1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * linux/mm/filemap.c 3 * linux/mm/filemap.c 4 * 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 6 */ 7 7 8 /* 8 /* 9 * This file handles the generic file mmap sem 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /h 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differen 11 * the NFS filesystem used to do this differently, for example) 12 */ 12 */ 13 #include <linux/export.h> 13 #include <linux/export.h> 14 #include <linux/compiler.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> << 25 #include <linux/syscalls.h> << 26 #include <linux/mman.h> 24 #include <linux/mman.h> 27 #include <linux/pagemap.h> 25 #include <linux/pagemap.h> 28 #include <linux/file.h> 26 #include <linux/file.h> 29 #include <linux/uio.h> 27 #include <linux/uio.h> 30 #include <linux/error-injection.h> 28 #include <linux/error-injection.h> 31 #include <linux/hash.h> 29 #include <linux/hash.h> 32 #include <linux/writeback.h> 30 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 31 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 32 #include <linux/pagevec.h> >> 33 #include <linux/blkdev.h> 35 #include <linux/security.h> 34 #include <linux/security.h> 36 #include <linux/cpuset.h> 35 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 36 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 37 #include <linux/memcontrol.h> >> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> << 44 #include <linux/page_idle.h> << 45 #include <linux/migrate.h> << 46 #include <linux/pipe_fs_i.h> << 47 #include <linux/splice.h> << 48 #include <linux/rcupdate_wait.h> << 49 #include <linux/sched/mm.h> << 50 #include <asm/pgalloc.h> << 51 #include <asm/tlbflush.h> << 52 #include "internal.h" 43 #include "internal.h" 53 44 54 #define CREATE_TRACE_POINTS 45 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 46 #include <trace/events/filemap.h> 56 47 57 /* 48 /* 58 * FIXME: remove all knowledge of the buffer l 49 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 50 */ 60 #include <linux/buffer_head.h> /* for try_to_f 51 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 52 62 #include <asm/mman.h> 53 #include <asm/mman.h> 63 54 64 #include "swap.h" << 65 << 66 /* 55 /* 67 * Shared mappings implemented 30.11.1994. It' 56 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 57 * though. 69 * 58 * 70 * Shared mappings now work. 15.8.1995 Bruno. 59 * Shared mappings now work. 15.8.1995 Bruno. 71 * 60 * 72 * finished 'unifying' the page and buffer cac 61 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@ 62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 63 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcan 64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 65 */ 77 66 78 /* 67 /* 79 * Lock ordering: 68 * Lock ordering: 80 * 69 * 81 * ->i_mmap_rwsem (truncate_page 70 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->b !! 71 * ->private_lock (__free_pte->__set_page_dirty_buffers) 83 * ->swap_lock (exclusive_swa 72 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock 73 * ->i_pages lock 85 * 74 * 86 * ->i_rwsem !! 75 * ->i_mutex 87 * ->invalidate_lock (acquired by f !! 76 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 88 * ->i_mmap_rwsem (truncate->unm << 89 * 77 * 90 * ->mmap_lock !! 78 * ->mmap_sem 91 * ->i_mmap_rwsem 79 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (vario 80 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependen 81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 94 * 82 * 95 * ->mmap_lock !! 83 * ->mmap_sem 96 * ->invalidate_lock (filemap_fault !! 84 * ->lock_page (access_process_vm) 97 * ->lock_page (filemap_fault << 98 * 85 * 99 * ->i_rwsem (generic_perfo !! 86 * ->i_mutex (generic_perform_write) 100 * ->mmap_lock (fault_in_read !! 87 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 101 * 88 * 102 * bdi->wb.list_lock 89 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeba 90 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single 91 * ->i_pages lock (__sync_single_inode) 105 * 92 * 106 * ->i_mmap_rwsem 93 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) !! 94 * ->anon_vma.lock (vma_adjust) 108 * 95 * 109 * ->anon_vma.lock 96 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_ 97 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 98 * 112 * ->page_table_lock or pte_lock 99 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_ 100 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_ 101 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_ 102 * ->i_pages lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_m !! 103 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_ran !! 104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 118 * ->private_lock (folio_remove_ !! 105 * ->private_lock (page_remove_rmap->set_page_dirty) 119 * ->i_pages lock (folio_remove_ !! 106 * ->i_pages lock (page_remove_rmap->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_ !! 107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 121 * ->inode->i_lock (folio_remove_ !! 108 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 122 * ->memcg->move_lock (folio_remove_ !! 109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 123 * bdi.wb->list_lock (zap_pte_range 110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range 111 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range !! 112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) >> 113 * >> 114 * ->i_mmap_rwsem >> 115 * ->tasklist_lock (memory_failure, collect_procs_ao) 126 */ 116 */ 127 117 128 static void mapping_set_update(struct xa_state << 129 struct address_space *mapping) << 130 { << 131 if (dax_mapping(mapping) || shmem_mapp << 132 return; << 133 xas_set_update(xas, workingset_update_ << 134 xas_set_lru(xas, &shadow_nodes); << 135 } << 136 << 137 static void page_cache_delete(struct address_s 118 static void page_cache_delete(struct address_space *mapping, 138 struct foli !! 119 struct page *page, void *shadow) 139 { 120 { 140 XA_STATE(xas, &mapping->i_pages, folio !! 121 XA_STATE(xas, &mapping->i_pages, page->index); 141 long nr = 1; !! 122 unsigned int nr = 1; 142 123 143 mapping_set_update(&xas, mapping); 124 mapping_set_update(&xas, mapping); 144 125 145 xas_set_order(&xas, folio->index, foli !! 126 /* hugetlb pages are represented by a single entry in the xarray */ 146 nr = folio_nr_pages(folio); !! 127 if (!PageHuge(page)) { >> 128 xas_set_order(&xas, page->index, compound_order(page)); >> 129 nr = 1U << compound_order(page); >> 130 } 147 131 148 VM_BUG_ON_FOLIO(!folio_test_locked(fol !! 132 VM_BUG_ON_PAGE(!PageLocked(page), page); >> 133 VM_BUG_ON_PAGE(PageTail(page), page); >> 134 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 149 135 150 xas_store(&xas, shadow); 136 xas_store(&xas, shadow); 151 xas_init_marks(&xas); 137 xas_init_marks(&xas); 152 138 153 folio->mapping = NULL; !! 139 page->mapping = NULL; 154 /* Leave page->index set: truncation l 140 /* Leave page->index set: truncation lookup relies upon it */ >> 141 >> 142 if (shadow) { >> 143 mapping->nrexceptional += nr; >> 144 /* >> 145 * Make sure the nrexceptional update is committed before >> 146 * the nrpages update so that final truncate racing >> 147 * with reclaim does not see both counters 0 at the >> 148 * same time and miss a shadow entry. >> 149 */ >> 150 smp_wmb(); >> 151 } 155 mapping->nrpages -= nr; 152 mapping->nrpages -= nr; 156 } 153 } 157 154 158 static void filemap_unaccount_folio(struct add !! 155 static void unaccount_page_cache_page(struct address_space *mapping, 159 struct folio *folio) !! 156 struct page *page) 160 { 157 { 161 long nr; !! 158 int nr; >> 159 >> 160 /* >> 161 * if we're uptodate, flush out into the cleancache, otherwise >> 162 * invalidate any existing cleancache entries. We can't leave >> 163 * stale data around in the cleancache once our page is gone >> 164 */ >> 165 if (PageUptodate(page) && PageMappedToDisk(page)) >> 166 cleancache_put_page(page); >> 167 else >> 168 cleancache_invalidate_page(mapping, page); >> 169 >> 170 VM_BUG_ON_PAGE(PageTail(page), page); >> 171 VM_BUG_ON_PAGE(page_mapped(page), page); >> 172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { >> 173 int mapcount; 162 174 163 VM_BUG_ON_FOLIO(folio_mapped(folio), f << 164 if (!IS_ENABLED(CONFIG_DEBUG_VM) && un << 165 pr_alert("BUG: Bad page cache 175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 166 current->comm, folio_ !! 176 current->comm, page_to_pfn(page)); 167 dump_page(&folio->page, "still !! 177 dump_page(page, "still mapped when deleted"); 168 dump_stack(); 178 dump_stack(); 169 add_taint(TAINT_BAD_PAGE, LOCK 179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 170 180 171 if (mapping_exiting(mapping) & !! 181 mapcount = page_mapcount(page); 172 int mapcount = folio_m !! 182 if (mapping_exiting(mapping) && 173 !! 183 page_count(page) >= mapcount + 2) { 174 if (folio_ref_count(fo !! 184 /* 175 /* !! 185 * All vmas have already been torn down, so it's 176 * All vmas ha !! 186 * a good bet that actually the page is unmapped, 177 * a good bet !! 187 * and we'd prefer not to leak it: if we're wrong, 178 * and we'd ra !! 188 * some other bad page check should catch it later. 179 * another bad !! 189 */ 180 */ !! 190 page_mapcount_reset(page); 181 atomic_set(&fo !! 191 page_ref_sub(page, mapcount); 182 folio_ref_sub( << 183 } << 184 } 192 } 185 } 193 } 186 194 187 /* hugetlb folios do not participate i !! 195 /* hugetlb pages do not participate in page cache accounting. */ 188 if (folio_test_hugetlb(folio)) !! 196 if (PageHuge(page)) 189 return; 197 return; 190 198 191 nr = folio_nr_pages(folio); !! 199 nr = hpage_nr_pages(page); 192 200 193 __lruvec_stat_mod_folio(folio, NR_FILE !! 201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 194 if (folio_test_swapbacked(folio)) { !! 202 if (PageSwapBacked(page)) { 195 __lruvec_stat_mod_folio(folio, !! 203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 196 if (folio_test_pmd_mappable(fo !! 204 if (PageTransHuge(page)) 197 __lruvec_stat_mod_foli !! 205 __dec_node_page_state(page, NR_SHMEM_THPS); 198 } else if (folio_test_pmd_mappable(fol !! 206 } else { 199 __lruvec_stat_mod_folio(folio, !! 207 VM_BUG_ON_PAGE(PageTransHuge(page), page); 200 filemap_nr_thps_dec(mapping); << 201 } 208 } 202 209 203 /* 210 /* 204 * At this point folio must be either !! 211 * At this point page must be either written or cleaned by 205 * truncate. Dirty folio here signals !! 212 * truncate. Dirty page here signals a bug and loss of 206 * unwritten data - on ordinary filesy !! 213 * unwritten data. 207 * << 208 * But it's harmless on in-memory file << 209 * occur when a driver which did get_u << 210 * before putting it, while the inode << 211 * 214 * 212 * Below fixes dirty accounting after !! 215 * This fixes dirty accounting after removing the page entirely 213 * but leaves the dirty flag set: it h !! 216 * but leaves PageDirty set: it has no effect for truncated 214 * folio and anyway will be cleared be !! 217 * page and anyway will be cleared before returning page into 215 * buddy allocator. 218 * buddy allocator. 216 */ 219 */ 217 if (WARN_ON_ONCE(folio_test_dirty(foli !! 220 if (WARN_ON_ONCE(PageDirty(page))) 218 mapping_can_writeback !! 221 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 219 folio_account_cleaned(folio, i << 220 } 222 } 221 223 222 /* 224 /* 223 * Delete a page from the page cache and free 225 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody els 226 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages 227 * is safe. The caller must hold the i_pages lock. 226 */ 228 */ 227 void __filemap_remove_folio(struct folio *foli !! 229 void __delete_from_page_cache(struct page *page, void *shadow) 228 { 230 { 229 struct address_space *mapping = folio- !! 231 struct address_space *mapping = page->mapping; 230 232 231 trace_mm_filemap_delete_from_page_cach !! 233 trace_mm_filemap_delete_from_page_cache(page); 232 filemap_unaccount_folio(mapping, folio !! 234 233 page_cache_delete(mapping, folio, shad !! 235 unaccount_page_cache_page(mapping, page); >> 236 page_cache_delete(mapping, page, shadow); 234 } 237 } 235 238 236 void filemap_free_folio(struct address_space * !! 239 static void page_cache_free_page(struct address_space *mapping, >> 240 struct page *page) 237 { 241 { 238 void (*free_folio)(struct folio *); !! 242 void (*freepage)(struct page *); 239 int refs = 1; << 240 243 241 free_folio = mapping->a_ops->free_foli !! 244 freepage = mapping->a_ops->freepage; 242 if (free_folio) !! 245 if (freepage) 243 free_folio(folio); !! 246 freepage(page); 244 247 245 if (folio_test_large(folio)) !! 248 if (PageTransHuge(page) && !PageHuge(page)) { 246 refs = folio_nr_pages(folio); !! 249 page_ref_sub(page, HPAGE_PMD_NR); 247 folio_put_refs(folio, refs); !! 250 VM_BUG_ON_PAGE(page_count(page) <= 0, page); >> 251 } else { >> 252 put_page(page); >> 253 } 248 } 254 } 249 255 250 /** 256 /** 251 * filemap_remove_folio - Remove folio from pa !! 257 * delete_from_page_cache - delete page from page cache 252 * @folio: The folio. !! 258 * @page: the page which the kernel is trying to remove from page cache 253 * 259 * 254 * This must be called only on folios that are !! 260 * This must be called only on pages that have been verified to be in the page 255 * verified to be in the page cache. It will !! 261 * cache and locked. It will never put the page into the free list, the caller 256 * the free list because the caller has a refe !! 262 * has a reference on the page. 257 */ !! 263 */ 258 void filemap_remove_folio(struct folio *folio) !! 264 void delete_from_page_cache(struct page *page) 259 { !! 265 { 260 struct address_space *mapping = folio- !! 266 struct address_space *mapping = page_mapping(page); 261 !! 267 unsigned long flags; 262 BUG_ON(!folio_test_locked(folio)); << 263 spin_lock(&mapping->host->i_lock); << 264 xa_lock_irq(&mapping->i_pages); << 265 __filemap_remove_folio(folio, NULL); << 266 xa_unlock_irq(&mapping->i_pages); << 267 if (mapping_shrinkable(mapping)) << 268 inode_add_lru(mapping->host); << 269 spin_unlock(&mapping->host->i_lock); << 270 << 271 filemap_free_folio(mapping, folio); << 272 } << 273 268 274 /* !! 269 BUG_ON(!PageLocked(page)); 275 * page_cache_delete_batch - delete several fo !! 270 xa_lock_irqsave(&mapping->i_pages, flags); 276 * @mapping: the mapping to which folios belon !! 271 __delete_from_page_cache(page, NULL); 277 * @fbatch: batch of folios to delete !! 272 xa_unlock_irqrestore(&mapping->i_pages, flags); 278 * !! 273 279 * The function walks over mapping->i_pages an !! 274 page_cache_free_page(mapping, page); 280 * @fbatch from the mapping. The function expe !! 275 } 281 * by page index and is optimised for it to be !! 276 EXPORT_SYMBOL(delete_from_page_cache); 282 * It tolerates holes in @fbatch (mapping entr !! 277 283 * modified). !! 278 /* >> 279 * page_cache_delete_batch - delete several pages from page cache >> 280 * @mapping: the mapping to which pages belong >> 281 * @pvec: pagevec with pages to delete >> 282 * >> 283 * The function walks over mapping->i_pages and removes pages passed in @pvec >> 284 * from the mapping. The function expects @pvec to be sorted by page index. >> 285 * It tolerates holes in @pvec (mapping entries at those indices are not >> 286 * modified). The function expects only THP head pages to be present in the >> 287 * @pvec and takes care to delete all corresponding tail pages from the >> 288 * mapping as well. 284 * 289 * 285 * The function expects the i_pages lock to be 290 * The function expects the i_pages lock to be held. 286 */ 291 */ 287 static void page_cache_delete_batch(struct add 292 static void page_cache_delete_batch(struct address_space *mapping, 288 struct folio_batc !! 293 struct pagevec *pvec) 289 { 294 { 290 XA_STATE(xas, &mapping->i_pages, fbatc !! 295 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 291 long total_pages = 0; !! 296 int total_pages = 0; 292 int i = 0; !! 297 int i = 0, tail_pages = 0; 293 struct folio *folio; !! 298 struct page *page; 294 299 295 mapping_set_update(&xas, mapping); 300 mapping_set_update(&xas, mapping); 296 xas_for_each(&xas, folio, ULONG_MAX) { !! 301 xas_for_each(&xas, page, ULONG_MAX) { 297 if (i >= folio_batch_count(fba !! 302 if (i >= pagevec_count(pvec) && !tail_pages) 298 break; 303 break; 299 !! 304 if (xa_is_value(page)) 300 /* A swap/dax/shadow entry got << 301 if (xa_is_value(folio)) << 302 continue; << 303 /* << 304 * A page got inserted in our << 305 * pages locked so they are pr << 306 * If we see a page whose inde << 307 * means our page has been rem << 308 * possible because we're hold << 309 */ << 310 if (folio != fbatch->folios[i] << 311 VM_BUG_ON_FOLIO(folio- << 312 fbatch << 313 continue; 305 continue; >> 306 if (!tail_pages) { >> 307 /* >> 308 * Some page got inserted in our range? Skip it. We >> 309 * have our pages locked so they are protected from >> 310 * being removed. >> 311 */ >> 312 if (page != pvec->pages[i]) { >> 313 VM_BUG_ON_PAGE(page->index > >> 314 pvec->pages[i]->index, page); >> 315 continue; >> 316 } >> 317 WARN_ON_ONCE(!PageLocked(page)); >> 318 if (PageTransHuge(page) && !PageHuge(page)) >> 319 tail_pages = HPAGE_PMD_NR - 1; >> 320 page->mapping = NULL; >> 321 /* >> 322 * Leave page->index set: truncation lookup relies >> 323 * upon it >> 324 */ >> 325 i++; >> 326 } else { >> 327 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages >> 328 != pvec->pages[i]->index, page); >> 329 tail_pages--; 314 } 330 } 315 << 316 WARN_ON_ONCE(!folio_test_locke << 317 << 318 folio->mapping = NULL; << 319 /* Leave folio->index set: tru << 320 << 321 i++; << 322 xas_store(&xas, NULL); 331 xas_store(&xas, NULL); 323 total_pages += folio_nr_pages( !! 332 total_pages++; 324 } 333 } 325 mapping->nrpages -= total_pages; 334 mapping->nrpages -= total_pages; 326 } 335 } 327 336 328 void delete_from_page_cache_batch(struct addre 337 void delete_from_page_cache_batch(struct address_space *mapping, 329 struct folio !! 338 struct pagevec *pvec) 330 { 339 { 331 int i; 340 int i; >> 341 unsigned long flags; 332 342 333 if (!folio_batch_count(fbatch)) !! 343 if (!pagevec_count(pvec)) 334 return; 344 return; 335 345 336 spin_lock(&mapping->host->i_lock); !! 346 xa_lock_irqsave(&mapping->i_pages, flags); 337 xa_lock_irq(&mapping->i_pages); !! 347 for (i = 0; i < pagevec_count(pvec); i++) { 338 for (i = 0; i < folio_batch_count(fbat !! 348 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 339 struct folio *folio = fbatch-> !! 349 340 !! 350 unaccount_page_cache_page(mapping, pvec->pages[i]); 341 trace_mm_filemap_delete_from_p !! 351 } 342 filemap_unaccount_folio(mappin !! 352 page_cache_delete_batch(mapping, pvec); 343 } !! 353 xa_unlock_irqrestore(&mapping->i_pages, flags); 344 page_cache_delete_batch(mapping, fbatc << 345 xa_unlock_irq(&mapping->i_pages); << 346 if (mapping_shrinkable(mapping)) << 347 inode_add_lru(mapping->host); << 348 spin_unlock(&mapping->host->i_lock); << 349 354 350 for (i = 0; i < folio_batch_count(fbat !! 355 for (i = 0; i < pagevec_count(pvec); i++) 351 filemap_free_folio(mapping, fb !! 356 page_cache_free_page(mapping, pvec->pages[i]); 352 } 357 } 353 358 354 int filemap_check_errors(struct address_space 359 int filemap_check_errors(struct address_space *mapping) 355 { 360 { 356 int ret = 0; 361 int ret = 0; 357 /* Check for outstanding write errors 362 /* Check for outstanding write errors */ 358 if (test_bit(AS_ENOSPC, &mapping->flag 363 if (test_bit(AS_ENOSPC, &mapping->flags) && 359 test_and_clear_bit(AS_ENOSPC, &map 364 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 360 ret = -ENOSPC; 365 ret = -ENOSPC; 361 if (test_bit(AS_EIO, &mapping->flags) 366 if (test_bit(AS_EIO, &mapping->flags) && 362 test_and_clear_bit(AS_EIO, &mappin 367 test_and_clear_bit(AS_EIO, &mapping->flags)) 363 ret = -EIO; 368 ret = -EIO; 364 return ret; 369 return ret; 365 } 370 } 366 EXPORT_SYMBOL(filemap_check_errors); 371 EXPORT_SYMBOL(filemap_check_errors); 367 372 368 static int filemap_check_and_keep_errors(struc 373 static int filemap_check_and_keep_errors(struct address_space *mapping) 369 { 374 { 370 /* Check for outstanding write errors 375 /* Check for outstanding write errors */ 371 if (test_bit(AS_EIO, &mapping->flags)) 376 if (test_bit(AS_EIO, &mapping->flags)) 372 return -EIO; 377 return -EIO; 373 if (test_bit(AS_ENOSPC, &mapping->flag 378 if (test_bit(AS_ENOSPC, &mapping->flags)) 374 return -ENOSPC; 379 return -ENOSPC; 375 return 0; 380 return 0; 376 } 381 } 377 382 378 /** 383 /** 379 * filemap_fdatawrite_wbc - start writeback on << 380 * @mapping: address space structure to wri << 381 * @wbc: the writeback_control controll << 382 * << 383 * Call writepages on the mapping using the pr << 384 * writeout. << 385 * << 386 * Return: %0 on success, negative error code << 387 */ << 388 int filemap_fdatawrite_wbc(struct address_spac << 389 struct writeback_co << 390 { << 391 int ret; << 392 << 393 if (!mapping_can_writeback(mapping) || << 394 !mapping_tagged(mapping, PAGECACHE << 395 return 0; << 396 << 397 wbc_attach_fdatawrite_inode(wbc, mappi << 398 ret = do_writepages(mapping, wbc); << 399 wbc_detach_inode(wbc); << 400 return ret; << 401 } << 402 EXPORT_SYMBOL(filemap_fdatawrite_wbc); << 403 << 404 /** << 405 * __filemap_fdatawrite_range - start writebac 384 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 406 * @mapping: address space structure to wri 385 * @mapping: address space structure to write 407 * @start: offset in bytes where the rang 386 * @start: offset in bytes where the range starts 408 * @end: offset in bytes where the rang 387 * @end: offset in bytes where the range ends (inclusive) 409 * @sync_mode: enable synchronous operation 388 * @sync_mode: enable synchronous operation 410 * 389 * 411 * Start writeback against all of a mapping's 390 * Start writeback against all of a mapping's dirty pages that lie 412 * within the byte offsets <start, end> inclus 391 * within the byte offsets <start, end> inclusive. 413 * 392 * 414 * If sync_mode is WB_SYNC_ALL then this is a 393 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 415 * opposed to a regular memory cleansing write 394 * opposed to a regular memory cleansing writeback. The difference between 416 * these two operations is that if a dirty pag 395 * these two operations is that if a dirty page/buffer is encountered, it must 417 * be waited upon, and not just skipped over. 396 * be waited upon, and not just skipped over. 418 * 397 * 419 * Return: %0 on success, negative error code 398 * Return: %0 on success, negative error code otherwise. 420 */ 399 */ 421 int __filemap_fdatawrite_range(struct address_ 400 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 422 loff_t end, in 401 loff_t end, int sync_mode) 423 { 402 { >> 403 int ret; 424 struct writeback_control wbc = { 404 struct writeback_control wbc = { 425 .sync_mode = sync_mode, 405 .sync_mode = sync_mode, 426 .nr_to_write = LONG_MAX, 406 .nr_to_write = LONG_MAX, 427 .range_start = start, 407 .range_start = start, 428 .range_end = end, 408 .range_end = end, 429 }; 409 }; 430 410 431 return filemap_fdatawrite_wbc(mapping, !! 411 if (!mapping_cap_writeback_dirty(mapping) || >> 412 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) >> 413 return 0; >> 414 >> 415 wbc_attach_fdatawrite_inode(&wbc, mapping->host); >> 416 ret = do_writepages(mapping, &wbc); >> 417 wbc_detach_inode(&wbc); >> 418 return ret; 432 } 419 } 433 420 434 static inline int __filemap_fdatawrite(struct 421 static inline int __filemap_fdatawrite(struct address_space *mapping, 435 int sync_mode) 422 int sync_mode) 436 { 423 { 437 return __filemap_fdatawrite_range(mapp 424 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 438 } 425 } 439 426 440 int filemap_fdatawrite(struct address_space *m 427 int filemap_fdatawrite(struct address_space *mapping) 441 { 428 { 442 return __filemap_fdatawrite(mapping, W 429 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 443 } 430 } 444 EXPORT_SYMBOL(filemap_fdatawrite); 431 EXPORT_SYMBOL(filemap_fdatawrite); 445 432 446 int filemap_fdatawrite_range(struct address_sp 433 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 447 loff_t end) 434 loff_t end) 448 { 435 { 449 return __filemap_fdatawrite_range(mapp 436 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 450 } 437 } 451 EXPORT_SYMBOL(filemap_fdatawrite_range); 438 EXPORT_SYMBOL(filemap_fdatawrite_range); 452 439 453 /** 440 /** 454 * filemap_flush - mostly a non-blocking flush 441 * filemap_flush - mostly a non-blocking flush 455 * @mapping: target address_space 442 * @mapping: target address_space 456 * 443 * 457 * This is a mostly non-blocking flush. Not s 444 * This is a mostly non-blocking flush. Not suitable for data-integrity 458 * purposes - I/O may not be started against a 445 * purposes - I/O may not be started against all dirty pages. 459 * 446 * 460 * Return: %0 on success, negative error code 447 * Return: %0 on success, negative error code otherwise. 461 */ 448 */ 462 int filemap_flush(struct address_space *mappin 449 int filemap_flush(struct address_space *mapping) 463 { 450 { 464 return __filemap_fdatawrite(mapping, W 451 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 465 } 452 } 466 EXPORT_SYMBOL(filemap_flush); 453 EXPORT_SYMBOL(filemap_flush); 467 454 468 /** 455 /** 469 * filemap_range_has_page - check if a page ex 456 * filemap_range_has_page - check if a page exists in range. 470 * @mapping: address space within wh 457 * @mapping: address space within which to check 471 * @start_byte: offset in bytes where t 458 * @start_byte: offset in bytes where the range starts 472 * @end_byte: offset in bytes where t 459 * @end_byte: offset in bytes where the range ends (inclusive) 473 * 460 * 474 * Find at least one page in the range supplie 461 * Find at least one page in the range supplied, usually used to check if 475 * direct writing in this range will trigger a 462 * direct writing in this range will trigger a writeback. 476 * 463 * 477 * Return: %true if at least one page exists i 464 * Return: %true if at least one page exists in the specified range, 478 * %false otherwise. 465 * %false otherwise. 479 */ 466 */ 480 bool filemap_range_has_page(struct address_spa 467 bool filemap_range_has_page(struct address_space *mapping, 481 loff_t start_byte, 468 loff_t start_byte, loff_t end_byte) 482 { 469 { 483 struct folio *folio; !! 470 struct page *page; 484 XA_STATE(xas, &mapping->i_pages, start 471 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 485 pgoff_t max = end_byte >> PAGE_SHIFT; 472 pgoff_t max = end_byte >> PAGE_SHIFT; 486 473 487 if (end_byte < start_byte) 474 if (end_byte < start_byte) 488 return false; 475 return false; 489 476 490 rcu_read_lock(); 477 rcu_read_lock(); 491 for (;;) { 478 for (;;) { 492 folio = xas_find(&xas, max); !! 479 page = xas_find(&xas, max); 493 if (xas_retry(&xas, folio)) !! 480 if (xas_retry(&xas, page)) 494 continue; 481 continue; 495 /* Shadow entries don't count 482 /* Shadow entries don't count */ 496 if (xa_is_value(folio)) !! 483 if (xa_is_value(page)) 497 continue; 484 continue; 498 /* 485 /* 499 * We don't need to try to pin 486 * We don't need to try to pin this page; we're about to 500 * release the RCU lock anyway 487 * release the RCU lock anyway. It is enough to know that 501 * there was a page here recen 488 * there was a page here recently. 502 */ 489 */ 503 break; 490 break; 504 } 491 } 505 rcu_read_unlock(); 492 rcu_read_unlock(); 506 493 507 return folio != NULL; !! 494 return page != NULL; 508 } 495 } 509 EXPORT_SYMBOL(filemap_range_has_page); 496 EXPORT_SYMBOL(filemap_range_has_page); 510 497 511 static void __filemap_fdatawait_range(struct a 498 static void __filemap_fdatawait_range(struct address_space *mapping, 512 loff_t st 499 loff_t start_byte, loff_t end_byte) 513 { 500 { 514 pgoff_t index = start_byte >> PAGE_SHI 501 pgoff_t index = start_byte >> PAGE_SHIFT; 515 pgoff_t end = end_byte >> PAGE_SHIFT; 502 pgoff_t end = end_byte >> PAGE_SHIFT; 516 struct folio_batch fbatch; !! 503 struct pagevec pvec; 517 unsigned nr_folios; !! 504 int nr_pages; 518 505 519 folio_batch_init(&fbatch); !! 506 if (end_byte < start_byte) >> 507 return; 520 508 >> 509 pagevec_init(&pvec); 521 while (index <= end) { 510 while (index <= end) { 522 unsigned i; 511 unsigned i; 523 512 524 nr_folios = filemap_get_folios !! 513 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 525 PAGECACHE_TAG_ !! 514 end, PAGECACHE_TAG_WRITEBACK); 526 !! 515 if (!nr_pages) 527 if (!nr_folios) << 528 break; 516 break; 529 517 530 for (i = 0; i < nr_folios; i++ !! 518 for (i = 0; i < nr_pages; i++) { 531 struct folio *folio = !! 519 struct page *page = pvec.pages[i]; 532 520 533 folio_wait_writeback(f !! 521 wait_on_page_writeback(page); >> 522 ClearPageError(page); 534 } 523 } 535 folio_batch_release(&fbatch); !! 524 pagevec_release(&pvec); 536 cond_resched(); 525 cond_resched(); 537 } 526 } 538 } 527 } 539 528 540 /** 529 /** 541 * filemap_fdatawait_range - wait for writebac 530 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structur 531 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where 532 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where 533 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 534 * 546 * Walk the list of under-writeback pages of t 535 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them 536 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 537 * the address space and return it. 549 * 538 * 550 * Since the error status of the address space 539 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the re 540 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 541 * reporting the error. 553 * 542 * 554 * Return: error status of the address space. 543 * Return: error status of the address space. 555 */ 544 */ 556 int filemap_fdatawait_range(struct address_spa 545 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 546 loff_t end_byte) 558 { 547 { 559 __filemap_fdatawait_range(mapping, sta 548 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 549 return filemap_check_errors(mapping); 561 } 550 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 551 EXPORT_SYMBOL(filemap_fdatawait_range); 563 552 564 /** 553 /** 565 * filemap_fdatawait_range_keep_errors - wait 554 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 566 * @mapping: address space structur 555 * @mapping: address space structure to wait for 567 * @start_byte: offset in bytes where 556 * @start_byte: offset in bytes where the range starts 568 * @end_byte: offset in bytes where 557 * @end_byte: offset in bytes where the range ends (inclusive) 569 * 558 * 570 * Walk the list of under-writeback pages of t 559 * Walk the list of under-writeback pages of the given address space in the 571 * given range and wait for all of them. Unli 560 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 572 * this function does not clear error status o 561 * this function does not clear error status of the address space. 573 * 562 * 574 * Use this function if callers don't handle e 563 * Use this function if callers don't handle errors themselves. Expected 575 * call sites are system-wide / filesystem-wid 564 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 576 * fsfreeze(8) 565 * fsfreeze(8) 577 */ 566 */ 578 int filemap_fdatawait_range_keep_errors(struct 567 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 579 loff_t start_byte, loff_t end_ 568 loff_t start_byte, loff_t end_byte) 580 { 569 { 581 __filemap_fdatawait_range(mapping, sta 570 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return filemap_check_and_keep_errors(m 571 return filemap_check_and_keep_errors(mapping); 583 } 572 } 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_err 573 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 585 574 586 /** 575 /** 587 * file_fdatawait_range - wait for writeback t 576 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to addre 577 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where 578 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where 579 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 580 * 592 * Walk the list of under-writeback pages of t 581 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for 582 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f 583 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 584 * 596 * Since the error status of the file is advan 585 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the re 586 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 587 * reporting the error. 599 * 588 * 600 * Return: error status of the address space v 589 * Return: error status of the address space vs. the file->f_wb_err cursor. 601 */ 590 */ 602 int file_fdatawait_range(struct file *file, lo 591 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 592 { 604 struct address_space *mapping = file-> 593 struct address_space *mapping = file->f_mapping; 605 594 606 __filemap_fdatawait_range(mapping, sta 595 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(f 596 return file_check_and_advance_wb_err(file); 608 } 597 } 609 EXPORT_SYMBOL(file_fdatawait_range); 598 EXPORT_SYMBOL(file_fdatawait_range); 610 599 611 /** 600 /** 612 * filemap_fdatawait_keep_errors - wait for wr 601 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait f 602 * @mapping: address space structure to wait for 614 * 603 * 615 * Walk the list of under-writeback pages of t 604 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_f 605 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address 606 * does not clear error status of the address space. 618 * 607 * 619 * Use this function if callers don't handle e 608 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wid 609 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 610 * fsfreeze(8) 622 * 611 * 623 * Return: error status of the address space. 612 * Return: error status of the address space. 624 */ 613 */ 625 int filemap_fdatawait_keep_errors(struct addre 614 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 615 { 627 __filemap_fdatawait_range(mapping, 0, 616 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(m 617 return filemap_check_and_keep_errors(mapping); 629 } 618 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 619 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 620 632 /* Returns true if writeback might be needed o << 633 static bool mapping_needs_writeback(struct add 621 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 622 { 635 return mapping->nrpages; !! 623 return (!dax_mapping(mapping) && mapping->nrpages) || >> 624 (dax_mapping(mapping) && mapping->nrexceptional); 636 } 625 } 637 626 638 bool filemap_range_has_writeback(struct addres !! 627 int filemap_write_and_wait(struct address_space *mapping) 639 loff_t start_ << 640 { 628 { 641 XA_STATE(xas, &mapping->i_pages, start !! 629 int err = 0; 642 pgoff_t max = end_byte >> PAGE_SHIFT; << 643 struct folio *folio; << 644 << 645 if (end_byte < start_byte) << 646 return false; << 647 630 648 rcu_read_lock(); !! 631 if (mapping_needs_writeback(mapping)) { 649 xas_for_each(&xas, folio, max) { !! 632 err = filemap_fdatawrite(mapping); 650 if (xas_retry(&xas, folio)) !! 633 /* 651 continue; !! 634 * Even if the above returned error, the pages may be 652 if (xa_is_value(folio)) !! 635 * written partially (e.g. -ENOSPC), so we wait for it. 653 continue; !! 636 * But the -EIO is special case, it may indicate the worst 654 if (folio_test_dirty(folio) || !! 637 * thing (e.g. bug) happened, so we avoid waiting for it. 655 folio_test_wri !! 638 */ 656 break; !! 639 if (err != -EIO) { >> 640 int err2 = filemap_fdatawait(mapping); >> 641 if (!err) >> 642 err = err2; >> 643 } else { >> 644 /* Clear any previously stored errors */ >> 645 filemap_check_errors(mapping); >> 646 } >> 647 } else { >> 648 err = filemap_check_errors(mapping); 657 } 649 } 658 rcu_read_unlock(); !! 650 return err; 659 return folio != NULL; << 660 } 651 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback) !! 652 EXPORT_SYMBOL(filemap_write_and_wait); 662 653 663 /** 654 /** 664 * filemap_write_and_wait_range - write out & 655 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the page 656 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the rang 657 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the rang 658 * @lend: offset in bytes where the range ends (inclusive) 668 * 659 * 669 * Write out and wait upon file offsets lstart 660 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 661 * 671 * Note that @lend is inclusive (describes the 662 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to 663 * that this function can be used to write to the very end-of-file (end = -1). 673 * 664 * 674 * Return: error status of the address space. 665 * Return: error status of the address space. 675 */ 666 */ 676 int filemap_write_and_wait_range(struct addres 667 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart 668 loff_t lstart, loff_t lend) 678 { 669 { 679 int err = 0, err2; !! 670 int err = 0; 680 << 681 if (lend < lstart) << 682 return 0; << 683 671 684 if (mapping_needs_writeback(mapping)) 672 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_ran 673 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 674 WB_SYNC_ALL); 687 /* !! 675 /* See comment of filemap_write_and_wait() */ 688 * Even if the above returned !! 676 if (err != -EIO) { 689 * written partially (e.g. -EN !! 677 int err2 = filemap_fdatawait_range(mapping, 690 * But the -EIO is special cas !! 678 lstart, lend); 691 * thing (e.g. bug) happened, !! 679 if (!err) 692 */ !! 680 err = err2; 693 if (err != -EIO) !! 681 } else { 694 __filemap_fdatawait_ra !! 682 /* Clear any previously stored errors */ >> 683 filemap_check_errors(mapping); >> 684 } >> 685 } else { >> 686 err = filemap_check_errors(mapping); 695 } 687 } 696 err2 = filemap_check_errors(mapping); << 697 if (!err) << 698 err = err2; << 699 return err; 688 return err; 700 } 689 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 690 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 691 703 void __filemap_set_wb_err(struct address_space 692 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 693 { 705 errseq_t eseq = errseq_set(&mapping->w 694 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 695 707 trace_filemap_set_wb_err(mapping, eseq 696 trace_filemap_set_wb_err(mapping, eseq); 708 } 697 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 698 EXPORT_SYMBOL(__filemap_set_wb_err); 710 699 711 /** 700 /** 712 * file_check_and_advance_wb_err - report wb e 701 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance 702 * and advance wb_err to current one 714 * @file: struct file on which the error is be 703 * @file: struct file on which the error is being reported 715 * 704 * 716 * When userland calls fsync (or something lik 705 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that oc 706 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't 707 * since the file was opened if there haven't been any). 719 * 708 * 720 * Grab the wb_err from the mapping. If it mat 709 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all 710 * then just quickly return 0. The file is all caught up. 722 * 711 * 723 * If it doesn't match, then take the mapping 712 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it wor 713 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f 714 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be re 715 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.) 716 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 717 * 729 * While we handle mapping->wb_err with atomic 718 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we m 719 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file d 720 * the latest value swapped in for this file descriptor. 732 * 721 * 733 * Return: %0 on success, negative error code 722 * Return: %0 on success, negative error code otherwise. 734 */ 723 */ 735 int file_check_and_advance_wb_err(struct file 724 int file_check_and_advance_wb_err(struct file *file) 736 { 725 { 737 int err = 0; 726 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_er 727 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file-> 728 struct address_space *mapping = file->f_mapping; 740 729 741 /* Locklessly handle the common case w 730 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old 731 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use 732 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 733 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 734 old = file->f_wb_err; 746 err = errseq_check_and_advance 735 err = errseq_check_and_advance(&mapping->wb_err, 747 736 &file->f_wb_err); 748 trace_file_check_and_advance_w 737 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 738 spin_unlock(&file->f_lock); 750 } 739 } 751 740 752 /* 741 /* 753 * We're mostly using this function as 742 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/ 743 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had 744 * that the legacy code would have had on these flags. 756 */ 745 */ 757 clear_bit(AS_EIO, &mapping->flags); 746 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 747 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 748 return err; 760 } 749 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 750 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 751 763 /** 752 /** 764 * file_write_and_wait_range - write out & wai 753 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space 754 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the rang 755 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the rang 756 * @lend: offset in bytes where the range ends (inclusive) 768 * 757 * 769 * Write out and wait upon file offsets lstart 758 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 759 * 771 * Note that @lend is inclusive (describes the 760 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to 761 * that this function can be used to write to the very end-of-file (end = -1). 773 * 762 * 774 * After writing out and waiting on the data, 763 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and re 764 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * 765 * 777 * Return: %0 on success, negative error code 766 * Return: %0 on success, negative error code otherwise. 778 */ 767 */ 779 int file_write_and_wait_range(struct file *fil 768 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 769 { 781 int err = 0, err2; 770 int err = 0, err2; 782 struct address_space *mapping = file-> 771 struct address_space *mapping = file->f_mapping; 783 772 784 if (lend < lstart) << 785 return 0; << 786 << 787 if (mapping_needs_writeback(mapping)) 773 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_ran 774 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 775 WB_SYNC_ALL); 790 /* See comment of filemap_writ 776 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 777 if (err != -EIO) 792 __filemap_fdatawait_ra 778 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 779 } 794 err2 = file_check_and_advance_wb_err(f 780 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 781 if (!err) 796 err = err2; 782 err = err2; 797 return err; 783 return err; 798 } 784 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 785 EXPORT_SYMBOL(file_write_and_wait_range); 800 786 801 /** 787 /** 802 * replace_page_cache_folio - replace a pageca !! 788 * replace_page_cache_page - replace a pagecache page with a new one 803 * @old: folio to be replaced !! 789 * @old: page to be replaced 804 * @new: folio to replace with !! 790 * @new: page to replace with 805 * !! 791 * @gfp_mask: allocation mode 806 * This function replaces a folio in the pagec !! 792 * 807 * success it acquires the pagecache reference !! 793 * This function replaces a page in the pagecache with a new one. On 808 * drops it for the old folio. Both the old a !! 794 * success it acquires the pagecache reference for the new page and 809 * locked. This function does not add the new !! 795 * drops it for the old page. Both the old and new pages must be >> 796 * locked. This function does not add the new page to the LRU, the 810 * caller must do that. 797 * caller must do that. 811 * 798 * 812 * The remove + add is atomic. This function 799 * The remove + add is atomic. This function cannot fail. >> 800 * >> 801 * Return: %0 813 */ 802 */ 814 void replace_page_cache_folio(struct folio *ol !! 803 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 815 { 804 { 816 struct address_space *mapping = old->m 805 struct address_space *mapping = old->mapping; 817 void (*free_folio)(struct folio *) = m !! 806 void (*freepage)(struct page *) = mapping->a_ops->freepage; 818 pgoff_t offset = old->index; 807 pgoff_t offset = old->index; 819 XA_STATE(xas, &mapping->i_pages, offse 808 XA_STATE(xas, &mapping->i_pages, offset); >> 809 unsigned long flags; 820 810 821 VM_BUG_ON_FOLIO(!folio_test_locked(old !! 811 VM_BUG_ON_PAGE(!PageLocked(old), old); 822 VM_BUG_ON_FOLIO(!folio_test_locked(new !! 812 VM_BUG_ON_PAGE(!PageLocked(new), new); 823 VM_BUG_ON_FOLIO(new->mapping, new); !! 813 VM_BUG_ON_PAGE(new->mapping, new); 824 814 825 folio_get(new); !! 815 get_page(new); 826 new->mapping = mapping; 816 new->mapping = mapping; 827 new->index = offset; 817 new->index = offset; 828 818 829 mem_cgroup_replace_folio(old, new); !! 819 xas_lock_irqsave(&xas, flags); 830 << 831 xas_lock_irq(&xas); << 832 xas_store(&xas, new); 820 xas_store(&xas, new); 833 821 834 old->mapping = NULL; 822 old->mapping = NULL; 835 /* hugetlb pages do not participate in 823 /* hugetlb pages do not participate in page cache accounting. */ 836 if (!folio_test_hugetlb(old)) !! 824 if (!PageHuge(old)) 837 __lruvec_stat_sub_folio(old, N !! 825 __dec_node_page_state(new, NR_FILE_PAGES); 838 if (!folio_test_hugetlb(new)) !! 826 if (!PageHuge(new)) 839 __lruvec_stat_add_folio(new, N !! 827 __inc_node_page_state(new, NR_FILE_PAGES); 840 if (folio_test_swapbacked(old)) !! 828 if (PageSwapBacked(old)) 841 __lruvec_stat_sub_folio(old, N !! 829 __dec_node_page_state(new, NR_SHMEM); 842 if (folio_test_swapbacked(new)) !! 830 if (PageSwapBacked(new)) 843 __lruvec_stat_add_folio(new, N !! 831 __inc_node_page_state(new, NR_SHMEM); 844 xas_unlock_irq(&xas); !! 832 xas_unlock_irqrestore(&xas, flags); 845 if (free_folio) !! 833 mem_cgroup_migrate(old, new); 846 free_folio(old); !! 834 if (freepage) 847 folio_put(old); !! 835 freepage(old); >> 836 put_page(old); >> 837 >> 838 return 0; 848 } 839 } 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); !! 840 EXPORT_SYMBOL_GPL(replace_page_cache_page); 850 841 851 noinline int __filemap_add_folio(struct addres !! 842 static int __add_to_page_cache_locked(struct page *page, 852 struct folio *folio, pgoff_t i !! 843 struct address_space *mapping, >> 844 pgoff_t offset, gfp_t gfp_mask, >> 845 void **shadowp) 853 { 846 { 854 XA_STATE(xas, &mapping->i_pages, index !! 847 XA_STATE(xas, &mapping->i_pages, offset); 855 void *alloced_shadow = NULL; !! 848 int huge = PageHuge(page); 856 int alloced_order = 0; !! 849 struct mem_cgroup *memcg; 857 bool huge; !! 850 int error; 858 long nr; !! 851 void *old; 859 !! 852 860 VM_BUG_ON_FOLIO(!folio_test_locked(fol !! 853 VM_BUG_ON_PAGE(!PageLocked(page), page); 861 VM_BUG_ON_FOLIO(folio_test_swapbacked( !! 854 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 862 VM_BUG_ON_FOLIO(folio_order(folio) < m << 863 folio); << 864 mapping_set_update(&xas, mapping); 855 mapping_set_update(&xas, mapping); 865 856 866 VM_BUG_ON_FOLIO(index & (folio_nr_page !! 857 if (!huge) { 867 xas_set_order(&xas, index, folio_order !! 858 error = mem_cgroup_try_charge(page, current->mm, 868 huge = folio_test_hugetlb(folio); !! 859 gfp_mask, &memcg, false); 869 nr = folio_nr_pages(folio); !! 860 if (error) 870 !! 861 return error; 871 gfp &= GFP_RECLAIM_MASK; !! 862 } 872 folio_ref_add(folio, nr); << 873 folio->mapping = mapping; << 874 folio->index = xas.xa_index; << 875 863 876 for (;;) { !! 864 get_page(page); 877 int order = -1, split_order = !! 865 page->mapping = mapping; 878 void *entry, *old = NULL; !! 866 page->index = offset; 879 867 >> 868 do { 880 xas_lock_irq(&xas); 869 xas_lock_irq(&xas); 881 xas_for_each_conflict(&xas, en !! 870 old = xas_load(&xas); 882 old = entry; !! 871 if (old && !xa_is_value(old)) 883 if (!xa_is_value(entry !! 872 xas_set_err(&xas, -EEXIST); 884 xas_set_err(&x !! 873 xas_store(&xas, page); 885 goto unlock; !! 874 if (xas_error(&xas)) 886 } !! 875 goto unlock; 887 /* << 888 * If a larger entry e << 889 * it will be the firs << 890 */ << 891 if (order == -1) << 892 order = xas_ge << 893 } << 894 876 895 /* entry may have changed befo !! 877 if (xa_is_value(old)) { 896 if (alloced_order && (old != a !! 878 mapping->nrexceptional--; 897 xas_destroy(&xas); << 898 alloced_order = 0; << 899 } << 900 << 901 if (old) { << 902 if (order > 0 && order << 903 /* How to hand << 904 BUG_ON(shmem_m << 905 if (!alloced_o << 906 split_ << 907 goto u << 908 } << 909 xas_split(&xas << 910 xas_reset(&xas << 911 } << 912 if (shadowp) 879 if (shadowp) 913 *shadowp = old 880 *shadowp = old; 914 } 881 } 915 !! 882 mapping->nrpages++; 916 xas_store(&xas, folio); << 917 if (xas_error(&xas)) << 918 goto unlock; << 919 << 920 mapping->nrpages += nr; << 921 883 922 /* hugetlb pages do not partic 884 /* hugetlb pages do not participate in page cache accounting */ 923 if (!huge) { !! 885 if (!huge) 924 __lruvec_stat_mod_foli !! 886 __inc_node_page_state(page, NR_FILE_PAGES); 925 if (folio_test_pmd_map << 926 __lruvec_stat_ << 927 << 928 } << 929 << 930 unlock: 887 unlock: 931 xas_unlock_irq(&xas); 888 xas_unlock_irq(&xas); 932 !! 889 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 933 /* split needed, alloc here an << 934 if (split_order) { << 935 xas_split_alloc(&xas, << 936 if (xas_error(&xas)) << 937 goto error; << 938 alloced_shadow = old; << 939 alloced_order = split_ << 940 xas_reset(&xas); << 941 continue; << 942 } << 943 << 944 if (!xas_nomem(&xas, gfp)) << 945 break; << 946 } << 947 890 948 if (xas_error(&xas)) 891 if (xas_error(&xas)) 949 goto error; 892 goto error; 950 893 951 trace_mm_filemap_add_to_page_cache(fol !! 894 if (!huge) >> 895 mem_cgroup_commit_charge(page, memcg, false, false); >> 896 trace_mm_filemap_add_to_page_cache(page); 952 return 0; 897 return 0; 953 error: 898 error: 954 folio->mapping = NULL; !! 899 page->mapping = NULL; 955 /* Leave page->index set: truncation r 900 /* Leave page->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); !! 901 if (!huge) >> 902 mem_cgroup_cancel_charge(page, memcg, false); >> 903 put_page(page); 957 return xas_error(&xas); 904 return xas_error(&xas); 958 } 905 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERR !! 906 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 960 907 961 int filemap_add_folio(struct address_space *ma !! 908 /** 962 pgoff_t index, !! 909 * add_to_page_cache_locked - add a locked page to the pagecache >> 910 * @page: page to add >> 911 * @mapping: the page's address_space >> 912 * @offset: page index >> 913 * @gfp_mask: page allocation mode >> 914 * >> 915 * This function is used to add a page to the pagecache. It must be locked. >> 916 * This function does not add the page to the LRU. The caller must do that. >> 917 * >> 918 * Return: %0 on success, negative error code otherwise. >> 919 */ >> 920 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, >> 921 pgoff_t offset, gfp_t gfp_mask) >> 922 { >> 923 return __add_to_page_cache_locked(page, mapping, offset, >> 924 gfp_mask, NULL); >> 925 } >> 926 EXPORT_SYMBOL(add_to_page_cache_locked); >> 927 >> 928 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, >> 929 pgoff_t offset, gfp_t gfp_mask) 963 { 930 { 964 void *shadow = NULL; 931 void *shadow = NULL; 965 int ret; 932 int ret; 966 933 967 ret = mem_cgroup_charge(folio, NULL, g !! 934 __SetPageLocked(page); 968 if (ret) !! 935 ret = __add_to_page_cache_locked(page, mapping, offset, 969 return ret; !! 936 gfp_mask, &shadow); 970 !! 937 if (unlikely(ret)) 971 __folio_set_locked(folio); !! 938 __ClearPageLocked(page); 972 ret = __filemap_add_folio(mapping, fol !! 939 else { 973 if (unlikely(ret)) { << 974 mem_cgroup_uncharge(folio); << 975 __folio_clear_locked(folio); << 976 } else { << 977 /* 940 /* 978 * The folio might have been e !! 941 * The page might have been evicted from cache only 979 * recently, in which case it 942 * recently, in which case it should be activated like 980 * any other repeatedly access !! 943 * any other repeatedly accessed page. 981 * The exception is folios get !! 944 * The exception is pages getting rewritten; evicting other 982 * data from the working set, 945 * data from the working set, only to cache data that will 983 * get overwritten with someth 946 * get overwritten with something else, is a waste of memory. 984 */ 947 */ 985 WARN_ON_ONCE(folio_test_active !! 948 WARN_ON_ONCE(PageActive(page)); 986 if (!(gfp & __GFP_WRITE) && sh !! 949 if (!(gfp_mask & __GFP_WRITE) && shadow) 987 workingset_refault(fol !! 950 workingset_refault(page, shadow); 988 folio_add_lru(folio); !! 951 lru_cache_add(page); 989 } 952 } 990 return ret; 953 return ret; 991 } 954 } 992 EXPORT_SYMBOL_GPL(filemap_add_folio); !! 955 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 993 956 994 #ifdef CONFIG_NUMA 957 #ifdef CONFIG_NUMA 995 struct folio *filemap_alloc_folio_noprof(gfp_t !! 958 struct page *__page_cache_alloc(gfp_t gfp) 996 { 959 { 997 int n; 960 int n; 998 struct folio *folio; !! 961 struct page *page; 999 962 1000 if (cpuset_do_page_mem_spread()) { 963 if (cpuset_do_page_mem_spread()) { 1001 unsigned int cpuset_mems_cook 964 unsigned int cpuset_mems_cookie; 1002 do { 965 do { 1003 cpuset_mems_cookie = 966 cpuset_mems_cookie = read_mems_allowed_begin(); 1004 n = cpuset_mem_spread 967 n = cpuset_mem_spread_node(); 1005 folio = __folio_alloc !! 968 page = __alloc_pages_node(n, gfp, 0); 1006 } while (!folio && read_mems_ !! 969 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 1007 970 1008 return folio; !! 971 return page; 1009 } 972 } 1010 return folio_alloc_noprof(gfp, order) !! 973 return alloc_pages(gfp, 0); 1011 } 974 } 1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof); !! 975 EXPORT_SYMBOL(__page_cache_alloc); 1013 #endif 976 #endif 1014 977 1015 /* 978 /* 1016 * filemap_invalidate_lock_two - lock invalid << 1017 * << 1018 * Lock exclusively invalidate_lock of any pa << 1019 * << 1020 * @mapping1: the first mapping to lock << 1021 * @mapping2: the second mapping to lock << 1022 */ << 1023 void filemap_invalidate_lock_two(struct addre << 1024 struct addre << 1025 { << 1026 if (mapping1 > mapping2) << 1027 swap(mapping1, mapping2); << 1028 if (mapping1) << 1029 down_write(&mapping1->invalid << 1030 if (mapping2 && mapping1 != mapping2) << 1031 down_write_nested(&mapping2-> << 1032 } << 1033 EXPORT_SYMBOL(filemap_invalidate_lock_two); << 1034 << 1035 /* << 1036 * filemap_invalidate_unlock_two - unlock inv << 1037 * << 1038 * Unlock exclusive invalidate_lock of any pa << 1039 * << 1040 * @mapping1: the first mapping to unlock << 1041 * @mapping2: the second mapping to unlock << 1042 */ << 1043 void filemap_invalidate_unlock_two(struct add << 1044 struct add << 1045 { << 1046 if (mapping1) << 1047 up_write(&mapping1->invalidat << 1048 if (mapping2 && mapping1 != mapping2) << 1049 up_write(&mapping2->invalidat << 1050 } << 1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two); << 1052 << 1053 /* << 1054 * In order to wait for pages to become avail 979 * In order to wait for pages to become available there must be 1055 * waitqueues associated with pages. By using 980 * waitqueues associated with pages. By using a hash table of 1056 * waitqueues where the bucket discipline is 981 * waitqueues where the bucket discipline is to maintain all 1057 * waiters on the same queue and wake all whe 982 * waiters on the same queue and wake all when any of the pages 1058 * become available, and for the woken contex 983 * become available, and for the woken contexts to check to be 1059 * sure the appropriate page became available 984 * sure the appropriate page became available, this saves space 1060 * at a cost of "thundering herd" phenomena d 985 * at a cost of "thundering herd" phenomena during rare hash 1061 * collisions. 986 * collisions. 1062 */ 987 */ 1063 #define PAGE_WAIT_TABLE_BITS 8 988 #define PAGE_WAIT_TABLE_BITS 8 1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_ 989 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1065 static wait_queue_head_t folio_wait_table[PAG !! 990 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1066 991 1067 static wait_queue_head_t *folio_waitqueue(str !! 992 static wait_queue_head_t *page_waitqueue(struct page *page) 1068 { 993 { 1069 return &folio_wait_table[hash_ptr(fol !! 994 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1070 } 995 } 1071 996 1072 void __init pagecache_init(void) 997 void __init pagecache_init(void) 1073 { 998 { 1074 int i; 999 int i; 1075 1000 1076 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; 1001 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1077 init_waitqueue_head(&folio_wa !! 1002 init_waitqueue_head(&page_wait_table[i]); 1078 1003 1079 page_writeback_init(); 1004 page_writeback_init(); 1080 } 1005 } 1081 1006 1082 /* !! 1007 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 1083 * The page wait code treats the "wait->flags !! 1008 struct wait_page_key { 1084 * we have multiple different kinds of waits, !! 1009 struct page *page; 1085 * one. !! 1010 int bit_nr; 1086 * !! 1011 int page_match; 1087 * We have: !! 1012 }; 1088 * !! 1013 1089 * (a) no special bits set: !! 1014 struct wait_page_queue { 1090 * !! 1015 struct page *page; 1091 * We're just waiting for the bit to be !! 1016 int bit_nr; 1092 * calls the wakeup function, we set WQ_ !! 1017 wait_queue_entry_t wait; 1093 * and remove it from the wait queue. !! 1018 }; 1094 * !! 1019 1095 * Simple and straightforward. << 1096 * << 1097 * (b) WQ_FLAG_EXCLUSIVE: << 1098 * << 1099 * The waiter is waiting to get the lock << 1100 * be woken up to avoid any thundering h << 1101 * WQ_FLAG_WOKEN bit, wake it up, and re << 1102 * << 1103 * This is the traditional exclusive wai << 1104 * << 1105 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: << 1106 * << 1107 * The waiter is waiting to get the bit, << 1108 * lock to be transferred to it for fair << 1109 * cannot be taken, we stop walking the << 1110 * the waiter. << 1111 * << 1112 * This is the "fair lock handoff" case, << 1113 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to << 1114 * that it now has the lock. << 1115 */ << 1116 static int wake_page_function(wait_queue_entr 1020 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1117 { 1021 { 1118 unsigned int flags; << 1119 struct wait_page_key *key = arg; 1022 struct wait_page_key *key = arg; 1120 struct wait_page_queue *wait_page 1023 struct wait_page_queue *wait_page 1121 = container_of(wait, struct w 1024 = container_of(wait, struct wait_page_queue, wait); 1122 1025 1123 if (!wake_page_match(wait_page, key)) !! 1026 if (wait_page->page != key->page) 1124 return 0; !! 1027 return 0; >> 1028 key->page_match = 1; 1125 1029 1126 /* !! 1030 if (wait_page->bit_nr != key->bit_nr) 1127 * If it's a lock handoff wait, we ge !! 1031 return 0; 1128 * stop walking (and do not wake it u << 1129 */ << 1130 flags = wait->flags; << 1131 if (flags & WQ_FLAG_EXCLUSIVE) { << 1132 if (test_bit(key->bit_nr, &ke << 1133 return -1; << 1134 if (flags & WQ_FLAG_CUSTOM) { << 1135 if (test_and_set_bit( << 1136 return -1; << 1137 flags |= WQ_FLAG_DONE << 1138 } << 1139 } << 1140 1032 1141 /* 1033 /* 1142 * We are holding the wait-queue lock !! 1034 * Stop walking if it's locked. 1143 * is waiting for this will be checki !! 1035 * Is this safe if put_and_wait_on_page_locked() is in use? 1144 * any locking. !! 1036 * Yes: the waker must hold a reference to this page, and if PG_locked 1145 * !! 1037 * has now already been set by another task, that task must also hold 1146 * So update the flags atomically, an !! 1038 * a reference to the *same usage* of this page; so there is no need 1147 * afterwards to avoid any races. Thi !! 1039 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1148 * with the load-acquire in folio_wai << 1149 */ 1040 */ 1150 smp_store_release(&wait->flags, flags !! 1041 if (test_bit(key->bit_nr, &key->page->flags)) 1151 wake_up_state(wait->private, mode); !! 1042 return -1; 1152 1043 1153 /* !! 1044 return autoremove_wake_function(wait, mode, sync, key); 1154 * Ok, we have successfully done what << 1155 * and we can unconditionally remove << 1156 * << 1157 * Note that this pairs with the "fin << 1158 * waiter, and has to be the absolute << 1159 * After this list_del_init(&wait->en << 1160 * might be de-allocated and the proc << 1161 * exited. << 1162 */ << 1163 list_del_init_careful(&wait->entry); << 1164 return (flags & WQ_FLAG_EXCLUSIVE) != << 1165 } 1045 } 1166 1046 1167 static void folio_wake_bit(struct folio *foli !! 1047 static void wake_up_page_bit(struct page *page, int bit_nr) 1168 { 1048 { 1169 wait_queue_head_t *q = folio_waitqueu !! 1049 wait_queue_head_t *q = page_waitqueue(page); 1170 struct wait_page_key key; 1050 struct wait_page_key key; 1171 unsigned long flags; 1051 unsigned long flags; >> 1052 wait_queue_entry_t bookmark; 1172 1053 1173 key.folio = folio; !! 1054 key.page = page; 1174 key.bit_nr = bit_nr; 1055 key.bit_nr = bit_nr; 1175 key.page_match = 0; 1056 key.page_match = 0; 1176 1057 >> 1058 bookmark.flags = 0; >> 1059 bookmark.private = NULL; >> 1060 bookmark.func = NULL; >> 1061 INIT_LIST_HEAD(&bookmark.entry); >> 1062 1177 spin_lock_irqsave(&q->lock, flags); 1063 spin_lock_irqsave(&q->lock, flags); 1178 __wake_up_locked_key(q, TASK_NORMAL, !! 1064 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); >> 1065 >> 1066 while (bookmark.flags & WQ_FLAG_BOOKMARK) { >> 1067 /* >> 1068 * Take a breather from holding the lock, >> 1069 * allow pages that finish wake up asynchronously >> 1070 * to acquire the lock and remove themselves >> 1071 * from wait queue >> 1072 */ >> 1073 spin_unlock_irqrestore(&q->lock, flags); >> 1074 cpu_relax(); >> 1075 spin_lock_irqsave(&q->lock, flags); >> 1076 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); >> 1077 } 1179 1078 1180 /* 1079 /* 1181 * It's possible to miss clearing wai !! 1080 * It is possible for other pages to have collided on the waitqueue 1182 * waiters, but the hashed waitqueue !! 1081 * hash, so in that case check for a page match. That prevents a long- 1183 * That's okay, it's a rare case. The !! 1082 * term waiter 1184 * 1083 * 1185 * Note that, depending on the page p !! 1084 * It is still possible to miss a case here, when we woke page waiters 1186 * other), the flag may be cleared in !! 1085 * and removed them from the waitqueue, but there are still other 1187 * but that is not required for corre !! 1086 * page waiters. 1188 */ !! 1087 */ 1189 if (!waitqueue_active(q) || !key.page !! 1088 if (!waitqueue_active(q) || !key.page_match) { 1190 folio_clear_waiters(folio); !! 1089 ClearPageWaiters(page); 1191 !! 1090 /* >> 1091 * It's possible to miss clearing Waiters here, when we woke >> 1092 * our page waiters, but the hashed waitqueue has waiters for >> 1093 * other pages on it. >> 1094 * >> 1095 * That's okay, it's a rare case. The next waker will clear it. >> 1096 */ >> 1097 } 1192 spin_unlock_irqrestore(&q->lock, flag 1098 spin_unlock_irqrestore(&q->lock, flags); 1193 } 1099 } 1194 1100 >> 1101 static void wake_up_page(struct page *page, int bit) >> 1102 { >> 1103 if (!PageWaiters(page)) >> 1104 return; >> 1105 wake_up_page_bit(page, bit); >> 1106 } >> 1107 1195 /* 1108 /* 1196 * A choice of three behaviors for folio_wait !! 1109 * A choice of three behaviors for wait_on_page_bit_common(): 1197 */ 1110 */ 1198 enum behavior { 1111 enum behavior { 1199 EXCLUSIVE, /* Hold ref to page a 1112 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1200 * __folio_lock() wai !! 1113 * __lock_page() waiting on then setting PG_locked. 1201 */ 1114 */ 1202 SHARED, /* Hold ref to page a 1115 SHARED, /* Hold ref to page and check the bit when woken, like 1203 * folio_wait_writeba !! 1116 * wait_on_page_writeback() waiting on PG_writeback. 1204 */ 1117 */ 1205 DROP, /* Drop ref to page b 1118 DROP, /* Drop ref to page before wait, no check when woken, 1206 * like folio_put_wai !! 1119 * like put_and_wait_on_page_locked() on PG_locked. 1207 */ 1120 */ 1208 }; 1121 }; 1209 1122 1210 /* !! 1123 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1211 * Attempt to check (or get) the folio flag, !! 1124 struct page *page, int bit_nr, int state, enum behavior behavior) 1212 * if successful. << 1213 */ << 1214 static inline bool folio_trylock_flag(struct << 1215 struc << 1216 { 1125 { 1217 if (wait->flags & WQ_FLAG_EXCLUSIVE) << 1218 if (test_and_set_bit(bit_nr, << 1219 return false; << 1220 } else if (test_bit(bit_nr, &folio->f << 1221 return false; << 1222 << 1223 wait->flags |= WQ_FLAG_WOKEN | WQ_FLA << 1224 return true; << 1225 } << 1226 << 1227 /* How many times do we accept lock stealing << 1228 int sysctl_page_lock_unfairness = 5; << 1229 << 1230 static inline int folio_wait_bit_common(struc << 1231 int state, enum behavior beha << 1232 { << 1233 wait_queue_head_t *q = folio_waitqueu << 1234 int unfairness = sysctl_page_lock_unf << 1235 struct wait_page_queue wait_page; 1126 struct wait_page_queue wait_page; 1236 wait_queue_entry_t *wait = &wait_page 1127 wait_queue_entry_t *wait = &wait_page.wait; >> 1128 bool bit_is_set; 1237 bool thrashing = false; 1129 bool thrashing = false; >> 1130 bool delayacct = false; 1238 unsigned long pflags; 1131 unsigned long pflags; 1239 bool in_thrashing; !! 1132 int ret = 0; 1240 1133 1241 if (bit_nr == PG_locked && 1134 if (bit_nr == PG_locked && 1242 !folio_test_uptodate(folio) && fo !! 1135 !PageUptodate(page) && PageWorkingset(page)) { 1243 delayacct_thrashing_start(&in !! 1136 if (!PageSwapBacked(page)) { >> 1137 delayacct_thrashing_start(); >> 1138 delayacct = true; >> 1139 } 1244 psi_memstall_enter(&pflags); 1140 psi_memstall_enter(&pflags); 1245 thrashing = true; 1141 thrashing = true; 1246 } 1142 } 1247 1143 1248 init_wait(wait); 1144 init_wait(wait); >> 1145 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1249 wait->func = wake_page_function; 1146 wait->func = wake_page_function; 1250 wait_page.folio = folio; !! 1147 wait_page.page = page; 1251 wait_page.bit_nr = bit_nr; 1148 wait_page.bit_nr = bit_nr; 1252 1149 1253 repeat: << 1254 wait->flags = 0; << 1255 if (behavior == EXCLUSIVE) { << 1256 wait->flags = WQ_FLAG_EXCLUSI << 1257 if (--unfairness < 0) << 1258 wait->flags |= WQ_FLA << 1259 } << 1260 << 1261 /* << 1262 * Do one last check whether we can g << 1263 * page bit synchronously. << 1264 * << 1265 * Do the folio_set_waiters() marking << 1266 * to let any waker we _just_ missed << 1267 * need to wake us up (otherwise they << 1268 * even go to the slow case that look << 1269 * page queue), and add ourselves to << 1270 * queue if we need to sleep. << 1271 * << 1272 * This part needs to be done under t << 1273 * lock to avoid races. << 1274 */ << 1275 spin_lock_irq(&q->lock); << 1276 folio_set_waiters(folio); << 1277 if (!folio_trylock_flag(folio, bit_nr << 1278 __add_wait_queue_entry_tail(q << 1279 spin_unlock_irq(&q->lock); << 1280 << 1281 /* << 1282 * From now on, all the logic will be << 1283 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE << 1284 * see whether the page bit testing h << 1285 * been done by the wake function. << 1286 * << 1287 * We can drop our reference to the f << 1288 */ << 1289 if (behavior == DROP) << 1290 folio_put(folio); << 1291 << 1292 /* << 1293 * Note that until the "finish_wait() << 1294 * we see the WQ_FLAG_WOKEN flag, we << 1295 * be very careful with the 'wait->fl << 1296 * we may race with a waker that sets << 1297 */ << 1298 for (;;) { 1150 for (;;) { 1299 unsigned int flags; !! 1151 spin_lock_irq(&q->lock); >> 1152 >> 1153 if (likely(list_empty(&wait->entry))) { >> 1154 __add_wait_queue_entry_tail(q, wait); >> 1155 SetPageWaiters(page); >> 1156 } 1300 1157 1301 set_current_state(state); 1158 set_current_state(state); 1302 1159 1303 /* Loop until we've been woke !! 1160 spin_unlock_irq(&q->lock); 1304 flags = smp_load_acquire(&wai !! 1161 1305 if (!(flags & WQ_FLAG_WOKEN)) !! 1162 bit_is_set = test_bit(bit_nr, &page->flags); 1306 if (signal_pending_st !! 1163 if (behavior == DROP) 1307 break; !! 1164 put_page(page); 1308 1165 >> 1166 if (likely(bit_is_set)) 1309 io_schedule(); 1167 io_schedule(); 1310 continue; !! 1168 >> 1169 if (behavior == EXCLUSIVE) { >> 1170 if (!test_and_set_bit_lock(bit_nr, &page->flags)) >> 1171 break; >> 1172 } else if (behavior == SHARED) { >> 1173 if (!test_bit(bit_nr, &page->flags)) >> 1174 break; 1311 } 1175 } 1312 1176 1313 /* If we were non-exclusive, !! 1177 if (signal_pending_state(state, current)) { 1314 if (behavior != EXCLUSIVE) !! 1178 ret = -EINTR; 1315 break; 1179 break; >> 1180 } 1316 1181 1317 /* If the waker got the lock !! 1182 if (behavior == DROP) { 1318 if (flags & WQ_FLAG_DONE) !! 1183 /* >> 1184 * We can no longer safely access page->flags: >> 1185 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, >> 1186 * there is a risk of waiting forever on a page reused >> 1187 * for something that keeps it locked indefinitely. >> 1188 * But best check for -EINTR above before breaking. >> 1189 */ 1319 break; 1190 break; 1320 !! 1191 } 1321 /* << 1322 * Otherwise, if we're gettin << 1323 * try to get it ourselves. << 1324 * << 1325 * And if that fails, we'll h << 1326 */ << 1327 if (unlikely(test_and_set_bit << 1328 goto repeat; << 1329 << 1330 wait->flags |= WQ_FLAG_DONE; << 1331 break; << 1332 } 1192 } 1333 1193 1334 /* << 1335 * If a signal happened, this 'finish << 1336 * waiter from the wait-queues, but t << 1337 * set. That's ok. The next wakeup wi << 1338 * to do it here would be difficult a << 1339 */ << 1340 finish_wait(q, wait); 1194 finish_wait(q, wait); 1341 1195 1342 if (thrashing) { 1196 if (thrashing) { 1343 delayacct_thrashing_end(&in_t !! 1197 if (delayacct) >> 1198 delayacct_thrashing_end(); 1344 psi_memstall_leave(&pflags); 1199 psi_memstall_leave(&pflags); 1345 } 1200 } 1346 1201 1347 /* 1202 /* 1348 * NOTE! The wait->flags weren't stab !! 1203 * A signal could leave PageWaiters set. Clearing it here if 1349 * 'finish_wait()', and we could have !! 1204 * !waitqueue_active would be possible (by open-coding finish_wait), 1350 * to a signal, and had a wakeup even !! 1205 * but still fail to catch it in the case of wait hash collision. We 1351 * test but before the 'finish_wait() !! 1206 * already can fail to clear wait hash collision cases, so don't 1352 * !! 1207 * bother with signals either. 1353 * So only after the finish_wait() ca << 1354 * if we got woken up or not, so we c << 1355 * return value based on that state w << 1356 * << 1357 * Also note that WQ_FLAG_WOKEN is su << 1358 * waiter, but an exclusive one requi << 1359 */ 1208 */ 1360 if (behavior == EXCLUSIVE) << 1361 return wait->flags & WQ_FLAG_ << 1362 1209 1363 return wait->flags & WQ_FLAG_WOKEN ? !! 1210 return ret; 1364 } << 1365 << 1366 #ifdef CONFIG_MIGRATION << 1367 /** << 1368 * migration_entry_wait_on_locked - Wait for << 1369 * @entry: migration swap entry. << 1370 * @ptl: already locked ptl. This function wi << 1371 * << 1372 * Wait for a migration entry referencing the << 1373 * equivalent to put_and_wait_on_page_locked( << 1374 * this can be called without taking a refere << 1375 * should be called while holding the ptl for << 1376 * the page. << 1377 * << 1378 * Returns after unlocking the ptl. << 1379 * << 1380 * This follows the same logic as folio_wait_ << 1381 * there. << 1382 */ << 1383 void migration_entry_wait_on_locked(swp_entry << 1384 __releases(ptl) << 1385 { << 1386 struct wait_page_queue wait_page; << 1387 wait_queue_entry_t *wait = &wait_page << 1388 bool thrashing = false; << 1389 unsigned long pflags; << 1390 bool in_thrashing; << 1391 wait_queue_head_t *q; << 1392 struct folio *folio = pfn_swap_entry_ << 1393 << 1394 q = folio_waitqueue(folio); << 1395 if (!folio_test_uptodate(folio) && fo << 1396 delayacct_thrashing_start(&in << 1397 psi_memstall_enter(&pflags); << 1398 thrashing = true; << 1399 } << 1400 << 1401 init_wait(wait); << 1402 wait->func = wake_page_function; << 1403 wait_page.folio = folio; << 1404 wait_page.bit_nr = PG_locked; << 1405 wait->flags = 0; << 1406 << 1407 spin_lock_irq(&q->lock); << 1408 folio_set_waiters(folio); << 1409 if (!folio_trylock_flag(folio, PG_loc << 1410 __add_wait_queue_entry_tail(q << 1411 spin_unlock_irq(&q->lock); << 1412 << 1413 /* << 1414 * If a migration entry exists for th << 1415 * a valid reference to the page, and << 1416 * migration entry. So the page is va << 1417 */ << 1418 spin_unlock(ptl); << 1419 << 1420 for (;;) { << 1421 unsigned int flags; << 1422 << 1423 set_current_state(TASK_UNINTE << 1424 << 1425 /* Loop until we've been woke << 1426 flags = smp_load_acquire(&wai << 1427 if (!(flags & WQ_FLAG_WOKEN)) << 1428 if (signal_pending_st << 1429 break; << 1430 << 1431 io_schedule(); << 1432 continue; << 1433 } << 1434 break; << 1435 } << 1436 << 1437 finish_wait(q, wait); << 1438 << 1439 if (thrashing) { << 1440 delayacct_thrashing_end(&in_t << 1441 psi_memstall_leave(&pflags); << 1442 } << 1443 } 1211 } 1444 #endif << 1445 1212 1446 void folio_wait_bit(struct folio *folio, int !! 1213 void wait_on_page_bit(struct page *page, int bit_nr) 1447 { 1214 { 1448 folio_wait_bit_common(folio, bit_nr, !! 1215 wait_queue_head_t *q = page_waitqueue(page); >> 1216 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1449 } 1217 } 1450 EXPORT_SYMBOL(folio_wait_bit); !! 1218 EXPORT_SYMBOL(wait_on_page_bit); 1451 1219 1452 int folio_wait_bit_killable(struct folio *fol !! 1220 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1453 { 1221 { 1454 return folio_wait_bit_common(folio, b !! 1222 wait_queue_head_t *q = page_waitqueue(page); >> 1223 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1455 } 1224 } 1456 EXPORT_SYMBOL(folio_wait_bit_killable); !! 1225 EXPORT_SYMBOL(wait_on_page_bit_killable); 1457 1226 1458 /** 1227 /** 1459 * folio_put_wait_locked - Drop a reference a !! 1228 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1460 * @folio: The folio to wait for. !! 1229 * @page: The page to wait for. 1461 * @state: The sleep state (TASK_KILLABLE, TA << 1462 * 1230 * 1463 * The caller should hold a reference on @fol !! 1231 * The caller should hold a reference on @page. They expect the page to 1464 * become unlocked relatively soon, but do no 1232 * become unlocked relatively soon, but do not wish to hold up migration 1465 * (for example) by holding the reference whi !! 1233 * (for example) by holding the reference while waiting for the page to 1466 * come unlocked. After this function return 1234 * come unlocked. After this function returns, the caller should not 1467 * dereference @folio. !! 1235 * dereference @page. 1468 * << 1469 * Return: 0 if the folio was unlocked or -EI << 1470 */ 1236 */ 1471 static int folio_put_wait_locked(struct folio !! 1237 void put_and_wait_on_page_locked(struct page *page) 1472 { 1238 { 1473 return folio_wait_bit_common(folio, P !! 1239 wait_queue_head_t *q; >> 1240 >> 1241 page = compound_head(page); >> 1242 q = page_waitqueue(page); >> 1243 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1474 } 1244 } 1475 1245 1476 /** 1246 /** 1477 * folio_add_wait_queue - Add an arbitrary wa !! 1247 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1478 * @folio: Folio defining the wait queue of i !! 1248 * @page: Page defining the wait queue of interest 1479 * @waiter: Waiter to add to the queue 1249 * @waiter: Waiter to add to the queue 1480 * 1250 * 1481 * Add an arbitrary @waiter to the wait queue !! 1251 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1482 */ 1252 */ 1483 void folio_add_wait_queue(struct folio *folio !! 1253 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1484 { 1254 { 1485 wait_queue_head_t *q = folio_waitqueu !! 1255 wait_queue_head_t *q = page_waitqueue(page); 1486 unsigned long flags; 1256 unsigned long flags; 1487 1257 1488 spin_lock_irqsave(&q->lock, flags); 1258 spin_lock_irqsave(&q->lock, flags); 1489 __add_wait_queue_entry_tail(q, waiter 1259 __add_wait_queue_entry_tail(q, waiter); 1490 folio_set_waiters(folio); !! 1260 SetPageWaiters(page); 1491 spin_unlock_irqrestore(&q->lock, flag 1261 spin_unlock_irqrestore(&q->lock, flags); 1492 } 1262 } 1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue); !! 1263 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1494 << 1495 /** << 1496 * folio_unlock - Unlock a locked folio. << 1497 * @folio: The folio. << 1498 * << 1499 * Unlocks the folio and wakes up any thread << 1500 * << 1501 * Context: May be called from interrupt or p << 1502 * called from NMI context. << 1503 */ << 1504 void folio_unlock(struct folio *folio) << 1505 { << 1506 /* Bit 7 allows x86 to check the byte << 1507 BUILD_BUG_ON(PG_waiters != 7); << 1508 BUILD_BUG_ON(PG_locked > 7); << 1509 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1510 if (folio_xor_flags_has_waiters(folio << 1511 folio_wake_bit(folio, PG_lock << 1512 } << 1513 EXPORT_SYMBOL(folio_unlock); << 1514 1264 1515 /** !! 1265 #ifndef clear_bit_unlock_is_negative_byte 1516 * folio_end_read - End read on a folio. << 1517 * @folio: The folio. << 1518 * @success: True if all reads completed succ << 1519 * << 1520 * When all reads against a folio have comple << 1521 * call this function to let the pagecache kn << 1522 * are outstanding. This will unlock the fol << 1523 * sleeping on the lock. The folio will also << 1524 * reads succeeded. << 1525 * << 1526 * Context: May be called from interrupt or p << 1527 * called from NMI context. << 1528 */ << 1529 void folio_end_read(struct folio *folio, bool << 1530 { << 1531 unsigned long mask = 1 << PG_locked; << 1532 << 1533 /* Must be in bottom byte for x86 to << 1534 BUILD_BUG_ON(PG_uptodate > 7); << 1535 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1536 VM_BUG_ON_FOLIO(folio_test_uptodate(f << 1537 << 1538 if (likely(success)) << 1539 mask |= 1 << PG_uptodate; << 1540 if (folio_xor_flags_has_waiters(folio << 1541 folio_wake_bit(folio, PG_lock << 1542 } << 1543 EXPORT_SYMBOL(folio_end_read); << 1544 1266 1545 /** !! 1267 /* 1546 * folio_end_private_2 - Clear PG_private_2 a !! 1268 * PG_waiters is the high bit in the same byte as PG_lock. 1547 * @folio: The folio. << 1548 * 1269 * 1549 * Clear the PG_private_2 bit on a folio and !! 1270 * On x86 (and on many other architectures), we can clear PG_lock and 1550 * it. The folio reference held for PG_priva !! 1271 * test the sign bit at the same time. But if the architecture does >> 1272 * not support that special operation, we just do this all by hand >> 1273 * instead. 1551 * 1274 * 1552 * This is, for example, used when a netfs fo !! 1275 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1553 * disk cache, thereby allowing writes to the !! 1276 * being cleared, but a memory barrier should be unneccssary since it is 1554 * serialised. !! 1277 * in the same byte as PG_locked. 1555 */ 1278 */ 1556 void folio_end_private_2(struct folio *folio) !! 1279 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1557 { 1280 { 1558 VM_BUG_ON_FOLIO(!folio_test_private_2 !! 1281 clear_bit_unlock(nr, mem); 1559 clear_bit_unlock(PG_private_2, folio_ !! 1282 /* smp_mb__after_atomic(); */ 1560 folio_wake_bit(folio, PG_private_2); !! 1283 return test_bit(PG_waiters, mem); 1561 folio_put(folio); << 1562 } 1284 } 1563 EXPORT_SYMBOL(folio_end_private_2); !! 1285 >> 1286 #endif 1564 1287 1565 /** 1288 /** 1566 * folio_wait_private_2 - Wait for PG_private !! 1289 * unlock_page - unlock a locked page 1567 * @folio: The folio to wait on. !! 1290 * @page: the page 1568 * 1291 * 1569 * Wait for PG_private_2 to be cleared on a f !! 1292 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). >> 1293 * Also wakes sleepers in wait_on_page_writeback() because the wakeup >> 1294 * mechanism between PageLocked pages and PageWriteback pages is shared. >> 1295 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. >> 1296 * >> 1297 * Note that this depends on PG_waiters being the sign bit in the byte >> 1298 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to >> 1299 * clear the PG_locked bit and test PG_waiters at the same time fairly >> 1300 * portably (architectures that do LL/SC can test any bit, while x86 can >> 1301 * test the sign bit). 1570 */ 1302 */ 1571 void folio_wait_private_2(struct folio *folio !! 1303 void unlock_page(struct page *page) 1572 { 1304 { 1573 while (folio_test_private_2(folio)) !! 1305 BUILD_BUG_ON(PG_waiters != 7); 1574 folio_wait_bit(folio, PG_priv !! 1306 page = compound_head(page); >> 1307 VM_BUG_ON_PAGE(!PageLocked(page), page); >> 1308 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) >> 1309 wake_up_page_bit(page, PG_locked); 1575 } 1310 } 1576 EXPORT_SYMBOL(folio_wait_private_2); !! 1311 EXPORT_SYMBOL(unlock_page); 1577 1312 1578 /** 1313 /** 1579 * folio_wait_private_2_killable - Wait for P !! 1314 * end_page_writeback - end writeback against a page 1580 * @folio: The folio to wait on. !! 1315 * @page: the page 1581 * << 1582 * Wait for PG_private_2 to be cleared on a f << 1583 * received by the calling task. << 1584 * << 1585 * Return: << 1586 * - 0 if successful. << 1587 * - -EINTR if a fatal signal was encountered << 1588 */ 1316 */ 1589 int folio_wait_private_2_killable(struct foli !! 1317 void end_page_writeback(struct page *page) 1590 { 1318 { 1591 int ret = 0; !! 1319 /* 1592 !! 1320 * TestClearPageReclaim could be used here but it is an atomic 1593 while (folio_test_private_2(folio)) { !! 1321 * operation and overkill in this particular case. Failing to 1594 ret = folio_wait_bit_killable !! 1322 * shuffle a page marked for immediate reclaim is too mild to 1595 if (ret < 0) !! 1323 * justify taking an atomic operation penalty at the end of 1596 break; !! 1324 * ever page writeback. >> 1325 */ >> 1326 if (PageReclaim(page)) { >> 1327 ClearPageReclaim(page); >> 1328 rotate_reclaimable_page(page); 1597 } 1329 } 1598 1330 1599 return ret; !! 1331 if (!test_clear_page_writeback(page)) >> 1332 BUG(); >> 1333 >> 1334 smp_mb__after_atomic(); >> 1335 wake_up_page(page, PG_writeback); 1600 } 1336 } 1601 EXPORT_SYMBOL(folio_wait_private_2_killable); !! 1337 EXPORT_SYMBOL(end_page_writeback); 1602 1338 1603 /** !! 1339 /* 1604 * folio_end_writeback - End writeback agains !! 1340 * After completing I/O on a page, call this routine to update the page 1605 * @folio: The folio. !! 1341 * flags appropriately 1606 * << 1607 * The folio must actually be under writeback << 1608 * << 1609 * Context: May be called from process or int << 1610 */ 1342 */ 1611 void folio_end_writeback(struct folio *folio) !! 1343 void page_endio(struct page *page, bool is_write, int err) 1612 { 1344 { 1613 VM_BUG_ON_FOLIO(!folio_test_writeback !! 1345 if (!is_write) { >> 1346 if (!err) { >> 1347 SetPageUptodate(page); >> 1348 } else { >> 1349 ClearPageUptodate(page); >> 1350 SetPageError(page); >> 1351 } >> 1352 unlock_page(page); >> 1353 } else { >> 1354 if (err) { >> 1355 struct address_space *mapping; 1614 1356 1615 /* !! 1357 SetPageError(page); 1616 * folio_test_clear_reclaim() could b !! 1358 mapping = page_mapping(page); 1617 * atomic operation and overkill in t !! 1359 if (mapping) 1618 * to shuffle a folio marked for imme !! 1360 mapping_set_error(mapping, err); 1619 * a gain to justify taking an atomic !! 1361 } 1620 * end of every folio writeback. !! 1362 end_page_writeback(page); 1621 */ << 1622 if (folio_test_reclaim(folio)) { << 1623 folio_clear_reclaim(folio); << 1624 folio_rotate_reclaimable(foli << 1625 } 1363 } 1626 << 1627 /* << 1628 * Writeback does not hold a folio re << 1629 * on truncation to wait for the clea << 1630 * But here we must make sure that th << 1631 * reused before the folio_wake_bit() << 1632 */ << 1633 folio_get(folio); << 1634 if (__folio_end_writeback(folio)) << 1635 folio_wake_bit(folio, PG_writ << 1636 acct_reclaim_writeback(folio); << 1637 folio_put(folio); << 1638 } 1364 } 1639 EXPORT_SYMBOL(folio_end_writeback); !! 1365 EXPORT_SYMBOL_GPL(page_endio); 1640 1366 1641 /** 1367 /** 1642 * __folio_lock - Get a lock on the folio, as !! 1368 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1643 * @folio: The folio to lock !! 1369 * @__page: the page to lock 1644 */ 1370 */ 1645 void __folio_lock(struct folio *folio) !! 1371 void __lock_page(struct page *__page) 1646 { 1372 { 1647 folio_wait_bit_common(folio, PG_locke !! 1373 struct page *page = compound_head(__page); >> 1374 wait_queue_head_t *q = page_waitqueue(page); >> 1375 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1648 EXCLUSIVE); 1376 EXCLUSIVE); 1649 } 1377 } 1650 EXPORT_SYMBOL(__folio_lock); !! 1378 EXPORT_SYMBOL(__lock_page); 1651 1379 1652 int __folio_lock_killable(struct folio *folio !! 1380 int __lock_page_killable(struct page *__page) 1653 { 1381 { 1654 return folio_wait_bit_common(folio, P !! 1382 struct page *page = compound_head(__page); >> 1383 wait_queue_head_t *q = page_waitqueue(page); >> 1384 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1655 EXCLU 1385 EXCLUSIVE); 1656 } 1386 } 1657 EXPORT_SYMBOL_GPL(__folio_lock_killable); !! 1387 EXPORT_SYMBOL_GPL(__lock_page_killable); 1658 << 1659 static int __folio_lock_async(struct folio *f << 1660 { << 1661 struct wait_queue_head *q = folio_wai << 1662 int ret; << 1663 << 1664 wait->folio = folio; << 1665 wait->bit_nr = PG_locked; << 1666 << 1667 spin_lock_irq(&q->lock); << 1668 __add_wait_queue_entry_tail(q, &wait- << 1669 folio_set_waiters(folio); << 1670 ret = !folio_trylock(folio); << 1671 /* << 1672 * If we were successful now, we know << 1673 * waitqueue as we're still under the << 1674 * safe to remove and return success, << 1675 * isn't going to trigger. << 1676 */ << 1677 if (!ret) << 1678 __remove_wait_queue(q, &wait- << 1679 else << 1680 ret = -EIOCBQUEUED; << 1681 spin_unlock_irq(&q->lock); << 1682 return ret; << 1683 } << 1684 1388 1685 /* 1389 /* 1686 * Return values: 1390 * Return values: 1687 * 0 - folio is locked. !! 1391 * 1 - page is locked; mmap_sem is still held. 1688 * non-zero - folio is not locked. !! 1392 * 0 - page is not locked. 1689 * mmap_lock or per-VMA lock has been rel !! 1393 * mmap_sem has been released (up_read()), unless flags had both 1690 * vma_end_read()), unless flags had both !! 1394 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1691 * FAULT_FLAG_RETRY_NOWAIT set, in which !! 1395 * which case mmap_sem is still held. 1692 * !! 1396 * 1693 * If neither ALLOW_RETRY nor KILLABLE are se !! 1397 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1694 * with the folio locked and the mmap_lock/pe !! 1398 * with the page locked and the mmap_sem unperturbed. 1695 */ 1399 */ 1696 vm_fault_t __folio_lock_or_retry(struct folio !! 1400 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, >> 1401 unsigned int flags) 1697 { 1402 { 1698 unsigned int flags = vmf->flags; !! 1403 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1699 << 1700 if (fault_flag_allow_retry_first(flag << 1701 /* 1404 /* 1702 * CAUTION! In this case, mma !! 1405 * CAUTION! In this case, mmap_sem is not released 1703 * released even though retur !! 1406 * even though return 0. 1704 */ 1407 */ 1705 if (flags & FAULT_FLAG_RETRY_ 1408 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1706 return VM_FAULT_RETRY !! 1409 return 0; 1707 1410 1708 release_fault_lock(vmf); !! 1411 up_read(&mm->mmap_sem); 1709 if (flags & FAULT_FLAG_KILLAB 1412 if (flags & FAULT_FLAG_KILLABLE) 1710 folio_wait_locked_kil !! 1413 wait_on_page_locked_killable(page); 1711 else 1414 else 1712 folio_wait_locked(fol !! 1415 wait_on_page_locked(page); 1713 return VM_FAULT_RETRY; !! 1416 return 0; 1714 } << 1715 if (flags & FAULT_FLAG_KILLABLE) { << 1716 bool ret; << 1717 << 1718 ret = __folio_lock_killable(f << 1719 if (ret) { << 1720 release_fault_lock(vm << 1721 return VM_FAULT_RETRY << 1722 } << 1723 } else { 1417 } else { 1724 __folio_lock(folio); !! 1418 if (flags & FAULT_FLAG_KILLABLE) { 1725 } !! 1419 int ret; 1726 1420 1727 return 0; !! 1421 ret = __lock_page_killable(page); >> 1422 if (ret) { >> 1423 up_read(&mm->mmap_sem); >> 1424 return 0; >> 1425 } >> 1426 } else >> 1427 __lock_page(page); >> 1428 return 1; >> 1429 } 1728 } 1430 } 1729 1431 1730 /** 1432 /** 1731 * page_cache_next_miss() - Find the next gap 1433 * page_cache_next_miss() - Find the next gap in the page cache. 1732 * @mapping: Mapping. 1434 * @mapping: Mapping. 1733 * @index: Index. 1435 * @index: Index. 1734 * @max_scan: Maximum range to search. 1436 * @max_scan: Maximum range to search. 1735 * 1437 * 1736 * Search the range [index, min(index + max_s 1438 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1737 * gap with the lowest index. 1439 * gap with the lowest index. 1738 * 1440 * 1739 * This function may be called under the rcu_ 1441 * This function may be called under the rcu_read_lock. However, this will 1740 * not atomically search a snapshot of the ca 1442 * not atomically search a snapshot of the cache at a single point in time. 1741 * For example, if a gap is created at index 1443 * For example, if a gap is created at index 5, then subsequently a gap is 1742 * created at index 10, page_cache_next_miss 1444 * created at index 10, page_cache_next_miss covering both indices may 1743 * return 10 if called under the rcu_read_loc 1445 * return 10 if called under the rcu_read_lock. 1744 * 1446 * 1745 * Return: The index of the gap if found, oth 1447 * Return: The index of the gap if found, otherwise an index outside the 1746 * range specified (in which case 'return - i 1448 * range specified (in which case 'return - index >= max_scan' will be true). 1747 * In the rare case of index wrap-around, 0 w 1449 * In the rare case of index wrap-around, 0 will be returned. 1748 */ 1450 */ 1749 pgoff_t page_cache_next_miss(struct address_s 1451 pgoff_t page_cache_next_miss(struct address_space *mapping, 1750 pgoff_t index, u 1452 pgoff_t index, unsigned long max_scan) 1751 { 1453 { 1752 XA_STATE(xas, &mapping->i_pages, inde 1454 XA_STATE(xas, &mapping->i_pages, index); 1753 1455 1754 while (max_scan--) { 1456 while (max_scan--) { 1755 void *entry = xas_next(&xas); 1457 void *entry = xas_next(&xas); 1756 if (!entry || xa_is_value(ent 1458 if (!entry || xa_is_value(entry)) 1757 return xas.xa_index; !! 1459 break; 1758 if (xas.xa_index == 0) 1460 if (xas.xa_index == 0) 1759 return 0; !! 1461 break; 1760 } 1462 } 1761 1463 1762 return index + max_scan; !! 1464 return xas.xa_index; 1763 } 1465 } 1764 EXPORT_SYMBOL(page_cache_next_miss); 1466 EXPORT_SYMBOL(page_cache_next_miss); 1765 1467 1766 /** 1468 /** 1767 * page_cache_prev_miss() - Find the previous 1469 * page_cache_prev_miss() - Find the previous gap in the page cache. 1768 * @mapping: Mapping. 1470 * @mapping: Mapping. 1769 * @index: Index. 1471 * @index: Index. 1770 * @max_scan: Maximum range to search. 1472 * @max_scan: Maximum range to search. 1771 * 1473 * 1772 * Search the range [max(index - max_scan + 1 1474 * Search the range [max(index - max_scan + 1, 0), index] for the 1773 * gap with the highest index. 1475 * gap with the highest index. 1774 * 1476 * 1775 * This function may be called under the rcu_ 1477 * This function may be called under the rcu_read_lock. However, this will 1776 * not atomically search a snapshot of the ca 1478 * not atomically search a snapshot of the cache at a single point in time. 1777 * For example, if a gap is created at index 1479 * For example, if a gap is created at index 10, then subsequently a gap is 1778 * created at index 5, page_cache_prev_miss() 1480 * created at index 5, page_cache_prev_miss() covering both indices may 1779 * return 5 if called under the rcu_read_lock 1481 * return 5 if called under the rcu_read_lock. 1780 * 1482 * 1781 * Return: The index of the gap if found, oth 1483 * Return: The index of the gap if found, otherwise an index outside the 1782 * range specified (in which case 'index - re 1484 * range specified (in which case 'index - return >= max_scan' will be true). 1783 * In the rare case of wrap-around, ULONG_MAX 1485 * In the rare case of wrap-around, ULONG_MAX will be returned. 1784 */ 1486 */ 1785 pgoff_t page_cache_prev_miss(struct address_s 1487 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1786 pgoff_t index, u 1488 pgoff_t index, unsigned long max_scan) 1787 { 1489 { 1788 XA_STATE(xas, &mapping->i_pages, inde 1490 XA_STATE(xas, &mapping->i_pages, index); 1789 1491 1790 while (max_scan--) { 1492 while (max_scan--) { 1791 void *entry = xas_prev(&xas); 1493 void *entry = xas_prev(&xas); 1792 if (!entry || xa_is_value(ent 1494 if (!entry || xa_is_value(entry)) 1793 break; 1495 break; 1794 if (xas.xa_index == ULONG_MAX 1496 if (xas.xa_index == ULONG_MAX) 1795 break; 1497 break; 1796 } 1498 } 1797 1499 1798 return xas.xa_index; 1500 return xas.xa_index; 1799 } 1501 } 1800 EXPORT_SYMBOL(page_cache_prev_miss); 1502 EXPORT_SYMBOL(page_cache_prev_miss); 1801 1503 1802 /* !! 1504 /** 1803 * Lockless page cache protocol: !! 1505 * find_get_entry - find and get a page cache entry 1804 * On the lookup side: << 1805 * 1. Load the folio from i_pages << 1806 * 2. Increment the refcount if it's not zero << 1807 * 3. If the folio is not found by xas_reload << 1808 * << 1809 * On the removal side: << 1810 * A. Freeze the page (by zeroing the refcoun << 1811 * B. Remove the page from i_pages << 1812 * C. Return the page to the page allocator << 1813 * << 1814 * This means that any page may have its refe << 1815 * increased by a speculative page cache (or << 1816 * be allocated by another user before the RC << 1817 * Because the refcount temporarily acquired << 1818 * last refcount on the page, any page alloca << 1819 * folio_put(). << 1820 */ << 1821 << 1822 /* << 1823 * filemap_get_entry - Get a page cache entry << 1824 * @mapping: the address_space to search 1506 * @mapping: the address_space to search 1825 * @index: The page cache index. !! 1507 * @offset: the page cache index >> 1508 * >> 1509 * Looks up the page cache slot at @mapping & @offset. If there is a >> 1510 * page cache page, it is returned with an increased refcount. 1826 * 1511 * 1827 * Looks up the page cache entry at @mapping !! 1512 * If the slot holds a shadow entry of a previously evicted page, or a 1828 * it is returned with an increased refcount. !! 1513 * swap entry from shmem/tmpfs, it is returned. 1829 * of a previously evicted folio, or a swap e << 1830 * it is returned without further action. << 1831 * 1514 * 1832 * Return: The folio, swap or shadow entry, % !! 1515 * Return: the found page or shadow entry, %NULL if nothing is found. 1833 */ 1516 */ 1834 void *filemap_get_entry(struct address_space !! 1517 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1835 { 1518 { 1836 XA_STATE(xas, &mapping->i_pages, inde !! 1519 XA_STATE(xas, &mapping->i_pages, offset); 1837 struct folio *folio; !! 1520 struct page *head, *page; 1838 1521 1839 rcu_read_lock(); 1522 rcu_read_lock(); 1840 repeat: 1523 repeat: 1841 xas_reset(&xas); 1524 xas_reset(&xas); 1842 folio = xas_load(&xas); !! 1525 page = xas_load(&xas); 1843 if (xas_retry(&xas, folio)) !! 1526 if (xas_retry(&xas, page)) 1844 goto repeat; 1527 goto repeat; 1845 /* 1528 /* 1846 * A shadow entry of a recently evict 1529 * A shadow entry of a recently evicted page, or a swap entry from 1847 * shmem/tmpfs. Return it without at 1530 * shmem/tmpfs. Return it without attempting to raise page count. 1848 */ 1531 */ 1849 if (!folio || xa_is_value(folio)) !! 1532 if (!page || xa_is_value(page)) 1850 goto out; 1533 goto out; 1851 1534 1852 if (!folio_try_get(folio)) !! 1535 head = compound_head(page); >> 1536 if (!page_cache_get_speculative(head)) 1853 goto repeat; 1537 goto repeat; 1854 1538 1855 if (unlikely(folio != xas_reload(&xas !! 1539 /* The page was split under us? */ 1856 folio_put(folio); !! 1540 if (compound_head(page) != head) { >> 1541 put_page(head); >> 1542 goto repeat; >> 1543 } >> 1544 >> 1545 /* >> 1546 * Has the page moved? >> 1547 * This is part of the lockless pagecache protocol. See >> 1548 * include/linux/pagemap.h for details. >> 1549 */ >> 1550 if (unlikely(page != xas_reload(&xas))) { >> 1551 put_page(head); 1857 goto repeat; 1552 goto repeat; 1858 } 1553 } 1859 out: 1554 out: 1860 rcu_read_unlock(); 1555 rcu_read_unlock(); 1861 1556 1862 return folio; !! 1557 return page; 1863 } 1558 } >> 1559 EXPORT_SYMBOL(find_get_entry); 1864 1560 1865 /** 1561 /** 1866 * __filemap_get_folio - Find and get a refer !! 1562 * find_lock_entry - locate, pin and lock a page cache entry 1867 * @mapping: The address_space to search. !! 1563 * @mapping: the address_space to search 1868 * @index: The page index. !! 1564 * @offset: the page cache index 1869 * @fgp_flags: %FGP flags modify how the foli << 1870 * @gfp: Memory allocation flags to use if %F << 1871 * 1565 * 1872 * Looks up the page cache entry at @mapping !! 1566 * Looks up the page cache slot at @mapping & @offset. If there is a >> 1567 * page cache page, it is returned locked and with an increased >> 1568 * refcount. 1873 * 1569 * 1874 * If %FGP_LOCK or %FGP_CREAT are specified t !! 1570 * If the slot holds a shadow entry of a previously evicted page, or a 1875 * if the %GFP flags specified for %FGP_CREAT !! 1571 * swap entry from shmem/tmpfs, it is returned. 1876 * 1572 * 1877 * If this function returns a folio, it is re !! 1573 * find_lock_entry() may sleep. 1878 * 1574 * 1879 * Return: The found folio or an ERR_PTR() ot !! 1575 * Return: the found page or shadow entry, %NULL if nothing is found. 1880 */ 1576 */ 1881 struct folio *__filemap_get_folio(struct addr !! 1577 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1882 fgf_t fgp_flags, gfp_t gfp) << 1883 { 1578 { 1884 struct folio *folio; !! 1579 struct page *page; 1885 1580 1886 repeat: 1581 repeat: 1887 folio = filemap_get_entry(mapping, in !! 1582 page = find_get_entry(mapping, offset); 1888 if (xa_is_value(folio)) !! 1583 if (page && !xa_is_value(page)) { 1889 folio = NULL; !! 1584 lock_page(page); 1890 if (!folio) !! 1585 /* Has the page been truncated? */ >> 1586 if (unlikely(page_mapping(page) != mapping)) { >> 1587 unlock_page(page); >> 1588 put_page(page); >> 1589 goto repeat; >> 1590 } >> 1591 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); >> 1592 } >> 1593 return page; >> 1594 } >> 1595 EXPORT_SYMBOL(find_lock_entry); >> 1596 >> 1597 /** >> 1598 * pagecache_get_page - find and get a page reference >> 1599 * @mapping: the address_space to search >> 1600 * @offset: the page index >> 1601 * @fgp_flags: PCG flags >> 1602 * @gfp_mask: gfp mask to use for the page cache data page allocation >> 1603 * >> 1604 * Looks up the page cache slot at @mapping & @offset. >> 1605 * >> 1606 * PCG flags modify how the page is returned. >> 1607 * >> 1608 * @fgp_flags can be: >> 1609 * >> 1610 * - FGP_ACCESSED: the page will be marked accessed >> 1611 * - FGP_LOCK: Page is return locked >> 1612 * - FGP_CREAT: If page is not present then a new page is allocated using >> 1613 * @gfp_mask and added to the page cache and the VM's LRU >> 1614 * list. The page is returned locked and with an increased >> 1615 * refcount. >> 1616 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do >> 1617 * its own locking dance if the page is already in cache, or unlock the page >> 1618 * before returning if we had to add the page to pagecache. >> 1619 * >> 1620 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even >> 1621 * if the GFP flags specified for FGP_CREAT are atomic. >> 1622 * >> 1623 * If there is a page cache page, it is returned with an increased refcount. >> 1624 * >> 1625 * Return: the found page or %NULL otherwise. >> 1626 */ >> 1627 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, >> 1628 int fgp_flags, gfp_t gfp_mask) >> 1629 { >> 1630 struct page *page; >> 1631 >> 1632 repeat: >> 1633 page = find_get_entry(mapping, offset); >> 1634 if (xa_is_value(page)) >> 1635 page = NULL; >> 1636 if (!page) 1891 goto no_page; 1637 goto no_page; 1892 1638 1893 if (fgp_flags & FGP_LOCK) { 1639 if (fgp_flags & FGP_LOCK) { 1894 if (fgp_flags & FGP_NOWAIT) { 1640 if (fgp_flags & FGP_NOWAIT) { 1895 if (!folio_trylock(fo !! 1641 if (!trylock_page(page)) { 1896 folio_put(fol !! 1642 put_page(page); 1897 return ERR_PT !! 1643 return NULL; 1898 } 1644 } 1899 } else { 1645 } else { 1900 folio_lock(folio); !! 1646 lock_page(page); 1901 } 1647 } 1902 1648 1903 /* Has the page been truncate 1649 /* Has the page been truncated? */ 1904 if (unlikely(folio->mapping ! !! 1650 if (unlikely(page->mapping != mapping)) { 1905 folio_unlock(folio); !! 1651 unlock_page(page); 1906 folio_put(folio); !! 1652 put_page(page); 1907 goto repeat; 1653 goto repeat; 1908 } 1654 } 1909 VM_BUG_ON_FOLIO(!folio_contai !! 1655 VM_BUG_ON_PAGE(page->index != offset, page); 1910 } 1656 } 1911 1657 1912 if (fgp_flags & FGP_ACCESSED) 1658 if (fgp_flags & FGP_ACCESSED) 1913 folio_mark_accessed(folio); !! 1659 mark_page_accessed(page); 1914 else if (fgp_flags & FGP_WRITE) { << 1915 /* Clear idle flag for buffer << 1916 if (folio_test_idle(folio)) << 1917 folio_clear_idle(foli << 1918 } << 1919 1660 1920 if (fgp_flags & FGP_STABLE) << 1921 folio_wait_stable(folio); << 1922 no_page: 1661 no_page: 1923 if (!folio && (fgp_flags & FGP_CREAT) !! 1662 if (!page && (fgp_flags & FGP_CREAT)) { 1924 unsigned int min_order = mapp << 1925 unsigned int order = max(min_ << 1926 int err; 1663 int err; 1927 index = mapping_align_index(m !! 1664 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1928 !! 1665 gfp_mask |= __GFP_WRITE; 1929 if ((fgp_flags & FGP_WRITE) & << 1930 gfp |= __GFP_WRITE; << 1931 if (fgp_flags & FGP_NOFS) 1666 if (fgp_flags & FGP_NOFS) 1932 gfp &= ~__GFP_FS; !! 1667 gfp_mask &= ~__GFP_FS; 1933 if (fgp_flags & FGP_NOWAIT) { << 1934 gfp &= ~GFP_KERNEL; << 1935 gfp |= GFP_NOWAIT | _ << 1936 } << 1937 if (WARN_ON_ONCE(!(fgp_flags << 1938 fgp_flags |= FGP_LOCK << 1939 1668 1940 if (order > mapping_max_folio !! 1669 page = __page_cache_alloc(gfp_mask); 1941 order = mapping_max_f !! 1670 if (!page) 1942 /* If we're not aligned, allo !! 1671 return NULL; 1943 if (index & ((1UL << order) - << 1944 order = __ffs(index); << 1945 << 1946 do { << 1947 gfp_t alloc_gfp = gfp << 1948 1672 1949 err = -ENOMEM; !! 1673 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1950 if (order > min_order !! 1674 fgp_flags |= FGP_LOCK; 1951 alloc_gfp |= << 1952 folio = filemap_alloc << 1953 if (!folio) << 1954 continue; << 1955 1675 1956 /* Init accessed so a !! 1676 /* Init accessed so avoid atomic mark_page_accessed later */ 1957 if (fgp_flags & FGP_A !! 1677 if (fgp_flags & FGP_ACCESSED) 1958 __folio_set_r !! 1678 __SetPageReferenced(page); 1959 1679 1960 err = filemap_add_fol !! 1680 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1961 if (!err) !! 1681 if (unlikely(err)) { 1962 break; !! 1682 put_page(page); 1963 folio_put(folio); !! 1683 page = NULL; 1964 folio = NULL; !! 1684 if (err == -EEXIST) 1965 } while (order-- > min_order) !! 1685 goto repeat; >> 1686 } 1966 1687 1967 if (err == -EEXIST) << 1968 goto repeat; << 1969 if (err) << 1970 return ERR_PTR(err); << 1971 /* 1688 /* 1972 * filemap_add_folio locks th !! 1689 * add_to_page_cache_lru locks the page, and for mmap we expect 1973 * we expect an unlocked page !! 1690 * an unlocked page. 1974 */ 1691 */ 1975 if (folio && (fgp_flags & FGP !! 1692 if (page && (fgp_flags & FGP_FOR_MMAP)) 1976 folio_unlock(folio); !! 1693 unlock_page(page); 1977 } << 1978 << 1979 if (!folio) << 1980 return ERR_PTR(-ENOENT); << 1981 return folio; << 1982 } << 1983 EXPORT_SYMBOL(__filemap_get_folio); << 1984 << 1985 static inline struct folio *find_get_entry(st << 1986 xa_mark_t mark) << 1987 { << 1988 struct folio *folio; << 1989 << 1990 retry: << 1991 if (mark == XA_PRESENT) << 1992 folio = xas_find(xas, max); << 1993 else << 1994 folio = xas_find_marked(xas, << 1995 << 1996 if (xas_retry(xas, folio)) << 1997 goto retry; << 1998 /* << 1999 * A shadow entry of a recently evict << 2000 * entry from shmem/tmpfs or a DAX en << 2001 * without attempting to raise page c << 2002 */ << 2003 if (!folio || xa_is_value(folio)) << 2004 return folio; << 2005 << 2006 if (!folio_try_get(folio)) << 2007 goto reset; << 2008 << 2009 if (unlikely(folio != xas_reload(xas) << 2010 folio_put(folio); << 2011 goto reset; << 2012 } 1694 } 2013 1695 2014 return folio; !! 1696 return page; 2015 reset: << 2016 xas_reset(xas); << 2017 goto retry; << 2018 } 1697 } >> 1698 EXPORT_SYMBOL(pagecache_get_page); 2019 1699 2020 /** 1700 /** 2021 * find_get_entries - gang pagecache lookup 1701 * find_get_entries - gang pagecache lookup 2022 * @mapping: The address_space to search 1702 * @mapping: The address_space to search 2023 * @start: The starting page cache index 1703 * @start: The starting page cache index 2024 * @end: The final page index (inclusi !! 1704 * @nr_entries: The maximum number of entries 2025 * @fbatch: Where the resulting entries a !! 1705 * @entries: Where the resulting entries are placed 2026 * @indices: The cache indices correspondi 1706 * @indices: The cache indices corresponding to the entries in @entries 2027 * 1707 * 2028 * find_get_entries() will search for and ret !! 1708 * find_get_entries() will search for and return a group of up to 2029 * the mapping. The entries are placed in @f !! 1709 * @nr_entries entries in the mapping. The entries are placed at 2030 * takes a reference on any actual folios it !! 1710 * @entries. find_get_entries() takes a reference against any actual 2031 * !! 1711 * pages it returns. 2032 * The entries have ascending indexes. The i !! 1712 * 2033 * due to not-present entries or large folios !! 1713 * The search returns a group of mapping-contiguous page cache entries >> 1714 * with ascending indexes. There may be holes in the indices due to >> 1715 * not-present pages. 2034 * 1716 * 2035 * Any shadow entries of evicted folios, or s !! 1717 * Any shadow entries of evicted pages, or swap entries from 2036 * shmem/tmpfs, are included in the returned 1718 * shmem/tmpfs, are included in the returned array. 2037 * 1719 * 2038 * Return: The number of entries which were f !! 1720 * Return: the number of pages and shadow entries which were found. 2039 */ 1721 */ 2040 unsigned find_get_entries(struct address_spac !! 1722 unsigned find_get_entries(struct address_space *mapping, 2041 pgoff_t end, struct folio_bat !! 1723 pgoff_t start, unsigned int nr_entries, >> 1724 struct page **entries, pgoff_t *indices) 2042 { 1725 { 2043 XA_STATE(xas, &mapping->i_pages, *sta !! 1726 XA_STATE(xas, &mapping->i_pages, start); 2044 struct folio *folio; !! 1727 struct page *page; >> 1728 unsigned int ret = 0; >> 1729 >> 1730 if (!nr_entries) >> 1731 return 0; 2045 1732 2046 rcu_read_lock(); 1733 rcu_read_lock(); 2047 while ((folio = find_get_entry(&xas, !! 1734 xas_for_each(&xas, page, ULONG_MAX) { 2048 indices[fbatch->nr] = xas.xa_ !! 1735 struct page *head; 2049 if (!folio_batch_add(fbatch, !! 1736 if (xas_retry(&xas, page)) 2050 break; !! 1737 continue; 2051 } !! 1738 /* >> 1739 * A shadow entry of a recently evicted page, a swap >> 1740 * entry from shmem/tmpfs or a DAX entry. Return it >> 1741 * without attempting to raise page count. >> 1742 */ >> 1743 if (xa_is_value(page)) >> 1744 goto export; 2052 1745 2053 if (folio_batch_count(fbatch)) { !! 1746 head = compound_head(page); 2054 unsigned long nr; !! 1747 if (!page_cache_get_speculative(head)) 2055 int idx = folio_batch_count(f !! 1748 goto retry; 2056 !! 1749 2057 folio = fbatch->folios[idx]; !! 1750 /* The page was split under us? */ 2058 if (!xa_is_value(folio)) !! 1751 if (compound_head(page) != head) 2059 nr = folio_nr_pages(f !! 1752 goto put_page; 2060 else !! 1753 2061 nr = 1 << xa_get_orde !! 1754 /* Has the page moved? */ 2062 *start = round_down(indices[i !! 1755 if (unlikely(page != xas_reload(&xas))) >> 1756 goto put_page; >> 1757 >> 1758 export: >> 1759 indices[ret] = xas.xa_index; >> 1760 entries[ret] = page; >> 1761 if (++ret == nr_entries) >> 1762 break; >> 1763 continue; >> 1764 put_page: >> 1765 put_page(head); >> 1766 retry: >> 1767 xas_reset(&xas); 2063 } 1768 } 2064 rcu_read_unlock(); 1769 rcu_read_unlock(); 2065 !! 1770 return ret; 2066 return folio_batch_count(fbatch); << 2067 } 1771 } 2068 1772 2069 /** 1773 /** 2070 * find_lock_entries - Find a batch of pageca !! 1774 * find_get_pages_range - gang pagecache lookup 2071 * @mapping: The address_space to search. !! 1775 * @mapping: The address_space to search 2072 * @start: The starting page cache index !! 1776 * @start: The starting page index 2073 * @end: The final page index (inclusi !! 1777 * @end: The final page index (inclusive) 2074 * @fbatch: Where the resulting entries a !! 1778 * @nr_pages: The maximum number of pages 2075 * @indices: The cache indices of the entr !! 1779 * @pages: Where the resulting pages are placed 2076 * << 2077 * find_lock_entries() will return a batch of << 2078 * Swap, shadow and DAX entries are included. << 2079 * locked and with an incremented refcount. << 2080 * by somebody else or under writeback are sk << 2081 * partially outside the range are not return << 2082 * << 2083 * The entries have ascending indexes. The i << 2084 * due to not-present entries, large folios, << 2085 * locked or folios under writeback. << 2086 * 1780 * 2087 * Return: The number of entries which were f !! 1781 * find_get_pages_range() will search for and return a group of up to @nr_pages 2088 */ !! 1782 * pages in the mapping starting at index @start and up to index @end 2089 unsigned find_lock_entries(struct address_spa !! 1783 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2090 pgoff_t end, struct folio_bat !! 1784 * a reference against the returned pages. >> 1785 * >> 1786 * The search returns a group of mapping-contiguous pages with ascending >> 1787 * indexes. There may be holes in the indices due to not-present pages. >> 1788 * We also update @start to index the next page for the traversal. >> 1789 * >> 1790 * Return: the number of pages which were found. If this number is >> 1791 * smaller than @nr_pages, the end of specified range has been >> 1792 * reached. >> 1793 */ >> 1794 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, >> 1795 pgoff_t end, unsigned int nr_pages, >> 1796 struct page **pages) 2091 { 1797 { 2092 XA_STATE(xas, &mapping->i_pages, *sta 1798 XA_STATE(xas, &mapping->i_pages, *start); 2093 struct folio *folio; !! 1799 struct page *page; >> 1800 unsigned ret = 0; >> 1801 >> 1802 if (unlikely(!nr_pages)) >> 1803 return 0; 2094 1804 2095 rcu_read_lock(); 1805 rcu_read_lock(); 2096 while ((folio = find_get_entry(&xas, !! 1806 xas_for_each(&xas, page, end) { 2097 unsigned long base; !! 1807 struct page *head; 2098 unsigned long nr; !! 1808 if (xas_retry(&xas, page)) 2099 !! 1809 continue; 2100 if (!xa_is_value(folio)) { !! 1810 /* Skip over shadow, swap and DAX entries */ 2101 nr = folio_nr_pages(f !! 1811 if (xa_is_value(page)) 2102 base = folio->index; !! 1812 continue; 2103 /* Omit large folio w << 2104 if (base < *start) << 2105 goto put; << 2106 /* Omit large folio w << 2107 if (base + nr - 1 > e << 2108 goto put; << 2109 if (!folio_trylock(fo << 2110 goto put; << 2111 if (folio->mapping != << 2112 folio_test_writeb << 2113 goto unlock; << 2114 VM_BUG_ON_FOLIO(!foli << 2115 folio << 2116 } else { << 2117 nr = 1 << xas_get_ord << 2118 base = xas.xa_index & << 2119 /* Omit order>0 value << 2120 if (base < *start) << 2121 continue; << 2122 /* Omit order>0 value << 2123 if (base + nr - 1 > e << 2124 break; << 2125 } << 2126 1813 2127 /* Update start now so that l !! 1814 head = compound_head(page); 2128 *start = base + nr; !! 1815 if (!page_cache_get_speculative(head)) 2129 indices[fbatch->nr] = xas.xa_ !! 1816 goto retry; 2130 if (!folio_batch_add(fbatch, !! 1817 2131 break; !! 1818 /* The page was split under us? */ >> 1819 if (compound_head(page) != head) >> 1820 goto put_page; >> 1821 >> 1822 /* Has the page moved? */ >> 1823 if (unlikely(page != xas_reload(&xas))) >> 1824 goto put_page; >> 1825 >> 1826 pages[ret] = page; >> 1827 if (++ret == nr_pages) { >> 1828 *start = xas.xa_index + 1; >> 1829 goto out; >> 1830 } 2132 continue; 1831 continue; 2133 unlock: !! 1832 put_page: 2134 folio_unlock(folio); !! 1833 put_page(head); 2135 put: !! 1834 retry: 2136 folio_put(folio); !! 1835 xas_reset(&xas); 2137 } 1836 } >> 1837 >> 1838 /* >> 1839 * We come here when there is no page beyond @end. We take care to not >> 1840 * overflow the index @start as it confuses some of the callers. This >> 1841 * breaks the iteration when there is a page at index -1 but that is >> 1842 * already broken anyway. >> 1843 */ >> 1844 if (end == (pgoff_t)-1) >> 1845 *start = (pgoff_t)-1; >> 1846 else >> 1847 *start = end + 1; >> 1848 out: 2138 rcu_read_unlock(); 1849 rcu_read_unlock(); 2139 1850 2140 return folio_batch_count(fbatch); !! 1851 return ret; 2141 } 1852 } 2142 1853 2143 /** 1854 /** 2144 * filemap_get_folios - Get a batch of folios !! 1855 * find_get_pages_contig - gang contiguous pagecache lookup 2145 * @mapping: The address_space to search 1856 * @mapping: The address_space to search 2146 * @start: The starting page index !! 1857 * @index: The starting page index 2147 * @end: The final page index (inclusi !! 1858 * @nr_pages: The maximum number of pages 2148 * @fbatch: The batch to fill. !! 1859 * @pages: Where the resulting pages are placed 2149 * 1860 * 2150 * Search for and return a batch of folios in !! 1861 * find_get_pages_contig() works exactly like find_get_pages(), except 2151 * index @start and up to index @end (inclusi !! 1862 * that the returned number of pages are guaranteed to be contiguous. 2152 * in @fbatch with an elevated reference coun << 2153 * 1863 * 2154 * Return: The number of folios which were fo !! 1864 * Return: the number of pages which were found. 2155 * We also update @start to index the next fo << 2156 */ 1865 */ 2157 unsigned filemap_get_folios(struct address_sp !! 1866 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2158 pgoff_t end, struct folio_bat !! 1867 unsigned int nr_pages, struct page **pages) 2159 { 1868 { 2160 return filemap_get_folios_tag(mapping !! 1869 XA_STATE(xas, &mapping->i_pages, index); 2161 } !! 1870 struct page *page; 2162 EXPORT_SYMBOL(filemap_get_folios); !! 1871 unsigned int ret = 0; 2163 << 2164 /** << 2165 * filemap_get_folios_contig - Get a batch of << 2166 * @mapping: The address_space to search << 2167 * @start: The starting page index << 2168 * @end: The final page index (inclusi << 2169 * @fbatch: The batch to fill << 2170 * << 2171 * filemap_get_folios_contig() works exactly << 2172 * except the returned folios are guaranteed << 2173 * not return all contiguous folios if the ba << 2174 * << 2175 * Return: The number of folios found. << 2176 * Also update @start to be positioned for tr << 2177 */ << 2178 1872 2179 unsigned filemap_get_folios_contig(struct add !! 1873 if (unlikely(!nr_pages)) 2180 pgoff_t *start, pgoff_t end, !! 1874 return 0; 2181 { << 2182 XA_STATE(xas, &mapping->i_pages, *sta << 2183 unsigned long nr; << 2184 struct folio *folio; << 2185 1875 2186 rcu_read_lock(); 1876 rcu_read_lock(); 2187 !! 1877 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2188 for (folio = xas_load(&xas); folio && !! 1878 struct page *head; 2189 folio = xas_next(&xas !! 1879 if (xas_retry(&xas, page)) 2190 if (xas_retry(&xas, folio)) << 2191 continue; 1880 continue; 2192 /* 1881 /* 2193 * If the entry has been swap 1882 * If the entry has been swapped out, we can stop looking. 2194 * No current caller is looki 1883 * No current caller is looking for DAX entries. 2195 */ 1884 */ 2196 if (xa_is_value(folio)) !! 1885 if (xa_is_value(page)) 2197 goto update_start; !! 1886 break; 2198 << 2199 /* If we landed in the middle << 2200 if (xa_is_sibling(folio)) << 2201 goto update_start; << 2202 1887 2203 if (!folio_try_get(folio)) !! 1888 head = compound_head(page); >> 1889 if (!page_cache_get_speculative(head)) 2204 goto retry; 1890 goto retry; 2205 1891 2206 if (unlikely(folio != xas_rel !! 1892 /* The page was split under us? */ 2207 goto put_folio; !! 1893 if (compound_head(page) != head) >> 1894 goto put_page; >> 1895 >> 1896 /* Has the page moved? */ >> 1897 if (unlikely(page != xas_reload(&xas))) >> 1898 goto put_page; 2208 1899 2209 if (!folio_batch_add(fbatch, !! 1900 pages[ret] = page; 2210 nr = folio_nr_pages(f !! 1901 if (++ret == nr_pages) 2211 *start = folio->index !! 1902 break; 2212 goto out; << 2213 } << 2214 continue; 1903 continue; 2215 put_folio: !! 1904 put_page: 2216 folio_put(folio); !! 1905 put_page(head); 2217 << 2218 retry: 1906 retry: 2219 xas_reset(&xas); 1907 xas_reset(&xas); 2220 } 1908 } 2221 << 2222 update_start: << 2223 nr = folio_batch_count(fbatch); << 2224 << 2225 if (nr) { << 2226 folio = fbatch->folios[nr - 1 << 2227 *start = folio_next_index(fol << 2228 } << 2229 out: << 2230 rcu_read_unlock(); 1909 rcu_read_unlock(); 2231 return folio_batch_count(fbatch); !! 1910 return ret; 2232 } 1911 } 2233 EXPORT_SYMBOL(filemap_get_folios_contig); !! 1912 EXPORT_SYMBOL(find_get_pages_contig); 2234 1913 2235 /** 1914 /** 2236 * filemap_get_folios_tag - Get a batch of fo !! 1915 * find_get_pages_range_tag - find and return pages in given range matching @tag 2237 * @mapping: The address_space to search !! 1916 * @mapping: the address_space to search 2238 * @start: The starting page index !! 1917 * @index: the starting page index 2239 * @end: The final page index (inclusi !! 1918 * @end: The final page index (inclusive) 2240 * @tag: The tag index !! 1919 * @tag: the tag index 2241 * @fbatch: The batch to fill !! 1920 * @nr_pages: the maximum number of pages 2242 * !! 1921 * @pages: where the resulting pages are placed 2243 * The first folio may start before @start; i !! 1922 * 2244 * @start. The final folio may extend beyond !! 1923 * Like find_get_pages, except we only return pages which are tagged with 2245 * contain @end. The folios have ascending i !! 1924 * @tag. We update @index to index the next page for the traversal. 2246 * between the folios if there are indices wh << 2247 * page cache. If folios are added to or rem << 2248 * while this is running, they may or may not << 2249 * Only returns folios that are tagged with @ << 2250 * 1925 * 2251 * Return: The number of folios found. !! 1926 * Return: the number of pages which were found. 2252 * Also update @start to index the next folio << 2253 */ 1927 */ 2254 unsigned filemap_get_folios_tag(struct addres !! 1928 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2255 pgoff_t end, xa_mark_ !! 1929 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, >> 1930 struct page **pages) 2256 { 1931 { 2257 XA_STATE(xas, &mapping->i_pages, *sta !! 1932 XA_STATE(xas, &mapping->i_pages, *index); 2258 struct folio *folio; !! 1933 struct page *page; >> 1934 unsigned ret = 0; >> 1935 >> 1936 if (unlikely(!nr_pages)) >> 1937 return 0; 2259 1938 2260 rcu_read_lock(); 1939 rcu_read_lock(); 2261 while ((folio = find_get_entry(&xas, !! 1940 xas_for_each_marked(&xas, page, end, tag) { >> 1941 struct page *head; >> 1942 if (xas_retry(&xas, page)) >> 1943 continue; 2262 /* 1944 /* 2263 * Shadow entries should neve 1945 * Shadow entries should never be tagged, but this iteration 2264 * is lockless so there is a 1946 * is lockless so there is a window for page reclaim to evict 2265 * a page we saw tagged. Skip !! 1947 * a page we saw tagged. Skip over it. 2266 */ 1948 */ 2267 if (xa_is_value(folio)) !! 1949 if (xa_is_value(page)) 2268 continue; 1950 continue; 2269 if (!folio_batch_add(fbatch, !! 1951 2270 unsigned long nr = fo !! 1952 head = compound_head(page); 2271 *start = folio->index !! 1953 if (!page_cache_get_speculative(head)) >> 1954 goto retry; >> 1955 >> 1956 /* The page was split under us? */ >> 1957 if (compound_head(page) != head) >> 1958 goto put_page; >> 1959 >> 1960 /* Has the page moved? */ >> 1961 if (unlikely(page != xas_reload(&xas))) >> 1962 goto put_page; >> 1963 >> 1964 pages[ret] = page; >> 1965 if (++ret == nr_pages) { >> 1966 *index = xas.xa_index + 1; 2272 goto out; 1967 goto out; 2273 } 1968 } >> 1969 continue; >> 1970 put_page: >> 1971 put_page(head); >> 1972 retry: >> 1973 xas_reset(&xas); 2274 } 1974 } >> 1975 2275 /* 1976 /* 2276 * We come here when there is no page !! 1977 * We come here when we got to @end. We take care to not overflow the 2277 * overflow the index @start as it co !! 1978 * index @index as it confuses some of the callers. This breaks the 2278 * breaks the iteration when there is !! 1979 * iteration when there is a page at index -1 but that is already 2279 * already broke anyway. !! 1980 * broken anyway. 2280 */ 1981 */ 2281 if (end == (pgoff_t)-1) 1982 if (end == (pgoff_t)-1) 2282 *start = (pgoff_t)-1; !! 1983 *index = (pgoff_t)-1; 2283 else 1984 else 2284 *start = end + 1; !! 1985 *index = end + 1; 2285 out: 1986 out: 2286 rcu_read_unlock(); 1987 rcu_read_unlock(); 2287 1988 2288 return folio_batch_count(fbatch); !! 1989 return ret; 2289 } 1990 } 2290 EXPORT_SYMBOL(filemap_get_folios_tag); !! 1991 EXPORT_SYMBOL(find_get_pages_range_tag); 2291 1992 2292 /* 1993 /* 2293 * CD/DVDs are error prone. When a medium err 1994 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2294 * a _large_ part of the i/o request. Imagine 1995 * a _large_ part of the i/o request. Imagine the worst scenario: 2295 * 1996 * 2296 * ---R_________________________________ 1997 * ---R__________________________________________B__________ 2297 * ^ reading here 1998 * ^ reading here ^ bad block(assume 4k) 2298 * 1999 * 2299 * read(R) => miss => readahead(R...B) => med 2000 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2300 * => failing the whole request => read(R) => 2001 * => failing the whole request => read(R) => read(R+1) => 2301 * readahead(R+1...B+1) => bang => read(R+2) 2002 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2302 * readahead(R+3...B+2) => bang => read(R+3) 2003 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2303 * readahead(R+4...B+3) => bang => read(R+4) 2004 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2304 * 2005 * 2305 * It is going insane. Fix it by quickly scal 2006 * It is going insane. Fix it by quickly scaling down the readahead size. 2306 */ 2007 */ 2307 static void shrink_readahead_size_eio(struct !! 2008 static void shrink_readahead_size_eio(struct file *filp, >> 2009 struct file_ra_state *ra) 2308 { 2010 { 2309 ra->ra_pages /= 4; 2011 ra->ra_pages /= 4; 2310 } 2012 } 2311 2013 2312 /* !! 2014 /** 2313 * filemap_get_read_batch - Get a batch of fo !! 2015 * generic_file_buffered_read - generic file read routine >> 2016 * @iocb: the iocb to read >> 2017 * @iter: data destination >> 2018 * @written: already copied >> 2019 * >> 2020 * This is a generic file read routine, and uses the >> 2021 * mapping->a_ops->readpage() function for the actual low-level stuff. >> 2022 * >> 2023 * This is really ugly. But the goto's actually try to clarify some >> 2024 * of the logic when it comes to error handling etc. 2314 * 2025 * 2315 * Get a batch of folios which represent a co !! 2026 * Return: 2316 * the file. No exceptional entries will be !! 2027 * * total number of bytes copied, including those the were already @written 2317 * the middle of a folio, the entire folio wi !! 2028 * * negative error code if nothing was copied 2318 * folio in the batch may have the readahead << 2319 * clear so that the caller can take the appr << 2320 */ 2029 */ 2321 static void filemap_get_read_batch(struct add !! 2030 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2322 pgoff_t index, pgoff_t max, s !! 2031 struct iov_iter *iter, ssize_t written) 2323 { << 2324 XA_STATE(xas, &mapping->i_pages, inde << 2325 struct folio *folio; << 2326 << 2327 rcu_read_lock(); << 2328 for (folio = xas_load(&xas); folio; f << 2329 if (xas_retry(&xas, folio)) << 2330 continue; << 2331 if (xas.xa_index > max || xa_ << 2332 break; << 2333 if (xa_is_sibling(folio)) << 2334 break; << 2335 if (!folio_try_get(folio)) << 2336 goto retry; << 2337 << 2338 if (unlikely(folio != xas_rel << 2339 goto put_folio; << 2340 << 2341 if (!folio_batch_add(fbatch, << 2342 break; << 2343 if (!folio_test_uptodate(foli << 2344 break; << 2345 if (folio_test_readahead(foli << 2346 break; << 2347 xas_advance(&xas, folio_next_ << 2348 continue; << 2349 put_folio: << 2350 folio_put(folio); << 2351 retry: << 2352 xas_reset(&xas); << 2353 } << 2354 rcu_read_unlock(); << 2355 } << 2356 << 2357 static int filemap_read_folio(struct file *fi << 2358 struct folio *folio) << 2359 { << 2360 bool workingset = folio_test_workings << 2361 unsigned long pflags; << 2362 int error; << 2363 << 2364 /* Start the actual read. The read wi << 2365 if (unlikely(workingset)) << 2366 psi_memstall_enter(&pflags); << 2367 error = filler(file, folio); << 2368 if (unlikely(workingset)) << 2369 psi_memstall_leave(&pflags); << 2370 if (error) << 2371 return error; << 2372 << 2373 error = folio_wait_locked_killable(fo << 2374 if (error) << 2375 return error; << 2376 if (folio_test_uptodate(folio)) << 2377 return 0; << 2378 if (file) << 2379 shrink_readahead_size_eio(&fi << 2380 return -EIO; << 2381 } << 2382 << 2383 static bool filemap_range_uptodate(struct add << 2384 loff_t pos, size_t count, str << 2385 bool need_uptodate) << 2386 { << 2387 if (folio_test_uptodate(folio)) << 2388 return true; << 2389 /* pipes can't handle partially uptod << 2390 if (need_uptodate) << 2391 return false; << 2392 if (!mapping->a_ops->is_partially_upt << 2393 return false; << 2394 if (mapping->host->i_blkbits >= folio << 2395 return false; << 2396 << 2397 if (folio_pos(folio) > pos) { << 2398 count -= folio_pos(folio) - p << 2399 pos = 0; << 2400 } else { << 2401 pos -= folio_pos(folio); << 2402 } << 2403 << 2404 return mapping->a_ops->is_partially_u << 2405 } << 2406 << 2407 static int filemap_update_page(struct kiocb * << 2408 struct address_space *mapping << 2409 struct folio *folio, bool nee << 2410 { << 2411 int error; << 2412 << 2413 if (iocb->ki_flags & IOCB_NOWAIT) { << 2414 if (!filemap_invalidate_trylo << 2415 return -EAGAIN; << 2416 } else { << 2417 filemap_invalidate_lock_share << 2418 } << 2419 << 2420 if (!folio_trylock(folio)) { << 2421 error = -EAGAIN; << 2422 if (iocb->ki_flags & (IOCB_NO << 2423 goto unlock_mapping; << 2424 if (!(iocb->ki_flags & IOCB_W << 2425 filemap_invalidate_un << 2426 /* << 2427 * This is where we u << 2428 * previously submitt << 2429 */ << 2430 folio_put_wait_locked << 2431 return AOP_TRUNCATED_ << 2432 } << 2433 error = __folio_lock_async(fo << 2434 if (error) << 2435 goto unlock_mapping; << 2436 } << 2437 << 2438 error = AOP_TRUNCATED_PAGE; << 2439 if (!folio->mapping) << 2440 goto unlock; << 2441 << 2442 error = 0; << 2443 if (filemap_range_uptodate(mapping, i << 2444 need_uptod << 2445 goto unlock; << 2446 << 2447 error = -EAGAIN; << 2448 if (iocb->ki_flags & (IOCB_NOIO | IOC << 2449 goto unlock; << 2450 << 2451 error = filemap_read_folio(iocb->ki_f << 2452 folio); << 2453 goto unlock_mapping; << 2454 unlock: << 2455 folio_unlock(folio); << 2456 unlock_mapping: << 2457 filemap_invalidate_unlock_shared(mapp << 2458 if (error == AOP_TRUNCATED_PAGE) << 2459 folio_put(folio); << 2460 return error; << 2461 } << 2462 << 2463 static int filemap_create_folio(struct file * << 2464 struct address_space *mapping << 2465 struct folio_batch *fbatch) << 2466 { << 2467 struct folio *folio; << 2468 int error; << 2469 unsigned int min_order = mapping_min_ << 2470 pgoff_t index; << 2471 << 2472 folio = filemap_alloc_folio(mapping_g << 2473 if (!folio) << 2474 return -ENOMEM; << 2475 << 2476 /* << 2477 * Protect against truncate / hole pu << 2478 * here assures we cannot instantiate << 2479 * pagecache folios after evicting pa << 2480 * and before actually freeing blocks << 2481 * release invalidate_lock after inse << 2482 * the page cache as the locked folio << 2483 * synchronize with hole punching. Bu << 2484 * such as filemap_update_page() fill << 2485 * pages or ->readahead() that need t << 2486 * while mapping blocks for IO so let << 2487 * well to keep locking rules simple. << 2488 */ << 2489 filemap_invalidate_lock_shared(mappin << 2490 index = (pos >> (PAGE_SHIFT + min_ord << 2491 error = filemap_add_folio(mapping, fo << 2492 mapping_gfp_constrain << 2493 if (error == -EEXIST) << 2494 error = AOP_TRUNCATED_PAGE; << 2495 if (error) << 2496 goto error; << 2497 << 2498 error = filemap_read_folio(file, mapp << 2499 if (error) << 2500 goto error; << 2501 << 2502 filemap_invalidate_unlock_shared(mapp << 2503 folio_batch_add(fbatch, folio); << 2504 return 0; << 2505 error: << 2506 filemap_invalidate_unlock_shared(mapp << 2507 folio_put(folio); << 2508 return error; << 2509 } << 2510 << 2511 static int filemap_readahead(struct kiocb *io << 2512 struct address_space *mapping << 2513 pgoff_t last_index) << 2514 { << 2515 DEFINE_READAHEAD(ractl, file, &file-> << 2516 << 2517 if (iocb->ki_flags & IOCB_NOIO) << 2518 return -EAGAIN; << 2519 page_cache_async_ra(&ractl, folio, la << 2520 return 0; << 2521 } << 2522 << 2523 static int filemap_get_pages(struct kiocb *io << 2524 struct folio_batch *fbatch, b << 2525 { 2032 { 2526 struct file *filp = iocb->ki_filp; 2033 struct file *filp = iocb->ki_filp; 2527 struct address_space *mapping = filp- 2034 struct address_space *mapping = filp->f_mapping; >> 2035 struct inode *inode = mapping->host; 2528 struct file_ra_state *ra = &filp->f_r 2036 struct file_ra_state *ra = &filp->f_ra; 2529 pgoff_t index = iocb->ki_pos >> PAGE_ !! 2037 loff_t *ppos = &iocb->ki_pos; >> 2038 pgoff_t index; 2530 pgoff_t last_index; 2039 pgoff_t last_index; 2531 struct folio *folio; !! 2040 pgoff_t prev_index; 2532 unsigned int flags; !! 2041 unsigned long offset; /* offset into pagecache page */ 2533 int err = 0; !! 2042 unsigned int prev_offset; 2534 !! 2043 int error = 0; 2535 /* "last_index" is the index of the p << 2536 last_index = DIV_ROUND_UP(iocb->ki_po << 2537 retry: << 2538 if (fatal_signal_pending(current)) << 2539 return -EINTR; << 2540 << 2541 filemap_get_read_batch(mapping, index << 2542 if (!folio_batch_count(fbatch)) { << 2543 if (iocb->ki_flags & IOCB_NOI << 2544 return -EAGAIN; << 2545 if (iocb->ki_flags & IOCB_NOW << 2546 flags = memalloc_noio << 2547 page_cache_sync_readahead(map << 2548 last_index - << 2549 if (iocb->ki_flags & IOCB_NOW << 2550 memalloc_noio_restore << 2551 filemap_get_read_batch(mappin << 2552 } << 2553 if (!folio_batch_count(fbatch)) { << 2554 if (iocb->ki_flags & (IOCB_NO << 2555 return -EAGAIN; << 2556 err = filemap_create_folio(fi << 2557 if (err == AOP_TRUNCATED_PAGE << 2558 goto retry; << 2559 return err; << 2560 } << 2561 << 2562 folio = fbatch->folios[folio_batch_co << 2563 if (folio_test_readahead(folio)) { << 2564 err = filemap_readahead(iocb, << 2565 if (err) << 2566 goto err; << 2567 } << 2568 if (!folio_test_uptodate(folio)) { << 2569 if ((iocb->ki_flags & IOCB_WA << 2570 folio_batch_count(fbatch) << 2571 iocb->ki_flags |= IOC << 2572 err = filemap_update_page(ioc << 2573 nee << 2574 if (err) << 2575 goto err; << 2576 } << 2577 2044 2578 trace_mm_filemap_get_pages(mapping, i !! 2045 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2579 return 0; << 2580 err: << 2581 if (err < 0) << 2582 folio_put(folio); << 2583 if (likely(--fbatch->nr)) << 2584 return 0; 2046 return 0; 2585 if (err == AOP_TRUNCATED_PAGE) !! 2047 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2586 goto retry; << 2587 return err; << 2588 } << 2589 << 2590 static inline bool pos_same_folio(loff_t pos1 << 2591 { << 2592 unsigned int shift = folio_shift(foli << 2593 2048 2594 return (pos1 >> shift == pos2 >> shif !! 2049 index = *ppos >> PAGE_SHIFT; 2595 } !! 2050 prev_index = ra->prev_pos >> PAGE_SHIFT; >> 2051 prev_offset = ra->prev_pos & (PAGE_SIZE-1); >> 2052 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; >> 2053 offset = *ppos & ~PAGE_MASK; 2596 2054 2597 /** !! 2055 for (;;) { 2598 * filemap_read - Read data from the page cac !! 2056 struct page *page; 2599 * @iocb: The iocb to read. !! 2057 pgoff_t end_index; 2600 * @iter: Destination for the data. !! 2058 loff_t isize; 2601 * @already_read: Number of bytes already rea !! 2059 unsigned long nr, ret; 2602 * << 2603 * Copies data from the page cache. If the d << 2604 * uses the readahead and read_folio address_ << 2605 * << 2606 * Return: Total number of bytes copied, incl << 2607 * the caller. If an error happens before an << 2608 * a negative error number. << 2609 */ << 2610 ssize_t filemap_read(struct kiocb *iocb, stru << 2611 ssize_t already_read) << 2612 { << 2613 struct file *filp = iocb->ki_filp; << 2614 struct file_ra_state *ra = &filp->f_r << 2615 struct address_space *mapping = filp- << 2616 struct inode *inode = mapping->host; << 2617 struct folio_batch fbatch; << 2618 int i, error = 0; << 2619 bool writably_mapped; << 2620 loff_t isize, end_offset; << 2621 loff_t last_pos = ra->prev_pos; << 2622 << 2623 if (unlikely(iocb->ki_pos >= inode->i << 2624 return 0; << 2625 if (unlikely(!iov_iter_count(iter))) << 2626 return 0; << 2627 << 2628 iov_iter_truncate(iter, inode->i_sb-> << 2629 folio_batch_init(&fbatch); << 2630 2060 2631 do { << 2632 cond_resched(); 2061 cond_resched(); >> 2062 find_page: >> 2063 if (fatal_signal_pending(current)) { >> 2064 error = -EINTR; >> 2065 goto out; >> 2066 } 2633 2067 2634 /* !! 2068 page = find_get_page(mapping, index); 2635 * If we've already successfu !! 2069 if (!page) { 2636 * can no longer safely retur !! 2070 if (iocb->ki_flags & IOCB_NOWAIT) 2637 * an async read NOWAIT at th !! 2071 goto would_block; 2638 */ !! 2072 page_cache_sync_readahead(mapping, 2639 if ((iocb->ki_flags & IOCB_WA !! 2073 ra, filp, 2640 iocb->ki_flags |= IOC !! 2074 index, last_index - index); 2641 !! 2075 page = find_get_page(mapping, index); 2642 if (unlikely(iocb->ki_pos >= !! 2076 if (unlikely(page == NULL)) 2643 break; !! 2077 goto no_cached_page; 2644 !! 2078 } 2645 error = filemap_get_pages(ioc !! 2079 if (PageReadahead(page)) { 2646 if (error < 0) !! 2080 page_cache_async_readahead(mapping, 2647 break; !! 2081 ra, filp, page, >> 2082 index, last_index - index); >> 2083 } >> 2084 if (!PageUptodate(page)) { >> 2085 if (iocb->ki_flags & IOCB_NOWAIT) { >> 2086 put_page(page); >> 2087 goto would_block; >> 2088 } 2648 2089 >> 2090 /* >> 2091 * See comment in do_read_cache_page on why >> 2092 * wait_on_page_locked is used to avoid unnecessarily >> 2093 * serialisations and why it's safe. >> 2094 */ >> 2095 error = wait_on_page_locked_killable(page); >> 2096 if (unlikely(error)) >> 2097 goto readpage_error; >> 2098 if (PageUptodate(page)) >> 2099 goto page_ok; >> 2100 >> 2101 if (inode->i_blkbits == PAGE_SHIFT || >> 2102 !mapping->a_ops->is_partially_uptodate) >> 2103 goto page_not_up_to_date; >> 2104 /* pipes can't handle partially uptodate pages */ >> 2105 if (unlikely(iov_iter_is_pipe(iter))) >> 2106 goto page_not_up_to_date; >> 2107 if (!trylock_page(page)) >> 2108 goto page_not_up_to_date; >> 2109 /* Did it get truncated before we got the lock? */ >> 2110 if (!page->mapping) >> 2111 goto page_not_up_to_date_locked; >> 2112 if (!mapping->a_ops->is_partially_uptodate(page, >> 2113 offset, iter->count)) >> 2114 goto page_not_up_to_date_locked; >> 2115 unlock_page(page); >> 2116 } >> 2117 page_ok: 2649 /* 2118 /* 2650 * i_size must be checked aft !! 2119 * i_size must be checked after we know the page is Uptodate. 2651 * 2120 * 2652 * Checking i_size after the 2121 * Checking i_size after the check allows us to calculate 2653 * the correct value for "nr" 2122 * the correct value for "nr", which means the zero-filled 2654 * part of the page is not co 2123 * part of the page is not copied back to userspace (unless 2655 * another truncate extends t 2124 * another truncate extends the file - this is desired though). 2656 */ 2125 */ >> 2126 2657 isize = i_size_read(inode); 2127 isize = i_size_read(inode); 2658 if (unlikely(iocb->ki_pos >= !! 2128 end_index = (isize - 1) >> PAGE_SHIFT; 2659 goto put_folios; !! 2129 if (unlikely(!isize || index > end_index)) { 2660 end_offset = min_t(loff_t, is !! 2130 put_page(page); >> 2131 goto out; >> 2132 } >> 2133 >> 2134 /* nr is the maximum number of bytes to copy from this page */ >> 2135 nr = PAGE_SIZE; >> 2136 if (index == end_index) { >> 2137 nr = ((isize - 1) & ~PAGE_MASK) + 1; >> 2138 if (nr <= offset) { >> 2139 put_page(page); >> 2140 goto out; >> 2141 } >> 2142 } >> 2143 nr = nr - offset; >> 2144 >> 2145 /* If users can be writing to this page using arbitrary >> 2146 * virtual addresses, take care about potential aliasing >> 2147 * before reading the page on the kernel side. >> 2148 */ >> 2149 if (mapping_writably_mapped(mapping)) >> 2150 flush_dcache_page(page); 2661 2151 2662 /* 2152 /* 2663 * Once we start copying data !! 2153 * When a sequential read accesses a page several times, 2664 * cachelines that might be c !! 2154 * only mark it as accessed the first time. 2665 */ 2155 */ 2666 writably_mapped = mapping_wri !! 2156 if (prev_index != index || offset != prev_offset) >> 2157 mark_page_accessed(page); >> 2158 prev_index = index; 2667 2159 2668 /* 2160 /* 2669 * When a read accesses the s !! 2161 * Ok, we have the page, and it's up-to-date, so 2670 * mark it as accessed the fi !! 2162 * now we can copy it to user space... 2671 */ 2163 */ 2672 if (!pos_same_folio(iocb->ki_ << 2673 fbatch.fo << 2674 folio_mark_accessed(f << 2675 << 2676 for (i = 0; i < folio_batch_c << 2677 struct folio *folio = << 2678 size_t fsize = folio_ << 2679 size_t offset = iocb- << 2680 size_t bytes = min_t( << 2681 << 2682 size_t copied; << 2683 2164 2684 if (end_offset < foli !! 2165 ret = copy_page_to_iter(page, offset, nr, iter); 2685 break; !! 2166 offset += ret; 2686 if (i > 0) !! 2167 index += offset >> PAGE_SHIFT; 2687 folio_mark_ac !! 2168 offset &= ~PAGE_MASK; 2688 /* !! 2169 prev_offset = offset; 2689 * If users can be wr << 2690 * virtual addresses, << 2691 * before reading the << 2692 */ << 2693 if (writably_mapped) << 2694 flush_dcache_ << 2695 2170 2696 copied = copy_folio_t !! 2171 put_page(page); >> 2172 written += ret; >> 2173 if (!iov_iter_count(iter)) >> 2174 goto out; >> 2175 if (ret < nr) { >> 2176 error = -EFAULT; >> 2177 goto out; >> 2178 } >> 2179 continue; 2697 2180 2698 already_read += copie !! 2181 page_not_up_to_date: 2699 iocb->ki_pos += copie !! 2182 /* Get exclusive access to the page ... */ 2700 last_pos = iocb->ki_p !! 2183 error = lock_page_killable(page); >> 2184 if (unlikely(error)) >> 2185 goto readpage_error; >> 2186 >> 2187 page_not_up_to_date_locked: >> 2188 /* Did it get truncated before we got the lock? */ >> 2189 if (!page->mapping) { >> 2190 unlock_page(page); >> 2191 put_page(page); >> 2192 continue; >> 2193 } 2701 2194 2702 if (copied < bytes) { !! 2195 /* Did somebody else fill it already? */ 2703 error = -EFAU !! 2196 if (PageUptodate(page)) { 2704 break; !! 2197 unlock_page(page); >> 2198 goto page_ok; >> 2199 } >> 2200 >> 2201 readpage: >> 2202 /* >> 2203 * A previous I/O error may have been due to temporary >> 2204 * failures, eg. multipath errors. >> 2205 * PG_error will be set again if readpage fails. >> 2206 */ >> 2207 ClearPageError(page); >> 2208 /* Start the actual read. The read will unlock the page. */ >> 2209 error = mapping->a_ops->readpage(filp, page); >> 2210 >> 2211 if (unlikely(error)) { >> 2212 if (error == AOP_TRUNCATED_PAGE) { >> 2213 put_page(page); >> 2214 error = 0; >> 2215 goto find_page; 2705 } 2216 } >> 2217 goto readpage_error; 2706 } 2218 } 2707 put_folios: << 2708 for (i = 0; i < folio_batch_c << 2709 folio_put(fbatch.foli << 2710 folio_batch_init(&fbatch); << 2711 } while (iov_iter_count(iter) && iocb << 2712 2219 2713 file_accessed(filp); !! 2220 if (!PageUptodate(page)) { 2714 ra->prev_pos = last_pos; !! 2221 error = lock_page_killable(page); 2715 return already_read ? already_read : !! 2222 if (unlikely(error)) 2716 } !! 2223 goto readpage_error; 2717 EXPORT_SYMBOL_GPL(filemap_read); !! 2224 if (!PageUptodate(page)) { 2718 !! 2225 if (page->mapping == NULL) { 2719 int kiocb_write_and_wait(struct kiocb *iocb, !! 2226 /* 2720 { !! 2227 * invalidate_mapping_pages got it 2721 struct address_space *mapping = iocb- !! 2228 */ 2722 loff_t pos = iocb->ki_pos; !! 2229 unlock_page(page); 2723 loff_t end = pos + count - 1; !! 2230 put_page(page); 2724 !! 2231 goto find_page; 2725 if (iocb->ki_flags & IOCB_NOWAIT) { !! 2232 } 2726 if (filemap_range_needs_write !! 2233 unlock_page(page); 2727 return -EAGAIN; !! 2234 shrink_readahead_size_eio(filp, ra); 2728 return 0; !! 2235 error = -EIO; 2729 } !! 2236 goto readpage_error; >> 2237 } >> 2238 unlock_page(page); >> 2239 } 2730 2240 2731 return filemap_write_and_wait_range(m !! 2241 goto page_ok; 2732 } << 2733 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); << 2734 2242 2735 int filemap_invalidate_pages(struct address_s !! 2243 readpage_error: 2736 loff_t pos, loff !! 2244 /* UHHUH! A synchronous read error occurred. Report it */ 2737 { !! 2245 put_page(page); 2738 int ret; !! 2246 goto out; 2739 2247 2740 if (nowait) { !! 2248 no_cached_page: 2741 /* we could block if there ar !! 2249 /* 2742 if (filemap_range_has_page(ma !! 2250 * Ok, it wasn't cached, so we need to create a new 2743 return -EAGAIN; !! 2251 * page.. 2744 } else { !! 2252 */ 2745 ret = filemap_write_and_wait_ !! 2253 page = page_cache_alloc(mapping); 2746 if (ret) !! 2254 if (!page) { 2747 return ret; !! 2255 error = -ENOMEM; >> 2256 goto out; >> 2257 } >> 2258 error = add_to_page_cache_lru(page, mapping, index, >> 2259 mapping_gfp_constraint(mapping, GFP_KERNEL)); >> 2260 if (error) { >> 2261 put_page(page); >> 2262 if (error == -EEXIST) { >> 2263 error = 0; >> 2264 goto find_page; >> 2265 } >> 2266 goto out; >> 2267 } >> 2268 goto readpage; 2748 } 2269 } 2749 2270 2750 /* !! 2271 would_block: 2751 * After a write we want buffered rea !! 2272 error = -EAGAIN; 2752 * the new data. We invalidate clean !! 2273 out: 2753 * about to write. We do this *befor !! 2274 ra->prev_pos = prev_index; 2754 * without clobbering -EIOCBQUEUED fr !! 2275 ra->prev_pos <<= PAGE_SHIFT; 2755 */ !! 2276 ra->prev_pos |= prev_offset; 2756 return invalidate_inode_pages2_range( << 2757 << 2758 } << 2759 << 2760 int kiocb_invalidate_pages(struct kiocb *iocb << 2761 { << 2762 struct address_space *mapping = iocb- << 2763 2277 2764 return filemap_invalidate_pages(mappi !! 2278 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2765 iocb- !! 2279 file_accessed(filp); 2766 iocb- !! 2280 return written ? written : error; 2767 } 2281 } 2768 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); << 2769 2282 2770 /** 2283 /** 2771 * generic_file_read_iter - generic filesyste 2284 * generic_file_read_iter - generic filesystem read routine 2772 * @iocb: kernel I/O control block 2285 * @iocb: kernel I/O control block 2773 * @iter: destination for the data read 2286 * @iter: destination for the data read 2774 * 2287 * 2775 * This is the "read_iter()" routine for all 2288 * This is the "read_iter()" routine for all filesystems 2776 * that can use the page cache directly. 2289 * that can use the page cache directly. 2777 * << 2778 * The IOCB_NOWAIT flag in iocb->ki_flags ind << 2779 * be returned when no data can be read witho << 2780 * to complete; it doesn't prevent readahead. << 2781 * << 2782 * The IOCB_NOIO flag in iocb->ki_flags indic << 2783 * requests shall be made for the read or for << 2784 * can be read, -EAGAIN shall be returned. W << 2785 * triggered, a partial, possibly empty read << 2786 * << 2787 * Return: 2290 * Return: 2788 * * number of bytes copied, even for partial 2291 * * number of bytes copied, even for partial reads 2789 * * negative error code (or 0 if IOCB_NOIO) !! 2292 * * negative error code if nothing was read 2790 */ 2293 */ 2791 ssize_t 2294 ssize_t 2792 generic_file_read_iter(struct kiocb *iocb, st 2295 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2793 { 2296 { 2794 size_t count = iov_iter_count(iter); 2297 size_t count = iov_iter_count(iter); 2795 ssize_t retval = 0; 2298 ssize_t retval = 0; 2796 2299 2797 if (!count) 2300 if (!count) 2798 return 0; /* skip atime */ !! 2301 goto out; /* skip atime */ 2799 2302 2800 if (iocb->ki_flags & IOCB_DIRECT) { 2303 if (iocb->ki_flags & IOCB_DIRECT) { 2801 struct file *file = iocb->ki_ 2304 struct file *file = iocb->ki_filp; 2802 struct address_space *mapping 2305 struct address_space *mapping = file->f_mapping; 2803 struct inode *inode = mapping 2306 struct inode *inode = mapping->host; >> 2307 loff_t size; >> 2308 >> 2309 size = i_size_read(inode); >> 2310 if (iocb->ki_flags & IOCB_NOWAIT) { >> 2311 if (filemap_range_has_page(mapping, iocb->ki_pos, >> 2312 iocb->ki_pos + count - 1)) >> 2313 return -EAGAIN; >> 2314 } else { >> 2315 retval = filemap_write_and_wait_range(mapping, >> 2316 iocb->ki_pos, >> 2317 iocb->ki_pos + count - 1); >> 2318 if (retval < 0) >> 2319 goto out; >> 2320 } 2804 2321 2805 retval = kiocb_write_and_wait << 2806 if (retval < 0) << 2807 return retval; << 2808 file_accessed(file); 2322 file_accessed(file); 2809 2323 2810 retval = mapping->a_ops->dire 2324 retval = mapping->a_ops->direct_IO(iocb, iter); 2811 if (retval >= 0) { 2325 if (retval >= 0) { 2812 iocb->ki_pos += retva 2326 iocb->ki_pos += retval; 2813 count -= retval; 2327 count -= retval; 2814 } 2328 } 2815 if (retval != -EIOCBQUEUED) !! 2329 iov_iter_revert(iter, count - iov_iter_count(iter)); 2816 iov_iter_revert(iter, << 2817 2330 2818 /* 2331 /* 2819 * Btrfs can have a short DIO 2332 * Btrfs can have a short DIO read if we encounter 2820 * compressed extents, so if 2333 * compressed extents, so if there was an error, or if 2821 * we've already read everyth 2334 * we've already read everything we wanted to, or if 2822 * there was a short read bec 2335 * there was a short read because we hit EOF, go ahead 2823 * and return. Otherwise fal 2336 * and return. Otherwise fallthrough to buffered io for 2824 * the rest of the read. Buf 2337 * the rest of the read. Buffered reads will not work for 2825 * DAX files, so don't bother 2338 * DAX files, so don't bother trying. 2826 */ 2339 */ 2827 if (retval < 0 || !count || I !! 2340 if (retval < 0 || !count || iocb->ki_pos >= size || 2828 return retval; !! 2341 IS_DAX(inode)) 2829 if (iocb->ki_pos >= i_size_re !! 2342 goto out; 2830 return retval; << 2831 } << 2832 << 2833 return filemap_read(iocb, iter, retva << 2834 } << 2835 EXPORT_SYMBOL(generic_file_read_iter); << 2836 << 2837 /* << 2838 * Splice subpages from a folio into a pipe. << 2839 */ << 2840 size_t splice_folio_into_pipe(struct pipe_ino << 2841 struct folio *f << 2842 { << 2843 struct page *page; << 2844 size_t spliced = 0, offset = offset_i << 2845 << 2846 page = folio_page(folio, offset / PAG << 2847 size = min(size, folio_size(folio) - << 2848 offset %= PAGE_SIZE; << 2849 << 2850 while (spliced < size && << 2851 !pipe_full(pipe->head, pipe->t << 2852 struct pipe_buffer *buf = pip << 2853 size_t part = min_t(size_t, P << 2854 << 2855 *buf = (struct pipe_buffer) { << 2856 .ops = &page_cache << 2857 .page = page, << 2858 .offset = offset, << 2859 .len = part, << 2860 }; << 2861 folio_get(folio); << 2862 pipe->head++; << 2863 page++; << 2864 spliced += part; << 2865 offset = 0; << 2866 } 2343 } 2867 2344 2868 return spliced; !! 2345 retval = generic_file_buffered_read(iocb, iter, retval); 2869 } << 2870 << 2871 /** << 2872 * filemap_splice_read - Splice data from a << 2873 * @in: The file to read from << 2874 * @ppos: Pointer to the file position to rea << 2875 * @pipe: The pipe to splice into << 2876 * @len: The amount to splice << 2877 * @flags: The SPLICE_F_* flags << 2878 * << 2879 * This function gets folios from a file's pa << 2880 * pipe. Readahead will be called as necessa << 2881 * be used for blockdevs also. << 2882 * << 2883 * Return: On success, the number of bytes re << 2884 * will be updated if appropriate; 0 will be << 2885 * to be read; -EAGAIN will be returned if th << 2886 * other negative error code will be returned << 2887 * if the pipe has insufficient space, we rea << 2888 * hole. << 2889 */ << 2890 ssize_t filemap_splice_read(struct file *in, << 2891 struct pipe_inode << 2892 size_t len, unsig << 2893 { << 2894 struct folio_batch fbatch; << 2895 struct kiocb iocb; << 2896 size_t total_spliced = 0, used, npage << 2897 loff_t isize, end_offset; << 2898 bool writably_mapped; << 2899 int i, error = 0; << 2900 << 2901 if (unlikely(*ppos >= in->f_mapping-> << 2902 return 0; << 2903 << 2904 init_sync_kiocb(&iocb, in); << 2905 iocb.ki_pos = *ppos; << 2906 << 2907 /* Work out how much data we can actu << 2908 used = pipe_occupancy(pipe->head, pip << 2909 npages = max_t(ssize_t, pipe->max_usa << 2910 len = min_t(size_t, len, npages * PAG << 2911 << 2912 folio_batch_init(&fbatch); << 2913 << 2914 do { << 2915 cond_resched(); << 2916 << 2917 if (*ppos >= i_size_read(in-> << 2918 break; << 2919 << 2920 iocb.ki_pos = *ppos; << 2921 error = filemap_get_pages(&io << 2922 if (error < 0) << 2923 break; << 2924 << 2925 /* << 2926 * i_size must be checked aft << 2927 * << 2928 * Checking i_size after the << 2929 * the correct value for "nr" << 2930 * part of the page is not co << 2931 * another truncate extends t << 2932 */ << 2933 isize = i_size_read(in->f_map << 2934 if (unlikely(*ppos >= isize)) << 2935 break; << 2936 end_offset = min_t(loff_t, is << 2937 << 2938 /* << 2939 * Once we start copying data << 2940 * cachelines that might be c << 2941 */ << 2942 writably_mapped = mapping_wri << 2943 << 2944 for (i = 0; i < folio_batch_c << 2945 struct folio *folio = << 2946 size_t n; << 2947 << 2948 if (folio_pos(folio) << 2949 goto out; << 2950 folio_mark_accessed(f << 2951 << 2952 /* << 2953 * If users can be wr << 2954 * virtual addresses, << 2955 * before reading the << 2956 */ << 2957 if (writably_mapped) << 2958 flush_dcache_ << 2959 << 2960 n = min_t(loff_t, len << 2961 n = splice_folio_into << 2962 if (!n) << 2963 goto out; << 2964 len -= n; << 2965 total_spliced += n; << 2966 *ppos += n; << 2967 in->f_ra.prev_pos = * << 2968 if (pipe_full(pipe->h << 2969 goto out; << 2970 } << 2971 << 2972 folio_batch_release(&fbatch); << 2973 } while (len); << 2974 << 2975 out: 2346 out: 2976 folio_batch_release(&fbatch); !! 2347 return retval; 2977 file_accessed(in); << 2978 << 2979 return total_spliced ? total_spliced << 2980 } << 2981 EXPORT_SYMBOL(filemap_splice_read); << 2982 << 2983 static inline loff_t folio_seek_hole_data(str << 2984 struct address_space *mapping << 2985 loff_t start, loff_t end, boo << 2986 { << 2987 const struct address_space_operations << 2988 size_t offset, bsz = i_blocksize(mapp << 2989 << 2990 if (xa_is_value(folio) || folio_test_ << 2991 return seek_data ? start : en << 2992 if (!ops->is_partially_uptodate) << 2993 return seek_data ? end : star << 2994 << 2995 xas_pause(xas); << 2996 rcu_read_unlock(); << 2997 folio_lock(folio); << 2998 if (unlikely(folio->mapping != mappin << 2999 goto unlock; << 3000 << 3001 offset = offset_in_folio(folio, start << 3002 << 3003 do { << 3004 if (ops->is_partially_uptodat << 3005 << 3006 break; << 3007 start = (start + bsz) & ~(bsz << 3008 offset += bsz; << 3009 } while (offset < folio_size(folio)); << 3010 unlock: << 3011 folio_unlock(folio); << 3012 rcu_read_lock(); << 3013 return start; << 3014 } 2348 } >> 2349 EXPORT_SYMBOL(generic_file_read_iter); 3015 2350 3016 static inline size_t seek_folio_size(struct x !! 2351 #ifdef CONFIG_MMU >> 2352 #define MMAP_LOTSAMISS (100) >> 2353 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, >> 2354 struct file *fpin) 3017 { 2355 { 3018 if (xa_is_value(folio)) !! 2356 int flags = vmf->flags; 3019 return PAGE_SIZE << xas_get_o << 3020 return folio_size(folio); << 3021 } << 3022 << 3023 /** << 3024 * mapping_seek_hole_data - Seek for SEEK_DAT << 3025 * @mapping: Address space to search. << 3026 * @start: First byte to consider. << 3027 * @end: Limit of search (exclusive). << 3028 * @whence: Either SEEK_HOLE or SEEK_DATA. << 3029 * << 3030 * If the page cache knows which blocks conta << 3031 * contain data, your filesystem can use this << 3032 * SEEK_HOLE and SEEK_DATA. This is useful f << 3033 * entirely memory-based such as tmpfs, and f << 3034 * unwritten extents. << 3035 * << 3036 * Return: The requested offset on success, o << 3037 * SEEK_DATA and there is no data after @star << 3038 * after @end - 1, so SEEK_HOLE returns @end << 3039 * and @end contain data. << 3040 */ << 3041 loff_t mapping_seek_hole_data(struct address_ << 3042 loff_t end, int whence) << 3043 { << 3044 XA_STATE(xas, &mapping->i_pages, star << 3045 pgoff_t max = (end - 1) >> PAGE_SHIFT << 3046 bool seek_data = (whence == SEEK_DATA << 3047 struct folio *folio; << 3048 2357 3049 if (end <= start) !! 2358 if (fpin) 3050 return -ENXIO; !! 2359 return fpin; 3051 << 3052 rcu_read_lock(); << 3053 while ((folio = find_get_entry(&xas, << 3054 loff_t pos = (u64)xas.xa_inde << 3055 size_t seek_size; << 3056 << 3057 if (start < pos) { << 3058 if (!seek_data) << 3059 goto unlock; << 3060 start = pos; << 3061 } << 3062 2360 3063 seek_size = seek_folio_size(& !! 2361 /* 3064 pos = round_up((u64)pos + 1, !! 2362 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 3065 start = folio_seek_hole_data( !! 2363 * anything, so we only pin the file and drop the mmap_sem if only 3066 seek_data); !! 2364 * FAULT_FLAG_ALLOW_RETRY is set. 3067 if (start < pos) !! 2365 */ 3068 goto unlock; !! 2366 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) == 3069 if (start >= end) !! 2367 FAULT_FLAG_ALLOW_RETRY) { 3070 break; !! 2368 fpin = get_file(vmf->vma->vm_file); 3071 if (seek_size > PAGE_SIZE) !! 2369 up_read(&vmf->vma->vm_mm->mmap_sem); 3072 xas_set(&xas, pos >> << 3073 if (!xa_is_value(folio)) << 3074 folio_put(folio); << 3075 } 2370 } 3076 if (seek_data) !! 2371 return fpin; 3077 start = -ENXIO; << 3078 unlock: << 3079 rcu_read_unlock(); << 3080 if (folio && !xa_is_value(folio)) << 3081 folio_put(folio); << 3082 if (start > end) << 3083 return end; << 3084 return start; << 3085 } 2372 } 3086 2373 3087 #ifdef CONFIG_MMU << 3088 #define MMAP_LOTSAMISS (100) << 3089 /* 2374 /* 3090 * lock_folio_maybe_drop_mmap - lock the page !! 2375 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem 3091 * @vmf - the vm_fault for this fault. 2376 * @vmf - the vm_fault for this fault. 3092 * @folio - the folio to lock. !! 2377 * @page - the page to lock. 3093 * @fpin - the pointer to the file we may pin 2378 * @fpin - the pointer to the file we may pin (or is already pinned). 3094 * 2379 * 3095 * This works similar to lock_folio_or_retry !! 2380 * This works similar to lock_page_or_retry in that it can drop the mmap_sem. 3096 * mmap_lock. It differs in that it actually !! 2381 * It differs in that it actually returns the page locked if it returns 1 and 0 3097 * if it returns 1 and 0 if it couldn't lock !! 2382 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin 3098 * to drop the mmap_lock then fpin will point !! 2383 * will point to the pinned file and needs to be fput()'ed at a later point. 3099 * needs to be fput()'ed at a later point. << 3100 */ 2384 */ 3101 static int lock_folio_maybe_drop_mmap(struct !! 2385 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 3102 struct f 2386 struct file **fpin) 3103 { 2387 { 3104 if (folio_trylock(folio)) !! 2388 if (trylock_page(page)) 3105 return 1; 2389 return 1; 3106 2390 3107 /* 2391 /* 3108 * NOTE! This will make us return wit 2392 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3109 * the fault lock still held. That's !! 2393 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT 3110 * is supposed to work. We have way t 2394 * is supposed to work. We have way too many special cases.. 3111 */ 2395 */ 3112 if (vmf->flags & FAULT_FLAG_RETRY_NOW 2396 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3113 return 0; 2397 return 0; 3114 2398 3115 *fpin = maybe_unlock_mmap_for_io(vmf, 2399 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3116 if (vmf->flags & FAULT_FLAG_KILLABLE) 2400 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3117 if (__folio_lock_killable(fol !! 2401 if (__lock_page_killable(page)) { 3118 /* 2402 /* 3119 * We didn't have the !! 2403 * We didn't have the right flags to drop the mmap_sem, 3120 * fault lock, but al !! 2404 * but all fault_handlers only check for fatal signals 3121 * for fatal signals !! 2405 * if we return VM_FAULT_RETRY, so we need to drop the 3122 * so we need to drop !! 2406 * mmap_sem here and return 0 if we don't have a fpin. 3123 * return 0 if we don << 3124 */ 2407 */ 3125 if (*fpin == NULL) 2408 if (*fpin == NULL) 3126 release_fault !! 2409 up_read(&vmf->vma->vm_mm->mmap_sem); 3127 return 0; 2410 return 0; 3128 } 2411 } 3129 } else 2412 } else 3130 __folio_lock(folio); !! 2413 __lock_page(page); 3131 << 3132 return 1; 2414 return 1; 3133 } 2415 } 3134 2416 >> 2417 3135 /* 2418 /* 3136 * Synchronous readahead happens when we don' 2419 * Synchronous readahead happens when we don't even find a page in the page 3137 * cache at all. We don't want to perform IO 2420 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3138 * to drop the mmap sem we return the file th 2421 * to drop the mmap sem we return the file that was pinned in order for us to do 3139 * that. If we didn't pin a file then we ret 2422 * that. If we didn't pin a file then we return NULL. The file that is 3140 * returned needs to be fput()'ed when we're 2423 * returned needs to be fput()'ed when we're done with it. 3141 */ 2424 */ 3142 static struct file *do_sync_mmap_readahead(st 2425 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3143 { 2426 { 3144 struct file *file = vmf->vma->vm_file 2427 struct file *file = vmf->vma->vm_file; 3145 struct file_ra_state *ra = &file->f_r 2428 struct file_ra_state *ra = &file->f_ra; 3146 struct address_space *mapping = file- 2429 struct address_space *mapping = file->f_mapping; 3147 DEFINE_READAHEAD(ractl, file, ra, map << 3148 struct file *fpin = NULL; 2430 struct file *fpin = NULL; 3149 unsigned long vm_flags = vmf->vma->vm !! 2431 pgoff_t offset = vmf->pgoff; 3150 unsigned int mmap_miss; << 3151 << 3152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 3153 /* Use the readahead code, even if re << 3154 if ((vm_flags & VM_HUGEPAGE) && HPAGE << 3155 fpin = maybe_unlock_mmap_for_ << 3156 ractl._index &= ~((unsigned l << 3157 ra->size = HPAGE_PMD_NR; << 3158 /* << 3159 * Fetch two PMD folios, so w << 3160 * readahead, unless we've be << 3161 */ << 3162 if (!(vm_flags & VM_RAND_READ << 3163 ra->size *= 2; << 3164 ra->async_size = HPAGE_PMD_NR << 3165 page_cache_ra_order(&ractl, r << 3166 return fpin; << 3167 } << 3168 #endif << 3169 2432 3170 /* If we don't want any read-ahead, d 2433 /* If we don't want any read-ahead, don't bother */ 3171 if (vm_flags & VM_RAND_READ) !! 2434 if (vmf->vma->vm_flags & VM_RAND_READ) 3172 return fpin; 2435 return fpin; 3173 if (!ra->ra_pages) 2436 if (!ra->ra_pages) 3174 return fpin; 2437 return fpin; 3175 2438 3176 if (vm_flags & VM_SEQ_READ) { !! 2439 if (vmf->vma->vm_flags & VM_SEQ_READ) { 3177 fpin = maybe_unlock_mmap_for_ 2440 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3178 page_cache_sync_ra(&ractl, ra !! 2441 page_cache_sync_readahead(mapping, ra, file, offset, >> 2442 ra->ra_pages); 3179 return fpin; 2443 return fpin; 3180 } 2444 } 3181 2445 3182 /* Avoid banging the cache line if no 2446 /* Avoid banging the cache line if not needed */ 3183 mmap_miss = READ_ONCE(ra->mmap_miss); !! 2447 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 3184 if (mmap_miss < MMAP_LOTSAMISS * 10) !! 2448 ra->mmap_miss++; 3185 WRITE_ONCE(ra->mmap_miss, ++m << 3186 2449 3187 /* 2450 /* 3188 * Do we miss much more than hit in t 2451 * Do we miss much more than hit in this file? If so, 3189 * stop bothering with read-ahead. It 2452 * stop bothering with read-ahead. It will only hurt. 3190 */ 2453 */ 3191 if (mmap_miss > MMAP_LOTSAMISS) !! 2454 if (ra->mmap_miss > MMAP_LOTSAMISS) 3192 return fpin; 2455 return fpin; 3193 2456 3194 /* 2457 /* 3195 * mmap read-around 2458 * mmap read-around 3196 */ 2459 */ 3197 fpin = maybe_unlock_mmap_for_io(vmf, 2460 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3198 ra->start = max_t(long, 0, vmf->pgoff !! 2461 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 3199 ra->size = ra->ra_pages; 2462 ra->size = ra->ra_pages; 3200 ra->async_size = ra->ra_pages / 4; 2463 ra->async_size = ra->ra_pages / 4; 3201 ractl._index = ra->start; !! 2464 ra_submit(ra, mapping, file); 3202 page_cache_ra_order(&ractl, ra, 0); << 3203 return fpin; 2465 return fpin; 3204 } 2466 } 3205 2467 3206 /* 2468 /* 3207 * Asynchronous readahead happens when we fin 2469 * Asynchronous readahead happens when we find the page and PG_readahead, 3208 * so we want to possibly extend the readahea 2470 * so we want to possibly extend the readahead further. We return the file that 3209 * was pinned if we have to drop the mmap_loc !! 2471 * was pinned if we have to drop the mmap_sem in order to do IO. 3210 */ 2472 */ 3211 static struct file *do_async_mmap_readahead(s 2473 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3212 s !! 2474 struct page *page) 3213 { 2475 { 3214 struct file *file = vmf->vma->vm_file 2476 struct file *file = vmf->vma->vm_file; 3215 struct file_ra_state *ra = &file->f_r 2477 struct file_ra_state *ra = &file->f_ra; 3216 DEFINE_READAHEAD(ractl, file, ra, fil !! 2478 struct address_space *mapping = file->f_mapping; 3217 struct file *fpin = NULL; 2479 struct file *fpin = NULL; 3218 unsigned int mmap_miss; !! 2480 pgoff_t offset = vmf->pgoff; 3219 2481 3220 /* If we don't want any read-ahead, d 2482 /* If we don't want any read-ahead, don't bother */ 3221 if (vmf->vma->vm_flags & VM_RAND_READ !! 2483 if (vmf->vma->vm_flags & VM_RAND_READ) 3222 return fpin; 2484 return fpin; 3223 !! 2485 if (ra->mmap_miss > 0) 3224 mmap_miss = READ_ONCE(ra->mmap_miss); !! 2486 ra->mmap_miss--; 3225 if (mmap_miss) !! 2487 if (PageReadahead(page)) { 3226 WRITE_ONCE(ra->mmap_miss, --m << 3227 << 3228 if (folio_test_readahead(folio)) { << 3229 fpin = maybe_unlock_mmap_for_ 2488 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3230 page_cache_async_ra(&ractl, f !! 2489 page_cache_async_readahead(mapping, ra, file, >> 2490 page, offset, ra->ra_pages); 3231 } 2491 } 3232 return fpin; 2492 return fpin; 3233 } 2493 } 3234 2494 3235 static vm_fault_t filemap_fault_recheck_pte_n << 3236 { << 3237 struct vm_area_struct *vma = vmf->vma << 3238 vm_fault_t ret = 0; << 3239 pte_t *ptep; << 3240 << 3241 /* << 3242 * We might have COW'ed a pagecache f << 3243 * anon folio mapped. The original pa << 3244 * might have been evicted. During a << 3245 * the PTE, such as done in do_numa_p << 3246 * temporarily clear the PTE under PT << 3247 * "none" when not holding the PT loc << 3248 * << 3249 * Not rechecking the PTE under PT lo << 3250 * major fault in an mlock'ed region. << 3251 * scenario while holding the PT lock << 3252 * scenarios. Recheck the PTE without << 3253 * the number of times we hold PT loc << 3254 */ << 3255 if (!(vma->vm_flags & VM_LOCKED)) << 3256 return 0; << 3257 << 3258 if (!(vmf->flags & FAULT_FLAG_ORIG_PT << 3259 return 0; << 3260 << 3261 ptep = pte_offset_map_nolock(vma->vm_ << 3262 &vmf->pt << 3263 if (unlikely(!ptep)) << 3264 return VM_FAULT_NOPAGE; << 3265 << 3266 if (unlikely(!pte_none(ptep_get_lockl << 3267 ret = VM_FAULT_NOPAGE; << 3268 } else { << 3269 spin_lock(vmf->ptl); << 3270 if (unlikely(!pte_none(ptep_g << 3271 ret = VM_FAULT_NOPAGE << 3272 spin_unlock(vmf->ptl); << 3273 } << 3274 pte_unmap(ptep); << 3275 return ret; << 3276 } << 3277 << 3278 /** 2495 /** 3279 * filemap_fault - read in file data for page 2496 * filemap_fault - read in file data for page fault handling 3280 * @vmf: struct vm_fault containing de 2497 * @vmf: struct vm_fault containing details of the fault 3281 * 2498 * 3282 * filemap_fault() is invoked via the vma ope 2499 * filemap_fault() is invoked via the vma operations vector for a 3283 * mapped memory region to read in file data 2500 * mapped memory region to read in file data during a page fault. 3284 * 2501 * 3285 * The goto's are kind of ugly, but this stre 2502 * The goto's are kind of ugly, but this streamlines the normal case of having 3286 * it in the page cache, and handles the spec 2503 * it in the page cache, and handles the special cases reasonably without 3287 * having a lot of duplicated code. 2504 * having a lot of duplicated code. 3288 * 2505 * 3289 * vma->vm_mm->mmap_lock must be held on entr !! 2506 * vma->vm_mm->mmap_sem must be held on entry. 3290 * 2507 * 3291 * If our return value has VM_FAULT_RETRY set !! 2508 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem 3292 * may be dropped before doing I/O or by lock !! 2509 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 3293 * 2510 * 3294 * If our return value does not have VM_FAULT !! 2511 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 3295 * has not been released. 2512 * has not been released. 3296 * 2513 * 3297 * We never return with VM_FAULT_RETRY and a 2514 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3298 * 2515 * 3299 * Return: bitwise-OR of %VM_FAULT_ codes. 2516 * Return: bitwise-OR of %VM_FAULT_ codes. 3300 */ 2517 */ 3301 vm_fault_t filemap_fault(struct vm_fault *vmf 2518 vm_fault_t filemap_fault(struct vm_fault *vmf) 3302 { 2519 { 3303 int error; 2520 int error; 3304 struct file *file = vmf->vma->vm_file 2521 struct file *file = vmf->vma->vm_file; 3305 struct file *fpin = NULL; 2522 struct file *fpin = NULL; 3306 struct address_space *mapping = file- 2523 struct address_space *mapping = file->f_mapping; >> 2524 struct file_ra_state *ra = &file->f_ra; 3307 struct inode *inode = mapping->host; 2525 struct inode *inode = mapping->host; 3308 pgoff_t max_idx, index = vmf->pgoff; !! 2526 pgoff_t offset = vmf->pgoff; 3309 struct folio *folio; !! 2527 pgoff_t max_off; >> 2528 struct page *page; 3310 vm_fault_t ret = 0; 2529 vm_fault_t ret = 0; 3311 bool mapping_locked = false; << 3312 2530 3313 max_idx = DIV_ROUND_UP(i_size_read(in !! 2531 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3314 if (unlikely(index >= max_idx)) !! 2532 if (unlikely(offset >= max_off)) 3315 return VM_FAULT_SIGBUS; 2533 return VM_FAULT_SIGBUS; 3316 2534 3317 trace_mm_filemap_fault(mapping, index << 3318 << 3319 /* 2535 /* 3320 * Do we have something in the page c 2536 * Do we have something in the page cache already? 3321 */ 2537 */ 3322 folio = filemap_get_folio(mapping, in !! 2538 page = find_get_page(mapping, offset); 3323 if (likely(!IS_ERR(folio))) { !! 2539 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 3324 /* 2540 /* 3325 * We found the page, so try !! 2541 * We found the page, so try async readahead before 3326 * the lock. !! 2542 * waiting for the lock. 3327 */ 2543 */ 3328 if (!(vmf->flags & FAULT_FLAG !! 2544 fpin = do_async_mmap_readahead(vmf, page); 3329 fpin = do_async_mmap_ !! 2545 } else if (!page) { 3330 if (unlikely(!folio_test_upto << 3331 filemap_invalidate_lo << 3332 mapping_locked = true << 3333 } << 3334 } else { << 3335 ret = filemap_fault_recheck_p << 3336 if (unlikely(ret)) << 3337 return ret; << 3338 << 3339 /* No page in the page cache 2546 /* No page in the page cache at all */ 3340 count_vm_event(PGMAJFAULT); 2547 count_vm_event(PGMAJFAULT); 3341 count_memcg_event_mm(vmf->vma 2548 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3342 ret = VM_FAULT_MAJOR; 2549 ret = VM_FAULT_MAJOR; 3343 fpin = do_sync_mmap_readahead 2550 fpin = do_sync_mmap_readahead(vmf); 3344 retry_find: 2551 retry_find: 3345 /* !! 2552 page = pagecache_get_page(mapping, offset, 3346 * See comment in filemap_cre << 3347 * invalidate_lock << 3348 */ << 3349 if (!mapping_locked) { << 3350 filemap_invalidate_lo << 3351 mapping_locked = true << 3352 } << 3353 folio = __filemap_get_folio(m << 3354 FGP 2553 FGP_CREAT|FGP_FOR_MMAP, 3355 vmf 2554 vmf->gfp_mask); 3356 if (IS_ERR(folio)) { !! 2555 if (!page) { 3357 if (fpin) 2556 if (fpin) 3358 goto out_retr 2557 goto out_retry; 3359 filemap_invalidate_un !! 2558 return vmf_error(-ENOMEM); 3360 return VM_FAULT_OOM; << 3361 } 2559 } 3362 } 2560 } 3363 2561 3364 if (!lock_folio_maybe_drop_mmap(vmf, !! 2562 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 3365 goto out_retry; 2563 goto out_retry; 3366 2564 3367 /* Did it get truncated? */ 2565 /* Did it get truncated? */ 3368 if (unlikely(folio->mapping != mappin !! 2566 if (unlikely(page->mapping != mapping)) { 3369 folio_unlock(folio); !! 2567 unlock_page(page); 3370 folio_put(folio); !! 2568 put_page(page); 3371 goto retry_find; 2569 goto retry_find; 3372 } 2570 } 3373 VM_BUG_ON_FOLIO(!folio_contains(folio !! 2571 VM_BUG_ON_PAGE(page->index != offset, page); 3374 2572 3375 /* 2573 /* 3376 * We have a locked folio in the page !! 2574 * We have a locked page in the page cache, now we need to check 3377 * that it's up-to-date. If not, it i !! 2575 * that it's up-to-date. If not, it is going to be due to an error. 3378 * or because readahead was otherwise << 3379 */ 2576 */ 3380 if (unlikely(!folio_test_uptodate(fol !! 2577 if (unlikely(!PageUptodate(page))) 3381 /* << 3382 * If the invalidate lock is << 3383 * and uptodate and now it is << 3384 * didn't hold the page lock << 3385 * everything, get the invali << 3386 */ << 3387 if (!mapping_locked) { << 3388 folio_unlock(folio); << 3389 folio_put(folio); << 3390 goto retry_find; << 3391 } << 3392 << 3393 /* << 3394 * OK, the folio is really no << 3395 * VMA has the VM_RAND_READ f << 3396 * arose. Let's read it in di << 3397 */ << 3398 goto page_not_uptodate; 2578 goto page_not_uptodate; 3399 } << 3400 2579 3401 /* 2580 /* 3402 * We've made it this far and we had !! 2581 * We've made it this far and we had to drop our mmap_sem, now is the 3403 * time to return to the upper layer 2582 * time to return to the upper layer and have it re-find the vma and 3404 * redo the fault. 2583 * redo the fault. 3405 */ 2584 */ 3406 if (fpin) { 2585 if (fpin) { 3407 folio_unlock(folio); !! 2586 unlock_page(page); 3408 goto out_retry; 2587 goto out_retry; 3409 } 2588 } 3410 if (mapping_locked) << 3411 filemap_invalidate_unlock_sha << 3412 2589 3413 /* 2590 /* 3414 * Found the page and have a referenc 2591 * Found the page and have a reference on it. 3415 * We must recheck i_size under page 2592 * We must recheck i_size under page lock. 3416 */ 2593 */ 3417 max_idx = DIV_ROUND_UP(i_size_read(in !! 2594 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3418 if (unlikely(index >= max_idx)) { !! 2595 if (unlikely(offset >= max_off)) { 3419 folio_unlock(folio); !! 2596 unlock_page(page); 3420 folio_put(folio); !! 2597 put_page(page); 3421 return VM_FAULT_SIGBUS; 2598 return VM_FAULT_SIGBUS; 3422 } 2599 } 3423 2600 3424 vmf->page = folio_file_page(folio, in !! 2601 vmf->page = page; 3425 return ret | VM_FAULT_LOCKED; 2602 return ret | VM_FAULT_LOCKED; 3426 2603 3427 page_not_uptodate: 2604 page_not_uptodate: 3428 /* 2605 /* 3429 * Umm, take care of errors if the pa 2606 * Umm, take care of errors if the page isn't up-to-date. 3430 * Try to re-read it _once_. We do th 2607 * Try to re-read it _once_. We do this synchronously, 3431 * because there really aren't any pe 2608 * because there really aren't any performance issues here 3432 * and we need to check for errors. 2609 * and we need to check for errors. 3433 */ 2610 */ >> 2611 ClearPageError(page); 3434 fpin = maybe_unlock_mmap_for_io(vmf, 2612 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3435 error = filemap_read_folio(file, mapp !! 2613 error = mapping->a_ops->readpage(file, page); >> 2614 if (!error) { >> 2615 wait_on_page_locked(page); >> 2616 if (!PageUptodate(page)) >> 2617 error = -EIO; >> 2618 } 3436 if (fpin) 2619 if (fpin) 3437 goto out_retry; 2620 goto out_retry; 3438 folio_put(folio); !! 2621 put_page(page); 3439 2622 3440 if (!error || error == AOP_TRUNCATED_ 2623 if (!error || error == AOP_TRUNCATED_PAGE) 3441 goto retry_find; 2624 goto retry_find; 3442 filemap_invalidate_unlock_shared(mapp << 3443 2625 >> 2626 /* Things didn't work out. Return zero to tell the mm layer so. */ >> 2627 shrink_readahead_size_eio(file, ra); 3444 return VM_FAULT_SIGBUS; 2628 return VM_FAULT_SIGBUS; 3445 2629 3446 out_retry: 2630 out_retry: 3447 /* 2631 /* 3448 * We dropped the mmap_lock, we need !! 2632 * We dropped the mmap_sem, we need to return to the fault handler to 3449 * re-find the vma and come back and 2633 * re-find the vma and come back and find our hopefully still populated 3450 * page. 2634 * page. 3451 */ 2635 */ 3452 if (!IS_ERR(folio)) !! 2636 if (page) 3453 folio_put(folio); !! 2637 put_page(page); 3454 if (mapping_locked) << 3455 filemap_invalidate_unlock_sha << 3456 if (fpin) 2638 if (fpin) 3457 fput(fpin); 2639 fput(fpin); 3458 return ret | VM_FAULT_RETRY; 2640 return ret | VM_FAULT_RETRY; 3459 } 2641 } 3460 EXPORT_SYMBOL(filemap_fault); 2642 EXPORT_SYMBOL(filemap_fault); 3461 2643 3462 static bool filemap_map_pmd(struct vm_fault * !! 2644 void filemap_map_pages(struct vm_fault *vmf, 3463 pgoff_t start) !! 2645 pgoff_t start_pgoff, pgoff_t end_pgoff) 3464 { << 3465 struct mm_struct *mm = vmf->vma->vm_m << 3466 << 3467 /* Huge page is mapped? No need to pr << 3468 if (pmd_trans_huge(*vmf->pmd)) { << 3469 folio_unlock(folio); << 3470 folio_put(folio); << 3471 return true; << 3472 } << 3473 << 3474 if (pmd_none(*vmf->pmd) && folio_test << 3475 struct page *page = folio_fil << 3476 vm_fault_t ret = do_set_pmd(v << 3477 if (!ret) { << 3478 /* The page is mapped << 3479 folio_unlock(folio); << 3480 return true; << 3481 } << 3482 } << 3483 << 3484 if (pmd_none(*vmf->pmd) && vmf->preal << 3485 pmd_install(mm, vmf->pmd, &vm << 3486 << 3487 return false; << 3488 } << 3489 << 3490 static struct folio *next_uptodate_folio(stru << 3491 struct address_space *mapping << 3492 { 2646 { 3493 struct folio *folio = xas_next_entry( !! 2647 struct file *file = vmf->vma->vm_file; >> 2648 struct address_space *mapping = file->f_mapping; >> 2649 pgoff_t last_pgoff = start_pgoff; 3494 unsigned long max_idx; 2650 unsigned long max_idx; >> 2651 XA_STATE(xas, &mapping->i_pages, start_pgoff); >> 2652 struct page *head, *page; 3495 2653 3496 do { !! 2654 rcu_read_lock(); 3497 if (!folio) !! 2655 xas_for_each(&xas, page, end_pgoff) { 3498 return NULL; !! 2656 if (xas_retry(&xas, page)) 3499 if (xas_retry(xas, folio)) << 3500 continue; << 3501 if (xa_is_value(folio)) << 3502 continue; << 3503 if (folio_test_locked(folio)) << 3504 continue; << 3505 if (!folio_try_get(folio)) << 3506 continue; 2657 continue; 3507 /* Has the page moved or been !! 2658 if (xa_is_value(page)) 3508 if (unlikely(folio != xas_rel !! 2659 goto next; 3509 goto skip; << 3510 if (!folio_test_uptodate(foli << 3511 goto skip; << 3512 if (!folio_trylock(folio)) << 3513 goto skip; << 3514 if (folio->mapping != mapping << 3515 goto unlock; << 3516 if (!folio_test_uptodate(foli << 3517 goto unlock; << 3518 max_idx = DIV_ROUND_UP(i_size << 3519 if (xas->xa_index >= max_idx) << 3520 goto unlock; << 3521 return folio; << 3522 unlock: << 3523 folio_unlock(folio); << 3524 skip: << 3525 folio_put(folio); << 3526 } while ((folio = xas_next_entry(xas, << 3527 2660 3528 return NULL; !! 2661 head = compound_head(page); 3529 } << 3530 << 3531 /* << 3532 * Map page range [start_page, start_page + n << 3533 * start_page is gotten from start by folio_p << 3534 */ << 3535 static vm_fault_t filemap_map_folio_range(str << 3536 struct folio *folio, << 3537 unsigned long addr, u << 3538 unsigned long *rss, u << 3539 { << 3540 vm_fault_t ret = 0; << 3541 struct page *page = folio_page(folio, << 3542 unsigned int count = 0; << 3543 pte_t *old_ptep = vmf->pte; << 3544 << 3545 do { << 3546 if (PageHWPoison(page + count << 3547 goto skip; << 3548 2662 3549 /* 2663 /* 3550 * If there are too many foli !! 2664 * Check for a locked page first, as a speculative 3551 * in a file, they will proba !! 2665 * reference may adversely influence page migration. 3552 * In such situation, read-ah << 3553 * Don't decrease mmap_miss i << 3554 * we can stop read-ahead. << 3555 */ 2666 */ 3556 if (!folio_test_workingset(fo !! 2667 if (PageLocked(head)) 3557 (*mmap_miss)++; !! 2668 goto next; >> 2669 if (!page_cache_get_speculative(head)) >> 2670 goto next; 3558 2671 3559 /* !! 2672 /* The page was split under us? */ 3560 * NOTE: If there're PTE mark !! 2673 if (compound_head(page) != head) 3561 * handled in the specific fa << 3562 * fault-around logic. << 3563 */ << 3564 if (!pte_none(ptep_get(&vmf-> << 3565 goto skip; 2674 goto skip; 3566 2675 3567 count++; !! 2676 /* Has the page moved? */ 3568 continue; !! 2677 if (unlikely(page != xas_reload(&xas))) 3569 skip: !! 2678 goto skip; 3570 if (count) { << 3571 set_pte_range(vmf, fo << 3572 *rss += count; << 3573 folio_ref_add(folio, << 3574 if (in_range(vmf->add << 3575 ret = VM_FAUL << 3576 } << 3577 << 3578 count++; << 3579 page += count; << 3580 vmf->pte += count; << 3581 addr += count * PAGE_SIZE; << 3582 count = 0; << 3583 } while (--nr_pages > 0); << 3584 << 3585 if (count) { << 3586 set_pte_range(vmf, folio, pag << 3587 *rss += count; << 3588 folio_ref_add(folio, count); << 3589 if (in_range(vmf->address, ad << 3590 ret = VM_FAULT_NOPAGE << 3591 } << 3592 << 3593 vmf->pte = old_ptep; << 3594 << 3595 return ret; << 3596 } << 3597 << 3598 static vm_fault_t filemap_map_order0_folio(st << 3599 struct folio *folio, unsigned << 3600 unsigned long *rss, unsigned << 3601 { << 3602 vm_fault_t ret = 0; << 3603 struct page *page = &folio->page; << 3604 << 3605 if (PageHWPoison(page)) << 3606 return ret; << 3607 << 3608 /* See comment of filemap_map_folio_r << 3609 if (!folio_test_workingset(folio)) << 3610 (*mmap_miss)++; << 3611 << 3612 /* << 3613 * NOTE: If there're PTE markers, we' << 3614 * handled in the specific fault path << 3615 * the fault-around logic. << 3616 */ << 3617 if (!pte_none(ptep_get(vmf->pte))) << 3618 return ret; << 3619 << 3620 if (vmf->address == addr) << 3621 ret = VM_FAULT_NOPAGE; << 3622 << 3623 set_pte_range(vmf, folio, page, 1, ad << 3624 (*rss)++; << 3625 folio_ref_inc(folio); << 3626 << 3627 return ret; << 3628 } << 3629 << 3630 vm_fault_t filemap_map_pages(struct vm_fault << 3631 pgoff_t start_pg << 3632 { << 3633 struct vm_area_struct *vma = vmf->vma << 3634 struct file *file = vma->vm_file; << 3635 struct address_space *mapping = file- << 3636 pgoff_t file_end, last_pgoff = start_ << 3637 unsigned long addr; << 3638 XA_STATE(xas, &mapping->i_pages, star << 3639 struct folio *folio; << 3640 vm_fault_t ret = 0; << 3641 unsigned long rss = 0; << 3642 unsigned int nr_pages = 0, mmap_miss << 3643 << 3644 rcu_read_lock(); << 3645 folio = next_uptodate_folio(&xas, map << 3646 if (!folio) << 3647 goto out; << 3648 2679 3649 if (filemap_map_pmd(vmf, folio, start !! 2680 if (!PageUptodate(page) || 3650 ret = VM_FAULT_NOPAGE; !! 2681 PageReadahead(page) || 3651 goto out; !! 2682 PageHWPoison(page)) 3652 } !! 2683 goto skip; >> 2684 if (!trylock_page(page)) >> 2685 goto skip; 3653 2686 3654 addr = vma->vm_start + ((start_pgoff !! 2687 if (page->mapping != mapping || !PageUptodate(page)) 3655 vmf->pte = pte_offset_map_lock(vma->v !! 2688 goto unlock; 3656 if (!vmf->pte) { << 3657 folio_unlock(folio); << 3658 folio_put(folio); << 3659 goto out; << 3660 } << 3661 2689 3662 file_end = DIV_ROUND_UP(i_size_read(m !! 2690 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3663 if (end_pgoff > file_end) !! 2691 if (page->index >= max_idx) 3664 end_pgoff = file_end; !! 2692 goto unlock; 3665 2693 3666 folio_type = mm_counter_file(folio); !! 2694 if (file->f_ra.mmap_miss > 0) 3667 do { !! 2695 file->f_ra.mmap_miss--; 3668 unsigned long end; << 3669 2696 3670 addr += (xas.xa_index - last_ !! 2697 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3671 vmf->pte += xas.xa_index - la !! 2698 if (vmf->pte) >> 2699 vmf->pte += xas.xa_index - last_pgoff; 3672 last_pgoff = xas.xa_index; 2700 last_pgoff = xas.xa_index; 3673 end = folio_next_index(folio) !! 2701 if (alloc_set_pte(vmf, NULL, page)) 3674 nr_pages = min(end, end_pgoff !! 2702 goto unlock; 3675 !! 2703 unlock_page(page); 3676 if (!folio_test_large(folio)) !! 2704 goto next; 3677 ret |= filemap_map_or !! 2705 unlock: 3678 folio !! 2706 unlock_page(page); 3679 else !! 2707 skip: 3680 ret |= filemap_map_fo !! 2708 put_page(page); 3681 xas.x !! 2709 next: 3682 nr_pa !! 2710 /* Huge page is mapped? No need to proceed. */ 3683 !! 2711 if (pmd_trans_huge(*vmf->pmd)) 3684 folio_unlock(folio); !! 2712 break; 3685 folio_put(folio); !! 2713 } 3686 } while ((folio = next_uptodate_folio << 3687 add_mm_counter(vma->vm_mm, folio_type << 3688 pte_unmap_unlock(vmf->pte, vmf->ptl); << 3689 trace_mm_filemap_map_pages(mapping, s << 3690 out: << 3691 rcu_read_unlock(); 2714 rcu_read_unlock(); 3692 << 3693 mmap_miss_saved = READ_ONCE(file->f_r << 3694 if (mmap_miss >= mmap_miss_saved) << 3695 WRITE_ONCE(file->f_ra.mmap_mi << 3696 else << 3697 WRITE_ONCE(file->f_ra.mmap_mi << 3698 << 3699 return ret; << 3700 } 2715 } 3701 EXPORT_SYMBOL(filemap_map_pages); 2716 EXPORT_SYMBOL(filemap_map_pages); 3702 2717 3703 vm_fault_t filemap_page_mkwrite(struct vm_fau 2718 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3704 { 2719 { 3705 struct address_space *mapping = vmf-> !! 2720 struct page *page = vmf->page; 3706 struct folio *folio = page_folio(vmf- !! 2721 struct inode *inode = file_inode(vmf->vma->vm_file); 3707 vm_fault_t ret = VM_FAULT_LOCKED; 2722 vm_fault_t ret = VM_FAULT_LOCKED; 3708 2723 3709 sb_start_pagefault(mapping->host->i_s !! 2724 sb_start_pagefault(inode->i_sb); 3710 file_update_time(vmf->vma->vm_file); 2725 file_update_time(vmf->vma->vm_file); 3711 folio_lock(folio); !! 2726 lock_page(page); 3712 if (folio->mapping != mapping) { !! 2727 if (page->mapping != inode->i_mapping) { 3713 folio_unlock(folio); !! 2728 unlock_page(page); 3714 ret = VM_FAULT_NOPAGE; 2729 ret = VM_FAULT_NOPAGE; 3715 goto out; 2730 goto out; 3716 } 2731 } 3717 /* 2732 /* 3718 * We mark the folio dirty already he !! 2733 * We mark the page dirty already here so that when freeze is in 3719 * progress, we are guaranteed that w 2734 * progress, we are guaranteed that writeback during freezing will 3720 * see the dirty folio and writeprote !! 2735 * see the dirty page and writeprotect it again. 3721 */ 2736 */ 3722 folio_mark_dirty(folio); !! 2737 set_page_dirty(page); 3723 folio_wait_stable(folio); !! 2738 wait_for_stable_page(page); 3724 out: 2739 out: 3725 sb_end_pagefault(mapping->host->i_sb) !! 2740 sb_end_pagefault(inode->i_sb); 3726 return ret; 2741 return ret; 3727 } 2742 } 3728 2743 3729 const struct vm_operations_struct generic_fil 2744 const struct vm_operations_struct generic_file_vm_ops = { 3730 .fault = filemap_fault, 2745 .fault = filemap_fault, 3731 .map_pages = filemap_map_pages, 2746 .map_pages = filemap_map_pages, 3732 .page_mkwrite = filemap_page_mkwrit 2747 .page_mkwrite = filemap_page_mkwrite, 3733 }; 2748 }; 3734 2749 3735 /* This is used for a general mmap of a disk 2750 /* This is used for a general mmap of a disk file */ 3736 2751 3737 int generic_file_mmap(struct file *file, stru !! 2752 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3738 { 2753 { 3739 struct address_space *mapping = file- 2754 struct address_space *mapping = file->f_mapping; 3740 2755 3741 if (!mapping->a_ops->read_folio) !! 2756 if (!mapping->a_ops->readpage) 3742 return -ENOEXEC; 2757 return -ENOEXEC; 3743 file_accessed(file); 2758 file_accessed(file); 3744 vma->vm_ops = &generic_file_vm_ops; 2759 vma->vm_ops = &generic_file_vm_ops; 3745 return 0; 2760 return 0; 3746 } 2761 } 3747 2762 3748 /* 2763 /* 3749 * This is for filesystems which do not imple 2764 * This is for filesystems which do not implement ->writepage. 3750 */ 2765 */ 3751 int generic_file_readonly_mmap(struct file *f 2766 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3752 { 2767 { 3753 if (vma_is_shared_maywrite(vma)) !! 2768 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3754 return -EINVAL; 2769 return -EINVAL; 3755 return generic_file_mmap(file, vma); 2770 return generic_file_mmap(file, vma); 3756 } 2771 } 3757 #else 2772 #else 3758 vm_fault_t filemap_page_mkwrite(struct vm_fau 2773 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3759 { 2774 { 3760 return VM_FAULT_SIGBUS; 2775 return VM_FAULT_SIGBUS; 3761 } 2776 } 3762 int generic_file_mmap(struct file *file, stru !! 2777 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3763 { 2778 { 3764 return -ENOSYS; 2779 return -ENOSYS; 3765 } 2780 } 3766 int generic_file_readonly_mmap(struct file *f !! 2781 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3767 { 2782 { 3768 return -ENOSYS; 2783 return -ENOSYS; 3769 } 2784 } 3770 #endif /* CONFIG_MMU */ 2785 #endif /* CONFIG_MMU */ 3771 2786 3772 EXPORT_SYMBOL(filemap_page_mkwrite); 2787 EXPORT_SYMBOL(filemap_page_mkwrite); 3773 EXPORT_SYMBOL(generic_file_mmap); 2788 EXPORT_SYMBOL(generic_file_mmap); 3774 EXPORT_SYMBOL(generic_file_readonly_mmap); 2789 EXPORT_SYMBOL(generic_file_readonly_mmap); 3775 2790 3776 static struct folio *do_read_cache_folio(stru !! 2791 static struct page *wait_on_page_read(struct page *page) 3777 pgoff_t index, filler_t fille << 3778 { 2792 { 3779 struct folio *folio; !! 2793 if (!IS_ERR(page)) { 3780 int err; !! 2794 wait_on_page_locked(page); >> 2795 if (!PageUptodate(page)) { >> 2796 put_page(page); >> 2797 page = ERR_PTR(-EIO); >> 2798 } >> 2799 } >> 2800 return page; >> 2801 } 3781 2802 3782 if (!filler) !! 2803 static struct page *do_read_cache_page(struct address_space *mapping, 3783 filler = mapping->a_ops->read !! 2804 pgoff_t index, >> 2805 int (*filler)(void *, struct page *), >> 2806 void *data, >> 2807 gfp_t gfp) >> 2808 { >> 2809 struct page *page; >> 2810 int err; 3784 repeat: 2811 repeat: 3785 folio = filemap_get_folio(mapping, in !! 2812 page = find_get_page(mapping, index); 3786 if (IS_ERR(folio)) { !! 2813 if (!page) { 3787 folio = filemap_alloc_folio(g !! 2814 page = __page_cache_alloc(gfp); 3788 m !! 2815 if (!page) 3789 if (!folio) << 3790 return ERR_PTR(-ENOME 2816 return ERR_PTR(-ENOMEM); 3791 index = mapping_align_index(m !! 2817 err = add_to_page_cache_lru(page, mapping, index, gfp); 3792 err = filemap_add_folio(mappi << 3793 if (unlikely(err)) { 2818 if (unlikely(err)) { 3794 folio_put(folio); !! 2819 put_page(page); 3795 if (err == -EEXIST) 2820 if (err == -EEXIST) 3796 goto repeat; 2821 goto repeat; 3797 /* Presumably ENOMEM 2822 /* Presumably ENOMEM for xarray node */ 3798 return ERR_PTR(err); 2823 return ERR_PTR(err); 3799 } 2824 } 3800 2825 3801 goto filler; !! 2826 filler: >> 2827 if (filler) >> 2828 err = filler(data, page); >> 2829 else >> 2830 err = mapping->a_ops->readpage(data, page); >> 2831 >> 2832 if (err < 0) { >> 2833 put_page(page); >> 2834 return ERR_PTR(err); >> 2835 } >> 2836 >> 2837 page = wait_on_page_read(page); >> 2838 if (IS_ERR(page)) >> 2839 return page; >> 2840 goto out; 3802 } 2841 } 3803 if (folio_test_uptodate(folio)) !! 2842 if (PageUptodate(page)) 3804 goto out; 2843 goto out; 3805 2844 3806 if (!folio_trylock(folio)) { !! 2845 /* 3807 folio_put_wait_locked(folio, !! 2846 * Page is not up to date and may be locked due one of the following 3808 goto repeat; !! 2847 * case a: Page is being filled and the page lock is held 3809 } !! 2848 * case b: Read/write error clearing the page uptodate status >> 2849 * case c: Truncation in progress (page locked) >> 2850 * case d: Reclaim in progress >> 2851 * >> 2852 * Case a, the page will be up to date when the page is unlocked. >> 2853 * There is no need to serialise on the page lock here as the page >> 2854 * is pinned so the lock gives no additional protection. Even if the >> 2855 * the page is truncated, the data is still valid if PageUptodate as >> 2856 * it's a race vs truncate race. >> 2857 * Case b, the page will not be up to date >> 2858 * Case c, the page may be truncated but in itself, the data may still >> 2859 * be valid after IO completes as it's a read vs truncate race. The >> 2860 * operation must restart if the page is not uptodate on unlock but >> 2861 * otherwise serialising on page lock to stabilise the mapping gives >> 2862 * no additional guarantees to the caller as the page lock is >> 2863 * released before return. >> 2864 * Case d, similar to truncation. If reclaim holds the page lock, it >> 2865 * will be a race with remove_mapping that determines if the mapping >> 2866 * is valid on unlock but otherwise the data is valid and there is >> 2867 * no need to serialise with page lock. >> 2868 * >> 2869 * As the page lock gives no additional guarantee, we optimistically >> 2870 * wait on the page to be unlocked and check if it's up to date and >> 2871 * use the page if it is. Otherwise, the page lock is required to >> 2872 * distinguish between the different cases. The motivation is that we >> 2873 * avoid spurious serialisations and wakeups when multiple processes >> 2874 * wait on the same page for IO to complete. >> 2875 */ >> 2876 wait_on_page_locked(page); >> 2877 if (PageUptodate(page)) >> 2878 goto out; >> 2879 >> 2880 /* Distinguish between all the cases under the safety of the lock */ >> 2881 lock_page(page); 3810 2882 3811 /* Folio was truncated from mapping * !! 2883 /* Case c or d, restart the operation */ 3812 if (!folio->mapping) { !! 2884 if (!page->mapping) { 3813 folio_unlock(folio); !! 2885 unlock_page(page); 3814 folio_put(folio); !! 2886 put_page(page); 3815 goto repeat; 2887 goto repeat; 3816 } 2888 } 3817 2889 3818 /* Someone else locked and filled the 2890 /* Someone else locked and filled the page in a very small window */ 3819 if (folio_test_uptodate(folio)) { !! 2891 if (PageUptodate(page)) { 3820 folio_unlock(folio); !! 2892 unlock_page(page); 3821 goto out; 2893 goto out; 3822 } 2894 } 3823 !! 2895 goto filler; 3824 filler: << 3825 err = filemap_read_folio(file, filler << 3826 if (err) { << 3827 folio_put(folio); << 3828 if (err == AOP_TRUNCATED_PAGE << 3829 goto repeat; << 3830 return ERR_PTR(err); << 3831 } << 3832 2896 3833 out: 2897 out: 3834 folio_mark_accessed(folio); !! 2898 mark_page_accessed(page); 3835 return folio; !! 2899 return page; 3836 } << 3837 << 3838 /** << 3839 * read_cache_folio - Read into page cache, f << 3840 * @mapping: The address_space to read from. << 3841 * @index: The index to read. << 3842 * @filler: Function to perform the read, or << 3843 * @file: Passed to filler function, may be N << 3844 * << 3845 * Read one page into the page cache. If it << 3846 * will contain @index, but it may not be the << 3847 * << 3848 * If the filler function returns an error, i << 3849 * caller. << 3850 * << 3851 * Context: May sleep. Expects mapping->inva << 3852 * Return: An uptodate folio on success, ERR_ << 3853 */ << 3854 struct folio *read_cache_folio(struct address << 3855 filler_t filler, struct file << 3856 { << 3857 return do_read_cache_folio(mapping, i << 3858 mapping_gfp_mask(mapp << 3859 } 2900 } 3860 EXPORT_SYMBOL(read_cache_folio); << 3861 2901 3862 /** 2902 /** 3863 * mapping_read_folio_gfp - Read into page ca !! 2903 * read_cache_page - read into page cache, fill it if needed 3864 * @mapping: The address_space for the fol !! 2904 * @mapping: the page's address_space 3865 * @index: The index that the allocated !! 2905 * @index: the page index 3866 * @gfp: The page allocator flags to u !! 2906 * @filler: function to perform the read 3867 * !! 2907 * @data: first arg to filler(data, page) function, often left as NULL 3868 * This is the same as "read_cache_folio(mapp << 3869 * any new memory allocations done using the << 3870 * 2908 * 3871 * The most likely error from this function i !! 2909 * Read into the page cache. If a page already exists, and PageUptodate() is 3872 * possible and so is EINTR. If ->read_folio !! 2910 * not set, try to fill the page and wait for it to become unlocked. 3873 * that will be returned to the caller. << 3874 * 2911 * 3875 * The function expects mapping->invalidate_l !! 2912 * If the page does not get brought uptodate, return -EIO. 3876 * 2913 * 3877 * Return: Uptodate folio on success, ERR_PTR !! 2914 * Return: up to date page on success, ERR_PTR() on failure. 3878 */ 2915 */ 3879 struct folio *mapping_read_folio_gfp(struct a << 3880 pgoff_t index, gfp_t gfp) << 3881 { << 3882 return do_read_cache_folio(mapping, i << 3883 } << 3884 EXPORT_SYMBOL(mapping_read_folio_gfp); << 3885 << 3886 static struct page *do_read_cache_page(struct << 3887 pgoff_t index, filler_t *fill << 3888 { << 3889 struct folio *folio; << 3890 << 3891 folio = do_read_cache_folio(mapping, << 3892 if (IS_ERR(folio)) << 3893 return &folio->page; << 3894 return folio_file_page(folio, index); << 3895 } << 3896 << 3897 struct page *read_cache_page(struct address_s 2916 struct page *read_cache_page(struct address_space *mapping, 3898 pgoff_t index, filler !! 2917 pgoff_t index, >> 2918 int (*filler)(void *, struct page *), >> 2919 void *data) 3899 { 2920 { 3900 return do_read_cache_page(mapping, in !! 2921 return do_read_cache_page(mapping, index, filler, data, 3901 mapping_gfp_mask(mapp 2922 mapping_gfp_mask(mapping)); 3902 } 2923 } 3903 EXPORT_SYMBOL(read_cache_page); 2924 EXPORT_SYMBOL(read_cache_page); 3904 2925 3905 /** 2926 /** 3906 * read_cache_page_gfp - read into page cache 2927 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3907 * @mapping: the page's address_space 2928 * @mapping: the page's address_space 3908 * @index: the page index 2929 * @index: the page index 3909 * @gfp: the page allocator flags to u 2930 * @gfp: the page allocator flags to use if allocating 3910 * 2931 * 3911 * This is the same as "read_mapping_page(map 2932 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3912 * any new page allocations done using the sp 2933 * any new page allocations done using the specified allocation flags. 3913 * 2934 * 3914 * If the page does not get brought uptodate, 2935 * If the page does not get brought uptodate, return -EIO. 3915 * 2936 * 3916 * The function expects mapping->invalidate_l << 3917 * << 3918 * Return: up to date page on success, ERR_PT 2937 * Return: up to date page on success, ERR_PTR() on failure. 3919 */ 2938 */ 3920 struct page *read_cache_page_gfp(struct addre 2939 struct page *read_cache_page_gfp(struct address_space *mapping, 3921 pgoff_t index 2940 pgoff_t index, 3922 gfp_t gfp) 2941 gfp_t gfp) 3923 { 2942 { 3924 return do_read_cache_page(mapping, in 2943 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3925 } 2944 } 3926 EXPORT_SYMBOL(read_cache_page_gfp); 2945 EXPORT_SYMBOL(read_cache_page_gfp); 3927 2946 3928 /* 2947 /* 3929 * Warn about a page cache invalidation failu !! 2948 * Don't operate on ranges the page cache doesn't support, and don't exceed the >> 2949 * LFS limits. If pos is under the limit it becomes a short access. If it >> 2950 * exceeds the limit we return -EFBIG. >> 2951 */ >> 2952 static int generic_write_check_limits(struct file *file, loff_t pos, >> 2953 loff_t *count) >> 2954 { >> 2955 struct inode *inode = file->f_mapping->host; >> 2956 loff_t max_size = inode->i_sb->s_maxbytes; >> 2957 loff_t limit = rlimit(RLIMIT_FSIZE); >> 2958 >> 2959 if (limit != RLIM_INFINITY) { >> 2960 if (pos >= limit) { >> 2961 send_sig(SIGXFSZ, current, 0); >> 2962 return -EFBIG; >> 2963 } >> 2964 *count = min(*count, limit - pos); >> 2965 } >> 2966 >> 2967 if (!(file->f_flags & O_LARGEFILE)) >> 2968 max_size = MAX_NON_LFS; >> 2969 >> 2970 if (unlikely(pos >= max_size)) >> 2971 return -EFBIG; >> 2972 >> 2973 *count = min(*count, max_size - pos); >> 2974 >> 2975 return 0; >> 2976 } >> 2977 >> 2978 /* >> 2979 * Performs necessary checks before doing a write >> 2980 * >> 2981 * Can adjust writing position or amount of bytes to write. >> 2982 * Returns appropriate error code that caller should return or >> 2983 * zero in case that write should be allowed. >> 2984 */ >> 2985 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) >> 2986 { >> 2987 struct file *file = iocb->ki_filp; >> 2988 struct inode *inode = file->f_mapping->host; >> 2989 loff_t count; >> 2990 int ret; >> 2991 >> 2992 if (!iov_iter_count(from)) >> 2993 return 0; >> 2994 >> 2995 /* FIXME: this is for backwards compatibility with 2.4 */ >> 2996 if (iocb->ki_flags & IOCB_APPEND) >> 2997 iocb->ki_pos = i_size_read(inode); >> 2998 >> 2999 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) >> 3000 return -EINVAL; >> 3001 >> 3002 count = iov_iter_count(from); >> 3003 ret = generic_write_check_limits(file, iocb->ki_pos, &count); >> 3004 if (ret) >> 3005 return ret; >> 3006 >> 3007 iov_iter_truncate(from, count); >> 3008 return iov_iter_count(from); >> 3009 } >> 3010 EXPORT_SYMBOL(generic_write_checks); >> 3011 >> 3012 /* >> 3013 * Performs necessary checks before doing a clone. >> 3014 * >> 3015 * Can adjust amount of bytes to clone via @req_count argument. >> 3016 * Returns appropriate error code that caller should return or >> 3017 * zero in case the clone should be allowed. 3930 */ 3018 */ 3931 static void dio_warn_stale_pagecache(struct f !! 3019 int generic_remap_checks(struct file *file_in, loff_t pos_in, >> 3020 struct file *file_out, loff_t pos_out, >> 3021 loff_t *req_count, unsigned int remap_flags) 3932 { 3022 { 3933 static DEFINE_RATELIMIT_STATE(_rs, 86 !! 3023 struct inode *inode_in = file_in->f_mapping->host; 3934 char pathname[128]; !! 3024 struct inode *inode_out = file_out->f_mapping->host; 3935 char *path; !! 3025 uint64_t count = *req_count; >> 3026 uint64_t bcount; >> 3027 loff_t size_in, size_out; >> 3028 loff_t bs = inode_out->i_sb->s_blocksize; >> 3029 int ret; >> 3030 >> 3031 /* The start of both ranges must be aligned to an fs block. */ >> 3032 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) >> 3033 return -EINVAL; >> 3034 >> 3035 /* Ensure offsets don't wrap. */ >> 3036 if (pos_in + count < pos_in || pos_out + count < pos_out) >> 3037 return -EINVAL; >> 3038 >> 3039 size_in = i_size_read(inode_in); >> 3040 size_out = i_size_read(inode_out); >> 3041 >> 3042 /* Dedupe requires both ranges to be within EOF. */ >> 3043 if ((remap_flags & REMAP_FILE_DEDUP) && >> 3044 (pos_in >= size_in || pos_in + count > size_in || >> 3045 pos_out >= size_out || pos_out + count > size_out)) >> 3046 return -EINVAL; >> 3047 >> 3048 /* Ensure the infile range is within the infile. */ >> 3049 if (pos_in >= size_in) >> 3050 return -EINVAL; >> 3051 count = min(count, size_in - (uint64_t)pos_in); 3936 3052 3937 errseq_set(&filp->f_mapping->wb_err, !! 3053 ret = generic_write_check_limits(file_out, pos_out, &count); 3938 if (__ratelimit(&_rs)) { !! 3054 if (ret) 3939 path = file_path(filp, pathna !! 3055 return ret; 3940 if (IS_ERR(path)) !! 3056 3941 path = "(unknown)"; !! 3057 /* 3942 pr_crit("Page cache invalidat !! 3058 * If the user wanted us to link to the infile's EOF, round up to the 3943 pr_crit("File: %s PID: %d Com !! 3059 * next block boundary for this check. 3944 current->comm); !! 3060 * >> 3061 * Otherwise, make sure the count is also block-aligned, having >> 3062 * already confirmed the starting offsets' block alignment. >> 3063 */ >> 3064 if (pos_in + count == size_in) { >> 3065 bcount = ALIGN(size_in, bs) - pos_in; >> 3066 } else { >> 3067 if (!IS_ALIGNED(count, bs)) >> 3068 count = ALIGN_DOWN(count, bs); >> 3069 bcount = count; 3945 } 3070 } >> 3071 >> 3072 /* Don't allow overlapped cloning within the same file. */ >> 3073 if (inode_in == inode_out && >> 3074 pos_out + bcount > pos_in && >> 3075 pos_out < pos_in + bcount) >> 3076 return -EINVAL; >> 3077 >> 3078 /* >> 3079 * We shortened the request but the caller can't deal with that, so >> 3080 * bounce the request back to userspace. >> 3081 */ >> 3082 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) >> 3083 return -EINVAL; >> 3084 >> 3085 *req_count = count; >> 3086 return 0; 3946 } 3087 } 3947 3088 3948 void kiocb_invalidate_post_direct_write(struc !! 3089 >> 3090 /* >> 3091 * Performs common checks before doing a file copy/clone >> 3092 * from @file_in to @file_out. >> 3093 */ >> 3094 int generic_file_rw_checks(struct file *file_in, struct file *file_out) 3949 { 3095 { 3950 struct address_space *mapping = iocb- !! 3096 struct inode *inode_in = file_inode(file_in); >> 3097 struct inode *inode_out = file_inode(file_out); >> 3098 >> 3099 /* Don't copy dirs, pipes, sockets... */ >> 3100 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) >> 3101 return -EISDIR; >> 3102 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) >> 3103 return -EINVAL; 3951 3104 3952 if (mapping->nrpages && !! 3105 if (!(file_in->f_mode & FMODE_READ) || 3953 invalidate_inode_pages2_range(map !! 3106 !(file_out->f_mode & FMODE_WRITE) || 3954 iocb->ki_pos >> PAGE_ !! 3107 (file_out->f_flags & O_APPEND)) 3955 (iocb->ki_pos + count !! 3108 return -EBADF; 3956 dio_warn_stale_pagecache(iocb !! 3109 >> 3110 return 0; 3957 } 3111 } 3958 3112 >> 3113 /* >> 3114 * Performs necessary checks before doing a file copy >> 3115 * >> 3116 * Can adjust amount of bytes to copy via @req_count argument. >> 3117 * Returns appropriate error code that caller should return or >> 3118 * zero in case the copy should be allowed. >> 3119 */ >> 3120 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, >> 3121 struct file *file_out, loff_t pos_out, >> 3122 size_t *req_count, unsigned int flags) >> 3123 { >> 3124 struct inode *inode_in = file_inode(file_in); >> 3125 struct inode *inode_out = file_inode(file_out); >> 3126 uint64_t count = *req_count; >> 3127 loff_t size_in; >> 3128 int ret; >> 3129 >> 3130 ret = generic_file_rw_checks(file_in, file_out); >> 3131 if (ret) >> 3132 return ret; >> 3133 >> 3134 /* Don't touch certain kinds of inodes */ >> 3135 if (IS_IMMUTABLE(inode_out)) >> 3136 return -EPERM; >> 3137 >> 3138 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) >> 3139 return -ETXTBSY; >> 3140 >> 3141 /* Ensure offsets don't wrap. */ >> 3142 if (pos_in + count < pos_in || pos_out + count < pos_out) >> 3143 return -EOVERFLOW; >> 3144 >> 3145 /* Shorten the copy to EOF */ >> 3146 size_in = i_size_read(inode_in); >> 3147 if (pos_in >= size_in) >> 3148 count = 0; >> 3149 else >> 3150 count = min(count, size_in - (uint64_t)pos_in); >> 3151 >> 3152 ret = generic_write_check_limits(file_out, pos_out, &count); >> 3153 if (ret) >> 3154 return ret; >> 3155 >> 3156 /* Don't allow overlapped copying within the same file. */ >> 3157 if (inode_in == inode_out && >> 3158 pos_out + count > pos_in && >> 3159 pos_out < pos_in + count) >> 3160 return -EINVAL; >> 3161 >> 3162 *req_count = count; >> 3163 return 0; >> 3164 } >> 3165 >> 3166 int pagecache_write_begin(struct file *file, struct address_space *mapping, >> 3167 loff_t pos, unsigned len, unsigned flags, >> 3168 struct page **pagep, void **fsdata) >> 3169 { >> 3170 const struct address_space_operations *aops = mapping->a_ops; >> 3171 >> 3172 return aops->write_begin(file, mapping, pos, len, flags, >> 3173 pagep, fsdata); >> 3174 } >> 3175 EXPORT_SYMBOL(pagecache_write_begin); >> 3176 >> 3177 int pagecache_write_end(struct file *file, struct address_space *mapping, >> 3178 loff_t pos, unsigned len, unsigned copied, >> 3179 struct page *page, void *fsdata) >> 3180 { >> 3181 const struct address_space_operations *aops = mapping->a_ops; >> 3182 >> 3183 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); >> 3184 } >> 3185 EXPORT_SYMBOL(pagecache_write_end); >> 3186 3959 ssize_t 3187 ssize_t 3960 generic_file_direct_write(struct kiocb *iocb, 3188 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3961 { 3189 { 3962 struct address_space *mapping = iocb- !! 3190 struct file *file = iocb->ki_filp; 3963 size_t write_len = iov_iter_count(fro !! 3191 struct address_space *mapping = file->f_mapping; 3964 ssize_t written; !! 3192 struct inode *inode = mapping->host; >> 3193 loff_t pos = iocb->ki_pos; >> 3194 ssize_t written; >> 3195 size_t write_len; >> 3196 pgoff_t end; >> 3197 >> 3198 write_len = iov_iter_count(from); >> 3199 end = (pos + write_len - 1) >> PAGE_SHIFT; >> 3200 >> 3201 if (iocb->ki_flags & IOCB_NOWAIT) { >> 3202 /* If there are pages to writeback, return */ >> 3203 if (filemap_range_has_page(inode->i_mapping, pos, >> 3204 pos + write_len - 1)) >> 3205 return -EAGAIN; >> 3206 } else { >> 3207 written = filemap_write_and_wait_range(mapping, pos, >> 3208 pos + write_len - 1); >> 3209 if (written) >> 3210 goto out; >> 3211 } 3965 3212 3966 /* 3213 /* >> 3214 * After a write we want buffered reads to be sure to go to disk to get >> 3215 * the new data. We invalidate clean cached page from the region we're >> 3216 * about to write. We do this *before* the write so that we can return >> 3217 * without clobbering -EIOCBQUEUED from ->direct_IO(). >> 3218 */ >> 3219 written = invalidate_inode_pages2_range(mapping, >> 3220 pos >> PAGE_SHIFT, end); >> 3221 /* 3967 * If a page can not be invalidated, 3222 * If a page can not be invalidated, return 0 to fall back 3968 * to buffered write. 3223 * to buffered write. 3969 */ 3224 */ 3970 written = kiocb_invalidate_pages(iocb << 3971 if (written) { 3225 if (written) { 3972 if (written == -EBUSY) 3226 if (written == -EBUSY) 3973 return 0; 3227 return 0; 3974 return written; !! 3228 goto out; 3975 } 3229 } 3976 3230 3977 written = mapping->a_ops->direct_IO(i 3231 written = mapping->a_ops->direct_IO(iocb, from); 3978 3232 3979 /* 3233 /* 3980 * Finally, try again to invalidate c 3234 * Finally, try again to invalidate clean pages which might have been 3981 * cached by non-direct readahead, or 3235 * cached by non-direct readahead, or faulted in by get_user_pages() 3982 * if the source of the write was an 3236 * if the source of the write was an mmap'ed region of the file 3983 * we're writing. Either one is a pr 3237 * we're writing. Either one is a pretty crazy thing to do, 3984 * so we don't support it 100%. If t 3238 * so we don't support it 100%. If this invalidation 3985 * fails, tough, the write still work 3239 * fails, tough, the write still worked... 3986 * 3240 * 3987 * Most of the time we do not need th 3241 * Most of the time we do not need this since dio_complete() will do 3988 * the invalidation for us. However t 3242 * the invalidation for us. However there are some file systems that 3989 * do not end up with dio_complete() 3243 * do not end up with dio_complete() being called, so let's not break 3990 * them by removing it completely. !! 3244 * them by removing it completely 3991 * << 3992 * Noticeable example is a blkdev_dir << 3993 * << 3994 * Skip invalidation for async writes << 3995 */ 3245 */ 3996 if (written > 0) { !! 3246 if (mapping->nrpages) 3997 struct inode *inode = mapping !! 3247 invalidate_inode_pages2_range(mapping, 3998 loff_t pos = iocb->ki_pos; !! 3248 pos >> PAGE_SHIFT, end); 3999 3249 4000 kiocb_invalidate_post_direct_ !! 3250 if (written > 0) { 4001 pos += written; 3251 pos += written; 4002 write_len -= written; 3252 write_len -= written; 4003 if (pos > i_size_read(inode) 3253 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4004 i_size_write(inode, p 3254 i_size_write(inode, pos); 4005 mark_inode_dirty(inod 3255 mark_inode_dirty(inode); 4006 } 3256 } 4007 iocb->ki_pos = pos; 3257 iocb->ki_pos = pos; 4008 } 3258 } 4009 if (written != -EIOCBQUEUED) !! 3259 iov_iter_revert(from, write_len - iov_iter_count(from)); 4010 iov_iter_revert(from, write_l !! 3260 out: 4011 return written; 3261 return written; 4012 } 3262 } 4013 EXPORT_SYMBOL(generic_file_direct_write); 3263 EXPORT_SYMBOL(generic_file_direct_write); 4014 3264 4015 ssize_t generic_perform_write(struct kiocb *i !! 3265 /* >> 3266 * Find or create a page at the given pagecache position. Return the locked >> 3267 * page. This function is specifically for buffered writes. >> 3268 */ >> 3269 struct page *grab_cache_page_write_begin(struct address_space *mapping, >> 3270 pgoff_t index, unsigned flags) >> 3271 { >> 3272 struct page *page; >> 3273 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; >> 3274 >> 3275 if (flags & AOP_FLAG_NOFS) >> 3276 fgp_flags |= FGP_NOFS; >> 3277 >> 3278 page = pagecache_get_page(mapping, index, fgp_flags, >> 3279 mapping_gfp_mask(mapping)); >> 3280 if (page) >> 3281 wait_for_stable_page(page); >> 3282 >> 3283 return page; >> 3284 } >> 3285 EXPORT_SYMBOL(grab_cache_page_write_begin); >> 3286 >> 3287 ssize_t generic_perform_write(struct file *file, >> 3288 struct iov_iter *i, loff_t pos) 4016 { 3289 { 4017 struct file *file = iocb->ki_filp; << 4018 loff_t pos = iocb->ki_pos; << 4019 struct address_space *mapping = file- 3290 struct address_space *mapping = file->f_mapping; 4020 const struct address_space_operations 3291 const struct address_space_operations *a_ops = mapping->a_ops; 4021 size_t chunk = mapping_max_folio_size << 4022 long status = 0; 3292 long status = 0; 4023 ssize_t written = 0; 3293 ssize_t written = 0; >> 3294 unsigned int flags = 0; 4024 3295 4025 do { 3296 do { 4026 struct folio *folio; !! 3297 struct page *page; 4027 size_t offset; /* Of !! 3298 unsigned long offset; /* Offset into pagecache page */ 4028 size_t bytes; /* By !! 3299 unsigned long bytes; /* Bytes to write to page */ 4029 size_t copied; /* By 3300 size_t copied; /* Bytes copied from user */ 4030 void *fsdata = NULL; !! 3301 void *fsdata; 4031 3302 4032 bytes = iov_iter_count(i); !! 3303 offset = (pos & (PAGE_SIZE - 1)); 4033 retry: !! 3304 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4034 offset = pos & (chunk - 1); !! 3305 iov_iter_count(i)); 4035 bytes = min(chunk - offset, b << 4036 balance_dirty_pages_ratelimit << 4037 3306 >> 3307 again: 4038 /* 3308 /* 4039 * Bring in the user page tha 3309 * Bring in the user page that we will copy from _first_. 4040 * Otherwise there's a nasty 3310 * Otherwise there's a nasty deadlock on copying from the 4041 * same page as we're writing 3311 * same page as we're writing to, without it being marked 4042 * up-to-date. 3312 * up-to-date. >> 3313 * >> 3314 * Not only is this an optimisation, but it is also required >> 3315 * to check that the address is actually valid, when atomic >> 3316 * usercopies are used, below. 4043 */ 3317 */ 4044 if (unlikely(fault_in_iov_ite !! 3318 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 4045 status = -EFAULT; 3319 status = -EFAULT; 4046 break; 3320 break; 4047 } 3321 } 4048 3322 4049 if (fatal_signal_pending(curr 3323 if (fatal_signal_pending(current)) { 4050 status = -EINTR; 3324 status = -EINTR; 4051 break; 3325 break; 4052 } 3326 } 4053 3327 4054 status = a_ops->write_begin(f !! 3328 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 4055 !! 3329 &page, &fsdata); 4056 if (unlikely(status < 0)) 3330 if (unlikely(status < 0)) 4057 break; 3331 break; 4058 3332 4059 offset = offset_in_folio(foli << 4060 if (bytes > folio_size(folio) << 4061 bytes = folio_size(fo << 4062 << 4063 if (mapping_writably_mapped(m 3333 if (mapping_writably_mapped(mapping)) 4064 flush_dcache_folio(fo !! 3334 flush_dcache_page(page); 4065 3335 4066 copied = copy_folio_from_iter !! 3336 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 4067 flush_dcache_folio(folio); !! 3337 flush_dcache_page(page); 4068 3338 4069 status = a_ops->write_end(fil 3339 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4070 !! 3340 page, fsdata); 4071 if (unlikely(status != copied !! 3341 if (unlikely(status < 0)) 4072 iov_iter_revert(i, co !! 3342 break; 4073 if (unlikely(status < !! 3343 copied = status; 4074 break; !! 3344 4075 } << 4076 cond_resched(); 3345 cond_resched(); 4077 3346 4078 if (unlikely(status == 0)) { !! 3347 iov_iter_advance(i, copied); >> 3348 if (unlikely(copied == 0)) { 4079 /* 3349 /* 4080 * A short copy made !! 3350 * If we were unable to copy any data at all, we must 4081 * thing entirely. M !! 3351 * fall back to a single segment length write. 4082 * halfway through, m !! 3352 * 4083 * might be severe me !! 3353 * If we didn't fallback here, we could livelock >> 3354 * because not all segments in the iov can be copied at >> 3355 * once without a pagefault. 4084 */ 3356 */ 4085 if (chunk > PAGE_SIZE !! 3357 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4086 chunk /= 2; !! 3358 iov_iter_single_seg_count(i)); 4087 if (copied) { !! 3359 goto again; 4088 bytes = copie << 4089 goto retry; << 4090 } << 4091 } else { << 4092 pos += status; << 4093 written += status; << 4094 } 3360 } >> 3361 pos += copied; >> 3362 written += copied; >> 3363 >> 3364 balance_dirty_pages_ratelimited(mapping); 4095 } while (iov_iter_count(i)); 3365 } while (iov_iter_count(i)); 4096 3366 4097 if (!written) !! 3367 return written ? written : status; 4098 return status; << 4099 iocb->ki_pos += written; << 4100 return written; << 4101 } 3368 } 4102 EXPORT_SYMBOL(generic_perform_write); 3369 EXPORT_SYMBOL(generic_perform_write); 4103 3370 4104 /** 3371 /** 4105 * __generic_file_write_iter - write data to 3372 * __generic_file_write_iter - write data to a file 4106 * @iocb: IO state structure (file, off 3373 * @iocb: IO state structure (file, offset, etc.) 4107 * @from: iov_iter with data to write 3374 * @from: iov_iter with data to write 4108 * 3375 * 4109 * This function does all the work needed for 3376 * This function does all the work needed for actually writing data to a 4110 * file. It does all basic checks, removes SU 3377 * file. It does all basic checks, removes SUID from the file, updates 4111 * modification times and calls proper subrou 3378 * modification times and calls proper subroutines depending on whether we 4112 * do direct IO or a standard buffered write. 3379 * do direct IO or a standard buffered write. 4113 * 3380 * 4114 * It expects i_rwsem to be grabbed unless we !! 3381 * It expects i_mutex to be grabbed unless we work on a block device or similar 4115 * object which does not need locking at all. 3382 * object which does not need locking at all. 4116 * 3383 * 4117 * This function does *not* take care of sync 3384 * This function does *not* take care of syncing data in case of O_SYNC write. 4118 * A caller has to handle it. This is mainly 3385 * A caller has to handle it. This is mainly due to the fact that we want to 4119 * avoid syncing under i_rwsem. !! 3386 * avoid syncing under i_mutex. 4120 * 3387 * 4121 * Return: 3388 * Return: 4122 * * number of bytes written, even for trunca 3389 * * number of bytes written, even for truncated writes 4123 * * negative error code if no data has been 3390 * * negative error code if no data has been written at all 4124 */ 3391 */ 4125 ssize_t __generic_file_write_iter(struct kioc 3392 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4126 { 3393 { 4127 struct file *file = iocb->ki_filp; 3394 struct file *file = iocb->ki_filp; 4128 struct address_space *mapping = file- !! 3395 struct address_space * mapping = file->f_mapping; 4129 struct inode *inode = mapping->host; !! 3396 struct inode *inode = mapping->host; 4130 ssize_t ret; !! 3397 ssize_t written = 0; 4131 !! 3398 ssize_t err; 4132 ret = file_remove_privs(file); !! 3399 ssize_t status; 4133 if (ret) !! 3400 4134 return ret; !! 3401 /* We can write back this queue in page reclaim */ >> 3402 current->backing_dev_info = inode_to_bdi(inode); >> 3403 err = file_remove_privs(file); >> 3404 if (err) >> 3405 goto out; 4135 3406 4136 ret = file_update_time(file); !! 3407 err = file_update_time(file); 4137 if (ret) !! 3408 if (err) 4138 return ret; !! 3409 goto out; 4139 3410 4140 if (iocb->ki_flags & IOCB_DIRECT) { 3411 if (iocb->ki_flags & IOCB_DIRECT) { 4141 ret = generic_file_direct_wri !! 3412 loff_t pos, endbyte; >> 3413 >> 3414 written = generic_file_direct_write(iocb, from); 4142 /* 3415 /* 4143 * If the write stopped short 3416 * If the write stopped short of completing, fall back to 4144 * buffered writes. Some fil 3417 * buffered writes. Some filesystems do this for writes to 4145 * holes, for example. For D 3418 * holes, for example. For DAX files, a buffered write will 4146 * not succeed (even if it di 3419 * not succeed (even if it did, DAX does not handle dirty 4147 * page-cache pages correctly 3420 * page-cache pages correctly). 4148 */ 3421 */ 4149 if (ret < 0 || !iov_iter_coun !! 3422 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4150 return ret; !! 3423 goto out; 4151 return direct_write_fallback( << 4152 generic_perfo << 4153 } << 4154 3424 4155 return generic_perform_write(iocb, fr !! 3425 status = generic_perform_write(file, from, pos = iocb->ki_pos); >> 3426 /* >> 3427 * If generic_perform_write() returned a synchronous error >> 3428 * then we want to return the number of bytes which were >> 3429 * direct-written, or the error code if that was zero. Note >> 3430 * that this differs from normal direct-io semantics, which >> 3431 * will return -EFOO even if some bytes were written. >> 3432 */ >> 3433 if (unlikely(status < 0)) { >> 3434 err = status; >> 3435 goto out; >> 3436 } >> 3437 /* >> 3438 * We need to ensure that the page cache pages are written to >> 3439 * disk and invalidated to preserve the expected O_DIRECT >> 3440 * semantics. >> 3441 */ >> 3442 endbyte = pos + status - 1; >> 3443 err = filemap_write_and_wait_range(mapping, pos, endbyte); >> 3444 if (err == 0) { >> 3445 iocb->ki_pos = endbyte + 1; >> 3446 written += status; >> 3447 invalidate_mapping_pages(mapping, >> 3448 pos >> PAGE_SHIFT, >> 3449 endbyte >> PAGE_SHIFT); >> 3450 } else { >> 3451 /* >> 3452 * We don't know how much we wrote, so just return >> 3453 * the number of bytes which were direct-written >> 3454 */ >> 3455 } >> 3456 } else { >> 3457 written = generic_perform_write(file, from, iocb->ki_pos); >> 3458 if (likely(written > 0)) >> 3459 iocb->ki_pos += written; >> 3460 } >> 3461 out: >> 3462 current->backing_dev_info = NULL; >> 3463 return written ? written : err; 4156 } 3464 } 4157 EXPORT_SYMBOL(__generic_file_write_iter); 3465 EXPORT_SYMBOL(__generic_file_write_iter); 4158 3466 4159 /** 3467 /** 4160 * generic_file_write_iter - write data to a 3468 * generic_file_write_iter - write data to a file 4161 * @iocb: IO state structure 3469 * @iocb: IO state structure 4162 * @from: iov_iter with data to write 3470 * @from: iov_iter with data to write 4163 * 3471 * 4164 * This is a wrapper around __generic_file_wr 3472 * This is a wrapper around __generic_file_write_iter() to be used by most 4165 * filesystems. It takes care of syncing the 3473 * filesystems. It takes care of syncing the file in case of O_SYNC file 4166 * and acquires i_rwsem as needed. !! 3474 * and acquires i_mutex as needed. 4167 * Return: 3475 * Return: 4168 * * negative error code if no data has been 3476 * * negative error code if no data has been written at all of 4169 * vfs_fsync_range() failed for a synchrono 3477 * vfs_fsync_range() failed for a synchronous write 4170 * * number of bytes written, even for trunca 3478 * * number of bytes written, even for truncated writes 4171 */ 3479 */ 4172 ssize_t generic_file_write_iter(struct kiocb 3480 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4173 { 3481 { 4174 struct file *file = iocb->ki_filp; 3482 struct file *file = iocb->ki_filp; 4175 struct inode *inode = file->f_mapping 3483 struct inode *inode = file->f_mapping->host; 4176 ssize_t ret; 3484 ssize_t ret; 4177 3485 4178 inode_lock(inode); 3486 inode_lock(inode); 4179 ret = generic_write_checks(iocb, from 3487 ret = generic_write_checks(iocb, from); 4180 if (ret > 0) 3488 if (ret > 0) 4181 ret = __generic_file_write_it 3489 ret = __generic_file_write_iter(iocb, from); 4182 inode_unlock(inode); 3490 inode_unlock(inode); 4183 3491 4184 if (ret > 0) 3492 if (ret > 0) 4185 ret = generic_write_sync(iocb 3493 ret = generic_write_sync(iocb, ret); 4186 return ret; 3494 return ret; 4187 } 3495 } 4188 EXPORT_SYMBOL(generic_file_write_iter); 3496 EXPORT_SYMBOL(generic_file_write_iter); 4189 3497 4190 /** 3498 /** 4191 * filemap_release_folio() - Release fs-speci !! 3499 * try_to_release_page() - release old fs-specific metadata on a page 4192 * @folio: The folio which the kernel is tryi << 4193 * @gfp: Memory allocation flags (and I/O mod << 4194 * 3500 * 4195 * The address_space is trying to release any !! 3501 * @page: the page which the kernel is trying to free 4196 * (presumably at folio->private). !! 3502 * @gfp_mask: memory allocation flags (and I/O mode) 4197 * 3503 * 4198 * This will also be called if the private_2 !! 3504 * The address_space is to try to release any data against the page 4199 * indicating that the folio has other metada !! 3505 * (presumably at page->private). 4200 * 3506 * 4201 * The @gfp argument specifies whether I/O ma !! 3507 * This may also be called if PG_fscache is set on a page, indicating that the 4202 * this page (__GFP_IO), and whether the call !! 3508 * page is known to the local caching routines. 4203 * (__GFP_RECLAIM & __GFP_FS). << 4204 * 3509 * 4205 * Return: %true if the release was successfu !! 3510 * The @gfp_mask argument specifies whether I/O may be performed to release 4206 */ !! 3511 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 4207 bool filemap_release_folio(struct folio *foli !! 3512 * 4208 { !! 3513 * Return: %1 if the release was successful, otherwise return zero. 4209 struct address_space * const mapping << 4210 << 4211 BUG_ON(!folio_test_locked(folio)); << 4212 if (!folio_needs_release(folio)) << 4213 return true; << 4214 if (folio_test_writeback(folio)) << 4215 return false; << 4216 << 4217 if (mapping && mapping->a_ops->releas << 4218 return mapping->a_ops->releas << 4219 return try_to_free_buffers(folio); << 4220 } << 4221 EXPORT_SYMBOL(filemap_release_folio); << 4222 << 4223 /** << 4224 * filemap_invalidate_inode - Invalidate/forc << 4225 * @inode: The inode to flush << 4226 * @flush: Set to write back rather than simp << 4227 * @start: First byte to in range. << 4228 * @end: Last byte in range (inclusive), or L << 4229 * onwards. << 4230 * << 4231 * Invalidate all the folios on an inode that << 4232 * range, possibly writing them back first. << 4233 * undertaken, the invalidate lock is held to << 4234 * installed. << 4235 */ << 4236 int filemap_invalidate_inode(struct inode *in << 4237 loff_t start, lo << 4238 { << 4239 struct address_space *mapping = inode << 4240 pgoff_t first = start >> PAGE_SHIFT; << 4241 pgoff_t last = end >> PAGE_SHIFT; << 4242 pgoff_t nr = end == LLONG_MAX ? ULONG << 4243 << 4244 if (!mapping || !mapping->nrpages || << 4245 goto out; << 4246 << 4247 /* Prevent new folios from being adde << 4248 filemap_invalidate_lock(mapping); << 4249 << 4250 if (!mapping->nrpages) << 4251 goto unlock; << 4252 << 4253 unmap_mapping_pages(mapping, first, n << 4254 << 4255 /* Write back the data if we're asked << 4256 if (flush) { << 4257 struct writeback_control wbc << 4258 .sync_mode = WB_ << 4259 .nr_to_write = LON << 4260 .range_start = sta << 4261 .range_end = end << 4262 }; << 4263 << 4264 filemap_fdatawrite_wbc(mappin << 4265 } << 4266 << 4267 /* Wait for writeback to complete on << 4268 invalidate_inode_pages2_range(mapping << 4269 << 4270 unlock: << 4271 filemap_invalidate_unlock(mapping); << 4272 out: << 4273 return filemap_check_errors(mapping); << 4274 } << 4275 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); << 4276 << 4277 #ifdef CONFIG_CACHESTAT_SYSCALL << 4278 /** << 4279 * filemap_cachestat() - compute the page cac << 4280 * @mapping: The mapping to compute the st << 4281 * @first_index: The starting page cac << 4282 * @last_index: The final page index (inclusi << 4283 * @cs: the cachestat struct to write the res << 4284 * << 4285 * This will query the page cache statistics << 4286 * page range of [first_index, last_index] (i << 4287 * queried include: number of dirty pages, nu << 4288 * writeback, and the number of (recently) ev << 4289 */ 3514 */ 4290 static void filemap_cachestat(struct address_ !! 3515 int try_to_release_page(struct page *page, gfp_t gfp_mask) 4291 pgoff_t first_index, pgoff_t << 4292 { 3516 { 4293 XA_STATE(xas, &mapping->i_pages, firs !! 3517 struct address_space * const mapping = page->mapping; 4294 struct folio *folio; << 4295 << 4296 /* Flush stats (and potentially sleep << 4297 mem_cgroup_flush_stats_ratelimited(NU << 4298 << 4299 rcu_read_lock(); << 4300 xas_for_each(&xas, folio, last_index) << 4301 int order; << 4302 unsigned long nr_pages; << 4303 pgoff_t folio_first_index, fo << 4304 << 4305 /* << 4306 * Don't deref the folio. It << 4307 * get freed (and reused) und << 4308 * << 4309 * We *could* pin it, but tha << 4310 * what should be a fast and << 4311 * << 4312 * Instead, derive all inform << 4313 * the rcu-protected xarray. << 4314 */ << 4315 3518 4316 if (xas_retry(&xas, folio)) !! 3519 BUG_ON(!PageLocked(page)); 4317 continue; !! 3520 if (PageWriteback(page)) 4318 !! 3521 return 0; 4319 order = xas_get_order(&xas); << 4320 nr_pages = 1 << order; << 4321 folio_first_index = round_dow << 4322 folio_last_index = folio_firs << 4323 << 4324 /* Folios might straddle the << 4325 if (folio_first_index < first << 4326 nr_pages -= first_ind << 4327 << 4328 if (folio_last_index > last_i << 4329 nr_pages -= folio_las << 4330 << 4331 if (xa_is_value(folio)) { << 4332 /* page is evicted */ << 4333 void *shadow = (void << 4334 bool workingset; /* n << 4335 << 4336 cs->nr_evicted += nr_ << 4337 << 4338 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ << 4339 if (shmem_mapping(map << 4340 /* shmem file << 4341 swp_entry_t s << 4342 << 4343 /* swapin err << 4344 if (non_swap_ << 4345 goto << 4346 << 4347 /* << 4348 * Getting a << 4349 * inode mean << 4350 * shmem_unus << 4351 * ensures sw << 4352 * freeing th << 4353 * we can rac << 4354 * invalidati << 4355 * a shadow i << 4356 */ << 4357 shadow = get_ << 4358 if (!shadow) << 4359 goto << 4360 } << 4361 #endif << 4362 if (workingset_test_r << 4363 cs->nr_recent << 4364 << 4365 goto resched; << 4366 } << 4367 << 4368 /* page is in cache */ << 4369 cs->nr_cache += nr_pages; << 4370 << 4371 if (xas_get_mark(&xas, PAGECA << 4372 cs->nr_dirty += nr_pa << 4373 << 4374 if (xas_get_mark(&xas, PAGECA << 4375 cs->nr_writeback += n << 4376 3522 4377 resched: !! 3523 if (mapping && mapping->a_ops->releasepage) 4378 if (need_resched()) { !! 3524 return mapping->a_ops->releasepage(page, gfp_mask); 4379 xas_pause(&xas); !! 3525 return try_to_free_buffers(page); 4380 cond_resched_rcu(); << 4381 } << 4382 } << 4383 rcu_read_unlock(); << 4384 } 3526 } 4385 3527 4386 /* !! 3528 EXPORT_SYMBOL(try_to_release_page); 4387 * The cachestat(2) system call. << 4388 * << 4389 * cachestat() returns the page cache statist << 4390 * bytes range specified by `off` and `len`: << 4391 * number of dirty pages, number of pages mar << 4392 * number of evicted pages, and number of rec << 4393 * << 4394 * An evicted page is a page that is previous << 4395 * but has been evicted since. A page is rece << 4396 * eviction was recent enough that its reentr << 4397 * indicate that it is actively being used by << 4398 * there is memory pressure on the system. << 4399 * << 4400 * `off` and `len` must be non-negative integ << 4401 * the queried range is [`off`, `off` + `len` << 4402 * we will query in the range from `off` to t << 4403 * << 4404 * The `flags` argument is unused for now, bu << 4405 * extensibility. User should pass 0 (i.e no << 4406 * << 4407 * Currently, hugetlbfs is not supported. << 4408 * << 4409 * Because the status of a page can change af << 4410 * but before it returns to the application, << 4411 * contain stale information. << 4412 * << 4413 * return values: << 4414 * zero - success << 4415 * -EFAULT - cstat or cstat_range points << 4416 * -EINVAL - invalid flags << 4417 * -EBADF - invalid file descriptor << 4418 * -EOPNOTSUPP - file descriptor is of a hug << 4419 */ << 4420 SYSCALL_DEFINE4(cachestat, unsigned int, fd, << 4421 struct cachestat_range __user << 4422 struct cachestat __user *, cs << 4423 { << 4424 struct fd f = fdget(fd); << 4425 struct address_space *mapping; << 4426 struct cachestat_range csr; << 4427 struct cachestat cs; << 4428 pgoff_t first_index, last_index; << 4429 << 4430 if (!fd_file(f)) << 4431 return -EBADF; << 4432 << 4433 if (copy_from_user(&csr, cstat_range, << 4434 sizeof(struct cachest << 4435 fdput(f); << 4436 return -EFAULT; << 4437 } << 4438 << 4439 /* hugetlbfs is not supported */ << 4440 if (is_file_hugepages(fd_file(f))) { << 4441 fdput(f); << 4442 return -EOPNOTSUPP; << 4443 } << 4444 << 4445 if (flags != 0) { << 4446 fdput(f); << 4447 return -EINVAL; << 4448 } << 4449 << 4450 first_index = csr.off >> PAGE_SHIFT; << 4451 last_index = << 4452 csr.len == 0 ? ULONG_MAX : (c << 4453 memset(&cs, 0, sizeof(struct cachesta << 4454 mapping = fd_file(f)->f_mapping; << 4455 filemap_cachestat(mapping, first_inde << 4456 fdput(f); << 4457 << 4458 if (copy_to_user(cstat, &cs, sizeof(s << 4459 return -EFAULT; << 4460 << 4461 return 0; << 4462 } << 4463 #endif /* CONFIG_CACHESTAT_SYSCALL */ << 4464 3529
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.