1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * linux/mm/filemap.c 3 * linux/mm/filemap.c 4 * 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 6 */ 7 7 8 /* 8 /* 9 * This file handles the generic file mmap sem 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /h 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differen 11 * the NFS filesystem used to do this differently, for example) 12 */ 12 */ 13 #include <linux/export.h> 13 #include <linux/export.h> 14 #include <linux/compiler.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> << 26 #include <linux/mman.h> 25 #include <linux/mman.h> 27 #include <linux/pagemap.h> 26 #include <linux/pagemap.h> 28 #include <linux/file.h> 27 #include <linux/file.h> 29 #include <linux/uio.h> 28 #include <linux/uio.h> 30 #include <linux/error-injection.h> 29 #include <linux/error-injection.h> 31 #include <linux/hash.h> 30 #include <linux/hash.h> 32 #include <linux/writeback.h> 31 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 32 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 33 #include <linux/pagevec.h> 35 #include <linux/security.h> 34 #include <linux/security.h> 36 #include <linux/cpuset.h> 35 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 36 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 37 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 38 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 39 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 40 #include <linux/delayacct.h> 42 #include <linux/psi.h> 41 #include <linux/psi.h> 43 #include <linux/ramfs.h> 42 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 43 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 44 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> << 47 #include <linux/splice.h> << 48 #include <linux/rcupdate_wait.h> << 49 #include <linux/sched/mm.h> << 50 #include <asm/pgalloc.h> 45 #include <asm/pgalloc.h> 51 #include <asm/tlbflush.h> 46 #include <asm/tlbflush.h> 52 #include "internal.h" 47 #include "internal.h" 53 48 54 #define CREATE_TRACE_POINTS 49 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 50 #include <trace/events/filemap.h> 56 51 57 /* 52 /* 58 * FIXME: remove all knowledge of the buffer l 53 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 54 */ 60 #include <linux/buffer_head.h> /* for try_to_f 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 56 62 #include <asm/mman.h> 57 #include <asm/mman.h> 63 58 64 #include "swap.h" << 65 << 66 /* 59 /* 67 * Shared mappings implemented 30.11.1994. It' 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 61 * though. 69 * 62 * 70 * Shared mappings now work. 15.8.1995 Bruno. 63 * Shared mappings now work. 15.8.1995 Bruno. 71 * 64 * 72 * finished 'unifying' the page and buffer cac 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@ 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 67 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcan 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 69 */ 77 70 78 /* 71 /* 79 * Lock ordering: 72 * Lock ordering: 80 * 73 * 81 * ->i_mmap_rwsem (truncate_page 74 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->b 75 * ->private_lock (__free_pte->block_dirty_folio) 83 * ->swap_lock (exclusive_swa 76 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock 77 * ->i_pages lock 85 * 78 * 86 * ->i_rwsem 79 * ->i_rwsem 87 * ->invalidate_lock (acquired by f 80 * ->invalidate_lock (acquired by fs in truncate path) 88 * ->i_mmap_rwsem (truncate->unm 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 89 * 82 * 90 * ->mmap_lock 83 * ->mmap_lock 91 * ->i_mmap_rwsem 84 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (vario 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependen 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 94 * 87 * 95 * ->mmap_lock 88 * ->mmap_lock 96 * ->invalidate_lock (filemap_fault 89 * ->invalidate_lock (filemap_fault) 97 * ->lock_page (filemap_fault 90 * ->lock_page (filemap_fault, access_process_vm) 98 * 91 * 99 * ->i_rwsem (generic_perfo 92 * ->i_rwsem (generic_perform_write) 100 * ->mmap_lock (fault_in_read 93 * ->mmap_lock (fault_in_readable->do_page_fault) 101 * 94 * 102 * bdi->wb.list_lock 95 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeba 96 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single 97 * ->i_pages lock (__sync_single_inode) 105 * 98 * 106 * ->i_mmap_rwsem 99 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) !! 100 * ->anon_vma.lock (vma_adjust) 108 * 101 * 109 * ->anon_vma.lock 102 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_ 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 104 * 112 * ->page_table_lock or pte_lock 105 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_ 106 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_ 107 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_ 108 * ->i_pages lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_m !! 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_ran !! 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 118 * ->private_lock (folio_remove_ !! 111 * ->private_lock (page_remove_rmap->set_page_dirty) 119 * ->i_pages lock (folio_remove_ !! 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_ !! 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 121 * ->inode->i_lock (folio_remove_ !! 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 122 * ->memcg->move_lock (folio_remove_ !! 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 123 * bdi.wb->list_lock (zap_pte_range 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range 118 * ->private_lock (zap_pte_range->block_dirty_folio) >> 119 * >> 120 * ->i_mmap_rwsem >> 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 126 */ 122 */ 127 123 128 static void mapping_set_update(struct xa_state << 129 struct address_space *mapping) << 130 { << 131 if (dax_mapping(mapping) || shmem_mapp << 132 return; << 133 xas_set_update(xas, workingset_update_ << 134 xas_set_lru(xas, &shadow_nodes); << 135 } << 136 << 137 static void page_cache_delete(struct address_s 124 static void page_cache_delete(struct address_space *mapping, 138 struct foli 125 struct folio *folio, void *shadow) 139 { 126 { 140 XA_STATE(xas, &mapping->i_pages, folio 127 XA_STATE(xas, &mapping->i_pages, folio->index); 141 long nr = 1; 128 long nr = 1; 142 129 143 mapping_set_update(&xas, mapping); 130 mapping_set_update(&xas, mapping); 144 131 145 xas_set_order(&xas, folio->index, foli !! 132 /* hugetlb pages are represented by a single entry in the xarray */ 146 nr = folio_nr_pages(folio); !! 133 if (!folio_test_hugetlb(folio)) { >> 134 xas_set_order(&xas, folio->index, folio_order(folio)); >> 135 nr = folio_nr_pages(folio); >> 136 } 147 137 148 VM_BUG_ON_FOLIO(!folio_test_locked(fol 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 149 139 150 xas_store(&xas, shadow); 140 xas_store(&xas, shadow); 151 xas_init_marks(&xas); 141 xas_init_marks(&xas); 152 142 153 folio->mapping = NULL; 143 folio->mapping = NULL; 154 /* Leave page->index set: truncation l 144 /* Leave page->index set: truncation lookup relies upon it */ 155 mapping->nrpages -= nr; 145 mapping->nrpages -= nr; 156 } 146 } 157 147 158 static void filemap_unaccount_folio(struct add 148 static void filemap_unaccount_folio(struct address_space *mapping, 159 struct folio *folio) 149 struct folio *folio) 160 { 150 { 161 long nr; 151 long nr; 162 152 163 VM_BUG_ON_FOLIO(folio_mapped(folio), f 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 164 if (!IS_ENABLED(CONFIG_DEBUG_VM) && un 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 165 pr_alert("BUG: Bad page cache 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 166 current->comm, folio_ 156 current->comm, folio_pfn(folio)); 167 dump_page(&folio->page, "still 157 dump_page(&folio->page, "still mapped when deleted"); 168 dump_stack(); 158 dump_stack(); 169 add_taint(TAINT_BAD_PAGE, LOCK 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 170 160 171 if (mapping_exiting(mapping) & 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 172 int mapcount = folio_m !! 162 int mapcount = page_mapcount(&folio->page); 173 163 174 if (folio_ref_count(fo 164 if (folio_ref_count(folio) >= mapcount + 2) { 175 /* 165 /* 176 * All vmas ha 166 * All vmas have already been torn down, so it's 177 * a good bet 167 * a good bet that actually the page is unmapped 178 * and we'd ra 168 * and we'd rather not leak it: if we're wrong, 179 * another bad 169 * another bad page check should catch it later. 180 */ 170 */ 181 atomic_set(&fo !! 171 page_mapcount_reset(&folio->page); 182 folio_ref_sub( 172 folio_ref_sub(folio, mapcount); 183 } 173 } 184 } 174 } 185 } 175 } 186 176 187 /* hugetlb folios do not participate i 177 /* hugetlb folios do not participate in page cache accounting. */ 188 if (folio_test_hugetlb(folio)) 178 if (folio_test_hugetlb(folio)) 189 return; 179 return; 190 180 191 nr = folio_nr_pages(folio); 181 nr = folio_nr_pages(folio); 192 182 193 __lruvec_stat_mod_folio(folio, NR_FILE 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 194 if (folio_test_swapbacked(folio)) { 184 if (folio_test_swapbacked(folio)) { 195 __lruvec_stat_mod_folio(folio, 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 196 if (folio_test_pmd_mappable(fo 186 if (folio_test_pmd_mappable(folio)) 197 __lruvec_stat_mod_foli 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 198 } else if (folio_test_pmd_mappable(fol 188 } else if (folio_test_pmd_mappable(folio)) { 199 __lruvec_stat_mod_folio(folio, 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 200 filemap_nr_thps_dec(mapping); 190 filemap_nr_thps_dec(mapping); 201 } 191 } 202 192 203 /* 193 /* 204 * At this point folio must be either 194 * At this point folio must be either written or cleaned by 205 * truncate. Dirty folio here signals 195 * truncate. Dirty folio here signals a bug and loss of 206 * unwritten data - on ordinary filesy 196 * unwritten data - on ordinary filesystems. 207 * 197 * 208 * But it's harmless on in-memory file 198 * But it's harmless on in-memory filesystems like tmpfs; and can 209 * occur when a driver which did get_u 199 * occur when a driver which did get_user_pages() sets page dirty 210 * before putting it, while the inode 200 * before putting it, while the inode is being finally evicted. 211 * 201 * 212 * Below fixes dirty accounting after 202 * Below fixes dirty accounting after removing the folio entirely 213 * but leaves the dirty flag set: it h 203 * but leaves the dirty flag set: it has no effect for truncated 214 * folio and anyway will be cleared be 204 * folio and anyway will be cleared before returning folio to 215 * buddy allocator. 205 * buddy allocator. 216 */ 206 */ 217 if (WARN_ON_ONCE(folio_test_dirty(foli 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 218 mapping_can_writeback 208 mapping_can_writeback(mapping))) 219 folio_account_cleaned(folio, i 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 220 } 210 } 221 211 222 /* 212 /* 223 * Delete a page from the page cache and free 213 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody els 214 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages 215 * is safe. The caller must hold the i_pages lock. 226 */ 216 */ 227 void __filemap_remove_folio(struct folio *foli 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 228 { 218 { 229 struct address_space *mapping = folio- 219 struct address_space *mapping = folio->mapping; 230 220 231 trace_mm_filemap_delete_from_page_cach 221 trace_mm_filemap_delete_from_page_cache(folio); 232 filemap_unaccount_folio(mapping, folio 222 filemap_unaccount_folio(mapping, folio); 233 page_cache_delete(mapping, folio, shad 223 page_cache_delete(mapping, folio, shadow); 234 } 224 } 235 225 236 void filemap_free_folio(struct address_space * 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 237 { 227 { 238 void (*free_folio)(struct folio *); 228 void (*free_folio)(struct folio *); 239 int refs = 1; 229 int refs = 1; 240 230 241 free_folio = mapping->a_ops->free_foli 231 free_folio = mapping->a_ops->free_folio; 242 if (free_folio) 232 if (free_folio) 243 free_folio(folio); 233 free_folio(folio); 244 234 245 if (folio_test_large(folio)) !! 235 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 246 refs = folio_nr_pages(folio); 236 refs = folio_nr_pages(folio); 247 folio_put_refs(folio, refs); 237 folio_put_refs(folio, refs); 248 } 238 } 249 239 250 /** 240 /** 251 * filemap_remove_folio - Remove folio from pa 241 * filemap_remove_folio - Remove folio from page cache. 252 * @folio: The folio. 242 * @folio: The folio. 253 * 243 * 254 * This must be called only on folios that are 244 * This must be called only on folios that are locked and have been 255 * verified to be in the page cache. It will 245 * verified to be in the page cache. It will never put the folio into 256 * the free list because the caller has a refe 246 * the free list because the caller has a reference on the page. 257 */ 247 */ 258 void filemap_remove_folio(struct folio *folio) 248 void filemap_remove_folio(struct folio *folio) 259 { 249 { 260 struct address_space *mapping = folio- 250 struct address_space *mapping = folio->mapping; 261 251 262 BUG_ON(!folio_test_locked(folio)); 252 BUG_ON(!folio_test_locked(folio)); 263 spin_lock(&mapping->host->i_lock); 253 spin_lock(&mapping->host->i_lock); 264 xa_lock_irq(&mapping->i_pages); 254 xa_lock_irq(&mapping->i_pages); 265 __filemap_remove_folio(folio, NULL); 255 __filemap_remove_folio(folio, NULL); 266 xa_unlock_irq(&mapping->i_pages); 256 xa_unlock_irq(&mapping->i_pages); 267 if (mapping_shrinkable(mapping)) 257 if (mapping_shrinkable(mapping)) 268 inode_add_lru(mapping->host); 258 inode_add_lru(mapping->host); 269 spin_unlock(&mapping->host->i_lock); 259 spin_unlock(&mapping->host->i_lock); 270 260 271 filemap_free_folio(mapping, folio); 261 filemap_free_folio(mapping, folio); 272 } 262 } 273 263 274 /* 264 /* 275 * page_cache_delete_batch - delete several fo 265 * page_cache_delete_batch - delete several folios from page cache 276 * @mapping: the mapping to which folios belon 266 * @mapping: the mapping to which folios belong 277 * @fbatch: batch of folios to delete 267 * @fbatch: batch of folios to delete 278 * 268 * 279 * The function walks over mapping->i_pages an 269 * The function walks over mapping->i_pages and removes folios passed in 280 * @fbatch from the mapping. The function expe 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 281 * by page index and is optimised for it to be 271 * by page index and is optimised for it to be dense. 282 * It tolerates holes in @fbatch (mapping entr 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 283 * modified). 273 * modified). 284 * 274 * 285 * The function expects the i_pages lock to be 275 * The function expects the i_pages lock to be held. 286 */ 276 */ 287 static void page_cache_delete_batch(struct add 277 static void page_cache_delete_batch(struct address_space *mapping, 288 struct folio_batc 278 struct folio_batch *fbatch) 289 { 279 { 290 XA_STATE(xas, &mapping->i_pages, fbatc 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 291 long total_pages = 0; 281 long total_pages = 0; 292 int i = 0; 282 int i = 0; 293 struct folio *folio; 283 struct folio *folio; 294 284 295 mapping_set_update(&xas, mapping); 285 mapping_set_update(&xas, mapping); 296 xas_for_each(&xas, folio, ULONG_MAX) { 286 xas_for_each(&xas, folio, ULONG_MAX) { 297 if (i >= folio_batch_count(fba 287 if (i >= folio_batch_count(fbatch)) 298 break; 288 break; 299 289 300 /* A swap/dax/shadow entry got 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 301 if (xa_is_value(folio)) 291 if (xa_is_value(folio)) 302 continue; 292 continue; 303 /* 293 /* 304 * A page got inserted in our 294 * A page got inserted in our range? Skip it. We have our 305 * pages locked so they are pr 295 * pages locked so they are protected from being removed. 306 * If we see a page whose inde 296 * If we see a page whose index is higher than ours, it 307 * means our page has been rem 297 * means our page has been removed, which shouldn't be 308 * possible because we're hold 298 * possible because we're holding the PageLock. 309 */ 299 */ 310 if (folio != fbatch->folios[i] 300 if (folio != fbatch->folios[i]) { 311 VM_BUG_ON_FOLIO(folio- 301 VM_BUG_ON_FOLIO(folio->index > 312 fbatch 302 fbatch->folios[i]->index, folio); 313 continue; 303 continue; 314 } 304 } 315 305 316 WARN_ON_ONCE(!folio_test_locke 306 WARN_ON_ONCE(!folio_test_locked(folio)); 317 307 318 folio->mapping = NULL; 308 folio->mapping = NULL; 319 /* Leave folio->index set: tru 309 /* Leave folio->index set: truncation lookup relies on it */ 320 310 321 i++; 311 i++; 322 xas_store(&xas, NULL); 312 xas_store(&xas, NULL); 323 total_pages += folio_nr_pages( 313 total_pages += folio_nr_pages(folio); 324 } 314 } 325 mapping->nrpages -= total_pages; 315 mapping->nrpages -= total_pages; 326 } 316 } 327 317 328 void delete_from_page_cache_batch(struct addre 318 void delete_from_page_cache_batch(struct address_space *mapping, 329 struct folio 319 struct folio_batch *fbatch) 330 { 320 { 331 int i; 321 int i; 332 322 333 if (!folio_batch_count(fbatch)) 323 if (!folio_batch_count(fbatch)) 334 return; 324 return; 335 325 336 spin_lock(&mapping->host->i_lock); 326 spin_lock(&mapping->host->i_lock); 337 xa_lock_irq(&mapping->i_pages); 327 xa_lock_irq(&mapping->i_pages); 338 for (i = 0; i < folio_batch_count(fbat 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 339 struct folio *folio = fbatch-> 329 struct folio *folio = fbatch->folios[i]; 340 330 341 trace_mm_filemap_delete_from_p 331 trace_mm_filemap_delete_from_page_cache(folio); 342 filemap_unaccount_folio(mappin 332 filemap_unaccount_folio(mapping, folio); 343 } 333 } 344 page_cache_delete_batch(mapping, fbatc 334 page_cache_delete_batch(mapping, fbatch); 345 xa_unlock_irq(&mapping->i_pages); 335 xa_unlock_irq(&mapping->i_pages); 346 if (mapping_shrinkable(mapping)) 336 if (mapping_shrinkable(mapping)) 347 inode_add_lru(mapping->host); 337 inode_add_lru(mapping->host); 348 spin_unlock(&mapping->host->i_lock); 338 spin_unlock(&mapping->host->i_lock); 349 339 350 for (i = 0; i < folio_batch_count(fbat 340 for (i = 0; i < folio_batch_count(fbatch); i++) 351 filemap_free_folio(mapping, fb 341 filemap_free_folio(mapping, fbatch->folios[i]); 352 } 342 } 353 343 354 int filemap_check_errors(struct address_space 344 int filemap_check_errors(struct address_space *mapping) 355 { 345 { 356 int ret = 0; 346 int ret = 0; 357 /* Check for outstanding write errors 347 /* Check for outstanding write errors */ 358 if (test_bit(AS_ENOSPC, &mapping->flag 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 359 test_and_clear_bit(AS_ENOSPC, &map 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 360 ret = -ENOSPC; 350 ret = -ENOSPC; 361 if (test_bit(AS_EIO, &mapping->flags) 351 if (test_bit(AS_EIO, &mapping->flags) && 362 test_and_clear_bit(AS_EIO, &mappin 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 363 ret = -EIO; 353 ret = -EIO; 364 return ret; 354 return ret; 365 } 355 } 366 EXPORT_SYMBOL(filemap_check_errors); 356 EXPORT_SYMBOL(filemap_check_errors); 367 357 368 static int filemap_check_and_keep_errors(struc 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 369 { 359 { 370 /* Check for outstanding write errors 360 /* Check for outstanding write errors */ 371 if (test_bit(AS_EIO, &mapping->flags)) 361 if (test_bit(AS_EIO, &mapping->flags)) 372 return -EIO; 362 return -EIO; 373 if (test_bit(AS_ENOSPC, &mapping->flag 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 374 return -ENOSPC; 364 return -ENOSPC; 375 return 0; 365 return 0; 376 } 366 } 377 367 378 /** 368 /** 379 * filemap_fdatawrite_wbc - start writeback on 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 380 * @mapping: address space structure to wri 370 * @mapping: address space structure to write 381 * @wbc: the writeback_control controll 371 * @wbc: the writeback_control controlling the writeout 382 * 372 * 383 * Call writepages on the mapping using the pr 373 * Call writepages on the mapping using the provided wbc to control the 384 * writeout. 374 * writeout. 385 * 375 * 386 * Return: %0 on success, negative error code 376 * Return: %0 on success, negative error code otherwise. 387 */ 377 */ 388 int filemap_fdatawrite_wbc(struct address_spac 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 389 struct writeback_co 379 struct writeback_control *wbc) 390 { 380 { 391 int ret; 381 int ret; 392 382 393 if (!mapping_can_writeback(mapping) || 383 if (!mapping_can_writeback(mapping) || 394 !mapping_tagged(mapping, PAGECACHE 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 395 return 0; 385 return 0; 396 386 397 wbc_attach_fdatawrite_inode(wbc, mappi 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 398 ret = do_writepages(mapping, wbc); 388 ret = do_writepages(mapping, wbc); 399 wbc_detach_inode(wbc); 389 wbc_detach_inode(wbc); 400 return ret; 390 return ret; 401 } 391 } 402 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 403 393 404 /** 394 /** 405 * __filemap_fdatawrite_range - start writebac 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 406 * @mapping: address space structure to wri 396 * @mapping: address space structure to write 407 * @start: offset in bytes where the rang 397 * @start: offset in bytes where the range starts 408 * @end: offset in bytes where the rang 398 * @end: offset in bytes where the range ends (inclusive) 409 * @sync_mode: enable synchronous operation 399 * @sync_mode: enable synchronous operation 410 * 400 * 411 * Start writeback against all of a mapping's 401 * Start writeback against all of a mapping's dirty pages that lie 412 * within the byte offsets <start, end> inclus 402 * within the byte offsets <start, end> inclusive. 413 * 403 * 414 * If sync_mode is WB_SYNC_ALL then this is a 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 415 * opposed to a regular memory cleansing write 405 * opposed to a regular memory cleansing writeback. The difference between 416 * these two operations is that if a dirty pag 406 * these two operations is that if a dirty page/buffer is encountered, it must 417 * be waited upon, and not just skipped over. 407 * be waited upon, and not just skipped over. 418 * 408 * 419 * Return: %0 on success, negative error code 409 * Return: %0 on success, negative error code otherwise. 420 */ 410 */ 421 int __filemap_fdatawrite_range(struct address_ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 422 loff_t end, in 412 loff_t end, int sync_mode) 423 { 413 { 424 struct writeback_control wbc = { 414 struct writeback_control wbc = { 425 .sync_mode = sync_mode, 415 .sync_mode = sync_mode, 426 .nr_to_write = LONG_MAX, 416 .nr_to_write = LONG_MAX, 427 .range_start = start, 417 .range_start = start, 428 .range_end = end, 418 .range_end = end, 429 }; 419 }; 430 420 431 return filemap_fdatawrite_wbc(mapping, 421 return filemap_fdatawrite_wbc(mapping, &wbc); 432 } 422 } 433 423 434 static inline int __filemap_fdatawrite(struct 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 435 int sync_mode) 425 int sync_mode) 436 { 426 { 437 return __filemap_fdatawrite_range(mapp 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 438 } 428 } 439 429 440 int filemap_fdatawrite(struct address_space *m 430 int filemap_fdatawrite(struct address_space *mapping) 441 { 431 { 442 return __filemap_fdatawrite(mapping, W 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 443 } 433 } 444 EXPORT_SYMBOL(filemap_fdatawrite); 434 EXPORT_SYMBOL(filemap_fdatawrite); 445 435 446 int filemap_fdatawrite_range(struct address_sp 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 447 loff_t end) 437 loff_t end) 448 { 438 { 449 return __filemap_fdatawrite_range(mapp 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 450 } 440 } 451 EXPORT_SYMBOL(filemap_fdatawrite_range); 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 452 442 453 /** 443 /** 454 * filemap_flush - mostly a non-blocking flush 444 * filemap_flush - mostly a non-blocking flush 455 * @mapping: target address_space 445 * @mapping: target address_space 456 * 446 * 457 * This is a mostly non-blocking flush. Not s 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 458 * purposes - I/O may not be started against a 448 * purposes - I/O may not be started against all dirty pages. 459 * 449 * 460 * Return: %0 on success, negative error code 450 * Return: %0 on success, negative error code otherwise. 461 */ 451 */ 462 int filemap_flush(struct address_space *mappin 452 int filemap_flush(struct address_space *mapping) 463 { 453 { 464 return __filemap_fdatawrite(mapping, W 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 465 } 455 } 466 EXPORT_SYMBOL(filemap_flush); 456 EXPORT_SYMBOL(filemap_flush); 467 457 468 /** 458 /** 469 * filemap_range_has_page - check if a page ex 459 * filemap_range_has_page - check if a page exists in range. 470 * @mapping: address space within wh 460 * @mapping: address space within which to check 471 * @start_byte: offset in bytes where t 461 * @start_byte: offset in bytes where the range starts 472 * @end_byte: offset in bytes where t 462 * @end_byte: offset in bytes where the range ends (inclusive) 473 * 463 * 474 * Find at least one page in the range supplie 464 * Find at least one page in the range supplied, usually used to check if 475 * direct writing in this range will trigger a 465 * direct writing in this range will trigger a writeback. 476 * 466 * 477 * Return: %true if at least one page exists i 467 * Return: %true if at least one page exists in the specified range, 478 * %false otherwise. 468 * %false otherwise. 479 */ 469 */ 480 bool filemap_range_has_page(struct address_spa 470 bool filemap_range_has_page(struct address_space *mapping, 481 loff_t start_byte, 471 loff_t start_byte, loff_t end_byte) 482 { 472 { 483 struct folio *folio; !! 473 struct page *page; 484 XA_STATE(xas, &mapping->i_pages, start 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 485 pgoff_t max = end_byte >> PAGE_SHIFT; 475 pgoff_t max = end_byte >> PAGE_SHIFT; 486 476 487 if (end_byte < start_byte) 477 if (end_byte < start_byte) 488 return false; 478 return false; 489 479 490 rcu_read_lock(); 480 rcu_read_lock(); 491 for (;;) { 481 for (;;) { 492 folio = xas_find(&xas, max); !! 482 page = xas_find(&xas, max); 493 if (xas_retry(&xas, folio)) !! 483 if (xas_retry(&xas, page)) 494 continue; 484 continue; 495 /* Shadow entries don't count 485 /* Shadow entries don't count */ 496 if (xa_is_value(folio)) !! 486 if (xa_is_value(page)) 497 continue; 487 continue; 498 /* 488 /* 499 * We don't need to try to pin 489 * We don't need to try to pin this page; we're about to 500 * release the RCU lock anyway 490 * release the RCU lock anyway. It is enough to know that 501 * there was a page here recen 491 * there was a page here recently. 502 */ 492 */ 503 break; 493 break; 504 } 494 } 505 rcu_read_unlock(); 495 rcu_read_unlock(); 506 496 507 return folio != NULL; !! 497 return page != NULL; 508 } 498 } 509 EXPORT_SYMBOL(filemap_range_has_page); 499 EXPORT_SYMBOL(filemap_range_has_page); 510 500 511 static void __filemap_fdatawait_range(struct a 501 static void __filemap_fdatawait_range(struct address_space *mapping, 512 loff_t st 502 loff_t start_byte, loff_t end_byte) 513 { 503 { 514 pgoff_t index = start_byte >> PAGE_SHI 504 pgoff_t index = start_byte >> PAGE_SHIFT; 515 pgoff_t end = end_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 516 struct folio_batch fbatch; !! 506 struct pagevec pvec; 517 unsigned nr_folios; !! 507 int nr_pages; 518 508 519 folio_batch_init(&fbatch); !! 509 if (end_byte < start_byte) >> 510 return; 520 511 >> 512 pagevec_init(&pvec); 521 while (index <= end) { 513 while (index <= end) { 522 unsigned i; 514 unsigned i; 523 515 524 nr_folios = filemap_get_folios !! 516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 525 PAGECACHE_TAG_ !! 517 end, PAGECACHE_TAG_WRITEBACK); 526 !! 518 if (!nr_pages) 527 if (!nr_folios) << 528 break; 519 break; 529 520 530 for (i = 0; i < nr_folios; i++ !! 521 for (i = 0; i < nr_pages; i++) { 531 struct folio *folio = !! 522 struct page *page = pvec.pages[i]; 532 523 533 folio_wait_writeback(f !! 524 wait_on_page_writeback(page); >> 525 ClearPageError(page); 534 } 526 } 535 folio_batch_release(&fbatch); !! 527 pagevec_release(&pvec); 536 cond_resched(); 528 cond_resched(); 537 } 529 } 538 } 530 } 539 531 540 /** 532 /** 541 * filemap_fdatawait_range - wait for writebac 533 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structur 534 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where 535 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where 536 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 537 * 546 * Walk the list of under-writeback pages of t 538 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them 539 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 540 * the address space and return it. 549 * 541 * 550 * Since the error status of the address space 542 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the re 543 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 544 * reporting the error. 553 * 545 * 554 * Return: error status of the address space. 546 * Return: error status of the address space. 555 */ 547 */ 556 int filemap_fdatawait_range(struct address_spa 548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 549 loff_t end_byte) 558 { 550 { 559 __filemap_fdatawait_range(mapping, sta 551 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 552 return filemap_check_errors(mapping); 561 } 553 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 554 EXPORT_SYMBOL(filemap_fdatawait_range); 563 555 564 /** 556 /** 565 * filemap_fdatawait_range_keep_errors - wait 557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 566 * @mapping: address space structur 558 * @mapping: address space structure to wait for 567 * @start_byte: offset in bytes where 559 * @start_byte: offset in bytes where the range starts 568 * @end_byte: offset in bytes where 560 * @end_byte: offset in bytes where the range ends (inclusive) 569 * 561 * 570 * Walk the list of under-writeback pages of t 562 * Walk the list of under-writeback pages of the given address space in the 571 * given range and wait for all of them. Unli 563 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 572 * this function does not clear error status o 564 * this function does not clear error status of the address space. 573 * 565 * 574 * Use this function if callers don't handle e 566 * Use this function if callers don't handle errors themselves. Expected 575 * call sites are system-wide / filesystem-wid 567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 576 * fsfreeze(8) 568 * fsfreeze(8) 577 */ 569 */ 578 int filemap_fdatawait_range_keep_errors(struct 570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 579 loff_t start_byte, loff_t end_ 571 loff_t start_byte, loff_t end_byte) 580 { 572 { 581 __filemap_fdatawait_range(mapping, sta 573 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return filemap_check_and_keep_errors(m 574 return filemap_check_and_keep_errors(mapping); 583 } 575 } 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_err 576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 585 577 586 /** 578 /** 587 * file_fdatawait_range - wait for writeback t 579 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to addre 580 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where 581 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where 582 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 583 * 592 * Walk the list of under-writeback pages of t 584 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for 585 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f 586 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 587 * 596 * Since the error status of the file is advan 588 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the re 589 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 590 * reporting the error. 599 * 591 * 600 * Return: error status of the address space v 592 * Return: error status of the address space vs. the file->f_wb_err cursor. 601 */ 593 */ 602 int file_fdatawait_range(struct file *file, lo 594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 595 { 604 struct address_space *mapping = file-> 596 struct address_space *mapping = file->f_mapping; 605 597 606 __filemap_fdatawait_range(mapping, sta 598 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(f 599 return file_check_and_advance_wb_err(file); 608 } 600 } 609 EXPORT_SYMBOL(file_fdatawait_range); 601 EXPORT_SYMBOL(file_fdatawait_range); 610 602 611 /** 603 /** 612 * filemap_fdatawait_keep_errors - wait for wr 604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait f 605 * @mapping: address space structure to wait for 614 * 606 * 615 * Walk the list of under-writeback pages of t 607 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_f 608 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address 609 * does not clear error status of the address space. 618 * 610 * 619 * Use this function if callers don't handle e 611 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wid 612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 613 * fsfreeze(8) 622 * 614 * 623 * Return: error status of the address space. 615 * Return: error status of the address space. 624 */ 616 */ 625 int filemap_fdatawait_keep_errors(struct addre 617 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 618 { 627 __filemap_fdatawait_range(mapping, 0, 619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(m 620 return filemap_check_and_keep_errors(mapping); 629 } 621 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 623 632 /* Returns true if writeback might be needed o 624 /* Returns true if writeback might be needed or already in progress. */ 633 static bool mapping_needs_writeback(struct add 625 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 626 { 635 return mapping->nrpages; 627 return mapping->nrpages; 636 } 628 } 637 629 638 bool filemap_range_has_writeback(struct addres 630 bool filemap_range_has_writeback(struct address_space *mapping, 639 loff_t start_ 631 loff_t start_byte, loff_t end_byte) 640 { 632 { 641 XA_STATE(xas, &mapping->i_pages, start 633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 642 pgoff_t max = end_byte >> PAGE_SHIFT; 634 pgoff_t max = end_byte >> PAGE_SHIFT; 643 struct folio *folio; !! 635 struct page *page; 644 636 645 if (end_byte < start_byte) 637 if (end_byte < start_byte) 646 return false; 638 return false; 647 639 648 rcu_read_lock(); 640 rcu_read_lock(); 649 xas_for_each(&xas, folio, max) { !! 641 xas_for_each(&xas, page, max) { 650 if (xas_retry(&xas, folio)) !! 642 if (xas_retry(&xas, page)) 651 continue; 643 continue; 652 if (xa_is_value(folio)) !! 644 if (xa_is_value(page)) 653 continue; 645 continue; 654 if (folio_test_dirty(folio) || !! 646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 655 folio_test_wri << 656 break; 647 break; 657 } 648 } 658 rcu_read_unlock(); 649 rcu_read_unlock(); 659 return folio != NULL; !! 650 return page != NULL; 660 } 651 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback) 652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 662 653 663 /** 654 /** 664 * filemap_write_and_wait_range - write out & 655 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the page 656 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the rang 657 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the rang 658 * @lend: offset in bytes where the range ends (inclusive) 668 * 659 * 669 * Write out and wait upon file offsets lstart 660 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 661 * 671 * Note that @lend is inclusive (describes the 662 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to 663 * that this function can be used to write to the very end-of-file (end = -1). 673 * 664 * 674 * Return: error status of the address space. 665 * Return: error status of the address space. 675 */ 666 */ 676 int filemap_write_and_wait_range(struct addres 667 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart 668 loff_t lstart, loff_t lend) 678 { 669 { 679 int err = 0, err2; !! 670 int err = 0; 680 << 681 if (lend < lstart) << 682 return 0; << 683 671 684 if (mapping_needs_writeback(mapping)) 672 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_ran 673 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 674 WB_SYNC_ALL); 687 /* 675 /* 688 * Even if the above returned 676 * Even if the above returned error, the pages may be 689 * written partially (e.g. -EN 677 * written partially (e.g. -ENOSPC), so we wait for it. 690 * But the -EIO is special cas 678 * But the -EIO is special case, it may indicate the worst 691 * thing (e.g. bug) happened, 679 * thing (e.g. bug) happened, so we avoid waiting for it. 692 */ 680 */ 693 if (err != -EIO) !! 681 if (err != -EIO) { 694 __filemap_fdatawait_ra !! 682 int err2 = filemap_fdatawait_range(mapping, >> 683 lstart, lend); >> 684 if (!err) >> 685 err = err2; >> 686 } else { >> 687 /* Clear any previously stored errors */ >> 688 filemap_check_errors(mapping); >> 689 } >> 690 } else { >> 691 err = filemap_check_errors(mapping); 695 } 692 } 696 err2 = filemap_check_errors(mapping); << 697 if (!err) << 698 err = err2; << 699 return err; 693 return err; 700 } 694 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 695 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 696 703 void __filemap_set_wb_err(struct address_space 697 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 698 { 705 errseq_t eseq = errseq_set(&mapping->w 699 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 700 707 trace_filemap_set_wb_err(mapping, eseq 701 trace_filemap_set_wb_err(mapping, eseq); 708 } 702 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 703 EXPORT_SYMBOL(__filemap_set_wb_err); 710 704 711 /** 705 /** 712 * file_check_and_advance_wb_err - report wb e 706 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance 707 * and advance wb_err to current one 714 * @file: struct file on which the error is be 708 * @file: struct file on which the error is being reported 715 * 709 * 716 * When userland calls fsync (or something lik 710 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that oc 711 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't 712 * since the file was opened if there haven't been any). 719 * 713 * 720 * Grab the wb_err from the mapping. If it mat 714 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all 715 * then just quickly return 0. The file is all caught up. 722 * 716 * 723 * If it doesn't match, then take the mapping 717 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it wor 718 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f 719 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be re 720 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.) 721 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 722 * 729 * While we handle mapping->wb_err with atomic 723 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we m 724 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file d 725 * the latest value swapped in for this file descriptor. 732 * 726 * 733 * Return: %0 on success, negative error code 727 * Return: %0 on success, negative error code otherwise. 734 */ 728 */ 735 int file_check_and_advance_wb_err(struct file 729 int file_check_and_advance_wb_err(struct file *file) 736 { 730 { 737 int err = 0; 731 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_er 732 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file-> 733 struct address_space *mapping = file->f_mapping; 740 734 741 /* Locklessly handle the common case w 735 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old 736 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use 737 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 738 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 739 old = file->f_wb_err; 746 err = errseq_check_and_advance 740 err = errseq_check_and_advance(&mapping->wb_err, 747 741 &file->f_wb_err); 748 trace_file_check_and_advance_w 742 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 743 spin_unlock(&file->f_lock); 750 } 744 } 751 745 752 /* 746 /* 753 * We're mostly using this function as 747 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/ 748 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had 749 * that the legacy code would have had on these flags. 756 */ 750 */ 757 clear_bit(AS_EIO, &mapping->flags); 751 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 752 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 753 return err; 760 } 754 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 755 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 756 763 /** 757 /** 764 * file_write_and_wait_range - write out & wai 758 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space 759 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the rang 760 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the rang 761 * @lend: offset in bytes where the range ends (inclusive) 768 * 762 * 769 * Write out and wait upon file offsets lstart 763 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 764 * 771 * Note that @lend is inclusive (describes the 765 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to 766 * that this function can be used to write to the very end-of-file (end = -1). 773 * 767 * 774 * After writing out and waiting on the data, 768 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and re 769 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * 770 * 777 * Return: %0 on success, negative error code 771 * Return: %0 on success, negative error code otherwise. 778 */ 772 */ 779 int file_write_and_wait_range(struct file *fil 773 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 774 { 781 int err = 0, err2; 775 int err = 0, err2; 782 struct address_space *mapping = file-> 776 struct address_space *mapping = file->f_mapping; 783 777 784 if (lend < lstart) << 785 return 0; << 786 << 787 if (mapping_needs_writeback(mapping)) 778 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_ran 779 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 780 WB_SYNC_ALL); 790 /* See comment of filemap_writ 781 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 782 if (err != -EIO) 792 __filemap_fdatawait_ra 783 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 784 } 794 err2 = file_check_and_advance_wb_err(f 785 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 786 if (!err) 796 err = err2; 787 err = err2; 797 return err; 788 return err; 798 } 789 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 790 EXPORT_SYMBOL(file_write_and_wait_range); 800 791 801 /** 792 /** 802 * replace_page_cache_folio - replace a pageca !! 793 * replace_page_cache_page - replace a pagecache page with a new one 803 * @old: folio to be replaced !! 794 * @old: page to be replaced 804 * @new: folio to replace with !! 795 * @new: page to replace with 805 * !! 796 * 806 * This function replaces a folio in the pagec !! 797 * This function replaces a page in the pagecache with a new one. On 807 * success it acquires the pagecache reference !! 798 * success it acquires the pagecache reference for the new page and 808 * drops it for the old folio. Both the old a !! 799 * drops it for the old page. Both the old and new pages must be 809 * locked. This function does not add the new !! 800 * locked. This function does not add the new page to the LRU, the 810 * caller must do that. 801 * caller must do that. 811 * 802 * 812 * The remove + add is atomic. This function 803 * The remove + add is atomic. This function cannot fail. 813 */ 804 */ 814 void replace_page_cache_folio(struct folio *ol !! 805 void replace_page_cache_page(struct page *old, struct page *new) 815 { 806 { >> 807 struct folio *fold = page_folio(old); >> 808 struct folio *fnew = page_folio(new); 816 struct address_space *mapping = old->m 809 struct address_space *mapping = old->mapping; 817 void (*free_folio)(struct folio *) = m 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 818 pgoff_t offset = old->index; 811 pgoff_t offset = old->index; 819 XA_STATE(xas, &mapping->i_pages, offse 812 XA_STATE(xas, &mapping->i_pages, offset); 820 813 821 VM_BUG_ON_FOLIO(!folio_test_locked(old !! 814 VM_BUG_ON_PAGE(!PageLocked(old), old); 822 VM_BUG_ON_FOLIO(!folio_test_locked(new !! 815 VM_BUG_ON_PAGE(!PageLocked(new), new); 823 VM_BUG_ON_FOLIO(new->mapping, new); !! 816 VM_BUG_ON_PAGE(new->mapping, new); 824 817 825 folio_get(new); !! 818 get_page(new); 826 new->mapping = mapping; 819 new->mapping = mapping; 827 new->index = offset; 820 new->index = offset; 828 821 829 mem_cgroup_replace_folio(old, new); !! 822 mem_cgroup_migrate(fold, fnew); 830 823 831 xas_lock_irq(&xas); 824 xas_lock_irq(&xas); 832 xas_store(&xas, new); 825 xas_store(&xas, new); 833 826 834 old->mapping = NULL; 827 old->mapping = NULL; 835 /* hugetlb pages do not participate in 828 /* hugetlb pages do not participate in page cache accounting. */ 836 if (!folio_test_hugetlb(old)) !! 829 if (!PageHuge(old)) 837 __lruvec_stat_sub_folio(old, N !! 830 __dec_lruvec_page_state(old, NR_FILE_PAGES); 838 if (!folio_test_hugetlb(new)) !! 831 if (!PageHuge(new)) 839 __lruvec_stat_add_folio(new, N !! 832 __inc_lruvec_page_state(new, NR_FILE_PAGES); 840 if (folio_test_swapbacked(old)) !! 833 if (PageSwapBacked(old)) 841 __lruvec_stat_sub_folio(old, N !! 834 __dec_lruvec_page_state(old, NR_SHMEM); 842 if (folio_test_swapbacked(new)) !! 835 if (PageSwapBacked(new)) 843 __lruvec_stat_add_folio(new, N !! 836 __inc_lruvec_page_state(new, NR_SHMEM); 844 xas_unlock_irq(&xas); 837 xas_unlock_irq(&xas); 845 if (free_folio) 838 if (free_folio) 846 free_folio(old); !! 839 free_folio(fold); 847 folio_put(old); !! 840 folio_put(fold); 848 } 841 } 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); !! 842 EXPORT_SYMBOL_GPL(replace_page_cache_page); 850 843 851 noinline int __filemap_add_folio(struct addres 844 noinline int __filemap_add_folio(struct address_space *mapping, 852 struct folio *folio, pgoff_t i 845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 853 { 846 { 854 XA_STATE(xas, &mapping->i_pages, index 847 XA_STATE(xas, &mapping->i_pages, index); 855 void *alloced_shadow = NULL; !! 848 int huge = folio_test_hugetlb(folio); 856 int alloced_order = 0; !! 849 bool charged = false; 857 bool huge; !! 850 long nr = 1; 858 long nr; << 859 851 860 VM_BUG_ON_FOLIO(!folio_test_locked(fol 852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 861 VM_BUG_ON_FOLIO(folio_test_swapbacked( 853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 862 VM_BUG_ON_FOLIO(folio_order(folio) < m << 863 folio); << 864 mapping_set_update(&xas, mapping); 854 mapping_set_update(&xas, mapping); 865 855 866 VM_BUG_ON_FOLIO(index & (folio_nr_page !! 856 if (!huge) { 867 xas_set_order(&xas, index, folio_order !! 857 int error = mem_cgroup_charge(folio, NULL, gfp); 868 huge = folio_test_hugetlb(folio); !! 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 869 nr = folio_nr_pages(folio); !! 859 if (error) >> 860 return error; >> 861 charged = true; >> 862 xas_set_order(&xas, index, folio_order(folio)); >> 863 nr = folio_nr_pages(folio); >> 864 } 870 865 871 gfp &= GFP_RECLAIM_MASK; 866 gfp &= GFP_RECLAIM_MASK; 872 folio_ref_add(folio, nr); 867 folio_ref_add(folio, nr); 873 folio->mapping = mapping; 868 folio->mapping = mapping; 874 folio->index = xas.xa_index; 869 folio->index = xas.xa_index; 875 870 876 for (;;) { !! 871 do { 877 int order = -1, split_order = !! 872 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 878 void *entry, *old = NULL; 873 void *entry, *old = NULL; 879 874 >> 875 if (order > folio_order(folio)) >> 876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), >> 877 order, gfp); 880 xas_lock_irq(&xas); 878 xas_lock_irq(&xas); 881 xas_for_each_conflict(&xas, en 879 xas_for_each_conflict(&xas, entry) { 882 old = entry; 880 old = entry; 883 if (!xa_is_value(entry 881 if (!xa_is_value(entry)) { 884 xas_set_err(&x 882 xas_set_err(&xas, -EEXIST); 885 goto unlock; 883 goto unlock; 886 } 884 } 887 /* << 888 * If a larger entry e << 889 * it will be the firs << 890 */ << 891 if (order == -1) << 892 order = xas_ge << 893 } << 894 << 895 /* entry may have changed befo << 896 if (alloced_order && (old != a << 897 xas_destroy(&xas); << 898 alloced_order = 0; << 899 } 885 } 900 886 901 if (old) { 887 if (old) { 902 if (order > 0 && order !! 888 if (shadowp) >> 889 *shadowp = old; >> 890 /* entry may have been split before we acquired lock */ >> 891 order = xa_get_order(xas.xa, xas.xa_index); >> 892 if (order > folio_order(folio)) { 903 /* How to hand 893 /* How to handle large swap entries? */ 904 BUG_ON(shmem_m 894 BUG_ON(shmem_mapping(mapping)); 905 if (!alloced_o << 906 split_ << 907 goto u << 908 } << 909 xas_split(&xas 895 xas_split(&xas, old, order); 910 xas_reset(&xas 896 xas_reset(&xas); 911 } 897 } 912 if (shadowp) << 913 *shadowp = old << 914 } 898 } 915 899 916 xas_store(&xas, folio); 900 xas_store(&xas, folio); 917 if (xas_error(&xas)) 901 if (xas_error(&xas)) 918 goto unlock; 902 goto unlock; 919 903 920 mapping->nrpages += nr; 904 mapping->nrpages += nr; 921 905 922 /* hugetlb pages do not partic 906 /* hugetlb pages do not participate in page cache accounting */ 923 if (!huge) { 907 if (!huge) { 924 __lruvec_stat_mod_foli 908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 925 if (folio_test_pmd_map 909 if (folio_test_pmd_mappable(folio)) 926 __lruvec_stat_ 910 __lruvec_stat_mod_folio(folio, 927 911 NR_FILE_THPS, nr); 928 } 912 } 929 << 930 unlock: 913 unlock: 931 xas_unlock_irq(&xas); 914 xas_unlock_irq(&xas); 932 !! 915 } while (xas_nomem(&xas, gfp)); 933 /* split needed, alloc here an << 934 if (split_order) { << 935 xas_split_alloc(&xas, << 936 if (xas_error(&xas)) << 937 goto error; << 938 alloced_shadow = old; << 939 alloced_order = split_ << 940 xas_reset(&xas); << 941 continue; << 942 } << 943 << 944 if (!xas_nomem(&xas, gfp)) << 945 break; << 946 } << 947 916 948 if (xas_error(&xas)) 917 if (xas_error(&xas)) 949 goto error; 918 goto error; 950 919 951 trace_mm_filemap_add_to_page_cache(fol 920 trace_mm_filemap_add_to_page_cache(folio); 952 return 0; 921 return 0; 953 error: 922 error: >> 923 if (charged) >> 924 mem_cgroup_uncharge(folio); 954 folio->mapping = NULL; 925 folio->mapping = NULL; 955 /* Leave page->index set: truncation r 926 /* Leave page->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); 927 folio_put_refs(folio, nr); 957 return xas_error(&xas); 928 return xas_error(&xas); 958 } 929 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERR 930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 960 931 >> 932 /** >> 933 * add_to_page_cache_locked - add a locked page to the pagecache >> 934 * @page: page to add >> 935 * @mapping: the page's address_space >> 936 * @offset: page index >> 937 * @gfp_mask: page allocation mode >> 938 * >> 939 * This function is used to add a page to the pagecache. It must be locked. >> 940 * This function does not add the page to the LRU. The caller must do that. >> 941 * >> 942 * Return: %0 on success, negative error code otherwise. >> 943 */ >> 944 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, >> 945 pgoff_t offset, gfp_t gfp_mask) >> 946 { >> 947 return __filemap_add_folio(mapping, page_folio(page), offset, >> 948 gfp_mask, NULL); >> 949 } >> 950 EXPORT_SYMBOL(add_to_page_cache_locked); >> 951 961 int filemap_add_folio(struct address_space *ma 952 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 962 pgoff_t index, 953 pgoff_t index, gfp_t gfp) 963 { 954 { 964 void *shadow = NULL; 955 void *shadow = NULL; 965 int ret; 956 int ret; 966 957 967 ret = mem_cgroup_charge(folio, NULL, g << 968 if (ret) << 969 return ret; << 970 << 971 __folio_set_locked(folio); 958 __folio_set_locked(folio); 972 ret = __filemap_add_folio(mapping, fol 959 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 973 if (unlikely(ret)) { !! 960 if (unlikely(ret)) 974 mem_cgroup_uncharge(folio); << 975 __folio_clear_locked(folio); 961 __folio_clear_locked(folio); 976 } else { !! 962 else { 977 /* 963 /* 978 * The folio might have been e 964 * The folio might have been evicted from cache only 979 * recently, in which case it 965 * recently, in which case it should be activated like 980 * any other repeatedly access 966 * any other repeatedly accessed folio. 981 * The exception is folios get 967 * The exception is folios getting rewritten; evicting other 982 * data from the working set, 968 * data from the working set, only to cache data that will 983 * get overwritten with someth 969 * get overwritten with something else, is a waste of memory. 984 */ 970 */ 985 WARN_ON_ONCE(folio_test_active 971 WARN_ON_ONCE(folio_test_active(folio)); 986 if (!(gfp & __GFP_WRITE) && sh 972 if (!(gfp & __GFP_WRITE) && shadow) 987 workingset_refault(fol 973 workingset_refault(folio, shadow); 988 folio_add_lru(folio); 974 folio_add_lru(folio); 989 } 975 } 990 return ret; 976 return ret; 991 } 977 } 992 EXPORT_SYMBOL_GPL(filemap_add_folio); 978 EXPORT_SYMBOL_GPL(filemap_add_folio); 993 979 994 #ifdef CONFIG_NUMA 980 #ifdef CONFIG_NUMA 995 struct folio *filemap_alloc_folio_noprof(gfp_t !! 981 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 996 { 982 { 997 int n; 983 int n; 998 struct folio *folio; 984 struct folio *folio; 999 985 1000 if (cpuset_do_page_mem_spread()) { 986 if (cpuset_do_page_mem_spread()) { 1001 unsigned int cpuset_mems_cook 987 unsigned int cpuset_mems_cookie; 1002 do { 988 do { 1003 cpuset_mems_cookie = 989 cpuset_mems_cookie = read_mems_allowed_begin(); 1004 n = cpuset_mem_spread 990 n = cpuset_mem_spread_node(); 1005 folio = __folio_alloc !! 991 folio = __folio_alloc_node(gfp, order, n); 1006 } while (!folio && read_mems_ 992 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1007 993 1008 return folio; 994 return folio; 1009 } 995 } 1010 return folio_alloc_noprof(gfp, order) !! 996 return folio_alloc(gfp, order); 1011 } 997 } 1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof); !! 998 EXPORT_SYMBOL(filemap_alloc_folio); 1013 #endif 999 #endif 1014 1000 1015 /* 1001 /* 1016 * filemap_invalidate_lock_two - lock invalid 1002 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1017 * 1003 * 1018 * Lock exclusively invalidate_lock of any pa 1004 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1019 * 1005 * 1020 * @mapping1: the first mapping to lock 1006 * @mapping1: the first mapping to lock 1021 * @mapping2: the second mapping to lock 1007 * @mapping2: the second mapping to lock 1022 */ 1008 */ 1023 void filemap_invalidate_lock_two(struct addre 1009 void filemap_invalidate_lock_two(struct address_space *mapping1, 1024 struct addre 1010 struct address_space *mapping2) 1025 { 1011 { 1026 if (mapping1 > mapping2) 1012 if (mapping1 > mapping2) 1027 swap(mapping1, mapping2); 1013 swap(mapping1, mapping2); 1028 if (mapping1) 1014 if (mapping1) 1029 down_write(&mapping1->invalid 1015 down_write(&mapping1->invalidate_lock); 1030 if (mapping2 && mapping1 != mapping2) 1016 if (mapping2 && mapping1 != mapping2) 1031 down_write_nested(&mapping2-> 1017 down_write_nested(&mapping2->invalidate_lock, 1); 1032 } 1018 } 1033 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1019 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1034 1020 1035 /* 1021 /* 1036 * filemap_invalidate_unlock_two - unlock inv 1022 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1037 * 1023 * 1038 * Unlock exclusive invalidate_lock of any pa 1024 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1039 * 1025 * 1040 * @mapping1: the first mapping to unlock 1026 * @mapping1: the first mapping to unlock 1041 * @mapping2: the second mapping to unlock 1027 * @mapping2: the second mapping to unlock 1042 */ 1028 */ 1043 void filemap_invalidate_unlock_two(struct add 1029 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1044 struct add 1030 struct address_space *mapping2) 1045 { 1031 { 1046 if (mapping1) 1032 if (mapping1) 1047 up_write(&mapping1->invalidat 1033 up_write(&mapping1->invalidate_lock); 1048 if (mapping2 && mapping1 != mapping2) 1034 if (mapping2 && mapping1 != mapping2) 1049 up_write(&mapping2->invalidat 1035 up_write(&mapping2->invalidate_lock); 1050 } 1036 } 1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1037 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1052 1038 1053 /* 1039 /* 1054 * In order to wait for pages to become avail 1040 * In order to wait for pages to become available there must be 1055 * waitqueues associated with pages. By using 1041 * waitqueues associated with pages. By using a hash table of 1056 * waitqueues where the bucket discipline is 1042 * waitqueues where the bucket discipline is to maintain all 1057 * waiters on the same queue and wake all whe 1043 * waiters on the same queue and wake all when any of the pages 1058 * become available, and for the woken contex 1044 * become available, and for the woken contexts to check to be 1059 * sure the appropriate page became available 1045 * sure the appropriate page became available, this saves space 1060 * at a cost of "thundering herd" phenomena d 1046 * at a cost of "thundering herd" phenomena during rare hash 1061 * collisions. 1047 * collisions. 1062 */ 1048 */ 1063 #define PAGE_WAIT_TABLE_BITS 8 1049 #define PAGE_WAIT_TABLE_BITS 8 1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_ 1050 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1065 static wait_queue_head_t folio_wait_table[PAG 1051 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1066 1052 1067 static wait_queue_head_t *folio_waitqueue(str 1053 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1068 { 1054 { 1069 return &folio_wait_table[hash_ptr(fol 1055 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1070 } 1056 } 1071 1057 1072 void __init pagecache_init(void) 1058 void __init pagecache_init(void) 1073 { 1059 { 1074 int i; 1060 int i; 1075 1061 1076 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; 1062 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1077 init_waitqueue_head(&folio_wa 1063 init_waitqueue_head(&folio_wait_table[i]); 1078 1064 1079 page_writeback_init(); 1065 page_writeback_init(); 1080 } 1066 } 1081 1067 1082 /* 1068 /* 1083 * The page wait code treats the "wait->flags 1069 * The page wait code treats the "wait->flags" somewhat unusually, because 1084 * we have multiple different kinds of waits, 1070 * we have multiple different kinds of waits, not just the usual "exclusive" 1085 * one. 1071 * one. 1086 * 1072 * 1087 * We have: 1073 * We have: 1088 * 1074 * 1089 * (a) no special bits set: 1075 * (a) no special bits set: 1090 * 1076 * 1091 * We're just waiting for the bit to be 1077 * We're just waiting for the bit to be released, and when a waker 1092 * calls the wakeup function, we set WQ_ 1078 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1093 * and remove it from the wait queue. 1079 * and remove it from the wait queue. 1094 * 1080 * 1095 * Simple and straightforward. 1081 * Simple and straightforward. 1096 * 1082 * 1097 * (b) WQ_FLAG_EXCLUSIVE: 1083 * (b) WQ_FLAG_EXCLUSIVE: 1098 * 1084 * 1099 * The waiter is waiting to get the lock 1085 * The waiter is waiting to get the lock, and only one waiter should 1100 * be woken up to avoid any thundering h 1086 * be woken up to avoid any thundering herd behavior. We'll set the 1101 * WQ_FLAG_WOKEN bit, wake it up, and re 1087 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1102 * 1088 * 1103 * This is the traditional exclusive wai 1089 * This is the traditional exclusive wait. 1104 * 1090 * 1105 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1091 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1106 * 1092 * 1107 * The waiter is waiting to get the bit, 1093 * The waiter is waiting to get the bit, and additionally wants the 1108 * lock to be transferred to it for fair 1094 * lock to be transferred to it for fair lock behavior. If the lock 1109 * cannot be taken, we stop walking the 1095 * cannot be taken, we stop walking the wait queue without waking 1110 * the waiter. 1096 * the waiter. 1111 * 1097 * 1112 * This is the "fair lock handoff" case, 1098 * This is the "fair lock handoff" case, and in addition to setting 1113 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to 1099 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1114 * that it now has the lock. 1100 * that it now has the lock. 1115 */ 1101 */ 1116 static int wake_page_function(wait_queue_entr 1102 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1117 { 1103 { 1118 unsigned int flags; 1104 unsigned int flags; 1119 struct wait_page_key *key = arg; 1105 struct wait_page_key *key = arg; 1120 struct wait_page_queue *wait_page 1106 struct wait_page_queue *wait_page 1121 = container_of(wait, struct w 1107 = container_of(wait, struct wait_page_queue, wait); 1122 1108 1123 if (!wake_page_match(wait_page, key)) 1109 if (!wake_page_match(wait_page, key)) 1124 return 0; 1110 return 0; 1125 1111 1126 /* 1112 /* 1127 * If it's a lock handoff wait, we ge 1113 * If it's a lock handoff wait, we get the bit for it, and 1128 * stop walking (and do not wake it u 1114 * stop walking (and do not wake it up) if we can't. 1129 */ 1115 */ 1130 flags = wait->flags; 1116 flags = wait->flags; 1131 if (flags & WQ_FLAG_EXCLUSIVE) { 1117 if (flags & WQ_FLAG_EXCLUSIVE) { 1132 if (test_bit(key->bit_nr, &ke 1118 if (test_bit(key->bit_nr, &key->folio->flags)) 1133 return -1; 1119 return -1; 1134 if (flags & WQ_FLAG_CUSTOM) { 1120 if (flags & WQ_FLAG_CUSTOM) { 1135 if (test_and_set_bit( 1121 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1136 return -1; 1122 return -1; 1137 flags |= WQ_FLAG_DONE 1123 flags |= WQ_FLAG_DONE; 1138 } 1124 } 1139 } 1125 } 1140 1126 1141 /* 1127 /* 1142 * We are holding the wait-queue lock 1128 * We are holding the wait-queue lock, but the waiter that 1143 * is waiting for this will be checki 1129 * is waiting for this will be checking the flags without 1144 * any locking. 1130 * any locking. 1145 * 1131 * 1146 * So update the flags atomically, an 1132 * So update the flags atomically, and wake up the waiter 1147 * afterwards to avoid any races. Thi 1133 * afterwards to avoid any races. This store-release pairs 1148 * with the load-acquire in folio_wai 1134 * with the load-acquire in folio_wait_bit_common(). 1149 */ 1135 */ 1150 smp_store_release(&wait->flags, flags 1136 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1151 wake_up_state(wait->private, mode); 1137 wake_up_state(wait->private, mode); 1152 1138 1153 /* 1139 /* 1154 * Ok, we have successfully done what 1140 * Ok, we have successfully done what we're waiting for, 1155 * and we can unconditionally remove 1141 * and we can unconditionally remove the wait entry. 1156 * 1142 * 1157 * Note that this pairs with the "fin 1143 * Note that this pairs with the "finish_wait()" in the 1158 * waiter, and has to be the absolute 1144 * waiter, and has to be the absolute last thing we do. 1159 * After this list_del_init(&wait->en 1145 * After this list_del_init(&wait->entry) the wait entry 1160 * might be de-allocated and the proc 1146 * might be de-allocated and the process might even have 1161 * exited. 1147 * exited. 1162 */ 1148 */ 1163 list_del_init_careful(&wait->entry); 1149 list_del_init_careful(&wait->entry); 1164 return (flags & WQ_FLAG_EXCLUSIVE) != 1150 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1165 } 1151 } 1166 1152 1167 static void folio_wake_bit(struct folio *foli 1153 static void folio_wake_bit(struct folio *folio, int bit_nr) 1168 { 1154 { 1169 wait_queue_head_t *q = folio_waitqueu 1155 wait_queue_head_t *q = folio_waitqueue(folio); 1170 struct wait_page_key key; 1156 struct wait_page_key key; 1171 unsigned long flags; 1157 unsigned long flags; >> 1158 wait_queue_entry_t bookmark; 1172 1159 1173 key.folio = folio; 1160 key.folio = folio; 1174 key.bit_nr = bit_nr; 1161 key.bit_nr = bit_nr; 1175 key.page_match = 0; 1162 key.page_match = 0; 1176 1163 >> 1164 bookmark.flags = 0; >> 1165 bookmark.private = NULL; >> 1166 bookmark.func = NULL; >> 1167 INIT_LIST_HEAD(&bookmark.entry); >> 1168 1177 spin_lock_irqsave(&q->lock, flags); 1169 spin_lock_irqsave(&q->lock, flags); 1178 __wake_up_locked_key(q, TASK_NORMAL, !! 1170 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); >> 1171 >> 1172 while (bookmark.flags & WQ_FLAG_BOOKMARK) { >> 1173 /* >> 1174 * Take a breather from holding the lock, >> 1175 * allow pages that finish wake up asynchronously >> 1176 * to acquire the lock and remove themselves >> 1177 * from wait queue >> 1178 */ >> 1179 spin_unlock_irqrestore(&q->lock, flags); >> 1180 cpu_relax(); >> 1181 spin_lock_irqsave(&q->lock, flags); >> 1182 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); >> 1183 } 1179 1184 1180 /* 1185 /* 1181 * It's possible to miss clearing wai 1186 * It's possible to miss clearing waiters here, when we woke our page 1182 * waiters, but the hashed waitqueue 1187 * waiters, but the hashed waitqueue has waiters for other pages on it. 1183 * That's okay, it's a rare case. The 1188 * That's okay, it's a rare case. The next waker will clear it. 1184 * 1189 * 1185 * Note that, depending on the page p 1190 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1186 * other), the flag may be cleared in 1191 * other), the flag may be cleared in the course of freeing the page; 1187 * but that is not required for corre 1192 * but that is not required for correctness. 1188 */ 1193 */ 1189 if (!waitqueue_active(q) || !key.page 1194 if (!waitqueue_active(q) || !key.page_match) 1190 folio_clear_waiters(folio); 1195 folio_clear_waiters(folio); 1191 1196 1192 spin_unlock_irqrestore(&q->lock, flag 1197 spin_unlock_irqrestore(&q->lock, flags); 1193 } 1198 } 1194 1199 >> 1200 static void folio_wake(struct folio *folio, int bit) >> 1201 { >> 1202 if (!folio_test_waiters(folio)) >> 1203 return; >> 1204 folio_wake_bit(folio, bit); >> 1205 } >> 1206 1195 /* 1207 /* 1196 * A choice of three behaviors for folio_wait 1208 * A choice of three behaviors for folio_wait_bit_common(): 1197 */ 1209 */ 1198 enum behavior { 1210 enum behavior { 1199 EXCLUSIVE, /* Hold ref to page a 1211 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1200 * __folio_lock() wai 1212 * __folio_lock() waiting on then setting PG_locked. 1201 */ 1213 */ 1202 SHARED, /* Hold ref to page a 1214 SHARED, /* Hold ref to page and check the bit when woken, like 1203 * folio_wait_writeba 1215 * folio_wait_writeback() waiting on PG_writeback. 1204 */ 1216 */ 1205 DROP, /* Drop ref to page b 1217 DROP, /* Drop ref to page before wait, no check when woken, 1206 * like folio_put_wai 1218 * like folio_put_wait_locked() on PG_locked. 1207 */ 1219 */ 1208 }; 1220 }; 1209 1221 1210 /* 1222 /* 1211 * Attempt to check (or get) the folio flag, 1223 * Attempt to check (or get) the folio flag, and mark us done 1212 * if successful. 1224 * if successful. 1213 */ 1225 */ 1214 static inline bool folio_trylock_flag(struct 1226 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1215 struc 1227 struct wait_queue_entry *wait) 1216 { 1228 { 1217 if (wait->flags & WQ_FLAG_EXCLUSIVE) 1229 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1218 if (test_and_set_bit(bit_nr, 1230 if (test_and_set_bit(bit_nr, &folio->flags)) 1219 return false; 1231 return false; 1220 } else if (test_bit(bit_nr, &folio->f 1232 } else if (test_bit(bit_nr, &folio->flags)) 1221 return false; 1233 return false; 1222 1234 1223 wait->flags |= WQ_FLAG_WOKEN | WQ_FLA 1235 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1224 return true; 1236 return true; 1225 } 1237 } 1226 1238 1227 /* How many times do we accept lock stealing 1239 /* How many times do we accept lock stealing from under a waiter? */ 1228 int sysctl_page_lock_unfairness = 5; 1240 int sysctl_page_lock_unfairness = 5; 1229 1241 1230 static inline int folio_wait_bit_common(struc 1242 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1231 int state, enum behavior beha 1243 int state, enum behavior behavior) 1232 { 1244 { 1233 wait_queue_head_t *q = folio_waitqueu 1245 wait_queue_head_t *q = folio_waitqueue(folio); 1234 int unfairness = sysctl_page_lock_unf 1246 int unfairness = sysctl_page_lock_unfairness; 1235 struct wait_page_queue wait_page; 1247 struct wait_page_queue wait_page; 1236 wait_queue_entry_t *wait = &wait_page 1248 wait_queue_entry_t *wait = &wait_page.wait; 1237 bool thrashing = false; 1249 bool thrashing = false; >> 1250 bool delayacct = false; 1238 unsigned long pflags; 1251 unsigned long pflags; 1239 bool in_thrashing; << 1240 1252 1241 if (bit_nr == PG_locked && 1253 if (bit_nr == PG_locked && 1242 !folio_test_uptodate(folio) && fo 1254 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1243 delayacct_thrashing_start(&in !! 1255 if (!folio_test_swapbacked(folio)) { >> 1256 delayacct_thrashing_start(); >> 1257 delayacct = true; >> 1258 } 1244 psi_memstall_enter(&pflags); 1259 psi_memstall_enter(&pflags); 1245 thrashing = true; 1260 thrashing = true; 1246 } 1261 } 1247 1262 1248 init_wait(wait); 1263 init_wait(wait); 1249 wait->func = wake_page_function; 1264 wait->func = wake_page_function; 1250 wait_page.folio = folio; 1265 wait_page.folio = folio; 1251 wait_page.bit_nr = bit_nr; 1266 wait_page.bit_nr = bit_nr; 1252 1267 1253 repeat: 1268 repeat: 1254 wait->flags = 0; 1269 wait->flags = 0; 1255 if (behavior == EXCLUSIVE) { 1270 if (behavior == EXCLUSIVE) { 1256 wait->flags = WQ_FLAG_EXCLUSI 1271 wait->flags = WQ_FLAG_EXCLUSIVE; 1257 if (--unfairness < 0) 1272 if (--unfairness < 0) 1258 wait->flags |= WQ_FLA 1273 wait->flags |= WQ_FLAG_CUSTOM; 1259 } 1274 } 1260 1275 1261 /* 1276 /* 1262 * Do one last check whether we can g 1277 * Do one last check whether we can get the 1263 * page bit synchronously. 1278 * page bit synchronously. 1264 * 1279 * 1265 * Do the folio_set_waiters() marking 1280 * Do the folio_set_waiters() marking before that 1266 * to let any waker we _just_ missed 1281 * to let any waker we _just_ missed know they 1267 * need to wake us up (otherwise they 1282 * need to wake us up (otherwise they'll never 1268 * even go to the slow case that look 1283 * even go to the slow case that looks at the 1269 * page queue), and add ourselves to 1284 * page queue), and add ourselves to the wait 1270 * queue if we need to sleep. 1285 * queue if we need to sleep. 1271 * 1286 * 1272 * This part needs to be done under t 1287 * This part needs to be done under the queue 1273 * lock to avoid races. 1288 * lock to avoid races. 1274 */ 1289 */ 1275 spin_lock_irq(&q->lock); 1290 spin_lock_irq(&q->lock); 1276 folio_set_waiters(folio); 1291 folio_set_waiters(folio); 1277 if (!folio_trylock_flag(folio, bit_nr 1292 if (!folio_trylock_flag(folio, bit_nr, wait)) 1278 __add_wait_queue_entry_tail(q 1293 __add_wait_queue_entry_tail(q, wait); 1279 spin_unlock_irq(&q->lock); 1294 spin_unlock_irq(&q->lock); 1280 1295 1281 /* 1296 /* 1282 * From now on, all the logic will be 1297 * From now on, all the logic will be based on 1283 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE 1298 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1284 * see whether the page bit testing h 1299 * see whether the page bit testing has already 1285 * been done by the wake function. 1300 * been done by the wake function. 1286 * 1301 * 1287 * We can drop our reference to the f 1302 * We can drop our reference to the folio. 1288 */ 1303 */ 1289 if (behavior == DROP) 1304 if (behavior == DROP) 1290 folio_put(folio); 1305 folio_put(folio); 1291 1306 1292 /* 1307 /* 1293 * Note that until the "finish_wait() 1308 * Note that until the "finish_wait()", or until 1294 * we see the WQ_FLAG_WOKEN flag, we 1309 * we see the WQ_FLAG_WOKEN flag, we need to 1295 * be very careful with the 'wait->fl 1310 * be very careful with the 'wait->flags', because 1296 * we may race with a waker that sets 1311 * we may race with a waker that sets them. 1297 */ 1312 */ 1298 for (;;) { 1313 for (;;) { 1299 unsigned int flags; 1314 unsigned int flags; 1300 1315 1301 set_current_state(state); 1316 set_current_state(state); 1302 1317 1303 /* Loop until we've been woke 1318 /* Loop until we've been woken or interrupted */ 1304 flags = smp_load_acquire(&wai 1319 flags = smp_load_acquire(&wait->flags); 1305 if (!(flags & WQ_FLAG_WOKEN)) 1320 if (!(flags & WQ_FLAG_WOKEN)) { 1306 if (signal_pending_st 1321 if (signal_pending_state(state, current)) 1307 break; 1322 break; 1308 1323 1309 io_schedule(); 1324 io_schedule(); 1310 continue; 1325 continue; 1311 } 1326 } 1312 1327 1313 /* If we were non-exclusive, 1328 /* If we were non-exclusive, we're done */ 1314 if (behavior != EXCLUSIVE) 1329 if (behavior != EXCLUSIVE) 1315 break; 1330 break; 1316 1331 1317 /* If the waker got the lock 1332 /* If the waker got the lock for us, we're done */ 1318 if (flags & WQ_FLAG_DONE) 1333 if (flags & WQ_FLAG_DONE) 1319 break; 1334 break; 1320 1335 1321 /* 1336 /* 1322 * Otherwise, if we're gettin 1337 * Otherwise, if we're getting the lock, we need to 1323 * try to get it ourselves. 1338 * try to get it ourselves. 1324 * 1339 * 1325 * And if that fails, we'll h 1340 * And if that fails, we'll have to retry this all. 1326 */ 1341 */ 1327 if (unlikely(test_and_set_bit 1342 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1328 goto repeat; 1343 goto repeat; 1329 1344 1330 wait->flags |= WQ_FLAG_DONE; 1345 wait->flags |= WQ_FLAG_DONE; 1331 break; 1346 break; 1332 } 1347 } 1333 1348 1334 /* 1349 /* 1335 * If a signal happened, this 'finish 1350 * If a signal happened, this 'finish_wait()' may remove the last 1336 * waiter from the wait-queues, but t 1351 * waiter from the wait-queues, but the folio waiters bit will remain 1337 * set. That's ok. The next wakeup wi 1352 * set. That's ok. The next wakeup will take care of it, and trying 1338 * to do it here would be difficult a 1353 * to do it here would be difficult and prone to races. 1339 */ 1354 */ 1340 finish_wait(q, wait); 1355 finish_wait(q, wait); 1341 1356 1342 if (thrashing) { 1357 if (thrashing) { 1343 delayacct_thrashing_end(&in_t !! 1358 if (delayacct) >> 1359 delayacct_thrashing_end(); 1344 psi_memstall_leave(&pflags); 1360 psi_memstall_leave(&pflags); 1345 } 1361 } 1346 1362 1347 /* 1363 /* 1348 * NOTE! The wait->flags weren't stab 1364 * NOTE! The wait->flags weren't stable until we've done the 1349 * 'finish_wait()', and we could have 1365 * 'finish_wait()', and we could have exited the loop above due 1350 * to a signal, and had a wakeup even 1366 * to a signal, and had a wakeup event happen after the signal 1351 * test but before the 'finish_wait() 1367 * test but before the 'finish_wait()'. 1352 * 1368 * 1353 * So only after the finish_wait() ca 1369 * So only after the finish_wait() can we reliably determine 1354 * if we got woken up or not, so we c 1370 * if we got woken up or not, so we can now figure out the final 1355 * return value based on that state w 1371 * return value based on that state without races. 1356 * 1372 * 1357 * Also note that WQ_FLAG_WOKEN is su 1373 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1358 * waiter, but an exclusive one requi 1374 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1359 */ 1375 */ 1360 if (behavior == EXCLUSIVE) 1376 if (behavior == EXCLUSIVE) 1361 return wait->flags & WQ_FLAG_ 1377 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1362 1378 1363 return wait->flags & WQ_FLAG_WOKEN ? 1379 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1364 } 1380 } 1365 1381 1366 #ifdef CONFIG_MIGRATION 1382 #ifdef CONFIG_MIGRATION 1367 /** 1383 /** 1368 * migration_entry_wait_on_locked - Wait for 1384 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1369 * @entry: migration swap entry. 1385 * @entry: migration swap entry. >> 1386 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required >> 1387 * for pte entries, pass NULL for pmd entries. 1370 * @ptl: already locked ptl. This function wi 1388 * @ptl: already locked ptl. This function will drop the lock. 1371 * 1389 * 1372 * Wait for a migration entry referencing the 1390 * Wait for a migration entry referencing the given page to be removed. This is 1373 * equivalent to put_and_wait_on_page_locked( 1391 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1374 * this can be called without taking a refere 1392 * this can be called without taking a reference on the page. Instead this 1375 * should be called while holding the ptl for 1393 * should be called while holding the ptl for the migration entry referencing 1376 * the page. 1394 * the page. 1377 * 1395 * 1378 * Returns after unlocking the ptl. !! 1396 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1379 * 1397 * 1380 * This follows the same logic as folio_wait_ 1398 * This follows the same logic as folio_wait_bit_common() so see the comments 1381 * there. 1399 * there. 1382 */ 1400 */ 1383 void migration_entry_wait_on_locked(swp_entry !! 1401 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1384 __releases(ptl) !! 1402 spinlock_t *ptl) 1385 { 1403 { 1386 struct wait_page_queue wait_page; 1404 struct wait_page_queue wait_page; 1387 wait_queue_entry_t *wait = &wait_page 1405 wait_queue_entry_t *wait = &wait_page.wait; 1388 bool thrashing = false; 1406 bool thrashing = false; >> 1407 bool delayacct = false; 1389 unsigned long pflags; 1408 unsigned long pflags; 1390 bool in_thrashing; << 1391 wait_queue_head_t *q; 1409 wait_queue_head_t *q; 1392 struct folio *folio = pfn_swap_entry_ !! 1410 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1393 1411 1394 q = folio_waitqueue(folio); 1412 q = folio_waitqueue(folio); 1395 if (!folio_test_uptodate(folio) && fo 1413 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1396 delayacct_thrashing_start(&in !! 1414 if (!folio_test_swapbacked(folio)) { >> 1415 delayacct_thrashing_start(); >> 1416 delayacct = true; >> 1417 } 1397 psi_memstall_enter(&pflags); 1418 psi_memstall_enter(&pflags); 1398 thrashing = true; 1419 thrashing = true; 1399 } 1420 } 1400 1421 1401 init_wait(wait); 1422 init_wait(wait); 1402 wait->func = wake_page_function; 1423 wait->func = wake_page_function; 1403 wait_page.folio = folio; 1424 wait_page.folio = folio; 1404 wait_page.bit_nr = PG_locked; 1425 wait_page.bit_nr = PG_locked; 1405 wait->flags = 0; 1426 wait->flags = 0; 1406 1427 1407 spin_lock_irq(&q->lock); 1428 spin_lock_irq(&q->lock); 1408 folio_set_waiters(folio); 1429 folio_set_waiters(folio); 1409 if (!folio_trylock_flag(folio, PG_loc 1430 if (!folio_trylock_flag(folio, PG_locked, wait)) 1410 __add_wait_queue_entry_tail(q 1431 __add_wait_queue_entry_tail(q, wait); 1411 spin_unlock_irq(&q->lock); 1432 spin_unlock_irq(&q->lock); 1412 1433 1413 /* 1434 /* 1414 * If a migration entry exists for th 1435 * If a migration entry exists for the page the migration path must hold 1415 * a valid reference to the page, and 1436 * a valid reference to the page, and it must take the ptl to remove the 1416 * migration entry. So the page is va 1437 * migration entry. So the page is valid until the ptl is dropped. 1417 */ 1438 */ 1418 spin_unlock(ptl); !! 1439 if (ptep) >> 1440 pte_unmap_unlock(ptep, ptl); >> 1441 else >> 1442 spin_unlock(ptl); 1419 1443 1420 for (;;) { 1444 for (;;) { 1421 unsigned int flags; 1445 unsigned int flags; 1422 1446 1423 set_current_state(TASK_UNINTE 1447 set_current_state(TASK_UNINTERRUPTIBLE); 1424 1448 1425 /* Loop until we've been woke 1449 /* Loop until we've been woken or interrupted */ 1426 flags = smp_load_acquire(&wai 1450 flags = smp_load_acquire(&wait->flags); 1427 if (!(flags & WQ_FLAG_WOKEN)) 1451 if (!(flags & WQ_FLAG_WOKEN)) { 1428 if (signal_pending_st 1452 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1429 break; 1453 break; 1430 1454 1431 io_schedule(); 1455 io_schedule(); 1432 continue; 1456 continue; 1433 } 1457 } 1434 break; 1458 break; 1435 } 1459 } 1436 1460 1437 finish_wait(q, wait); 1461 finish_wait(q, wait); 1438 1462 1439 if (thrashing) { 1463 if (thrashing) { 1440 delayacct_thrashing_end(&in_t !! 1464 if (delayacct) >> 1465 delayacct_thrashing_end(); 1441 psi_memstall_leave(&pflags); 1466 psi_memstall_leave(&pflags); 1442 } 1467 } 1443 } 1468 } 1444 #endif 1469 #endif 1445 1470 1446 void folio_wait_bit(struct folio *folio, int 1471 void folio_wait_bit(struct folio *folio, int bit_nr) 1447 { 1472 { 1448 folio_wait_bit_common(folio, bit_nr, 1473 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1449 } 1474 } 1450 EXPORT_SYMBOL(folio_wait_bit); 1475 EXPORT_SYMBOL(folio_wait_bit); 1451 1476 1452 int folio_wait_bit_killable(struct folio *fol 1477 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1453 { 1478 { 1454 return folio_wait_bit_common(folio, b 1479 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1455 } 1480 } 1456 EXPORT_SYMBOL(folio_wait_bit_killable); 1481 EXPORT_SYMBOL(folio_wait_bit_killable); 1457 1482 1458 /** 1483 /** 1459 * folio_put_wait_locked - Drop a reference a 1484 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1460 * @folio: The folio to wait for. 1485 * @folio: The folio to wait for. 1461 * @state: The sleep state (TASK_KILLABLE, TA 1486 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1462 * 1487 * 1463 * The caller should hold a reference on @fol 1488 * The caller should hold a reference on @folio. They expect the page to 1464 * become unlocked relatively soon, but do no 1489 * become unlocked relatively soon, but do not wish to hold up migration 1465 * (for example) by holding the reference whi 1490 * (for example) by holding the reference while waiting for the folio to 1466 * come unlocked. After this function return 1491 * come unlocked. After this function returns, the caller should not 1467 * dereference @folio. 1492 * dereference @folio. 1468 * 1493 * 1469 * Return: 0 if the folio was unlocked or -EI 1494 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1470 */ 1495 */ 1471 static int folio_put_wait_locked(struct folio !! 1496 int folio_put_wait_locked(struct folio *folio, int state) 1472 { 1497 { 1473 return folio_wait_bit_common(folio, P 1498 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1474 } 1499 } 1475 1500 1476 /** 1501 /** 1477 * folio_add_wait_queue - Add an arbitrary wa 1502 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1478 * @folio: Folio defining the wait queue of i 1503 * @folio: Folio defining the wait queue of interest 1479 * @waiter: Waiter to add to the queue 1504 * @waiter: Waiter to add to the queue 1480 * 1505 * 1481 * Add an arbitrary @waiter to the wait queue 1506 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1482 */ 1507 */ 1483 void folio_add_wait_queue(struct folio *folio 1508 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1484 { 1509 { 1485 wait_queue_head_t *q = folio_waitqueu 1510 wait_queue_head_t *q = folio_waitqueue(folio); 1486 unsigned long flags; 1511 unsigned long flags; 1487 1512 1488 spin_lock_irqsave(&q->lock, flags); 1513 spin_lock_irqsave(&q->lock, flags); 1489 __add_wait_queue_entry_tail(q, waiter 1514 __add_wait_queue_entry_tail(q, waiter); 1490 folio_set_waiters(folio); 1515 folio_set_waiters(folio); 1491 spin_unlock_irqrestore(&q->lock, flag 1516 spin_unlock_irqrestore(&q->lock, flags); 1492 } 1517 } 1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1518 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1494 1519 >> 1520 #ifndef clear_bit_unlock_is_negative_byte >> 1521 >> 1522 /* >> 1523 * PG_waiters is the high bit in the same byte as PG_lock. >> 1524 * >> 1525 * On x86 (and on many other architectures), we can clear PG_lock and >> 1526 * test the sign bit at the same time. But if the architecture does >> 1527 * not support that special operation, we just do this all by hand >> 1528 * instead. >> 1529 * >> 1530 * The read of PG_waiters has to be after (or concurrently with) PG_locked >> 1531 * being cleared, but a memory barrier should be unnecessary since it is >> 1532 * in the same byte as PG_locked. >> 1533 */ >> 1534 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) >> 1535 { >> 1536 clear_bit_unlock(nr, mem); >> 1537 /* smp_mb__after_atomic(); */ >> 1538 return test_bit(PG_waiters, mem); >> 1539 } >> 1540 >> 1541 #endif >> 1542 1495 /** 1543 /** 1496 * folio_unlock - Unlock a locked folio. 1544 * folio_unlock - Unlock a locked folio. 1497 * @folio: The folio. 1545 * @folio: The folio. 1498 * 1546 * 1499 * Unlocks the folio and wakes up any thread 1547 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1500 * 1548 * 1501 * Context: May be called from interrupt or p 1549 * Context: May be called from interrupt or process context. May not be 1502 * called from NMI context. 1550 * called from NMI context. 1503 */ 1551 */ 1504 void folio_unlock(struct folio *folio) 1552 void folio_unlock(struct folio *folio) 1505 { 1553 { 1506 /* Bit 7 allows x86 to check the byte 1554 /* Bit 7 allows x86 to check the byte's sign bit */ 1507 BUILD_BUG_ON(PG_waiters != 7); 1555 BUILD_BUG_ON(PG_waiters != 7); 1508 BUILD_BUG_ON(PG_locked > 7); 1556 BUILD_BUG_ON(PG_locked > 7); 1509 VM_BUG_ON_FOLIO(!folio_test_locked(fo 1557 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1510 if (folio_xor_flags_has_waiters(folio !! 1558 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1511 folio_wake_bit(folio, PG_lock 1559 folio_wake_bit(folio, PG_locked); 1512 } 1560 } 1513 EXPORT_SYMBOL(folio_unlock); 1561 EXPORT_SYMBOL(folio_unlock); 1514 1562 1515 /** 1563 /** 1516 * folio_end_read - End read on a folio. << 1517 * @folio: The folio. << 1518 * @success: True if all reads completed succ << 1519 * << 1520 * When all reads against a folio have comple << 1521 * call this function to let the pagecache kn << 1522 * are outstanding. This will unlock the fol << 1523 * sleeping on the lock. The folio will also << 1524 * reads succeeded. << 1525 * << 1526 * Context: May be called from interrupt or p << 1527 * called from NMI context. << 1528 */ << 1529 void folio_end_read(struct folio *folio, bool << 1530 { << 1531 unsigned long mask = 1 << PG_locked; << 1532 << 1533 /* Must be in bottom byte for x86 to << 1534 BUILD_BUG_ON(PG_uptodate > 7); << 1535 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1536 VM_BUG_ON_FOLIO(folio_test_uptodate(f << 1537 << 1538 if (likely(success)) << 1539 mask |= 1 << PG_uptodate; << 1540 if (folio_xor_flags_has_waiters(folio << 1541 folio_wake_bit(folio, PG_lock << 1542 } << 1543 EXPORT_SYMBOL(folio_end_read); << 1544 << 1545 /** << 1546 * folio_end_private_2 - Clear PG_private_2 a 1564 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1547 * @folio: The folio. 1565 * @folio: The folio. 1548 * 1566 * 1549 * Clear the PG_private_2 bit on a folio and 1567 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1550 * it. The folio reference held for PG_priva 1568 * it. The folio reference held for PG_private_2 being set is released. 1551 * 1569 * 1552 * This is, for example, used when a netfs fo 1570 * This is, for example, used when a netfs folio is being written to a local 1553 * disk cache, thereby allowing writes to the 1571 * disk cache, thereby allowing writes to the cache for the same folio to be 1554 * serialised. 1572 * serialised. 1555 */ 1573 */ 1556 void folio_end_private_2(struct folio *folio) 1574 void folio_end_private_2(struct folio *folio) 1557 { 1575 { 1558 VM_BUG_ON_FOLIO(!folio_test_private_2 1576 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1559 clear_bit_unlock(PG_private_2, folio_ 1577 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1560 folio_wake_bit(folio, PG_private_2); 1578 folio_wake_bit(folio, PG_private_2); 1561 folio_put(folio); 1579 folio_put(folio); 1562 } 1580 } 1563 EXPORT_SYMBOL(folio_end_private_2); 1581 EXPORT_SYMBOL(folio_end_private_2); 1564 1582 1565 /** 1583 /** 1566 * folio_wait_private_2 - Wait for PG_private 1584 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1567 * @folio: The folio to wait on. 1585 * @folio: The folio to wait on. 1568 * 1586 * 1569 * Wait for PG_private_2 to be cleared on a f !! 1587 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1570 */ 1588 */ 1571 void folio_wait_private_2(struct folio *folio 1589 void folio_wait_private_2(struct folio *folio) 1572 { 1590 { 1573 while (folio_test_private_2(folio)) 1591 while (folio_test_private_2(folio)) 1574 folio_wait_bit(folio, PG_priv 1592 folio_wait_bit(folio, PG_private_2); 1575 } 1593 } 1576 EXPORT_SYMBOL(folio_wait_private_2); 1594 EXPORT_SYMBOL(folio_wait_private_2); 1577 1595 1578 /** 1596 /** 1579 * folio_wait_private_2_killable - Wait for P 1597 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1580 * @folio: The folio to wait on. 1598 * @folio: The folio to wait on. 1581 * 1599 * 1582 * Wait for PG_private_2 to be cleared on a f !! 1600 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1583 * received by the calling task. !! 1601 * fatal signal is received by the calling task. 1584 * 1602 * 1585 * Return: 1603 * Return: 1586 * - 0 if successful. 1604 * - 0 if successful. 1587 * - -EINTR if a fatal signal was encountered 1605 * - -EINTR if a fatal signal was encountered. 1588 */ 1606 */ 1589 int folio_wait_private_2_killable(struct foli 1607 int folio_wait_private_2_killable(struct folio *folio) 1590 { 1608 { 1591 int ret = 0; 1609 int ret = 0; 1592 1610 1593 while (folio_test_private_2(folio)) { 1611 while (folio_test_private_2(folio)) { 1594 ret = folio_wait_bit_killable 1612 ret = folio_wait_bit_killable(folio, PG_private_2); 1595 if (ret < 0) 1613 if (ret < 0) 1596 break; 1614 break; 1597 } 1615 } 1598 1616 1599 return ret; 1617 return ret; 1600 } 1618 } 1601 EXPORT_SYMBOL(folio_wait_private_2_killable); 1619 EXPORT_SYMBOL(folio_wait_private_2_killable); 1602 1620 1603 /** 1621 /** 1604 * folio_end_writeback - End writeback agains 1622 * folio_end_writeback - End writeback against a folio. 1605 * @folio: The folio. 1623 * @folio: The folio. 1606 * << 1607 * The folio must actually be under writeback << 1608 * << 1609 * Context: May be called from process or int << 1610 */ 1624 */ 1611 void folio_end_writeback(struct folio *folio) 1625 void folio_end_writeback(struct folio *folio) 1612 { 1626 { 1613 VM_BUG_ON_FOLIO(!folio_test_writeback << 1614 << 1615 /* 1627 /* 1616 * folio_test_clear_reclaim() could b 1628 * folio_test_clear_reclaim() could be used here but it is an 1617 * atomic operation and overkill in t 1629 * atomic operation and overkill in this particular case. Failing 1618 * to shuffle a folio marked for imme 1630 * to shuffle a folio marked for immediate reclaim is too mild 1619 * a gain to justify taking an atomic 1631 * a gain to justify taking an atomic operation penalty at the 1620 * end of every folio writeback. 1632 * end of every folio writeback. 1621 */ 1633 */ 1622 if (folio_test_reclaim(folio)) { 1634 if (folio_test_reclaim(folio)) { 1623 folio_clear_reclaim(folio); 1635 folio_clear_reclaim(folio); 1624 folio_rotate_reclaimable(foli 1636 folio_rotate_reclaimable(folio); 1625 } 1637 } 1626 1638 1627 /* 1639 /* 1628 * Writeback does not hold a folio re 1640 * Writeback does not hold a folio reference of its own, relying 1629 * on truncation to wait for the clea 1641 * on truncation to wait for the clearing of PG_writeback. 1630 * But here we must make sure that th 1642 * But here we must make sure that the folio is not freed and 1631 * reused before the folio_wake_bit() !! 1643 * reused before the folio_wake(). 1632 */ 1644 */ 1633 folio_get(folio); 1645 folio_get(folio); 1634 if (__folio_end_writeback(folio)) !! 1646 if (!__folio_end_writeback(folio)) 1635 folio_wake_bit(folio, PG_writ !! 1647 BUG(); >> 1648 >> 1649 smp_mb__after_atomic(); >> 1650 folio_wake(folio, PG_writeback); 1636 acct_reclaim_writeback(folio); 1651 acct_reclaim_writeback(folio); 1637 folio_put(folio); 1652 folio_put(folio); 1638 } 1653 } 1639 EXPORT_SYMBOL(folio_end_writeback); 1654 EXPORT_SYMBOL(folio_end_writeback); 1640 1655 >> 1656 /* >> 1657 * After completing I/O on a page, call this routine to update the page >> 1658 * flags appropriately >> 1659 */ >> 1660 void page_endio(struct page *page, bool is_write, int err) >> 1661 { >> 1662 if (!is_write) { >> 1663 if (!err) { >> 1664 SetPageUptodate(page); >> 1665 } else { >> 1666 ClearPageUptodate(page); >> 1667 SetPageError(page); >> 1668 } >> 1669 unlock_page(page); >> 1670 } else { >> 1671 if (err) { >> 1672 struct address_space *mapping; >> 1673 >> 1674 SetPageError(page); >> 1675 mapping = page_mapping(page); >> 1676 if (mapping) >> 1677 mapping_set_error(mapping, err); >> 1678 } >> 1679 end_page_writeback(page); >> 1680 } >> 1681 } >> 1682 EXPORT_SYMBOL_GPL(page_endio); >> 1683 1641 /** 1684 /** 1642 * __folio_lock - Get a lock on the folio, as 1685 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1643 * @folio: The folio to lock 1686 * @folio: The folio to lock 1644 */ 1687 */ 1645 void __folio_lock(struct folio *folio) 1688 void __folio_lock(struct folio *folio) 1646 { 1689 { 1647 folio_wait_bit_common(folio, PG_locke 1690 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1648 EXCLUSIVE); 1691 EXCLUSIVE); 1649 } 1692 } 1650 EXPORT_SYMBOL(__folio_lock); 1693 EXPORT_SYMBOL(__folio_lock); 1651 1694 1652 int __folio_lock_killable(struct folio *folio 1695 int __folio_lock_killable(struct folio *folio) 1653 { 1696 { 1654 return folio_wait_bit_common(folio, P 1697 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1655 EXCLU 1698 EXCLUSIVE); 1656 } 1699 } 1657 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1700 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1658 1701 1659 static int __folio_lock_async(struct folio *f 1702 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1660 { 1703 { 1661 struct wait_queue_head *q = folio_wai 1704 struct wait_queue_head *q = folio_waitqueue(folio); 1662 int ret; !! 1705 int ret = 0; 1663 1706 1664 wait->folio = folio; 1707 wait->folio = folio; 1665 wait->bit_nr = PG_locked; 1708 wait->bit_nr = PG_locked; 1666 1709 1667 spin_lock_irq(&q->lock); 1710 spin_lock_irq(&q->lock); 1668 __add_wait_queue_entry_tail(q, &wait- 1711 __add_wait_queue_entry_tail(q, &wait->wait); 1669 folio_set_waiters(folio); 1712 folio_set_waiters(folio); 1670 ret = !folio_trylock(folio); 1713 ret = !folio_trylock(folio); 1671 /* 1714 /* 1672 * If we were successful now, we know 1715 * If we were successful now, we know we're still on the 1673 * waitqueue as we're still under the 1716 * waitqueue as we're still under the lock. This means it's 1674 * safe to remove and return success, 1717 * safe to remove and return success, we know the callback 1675 * isn't going to trigger. 1718 * isn't going to trigger. 1676 */ 1719 */ 1677 if (!ret) 1720 if (!ret) 1678 __remove_wait_queue(q, &wait- 1721 __remove_wait_queue(q, &wait->wait); 1679 else 1722 else 1680 ret = -EIOCBQUEUED; 1723 ret = -EIOCBQUEUED; 1681 spin_unlock_irq(&q->lock); 1724 spin_unlock_irq(&q->lock); 1682 return ret; 1725 return ret; 1683 } 1726 } 1684 1727 1685 /* 1728 /* 1686 * Return values: 1729 * Return values: 1687 * 0 - folio is locked. !! 1730 * true - folio is locked; mmap_lock is still held. 1688 * non-zero - folio is not locked. !! 1731 * false - folio is not locked. 1689 * mmap_lock or per-VMA lock has been rel !! 1732 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1690 * vma_end_read()), unless flags had both !! 1733 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1691 * FAULT_FLAG_RETRY_NOWAIT set, in which !! 1734 * which case mmap_lock is still held. 1692 * 1735 * 1693 * If neither ALLOW_RETRY nor KILLABLE are se !! 1736 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1694 * with the folio locked and the mmap_lock/pe !! 1737 * with the folio locked and the mmap_lock unperturbed. 1695 */ 1738 */ 1696 vm_fault_t __folio_lock_or_retry(struct folio !! 1739 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, >> 1740 unsigned int flags) 1697 { 1741 { 1698 unsigned int flags = vmf->flags; << 1699 << 1700 if (fault_flag_allow_retry_first(flag 1742 if (fault_flag_allow_retry_first(flags)) { 1701 /* 1743 /* 1702 * CAUTION! In this case, mma !! 1744 * CAUTION! In this case, mmap_lock is not released 1703 * released even though retur !! 1745 * even though return 0. 1704 */ 1746 */ 1705 if (flags & FAULT_FLAG_RETRY_ 1747 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1706 return VM_FAULT_RETRY !! 1748 return false; 1707 1749 1708 release_fault_lock(vmf); !! 1750 mmap_read_unlock(mm); 1709 if (flags & FAULT_FLAG_KILLAB 1751 if (flags & FAULT_FLAG_KILLABLE) 1710 folio_wait_locked_kil 1752 folio_wait_locked_killable(folio); 1711 else 1753 else 1712 folio_wait_locked(fol 1754 folio_wait_locked(folio); 1713 return VM_FAULT_RETRY; !! 1755 return false; 1714 } 1756 } 1715 if (flags & FAULT_FLAG_KILLABLE) { 1757 if (flags & FAULT_FLAG_KILLABLE) { 1716 bool ret; 1758 bool ret; 1717 1759 1718 ret = __folio_lock_killable(f 1760 ret = __folio_lock_killable(folio); 1719 if (ret) { 1761 if (ret) { 1720 release_fault_lock(vm !! 1762 mmap_read_unlock(mm); 1721 return VM_FAULT_RETRY !! 1763 return false; 1722 } 1764 } 1723 } else { 1765 } else { 1724 __folio_lock(folio); 1766 __folio_lock(folio); 1725 } 1767 } 1726 1768 1727 return 0; !! 1769 return true; 1728 } 1770 } 1729 1771 1730 /** 1772 /** 1731 * page_cache_next_miss() - Find the next gap 1773 * page_cache_next_miss() - Find the next gap in the page cache. 1732 * @mapping: Mapping. 1774 * @mapping: Mapping. 1733 * @index: Index. 1775 * @index: Index. 1734 * @max_scan: Maximum range to search. 1776 * @max_scan: Maximum range to search. 1735 * 1777 * 1736 * Search the range [index, min(index + max_s 1778 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1737 * gap with the lowest index. 1779 * gap with the lowest index. 1738 * 1780 * 1739 * This function may be called under the rcu_ 1781 * This function may be called under the rcu_read_lock. However, this will 1740 * not atomically search a snapshot of the ca 1782 * not atomically search a snapshot of the cache at a single point in time. 1741 * For example, if a gap is created at index 1783 * For example, if a gap is created at index 5, then subsequently a gap is 1742 * created at index 10, page_cache_next_miss 1784 * created at index 10, page_cache_next_miss covering both indices may 1743 * return 10 if called under the rcu_read_loc 1785 * return 10 if called under the rcu_read_lock. 1744 * 1786 * 1745 * Return: The index of the gap if found, oth 1787 * Return: The index of the gap if found, otherwise an index outside the 1746 * range specified (in which case 'return - i 1788 * range specified (in which case 'return - index >= max_scan' will be true). 1747 * In the rare case of index wrap-around, 0 w 1789 * In the rare case of index wrap-around, 0 will be returned. 1748 */ 1790 */ 1749 pgoff_t page_cache_next_miss(struct address_s 1791 pgoff_t page_cache_next_miss(struct address_space *mapping, 1750 pgoff_t index, u 1792 pgoff_t index, unsigned long max_scan) 1751 { 1793 { 1752 XA_STATE(xas, &mapping->i_pages, inde 1794 XA_STATE(xas, &mapping->i_pages, index); 1753 1795 1754 while (max_scan--) { 1796 while (max_scan--) { 1755 void *entry = xas_next(&xas); 1797 void *entry = xas_next(&xas); 1756 if (!entry || xa_is_value(ent 1798 if (!entry || xa_is_value(entry)) 1757 return xas.xa_index; !! 1799 break; 1758 if (xas.xa_index == 0) 1800 if (xas.xa_index == 0) 1759 return 0; !! 1801 break; 1760 } 1802 } 1761 1803 1762 return index + max_scan; !! 1804 return xas.xa_index; 1763 } 1805 } 1764 EXPORT_SYMBOL(page_cache_next_miss); 1806 EXPORT_SYMBOL(page_cache_next_miss); 1765 1807 1766 /** 1808 /** 1767 * page_cache_prev_miss() - Find the previous 1809 * page_cache_prev_miss() - Find the previous gap in the page cache. 1768 * @mapping: Mapping. 1810 * @mapping: Mapping. 1769 * @index: Index. 1811 * @index: Index. 1770 * @max_scan: Maximum range to search. 1812 * @max_scan: Maximum range to search. 1771 * 1813 * 1772 * Search the range [max(index - max_scan + 1 1814 * Search the range [max(index - max_scan + 1, 0), index] for the 1773 * gap with the highest index. 1815 * gap with the highest index. 1774 * 1816 * 1775 * This function may be called under the rcu_ 1817 * This function may be called under the rcu_read_lock. However, this will 1776 * not atomically search a snapshot of the ca 1818 * not atomically search a snapshot of the cache at a single point in time. 1777 * For example, if a gap is created at index 1819 * For example, if a gap is created at index 10, then subsequently a gap is 1778 * created at index 5, page_cache_prev_miss() 1820 * created at index 5, page_cache_prev_miss() covering both indices may 1779 * return 5 if called under the rcu_read_lock 1821 * return 5 if called under the rcu_read_lock. 1780 * 1822 * 1781 * Return: The index of the gap if found, oth 1823 * Return: The index of the gap if found, otherwise an index outside the 1782 * range specified (in which case 'index - re 1824 * range specified (in which case 'index - return >= max_scan' will be true). 1783 * In the rare case of wrap-around, ULONG_MAX 1825 * In the rare case of wrap-around, ULONG_MAX will be returned. 1784 */ 1826 */ 1785 pgoff_t page_cache_prev_miss(struct address_s 1827 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1786 pgoff_t index, u 1828 pgoff_t index, unsigned long max_scan) 1787 { 1829 { 1788 XA_STATE(xas, &mapping->i_pages, inde 1830 XA_STATE(xas, &mapping->i_pages, index); 1789 1831 1790 while (max_scan--) { 1832 while (max_scan--) { 1791 void *entry = xas_prev(&xas); 1833 void *entry = xas_prev(&xas); 1792 if (!entry || xa_is_value(ent 1834 if (!entry || xa_is_value(entry)) 1793 break; 1835 break; 1794 if (xas.xa_index == ULONG_MAX 1836 if (xas.xa_index == ULONG_MAX) 1795 break; 1837 break; 1796 } 1838 } 1797 1839 1798 return xas.xa_index; 1840 return xas.xa_index; 1799 } 1841 } 1800 EXPORT_SYMBOL(page_cache_prev_miss); 1842 EXPORT_SYMBOL(page_cache_prev_miss); 1801 1843 1802 /* 1844 /* 1803 * Lockless page cache protocol: 1845 * Lockless page cache protocol: 1804 * On the lookup side: 1846 * On the lookup side: 1805 * 1. Load the folio from i_pages 1847 * 1. Load the folio from i_pages 1806 * 2. Increment the refcount if it's not zero 1848 * 2. Increment the refcount if it's not zero 1807 * 3. If the folio is not found by xas_reload 1849 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1808 * 1850 * 1809 * On the removal side: 1851 * On the removal side: 1810 * A. Freeze the page (by zeroing the refcoun 1852 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1811 * B. Remove the page from i_pages 1853 * B. Remove the page from i_pages 1812 * C. Return the page to the page allocator 1854 * C. Return the page to the page allocator 1813 * 1855 * 1814 * This means that any page may have its refe 1856 * This means that any page may have its reference count temporarily 1815 * increased by a speculative page cache (or !! 1857 * increased by a speculative page cache (or fast GUP) lookup as it can 1816 * be allocated by another user before the RC 1858 * be allocated by another user before the RCU grace period expires. 1817 * Because the refcount temporarily acquired 1859 * Because the refcount temporarily acquired here may end up being the 1818 * last refcount on the page, any page alloca 1860 * last refcount on the page, any page allocation must be freeable by 1819 * folio_put(). 1861 * folio_put(). 1820 */ 1862 */ 1821 1863 1822 /* 1864 /* 1823 * filemap_get_entry - Get a page cache entry !! 1865 * mapping_get_entry - Get a page cache entry. 1824 * @mapping: the address_space to search 1866 * @mapping: the address_space to search 1825 * @index: The page cache index. 1867 * @index: The page cache index. 1826 * 1868 * 1827 * Looks up the page cache entry at @mapping 1869 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1828 * it is returned with an increased refcount. 1870 * it is returned with an increased refcount. If it is a shadow entry 1829 * of a previously evicted folio, or a swap e 1871 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1830 * it is returned without further action. 1872 * it is returned without further action. 1831 * 1873 * 1832 * Return: The folio, swap or shadow entry, % 1874 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1833 */ 1875 */ 1834 void *filemap_get_entry(struct address_space !! 1876 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1835 { 1877 { 1836 XA_STATE(xas, &mapping->i_pages, inde 1878 XA_STATE(xas, &mapping->i_pages, index); 1837 struct folio *folio; 1879 struct folio *folio; 1838 1880 1839 rcu_read_lock(); 1881 rcu_read_lock(); 1840 repeat: 1882 repeat: 1841 xas_reset(&xas); 1883 xas_reset(&xas); 1842 folio = xas_load(&xas); 1884 folio = xas_load(&xas); 1843 if (xas_retry(&xas, folio)) 1885 if (xas_retry(&xas, folio)) 1844 goto repeat; 1886 goto repeat; 1845 /* 1887 /* 1846 * A shadow entry of a recently evict 1888 * A shadow entry of a recently evicted page, or a swap entry from 1847 * shmem/tmpfs. Return it without at 1889 * shmem/tmpfs. Return it without attempting to raise page count. 1848 */ 1890 */ 1849 if (!folio || xa_is_value(folio)) 1891 if (!folio || xa_is_value(folio)) 1850 goto out; 1892 goto out; 1851 1893 1852 if (!folio_try_get(folio)) !! 1894 if (!folio_try_get_rcu(folio)) 1853 goto repeat; 1895 goto repeat; 1854 1896 1855 if (unlikely(folio != xas_reload(&xas 1897 if (unlikely(folio != xas_reload(&xas))) { 1856 folio_put(folio); 1898 folio_put(folio); 1857 goto repeat; 1899 goto repeat; 1858 } 1900 } 1859 out: 1901 out: 1860 rcu_read_unlock(); 1902 rcu_read_unlock(); 1861 1903 1862 return folio; 1904 return folio; 1863 } 1905 } 1864 1906 1865 /** 1907 /** 1866 * __filemap_get_folio - Find and get a refer 1908 * __filemap_get_folio - Find and get a reference to a folio. 1867 * @mapping: The address_space to search. 1909 * @mapping: The address_space to search. 1868 * @index: The page index. 1910 * @index: The page index. 1869 * @fgp_flags: %FGP flags modify how the foli 1911 * @fgp_flags: %FGP flags modify how the folio is returned. 1870 * @gfp: Memory allocation flags to use if %F 1912 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1871 * 1913 * 1872 * Looks up the page cache entry at @mapping 1914 * Looks up the page cache entry at @mapping & @index. 1873 * 1915 * >> 1916 * @fgp_flags can be zero or more of these flags: >> 1917 * >> 1918 * * %FGP_ACCESSED - The folio will be marked accessed. >> 1919 * * %FGP_LOCK - The folio is returned locked. >> 1920 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it >> 1921 * instead of allocating a new folio to replace it. >> 1922 * * %FGP_CREAT - If no page is present then a new page is allocated using >> 1923 * @gfp and added to the page cache and the VM's LRU list. >> 1924 * The page is returned locked and with an increased refcount. >> 1925 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the >> 1926 * page is already in cache. If the page was allocated, unlock it before >> 1927 * returning so the caller can do the same dance. >> 1928 * * %FGP_WRITE - The page will be written to by the caller. >> 1929 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. >> 1930 * * %FGP_NOWAIT - Don't get blocked by page lock. >> 1931 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) >> 1932 * 1874 * If %FGP_LOCK or %FGP_CREAT are specified t 1933 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1875 * if the %GFP flags specified for %FGP_CREAT 1934 * if the %GFP flags specified for %FGP_CREAT are atomic. 1876 * 1935 * 1877 * If this function returns a folio, it is re !! 1936 * If there is a page cache page, it is returned with an increased refcount. 1878 * 1937 * 1879 * Return: The found folio or an ERR_PTR() ot !! 1938 * Return: The found folio or %NULL otherwise. 1880 */ 1939 */ 1881 struct folio *__filemap_get_folio(struct addr 1940 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1882 fgf_t fgp_flags, gfp_t gfp) !! 1941 int fgp_flags, gfp_t gfp) 1883 { 1942 { 1884 struct folio *folio; 1943 struct folio *folio; 1885 1944 1886 repeat: 1945 repeat: 1887 folio = filemap_get_entry(mapping, in !! 1946 folio = mapping_get_entry(mapping, index); 1888 if (xa_is_value(folio)) !! 1947 if (xa_is_value(folio)) { >> 1948 if (fgp_flags & FGP_ENTRY) >> 1949 return folio; 1889 folio = NULL; 1950 folio = NULL; >> 1951 } 1890 if (!folio) 1952 if (!folio) 1891 goto no_page; 1953 goto no_page; 1892 1954 1893 if (fgp_flags & FGP_LOCK) { 1955 if (fgp_flags & FGP_LOCK) { 1894 if (fgp_flags & FGP_NOWAIT) { 1956 if (fgp_flags & FGP_NOWAIT) { 1895 if (!folio_trylock(fo 1957 if (!folio_trylock(folio)) { 1896 folio_put(fol 1958 folio_put(folio); 1897 return ERR_PT !! 1959 return NULL; 1898 } 1960 } 1899 } else { 1961 } else { 1900 folio_lock(folio); 1962 folio_lock(folio); 1901 } 1963 } 1902 1964 1903 /* Has the page been truncate 1965 /* Has the page been truncated? */ 1904 if (unlikely(folio->mapping ! 1966 if (unlikely(folio->mapping != mapping)) { 1905 folio_unlock(folio); 1967 folio_unlock(folio); 1906 folio_put(folio); 1968 folio_put(folio); 1907 goto repeat; 1969 goto repeat; 1908 } 1970 } 1909 VM_BUG_ON_FOLIO(!folio_contai 1971 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1910 } 1972 } 1911 1973 1912 if (fgp_flags & FGP_ACCESSED) 1974 if (fgp_flags & FGP_ACCESSED) 1913 folio_mark_accessed(folio); 1975 folio_mark_accessed(folio); 1914 else if (fgp_flags & FGP_WRITE) { 1976 else if (fgp_flags & FGP_WRITE) { 1915 /* Clear idle flag for buffer 1977 /* Clear idle flag for buffer write */ 1916 if (folio_test_idle(folio)) 1978 if (folio_test_idle(folio)) 1917 folio_clear_idle(foli 1979 folio_clear_idle(folio); 1918 } 1980 } 1919 1981 1920 if (fgp_flags & FGP_STABLE) 1982 if (fgp_flags & FGP_STABLE) 1921 folio_wait_stable(folio); 1983 folio_wait_stable(folio); 1922 no_page: 1984 no_page: 1923 if (!folio && (fgp_flags & FGP_CREAT) 1985 if (!folio && (fgp_flags & FGP_CREAT)) { 1924 unsigned int min_order = mapp << 1925 unsigned int order = max(min_ << 1926 int err; 1986 int err; 1927 index = mapping_align_index(m << 1928 << 1929 if ((fgp_flags & FGP_WRITE) & 1987 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1930 gfp |= __GFP_WRITE; 1988 gfp |= __GFP_WRITE; 1931 if (fgp_flags & FGP_NOFS) 1989 if (fgp_flags & FGP_NOFS) 1932 gfp &= ~__GFP_FS; 1990 gfp &= ~__GFP_FS; 1933 if (fgp_flags & FGP_NOWAIT) { << 1934 gfp &= ~GFP_KERNEL; << 1935 gfp |= GFP_NOWAIT | _ << 1936 } << 1937 if (WARN_ON_ONCE(!(fgp_flags << 1938 fgp_flags |= FGP_LOCK << 1939 1991 1940 if (order > mapping_max_folio !! 1992 folio = filemap_alloc_folio(gfp, 0); 1941 order = mapping_max_f !! 1993 if (!folio) 1942 /* If we're not aligned, allo !! 1994 return NULL; 1943 if (index & ((1UL << order) - << 1944 order = __ffs(index); << 1945 1995 1946 do { !! 1996 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1947 gfp_t alloc_gfp = gfp !! 1997 fgp_flags |= FGP_LOCK; 1948 1998 1949 err = -ENOMEM; !! 1999 /* Init accessed so avoid atomic mark_page_accessed later */ 1950 if (order > min_order !! 2000 if (fgp_flags & FGP_ACCESSED) 1951 alloc_gfp |= !! 2001 __folio_set_referenced(folio); 1952 folio = filemap_alloc << 1953 if (!folio) << 1954 continue; << 1955 << 1956 /* Init accessed so a << 1957 if (fgp_flags & FGP_A << 1958 __folio_set_r << 1959 2002 1960 err = filemap_add_fol !! 2003 err = filemap_add_folio(mapping, folio, index, gfp); 1961 if (!err) !! 2004 if (unlikely(err)) { 1962 break; << 1963 folio_put(folio); 2005 folio_put(folio); 1964 folio = NULL; 2006 folio = NULL; 1965 } while (order-- > min_order) !! 2007 if (err == -EEXIST) >> 2008 goto repeat; >> 2009 } 1966 2010 1967 if (err == -EEXIST) << 1968 goto repeat; << 1969 if (err) << 1970 return ERR_PTR(err); << 1971 /* 2011 /* 1972 * filemap_add_folio locks th 2012 * filemap_add_folio locks the page, and for mmap 1973 * we expect an unlocked page 2013 * we expect an unlocked page. 1974 */ 2014 */ 1975 if (folio && (fgp_flags & FGP 2015 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1976 folio_unlock(folio); 2016 folio_unlock(folio); 1977 } 2017 } 1978 2018 1979 if (!folio) << 1980 return ERR_PTR(-ENOENT); << 1981 return folio; 2019 return folio; 1982 } 2020 } 1983 EXPORT_SYMBOL(__filemap_get_folio); 2021 EXPORT_SYMBOL(__filemap_get_folio); 1984 2022 1985 static inline struct folio *find_get_entry(st 2023 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1986 xa_mark_t mark) 2024 xa_mark_t mark) 1987 { 2025 { 1988 struct folio *folio; 2026 struct folio *folio; 1989 2027 1990 retry: 2028 retry: 1991 if (mark == XA_PRESENT) 2029 if (mark == XA_PRESENT) 1992 folio = xas_find(xas, max); 2030 folio = xas_find(xas, max); 1993 else 2031 else 1994 folio = xas_find_marked(xas, 2032 folio = xas_find_marked(xas, max, mark); 1995 2033 1996 if (xas_retry(xas, folio)) 2034 if (xas_retry(xas, folio)) 1997 goto retry; 2035 goto retry; 1998 /* 2036 /* 1999 * A shadow entry of a recently evict 2037 * A shadow entry of a recently evicted page, a swap 2000 * entry from shmem/tmpfs or a DAX en 2038 * entry from shmem/tmpfs or a DAX entry. Return it 2001 * without attempting to raise page c 2039 * without attempting to raise page count. 2002 */ 2040 */ 2003 if (!folio || xa_is_value(folio)) 2041 if (!folio || xa_is_value(folio)) 2004 return folio; 2042 return folio; 2005 2043 2006 if (!folio_try_get(folio)) !! 2044 if (!folio_try_get_rcu(folio)) 2007 goto reset; 2045 goto reset; 2008 2046 2009 if (unlikely(folio != xas_reload(xas) 2047 if (unlikely(folio != xas_reload(xas))) { 2010 folio_put(folio); 2048 folio_put(folio); 2011 goto reset; 2049 goto reset; 2012 } 2050 } 2013 2051 2014 return folio; 2052 return folio; 2015 reset: 2053 reset: 2016 xas_reset(xas); 2054 xas_reset(xas); 2017 goto retry; 2055 goto retry; 2018 } 2056 } 2019 2057 2020 /** 2058 /** 2021 * find_get_entries - gang pagecache lookup 2059 * find_get_entries - gang pagecache lookup 2022 * @mapping: The address_space to search 2060 * @mapping: The address_space to search 2023 * @start: The starting page cache index 2061 * @start: The starting page cache index 2024 * @end: The final page index (inclusi 2062 * @end: The final page index (inclusive). 2025 * @fbatch: Where the resulting entries a 2063 * @fbatch: Where the resulting entries are placed. 2026 * @indices: The cache indices correspondi 2064 * @indices: The cache indices corresponding to the entries in @entries 2027 * 2065 * 2028 * find_get_entries() will search for and ret 2066 * find_get_entries() will search for and return a batch of entries in 2029 * the mapping. The entries are placed in @f 2067 * the mapping. The entries are placed in @fbatch. find_get_entries() 2030 * takes a reference on any actual folios it 2068 * takes a reference on any actual folios it returns. 2031 * 2069 * 2032 * The entries have ascending indexes. The i 2070 * The entries have ascending indexes. The indices may not be consecutive 2033 * due to not-present entries or large folios 2071 * due to not-present entries or large folios. 2034 * 2072 * 2035 * Any shadow entries of evicted folios, or s 2073 * Any shadow entries of evicted folios, or swap entries from 2036 * shmem/tmpfs, are included in the returned 2074 * shmem/tmpfs, are included in the returned array. 2037 * 2075 * 2038 * Return: The number of entries which were f 2076 * Return: The number of entries which were found. 2039 */ 2077 */ 2040 unsigned find_get_entries(struct address_spac !! 2078 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2041 pgoff_t end, struct folio_bat 2079 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2042 { 2080 { 2043 XA_STATE(xas, &mapping->i_pages, *sta !! 2081 XA_STATE(xas, &mapping->i_pages, start); 2044 struct folio *folio; 2082 struct folio *folio; 2045 2083 2046 rcu_read_lock(); 2084 rcu_read_lock(); 2047 while ((folio = find_get_entry(&xas, 2085 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2048 indices[fbatch->nr] = xas.xa_ 2086 indices[fbatch->nr] = xas.xa_index; 2049 if (!folio_batch_add(fbatch, 2087 if (!folio_batch_add(fbatch, folio)) 2050 break; 2088 break; 2051 } 2089 } 2052 << 2053 if (folio_batch_count(fbatch)) { << 2054 unsigned long nr; << 2055 int idx = folio_batch_count(f << 2056 << 2057 folio = fbatch->folios[idx]; << 2058 if (!xa_is_value(folio)) << 2059 nr = folio_nr_pages(f << 2060 else << 2061 nr = 1 << xa_get_orde << 2062 *start = round_down(indices[i << 2063 } << 2064 rcu_read_unlock(); 2090 rcu_read_unlock(); 2065 2091 2066 return folio_batch_count(fbatch); 2092 return folio_batch_count(fbatch); 2067 } 2093 } 2068 2094 2069 /** 2095 /** 2070 * find_lock_entries - Find a batch of pageca 2096 * find_lock_entries - Find a batch of pagecache entries. 2071 * @mapping: The address_space to search. 2097 * @mapping: The address_space to search. 2072 * @start: The starting page cache index 2098 * @start: The starting page cache index. 2073 * @end: The final page index (inclusi 2099 * @end: The final page index (inclusive). 2074 * @fbatch: Where the resulting entries a 2100 * @fbatch: Where the resulting entries are placed. 2075 * @indices: The cache indices of the entr 2101 * @indices: The cache indices of the entries in @fbatch. 2076 * 2102 * 2077 * find_lock_entries() will return a batch of 2103 * find_lock_entries() will return a batch of entries from @mapping. 2078 * Swap, shadow and DAX entries are included. 2104 * Swap, shadow and DAX entries are included. Folios are returned 2079 * locked and with an incremented refcount. 2105 * locked and with an incremented refcount. Folios which are locked 2080 * by somebody else or under writeback are sk 2106 * by somebody else or under writeback are skipped. Folios which are 2081 * partially outside the range are not return 2107 * partially outside the range are not returned. 2082 * 2108 * 2083 * The entries have ascending indexes. The i 2109 * The entries have ascending indexes. The indices may not be consecutive 2084 * due to not-present entries, large folios, 2110 * due to not-present entries, large folios, folios which could not be 2085 * locked or folios under writeback. 2111 * locked or folios under writeback. 2086 * 2112 * 2087 * Return: The number of entries which were f 2113 * Return: The number of entries which were found. 2088 */ 2114 */ 2089 unsigned find_lock_entries(struct address_spa !! 2115 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2090 pgoff_t end, struct folio_bat 2116 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2091 { 2117 { 2092 XA_STATE(xas, &mapping->i_pages, *sta !! 2118 XA_STATE(xas, &mapping->i_pages, start); 2093 struct folio *folio; 2119 struct folio *folio; 2094 2120 2095 rcu_read_lock(); 2121 rcu_read_lock(); 2096 while ((folio = find_get_entry(&xas, 2122 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2097 unsigned long base; << 2098 unsigned long nr; << 2099 << 2100 if (!xa_is_value(folio)) { 2123 if (!xa_is_value(folio)) { 2101 nr = folio_nr_pages(f !! 2124 if (folio->index < start) 2102 base = folio->index; << 2103 /* Omit large folio w << 2104 if (base < *start) << 2105 goto put; 2125 goto put; 2106 /* Omit large folio w !! 2126 if (folio->index + folio_nr_pages(folio) - 1 > end) 2107 if (base + nr - 1 > e << 2108 goto put; 2127 goto put; 2109 if (!folio_trylock(fo 2128 if (!folio_trylock(folio)) 2110 goto put; 2129 goto put; 2111 if (folio->mapping != 2130 if (folio->mapping != mapping || 2112 folio_test_writeb 2131 folio_test_writeback(folio)) 2113 goto unlock; 2132 goto unlock; 2114 VM_BUG_ON_FOLIO(!foli 2133 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2115 folio 2134 folio); 2116 } else { << 2117 nr = 1 << xas_get_ord << 2118 base = xas.xa_index & << 2119 /* Omit order>0 value << 2120 if (base < *start) << 2121 continue; << 2122 /* Omit order>0 value << 2123 if (base + nr - 1 > e << 2124 break; << 2125 } 2135 } 2126 << 2127 /* Update start now so that l << 2128 *start = base + nr; << 2129 indices[fbatch->nr] = xas.xa_ 2136 indices[fbatch->nr] = xas.xa_index; 2130 if (!folio_batch_add(fbatch, 2137 if (!folio_batch_add(fbatch, folio)) 2131 break; 2138 break; 2132 continue; 2139 continue; 2133 unlock: 2140 unlock: 2134 folio_unlock(folio); 2141 folio_unlock(folio); 2135 put: 2142 put: 2136 folio_put(folio); 2143 folio_put(folio); 2137 } 2144 } 2138 rcu_read_unlock(); 2145 rcu_read_unlock(); 2139 2146 2140 return folio_batch_count(fbatch); 2147 return folio_batch_count(fbatch); 2141 } 2148 } 2142 2149 >> 2150 static inline >> 2151 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) >> 2152 { >> 2153 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) >> 2154 return false; >> 2155 if (index >= max) >> 2156 return false; >> 2157 return index < folio->index + folio_nr_pages(folio) - 1; >> 2158 } >> 2159 2143 /** 2160 /** 2144 * filemap_get_folios - Get a batch of folios !! 2161 * find_get_pages_range - gang pagecache lookup 2145 * @mapping: The address_space to search 2162 * @mapping: The address_space to search 2146 * @start: The starting page index 2163 * @start: The starting page index 2147 * @end: The final page index (inclusi 2164 * @end: The final page index (inclusive) 2148 * @fbatch: The batch to fill. !! 2165 * @nr_pages: The maximum number of pages 2149 * !! 2166 * @pages: Where the resulting pages are placed 2150 * Search for and return a batch of folios in << 2151 * index @start and up to index @end (inclusi << 2152 * in @fbatch with an elevated reference coun << 2153 * 2167 * 2154 * Return: The number of folios which were fo !! 2168 * find_get_pages_range() will search for and return a group of up to @nr_pages 2155 * We also update @start to index the next fo !! 2169 * pages in the mapping starting at index @start and up to index @end 2156 */ !! 2170 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2157 unsigned filemap_get_folios(struct address_sp !! 2171 * a reference against the returned pages. 2158 pgoff_t end, struct folio_bat !! 2172 * >> 2173 * The search returns a group of mapping-contiguous pages with ascending >> 2174 * indexes. There may be holes in the indices due to not-present pages. >> 2175 * We also update @start to index the next page for the traversal. >> 2176 * >> 2177 * Return: the number of pages which were found. If this number is >> 2178 * smaller than @nr_pages, the end of specified range has been >> 2179 * reached. >> 2180 */ >> 2181 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, >> 2182 pgoff_t end, unsigned int nr_pages, >> 2183 struct page **pages) 2159 { 2184 { 2160 return filemap_get_folios_tag(mapping !! 2185 XA_STATE(xas, &mapping->i_pages, *start); >> 2186 struct folio *folio; >> 2187 unsigned ret = 0; >> 2188 >> 2189 if (unlikely(!nr_pages)) >> 2190 return 0; >> 2191 >> 2192 rcu_read_lock(); >> 2193 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { >> 2194 /* Skip over shadow, swap and DAX entries */ >> 2195 if (xa_is_value(folio)) >> 2196 continue; >> 2197 >> 2198 again: >> 2199 pages[ret] = folio_file_page(folio, xas.xa_index); >> 2200 if (++ret == nr_pages) { >> 2201 *start = xas.xa_index + 1; >> 2202 goto out; >> 2203 } >> 2204 if (folio_more_pages(folio, xas.xa_index, end)) { >> 2205 xas.xa_index++; >> 2206 folio_ref_inc(folio); >> 2207 goto again; >> 2208 } >> 2209 } >> 2210 >> 2211 /* >> 2212 * We come here when there is no page beyond @end. We take care to not >> 2213 * overflow the index @start as it confuses some of the callers. This >> 2214 * breaks the iteration when there is a page at index -1 but that is >> 2215 * already broken anyway. >> 2216 */ >> 2217 if (end == (pgoff_t)-1) >> 2218 *start = (pgoff_t)-1; >> 2219 else >> 2220 *start = end + 1; >> 2221 out: >> 2222 rcu_read_unlock(); >> 2223 >> 2224 return ret; 2161 } 2225 } 2162 EXPORT_SYMBOL(filemap_get_folios); << 2163 2226 2164 /** 2227 /** 2165 * filemap_get_folios_contig - Get a batch of !! 2228 * find_get_pages_contig - gang contiguous pagecache lookup 2166 * @mapping: The address_space to search 2229 * @mapping: The address_space to search 2167 * @start: The starting page index !! 2230 * @index: The starting page index 2168 * @end: The final page index (inclusi !! 2231 * @nr_pages: The maximum number of pages 2169 * @fbatch: The batch to fill !! 2232 * @pages: Where the resulting pages are placed >> 2233 * >> 2234 * find_get_pages_contig() works exactly like find_get_pages_range(), >> 2235 * except that the returned number of pages are guaranteed to be >> 2236 * contiguous. 2170 * 2237 * 2171 * filemap_get_folios_contig() works exactly !! 2238 * Return: the number of pages which were found. 2172 * except the returned folios are guaranteed << 2173 * not return all contiguous folios if the ba << 2174 * << 2175 * Return: The number of folios found. << 2176 * Also update @start to be positioned for tr << 2177 */ 2239 */ 2178 !! 2240 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2179 unsigned filemap_get_folios_contig(struct add !! 2241 unsigned int nr_pages, struct page **pages) 2180 pgoff_t *start, pgoff_t end, << 2181 { 2242 { 2182 XA_STATE(xas, &mapping->i_pages, *sta !! 2243 XA_STATE(xas, &mapping->i_pages, index); 2183 unsigned long nr; << 2184 struct folio *folio; 2244 struct folio *folio; >> 2245 unsigned int ret = 0; 2185 2246 2186 rcu_read_lock(); !! 2247 if (unlikely(!nr_pages)) >> 2248 return 0; 2187 2249 2188 for (folio = xas_load(&xas); folio && !! 2250 rcu_read_lock(); 2189 folio = xas_next(&xas !! 2251 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2190 if (xas_retry(&xas, folio)) 2252 if (xas_retry(&xas, folio)) 2191 continue; 2253 continue; 2192 /* 2254 /* 2193 * If the entry has been swap 2255 * If the entry has been swapped out, we can stop looking. 2194 * No current caller is looki 2256 * No current caller is looking for DAX entries. 2195 */ 2257 */ 2196 if (xa_is_value(folio)) 2258 if (xa_is_value(folio)) 2197 goto update_start; !! 2259 break; 2198 << 2199 /* If we landed in the middle << 2200 if (xa_is_sibling(folio)) << 2201 goto update_start; << 2202 2260 2203 if (!folio_try_get(folio)) !! 2261 if (!folio_try_get_rcu(folio)) 2204 goto retry; 2262 goto retry; 2205 2263 2206 if (unlikely(folio != xas_rel 2264 if (unlikely(folio != xas_reload(&xas))) 2207 goto put_folio; !! 2265 goto put_page; 2208 2266 2209 if (!folio_batch_add(fbatch, !! 2267 again: 2210 nr = folio_nr_pages(f !! 2268 pages[ret] = folio_file_page(folio, xas.xa_index); 2211 *start = folio->index !! 2269 if (++ret == nr_pages) 2212 goto out; !! 2270 break; >> 2271 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) { >> 2272 xas.xa_index++; >> 2273 folio_ref_inc(folio); >> 2274 goto again; 2213 } 2275 } 2214 continue; 2276 continue; 2215 put_folio: !! 2277 put_page: 2216 folio_put(folio); 2278 folio_put(folio); 2217 << 2218 retry: 2279 retry: 2219 xas_reset(&xas); 2280 xas_reset(&xas); 2220 } 2281 } 2221 << 2222 update_start: << 2223 nr = folio_batch_count(fbatch); << 2224 << 2225 if (nr) { << 2226 folio = fbatch->folios[nr - 1 << 2227 *start = folio_next_index(fol << 2228 } << 2229 out: << 2230 rcu_read_unlock(); 2282 rcu_read_unlock(); 2231 return folio_batch_count(fbatch); !! 2283 return ret; 2232 } 2284 } 2233 EXPORT_SYMBOL(filemap_get_folios_contig); !! 2285 EXPORT_SYMBOL(find_get_pages_contig); 2234 2286 2235 /** 2287 /** 2236 * filemap_get_folios_tag - Get a batch of fo !! 2288 * find_get_pages_range_tag - Find and return head pages matching @tag. 2237 * @mapping: The address_space to search !! 2289 * @mapping: the address_space to search 2238 * @start: The starting page index !! 2290 * @index: the starting page index 2239 * @end: The final page index (inclusi !! 2291 * @end: The final page index (inclusive) 2240 * @tag: The tag index !! 2292 * @tag: the tag index 2241 * @fbatch: The batch to fill !! 2293 * @nr_pages: the maximum number of pages 2242 * !! 2294 * @pages: where the resulting pages are placed 2243 * The first folio may start before @start; i !! 2295 * 2244 * @start. The final folio may extend beyond !! 2296 * Like find_get_pages_range(), except we only return head pages which are 2245 * contain @end. The folios have ascending i !! 2297 * tagged with @tag. @index is updated to the index immediately after the 2246 * between the folios if there are indices wh !! 2298 * last page we return, ready for the next iteration. 2247 * page cache. If folios are added to or rem << 2248 * while this is running, they may or may not << 2249 * Only returns folios that are tagged with @ << 2250 * 2299 * 2251 * Return: The number of folios found. !! 2300 * Return: the number of pages which were found. 2252 * Also update @start to index the next folio << 2253 */ 2301 */ 2254 unsigned filemap_get_folios_tag(struct addres !! 2302 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2255 pgoff_t end, xa_mark_ !! 2303 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, >> 2304 struct page **pages) 2256 { 2305 { 2257 XA_STATE(xas, &mapping->i_pages, *sta !! 2306 XA_STATE(xas, &mapping->i_pages, *index); 2258 struct folio *folio; 2307 struct folio *folio; >> 2308 unsigned ret = 0; >> 2309 >> 2310 if (unlikely(!nr_pages)) >> 2311 return 0; 2259 2312 2260 rcu_read_lock(); 2313 rcu_read_lock(); 2261 while ((folio = find_get_entry(&xas, !! 2314 while ((folio = find_get_entry(&xas, end, tag))) { 2262 /* 2315 /* 2263 * Shadow entries should neve 2316 * Shadow entries should never be tagged, but this iteration 2264 * is lockless so there is a 2317 * is lockless so there is a window for page reclaim to evict 2265 * a page we saw tagged. Skip !! 2318 * a page we saw tagged. Skip over it. 2266 */ 2319 */ 2267 if (xa_is_value(folio)) 2320 if (xa_is_value(folio)) 2268 continue; 2321 continue; 2269 if (!folio_batch_add(fbatch, !! 2322 2270 unsigned long nr = fo !! 2323 pages[ret] = &folio->page; 2271 *start = folio->index !! 2324 if (++ret == nr_pages) { >> 2325 *index = folio->index + folio_nr_pages(folio); 2272 goto out; 2326 goto out; 2273 } 2327 } 2274 } 2328 } >> 2329 2275 /* 2330 /* 2276 * We come here when there is no page !! 2331 * We come here when we got to @end. We take care to not overflow the 2277 * overflow the index @start as it co !! 2332 * index @index as it confuses some of the callers. This breaks the 2278 * breaks the iteration when there is !! 2333 * iteration when there is a page at index -1 but that is already 2279 * already broke anyway. !! 2334 * broken anyway. 2280 */ 2335 */ 2281 if (end == (pgoff_t)-1) 2336 if (end == (pgoff_t)-1) 2282 *start = (pgoff_t)-1; !! 2337 *index = (pgoff_t)-1; 2283 else 2338 else 2284 *start = end + 1; !! 2339 *index = end + 1; 2285 out: 2340 out: 2286 rcu_read_unlock(); 2341 rcu_read_unlock(); 2287 2342 2288 return folio_batch_count(fbatch); !! 2343 return ret; 2289 } 2344 } 2290 EXPORT_SYMBOL(filemap_get_folios_tag); !! 2345 EXPORT_SYMBOL(find_get_pages_range_tag); 2291 2346 2292 /* 2347 /* 2293 * CD/DVDs are error prone. When a medium err 2348 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2294 * a _large_ part of the i/o request. Imagine 2349 * a _large_ part of the i/o request. Imagine the worst scenario: 2295 * 2350 * 2296 * ---R_________________________________ 2351 * ---R__________________________________________B__________ 2297 * ^ reading here 2352 * ^ reading here ^ bad block(assume 4k) 2298 * 2353 * 2299 * read(R) => miss => readahead(R...B) => med 2354 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2300 * => failing the whole request => read(R) => 2355 * => failing the whole request => read(R) => read(R+1) => 2301 * readahead(R+1...B+1) => bang => read(R+2) 2356 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2302 * readahead(R+3...B+2) => bang => read(R+3) 2357 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2303 * readahead(R+4...B+3) => bang => read(R+4) 2358 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2304 * 2359 * 2305 * It is going insane. Fix it by quickly scal 2360 * It is going insane. Fix it by quickly scaling down the readahead size. 2306 */ 2361 */ 2307 static void shrink_readahead_size_eio(struct 2362 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2308 { 2363 { 2309 ra->ra_pages /= 4; 2364 ra->ra_pages /= 4; 2310 } 2365 } 2311 2366 2312 /* 2367 /* 2313 * filemap_get_read_batch - Get a batch of fo 2368 * filemap_get_read_batch - Get a batch of folios for read 2314 * 2369 * 2315 * Get a batch of folios which represent a co 2370 * Get a batch of folios which represent a contiguous range of bytes in 2316 * the file. No exceptional entries will be 2371 * the file. No exceptional entries will be returned. If @index is in 2317 * the middle of a folio, the entire folio wi 2372 * the middle of a folio, the entire folio will be returned. The last 2318 * folio in the batch may have the readahead 2373 * folio in the batch may have the readahead flag set or the uptodate flag 2319 * clear so that the caller can take the appr 2374 * clear so that the caller can take the appropriate action. 2320 */ 2375 */ 2321 static void filemap_get_read_batch(struct add 2376 static void filemap_get_read_batch(struct address_space *mapping, 2322 pgoff_t index, pgoff_t max, s 2377 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2323 { 2378 { 2324 XA_STATE(xas, &mapping->i_pages, inde 2379 XA_STATE(xas, &mapping->i_pages, index); 2325 struct folio *folio; 2380 struct folio *folio; 2326 2381 2327 rcu_read_lock(); 2382 rcu_read_lock(); 2328 for (folio = xas_load(&xas); folio; f 2383 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2329 if (xas_retry(&xas, folio)) 2384 if (xas_retry(&xas, folio)) 2330 continue; 2385 continue; 2331 if (xas.xa_index > max || xa_ 2386 if (xas.xa_index > max || xa_is_value(folio)) 2332 break; 2387 break; 2333 if (xa_is_sibling(folio)) 2388 if (xa_is_sibling(folio)) 2334 break; 2389 break; 2335 if (!folio_try_get(folio)) !! 2390 if (!folio_try_get_rcu(folio)) 2336 goto retry; 2391 goto retry; 2337 2392 2338 if (unlikely(folio != xas_rel 2393 if (unlikely(folio != xas_reload(&xas))) 2339 goto put_folio; 2394 goto put_folio; 2340 2395 2341 if (!folio_batch_add(fbatch, 2396 if (!folio_batch_add(fbatch, folio)) 2342 break; 2397 break; 2343 if (!folio_test_uptodate(foli 2398 if (!folio_test_uptodate(folio)) 2344 break; 2399 break; 2345 if (folio_test_readahead(foli 2400 if (folio_test_readahead(folio)) 2346 break; 2401 break; 2347 xas_advance(&xas, folio_next_ !! 2402 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2348 continue; 2403 continue; 2349 put_folio: 2404 put_folio: 2350 folio_put(folio); 2405 folio_put(folio); 2351 retry: 2406 retry: 2352 xas_reset(&xas); 2407 xas_reset(&xas); 2353 } 2408 } 2354 rcu_read_unlock(); 2409 rcu_read_unlock(); 2355 } 2410 } 2356 2411 2357 static int filemap_read_folio(struct file *fi !! 2412 static int filemap_read_folio(struct file *file, struct address_space *mapping, 2358 struct folio *folio) 2413 struct folio *folio) 2359 { 2414 { 2360 bool workingset = folio_test_workings << 2361 unsigned long pflags; << 2362 int error; 2415 int error; 2363 2416 >> 2417 /* >> 2418 * A previous I/O error may have been due to temporary failures, >> 2419 * eg. multipath errors. PG_error will be set again if read_folio >> 2420 * fails. >> 2421 */ >> 2422 folio_clear_error(folio); 2364 /* Start the actual read. The read wi 2423 /* Start the actual read. The read will unlock the page. */ 2365 if (unlikely(workingset)) !! 2424 error = mapping->a_ops->read_folio(file, folio); 2366 psi_memstall_enter(&pflags); << 2367 error = filler(file, folio); << 2368 if (unlikely(workingset)) << 2369 psi_memstall_leave(&pflags); << 2370 if (error) 2425 if (error) 2371 return error; 2426 return error; 2372 2427 2373 error = folio_wait_locked_killable(fo 2428 error = folio_wait_locked_killable(folio); 2374 if (error) 2429 if (error) 2375 return error; 2430 return error; 2376 if (folio_test_uptodate(folio)) 2431 if (folio_test_uptodate(folio)) 2377 return 0; 2432 return 0; 2378 if (file) !! 2433 shrink_readahead_size_eio(&file->f_ra); 2379 shrink_readahead_size_eio(&fi << 2380 return -EIO; 2434 return -EIO; 2381 } 2435 } 2382 2436 2383 static bool filemap_range_uptodate(struct add 2437 static bool filemap_range_uptodate(struct address_space *mapping, 2384 loff_t pos, size_t count, str !! 2438 loff_t pos, struct iov_iter *iter, struct folio *folio) 2385 bool need_uptodate) << 2386 { 2439 { >> 2440 int count; >> 2441 2387 if (folio_test_uptodate(folio)) 2442 if (folio_test_uptodate(folio)) 2388 return true; 2443 return true; 2389 /* pipes can't handle partially uptod 2444 /* pipes can't handle partially uptodate pages */ 2390 if (need_uptodate) !! 2445 if (iov_iter_is_pipe(iter)) 2391 return false; 2446 return false; 2392 if (!mapping->a_ops->is_partially_upt 2447 if (!mapping->a_ops->is_partially_uptodate) 2393 return false; 2448 return false; 2394 if (mapping->host->i_blkbits >= folio 2449 if (mapping->host->i_blkbits >= folio_shift(folio)) 2395 return false; 2450 return false; 2396 2451 >> 2452 count = iter->count; 2397 if (folio_pos(folio) > pos) { 2453 if (folio_pos(folio) > pos) { 2398 count -= folio_pos(folio) - p 2454 count -= folio_pos(folio) - pos; 2399 pos = 0; 2455 pos = 0; 2400 } else { 2456 } else { 2401 pos -= folio_pos(folio); 2457 pos -= folio_pos(folio); 2402 } 2458 } 2403 2459 2404 return mapping->a_ops->is_partially_u 2460 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2405 } 2461 } 2406 2462 2407 static int filemap_update_page(struct kiocb * 2463 static int filemap_update_page(struct kiocb *iocb, 2408 struct address_space *mapping !! 2464 struct address_space *mapping, struct iov_iter *iter, 2409 struct folio *folio, bool nee !! 2465 struct folio *folio) 2410 { 2466 { 2411 int error; 2467 int error; 2412 2468 2413 if (iocb->ki_flags & IOCB_NOWAIT) { 2469 if (iocb->ki_flags & IOCB_NOWAIT) { 2414 if (!filemap_invalidate_trylo 2470 if (!filemap_invalidate_trylock_shared(mapping)) 2415 return -EAGAIN; 2471 return -EAGAIN; 2416 } else { 2472 } else { 2417 filemap_invalidate_lock_share 2473 filemap_invalidate_lock_shared(mapping); 2418 } 2474 } 2419 2475 2420 if (!folio_trylock(folio)) { 2476 if (!folio_trylock(folio)) { 2421 error = -EAGAIN; 2477 error = -EAGAIN; 2422 if (iocb->ki_flags & (IOCB_NO 2478 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2423 goto unlock_mapping; 2479 goto unlock_mapping; 2424 if (!(iocb->ki_flags & IOCB_W 2480 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2425 filemap_invalidate_un 2481 filemap_invalidate_unlock_shared(mapping); 2426 /* 2482 /* 2427 * This is where we u 2483 * This is where we usually end up waiting for a 2428 * previously submitt 2484 * previously submitted readahead to finish. 2429 */ 2485 */ 2430 folio_put_wait_locked 2486 folio_put_wait_locked(folio, TASK_KILLABLE); 2431 return AOP_TRUNCATED_ 2487 return AOP_TRUNCATED_PAGE; 2432 } 2488 } 2433 error = __folio_lock_async(fo 2489 error = __folio_lock_async(folio, iocb->ki_waitq); 2434 if (error) 2490 if (error) 2435 goto unlock_mapping; 2491 goto unlock_mapping; 2436 } 2492 } 2437 2493 2438 error = AOP_TRUNCATED_PAGE; 2494 error = AOP_TRUNCATED_PAGE; 2439 if (!folio->mapping) 2495 if (!folio->mapping) 2440 goto unlock; 2496 goto unlock; 2441 2497 2442 error = 0; 2498 error = 0; 2443 if (filemap_range_uptodate(mapping, i !! 2499 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2444 need_uptod << 2445 goto unlock; 2500 goto unlock; 2446 2501 2447 error = -EAGAIN; 2502 error = -EAGAIN; 2448 if (iocb->ki_flags & (IOCB_NOIO | IOC 2503 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2449 goto unlock; 2504 goto unlock; 2450 2505 2451 error = filemap_read_folio(iocb->ki_f !! 2506 error = filemap_read_folio(iocb->ki_filp, mapping, folio); 2452 folio); << 2453 goto unlock_mapping; 2507 goto unlock_mapping; 2454 unlock: 2508 unlock: 2455 folio_unlock(folio); 2509 folio_unlock(folio); 2456 unlock_mapping: 2510 unlock_mapping: 2457 filemap_invalidate_unlock_shared(mapp 2511 filemap_invalidate_unlock_shared(mapping); 2458 if (error == AOP_TRUNCATED_PAGE) 2512 if (error == AOP_TRUNCATED_PAGE) 2459 folio_put(folio); 2513 folio_put(folio); 2460 return error; 2514 return error; 2461 } 2515 } 2462 2516 2463 static int filemap_create_folio(struct file * 2517 static int filemap_create_folio(struct file *file, 2464 struct address_space *mapping !! 2518 struct address_space *mapping, pgoff_t index, 2465 struct folio_batch *fbatch) 2519 struct folio_batch *fbatch) 2466 { 2520 { 2467 struct folio *folio; 2521 struct folio *folio; 2468 int error; 2522 int error; 2469 unsigned int min_order = mapping_min_ << 2470 pgoff_t index; << 2471 2523 2472 folio = filemap_alloc_folio(mapping_g !! 2524 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2473 if (!folio) 2525 if (!folio) 2474 return -ENOMEM; 2526 return -ENOMEM; 2475 2527 2476 /* 2528 /* 2477 * Protect against truncate / hole pu 2529 * Protect against truncate / hole punch. Grabbing invalidate_lock 2478 * here assures we cannot instantiate 2530 * here assures we cannot instantiate and bring uptodate new 2479 * pagecache folios after evicting pa 2531 * pagecache folios after evicting page cache during truncate 2480 * and before actually freeing blocks 2532 * and before actually freeing blocks. Note that we could 2481 * release invalidate_lock after inse 2533 * release invalidate_lock after inserting the folio into 2482 * the page cache as the locked folio 2534 * the page cache as the locked folio would then be enough to 2483 * synchronize with hole punching. Bu 2535 * synchronize with hole punching. But there are code paths 2484 * such as filemap_update_page() fill 2536 * such as filemap_update_page() filling in partially uptodate 2485 * pages or ->readahead() that need t 2537 * pages or ->readahead() that need to hold invalidate_lock 2486 * while mapping blocks for IO so let 2538 * while mapping blocks for IO so let's hold the lock here as 2487 * well to keep locking rules simple. 2539 * well to keep locking rules simple. 2488 */ 2540 */ 2489 filemap_invalidate_lock_shared(mappin 2541 filemap_invalidate_lock_shared(mapping); 2490 index = (pos >> (PAGE_SHIFT + min_ord << 2491 error = filemap_add_folio(mapping, fo 2542 error = filemap_add_folio(mapping, folio, index, 2492 mapping_gfp_constrain 2543 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2493 if (error == -EEXIST) 2544 if (error == -EEXIST) 2494 error = AOP_TRUNCATED_PAGE; 2545 error = AOP_TRUNCATED_PAGE; 2495 if (error) 2546 if (error) 2496 goto error; 2547 goto error; 2497 2548 2498 error = filemap_read_folio(file, mapp !! 2549 error = filemap_read_folio(file, mapping, folio); 2499 if (error) 2550 if (error) 2500 goto error; 2551 goto error; 2501 2552 2502 filemap_invalidate_unlock_shared(mapp 2553 filemap_invalidate_unlock_shared(mapping); 2503 folio_batch_add(fbatch, folio); 2554 folio_batch_add(fbatch, folio); 2504 return 0; 2555 return 0; 2505 error: 2556 error: 2506 filemap_invalidate_unlock_shared(mapp 2557 filemap_invalidate_unlock_shared(mapping); 2507 folio_put(folio); 2558 folio_put(folio); 2508 return error; 2559 return error; 2509 } 2560 } 2510 2561 2511 static int filemap_readahead(struct kiocb *io 2562 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2512 struct address_space *mapping 2563 struct address_space *mapping, struct folio *folio, 2513 pgoff_t last_index) 2564 pgoff_t last_index) 2514 { 2565 { 2515 DEFINE_READAHEAD(ractl, file, &file-> 2566 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2516 2567 2517 if (iocb->ki_flags & IOCB_NOIO) 2568 if (iocb->ki_flags & IOCB_NOIO) 2518 return -EAGAIN; 2569 return -EAGAIN; 2519 page_cache_async_ra(&ractl, folio, la 2570 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2520 return 0; 2571 return 0; 2521 } 2572 } 2522 2573 2523 static int filemap_get_pages(struct kiocb *io !! 2574 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2524 struct folio_batch *fbatch, b !! 2575 struct folio_batch *fbatch) 2525 { 2576 { 2526 struct file *filp = iocb->ki_filp; 2577 struct file *filp = iocb->ki_filp; 2527 struct address_space *mapping = filp- 2578 struct address_space *mapping = filp->f_mapping; 2528 struct file_ra_state *ra = &filp->f_r 2579 struct file_ra_state *ra = &filp->f_ra; 2529 pgoff_t index = iocb->ki_pos >> PAGE_ 2580 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2530 pgoff_t last_index; 2581 pgoff_t last_index; 2531 struct folio *folio; 2582 struct folio *folio; 2532 unsigned int flags; << 2533 int err = 0; 2583 int err = 0; 2534 2584 2535 /* "last_index" is the index of the p !! 2585 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2536 last_index = DIV_ROUND_UP(iocb->ki_po << 2537 retry: 2586 retry: 2538 if (fatal_signal_pending(current)) 2587 if (fatal_signal_pending(current)) 2539 return -EINTR; 2588 return -EINTR; 2540 2589 2541 filemap_get_read_batch(mapping, index !! 2590 filemap_get_read_batch(mapping, index, last_index, fbatch); 2542 if (!folio_batch_count(fbatch)) { 2591 if (!folio_batch_count(fbatch)) { 2543 if (iocb->ki_flags & IOCB_NOI 2592 if (iocb->ki_flags & IOCB_NOIO) 2544 return -EAGAIN; 2593 return -EAGAIN; 2545 if (iocb->ki_flags & IOCB_NOW << 2546 flags = memalloc_noio << 2547 page_cache_sync_readahead(map 2594 page_cache_sync_readahead(mapping, ra, filp, index, 2548 last_index - 2595 last_index - index); 2549 if (iocb->ki_flags & IOCB_NOW !! 2596 filemap_get_read_batch(mapping, index, last_index, fbatch); 2550 memalloc_noio_restore << 2551 filemap_get_read_batch(mappin << 2552 } 2597 } 2553 if (!folio_batch_count(fbatch)) { 2598 if (!folio_batch_count(fbatch)) { 2554 if (iocb->ki_flags & (IOCB_NO 2599 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2555 return -EAGAIN; 2600 return -EAGAIN; 2556 err = filemap_create_folio(fi !! 2601 err = filemap_create_folio(filp, mapping, >> 2602 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2557 if (err == AOP_TRUNCATED_PAGE 2603 if (err == AOP_TRUNCATED_PAGE) 2558 goto retry; 2604 goto retry; 2559 return err; 2605 return err; 2560 } 2606 } 2561 2607 2562 folio = fbatch->folios[folio_batch_co 2608 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2563 if (folio_test_readahead(folio)) { 2609 if (folio_test_readahead(folio)) { 2564 err = filemap_readahead(iocb, 2610 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2565 if (err) 2611 if (err) 2566 goto err; 2612 goto err; 2567 } 2613 } 2568 if (!folio_test_uptodate(folio)) { 2614 if (!folio_test_uptodate(folio)) { 2569 if ((iocb->ki_flags & IOCB_WA 2615 if ((iocb->ki_flags & IOCB_WAITQ) && 2570 folio_batch_count(fbatch) 2616 folio_batch_count(fbatch) > 1) 2571 iocb->ki_flags |= IOC 2617 iocb->ki_flags |= IOCB_NOWAIT; 2572 err = filemap_update_page(ioc !! 2618 err = filemap_update_page(iocb, mapping, iter, folio); 2573 nee << 2574 if (err) 2619 if (err) 2575 goto err; 2620 goto err; 2576 } 2621 } 2577 2622 2578 trace_mm_filemap_get_pages(mapping, i << 2579 return 0; 2623 return 0; 2580 err: 2624 err: 2581 if (err < 0) 2625 if (err < 0) 2582 folio_put(folio); 2626 folio_put(folio); 2583 if (likely(--fbatch->nr)) 2627 if (likely(--fbatch->nr)) 2584 return 0; 2628 return 0; 2585 if (err == AOP_TRUNCATED_PAGE) 2629 if (err == AOP_TRUNCATED_PAGE) 2586 goto retry; 2630 goto retry; 2587 return err; 2631 return err; 2588 } 2632 } 2589 2633 2590 static inline bool pos_same_folio(loff_t pos1 2634 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2591 { 2635 { 2592 unsigned int shift = folio_shift(foli 2636 unsigned int shift = folio_shift(folio); 2593 2637 2594 return (pos1 >> shift == pos2 >> shif 2638 return (pos1 >> shift == pos2 >> shift); 2595 } 2639 } 2596 2640 2597 /** 2641 /** 2598 * filemap_read - Read data from the page cac 2642 * filemap_read - Read data from the page cache. 2599 * @iocb: The iocb to read. 2643 * @iocb: The iocb to read. 2600 * @iter: Destination for the data. 2644 * @iter: Destination for the data. 2601 * @already_read: Number of bytes already rea 2645 * @already_read: Number of bytes already read by the caller. 2602 * 2646 * 2603 * Copies data from the page cache. If the d 2647 * Copies data from the page cache. If the data is not currently present, 2604 * uses the readahead and read_folio address_ 2648 * uses the readahead and read_folio address_space operations to fetch it. 2605 * 2649 * 2606 * Return: Total number of bytes copied, incl 2650 * Return: Total number of bytes copied, including those already read by 2607 * the caller. If an error happens before an 2651 * the caller. If an error happens before any bytes are copied, returns 2608 * a negative error number. 2652 * a negative error number. 2609 */ 2653 */ 2610 ssize_t filemap_read(struct kiocb *iocb, stru 2654 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2611 ssize_t already_read) 2655 ssize_t already_read) 2612 { 2656 { 2613 struct file *filp = iocb->ki_filp; 2657 struct file *filp = iocb->ki_filp; 2614 struct file_ra_state *ra = &filp->f_r 2658 struct file_ra_state *ra = &filp->f_ra; 2615 struct address_space *mapping = filp- 2659 struct address_space *mapping = filp->f_mapping; 2616 struct inode *inode = mapping->host; 2660 struct inode *inode = mapping->host; 2617 struct folio_batch fbatch; 2661 struct folio_batch fbatch; 2618 int i, error = 0; 2662 int i, error = 0; 2619 bool writably_mapped; 2663 bool writably_mapped; 2620 loff_t isize, end_offset; 2664 loff_t isize, end_offset; 2621 loff_t last_pos = ra->prev_pos; << 2622 2665 2623 if (unlikely(iocb->ki_pos >= inode->i 2666 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2624 return 0; 2667 return 0; 2625 if (unlikely(!iov_iter_count(iter))) 2668 if (unlikely(!iov_iter_count(iter))) 2626 return 0; 2669 return 0; 2627 2670 2628 iov_iter_truncate(iter, inode->i_sb-> !! 2671 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2629 folio_batch_init(&fbatch); 2672 folio_batch_init(&fbatch); 2630 2673 2631 do { 2674 do { 2632 cond_resched(); 2675 cond_resched(); 2633 2676 2634 /* 2677 /* 2635 * If we've already successfu 2678 * If we've already successfully copied some data, then we 2636 * can no longer safely retur 2679 * can no longer safely return -EIOCBQUEUED. Hence mark 2637 * an async read NOWAIT at th 2680 * an async read NOWAIT at that point. 2638 */ 2681 */ 2639 if ((iocb->ki_flags & IOCB_WA 2682 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2640 iocb->ki_flags |= IOC 2683 iocb->ki_flags |= IOCB_NOWAIT; 2641 2684 2642 if (unlikely(iocb->ki_pos >= 2685 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2643 break; 2686 break; 2644 2687 2645 error = filemap_get_pages(ioc !! 2688 error = filemap_get_pages(iocb, iter, &fbatch); 2646 if (error < 0) 2689 if (error < 0) 2647 break; 2690 break; 2648 2691 2649 /* 2692 /* 2650 * i_size must be checked aft 2693 * i_size must be checked after we know the pages are Uptodate. 2651 * 2694 * 2652 * Checking i_size after the 2695 * Checking i_size after the check allows us to calculate 2653 * the correct value for "nr" 2696 * the correct value for "nr", which means the zero-filled 2654 * part of the page is not co 2697 * part of the page is not copied back to userspace (unless 2655 * another truncate extends t 2698 * another truncate extends the file - this is desired though). 2656 */ 2699 */ 2657 isize = i_size_read(inode); 2700 isize = i_size_read(inode); 2658 if (unlikely(iocb->ki_pos >= 2701 if (unlikely(iocb->ki_pos >= isize)) 2659 goto put_folios; 2702 goto put_folios; 2660 end_offset = min_t(loff_t, is 2703 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2661 2704 2662 /* 2705 /* 2663 * Once we start copying data 2706 * Once we start copying data, we don't want to be touching any 2664 * cachelines that might be c 2707 * cachelines that might be contended: 2665 */ 2708 */ 2666 writably_mapped = mapping_wri 2709 writably_mapped = mapping_writably_mapped(mapping); 2667 2710 2668 /* 2711 /* 2669 * When a read accesses the s 2712 * When a read accesses the same folio several times, only 2670 * mark it as accessed the fi 2713 * mark it as accessed the first time. 2671 */ 2714 */ 2672 if (!pos_same_folio(iocb->ki_ !! 2715 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2673 fbatch.fo !! 2716 fbatch.folios[0])) 2674 folio_mark_accessed(f 2717 folio_mark_accessed(fbatch.folios[0]); 2675 2718 2676 for (i = 0; i < folio_batch_c 2719 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2677 struct folio *folio = 2720 struct folio *folio = fbatch.folios[i]; 2678 size_t fsize = folio_ 2721 size_t fsize = folio_size(folio); 2679 size_t offset = iocb- 2722 size_t offset = iocb->ki_pos & (fsize - 1); 2680 size_t bytes = min_t( 2723 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2681 2724 fsize - offset); 2682 size_t copied; 2725 size_t copied; 2683 2726 2684 if (end_offset < foli 2727 if (end_offset < folio_pos(folio)) 2685 break; 2728 break; 2686 if (i > 0) 2729 if (i > 0) 2687 folio_mark_ac 2730 folio_mark_accessed(folio); 2688 /* 2731 /* 2689 * If users can be wr 2732 * If users can be writing to this folio using arbitrary 2690 * virtual addresses, 2733 * virtual addresses, take care of potential aliasing 2691 * before reading the 2734 * before reading the folio on the kernel side. 2692 */ 2735 */ 2693 if (writably_mapped) 2736 if (writably_mapped) 2694 flush_dcache_ 2737 flush_dcache_folio(folio); 2695 2738 2696 copied = copy_folio_t 2739 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2697 2740 2698 already_read += copie 2741 already_read += copied; 2699 iocb->ki_pos += copie 2742 iocb->ki_pos += copied; 2700 last_pos = iocb->ki_p !! 2743 ra->prev_pos = iocb->ki_pos; 2701 2744 2702 if (copied < bytes) { 2745 if (copied < bytes) { 2703 error = -EFAU 2746 error = -EFAULT; 2704 break; 2747 break; 2705 } 2748 } 2706 } 2749 } 2707 put_folios: 2750 put_folios: 2708 for (i = 0; i < folio_batch_c 2751 for (i = 0; i < folio_batch_count(&fbatch); i++) 2709 folio_put(fbatch.foli 2752 folio_put(fbatch.folios[i]); 2710 folio_batch_init(&fbatch); 2753 folio_batch_init(&fbatch); 2711 } while (iov_iter_count(iter) && iocb 2754 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2712 2755 2713 file_accessed(filp); 2756 file_accessed(filp); 2714 ra->prev_pos = last_pos; !! 2757 2715 return already_read ? already_read : 2758 return already_read ? already_read : error; 2716 } 2759 } 2717 EXPORT_SYMBOL_GPL(filemap_read); 2760 EXPORT_SYMBOL_GPL(filemap_read); 2718 2761 2719 int kiocb_write_and_wait(struct kiocb *iocb, << 2720 { << 2721 struct address_space *mapping = iocb- << 2722 loff_t pos = iocb->ki_pos; << 2723 loff_t end = pos + count - 1; << 2724 << 2725 if (iocb->ki_flags & IOCB_NOWAIT) { << 2726 if (filemap_range_needs_write << 2727 return -EAGAIN; << 2728 return 0; << 2729 } << 2730 << 2731 return filemap_write_and_wait_range(m << 2732 } << 2733 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); << 2734 << 2735 int filemap_invalidate_pages(struct address_s << 2736 loff_t pos, loff << 2737 { << 2738 int ret; << 2739 << 2740 if (nowait) { << 2741 /* we could block if there ar << 2742 if (filemap_range_has_page(ma << 2743 return -EAGAIN; << 2744 } else { << 2745 ret = filemap_write_and_wait_ << 2746 if (ret) << 2747 return ret; << 2748 } << 2749 << 2750 /* << 2751 * After a write we want buffered rea << 2752 * the new data. We invalidate clean << 2753 * about to write. We do this *befor << 2754 * without clobbering -EIOCBQUEUED fr << 2755 */ << 2756 return invalidate_inode_pages2_range( << 2757 << 2758 } << 2759 << 2760 int kiocb_invalidate_pages(struct kiocb *iocb << 2761 { << 2762 struct address_space *mapping = iocb- << 2763 << 2764 return filemap_invalidate_pages(mappi << 2765 iocb- << 2766 iocb- << 2767 } << 2768 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); << 2769 << 2770 /** 2762 /** 2771 * generic_file_read_iter - generic filesyste 2763 * generic_file_read_iter - generic filesystem read routine 2772 * @iocb: kernel I/O control block 2764 * @iocb: kernel I/O control block 2773 * @iter: destination for the data read 2765 * @iter: destination for the data read 2774 * 2766 * 2775 * This is the "read_iter()" routine for all 2767 * This is the "read_iter()" routine for all filesystems 2776 * that can use the page cache directly. 2768 * that can use the page cache directly. 2777 * 2769 * 2778 * The IOCB_NOWAIT flag in iocb->ki_flags ind 2770 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2779 * be returned when no data can be read witho 2771 * be returned when no data can be read without waiting for I/O requests 2780 * to complete; it doesn't prevent readahead. 2772 * to complete; it doesn't prevent readahead. 2781 * 2773 * 2782 * The IOCB_NOIO flag in iocb->ki_flags indic 2774 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2783 * requests shall be made for the read or for 2775 * requests shall be made for the read or for readahead. When no data 2784 * can be read, -EAGAIN shall be returned. W 2776 * can be read, -EAGAIN shall be returned. When readahead would be 2785 * triggered, a partial, possibly empty read 2777 * triggered, a partial, possibly empty read shall be returned. 2786 * 2778 * 2787 * Return: 2779 * Return: 2788 * * number of bytes copied, even for partial 2780 * * number of bytes copied, even for partial reads 2789 * * negative error code (or 0 if IOCB_NOIO) 2781 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2790 */ 2782 */ 2791 ssize_t 2783 ssize_t 2792 generic_file_read_iter(struct kiocb *iocb, st 2784 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2793 { 2785 { 2794 size_t count = iov_iter_count(iter); 2786 size_t count = iov_iter_count(iter); 2795 ssize_t retval = 0; 2787 ssize_t retval = 0; 2796 2788 2797 if (!count) 2789 if (!count) 2798 return 0; /* skip atime */ 2790 return 0; /* skip atime */ 2799 2791 2800 if (iocb->ki_flags & IOCB_DIRECT) { 2792 if (iocb->ki_flags & IOCB_DIRECT) { 2801 struct file *file = iocb->ki_ 2793 struct file *file = iocb->ki_filp; 2802 struct address_space *mapping 2794 struct address_space *mapping = file->f_mapping; 2803 struct inode *inode = mapping 2795 struct inode *inode = mapping->host; 2804 2796 2805 retval = kiocb_write_and_wait !! 2797 if (iocb->ki_flags & IOCB_NOWAIT) { 2806 if (retval < 0) !! 2798 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2807 return retval; !! 2799 iocb->ki_pos + count - 1)) >> 2800 return -EAGAIN; >> 2801 } else { >> 2802 retval = filemap_write_and_wait_range(mapping, >> 2803 iocb->ki_pos, >> 2804 iocb->ki_pos + count - 1); >> 2805 if (retval < 0) >> 2806 return retval; >> 2807 } >> 2808 2808 file_accessed(file); 2809 file_accessed(file); 2809 2810 2810 retval = mapping->a_ops->dire 2811 retval = mapping->a_ops->direct_IO(iocb, iter); 2811 if (retval >= 0) { 2812 if (retval >= 0) { 2812 iocb->ki_pos += retva 2813 iocb->ki_pos += retval; 2813 count -= retval; 2814 count -= retval; 2814 } 2815 } 2815 if (retval != -EIOCBQUEUED) 2816 if (retval != -EIOCBQUEUED) 2816 iov_iter_revert(iter, 2817 iov_iter_revert(iter, count - iov_iter_count(iter)); 2817 2818 2818 /* 2819 /* 2819 * Btrfs can have a short DIO 2820 * Btrfs can have a short DIO read if we encounter 2820 * compressed extents, so if 2821 * compressed extents, so if there was an error, or if 2821 * we've already read everyth 2822 * we've already read everything we wanted to, or if 2822 * there was a short read bec 2823 * there was a short read because we hit EOF, go ahead 2823 * and return. Otherwise fal 2824 * and return. Otherwise fallthrough to buffered io for 2824 * the rest of the read. Buf 2825 * the rest of the read. Buffered reads will not work for 2825 * DAX files, so don't bother 2826 * DAX files, so don't bother trying. 2826 */ 2827 */ 2827 if (retval < 0 || !count || I 2828 if (retval < 0 || !count || IS_DAX(inode)) 2828 return retval; 2829 return retval; 2829 if (iocb->ki_pos >= i_size_re 2830 if (iocb->ki_pos >= i_size_read(inode)) 2830 return retval; 2831 return retval; 2831 } 2832 } 2832 2833 2833 return filemap_read(iocb, iter, retva 2834 return filemap_read(iocb, iter, retval); 2834 } 2835 } 2835 EXPORT_SYMBOL(generic_file_read_iter); 2836 EXPORT_SYMBOL(generic_file_read_iter); 2836 2837 2837 /* << 2838 * Splice subpages from a folio into a pipe. << 2839 */ << 2840 size_t splice_folio_into_pipe(struct pipe_ino << 2841 struct folio *f << 2842 { << 2843 struct page *page; << 2844 size_t spliced = 0, offset = offset_i << 2845 << 2846 page = folio_page(folio, offset / PAG << 2847 size = min(size, folio_size(folio) - << 2848 offset %= PAGE_SIZE; << 2849 << 2850 while (spliced < size && << 2851 !pipe_full(pipe->head, pipe->t << 2852 struct pipe_buffer *buf = pip << 2853 size_t part = min_t(size_t, P << 2854 << 2855 *buf = (struct pipe_buffer) { << 2856 .ops = &page_cache << 2857 .page = page, << 2858 .offset = offset, << 2859 .len = part, << 2860 }; << 2861 folio_get(folio); << 2862 pipe->head++; << 2863 page++; << 2864 spliced += part; << 2865 offset = 0; << 2866 } << 2867 << 2868 return spliced; << 2869 } << 2870 << 2871 /** << 2872 * filemap_splice_read - Splice data from a << 2873 * @in: The file to read from << 2874 * @ppos: Pointer to the file position to rea << 2875 * @pipe: The pipe to splice into << 2876 * @len: The amount to splice << 2877 * @flags: The SPLICE_F_* flags << 2878 * << 2879 * This function gets folios from a file's pa << 2880 * pipe. Readahead will be called as necessa << 2881 * be used for blockdevs also. << 2882 * << 2883 * Return: On success, the number of bytes re << 2884 * will be updated if appropriate; 0 will be << 2885 * to be read; -EAGAIN will be returned if th << 2886 * other negative error code will be returned << 2887 * if the pipe has insufficient space, we rea << 2888 * hole. << 2889 */ << 2890 ssize_t filemap_splice_read(struct file *in, << 2891 struct pipe_inode << 2892 size_t len, unsig << 2893 { << 2894 struct folio_batch fbatch; << 2895 struct kiocb iocb; << 2896 size_t total_spliced = 0, used, npage << 2897 loff_t isize, end_offset; << 2898 bool writably_mapped; << 2899 int i, error = 0; << 2900 << 2901 if (unlikely(*ppos >= in->f_mapping-> << 2902 return 0; << 2903 << 2904 init_sync_kiocb(&iocb, in); << 2905 iocb.ki_pos = *ppos; << 2906 << 2907 /* Work out how much data we can actu << 2908 used = pipe_occupancy(pipe->head, pip << 2909 npages = max_t(ssize_t, pipe->max_usa << 2910 len = min_t(size_t, len, npages * PAG << 2911 << 2912 folio_batch_init(&fbatch); << 2913 << 2914 do { << 2915 cond_resched(); << 2916 << 2917 if (*ppos >= i_size_read(in-> << 2918 break; << 2919 << 2920 iocb.ki_pos = *ppos; << 2921 error = filemap_get_pages(&io << 2922 if (error < 0) << 2923 break; << 2924 << 2925 /* << 2926 * i_size must be checked aft << 2927 * << 2928 * Checking i_size after the << 2929 * the correct value for "nr" << 2930 * part of the page is not co << 2931 * another truncate extends t << 2932 */ << 2933 isize = i_size_read(in->f_map << 2934 if (unlikely(*ppos >= isize)) << 2935 break; << 2936 end_offset = min_t(loff_t, is << 2937 << 2938 /* << 2939 * Once we start copying data << 2940 * cachelines that might be c << 2941 */ << 2942 writably_mapped = mapping_wri << 2943 << 2944 for (i = 0; i < folio_batch_c << 2945 struct folio *folio = << 2946 size_t n; << 2947 << 2948 if (folio_pos(folio) << 2949 goto out; << 2950 folio_mark_accessed(f << 2951 << 2952 /* << 2953 * If users can be wr << 2954 * virtual addresses, << 2955 * before reading the << 2956 */ << 2957 if (writably_mapped) << 2958 flush_dcache_ << 2959 << 2960 n = min_t(loff_t, len << 2961 n = splice_folio_into << 2962 if (!n) << 2963 goto out; << 2964 len -= n; << 2965 total_spliced += n; << 2966 *ppos += n; << 2967 in->f_ra.prev_pos = * << 2968 if (pipe_full(pipe->h << 2969 goto out; << 2970 } << 2971 << 2972 folio_batch_release(&fbatch); << 2973 } while (len); << 2974 << 2975 out: << 2976 folio_batch_release(&fbatch); << 2977 file_accessed(in); << 2978 << 2979 return total_spliced ? total_spliced << 2980 } << 2981 EXPORT_SYMBOL(filemap_splice_read); << 2982 << 2983 static inline loff_t folio_seek_hole_data(str 2838 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2984 struct address_space *mapping 2839 struct address_space *mapping, struct folio *folio, 2985 loff_t start, loff_t end, boo 2840 loff_t start, loff_t end, bool seek_data) 2986 { 2841 { 2987 const struct address_space_operations 2842 const struct address_space_operations *ops = mapping->a_ops; 2988 size_t offset, bsz = i_blocksize(mapp 2843 size_t offset, bsz = i_blocksize(mapping->host); 2989 2844 2990 if (xa_is_value(folio) || folio_test_ 2845 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2991 return seek_data ? start : en 2846 return seek_data ? start : end; 2992 if (!ops->is_partially_uptodate) 2847 if (!ops->is_partially_uptodate) 2993 return seek_data ? end : star 2848 return seek_data ? end : start; 2994 2849 2995 xas_pause(xas); 2850 xas_pause(xas); 2996 rcu_read_unlock(); 2851 rcu_read_unlock(); 2997 folio_lock(folio); 2852 folio_lock(folio); 2998 if (unlikely(folio->mapping != mappin 2853 if (unlikely(folio->mapping != mapping)) 2999 goto unlock; 2854 goto unlock; 3000 2855 3001 offset = offset_in_folio(folio, start 2856 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3002 2857 3003 do { 2858 do { 3004 if (ops->is_partially_uptodat 2859 if (ops->is_partially_uptodate(folio, offset, bsz) == 3005 2860 seek_data) 3006 break; 2861 break; 3007 start = (start + bsz) & ~(bsz 2862 start = (start + bsz) & ~(bsz - 1); 3008 offset += bsz; 2863 offset += bsz; 3009 } while (offset < folio_size(folio)); 2864 } while (offset < folio_size(folio)); 3010 unlock: 2865 unlock: 3011 folio_unlock(folio); 2866 folio_unlock(folio); 3012 rcu_read_lock(); 2867 rcu_read_lock(); 3013 return start; 2868 return start; 3014 } 2869 } 3015 2870 3016 static inline size_t seek_folio_size(struct x 2871 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3017 { 2872 { 3018 if (xa_is_value(folio)) 2873 if (xa_is_value(folio)) 3019 return PAGE_SIZE << xas_get_o !! 2874 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 3020 return folio_size(folio); 2875 return folio_size(folio); 3021 } 2876 } 3022 2877 3023 /** 2878 /** 3024 * mapping_seek_hole_data - Seek for SEEK_DAT 2879 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3025 * @mapping: Address space to search. 2880 * @mapping: Address space to search. 3026 * @start: First byte to consider. 2881 * @start: First byte to consider. 3027 * @end: Limit of search (exclusive). 2882 * @end: Limit of search (exclusive). 3028 * @whence: Either SEEK_HOLE or SEEK_DATA. 2883 * @whence: Either SEEK_HOLE or SEEK_DATA. 3029 * 2884 * 3030 * If the page cache knows which blocks conta 2885 * If the page cache knows which blocks contain holes and which blocks 3031 * contain data, your filesystem can use this 2886 * contain data, your filesystem can use this function to implement 3032 * SEEK_HOLE and SEEK_DATA. This is useful f 2887 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3033 * entirely memory-based such as tmpfs, and f 2888 * entirely memory-based such as tmpfs, and filesystems which support 3034 * unwritten extents. 2889 * unwritten extents. 3035 * 2890 * 3036 * Return: The requested offset on success, o 2891 * Return: The requested offset on success, or -ENXIO if @whence specifies 3037 * SEEK_DATA and there is no data after @star 2892 * SEEK_DATA and there is no data after @start. There is an implicit hole 3038 * after @end - 1, so SEEK_HOLE returns @end 2893 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3039 * and @end contain data. 2894 * and @end contain data. 3040 */ 2895 */ 3041 loff_t mapping_seek_hole_data(struct address_ 2896 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3042 loff_t end, int whence) 2897 loff_t end, int whence) 3043 { 2898 { 3044 XA_STATE(xas, &mapping->i_pages, star 2899 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3045 pgoff_t max = (end - 1) >> PAGE_SHIFT 2900 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3046 bool seek_data = (whence == SEEK_DATA 2901 bool seek_data = (whence == SEEK_DATA); 3047 struct folio *folio; 2902 struct folio *folio; 3048 2903 3049 if (end <= start) 2904 if (end <= start) 3050 return -ENXIO; 2905 return -ENXIO; 3051 2906 3052 rcu_read_lock(); 2907 rcu_read_lock(); 3053 while ((folio = find_get_entry(&xas, 2908 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3054 loff_t pos = (u64)xas.xa_inde 2909 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3055 size_t seek_size; 2910 size_t seek_size; 3056 2911 3057 if (start < pos) { 2912 if (start < pos) { 3058 if (!seek_data) 2913 if (!seek_data) 3059 goto unlock; 2914 goto unlock; 3060 start = pos; 2915 start = pos; 3061 } 2916 } 3062 2917 3063 seek_size = seek_folio_size(& 2918 seek_size = seek_folio_size(&xas, folio); 3064 pos = round_up((u64)pos + 1, 2919 pos = round_up((u64)pos + 1, seek_size); 3065 start = folio_seek_hole_data( 2920 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3066 seek_data); 2921 seek_data); 3067 if (start < pos) 2922 if (start < pos) 3068 goto unlock; 2923 goto unlock; 3069 if (start >= end) 2924 if (start >= end) 3070 break; 2925 break; 3071 if (seek_size > PAGE_SIZE) 2926 if (seek_size > PAGE_SIZE) 3072 xas_set(&xas, pos >> 2927 xas_set(&xas, pos >> PAGE_SHIFT); 3073 if (!xa_is_value(folio)) 2928 if (!xa_is_value(folio)) 3074 folio_put(folio); 2929 folio_put(folio); 3075 } 2930 } 3076 if (seek_data) 2931 if (seek_data) 3077 start = -ENXIO; 2932 start = -ENXIO; 3078 unlock: 2933 unlock: 3079 rcu_read_unlock(); 2934 rcu_read_unlock(); 3080 if (folio && !xa_is_value(folio)) 2935 if (folio && !xa_is_value(folio)) 3081 folio_put(folio); 2936 folio_put(folio); 3082 if (start > end) 2937 if (start > end) 3083 return end; 2938 return end; 3084 return start; 2939 return start; 3085 } 2940 } 3086 2941 3087 #ifdef CONFIG_MMU 2942 #ifdef CONFIG_MMU 3088 #define MMAP_LOTSAMISS (100) 2943 #define MMAP_LOTSAMISS (100) 3089 /* 2944 /* 3090 * lock_folio_maybe_drop_mmap - lock the page 2945 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3091 * @vmf - the vm_fault for this fault. 2946 * @vmf - the vm_fault for this fault. 3092 * @folio - the folio to lock. 2947 * @folio - the folio to lock. 3093 * @fpin - the pointer to the file we may pin 2948 * @fpin - the pointer to the file we may pin (or is already pinned). 3094 * 2949 * 3095 * This works similar to lock_folio_or_retry 2950 * This works similar to lock_folio_or_retry in that it can drop the 3096 * mmap_lock. It differs in that it actually 2951 * mmap_lock. It differs in that it actually returns the folio locked 3097 * if it returns 1 and 0 if it couldn't lock 2952 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3098 * to drop the mmap_lock then fpin will point 2953 * to drop the mmap_lock then fpin will point to the pinned file and 3099 * needs to be fput()'ed at a later point. 2954 * needs to be fput()'ed at a later point. 3100 */ 2955 */ 3101 static int lock_folio_maybe_drop_mmap(struct 2956 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3102 struct f 2957 struct file **fpin) 3103 { 2958 { 3104 if (folio_trylock(folio)) 2959 if (folio_trylock(folio)) 3105 return 1; 2960 return 1; 3106 2961 3107 /* 2962 /* 3108 * NOTE! This will make us return wit 2963 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3109 * the fault lock still held. That's !! 2964 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3110 * is supposed to work. We have way t 2965 * is supposed to work. We have way too many special cases.. 3111 */ 2966 */ 3112 if (vmf->flags & FAULT_FLAG_RETRY_NOW 2967 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3113 return 0; 2968 return 0; 3114 2969 3115 *fpin = maybe_unlock_mmap_for_io(vmf, 2970 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3116 if (vmf->flags & FAULT_FLAG_KILLABLE) 2971 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3117 if (__folio_lock_killable(fol 2972 if (__folio_lock_killable(folio)) { 3118 /* 2973 /* 3119 * We didn't have the !! 2974 * We didn't have the right flags to drop the mmap_lock, 3120 * fault lock, but al !! 2975 * but all fault_handlers only check for fatal signals 3121 * for fatal signals !! 2976 * if we return VM_FAULT_RETRY, so we need to drop the 3122 * so we need to drop !! 2977 * mmap_lock here and return 0 if we don't have a fpin. 3123 * return 0 if we don << 3124 */ 2978 */ 3125 if (*fpin == NULL) 2979 if (*fpin == NULL) 3126 release_fault !! 2980 mmap_read_unlock(vmf->vma->vm_mm); 3127 return 0; 2981 return 0; 3128 } 2982 } 3129 } else 2983 } else 3130 __folio_lock(folio); 2984 __folio_lock(folio); 3131 2985 3132 return 1; 2986 return 1; 3133 } 2987 } 3134 2988 3135 /* 2989 /* 3136 * Synchronous readahead happens when we don' 2990 * Synchronous readahead happens when we don't even find a page in the page 3137 * cache at all. We don't want to perform IO 2991 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3138 * to drop the mmap sem we return the file th 2992 * to drop the mmap sem we return the file that was pinned in order for us to do 3139 * that. If we didn't pin a file then we ret 2993 * that. If we didn't pin a file then we return NULL. The file that is 3140 * returned needs to be fput()'ed when we're 2994 * returned needs to be fput()'ed when we're done with it. 3141 */ 2995 */ 3142 static struct file *do_sync_mmap_readahead(st 2996 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3143 { 2997 { 3144 struct file *file = vmf->vma->vm_file 2998 struct file *file = vmf->vma->vm_file; 3145 struct file_ra_state *ra = &file->f_r 2999 struct file_ra_state *ra = &file->f_ra; 3146 struct address_space *mapping = file- 3000 struct address_space *mapping = file->f_mapping; 3147 DEFINE_READAHEAD(ractl, file, ra, map 3001 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3148 struct file *fpin = NULL; 3002 struct file *fpin = NULL; 3149 unsigned long vm_flags = vmf->vma->vm 3003 unsigned long vm_flags = vmf->vma->vm_flags; 3150 unsigned int mmap_miss; 3004 unsigned int mmap_miss; 3151 3005 3152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3006 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3153 /* Use the readahead code, even if re 3007 /* Use the readahead code, even if readahead is disabled */ 3154 if ((vm_flags & VM_HUGEPAGE) && HPAGE !! 3008 if (vm_flags & VM_HUGEPAGE) { 3155 fpin = maybe_unlock_mmap_for_ 3009 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3156 ractl._index &= ~((unsigned l 3010 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3157 ra->size = HPAGE_PMD_NR; 3011 ra->size = HPAGE_PMD_NR; 3158 /* 3012 /* 3159 * Fetch two PMD folios, so w 3013 * Fetch two PMD folios, so we get the chance to actually 3160 * readahead, unless we've be 3014 * readahead, unless we've been told not to. 3161 */ 3015 */ 3162 if (!(vm_flags & VM_RAND_READ 3016 if (!(vm_flags & VM_RAND_READ)) 3163 ra->size *= 2; 3017 ra->size *= 2; 3164 ra->async_size = HPAGE_PMD_NR 3018 ra->async_size = HPAGE_PMD_NR; 3165 page_cache_ra_order(&ractl, r 3019 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3166 return fpin; 3020 return fpin; 3167 } 3021 } 3168 #endif 3022 #endif 3169 3023 3170 /* If we don't want any read-ahead, d 3024 /* If we don't want any read-ahead, don't bother */ 3171 if (vm_flags & VM_RAND_READ) 3025 if (vm_flags & VM_RAND_READ) 3172 return fpin; 3026 return fpin; 3173 if (!ra->ra_pages) 3027 if (!ra->ra_pages) 3174 return fpin; 3028 return fpin; 3175 3029 3176 if (vm_flags & VM_SEQ_READ) { 3030 if (vm_flags & VM_SEQ_READ) { 3177 fpin = maybe_unlock_mmap_for_ 3031 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3178 page_cache_sync_ra(&ractl, ra 3032 page_cache_sync_ra(&ractl, ra->ra_pages); 3179 return fpin; 3033 return fpin; 3180 } 3034 } 3181 3035 3182 /* Avoid banging the cache line if no 3036 /* Avoid banging the cache line if not needed */ 3183 mmap_miss = READ_ONCE(ra->mmap_miss); 3037 mmap_miss = READ_ONCE(ra->mmap_miss); 3184 if (mmap_miss < MMAP_LOTSAMISS * 10) 3038 if (mmap_miss < MMAP_LOTSAMISS * 10) 3185 WRITE_ONCE(ra->mmap_miss, ++m 3039 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3186 3040 3187 /* 3041 /* 3188 * Do we miss much more than hit in t 3042 * Do we miss much more than hit in this file? If so, 3189 * stop bothering with read-ahead. It 3043 * stop bothering with read-ahead. It will only hurt. 3190 */ 3044 */ 3191 if (mmap_miss > MMAP_LOTSAMISS) 3045 if (mmap_miss > MMAP_LOTSAMISS) 3192 return fpin; 3046 return fpin; 3193 3047 3194 /* 3048 /* 3195 * mmap read-around 3049 * mmap read-around 3196 */ 3050 */ 3197 fpin = maybe_unlock_mmap_for_io(vmf, 3051 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3198 ra->start = max_t(long, 0, vmf->pgoff 3052 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3199 ra->size = ra->ra_pages; 3053 ra->size = ra->ra_pages; 3200 ra->async_size = ra->ra_pages / 4; 3054 ra->async_size = ra->ra_pages / 4; 3201 ractl._index = ra->start; 3055 ractl._index = ra->start; 3202 page_cache_ra_order(&ractl, ra, 0); 3056 page_cache_ra_order(&ractl, ra, 0); 3203 return fpin; 3057 return fpin; 3204 } 3058 } 3205 3059 3206 /* 3060 /* 3207 * Asynchronous readahead happens when we fin 3061 * Asynchronous readahead happens when we find the page and PG_readahead, 3208 * so we want to possibly extend the readahea 3062 * so we want to possibly extend the readahead further. We return the file that 3209 * was pinned if we have to drop the mmap_loc 3063 * was pinned if we have to drop the mmap_lock in order to do IO. 3210 */ 3064 */ 3211 static struct file *do_async_mmap_readahead(s 3065 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3212 s 3066 struct folio *folio) 3213 { 3067 { 3214 struct file *file = vmf->vma->vm_file 3068 struct file *file = vmf->vma->vm_file; 3215 struct file_ra_state *ra = &file->f_r 3069 struct file_ra_state *ra = &file->f_ra; 3216 DEFINE_READAHEAD(ractl, file, ra, fil 3070 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3217 struct file *fpin = NULL; 3071 struct file *fpin = NULL; 3218 unsigned int mmap_miss; 3072 unsigned int mmap_miss; 3219 3073 3220 /* If we don't want any read-ahead, d 3074 /* If we don't want any read-ahead, don't bother */ 3221 if (vmf->vma->vm_flags & VM_RAND_READ 3075 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3222 return fpin; 3076 return fpin; 3223 3077 3224 mmap_miss = READ_ONCE(ra->mmap_miss); 3078 mmap_miss = READ_ONCE(ra->mmap_miss); 3225 if (mmap_miss) 3079 if (mmap_miss) 3226 WRITE_ONCE(ra->mmap_miss, --m 3080 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3227 3081 3228 if (folio_test_readahead(folio)) { 3082 if (folio_test_readahead(folio)) { 3229 fpin = maybe_unlock_mmap_for_ 3083 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3230 page_cache_async_ra(&ractl, f 3084 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3231 } 3085 } 3232 return fpin; 3086 return fpin; 3233 } 3087 } 3234 3088 3235 static vm_fault_t filemap_fault_recheck_pte_n << 3236 { << 3237 struct vm_area_struct *vma = vmf->vma << 3238 vm_fault_t ret = 0; << 3239 pte_t *ptep; << 3240 << 3241 /* << 3242 * We might have COW'ed a pagecache f << 3243 * anon folio mapped. The original pa << 3244 * might have been evicted. During a << 3245 * the PTE, such as done in do_numa_p << 3246 * temporarily clear the PTE under PT << 3247 * "none" when not holding the PT loc << 3248 * << 3249 * Not rechecking the PTE under PT lo << 3250 * major fault in an mlock'ed region. << 3251 * scenario while holding the PT lock << 3252 * scenarios. Recheck the PTE without << 3253 * the number of times we hold PT loc << 3254 */ << 3255 if (!(vma->vm_flags & VM_LOCKED)) << 3256 return 0; << 3257 << 3258 if (!(vmf->flags & FAULT_FLAG_ORIG_PT << 3259 return 0; << 3260 << 3261 ptep = pte_offset_map_nolock(vma->vm_ << 3262 &vmf->pt << 3263 if (unlikely(!ptep)) << 3264 return VM_FAULT_NOPAGE; << 3265 << 3266 if (unlikely(!pte_none(ptep_get_lockl << 3267 ret = VM_FAULT_NOPAGE; << 3268 } else { << 3269 spin_lock(vmf->ptl); << 3270 if (unlikely(!pte_none(ptep_g << 3271 ret = VM_FAULT_NOPAGE << 3272 spin_unlock(vmf->ptl); << 3273 } << 3274 pte_unmap(ptep); << 3275 return ret; << 3276 } << 3277 << 3278 /** 3089 /** 3279 * filemap_fault - read in file data for page 3090 * filemap_fault - read in file data for page fault handling 3280 * @vmf: struct vm_fault containing de 3091 * @vmf: struct vm_fault containing details of the fault 3281 * 3092 * 3282 * filemap_fault() is invoked via the vma ope 3093 * filemap_fault() is invoked via the vma operations vector for a 3283 * mapped memory region to read in file data 3094 * mapped memory region to read in file data during a page fault. 3284 * 3095 * 3285 * The goto's are kind of ugly, but this stre 3096 * The goto's are kind of ugly, but this streamlines the normal case of having 3286 * it in the page cache, and handles the spec 3097 * it in the page cache, and handles the special cases reasonably without 3287 * having a lot of duplicated code. 3098 * having a lot of duplicated code. 3288 * 3099 * 3289 * vma->vm_mm->mmap_lock must be held on entr 3100 * vma->vm_mm->mmap_lock must be held on entry. 3290 * 3101 * 3291 * If our return value has VM_FAULT_RETRY set 3102 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3292 * may be dropped before doing I/O or by lock 3103 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3293 * 3104 * 3294 * If our return value does not have VM_FAULT 3105 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3295 * has not been released. 3106 * has not been released. 3296 * 3107 * 3297 * We never return with VM_FAULT_RETRY and a 3108 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3298 * 3109 * 3299 * Return: bitwise-OR of %VM_FAULT_ codes. 3110 * Return: bitwise-OR of %VM_FAULT_ codes. 3300 */ 3111 */ 3301 vm_fault_t filemap_fault(struct vm_fault *vmf 3112 vm_fault_t filemap_fault(struct vm_fault *vmf) 3302 { 3113 { 3303 int error; 3114 int error; 3304 struct file *file = vmf->vma->vm_file 3115 struct file *file = vmf->vma->vm_file; 3305 struct file *fpin = NULL; 3116 struct file *fpin = NULL; 3306 struct address_space *mapping = file- 3117 struct address_space *mapping = file->f_mapping; 3307 struct inode *inode = mapping->host; 3118 struct inode *inode = mapping->host; 3308 pgoff_t max_idx, index = vmf->pgoff; 3119 pgoff_t max_idx, index = vmf->pgoff; 3309 struct folio *folio; 3120 struct folio *folio; 3310 vm_fault_t ret = 0; 3121 vm_fault_t ret = 0; 3311 bool mapping_locked = false; 3122 bool mapping_locked = false; 3312 3123 3313 max_idx = DIV_ROUND_UP(i_size_read(in 3124 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3314 if (unlikely(index >= max_idx)) 3125 if (unlikely(index >= max_idx)) 3315 return VM_FAULT_SIGBUS; 3126 return VM_FAULT_SIGBUS; 3316 3127 3317 trace_mm_filemap_fault(mapping, index << 3318 << 3319 /* 3128 /* 3320 * Do we have something in the page c 3129 * Do we have something in the page cache already? 3321 */ 3130 */ 3322 folio = filemap_get_folio(mapping, in 3131 folio = filemap_get_folio(mapping, index); 3323 if (likely(!IS_ERR(folio))) { !! 3132 if (likely(folio)) { 3324 /* 3133 /* 3325 * We found the page, so try 3134 * We found the page, so try async readahead before waiting for 3326 * the lock. 3135 * the lock. 3327 */ 3136 */ 3328 if (!(vmf->flags & FAULT_FLAG 3137 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3329 fpin = do_async_mmap_ 3138 fpin = do_async_mmap_readahead(vmf, folio); 3330 if (unlikely(!folio_test_upto 3139 if (unlikely(!folio_test_uptodate(folio))) { 3331 filemap_invalidate_lo 3140 filemap_invalidate_lock_shared(mapping); 3332 mapping_locked = true 3141 mapping_locked = true; 3333 } 3142 } 3334 } else { 3143 } else { 3335 ret = filemap_fault_recheck_p << 3336 if (unlikely(ret)) << 3337 return ret; << 3338 << 3339 /* No page in the page cache 3144 /* No page in the page cache at all */ 3340 count_vm_event(PGMAJFAULT); 3145 count_vm_event(PGMAJFAULT); 3341 count_memcg_event_mm(vmf->vma 3146 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3342 ret = VM_FAULT_MAJOR; 3147 ret = VM_FAULT_MAJOR; 3343 fpin = do_sync_mmap_readahead 3148 fpin = do_sync_mmap_readahead(vmf); 3344 retry_find: 3149 retry_find: 3345 /* 3150 /* 3346 * See comment in filemap_cre 3151 * See comment in filemap_create_folio() why we need 3347 * invalidate_lock 3152 * invalidate_lock 3348 */ 3153 */ 3349 if (!mapping_locked) { 3154 if (!mapping_locked) { 3350 filemap_invalidate_lo 3155 filemap_invalidate_lock_shared(mapping); 3351 mapping_locked = true 3156 mapping_locked = true; 3352 } 3157 } 3353 folio = __filemap_get_folio(m 3158 folio = __filemap_get_folio(mapping, index, 3354 FGP 3159 FGP_CREAT|FGP_FOR_MMAP, 3355 vmf 3160 vmf->gfp_mask); 3356 if (IS_ERR(folio)) { !! 3161 if (!folio) { 3357 if (fpin) 3162 if (fpin) 3358 goto out_retr 3163 goto out_retry; 3359 filemap_invalidate_un 3164 filemap_invalidate_unlock_shared(mapping); 3360 return VM_FAULT_OOM; 3165 return VM_FAULT_OOM; 3361 } 3166 } 3362 } 3167 } 3363 3168 3364 if (!lock_folio_maybe_drop_mmap(vmf, 3169 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3365 goto out_retry; 3170 goto out_retry; 3366 3171 3367 /* Did it get truncated? */ 3172 /* Did it get truncated? */ 3368 if (unlikely(folio->mapping != mappin 3173 if (unlikely(folio->mapping != mapping)) { 3369 folio_unlock(folio); 3174 folio_unlock(folio); 3370 folio_put(folio); 3175 folio_put(folio); 3371 goto retry_find; 3176 goto retry_find; 3372 } 3177 } 3373 VM_BUG_ON_FOLIO(!folio_contains(folio 3178 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3374 3179 3375 /* 3180 /* 3376 * We have a locked folio in the page !! 3181 * We have a locked page in the page cache, now we need to check 3377 * that it's up-to-date. If not, it i !! 3182 * that it's up-to-date. If not, it is going to be due to an error. 3378 * or because readahead was otherwise << 3379 */ 3183 */ 3380 if (unlikely(!folio_test_uptodate(fol 3184 if (unlikely(!folio_test_uptodate(folio))) { 3381 /* 3185 /* 3382 * If the invalidate lock is !! 3186 * The page was in cache and uptodate and now it is not. 3383 * and uptodate and now it is !! 3187 * Strange but possible since we didn't hold the page lock all 3384 * didn't hold the page lock !! 3188 * the time. Let's drop everything get the invalidate lock and 3385 * everything, get the invali !! 3189 * try again. 3386 */ 3190 */ 3387 if (!mapping_locked) { 3191 if (!mapping_locked) { 3388 folio_unlock(folio); 3192 folio_unlock(folio); 3389 folio_put(folio); 3193 folio_put(folio); 3390 goto retry_find; 3194 goto retry_find; 3391 } 3195 } 3392 << 3393 /* << 3394 * OK, the folio is really no << 3395 * VMA has the VM_RAND_READ f << 3396 * arose. Let's read it in di << 3397 */ << 3398 goto page_not_uptodate; 3196 goto page_not_uptodate; 3399 } 3197 } 3400 3198 3401 /* 3199 /* 3402 * We've made it this far and we had 3200 * We've made it this far and we had to drop our mmap_lock, now is the 3403 * time to return to the upper layer 3201 * time to return to the upper layer and have it re-find the vma and 3404 * redo the fault. 3202 * redo the fault. 3405 */ 3203 */ 3406 if (fpin) { 3204 if (fpin) { 3407 folio_unlock(folio); 3205 folio_unlock(folio); 3408 goto out_retry; 3206 goto out_retry; 3409 } 3207 } 3410 if (mapping_locked) 3208 if (mapping_locked) 3411 filemap_invalidate_unlock_sha 3209 filemap_invalidate_unlock_shared(mapping); 3412 3210 3413 /* 3211 /* 3414 * Found the page and have a referenc 3212 * Found the page and have a reference on it. 3415 * We must recheck i_size under page 3213 * We must recheck i_size under page lock. 3416 */ 3214 */ 3417 max_idx = DIV_ROUND_UP(i_size_read(in 3215 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3418 if (unlikely(index >= max_idx)) { 3216 if (unlikely(index >= max_idx)) { 3419 folio_unlock(folio); 3217 folio_unlock(folio); 3420 folio_put(folio); 3218 folio_put(folio); 3421 return VM_FAULT_SIGBUS; 3219 return VM_FAULT_SIGBUS; 3422 } 3220 } 3423 3221 3424 vmf->page = folio_file_page(folio, in 3222 vmf->page = folio_file_page(folio, index); 3425 return ret | VM_FAULT_LOCKED; 3223 return ret | VM_FAULT_LOCKED; 3426 3224 3427 page_not_uptodate: 3225 page_not_uptodate: 3428 /* 3226 /* 3429 * Umm, take care of errors if the pa 3227 * Umm, take care of errors if the page isn't up-to-date. 3430 * Try to re-read it _once_. We do th 3228 * Try to re-read it _once_. We do this synchronously, 3431 * because there really aren't any pe 3229 * because there really aren't any performance issues here 3432 * and we need to check for errors. 3230 * and we need to check for errors. 3433 */ 3231 */ 3434 fpin = maybe_unlock_mmap_for_io(vmf, 3232 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3435 error = filemap_read_folio(file, mapp !! 3233 error = filemap_read_folio(file, mapping, folio); 3436 if (fpin) 3234 if (fpin) 3437 goto out_retry; 3235 goto out_retry; 3438 folio_put(folio); 3236 folio_put(folio); 3439 3237 3440 if (!error || error == AOP_TRUNCATED_ 3238 if (!error || error == AOP_TRUNCATED_PAGE) 3441 goto retry_find; 3239 goto retry_find; 3442 filemap_invalidate_unlock_shared(mapp 3240 filemap_invalidate_unlock_shared(mapping); 3443 3241 3444 return VM_FAULT_SIGBUS; 3242 return VM_FAULT_SIGBUS; 3445 3243 3446 out_retry: 3244 out_retry: 3447 /* 3245 /* 3448 * We dropped the mmap_lock, we need 3246 * We dropped the mmap_lock, we need to return to the fault handler to 3449 * re-find the vma and come back and 3247 * re-find the vma and come back and find our hopefully still populated 3450 * page. 3248 * page. 3451 */ 3249 */ 3452 if (!IS_ERR(folio)) !! 3250 if (folio) 3453 folio_put(folio); 3251 folio_put(folio); 3454 if (mapping_locked) 3252 if (mapping_locked) 3455 filemap_invalidate_unlock_sha 3253 filemap_invalidate_unlock_shared(mapping); 3456 if (fpin) 3254 if (fpin) 3457 fput(fpin); 3255 fput(fpin); 3458 return ret | VM_FAULT_RETRY; 3256 return ret | VM_FAULT_RETRY; 3459 } 3257 } 3460 EXPORT_SYMBOL(filemap_fault); 3258 EXPORT_SYMBOL(filemap_fault); 3461 3259 3462 static bool filemap_map_pmd(struct vm_fault * !! 3260 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3463 pgoff_t start) << 3464 { 3261 { 3465 struct mm_struct *mm = vmf->vma->vm_m 3262 struct mm_struct *mm = vmf->vma->vm_mm; 3466 3263 3467 /* Huge page is mapped? No need to pr 3264 /* Huge page is mapped? No need to proceed. */ 3468 if (pmd_trans_huge(*vmf->pmd)) { 3265 if (pmd_trans_huge(*vmf->pmd)) { 3469 folio_unlock(folio); !! 3266 unlock_page(page); 3470 folio_put(folio); !! 3267 put_page(page); 3471 return true; 3268 return true; 3472 } 3269 } 3473 3270 3474 if (pmd_none(*vmf->pmd) && folio_test !! 3271 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3475 struct page *page = folio_fil << 3476 vm_fault_t ret = do_set_pmd(v 3272 vm_fault_t ret = do_set_pmd(vmf, page); 3477 if (!ret) { 3273 if (!ret) { 3478 /* The page is mapped 3274 /* The page is mapped successfully, reference consumed. */ 3479 folio_unlock(folio); !! 3275 unlock_page(page); 3480 return true; 3276 return true; 3481 } 3277 } 3482 } 3278 } 3483 3279 3484 if (pmd_none(*vmf->pmd) && vmf->preal !! 3280 if (pmd_none(*vmf->pmd)) 3485 pmd_install(mm, vmf->pmd, &vm 3281 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3486 3282 >> 3283 /* See comment in handle_pte_fault() */ >> 3284 if (pmd_devmap_trans_unstable(vmf->pmd)) { >> 3285 unlock_page(page); >> 3286 put_page(page); >> 3287 return true; >> 3288 } >> 3289 3487 return false; 3290 return false; 3488 } 3291 } 3489 3292 3490 static struct folio *next_uptodate_folio(stru !! 3293 static struct folio *next_uptodate_page(struct folio *folio, 3491 struct address_space *mapping !! 3294 struct address_space *mapping, >> 3295 struct xa_state *xas, pgoff_t end_pgoff) 3492 { 3296 { 3493 struct folio *folio = xas_next_entry( << 3494 unsigned long max_idx; 3297 unsigned long max_idx; 3495 3298 3496 do { 3299 do { 3497 if (!folio) 3300 if (!folio) 3498 return NULL; 3301 return NULL; 3499 if (xas_retry(xas, folio)) 3302 if (xas_retry(xas, folio)) 3500 continue; 3303 continue; 3501 if (xa_is_value(folio)) 3304 if (xa_is_value(folio)) 3502 continue; 3305 continue; 3503 if (folio_test_locked(folio)) 3306 if (folio_test_locked(folio)) 3504 continue; 3307 continue; 3505 if (!folio_try_get(folio)) !! 3308 if (!folio_try_get_rcu(folio)) 3506 continue; 3309 continue; 3507 /* Has the page moved or been 3310 /* Has the page moved or been split? */ 3508 if (unlikely(folio != xas_rel 3311 if (unlikely(folio != xas_reload(xas))) 3509 goto skip; 3312 goto skip; 3510 if (!folio_test_uptodate(foli 3313 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3511 goto skip; 3314 goto skip; 3512 if (!folio_trylock(folio)) 3315 if (!folio_trylock(folio)) 3513 goto skip; 3316 goto skip; 3514 if (folio->mapping != mapping 3317 if (folio->mapping != mapping) 3515 goto unlock; 3318 goto unlock; 3516 if (!folio_test_uptodate(foli 3319 if (!folio_test_uptodate(folio)) 3517 goto unlock; 3320 goto unlock; 3518 max_idx = DIV_ROUND_UP(i_size 3321 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3519 if (xas->xa_index >= max_idx) 3322 if (xas->xa_index >= max_idx) 3520 goto unlock; 3323 goto unlock; 3521 return folio; 3324 return folio; 3522 unlock: 3325 unlock: 3523 folio_unlock(folio); 3326 folio_unlock(folio); 3524 skip: 3327 skip: 3525 folio_put(folio); 3328 folio_put(folio); 3526 } while ((folio = xas_next_entry(xas, 3329 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3527 3330 3528 return NULL; 3331 return NULL; 3529 } 3332 } 3530 3333 3531 /* !! 3334 static inline struct folio *first_map_page(struct address_space *mapping, 3532 * Map page range [start_page, start_page + n !! 3335 struct xa_state *xas, 3533 * start_page is gotten from start by folio_p !! 3336 pgoff_t end_pgoff) 3534 */ << 3535 static vm_fault_t filemap_map_folio_range(str << 3536 struct folio *folio, << 3537 unsigned long addr, u << 3538 unsigned long *rss, u << 3539 { 3337 { 3540 vm_fault_t ret = 0; !! 3338 return next_uptodate_page(xas_find(xas, end_pgoff), 3541 struct page *page = folio_page(folio, !! 3339 mapping, xas, end_pgoff); 3542 unsigned int count = 0; << 3543 pte_t *old_ptep = vmf->pte; << 3544 << 3545 do { << 3546 if (PageHWPoison(page + count << 3547 goto skip; << 3548 << 3549 /* << 3550 * If there are too many foli << 3551 * in a file, they will proba << 3552 * In such situation, read-ah << 3553 * Don't decrease mmap_miss i << 3554 * we can stop read-ahead. << 3555 */ << 3556 if (!folio_test_workingset(fo << 3557 (*mmap_miss)++; << 3558 << 3559 /* << 3560 * NOTE: If there're PTE mark << 3561 * handled in the specific fa << 3562 * fault-around logic. << 3563 */ << 3564 if (!pte_none(ptep_get(&vmf-> << 3565 goto skip; << 3566 << 3567 count++; << 3568 continue; << 3569 skip: << 3570 if (count) { << 3571 set_pte_range(vmf, fo << 3572 *rss += count; << 3573 folio_ref_add(folio, << 3574 if (in_range(vmf->add << 3575 ret = VM_FAUL << 3576 } << 3577 << 3578 count++; << 3579 page += count; << 3580 vmf->pte += count; << 3581 addr += count * PAGE_SIZE; << 3582 count = 0; << 3583 } while (--nr_pages > 0); << 3584 << 3585 if (count) { << 3586 set_pte_range(vmf, folio, pag << 3587 *rss += count; << 3588 folio_ref_add(folio, count); << 3589 if (in_range(vmf->address, ad << 3590 ret = VM_FAULT_NOPAGE << 3591 } << 3592 << 3593 vmf->pte = old_ptep; << 3594 << 3595 return ret; << 3596 } 3340 } 3597 3341 3598 static vm_fault_t filemap_map_order0_folio(st !! 3342 static inline struct folio *next_map_page(struct address_space *mapping, 3599 struct folio *folio, unsigned !! 3343 struct xa_state *xas, 3600 unsigned long *rss, unsigned !! 3344 pgoff_t end_pgoff) 3601 { 3345 { 3602 vm_fault_t ret = 0; !! 3346 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3603 struct page *page = &folio->page; !! 3347 mapping, xas, end_pgoff); 3604 << 3605 if (PageHWPoison(page)) << 3606 return ret; << 3607 << 3608 /* See comment of filemap_map_folio_r << 3609 if (!folio_test_workingset(folio)) << 3610 (*mmap_miss)++; << 3611 << 3612 /* << 3613 * NOTE: If there're PTE markers, we' << 3614 * handled in the specific fault path << 3615 * the fault-around logic. << 3616 */ << 3617 if (!pte_none(ptep_get(vmf->pte))) << 3618 return ret; << 3619 << 3620 if (vmf->address == addr) << 3621 ret = VM_FAULT_NOPAGE; << 3622 << 3623 set_pte_range(vmf, folio, page, 1, ad << 3624 (*rss)++; << 3625 folio_ref_inc(folio); << 3626 << 3627 return ret; << 3628 } 3348 } 3629 3349 3630 vm_fault_t filemap_map_pages(struct vm_fault 3350 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3631 pgoff_t start_pg 3351 pgoff_t start_pgoff, pgoff_t end_pgoff) 3632 { 3352 { 3633 struct vm_area_struct *vma = vmf->vma 3353 struct vm_area_struct *vma = vmf->vma; 3634 struct file *file = vma->vm_file; 3354 struct file *file = vma->vm_file; 3635 struct address_space *mapping = file- 3355 struct address_space *mapping = file->f_mapping; 3636 pgoff_t file_end, last_pgoff = start_ !! 3356 pgoff_t last_pgoff = start_pgoff; 3637 unsigned long addr; 3357 unsigned long addr; 3638 XA_STATE(xas, &mapping->i_pages, star 3358 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3639 struct folio *folio; 3359 struct folio *folio; >> 3360 struct page *page; >> 3361 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3640 vm_fault_t ret = 0; 3362 vm_fault_t ret = 0; 3641 unsigned long rss = 0; << 3642 unsigned int nr_pages = 0, mmap_miss << 3643 3363 3644 rcu_read_lock(); 3364 rcu_read_lock(); 3645 folio = next_uptodate_folio(&xas, map !! 3365 folio = first_map_page(mapping, &xas, end_pgoff); 3646 if (!folio) 3366 if (!folio) 3647 goto out; 3367 goto out; 3648 3368 3649 if (filemap_map_pmd(vmf, folio, start !! 3369 if (filemap_map_pmd(vmf, &folio->page)) { 3650 ret = VM_FAULT_NOPAGE; 3370 ret = VM_FAULT_NOPAGE; 3651 goto out; 3371 goto out; 3652 } 3372 } 3653 3373 3654 addr = vma->vm_start + ((start_pgoff 3374 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3655 vmf->pte = pte_offset_map_lock(vma->v 3375 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3656 if (!vmf->pte) { << 3657 folio_unlock(folio); << 3658 folio_put(folio); << 3659 goto out; << 3660 } << 3661 << 3662 file_end = DIV_ROUND_UP(i_size_read(m << 3663 if (end_pgoff > file_end) << 3664 end_pgoff = file_end; << 3665 << 3666 folio_type = mm_counter_file(folio); << 3667 do { 3376 do { 3668 unsigned long end; !! 3377 again: >> 3378 page = folio_file_page(folio, xas.xa_index); >> 3379 if (PageHWPoison(page)) >> 3380 goto unlock; >> 3381 >> 3382 if (mmap_miss > 0) >> 3383 mmap_miss--; 3669 3384 3670 addr += (xas.xa_index - last_ 3385 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3671 vmf->pte += xas.xa_index - la 3386 vmf->pte += xas.xa_index - last_pgoff; 3672 last_pgoff = xas.xa_index; 3387 last_pgoff = xas.xa_index; 3673 end = folio_next_index(folio) << 3674 nr_pages = min(end, end_pgoff << 3675 3388 3676 if (!folio_test_large(folio)) !! 3389 /* 3677 ret |= filemap_map_or !! 3390 * NOTE: If there're PTE markers, we'll leave them to be 3678 folio !! 3391 * handled in the specific fault path, and it'll prohibit the 3679 else !! 3392 * fault-around logic. 3680 ret |= filemap_map_fo !! 3393 */ 3681 xas.x !! 3394 if (!pte_none(*vmf->pte)) 3682 nr_pa !! 3395 goto unlock; 3683 3396 >> 3397 /* We're about to handle the fault */ >> 3398 if (vmf->address == addr) >> 3399 ret = VM_FAULT_NOPAGE; >> 3400 >> 3401 do_set_pte(vmf, page, addr); >> 3402 /* no need to invalidate: a not-present page won't be cached */ >> 3403 update_mmu_cache(vma, addr, vmf->pte); >> 3404 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { >> 3405 xas.xa_index++; >> 3406 folio_ref_inc(folio); >> 3407 goto again; >> 3408 } >> 3409 folio_unlock(folio); >> 3410 continue; >> 3411 unlock: >> 3412 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { >> 3413 xas.xa_index++; >> 3414 goto again; >> 3415 } 3684 folio_unlock(folio); 3416 folio_unlock(folio); 3685 folio_put(folio); 3417 folio_put(folio); 3686 } while ((folio = next_uptodate_folio !! 3418 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3687 add_mm_counter(vma->vm_mm, folio_type << 3688 pte_unmap_unlock(vmf->pte, vmf->ptl); 3419 pte_unmap_unlock(vmf->pte, vmf->ptl); 3689 trace_mm_filemap_map_pages(mapping, s << 3690 out: 3420 out: 3691 rcu_read_unlock(); 3421 rcu_read_unlock(); 3692 !! 3422 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3693 mmap_miss_saved = READ_ONCE(file->f_r << 3694 if (mmap_miss >= mmap_miss_saved) << 3695 WRITE_ONCE(file->f_ra.mmap_mi << 3696 else << 3697 WRITE_ONCE(file->f_ra.mmap_mi << 3698 << 3699 return ret; 3423 return ret; 3700 } 3424 } 3701 EXPORT_SYMBOL(filemap_map_pages); 3425 EXPORT_SYMBOL(filemap_map_pages); 3702 3426 3703 vm_fault_t filemap_page_mkwrite(struct vm_fau 3427 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3704 { 3428 { 3705 struct address_space *mapping = vmf-> 3429 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3706 struct folio *folio = page_folio(vmf- 3430 struct folio *folio = page_folio(vmf->page); 3707 vm_fault_t ret = VM_FAULT_LOCKED; 3431 vm_fault_t ret = VM_FAULT_LOCKED; 3708 3432 3709 sb_start_pagefault(mapping->host->i_s 3433 sb_start_pagefault(mapping->host->i_sb); 3710 file_update_time(vmf->vma->vm_file); 3434 file_update_time(vmf->vma->vm_file); 3711 folio_lock(folio); 3435 folio_lock(folio); 3712 if (folio->mapping != mapping) { 3436 if (folio->mapping != mapping) { 3713 folio_unlock(folio); 3437 folio_unlock(folio); 3714 ret = VM_FAULT_NOPAGE; 3438 ret = VM_FAULT_NOPAGE; 3715 goto out; 3439 goto out; 3716 } 3440 } 3717 /* 3441 /* 3718 * We mark the folio dirty already he 3442 * We mark the folio dirty already here so that when freeze is in 3719 * progress, we are guaranteed that w 3443 * progress, we are guaranteed that writeback during freezing will 3720 * see the dirty folio and writeprote 3444 * see the dirty folio and writeprotect it again. 3721 */ 3445 */ 3722 folio_mark_dirty(folio); 3446 folio_mark_dirty(folio); 3723 folio_wait_stable(folio); 3447 folio_wait_stable(folio); 3724 out: 3448 out: 3725 sb_end_pagefault(mapping->host->i_sb) 3449 sb_end_pagefault(mapping->host->i_sb); 3726 return ret; 3450 return ret; 3727 } 3451 } 3728 3452 3729 const struct vm_operations_struct generic_fil 3453 const struct vm_operations_struct generic_file_vm_ops = { 3730 .fault = filemap_fault, 3454 .fault = filemap_fault, 3731 .map_pages = filemap_map_pages, 3455 .map_pages = filemap_map_pages, 3732 .page_mkwrite = filemap_page_mkwrit 3456 .page_mkwrite = filemap_page_mkwrite, 3733 }; 3457 }; 3734 3458 3735 /* This is used for a general mmap of a disk 3459 /* This is used for a general mmap of a disk file */ 3736 3460 3737 int generic_file_mmap(struct file *file, stru 3461 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3738 { 3462 { 3739 struct address_space *mapping = file- 3463 struct address_space *mapping = file->f_mapping; 3740 3464 3741 if (!mapping->a_ops->read_folio) 3465 if (!mapping->a_ops->read_folio) 3742 return -ENOEXEC; 3466 return -ENOEXEC; 3743 file_accessed(file); 3467 file_accessed(file); 3744 vma->vm_ops = &generic_file_vm_ops; 3468 vma->vm_ops = &generic_file_vm_ops; 3745 return 0; 3469 return 0; 3746 } 3470 } 3747 3471 3748 /* 3472 /* 3749 * This is for filesystems which do not imple 3473 * This is for filesystems which do not implement ->writepage. 3750 */ 3474 */ 3751 int generic_file_readonly_mmap(struct file *f 3475 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3752 { 3476 { 3753 if (vma_is_shared_maywrite(vma)) !! 3477 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3754 return -EINVAL; 3478 return -EINVAL; 3755 return generic_file_mmap(file, vma); 3479 return generic_file_mmap(file, vma); 3756 } 3480 } 3757 #else 3481 #else 3758 vm_fault_t filemap_page_mkwrite(struct vm_fau 3482 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3759 { 3483 { 3760 return VM_FAULT_SIGBUS; 3484 return VM_FAULT_SIGBUS; 3761 } 3485 } 3762 int generic_file_mmap(struct file *file, stru 3486 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3763 { 3487 { 3764 return -ENOSYS; 3488 return -ENOSYS; 3765 } 3489 } 3766 int generic_file_readonly_mmap(struct file *f 3490 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3767 { 3491 { 3768 return -ENOSYS; 3492 return -ENOSYS; 3769 } 3493 } 3770 #endif /* CONFIG_MMU */ 3494 #endif /* CONFIG_MMU */ 3771 3495 3772 EXPORT_SYMBOL(filemap_page_mkwrite); 3496 EXPORT_SYMBOL(filemap_page_mkwrite); 3773 EXPORT_SYMBOL(generic_file_mmap); 3497 EXPORT_SYMBOL(generic_file_mmap); 3774 EXPORT_SYMBOL(generic_file_readonly_mmap); 3498 EXPORT_SYMBOL(generic_file_readonly_mmap); 3775 3499 3776 static struct folio *do_read_cache_folio(stru 3500 static struct folio *do_read_cache_folio(struct address_space *mapping, 3777 pgoff_t index, filler_t fille 3501 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3778 { 3502 { 3779 struct folio *folio; 3503 struct folio *folio; 3780 int err; 3504 int err; 3781 3505 3782 if (!filler) 3506 if (!filler) 3783 filler = mapping->a_ops->read 3507 filler = mapping->a_ops->read_folio; 3784 repeat: 3508 repeat: 3785 folio = filemap_get_folio(mapping, in 3509 folio = filemap_get_folio(mapping, index); 3786 if (IS_ERR(folio)) { !! 3510 if (!folio) { 3787 folio = filemap_alloc_folio(g !! 3511 folio = filemap_alloc_folio(gfp, 0); 3788 m << 3789 if (!folio) 3512 if (!folio) 3790 return ERR_PTR(-ENOME 3513 return ERR_PTR(-ENOMEM); 3791 index = mapping_align_index(m << 3792 err = filemap_add_folio(mappi 3514 err = filemap_add_folio(mapping, folio, index, gfp); 3793 if (unlikely(err)) { 3515 if (unlikely(err)) { 3794 folio_put(folio); 3516 folio_put(folio); 3795 if (err == -EEXIST) 3517 if (err == -EEXIST) 3796 goto repeat; 3518 goto repeat; 3797 /* Presumably ENOMEM 3519 /* Presumably ENOMEM for xarray node */ 3798 return ERR_PTR(err); 3520 return ERR_PTR(err); 3799 } 3521 } 3800 3522 3801 goto filler; !! 3523 filler: >> 3524 err = filler(file, folio); >> 3525 if (err < 0) { >> 3526 folio_put(folio); >> 3527 return ERR_PTR(err); >> 3528 } >> 3529 >> 3530 folio_wait_locked(folio); >> 3531 if (!folio_test_uptodate(folio)) { >> 3532 folio_put(folio); >> 3533 return ERR_PTR(-EIO); >> 3534 } >> 3535 >> 3536 goto out; 3802 } 3537 } 3803 if (folio_test_uptodate(folio)) 3538 if (folio_test_uptodate(folio)) 3804 goto out; 3539 goto out; 3805 3540 3806 if (!folio_trylock(folio)) { 3541 if (!folio_trylock(folio)) { 3807 folio_put_wait_locked(folio, 3542 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3808 goto repeat; 3543 goto repeat; 3809 } 3544 } 3810 3545 3811 /* Folio was truncated from mapping * 3546 /* Folio was truncated from mapping */ 3812 if (!folio->mapping) { 3547 if (!folio->mapping) { 3813 folio_unlock(folio); 3548 folio_unlock(folio); 3814 folio_put(folio); 3549 folio_put(folio); 3815 goto repeat; 3550 goto repeat; 3816 } 3551 } 3817 3552 3818 /* Someone else locked and filled the 3553 /* Someone else locked and filled the page in a very small window */ 3819 if (folio_test_uptodate(folio)) { 3554 if (folio_test_uptodate(folio)) { 3820 folio_unlock(folio); 3555 folio_unlock(folio); 3821 goto out; 3556 goto out; 3822 } 3557 } 3823 3558 3824 filler: !! 3559 /* 3825 err = filemap_read_folio(file, filler !! 3560 * A previous I/O error may have been due to temporary 3826 if (err) { !! 3561 * failures. 3827 folio_put(folio); !! 3562 * Clear page error before actual read, PG_error will be 3828 if (err == AOP_TRUNCATED_PAGE !! 3563 * set again if read page fails. 3829 goto repeat; !! 3564 */ 3830 return ERR_PTR(err); !! 3565 folio_clear_error(folio); 3831 } !! 3566 goto filler; 3832 3567 3833 out: 3568 out: 3834 folio_mark_accessed(folio); 3569 folio_mark_accessed(folio); 3835 return folio; 3570 return folio; 3836 } 3571 } 3837 3572 3838 /** 3573 /** 3839 * read_cache_folio - Read into page cache, f 3574 * read_cache_folio - Read into page cache, fill it if needed. 3840 * @mapping: The address_space to read from. 3575 * @mapping: The address_space to read from. 3841 * @index: The index to read. 3576 * @index: The index to read. 3842 * @filler: Function to perform the read, or 3577 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3843 * @file: Passed to filler function, may be N 3578 * @file: Passed to filler function, may be NULL if not required. 3844 * 3579 * 3845 * Read one page into the page cache. If it 3580 * Read one page into the page cache. If it succeeds, the folio returned 3846 * will contain @index, but it may not be the 3581 * will contain @index, but it may not be the first page of the folio. 3847 * 3582 * 3848 * If the filler function returns an error, i 3583 * If the filler function returns an error, it will be returned to the 3849 * caller. 3584 * caller. 3850 * 3585 * 3851 * Context: May sleep. Expects mapping->inva 3586 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3852 * Return: An uptodate folio on success, ERR_ 3587 * Return: An uptodate folio on success, ERR_PTR() on failure. 3853 */ 3588 */ 3854 struct folio *read_cache_folio(struct address 3589 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3855 filler_t filler, struct file 3590 filler_t filler, struct file *file) 3856 { 3591 { 3857 return do_read_cache_folio(mapping, i 3592 return do_read_cache_folio(mapping, index, filler, file, 3858 mapping_gfp_mask(mapp 3593 mapping_gfp_mask(mapping)); 3859 } 3594 } 3860 EXPORT_SYMBOL(read_cache_folio); 3595 EXPORT_SYMBOL(read_cache_folio); 3861 3596 3862 /** << 3863 * mapping_read_folio_gfp - Read into page ca << 3864 * @mapping: The address_space for the fol << 3865 * @index: The index that the allocated << 3866 * @gfp: The page allocator flags to u << 3867 * << 3868 * This is the same as "read_cache_folio(mapp << 3869 * any new memory allocations done using the << 3870 * << 3871 * The most likely error from this function i << 3872 * possible and so is EINTR. If ->read_folio << 3873 * that will be returned to the caller. << 3874 * << 3875 * The function expects mapping->invalidate_l << 3876 * << 3877 * Return: Uptodate folio on success, ERR_PTR << 3878 */ << 3879 struct folio *mapping_read_folio_gfp(struct a << 3880 pgoff_t index, gfp_t gfp) << 3881 { << 3882 return do_read_cache_folio(mapping, i << 3883 } << 3884 EXPORT_SYMBOL(mapping_read_folio_gfp); << 3885 << 3886 static struct page *do_read_cache_page(struct 3597 static struct page *do_read_cache_page(struct address_space *mapping, 3887 pgoff_t index, filler_t *fill 3598 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3888 { 3599 { 3889 struct folio *folio; 3600 struct folio *folio; 3890 3601 3891 folio = do_read_cache_folio(mapping, 3602 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3892 if (IS_ERR(folio)) 3603 if (IS_ERR(folio)) 3893 return &folio->page; 3604 return &folio->page; 3894 return folio_file_page(folio, index); 3605 return folio_file_page(folio, index); 3895 } 3606 } 3896 3607 3897 struct page *read_cache_page(struct address_s 3608 struct page *read_cache_page(struct address_space *mapping, 3898 pgoff_t index, filler 3609 pgoff_t index, filler_t *filler, struct file *file) 3899 { 3610 { 3900 return do_read_cache_page(mapping, in 3611 return do_read_cache_page(mapping, index, filler, file, 3901 mapping_gfp_mask(mapp 3612 mapping_gfp_mask(mapping)); 3902 } 3613 } 3903 EXPORT_SYMBOL(read_cache_page); 3614 EXPORT_SYMBOL(read_cache_page); 3904 3615 3905 /** 3616 /** 3906 * read_cache_page_gfp - read into page cache 3617 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3907 * @mapping: the page's address_space 3618 * @mapping: the page's address_space 3908 * @index: the page index 3619 * @index: the page index 3909 * @gfp: the page allocator flags to u 3620 * @gfp: the page allocator flags to use if allocating 3910 * 3621 * 3911 * This is the same as "read_mapping_page(map 3622 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3912 * any new page allocations done using the sp 3623 * any new page allocations done using the specified allocation flags. 3913 * 3624 * 3914 * If the page does not get brought uptodate, 3625 * If the page does not get brought uptodate, return -EIO. 3915 * 3626 * 3916 * The function expects mapping->invalidate_l 3627 * The function expects mapping->invalidate_lock to be already held. 3917 * 3628 * 3918 * Return: up to date page on success, ERR_PT 3629 * Return: up to date page on success, ERR_PTR() on failure. 3919 */ 3630 */ 3920 struct page *read_cache_page_gfp(struct addre 3631 struct page *read_cache_page_gfp(struct address_space *mapping, 3921 pgoff_t index 3632 pgoff_t index, 3922 gfp_t gfp) 3633 gfp_t gfp) 3923 { 3634 { 3924 return do_read_cache_page(mapping, in 3635 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3925 } 3636 } 3926 EXPORT_SYMBOL(read_cache_page_gfp); 3637 EXPORT_SYMBOL(read_cache_page_gfp); 3927 3638 3928 /* 3639 /* 3929 * Warn about a page cache invalidation failu 3640 * Warn about a page cache invalidation failure during a direct I/O write. 3930 */ 3641 */ 3931 static void dio_warn_stale_pagecache(struct f !! 3642 void dio_warn_stale_pagecache(struct file *filp) 3932 { 3643 { 3933 static DEFINE_RATELIMIT_STATE(_rs, 86 3644 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3934 char pathname[128]; 3645 char pathname[128]; 3935 char *path; 3646 char *path; 3936 3647 3937 errseq_set(&filp->f_mapping->wb_err, 3648 errseq_set(&filp->f_mapping->wb_err, -EIO); 3938 if (__ratelimit(&_rs)) { 3649 if (__ratelimit(&_rs)) { 3939 path = file_path(filp, pathna 3650 path = file_path(filp, pathname, sizeof(pathname)); 3940 if (IS_ERR(path)) 3651 if (IS_ERR(path)) 3941 path = "(unknown)"; 3652 path = "(unknown)"; 3942 pr_crit("Page cache invalidat 3653 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3943 pr_crit("File: %s PID: %d Com 3654 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3944 current->comm); 3655 current->comm); 3945 } 3656 } 3946 } 3657 } 3947 3658 3948 void kiocb_invalidate_post_direct_write(struc << 3949 { << 3950 struct address_space *mapping = iocb- << 3951 << 3952 if (mapping->nrpages && << 3953 invalidate_inode_pages2_range(map << 3954 iocb->ki_pos >> PAGE_ << 3955 (iocb->ki_pos + count << 3956 dio_warn_stale_pagecache(iocb << 3957 } << 3958 << 3959 ssize_t 3659 ssize_t 3960 generic_file_direct_write(struct kiocb *iocb, 3660 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3961 { 3661 { 3962 struct address_space *mapping = iocb- !! 3662 struct file *file = iocb->ki_filp; 3963 size_t write_len = iov_iter_count(fro !! 3663 struct address_space *mapping = file->f_mapping; 3964 ssize_t written; !! 3664 struct inode *inode = mapping->host; >> 3665 loff_t pos = iocb->ki_pos; >> 3666 ssize_t written; >> 3667 size_t write_len; >> 3668 pgoff_t end; >> 3669 >> 3670 write_len = iov_iter_count(from); >> 3671 end = (pos + write_len - 1) >> PAGE_SHIFT; 3965 3672 >> 3673 if (iocb->ki_flags & IOCB_NOWAIT) { >> 3674 /* If there are pages to writeback, return */ >> 3675 if (filemap_range_has_page(file->f_mapping, pos, >> 3676 pos + write_len - 1)) >> 3677 return -EAGAIN; >> 3678 } else { >> 3679 written = filemap_write_and_wait_range(mapping, pos, >> 3680 pos + write_len - 1); >> 3681 if (written) >> 3682 goto out; >> 3683 } >> 3684 >> 3685 /* >> 3686 * After a write we want buffered reads to be sure to go to disk to get >> 3687 * the new data. We invalidate clean cached page from the region we're >> 3688 * about to write. We do this *before* the write so that we can return >> 3689 * without clobbering -EIOCBQUEUED from ->direct_IO(). >> 3690 */ >> 3691 written = invalidate_inode_pages2_range(mapping, >> 3692 pos >> PAGE_SHIFT, end); 3966 /* 3693 /* 3967 * If a page can not be invalidated, 3694 * If a page can not be invalidated, return 0 to fall back 3968 * to buffered write. 3695 * to buffered write. 3969 */ 3696 */ 3970 written = kiocb_invalidate_pages(iocb << 3971 if (written) { 3697 if (written) { 3972 if (written == -EBUSY) 3698 if (written == -EBUSY) 3973 return 0; 3699 return 0; 3974 return written; !! 3700 goto out; 3975 } 3701 } 3976 3702 3977 written = mapping->a_ops->direct_IO(i 3703 written = mapping->a_ops->direct_IO(iocb, from); 3978 3704 3979 /* 3705 /* 3980 * Finally, try again to invalidate c 3706 * Finally, try again to invalidate clean pages which might have been 3981 * cached by non-direct readahead, or 3707 * cached by non-direct readahead, or faulted in by get_user_pages() 3982 * if the source of the write was an 3708 * if the source of the write was an mmap'ed region of the file 3983 * we're writing. Either one is a pr 3709 * we're writing. Either one is a pretty crazy thing to do, 3984 * so we don't support it 100%. If t 3710 * so we don't support it 100%. If this invalidation 3985 * fails, tough, the write still work 3711 * fails, tough, the write still worked... 3986 * 3712 * 3987 * Most of the time we do not need th 3713 * Most of the time we do not need this since dio_complete() will do 3988 * the invalidation for us. However t 3714 * the invalidation for us. However there are some file systems that 3989 * do not end up with dio_complete() 3715 * do not end up with dio_complete() being called, so let's not break 3990 * them by removing it completely. 3716 * them by removing it completely. 3991 * 3717 * 3992 * Noticeable example is a blkdev_dir 3718 * Noticeable example is a blkdev_direct_IO(). 3993 * 3719 * 3994 * Skip invalidation for async writes 3720 * Skip invalidation for async writes or if mapping has no pages. 3995 */ 3721 */ 3996 if (written > 0) { !! 3722 if (written > 0 && mapping->nrpages && 3997 struct inode *inode = mapping !! 3723 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3998 loff_t pos = iocb->ki_pos; !! 3724 dio_warn_stale_pagecache(file); 3999 3725 4000 kiocb_invalidate_post_direct_ !! 3726 if (written > 0) { 4001 pos += written; 3727 pos += written; 4002 write_len -= written; 3728 write_len -= written; 4003 if (pos > i_size_read(inode) 3729 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4004 i_size_write(inode, p 3730 i_size_write(inode, pos); 4005 mark_inode_dirty(inod 3731 mark_inode_dirty(inode); 4006 } 3732 } 4007 iocb->ki_pos = pos; 3733 iocb->ki_pos = pos; 4008 } 3734 } 4009 if (written != -EIOCBQUEUED) 3735 if (written != -EIOCBQUEUED) 4010 iov_iter_revert(from, write_l 3736 iov_iter_revert(from, write_len - iov_iter_count(from)); >> 3737 out: 4011 return written; 3738 return written; 4012 } 3739 } 4013 EXPORT_SYMBOL(generic_file_direct_write); 3740 EXPORT_SYMBOL(generic_file_direct_write); 4014 3741 4015 ssize_t generic_perform_write(struct kiocb *i 3742 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4016 { 3743 { 4017 struct file *file = iocb->ki_filp; 3744 struct file *file = iocb->ki_filp; 4018 loff_t pos = iocb->ki_pos; 3745 loff_t pos = iocb->ki_pos; 4019 struct address_space *mapping = file- 3746 struct address_space *mapping = file->f_mapping; 4020 const struct address_space_operations 3747 const struct address_space_operations *a_ops = mapping->a_ops; 4021 size_t chunk = mapping_max_folio_size << 4022 long status = 0; 3748 long status = 0; 4023 ssize_t written = 0; 3749 ssize_t written = 0; 4024 3750 4025 do { 3751 do { 4026 struct folio *folio; !! 3752 struct page *page; 4027 size_t offset; /* Of !! 3753 unsigned long offset; /* Offset into pagecache page */ 4028 size_t bytes; /* By !! 3754 unsigned long bytes; /* Bytes to write to page */ 4029 size_t copied; /* By 3755 size_t copied; /* Bytes copied from user */ 4030 void *fsdata = NULL; !! 3756 void *fsdata; 4031 3757 4032 bytes = iov_iter_count(i); !! 3758 offset = (pos & (PAGE_SIZE - 1)); 4033 retry: !! 3759 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4034 offset = pos & (chunk - 1); !! 3760 iov_iter_count(i)); 4035 bytes = min(chunk - offset, b << 4036 balance_dirty_pages_ratelimit << 4037 3761 >> 3762 again: 4038 /* 3763 /* 4039 * Bring in the user page tha 3764 * Bring in the user page that we will copy from _first_. 4040 * Otherwise there's a nasty 3765 * Otherwise there's a nasty deadlock on copying from the 4041 * same page as we're writing 3766 * same page as we're writing to, without it being marked 4042 * up-to-date. 3767 * up-to-date. 4043 */ 3768 */ 4044 if (unlikely(fault_in_iov_ite 3769 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 4045 status = -EFAULT; 3770 status = -EFAULT; 4046 break; 3771 break; 4047 } 3772 } 4048 3773 4049 if (fatal_signal_pending(curr 3774 if (fatal_signal_pending(current)) { 4050 status = -EINTR; 3775 status = -EINTR; 4051 break; 3776 break; 4052 } 3777 } 4053 3778 4054 status = a_ops->write_begin(f 3779 status = a_ops->write_begin(file, mapping, pos, bytes, 4055 !! 3780 &page, &fsdata); 4056 if (unlikely(status < 0)) 3781 if (unlikely(status < 0)) 4057 break; 3782 break; 4058 3783 4059 offset = offset_in_folio(foli << 4060 if (bytes > folio_size(folio) << 4061 bytes = folio_size(fo << 4062 << 4063 if (mapping_writably_mapped(m 3784 if (mapping_writably_mapped(mapping)) 4064 flush_dcache_folio(fo !! 3785 flush_dcache_page(page); 4065 3786 4066 copied = copy_folio_from_iter !! 3787 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 4067 flush_dcache_folio(folio); !! 3788 flush_dcache_page(page); 4068 3789 4069 status = a_ops->write_end(fil 3790 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4070 !! 3791 page, fsdata); 4071 if (unlikely(status != copied 3792 if (unlikely(status != copied)) { 4072 iov_iter_revert(i, co 3793 iov_iter_revert(i, copied - max(status, 0L)); 4073 if (unlikely(status < 3794 if (unlikely(status < 0)) 4074 break; 3795 break; 4075 } 3796 } 4076 cond_resched(); 3797 cond_resched(); 4077 3798 4078 if (unlikely(status == 0)) { 3799 if (unlikely(status == 0)) { 4079 /* 3800 /* 4080 * A short copy made 3801 * A short copy made ->write_end() reject the 4081 * thing entirely. M 3802 * thing entirely. Might be memory poisoning 4082 * halfway through, m 3803 * halfway through, might be a race with munmap, 4083 * might be severe me 3804 * might be severe memory pressure. 4084 */ 3805 */ 4085 if (chunk > PAGE_SIZE !! 3806 if (copied) 4086 chunk /= 2; << 4087 if (copied) { << 4088 bytes = copie 3807 bytes = copied; 4089 goto retry; !! 3808 goto again; 4090 } << 4091 } else { << 4092 pos += status; << 4093 written += status; << 4094 } 3809 } >> 3810 pos += status; >> 3811 written += status; >> 3812 >> 3813 balance_dirty_pages_ratelimited(mapping); 4095 } while (iov_iter_count(i)); 3814 } while (iov_iter_count(i)); 4096 3815 4097 if (!written) !! 3816 return written ? written : status; 4098 return status; << 4099 iocb->ki_pos += written; << 4100 return written; << 4101 } 3817 } 4102 EXPORT_SYMBOL(generic_perform_write); 3818 EXPORT_SYMBOL(generic_perform_write); 4103 3819 4104 /** 3820 /** 4105 * __generic_file_write_iter - write data to 3821 * __generic_file_write_iter - write data to a file 4106 * @iocb: IO state structure (file, off 3822 * @iocb: IO state structure (file, offset, etc.) 4107 * @from: iov_iter with data to write 3823 * @from: iov_iter with data to write 4108 * 3824 * 4109 * This function does all the work needed for 3825 * This function does all the work needed for actually writing data to a 4110 * file. It does all basic checks, removes SU 3826 * file. It does all basic checks, removes SUID from the file, updates 4111 * modification times and calls proper subrou 3827 * modification times and calls proper subroutines depending on whether we 4112 * do direct IO or a standard buffered write. 3828 * do direct IO or a standard buffered write. 4113 * 3829 * 4114 * It expects i_rwsem to be grabbed unless we 3830 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4115 * object which does not need locking at all. 3831 * object which does not need locking at all. 4116 * 3832 * 4117 * This function does *not* take care of sync 3833 * This function does *not* take care of syncing data in case of O_SYNC write. 4118 * A caller has to handle it. This is mainly 3834 * A caller has to handle it. This is mainly due to the fact that we want to 4119 * avoid syncing under i_rwsem. 3835 * avoid syncing under i_rwsem. 4120 * 3836 * 4121 * Return: 3837 * Return: 4122 * * number of bytes written, even for trunca 3838 * * number of bytes written, even for truncated writes 4123 * * negative error code if no data has been 3839 * * negative error code if no data has been written at all 4124 */ 3840 */ 4125 ssize_t __generic_file_write_iter(struct kioc 3841 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4126 { 3842 { 4127 struct file *file = iocb->ki_filp; 3843 struct file *file = iocb->ki_filp; 4128 struct address_space *mapping = file- 3844 struct address_space *mapping = file->f_mapping; 4129 struct inode *inode = mapping->host; !! 3845 struct inode *inode = mapping->host; 4130 ssize_t ret; !! 3846 ssize_t written = 0; >> 3847 ssize_t err; >> 3848 ssize_t status; >> 3849 >> 3850 /* We can write back this queue in page reclaim */ >> 3851 current->backing_dev_info = inode_to_bdi(inode); >> 3852 err = file_remove_privs(file); >> 3853 if (err) >> 3854 goto out; 4131 3855 4132 ret = file_remove_privs(file); !! 3856 err = file_update_time(file); 4133 if (ret) !! 3857 if (err) 4134 return ret; !! 3858 goto out; 4135 << 4136 ret = file_update_time(file); << 4137 if (ret) << 4138 return ret; << 4139 3859 4140 if (iocb->ki_flags & IOCB_DIRECT) { 3860 if (iocb->ki_flags & IOCB_DIRECT) { 4141 ret = generic_file_direct_wri !! 3861 loff_t pos, endbyte; >> 3862 >> 3863 written = generic_file_direct_write(iocb, from); 4142 /* 3864 /* 4143 * If the write stopped short 3865 * If the write stopped short of completing, fall back to 4144 * buffered writes. Some fil 3866 * buffered writes. Some filesystems do this for writes to 4145 * holes, for example. For D 3867 * holes, for example. For DAX files, a buffered write will 4146 * not succeed (even if it di 3868 * not succeed (even if it did, DAX does not handle dirty 4147 * page-cache pages correctly 3869 * page-cache pages correctly). 4148 */ 3870 */ 4149 if (ret < 0 || !iov_iter_coun !! 3871 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4150 return ret; !! 3872 goto out; 4151 return direct_write_fallback( << 4152 generic_perfo << 4153 } << 4154 3873 4155 return generic_perform_write(iocb, fr !! 3874 pos = iocb->ki_pos; >> 3875 status = generic_perform_write(iocb, from); >> 3876 /* >> 3877 * If generic_perform_write() returned a synchronous error >> 3878 * then we want to return the number of bytes which were >> 3879 * direct-written, or the error code if that was zero. Note >> 3880 * that this differs from normal direct-io semantics, which >> 3881 * will return -EFOO even if some bytes were written. >> 3882 */ >> 3883 if (unlikely(status < 0)) { >> 3884 err = status; >> 3885 goto out; >> 3886 } >> 3887 /* >> 3888 * We need to ensure that the page cache pages are written to >> 3889 * disk and invalidated to preserve the expected O_DIRECT >> 3890 * semantics. >> 3891 */ >> 3892 endbyte = pos + status - 1; >> 3893 err = filemap_write_and_wait_range(mapping, pos, endbyte); >> 3894 if (err == 0) { >> 3895 iocb->ki_pos = endbyte + 1; >> 3896 written += status; >> 3897 invalidate_mapping_pages(mapping, >> 3898 pos >> PAGE_SHIFT, >> 3899 endbyte >> PAGE_SHIFT); >> 3900 } else { >> 3901 /* >> 3902 * We don't know how much we wrote, so just return >> 3903 * the number of bytes which were direct-written >> 3904 */ >> 3905 } >> 3906 } else { >> 3907 written = generic_perform_write(iocb, from); >> 3908 if (likely(written > 0)) >> 3909 iocb->ki_pos += written; >> 3910 } >> 3911 out: >> 3912 current->backing_dev_info = NULL; >> 3913 return written ? written : err; 4156 } 3914 } 4157 EXPORT_SYMBOL(__generic_file_write_iter); 3915 EXPORT_SYMBOL(__generic_file_write_iter); 4158 3916 4159 /** 3917 /** 4160 * generic_file_write_iter - write data to a 3918 * generic_file_write_iter - write data to a file 4161 * @iocb: IO state structure 3919 * @iocb: IO state structure 4162 * @from: iov_iter with data to write 3920 * @from: iov_iter with data to write 4163 * 3921 * 4164 * This is a wrapper around __generic_file_wr 3922 * This is a wrapper around __generic_file_write_iter() to be used by most 4165 * filesystems. It takes care of syncing the 3923 * filesystems. It takes care of syncing the file in case of O_SYNC file 4166 * and acquires i_rwsem as needed. 3924 * and acquires i_rwsem as needed. 4167 * Return: 3925 * Return: 4168 * * negative error code if no data has been 3926 * * negative error code if no data has been written at all of 4169 * vfs_fsync_range() failed for a synchrono 3927 * vfs_fsync_range() failed for a synchronous write 4170 * * number of bytes written, even for trunca 3928 * * number of bytes written, even for truncated writes 4171 */ 3929 */ 4172 ssize_t generic_file_write_iter(struct kiocb 3930 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4173 { 3931 { 4174 struct file *file = iocb->ki_filp; 3932 struct file *file = iocb->ki_filp; 4175 struct inode *inode = file->f_mapping 3933 struct inode *inode = file->f_mapping->host; 4176 ssize_t ret; 3934 ssize_t ret; 4177 3935 4178 inode_lock(inode); 3936 inode_lock(inode); 4179 ret = generic_write_checks(iocb, from 3937 ret = generic_write_checks(iocb, from); 4180 if (ret > 0) 3938 if (ret > 0) 4181 ret = __generic_file_write_it 3939 ret = __generic_file_write_iter(iocb, from); 4182 inode_unlock(inode); 3940 inode_unlock(inode); 4183 3941 4184 if (ret > 0) 3942 if (ret > 0) 4185 ret = generic_write_sync(iocb 3943 ret = generic_write_sync(iocb, ret); 4186 return ret; 3944 return ret; 4187 } 3945 } 4188 EXPORT_SYMBOL(generic_file_write_iter); 3946 EXPORT_SYMBOL(generic_file_write_iter); 4189 3947 4190 /** 3948 /** 4191 * filemap_release_folio() - Release fs-speci 3949 * filemap_release_folio() - Release fs-specific metadata on a folio. 4192 * @folio: The folio which the kernel is tryi 3950 * @folio: The folio which the kernel is trying to free. 4193 * @gfp: Memory allocation flags (and I/O mod 3951 * @gfp: Memory allocation flags (and I/O mode). 4194 * 3952 * 4195 * The address_space is trying to release any 3953 * The address_space is trying to release any data attached to a folio 4196 * (presumably at folio->private). 3954 * (presumably at folio->private). 4197 * 3955 * 4198 * This will also be called if the private_2 3956 * This will also be called if the private_2 flag is set on a page, 4199 * indicating that the folio has other metada 3957 * indicating that the folio has other metadata associated with it. 4200 * 3958 * 4201 * The @gfp argument specifies whether I/O ma 3959 * The @gfp argument specifies whether I/O may be performed to release 4202 * this page (__GFP_IO), and whether the call 3960 * this page (__GFP_IO), and whether the call may block 4203 * (__GFP_RECLAIM & __GFP_FS). 3961 * (__GFP_RECLAIM & __GFP_FS). 4204 * 3962 * 4205 * Return: %true if the release was successfu 3963 * Return: %true if the release was successful, otherwise %false. 4206 */ 3964 */ 4207 bool filemap_release_folio(struct folio *foli 3965 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4208 { 3966 { 4209 struct address_space * const mapping 3967 struct address_space * const mapping = folio->mapping; 4210 3968 4211 BUG_ON(!folio_test_locked(folio)); 3969 BUG_ON(!folio_test_locked(folio)); 4212 if (!folio_needs_release(folio)) << 4213 return true; << 4214 if (folio_test_writeback(folio)) 3970 if (folio_test_writeback(folio)) 4215 return false; 3971 return false; 4216 3972 4217 if (mapping && mapping->a_ops->releas 3973 if (mapping && mapping->a_ops->release_folio) 4218 return mapping->a_ops->releas 3974 return mapping->a_ops->release_folio(folio, gfp); 4219 return try_to_free_buffers(folio); 3975 return try_to_free_buffers(folio); 4220 } 3976 } 4221 EXPORT_SYMBOL(filemap_release_folio); 3977 EXPORT_SYMBOL(filemap_release_folio); 4222 << 4223 /** << 4224 * filemap_invalidate_inode - Invalidate/forc << 4225 * @inode: The inode to flush << 4226 * @flush: Set to write back rather than simp << 4227 * @start: First byte to in range. << 4228 * @end: Last byte in range (inclusive), or L << 4229 * onwards. << 4230 * << 4231 * Invalidate all the folios on an inode that << 4232 * range, possibly writing them back first. << 4233 * undertaken, the invalidate lock is held to << 4234 * installed. << 4235 */ << 4236 int filemap_invalidate_inode(struct inode *in << 4237 loff_t start, lo << 4238 { << 4239 struct address_space *mapping = inode << 4240 pgoff_t first = start >> PAGE_SHIFT; << 4241 pgoff_t last = end >> PAGE_SHIFT; << 4242 pgoff_t nr = end == LLONG_MAX ? ULONG << 4243 << 4244 if (!mapping || !mapping->nrpages || << 4245 goto out; << 4246 << 4247 /* Prevent new folios from being adde << 4248 filemap_invalidate_lock(mapping); << 4249 << 4250 if (!mapping->nrpages) << 4251 goto unlock; << 4252 << 4253 unmap_mapping_pages(mapping, first, n << 4254 << 4255 /* Write back the data if we're asked << 4256 if (flush) { << 4257 struct writeback_control wbc << 4258 .sync_mode = WB_ << 4259 .nr_to_write = LON << 4260 .range_start = sta << 4261 .range_end = end << 4262 }; << 4263 << 4264 filemap_fdatawrite_wbc(mappin << 4265 } << 4266 << 4267 /* Wait for writeback to complete on << 4268 invalidate_inode_pages2_range(mapping << 4269 << 4270 unlock: << 4271 filemap_invalidate_unlock(mapping); << 4272 out: << 4273 return filemap_check_errors(mapping); << 4274 } << 4275 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); << 4276 << 4277 #ifdef CONFIG_CACHESTAT_SYSCALL << 4278 /** << 4279 * filemap_cachestat() - compute the page cac << 4280 * @mapping: The mapping to compute the st << 4281 * @first_index: The starting page cac << 4282 * @last_index: The final page index (inclusi << 4283 * @cs: the cachestat struct to write the res << 4284 * << 4285 * This will query the page cache statistics << 4286 * page range of [first_index, last_index] (i << 4287 * queried include: number of dirty pages, nu << 4288 * writeback, and the number of (recently) ev << 4289 */ << 4290 static void filemap_cachestat(struct address_ << 4291 pgoff_t first_index, pgoff_t << 4292 { << 4293 XA_STATE(xas, &mapping->i_pages, firs << 4294 struct folio *folio; << 4295 << 4296 /* Flush stats (and potentially sleep << 4297 mem_cgroup_flush_stats_ratelimited(NU << 4298 << 4299 rcu_read_lock(); << 4300 xas_for_each(&xas, folio, last_index) << 4301 int order; << 4302 unsigned long nr_pages; << 4303 pgoff_t folio_first_index, fo << 4304 << 4305 /* << 4306 * Don't deref the folio. It << 4307 * get freed (and reused) und << 4308 * << 4309 * We *could* pin it, but tha << 4310 * what should be a fast and << 4311 * << 4312 * Instead, derive all inform << 4313 * the rcu-protected xarray. << 4314 */ << 4315 << 4316 if (xas_retry(&xas, folio)) << 4317 continue; << 4318 << 4319 order = xas_get_order(&xas); << 4320 nr_pages = 1 << order; << 4321 folio_first_index = round_dow << 4322 folio_last_index = folio_firs << 4323 << 4324 /* Folios might straddle the << 4325 if (folio_first_index < first << 4326 nr_pages -= first_ind << 4327 << 4328 if (folio_last_index > last_i << 4329 nr_pages -= folio_las << 4330 << 4331 if (xa_is_value(folio)) { << 4332 /* page is evicted */ << 4333 void *shadow = (void << 4334 bool workingset; /* n << 4335 << 4336 cs->nr_evicted += nr_ << 4337 << 4338 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ << 4339 if (shmem_mapping(map << 4340 /* shmem file << 4341 swp_entry_t s << 4342 << 4343 /* swapin err << 4344 if (non_swap_ << 4345 goto << 4346 << 4347 /* << 4348 * Getting a << 4349 * inode mean << 4350 * shmem_unus << 4351 * ensures sw << 4352 * freeing th << 4353 * we can rac << 4354 * invalidati << 4355 * a shadow i << 4356 */ << 4357 shadow = get_ << 4358 if (!shadow) << 4359 goto << 4360 } << 4361 #endif << 4362 if (workingset_test_r << 4363 cs->nr_recent << 4364 << 4365 goto resched; << 4366 } << 4367 << 4368 /* page is in cache */ << 4369 cs->nr_cache += nr_pages; << 4370 << 4371 if (xas_get_mark(&xas, PAGECA << 4372 cs->nr_dirty += nr_pa << 4373 << 4374 if (xas_get_mark(&xas, PAGECA << 4375 cs->nr_writeback += n << 4376 << 4377 resched: << 4378 if (need_resched()) { << 4379 xas_pause(&xas); << 4380 cond_resched_rcu(); << 4381 } << 4382 } << 4383 rcu_read_unlock(); << 4384 } << 4385 << 4386 /* << 4387 * The cachestat(2) system call. << 4388 * << 4389 * cachestat() returns the page cache statist << 4390 * bytes range specified by `off` and `len`: << 4391 * number of dirty pages, number of pages mar << 4392 * number of evicted pages, and number of rec << 4393 * << 4394 * An evicted page is a page that is previous << 4395 * but has been evicted since. A page is rece << 4396 * eviction was recent enough that its reentr << 4397 * indicate that it is actively being used by << 4398 * there is memory pressure on the system. << 4399 * << 4400 * `off` and `len` must be non-negative integ << 4401 * the queried range is [`off`, `off` + `len` << 4402 * we will query in the range from `off` to t << 4403 * << 4404 * The `flags` argument is unused for now, bu << 4405 * extensibility. User should pass 0 (i.e no << 4406 * << 4407 * Currently, hugetlbfs is not supported. << 4408 * << 4409 * Because the status of a page can change af << 4410 * but before it returns to the application, << 4411 * contain stale information. << 4412 * << 4413 * return values: << 4414 * zero - success << 4415 * -EFAULT - cstat or cstat_range points << 4416 * -EINVAL - invalid flags << 4417 * -EBADF - invalid file descriptor << 4418 * -EOPNOTSUPP - file descriptor is of a hug << 4419 */ << 4420 SYSCALL_DEFINE4(cachestat, unsigned int, fd, << 4421 struct cachestat_range __user << 4422 struct cachestat __user *, cs << 4423 { << 4424 struct fd f = fdget(fd); << 4425 struct address_space *mapping; << 4426 struct cachestat_range csr; << 4427 struct cachestat cs; << 4428 pgoff_t first_index, last_index; << 4429 << 4430 if (!fd_file(f)) << 4431 return -EBADF; << 4432 << 4433 if (copy_from_user(&csr, cstat_range, << 4434 sizeof(struct cachest << 4435 fdput(f); << 4436 return -EFAULT; << 4437 } << 4438 << 4439 /* hugetlbfs is not supported */ << 4440 if (is_file_hugepages(fd_file(f))) { << 4441 fdput(f); << 4442 return -EOPNOTSUPP; << 4443 } << 4444 << 4445 if (flags != 0) { << 4446 fdput(f); << 4447 return -EINVAL; << 4448 } << 4449 << 4450 first_index = csr.off >> PAGE_SHIFT; << 4451 last_index = << 4452 csr.len == 0 ? ULONG_MAX : (c << 4453 memset(&cs, 0, sizeof(struct cachesta << 4454 mapping = fd_file(f)->f_mapping; << 4455 filemap_cachestat(mapping, first_inde << 4456 fdput(f); << 4457 << 4458 if (copy_to_user(cstat, &cs, sizeof(s << 4459 return -EFAULT; << 4460 << 4461 return 0; << 4462 } << 4463 #endif /* CONFIG_CACHESTAT_SYSCALL */ << 4464 3978
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.