none(*vmf->pmd) && vmf->preal !! 2640 head = compound_head(page); 3485 pmd_install(mm, vmf->pmd, &vm !! 2641 if (!page_cache_get_speculative(head)) >> 2642 goto repeat; 3486 2643 3487 return false; !! 2644 /* The page was split under us? */ 3488 } !! 2645 if (compound_head(page) != head) { >> 2646 put_page(head); >> 2647 goto repeat; >> 2648 } 3489 2649 3490 static struct folio *next_uptodate_folio(stru !! 2650 /* Has the page moved? */ 3491 struct address_space *mapping !! 2651 if (unlikely(page != *slot)) { 3492 { !! 2652 put_page(head); 3493 struct folio *folio = xas_next_entry( !! 2653 goto repeat; 3494 unsigned long max_idx; !! 2654 } 3495 2655 3496 do { !! 2656 if (!PageUptodate(page) || 3497 if (!folio) !! 2657 PageReadahead(page) || 3498 return NULL; !! 2658 PageHWPoison(page)) 3499 if (xas_retry(xas, folio)) << 3500 continue; << 3501 if (xa_is_value(folio)) << 3502 continue; << 3503 if (folio_test_locked(folio)) << 3504 continue; << 3505 if (!folio_try_get(folio)) << 3506 continue; << 3507 /* Has the page moved or been << 3508 if (unlikely(folio != xas_rel << 3509 goto skip; 2659 goto skip; 3510 if (!folio_test_uptodate(foli !! 2660 if (!trylock_page(page)) 3511 goto skip; 2661 goto skip; 3512 if (!folio_trylock(folio)) !! 2662 3513 goto skip; !! 2663 if (page->mapping != mapping || !PageUptodate(page)) 3514 if (folio->mapping != mapping << 3515 goto unlock; << 3516 if (!folio_test_uptodate(foli << 3517 goto unlock; 2664 goto unlock; >> 2665 3518 max_idx = DIV_ROUND_UP(i_size 2666 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3519 if (xas->xa_index >= max_idx) !! 2667 if (page->index >= max_idx) 3520 goto unlock; 2668 goto unlock; 3521 return folio; << 3522 unlock: << 3523 folio_unlock(folio); << 3524 skip: << 3525 folio_put(folio); << 3526 } while ((folio = xas_next_entry(xas, << 3527 << 3528 return NULL; << 3529 } << 3530 << 3531 /* << 3532 * Map page range [start_page, start_page + n << 3533 * start_page is gotten from start by folio_p << 3534 */ << 3535 static vm_fault_t filemap_map_folio_range(str << 3536 struct folio *folio, << 3537 unsigned long addr, u << 3538 unsigned long *rss, u << 3539 { << 3540 vm_fault_t ret = 0; << 3541 struct page *page = folio_page(folio, << 3542 unsigned int count = 0; << 3543 pte_t *old_ptep = vmf->pte; << 3544 << 3545 do { << 3546 if (PageHWPoison(page + count << 3547 goto skip; << 3548 2669 3549 /* !! 2670 if (file->f_ra.mmap_miss > 0) 3550 * If there are too many foli !! 2671 file->f_ra.mmap_miss--; 3551 * in a file, they will proba << 3552 * In such situation, read-ah << 3553 * Don't decrease mmap_miss i << 3554 * we can stop read-ahead. << 3555 */ << 3556 if (!folio_test_workingset(fo << 3557 (*mmap_miss)++; << 3558 << 3559 /* << 3560 * NOTE: If there're PTE mark << 3561 * handled in the specific fa << 3562 * fault-around logic. << 3563 */ << 3564 if (!pte_none(ptep_get(&vmf-> << 3565 goto skip; << 3566 2672 3567 count++; !! 2673 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 3568 continue; !! 2674 if (vmf->pte) >> 2675 vmf->pte += iter.index - last_pgoff; >> 2676 last_pgoff = iter.index; >> 2677 if (alloc_set_pte(vmf, NULL, page)) >> 2678 goto unlock; >> 2679 unlock_page(page); >> 2680 goto next; >> 2681 unlock: >> 2682 unlock_page(page); 3569 skip: 2683 skip: 3570 if (count) { !! 2684 put_page(page); 3571 set_pte_range(vmf, fo !! 2685 next: 3572 *rss += count; !! 2686 /* Huge page is mapped? No need to proceed. */ 3573 folio_ref_add(folio, !! 2687 if (pmd_trans_huge(*vmf->pmd)) 3574 if (in_range(vmf->add !! 2688 break; 3575 ret = VM_FAUL !! 2689 if (iter.index == end_pgoff) 3576 } !! 2690 break; 3577 << 3578 count++; << 3579 page += count; << 3580 vmf->pte += count; << 3581 addr += count * PAGE_SIZE; << 3582 count = 0; << 3583 } while (--nr_pages > 0); << 3584 << 3585 if (count) { << 3586 set_pte_range(vmf, folio, pag << 3587 *rss += count; << 3588 folio_ref_add(folio, count); << 3589 if (in_range(vmf->address, ad << 3590 ret = VM_FAULT_NOPAGE << 3591 } << 3592 << 3593 vmf->pte = old_ptep; << 3594 << 3595 return ret; << 3596 } << 3597 << 3598 static vm_fault_t filemap_map_order0_folio(st << 3599 struct folio *folio, unsigned << 3600 unsigned long *rss, unsigned << 3601 { << 3602 vm_fault_t ret = 0; << 3603 struct page *page = &folio->page; << 3604 << 3605 if (PageHWPoison(page)) << 3606 return ret; << 3607 << 3608 /* See comment of filemap_map_folio_r << 3609 if (!folio_test_workingset(folio)) << 3610 (*mmap_miss)++; << 3611 << 3612 /* << 3613 * NOTE: If there're PTE markers, we' << 3614 * handled in the specific fault path << 3615 * the fault-around logic. << 3616 */ << 3617 if (!pte_none(ptep_get(vmf->pte))) << 3618 return ret; << 3619 << 3620 if (vmf->address == addr) << 3621 ret = VM_FAULT_NOPAGE; << 3622 << 3623 set_pte_range(vmf, folio, page, 1, ad << 3624 (*rss)++; << 3625 folio_ref_inc(folio); << 3626 << 3627 return ret; << 3628 } << 3629 << 3630 vm_fault_t filemap_map_pages(struct vm_fault << 3631 pgoff_t start_pg << 3632 { << 3633 struct vm_area_struct *vma = vmf->vma << 3634 struct file *file = vma->vm_file; << 3635 struct address_space *mapping = file- << 3636 pgoff_t file_end, last_pgoff = start_ << 3637 unsigned long addr; << 3638 XA_STATE(xas, &mapping->i_pages, star << 3639 struct folio *folio; << 3640 vm_fault_t ret = 0; << 3641 unsigned long rss = 0; << 3642 unsigned int nr_pages = 0, mmap_miss << 3643 << 3644 rcu_read_lock(); << 3645 folio = next_uptodate_folio(&xas, map << 3646 if (!folio) << 3647 goto out; << 3648 << 3649 if (filemap_map_pmd(vmf, folio, start << 3650 ret = VM_FAULT_NOPAGE; << 3651 goto out; << 3652 } << 3653 << 3654 addr = vma->vm_start + ((start_pgoff << 3655 vmf->pte = pte_offset_map_lock(vma->v << 3656 if (!vmf->pte) { << 3657 folio_unlock(folio); << 3658 folio_put(folio); << 3659 goto out; << 3660 } 2691 } 3661 << 3662 file_end = DIV_ROUND_UP(i_size_read(m << 3663 if (end_pgoff > file_end) << 3664 end_pgoff = file_end; << 3665 << 3666 folio_type = mm_counter_file(folio); << 3667 do { << 3668 unsigned long end; << 3669 << 3670 addr += (xas.xa_index - last_ << 3671 vmf->pte += xas.xa_index - la << 3672 last_pgoff = xas.xa_index; << 3673 end = folio_next_index(folio) << 3674 nr_pages = min(end, end_pgoff << 3675 << 3676 if (!folio_test_large(folio)) << 3677 ret |= filemap_map_or << 3678 folio << 3679 else << 3680 ret |= filemap_map_fo << 3681 xas.x << 3682 nr_pa << 3683 << 3684 folio_unlock(folio); << 3685 folio_put(folio); << 3686 } while ((folio = next_uptodate_folio << 3687 add_mm_counter(vma->vm_mm, folio_type << 3688 pte_unmap_unlock(vmf->pte, vmf->ptl); << 3689 trace_mm_filemap_map_pages(mapping, s << 3690 out: << 3691 rcu_read_unlock(); 2692 rcu_read_unlock(); 3692 << 3693 mmap_miss_saved = READ_ONCE(file->f_r << 3694 if (mmap_miss >= mmap_miss_saved) << 3695 WRITE_ONCE(file->f_ra.mmap_mi << 3696 else << 3697 WRITE_ONCE(file->f_ra.mmap_mi << 3698 << 3699 return ret; << 3700 } 2693 } 3701 EXPORT_SYMBOL(filemap_map_pages); 2694 EXPORT_SYMBOL(filemap_map_pages); 3702 2695 3703 vm_fault_t filemap_page_mkwrite(struct vm_fau 2696 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3704 { 2697 { 3705 struct address_space *mapping = vmf-> !! 2698 struct page *page = vmf->page; 3706 struct folio *folio = page_folio(vmf- !! 2699 struct inode *inode = file_inode(vmf->vma->vm_file); 3707 vm_fault_t ret = VM_FAULT_LOCKED; 2700 vm_fault_t ret = VM_FAULT_LOCKED; 3708 2701 3709 sb_start_pagefault(mapping->host->i_s !! 2702 sb_start_pagefault(inode->i_sb); 3710 file_update_time(vmf->vma->vm_file); 2703 file_update_time(vmf->vma->vm_file); 3711 folio_lock(folio); !! 2704 lock_page(page); 3712 if (folio->mapping != mapping) { !! 2705 if (page->mapping != inode->i_mapping) { 3713 folio_unlock(folio); !! 2706 unlock_page(page); 3714 ret = VM_FAULT_NOPAGE; 2707 ret = VM_FAULT_NOPAGE; 3715 goto out; 2708 goto out; 3716 } 2709 } 3717 /* 2710 /* 3718 * We mark the folio dirty already he !! 2711 * We mark the page dirty already here so that when freeze is in 3719 * progress, we are guaranteed that w 2712 * progress, we are guaranteed that writeback during freezing will 3720 * see the dirty folio and writeprote !! 2713 * see the dirty page and writeprotect it again. 3721 */ 2714 */ 3722 folio_mark_dirty(folio); !! 2715 set_page_dirty(page); 3723 folio_wait_stable(folio); !! 2716 wait_for_stable_page(page); 3724 out: 2717 out: 3725 sb_end_pagefault(mapping->host->i_sb) !! 2718 sb_end_pagefault(inode->i_sb); 3726 return ret; 2719 return ret; 3727 } 2720 } 3728 2721 3729 const struct vm_operations_struct generic_fil 2722 const struct vm_operations_struct generic_file_vm_ops = { 3730 .fault = filemap_fault, 2723 .fault = filemap_fault, 3731 .map_pages = filemap_map_pages, 2724 .map_pages = filemap_map_pages, 3732 .page_mkwrite = filemap_page_mkwrit 2725 .page_mkwrite = filemap_page_mkwrite, 3733 }; 2726 }; 3734 2727 3735 /* This is used for a general mmap of a disk 2728 /* This is used for a general mmap of a disk file */ 3736 2729 3737 int generic_file_mmap(struct file *file, stru !! 2730 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3738 { 2731 { 3739 struct address_space *mapping = file- 2732 struct address_space *mapping = file->f_mapping; 3740 2733 3741 if (!mapping->a_ops->read_folio) !! 2734 if (!mapping->a_ops->readpage) 3742 return -ENOEXEC; 2735 return -ENOEXEC; 3743 file_accessed(file); 2736 file_accessed(file); 3744 vma->vm_ops = &generic_file_vm_ops; 2737 vma->vm_ops = &generic_file_vm_ops; 3745 return 0; 2738 return 0; 3746 } 2739 } 3747 2740 3748 /* 2741 /* 3749 * This is for filesystems which do not imple 2742 * This is for filesystems which do not implement ->writepage. 3750 */ 2743 */ 3751 int generic_file_readonly_mmap(struct file *f 2744 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3752 { 2745 { 3753 if (vma_is_shared_maywrite(vma)) !! 2746 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3754 return -EINVAL; 2747 return -EINVAL; 3755 return generic_file_mmap(file, vma); 2748 return generic_file_mmap(file, vma); 3756 } 2749 } 3757 #else 2750 #else 3758 vm_fault_t filemap_page_mkwrite(struct vm_fau !! 2751 int filemap_page_mkwrite(struct vm_fault *vmf) 3759 { 2752 { 3760 return VM_FAULT_SIGBUS; !! 2753 return -ENOSYS; 3761 } 2754 } 3762 int generic_file_mmap(struct file *file, stru !! 2755 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3763 { 2756 { 3764 return -ENOSYS; 2757 return -ENOSYS; 3765 } 2758 } 3766 int generic_file_readonly_mmap(struct file *f !! 2759 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3767 { 2760 { 3768 return -ENOSYS; 2761 return -ENOSYS; 3769 } 2762 } 3770 #endif /* CONFIG_MMU */ 2763 #endif /* CONFIG_MMU */ 3771 2764 3772 EXPORT_SYMBOL(filemap_page_mkwrite); 2765 EXPORT_SYMBOL(filemap_page_mkwrite); 3773 EXPORT_SYMBOL(generic_file_mmap); 2766 EXPORT_SYMBOL(generic_file_mmap); 3774 EXPORT_SYMBOL(generic_file_readonly_mmap); 2767 EXPORT_SYMBOL(generic_file_readonly_mmap); 3775 2768 3776 static struct folio *do_read_cache_folio(stru !! 2769 static struct page *wait_on_page_read(struct page *page) 3777 pgoff_t index, filler_t fille << 3778 { 2770 { 3779 struct folio *folio; !! 2771 if (!IS_ERR(page)) { 3780 int err; !! 2772 wait_on_page_locked(page); >> 2773 if (!PageUptodate(page)) { >> 2774 put_page(page); >> 2775 page = ERR_PTR(-EIO); >> 2776 } >> 2777 } >> 2778 return page; >> 2779 } 3781 2780 3782 if (!filler) !! 2781 static struct page *do_read_cache_page(struct address_space *mapping, 3783 filler = mapping->a_ops->read !! 2782 pgoff_t index, >> 2783 int (*filler)(void *, struct page *), >> 2784 void *data, >> 2785 gfp_t gfp) >> 2786 { >> 2787 struct page *page; >> 2788 int err; 3784 repeat: 2789 repeat: 3785 folio = filemap_get_folio(mapping, in !! 2790 page = find_get_page(mapping, index); 3786 if (IS_ERR(folio)) { !! 2791 if (!page) { 3787 folio = filemap_alloc_folio(g !! 2792 page = __page_cache_alloc(gfp); 3788 m !! 2793 if (!page) 3789 if (!folio) << 3790 return ERR_PTR(-ENOME 2794 return ERR_PTR(-ENOMEM); 3791 index = mapping_align_index(m !! 2795 err = add_to_page_cache_lru(page, mapping, index, gfp); 3792 err = filemap_add_folio(mappi << 3793 if (unlikely(err)) { 2796 if (unlikely(err)) { 3794 folio_put(folio); !! 2797 put_page(page); 3795 if (err == -EEXIST) 2798 if (err == -EEXIST) 3796 goto repeat; 2799 goto repeat; 3797 /* Presumably ENOMEM !! 2800 /* Presumably ENOMEM for radix tree node */ >> 2801 return ERR_PTR(err); >> 2802 } >> 2803 >> 2804 filler: >> 2805 err = filler(data, page); >> 2806 if (err < 0) { >> 2807 put_page(page); 3798 return ERR_PTR(err); 2808 return ERR_PTR(err); 3799 } 2809 } 3800 2810 3801 goto filler; !! 2811 page = wait_on_page_read(page); >> 2812 if (IS_ERR(page)) >> 2813 return page; >> 2814 goto out; 3802 } 2815 } 3803 if (folio_test_uptodate(folio)) !! 2816 if (PageUptodate(page)) 3804 goto out; 2817 goto out; 3805 2818 3806 if (!folio_trylock(folio)) { !! 2819 /* 3807 folio_put_wait_locked(folio, !! 2820 * Page is not up to date and may be locked due one of the following 3808 goto repeat; !! 2821 * case a: Page is being filled and the page lock is held 3809 } !! 2822 * case b: Read/write error clearing the page uptodate status >> 2823 * case c: Truncation in progress (page locked) >> 2824 * case d: Reclaim in progress >> 2825 * >> 2826 * Case a, the page will be up to date when the page is unlocked. >> 2827 * There is no need to serialise on the page lock here as the page >> 2828 * is pinned so the lock gives no additional protection. Even if the >> 2829 * the page is truncated, the data is still valid if PageUptodate as >> 2830 * it's a race vs truncate race. >> 2831 * Case b, the page will not be up to date >> 2832 * Case c, the page may be truncated but in itself, the data may still >> 2833 * be valid after IO completes as it's a read vs truncate race. The >> 2834 * operation must restart if the page is not uptodate on unlock but >> 2835 * otherwise serialising on page lock to stabilise the mapping gives >> 2836 * no additional guarantees to the caller as the page lock is >> 2837 * released before return. >> 2838 * Case d, similar to truncation. If reclaim holds the page lock, it >> 2839 * will be a race with remove_mapping that determines if the mapping >> 2840 * is valid on unlock but otherwise the data is valid and there is >> 2841 * no need to serialise with page lock. >> 2842 * >> 2843 * As the page lock gives no additional guarantee, we optimistically >> 2844 * wait on the page to be unlocked and check if it's up to date and >> 2845 * use the page if it is. Otherwise, the page lock is required to >> 2846 * distinguish between the different cases. The motivation is that we >> 2847 * avoid spurious serialisations and wakeups when multiple processes >> 2848 * wait on the same page for IO to complete. >> 2849 */ >> 2850 wait_on_page_locked(page); >> 2851 if (PageUptodate(page)) >> 2852 goto out; 3810 2853 3811 /* Folio was truncated from mapping * !! 2854 /* Distinguish between all the cases under the safety of the lock */ 3812 if (!folio->mapping) { !! 2855 lock_page(page); 3813 folio_unlock(folio); !! 2856 3814 folio_put(folio); !! 2857 /* Case c or d, restart the operation */ >> 2858 if (!page->mapping) { >> 2859 unlock_page(page); >> 2860 put_page(page); 3815 goto repeat; 2861 goto repeat; 3816 } 2862 } 3817 2863 3818 /* Someone else locked and filled the 2864 /* Someone else locked and filled the page in a very small window */ 3819 if (folio_test_uptodate(folio)) { !! 2865 if (PageUptodate(page)) { 3820 folio_unlock(folio); !! 2866 unlock_page(page); 3821 goto out; 2867 goto out; 3822 } 2868 } 3823 !! 2869 goto filler; 3824 filler: << 3825 err = filemap_read_folio(file, filler << 3826 if (err) { << 3827 folio_put(folio); << 3828 if (err == AOP_TRUNCATED_PAGE << 3829 goto repeat; << 3830 return ERR_PTR(err); << 3831 } << 3832 2870 3833 out: 2871 out: 3834 folio_mark_accessed(folio); !! 2872 mark_page_accessed(page); 3835 return folio; !! 2873 return page; 3836 } << 3837 << 3838 /** << 3839 * read_cache_folio - Read into page cache, f << 3840 * @mapping: The address_space to read from. << 3841 * @index: The index to read. << 3842 * @filler: Function to perform the read, or << 3843 * @file: Passed to filler function, may be N << 3844 * << 3845 * Read one page into the page cache. If it << 3846 * will contain @index, but it may not be the << 3847 * << 3848 * If the filler function returns an error, i << 3849 * caller. << 3850 * << 3851 * Context: May sleep. Expects mapping->inva << 3852 * Return: An uptodate folio on success, ERR_ << 3853 */ << 3854 struct folio *read_cache_folio(struct address << 3855 filler_t filler, struct file << 3856 { << 3857 return do_read_cache_folio(mapping, i << 3858 mapping_gfp_mask(mapp << 3859 } 2874 } 3860 EXPORT_SYMBOL(read_cache_folio); << 3861 2875 3862 /** 2876 /** 3863 * mapping_read_folio_gfp - Read into page ca !! 2877 * read_cache_page - read into page cache, fill it if needed 3864 * @mapping: The address_space for the fol !! 2878 * @mapping: the page's address_space 3865 * @index: The index that the allocated !! 2879 * @index: the page index 3866 * @gfp: The page allocator flags to u !! 2880 * @filler: function to perform the read 3867 * !! 2881 * @data: first arg to filler(data, page) function, often left as NULL 3868 * This is the same as "read_cache_folio(mapp << 3869 * any new memory allocations done using the << 3870 * << 3871 * The most likely error from this function i << 3872 * possible and so is EINTR. If ->read_folio << 3873 * that will be returned to the caller. << 3874 * 2882 * 3875 * The function expects mapping->invalidate_l !! 2883 * Read into the page cache. If a page already exists, and PageUptodate() is >> 2884 * not set, try to fill the page and wait for it to become unlocked. 3876 * 2885 * 3877 * Return: Uptodate folio on success, ERR_PTR !! 2886 * If the page does not get brought uptodate, return -EIO. 3878 */ 2887 */ 3879 struct folio *mapping_read_folio_gfp(struct a << 3880 pgoff_t index, gfp_t gfp) << 3881 { << 3882 return do_read_cache_folio(mapping, i << 3883 } << 3884 EXPORT_SYMBOL(mapping_read_folio_gfp); << 3885 << 3886 static struct page *do_read_cache_page(struct << 3887 pgoff_t index, filler_t *fill << 3888 { << 3889 struct folio *folio; << 3890 << 3891 folio = do_read_cache_folio(mapping, << 3892 if (IS_ERR(folio)) << 3893 return &folio->page; << 3894 return folio_file_page(folio, index); << 3895 } << 3896 << 3897 struct page *read_cache_page(struct address_s 2888 struct page *read_cache_page(struct address_space *mapping, 3898 pgoff_t index, filler !! 2889 pgoff_t index, >> 2890 int (*filler)(void *, struct page *), >> 2891 void *data) 3899 { 2892 { 3900 return do_read_cache_page(mapping, in !! 2893 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 3901 mapping_gfp_mask(mapp << 3902 } 2894 } 3903 EXPORT_SYMBOL(read_cache_page); 2895 EXPORT_SYMBOL(read_cache_page); 3904 2896 3905 /** 2897 /** 3906 * read_cache_page_gfp - read into page cache 2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3907 * @mapping: the page's address_space 2899 * @mapping: the page's address_space 3908 * @index: the page index 2900 * @index: the page index 3909 * @gfp: the page allocator flags to u 2901 * @gfp: the page allocator flags to use if allocating 3910 * 2902 * 3911 * This is the same as "read_mapping_page(map 2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3912 * any new page allocations done using the sp 2904 * any new page allocations done using the specified allocation flags. 3913 * 2905 * 3914 * If the page does not get brought uptodate, 2906 * If the page does not get brought uptodate, return -EIO. 3915 * << 3916 * The function expects mapping->invalidate_l << 3917 * << 3918 * Return: up to date page on success, ERR_PT << 3919 */ 2907 */ 3920 struct page *read_cache_page_gfp(struct addre 2908 struct page *read_cache_page_gfp(struct address_space *mapping, 3921 pgoff_t index 2909 pgoff_t index, 3922 gfp_t gfp) 2910 gfp_t gfp) 3923 { 2911 { 3924 return do_read_cache_page(mapping, in !! 2912 filler_t *filler = (filler_t *)mapping->a_ops->readpage; >> 2913 >> 2914 return do_read_cache_page(mapping, index, filler, NULL, gfp); 3925 } 2915 } 3926 EXPORT_SYMBOL(read_cache_page_gfp); 2916 EXPORT_SYMBOL(read_cache_page_gfp); 3927 2917 3928 /* 2918 /* 3929 * Warn about a page cache invalidation failu !! 2919 * Performs necessary checks before doing a write >> 2920 * >> 2921 * Can adjust writing position or amount of bytes to write. >> 2922 * Returns appropriate error code that caller should return or >> 2923 * zero in case that write should be allowed. 3930 */ 2924 */ 3931 static void dio_warn_stale_pagecache(struct f !! 2925 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 3932 { 2926 { 3933 static DEFINE_RATELIMIT_STATE(_rs, 86 !! 2927 struct file *file = iocb->ki_filp; 3934 char pathname[128]; !! 2928 struct inode *inode = file->f_mapping->host; 3935 char *path; !! 2929 unsigned long limit = rlimit(RLIMIT_FSIZE); >> 2930 loff_t pos; >> 2931 >> 2932 if (!iov_iter_count(from)) >> 2933 return 0; >> 2934 >> 2935 /* FIXME: this is for backwards compatibility with 2.4 */ >> 2936 if (iocb->ki_flags & IOCB_APPEND) >> 2937 iocb->ki_pos = i_size_read(inode); >> 2938 >> 2939 pos = iocb->ki_pos; >> 2940 >> 2941 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) >> 2942 return -EINVAL; 3936 2943 3937 errseq_set(&filp->f_mapping->wb_err, !! 2944 if (limit != RLIM_INFINITY) { 3938 if (__ratelimit(&_rs)) { !! 2945 if (iocb->ki_pos >= limit) { 3939 path = file_path(filp, pathna !! 2946 send_sig(SIGXFSZ, current, 0); 3940 if (IS_ERR(path)) !! 2947 return -EFBIG; 3941 path = "(unknown)"; !! 2948 } 3942 pr_crit("Page cache invalidat !! 2949 iov_iter_truncate(from, limit - (unsigned long)pos); 3943 pr_crit("File: %s PID: %d Com !! 2950 } 3944 current->comm); !! 2951 >> 2952 /* >> 2953 * LFS rule >> 2954 */ >> 2955 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && >> 2956 !(file->f_flags & O_LARGEFILE))) { >> 2957 if (pos >= MAX_NON_LFS) >> 2958 return -EFBIG; >> 2959 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 3945 } 2960 } >> 2961 >> 2962 /* >> 2963 * Are we about to exceed the fs block limit ? >> 2964 * >> 2965 * If we have written data it becomes a short write. If we have >> 2966 * exceeded without writing data we send a signal and return EFBIG. >> 2967 * Linus frestrict idea will clean these up nicely.. >> 2968 */ >> 2969 if (unlikely(pos >= inode->i_sb->s_maxbytes)) >> 2970 return -EFBIG; >> 2971 >> 2972 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); >> 2973 return iov_iter_count(from); >> 2974 } >> 2975 EXPORT_SYMBOL(generic_write_checks); >> 2976 >> 2977 int pagecache_write_begin(struct file *file, struct address_space *mapping, >> 2978 loff_t pos, unsigned len, unsigned flags, >> 2979 struct page **pagep, void **fsdata) >> 2980 { >> 2981 const struct address_space_operations *aops = mapping->a_ops; >> 2982 >> 2983 return aops->write_begin(file, mapping, pos, len, flags, >> 2984 pagep, fsdata); 3946 } 2985 } >> 2986 EXPORT_SYMBOL(pagecache_write_begin); 3947 2987 3948 void kiocb_invalidate_post_direct_write(struc !! 2988 int pagecache_write_end(struct file *file, struct address_space *mapping, >> 2989 loff_t pos, unsigned len, unsigned copied, >> 2990 struct page *page, void *fsdata) 3949 { 2991 { 3950 struct address_space *mapping = iocb- !! 2992 const struct address_space_operations *aops = mapping->a_ops; 3951 2993 3952 if (mapping->nrpages && !! 2994 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3953 invalidate_inode_pages2_range(map << 3954 iocb->ki_pos >> PAGE_ << 3955 (iocb->ki_pos + count << 3956 dio_warn_stale_pagecache(iocb << 3957 } 2995 } >> 2996 EXPORT_SYMBOL(pagecache_write_end); 3958 2997 3959 ssize_t 2998 ssize_t 3960 generic_file_direct_write(struct kiocb *iocb, 2999 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3961 { 3000 { 3962 struct address_space *mapping = iocb- !! 3001 struct file *file = iocb->ki_filp; 3963 size_t write_len = iov_iter_count(fro !! 3002 struct address_space *mapping = file->f_mapping; 3964 ssize_t written; !! 3003 struct inode *inode = mapping->host; >> 3004 loff_t pos = iocb->ki_pos; >> 3005 ssize_t written; >> 3006 size_t write_len; >> 3007 pgoff_t end; >> 3008 >> 3009 write_len = iov_iter_count(from); >> 3010 end = (pos + write_len - 1) >> PAGE_SHIFT; >> 3011 >> 3012 if (iocb->ki_flags & IOCB_NOWAIT) { >> 3013 /* If there are pages to writeback, return */ >> 3014 if (filemap_range_has_page(inode->i_mapping, pos, >> 3015 pos + iov_iter_count(from))) >> 3016 return -EAGAIN; >> 3017 } else { >> 3018 written = filemap_write_and_wait_range(mapping, pos, >> 3019 pos + write_len - 1); >> 3020 if (written) >> 3021 goto out; >> 3022 } 3965 3023 3966 /* 3024 /* >> 3025 * After a write we want buffered reads to be sure to go to disk to get >> 3026 * the new data. We invalidate clean cached page from the region we're >> 3027 * about to write. We do this *before* the write so that we can return >> 3028 * without clobbering -EIOCBQUEUED from ->direct_IO(). >> 3029 */ >> 3030 written = invalidate_inode_pages2_range(mapping, >> 3031 pos >> PAGE_SHIFT, end); >> 3032 /* 3967 * If a page can not be invalidated, 3033 * If a page can not be invalidated, return 0 to fall back 3968 * to buffered write. 3034 * to buffered write. 3969 */ 3035 */ 3970 written = kiocb_invalidate_pages(iocb << 3971 if (written) { 3036 if (written) { 3972 if (written == -EBUSY) 3037 if (written == -EBUSY) 3973 return 0; 3038 return 0; 3974 return written; !! 3039 goto out; 3975 } 3040 } 3976 3041 3977 written = mapping->a_ops->direct_IO(i 3042 written = mapping->a_ops->direct_IO(iocb, from); 3978 3043 3979 /* 3044 /* 3980 * Finally, try again to invalidate c 3045 * Finally, try again to invalidate clean pages which might have been 3981 * cached by non-direct readahead, or 3046 * cached by non-direct readahead, or faulted in by get_user_pages() 3982 * if the source of the write was an 3047 * if the source of the write was an mmap'ed region of the file 3983 * we're writing. Either one is a pr 3048 * we're writing. Either one is a pretty crazy thing to do, 3984 * so we don't support it 100%. If t 3049 * so we don't support it 100%. If this invalidation 3985 * fails, tough, the write still work 3050 * fails, tough, the write still worked... 3986 * 3051 * 3987 * Most of the time we do not need th 3052 * Most of the time we do not need this since dio_complete() will do 3988 * the invalidation for us. However t 3053 * the invalidation for us. However there are some file systems that 3989 * do not end up with dio_complete() 3054 * do not end up with dio_complete() being called, so let's not break 3990 * them by removing it completely. !! 3055 * them by removing it completely 3991 * << 3992 * Noticeable example is a blkdev_dir << 3993 * << 3994 * Skip invalidation for async writes << 3995 */ 3056 */ 3996 if (written > 0) { !! 3057 if (mapping->nrpages) 3997 struct inode *inode = mapping !! 3058 invalidate_inode_pages2_range(mapping, 3998 loff_t pos = iocb->ki_pos; !! 3059 pos >> PAGE_SHIFT, end); 3999 3060 4000 kiocb_invalidate_post_direct_ !! 3061 if (written > 0) { 4001 pos += written; 3062 pos += written; 4002 write_len -= written; 3063 write_len -= written; 4003 if (pos > i_size_read(inode) 3064 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4004 i_size_write(inode, p 3065 i_size_write(inode, pos); 4005 mark_inode_dirty(inod 3066 mark_inode_dirty(inode); 4006 } 3067 } 4007 iocb->ki_pos = pos; 3068 iocb->ki_pos = pos; 4008 } 3069 } 4009 if (written != -EIOCBQUEUED) !! 3070 iov_iter_revert(from, write_len - iov_iter_count(from)); 4010 iov_iter_revert(from, write_l !! 3071 out: 4011 return written; 3072 return written; 4012 } 3073 } 4013 EXPORT_SYMBOL(generic_file_direct_write); 3074 EXPORT_SYMBOL(generic_file_direct_write); 4014 3075 4015 ssize_t generic_perform_write(struct kiocb *i !! 3076 /* >> 3077 * Find or create a page at the given pagecache position. Return the locked >> 3078 * page. This function is specifically for buffered writes. >> 3079 */ >> 3080 struct page *grab_cache_page_write_begin(struct address_space *mapping, >> 3081 pgoff_t index, unsigned flags) >> 3082 { >> 3083 struct page *page; >> 3084 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; >> 3085 >> 3086 if (flags & AOP_FLAG_NOFS) >> 3087 fgp_flags |= FGP_NOFS; >> 3088 >> 3089 page = pagecache_get_page(mapping, index, fgp_flags, >> 3090 mapping_gfp_mask(mapping)); >> 3091 if (page) >> 3092 wait_for_stable_page(page); >> 3093 >> 3094 return page; >> 3095 } >> 3096 EXPORT_SYMBOL(grab_cache_page_write_begin); >> 3097 >> 3098 ssize_t generic_perform_write(struct file *file, >> 3099 struct iov_iter *i, loff_t pos) 4016 { 3100 { 4017 struct file *file = iocb->ki_filp; << 4018 loff_t pos = iocb->ki_pos; << 4019 struct address_space *mapping = file- 3101 struct address_space *mapping = file->f_mapping; 4020 const struct address_space_operations 3102 const struct address_space_operations *a_ops = mapping->a_ops; 4021 size_t chunk = mapping_max_folio_size << 4022 long status = 0; 3103 long status = 0; 4023 ssize_t written = 0; 3104 ssize_t written = 0; >> 3105 unsigned int flags = 0; 4024 3106 4025 do { 3107 do { 4026 struct folio *folio; !! 3108 struct page *page; 4027 size_t offset; /* Of !! 3109 unsigned long offset; /* Offset into pagecache page */ 4028 size_t bytes; /* By !! 3110 unsigned long bytes; /* Bytes to write to page */ 4029 size_t copied; /* By 3111 size_t copied; /* Bytes copied from user */ 4030 void *fsdata = NULL; !! 3112 void *fsdata; 4031 3113 4032 bytes = iov_iter_count(i); !! 3114 offset = (pos & (PAGE_SIZE - 1)); 4033 retry: !! 3115 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4034 offset = pos & (chunk - 1); !! 3116 iov_iter_count(i)); 4035 bytes = min(chunk - offset, b << 4036 balance_dirty_pages_ratelimit << 4037 3117 >> 3118 again: 4038 /* 3119 /* 4039 * Bring in the user page tha 3120 * Bring in the user page that we will copy from _first_. 4040 * Otherwise there's a nasty 3121 * Otherwise there's a nasty deadlock on copying from the 4041 * same page as we're writing 3122 * same page as we're writing to, without it being marked 4042 * up-to-date. 3123 * up-to-date. >> 3124 * >> 3125 * Not only is this an optimisation, but it is also required >> 3126 * to check that the address is actually valid, when atomic >> 3127 * usercopies are used, below. 4043 */ 3128 */ 4044 if (unlikely(fault_in_iov_ite !! 3129 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 4045 status = -EFAULT; 3130 status = -EFAULT; 4046 break; 3131 break; 4047 } 3132 } 4048 3133 4049 if (fatal_signal_pending(curr 3134 if (fatal_signal_pending(current)) { 4050 status = -EINTR; 3135 status = -EINTR; 4051 break; 3136 break; 4052 } 3137 } 4053 3138 4054 status = a_ops->write_begin(f !! 3139 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 4055 !! 3140 &page, &fsdata); 4056 if (unlikely(status < 0)) 3141 if (unlikely(status < 0)) 4057 break; 3142 break; 4058 3143 4059 offset = offset_in_folio(foli << 4060 if (bytes > folio_size(folio) << 4061 bytes = folio_size(fo << 4062 << 4063 if (mapping_writably_mapped(m 3144 if (mapping_writably_mapped(mapping)) 4064 flush_dcache_folio(fo !! 3145 flush_dcache_page(page); 4065 3146 4066 copied = copy_folio_from_iter !! 3147 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 4067 flush_dcache_folio(folio); !! 3148 flush_dcache_page(page); 4068 3149 4069 status = a_ops->write_end(fil 3150 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4070 !! 3151 page, fsdata); 4071 if (unlikely(status != copied !! 3152 if (unlikely(status < 0)) 4072 iov_iter_revert(i, co !! 3153 break; 4073 if (unlikely(status < !! 3154 copied = status; 4074 break; !! 3155 4075 } << 4076 cond_resched(); 3156 cond_resched(); 4077 3157 4078 if (unlikely(status == 0)) { !! 3158 iov_iter_advance(i, copied); >> 3159 if (unlikely(copied == 0)) { 4079 /* 3160 /* 4080 * A short copy made !! 3161 * If we were unable to copy any data at all, we must 4081 * thing entirely. M !! 3162 * fall back to a single segment length write. 4082 * halfway through, m !! 3163 * 4083 * might be severe me !! 3164 * If we didn't fallback here, we could livelock >> 3165 * because not all segments in the iov can be copied at >> 3166 * once without a pagefault. 4084 */ 3167 */ 4085 if (chunk > PAGE_SIZE !! 3168 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4086 chunk /= 2; !! 3169 iov_iter_single_seg_count(i)); 4087 if (copied) { !! 3170 goto again; 4088 bytes = copie << 4089 goto retry; << 4090 } << 4091 } else { << 4092 pos += status; << 4093 written += status; << 4094 } 3171 } >> 3172 pos += copied; >> 3173 written += copied; >> 3174 >> 3175 balance_dirty_pages_ratelimited(mapping); 4095 } while (iov_iter_count(i)); 3176 } while (iov_iter_count(i)); 4096 3177 4097 if (!written) !! 3178 return written ? written : status; 4098 return status; << 4099 iocb->ki_pos += written; << 4100 return written; << 4101 } 3179 } 4102 EXPORT_SYMBOL(generic_perform_write); 3180 EXPORT_SYMBOL(generic_perform_write); 4103 3181 4104 /** 3182 /** 4105 * __generic_file_write_iter - write data to 3183 * __generic_file_write_iter - write data to a file 4106 * @iocb: IO state structure (file, off 3184 * @iocb: IO state structure (file, offset, etc.) 4107 * @from: iov_iter with data to write 3185 * @from: iov_iter with data to write 4108 * 3186 * 4109 * This function does all the work needed for 3187 * This function does all the work needed for actually writing data to a 4110 * file. It does all basic checks, removes SU 3188 * file. It does all basic checks, removes SUID from the file, updates 4111 * modification times and calls proper subrou 3189 * modification times and calls proper subroutines depending on whether we 4112 * do direct IO or a standard buffered write. 3190 * do direct IO or a standard buffered write. 4113 * 3191 * 4114 * It expects i_rwsem to be grabbed unless we !! 3192 * It expects i_mutex to be grabbed unless we work on a block device or similar 4115 * object which does not need locking at all. 3193 * object which does not need locking at all. 4116 * 3194 * 4117 * This function does *not* take care of sync 3195 * This function does *not* take care of syncing data in case of O_SYNC write. 4118 * A caller has to handle it. This is mainly 3196 * A caller has to handle it. This is mainly due to the fact that we want to 4119 * avoid syncing under i_rwsem. !! 3197 * avoid syncing under i_mutex. 4120 * << 4121 * Return: << 4122 * * number of bytes written, even for trunca << 4123 * * negative error code if no data has been << 4124 */ 3198 */ 4125 ssize_t __generic_file_write_iter(struct kioc 3199 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4126 { 3200 { 4127 struct file *file = iocb->ki_filp; 3201 struct file *file = iocb->ki_filp; 4128 struct address_space *mapping = file- !! 3202 struct address_space * mapping = file->f_mapping; 4129 struct inode *inode = mapping->host; !! 3203 struct inode *inode = mapping->host; 4130 ssize_t ret; !! 3204 ssize_t written = 0; >> 3205 ssize_t err; >> 3206 ssize_t status; >> 3207 >> 3208 /* We can write back this queue in page reclaim */ >> 3209 current->backing_dev_info = inode_to_bdi(inode); >> 3210 err = file_remove_privs(file); >> 3211 if (err) >> 3212 goto out; 4131 3213 4132 ret = file_remove_privs(file); !! 3214 err = file_update_time(file); 4133 if (ret) !! 3215 if (err) 4134 return ret; !! 3216 goto out; 4135 << 4136 ret = file_update_time(file); << 4137 if (ret) << 4138 return ret; << 4139 3217 4140 if (iocb->ki_flags & IOCB_DIRECT) { 3218 if (iocb->ki_flags & IOCB_DIRECT) { 4141 ret = generic_file_direct_wri !! 3219 loff_t pos, endbyte; >> 3220 >> 3221 written = generic_file_direct_write(iocb, from); 4142 /* 3222 /* 4143 * If the write stopped short 3223 * If the write stopped short of completing, fall back to 4144 * buffered writes. Some fil 3224 * buffered writes. Some filesystems do this for writes to 4145 * holes, for example. For D 3225 * holes, for example. For DAX files, a buffered write will 4146 * not succeed (even if it di 3226 * not succeed (even if it did, DAX does not handle dirty 4147 * page-cache pages correctly 3227 * page-cache pages correctly). 4148 */ 3228 */ 4149 if (ret < 0 || !iov_iter_coun !! 3229 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4150 return ret; !! 3230 goto out; 4151 return direct_write_fallback( << 4152 generic_perfo << 4153 } << 4154 3231 4155 return generic_perform_write(iocb, fr !! 3232 status = generic_perform_write(file, from, pos = iocb->ki_pos); >> 3233 /* >> 3234 * If generic_perform_write() returned a synchronous error >> 3235 * then we want to return the number of bytes which were >> 3236 * direct-written, or the error code if that was zero. Note >> 3237 * that this differs from normal direct-io semantics, which >> 3238 * will return -EFOO even if some bytes were written. >> 3239 */ >> 3240 if (unlikely(status < 0)) { >> 3241 err = status; >> 3242 goto out; >> 3243 } >> 3244 /* >> 3245 * We need to ensure that the page cache pages are written to >> 3246 * disk and invalidated to preserve the expected O_DIRECT >> 3247 * semantics. >> 3248 */ >> 3249 endbyte = pos + status - 1; >> 3250 err = filemap_write_and_wait_range(mapping, pos, endbyte); >> 3251 if (err == 0) { >> 3252 iocb->ki_pos = endbyte + 1; >> 3253 written += status; >> 3254 invalidate_mapping_pages(mapping, >> 3255 pos >> PAGE_SHIFT, >> 3256 endbyte >> PAGE_SHIFT); >> 3257 } else { >> 3258 /* >> 3259 * We don't know how much we wrote, so just return >> 3260 * the number of bytes which were direct-written >> 3261 */ >> 3262 } >> 3263 } else { >> 3264 written = generic_perform_write(file, from, iocb->ki_pos); >> 3265 if (likely(written > 0)) >> 3266 iocb->ki_pos += written; >> 3267 } >> 3268 out: >> 3269 current->backing_dev_info = NULL; >> 3270 return written ? written : err; 4156 } 3271 } 4157 EXPORT_SYMBOL(__generic_file_write_iter); 3272 EXPORT_SYMBOL(__generic_file_write_iter); 4158 3273 4159 /** 3274 /** 4160 * generic_file_write_iter - write data to a 3275 * generic_file_write_iter - write data to a file 4161 * @iocb: IO state structure 3276 * @iocb: IO state structure 4162 * @from: iov_iter with data to write 3277 * @from: iov_iter with data to write 4163 * 3278 * 4164 * This is a wrapper around __generic_file_wr 3279 * This is a wrapper around __generic_file_write_iter() to be used by most 4165 * filesystems. It takes care of syncing the 3280 * filesystems. It takes care of syncing the file in case of O_SYNC file 4166 * and acquires i_rwsem as needed. !! 3281 * and acquires i_mutex as needed. 4167 * Return: << 4168 * * negative error code if no data has been << 4169 * vfs_fsync_range() failed for a synchrono << 4170 * * number of bytes written, even for trunca << 4171 */ 3282 */ 4172 ssize_t generic_file_write_iter(struct kiocb 3283 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4173 { 3284 { 4174 struct file *file = iocb->ki_filp; 3285 struct file *file = iocb->ki_filp; 4175 struct inode *inode = file->f_mapping 3286 struct inode *inode = file->f_mapping->host; 4176 ssize_t ret; 3287 ssize_t ret; 4177 3288 4178 inode_lock(inode); 3289 inode_lock(inode); 4179 ret = generic_write_checks(iocb, from 3290 ret = generic_write_checks(iocb, from); 4180 if (ret > 0) 3291 if (ret > 0) 4181 ret = __generic_file_write_it 3292 ret = __generic_file_write_iter(iocb, from); 4182 inode_unlock(inode); 3293 inode_unlock(inode); 4183 3294 4184 if (ret > 0) 3295 if (ret > 0) 4185 ret = generic_write_sync(iocb 3296 ret = generic_write_sync(iocb, ret); 4186 return ret; 3297 return ret; 4187 } 3298 } 4188 EXPORT_SYMBOL(generic_file_write_iter); 3299 EXPORT_SYMBOL(generic_file_write_iter); 4189 3300 4190 /** 3301 /** 4191 * filemap_release_folio() - Release fs-speci !! 3302 * try_to_release_page() - release old fs-specific metadata on a page 4192 * @folio: The folio which the kernel is tryi << 4193 * @gfp: Memory allocation flags (and I/O mod << 4194 * 3303 * 4195 * The address_space is trying to release any !! 3304 * @page: the page which the kernel is trying to free 4196 * (presumably at folio->private). !! 3305 * @gfp_mask: memory allocation flags (and I/O mode) 4197 * 3306 * 4198 * This will also be called if the private_2 !! 3307 * The address_space is to try to release any data against the page 4199 * indicating that the folio has other metada !! 3308 * (presumably at page->private). If the release was successful, return '1'. >> 3309 * Otherwise return zero. 4200 * 3310 * 4201 * The @gfp argument specifies whether I/O ma !! 3311 * This may also be called if PG_fscache is set on a page, indicating that the 4202 * this page (__GFP_IO), and whether the call !! 3312 * page is known to the local caching routines. 4203 * (__GFP_RECLAIM & __GFP_FS). !! 3313 * >> 3314 * The @gfp_mask argument specifies whether I/O may be performed to release >> 3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 4204 * 3316 * 4205 * Return: %true if the release was successfu << 4206 */ << 4207 bool filemap_release_folio(struct folio *foli << 4208 { << 4209 struct address_space * const mapping << 4210 << 4211 BUG_ON(!folio_test_locked(folio)); << 4212 if (!folio_needs_release(folio)) << 4213 return true; << 4214 if (folio_test_writeback(folio)) << 4215 return false; << 4216 << 4217 if (mapping && mapping->a_ops->releas << 4218 return mapping->a_ops->releas << 4219 return try_to_free_buffers(folio); << 4220 } << 4221 EXPORT_SYMBOL(filemap_release_folio); << 4222 << 4223 /** << 4224 * filemap_invalidate_inode - Invalidate/forc << 4225 * @inode: The inode to flush << 4226 * @flush: Set to write back rather than simp << 4227 * @start: First byte to in range. << 4228 * @end: Last byte in range (inclusive), or L << 4229 * onwards. << 4230 * << 4231 * Invalidate all the folios on an inode that << 4232 * range, possibly writing them back first. << 4233 * undertaken, the invalidate lock is held to << 4234 * installed. << 4235 */ << 4236 int filemap_invalidate_inode(struct inode *in << 4237 loff_t start, lo << 4238 { << 4239 struct address_space *mapping = inode << 4240 pgoff_t first = start >> PAGE_SHIFT; << 4241 pgoff_t last = end >> PAGE_SHIFT; << 4242 pgoff_t nr = end == LLONG_MAX ? ULONG << 4243 << 4244 if (!mapping || !mapping->nrpages || << 4245 goto out; << 4246 << 4247 /* Prevent new folios from being adde << 4248 filemap_invalidate_lock(mapping); << 4249 << 4250 if (!mapping->nrpages) << 4251 goto unlock; << 4252 << 4253 unmap_mapping_pages(mapping, first, n << 4254 << 4255 /* Write back the data if we're asked << 4256 if (flush) { << 4257 struct writeback_control wbc << 4258 .sync_mode = WB_ << 4259 .nr_to_write = LON << 4260 .range_start = sta << 4261 .range_end = end << 4262 }; << 4263 << 4264 filemap_fdatawrite_wbc(mappin << 4265 } << 4266 << 4267 /* Wait for writeback to complete on << 4268 invalidate_inode_pages2_range(mapping << 4269 << 4270 unlock: << 4271 filemap_invalidate_unlock(mapping); << 4272 out: << 4273 return filemap_check_errors(mapping); << 4274 } << 4275 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); << 4276 << 4277 #ifdef CONFIG_CACHESTAT_SYSCALL << 4278 /** << 4279 * filemap_cachestat() - compute the page cac << 4280 * @mapping: The mapping to compute the st << 4281 * @first_index: The starting page cac << 4282 * @last_index: The final page index (inclusi << 4283 * @cs: the cachestat struct to write the res << 4284 * << 4285 * This will query the page cache statistics << 4286 * page range of [first_index, last_index] (i << 4287 * queried include: number of dirty pages, nu << 4288 * writeback, and the number of (recently) ev << 4289 */ 3317 */ 4290 static void filemap_cachestat(struct address_ !! 3318 int try_to_release_page(struct page *page, gfp_t gfp_mask) 4291 pgoff_t first_index, pgoff_t << 4292 { 3319 { 4293 XA_STATE(xas, &mapping->i_pages, firs !! 3320 struct address_space * const mapping = page->mapping; 4294 struct folio *folio; << 4295 << 4296 /* Flush stats (and potentially sleep << 4297 mem_cgroup_flush_stats_ratelimited(NU << 4298 << 4299 rcu_read_lock(); << 4300 xas_for_each(&xas, folio, last_index) << 4301 int order; << 4302 unsigned long nr_pages; << 4303 pgoff_t folio_first_index, fo << 4304 << 4305 /* << 4306 * Don't deref the folio. It << 4307 * get freed (and reused) und << 4308 * << 4309 * We *could* pin it, but tha << 4310 * what should be a fast and << 4311 * << 4312 * Instead, derive all inform << 4313 * the rcu-protected xarray. << 4314 */ << 4315 << 4316 if (xas_retry(&xas, folio)) << 4317 continue; << 4318 << 4319 order = xas_get_order(&xas); << 4320 nr_pages = 1 << order; << 4321 folio_first_index = round_dow << 4322 folio_last_index = folio_firs << 4323 << 4324 /* Folios might straddle the << 4325 if (folio_first_index < first << 4326 nr_pages -= first_ind << 4327 << 4328 if (folio_last_index > last_i << 4329 nr_pages -= folio_las << 4330 << 4331 if (xa_is_value(folio)) { << 4332 /* page is evicted */ << 4333 void *shadow = (void << 4334 bool workingset; /* n << 4335 << 4336 cs->nr_evicted += nr_ << 4337 << 4338 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ << 4339 if (shmem_mapping(map << 4340 /* shmem file << 4341 swp_entry_t s << 4342 << 4343 /* swapin err << 4344 if (non_swap_ << 4345 goto << 4346 << 4347 /* << 4348 * Getting a << 4349 * inode mean << 4350 * shmem_unus << 4351 * ensures sw << 4352 * freeing th << 4353 * we can rac << 4354 * invalidati << 4355 * a shadow i << 4356 */ << 4357 shadow = get_ << 4358 if (!shadow) << 4359 goto << 4360 } << 4361 #endif << 4362 if (workingset_test_r << 4363 cs->nr_recent << 4364 << 4365 goto resched; << 4366 } << 4367 << 4368 /* page is in cache */ << 4369 cs->nr_cache += nr_pages; << 4370 << 4371 if (xas_get_mark(&xas, PAGECA << 4372 cs->nr_dirty += nr_pa << 4373 3321 4374 if (xas_get_mark(&xas, PAGECA !! 3322 BUG_ON(!PageLocked(page)); 4375 cs->nr_writeback += n !! 3323 if (PageWriteback(page)) >> 3324 return 0; 4376 3325 4377 resched: !! 3326 if (mapping && mapping->a_ops->releasepage) 4378 if (need_resched()) { !! 3327 return mapping->a_ops->releasepage(page, gfp_mask); 4379 xas_pause(&xas); !! 3328 return try_to_free_buffers(page); 4380 cond_resched_rcu(); << 4381 } << 4382 } << 4383 rcu_read_unlock(); << 4384 } 3329 } 4385 3330 4386 /* !! 3331 EXPORT_SYMBOL(try_to_release_page); 4387 * The cachestat(2) system call. << 4388 * << 4389 * cachestat() returns the page cache statist << 4390 * bytes range specified by `off` and `len`: << 4391 * number of dirty pages, number of pages mar << 4392 * number of evicted pages, and number of rec << 4393 * << 4394 * An evicted page is a page that is previous << 4395 * but has been evicted since. A page is rece << 4396 * eviction was recent enough that its reentr << 4397 * indicate that it is actively being used by << 4398 * there is memory pressure on the system. << 4399 * << 4400 * `off` and `len` must be non-negative integ << 4401 * the queried range is [`off`, `off` + `len` << 4402 * we will query in the range from `off` to t << 4403 * << 4404 * The `flags` argument is unused for now, bu << 4405 * extensibility. User should pass 0 (i.e no << 4406 * << 4407 * Currently, hugetlbfs is not supported. << 4408 * << 4409 * Because the status of a page can change af << 4410 * but before it returns to the application, << 4411 * contain stale information. << 4412 * << 4413 * return values: << 4414 * zero - success << 4415 * -EFAULT - cstat or cstat_range points << 4416 * -EINVAL - invalid flags << 4417 * -EBADF - invalid file descriptor << 4418 * -EOPNOTSUPP - file descriptor is of a hug << 4419 */ << 4420 SYSCALL_DEFINE4(cachestat, unsigned int, fd, << 4421 struct cachestat_range __user << 4422 struct cachestat __user *, cs << 4423 { << 4424 struct fd f = fdget(fd); << 4425 struct address_space *mapping; << 4426 struct cachestat_range csr; << 4427 struct cachestat cs; << 4428 pgoff_t first_index, last_index; << 4429 << 4430 if (!fd_file(f)) << 4431 return -EBADF; << 4432 << 4433 if (copy_from_user(&csr, cstat_range, << 4434 sizeof(struct cachest << 4435 fdput(f); << 4436 return -EFAULT; << 4437 } << 4438 << 4439 /* hugetlbfs is not supported */ << 4440 if (is_file_hugepages(fd_file(f))) { << 4441 fdput(f); << 4442 return -EOPNOTSUPP; << 4443 } << 4444 << 4445 if (flags != 0) { << 4446 fdput(f); << 4447 return -EINVAL; << 4448 } << 4449 << 4450 first_index = csr.off >> PAGE_SHIFT; << 4451 last_index = << 4452 csr.len == 0 ? ULONG_MAX : (c << 4453 memset(&cs, 0, sizeof(struct cachesta << 4454 mapping = fd_file(f)->f_mapping; << 4455 filemap_cachestat(mapping, first_inde << 4456 fdput(f); << 4457 << 4458 if (copy_to_user(cstat, &cs, sizeof(s << 4459 return -EFAULT; << 4460 << 4461 return 0; << 4462 } << 4463 #endif /* CONFIG_CACHESTAT_SYSCALL */ << 4464 3332
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.