1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * linux/mm/filemap.c 3 * linux/mm/filemap.c 4 * 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 6 */ 7 7 8 /* 8 /* 9 * This file handles the generic file mmap sem 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /h 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differen 11 * the NFS filesystem used to do this differently, for example) 12 */ 12 */ 13 #include <linux/export.h> 13 #include <linux/export.h> 14 #include <linux/compiler.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> << 25 #include <linux/syscalls.h> << 26 #include <linux/mman.h> 24 #include <linux/mman.h> 27 #include <linux/pagemap.h> 25 #include <linux/pagemap.h> 28 #include <linux/file.h> 26 #include <linux/file.h> 29 #include <linux/uio.h> 27 #include <linux/uio.h> 30 #include <linux/error-injection.h> 28 #include <linux/error-injection.h> 31 #include <linux/hash.h> 29 #include <linux/hash.h> 32 #include <linux/writeback.h> 30 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 31 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 32 #include <linux/pagevec.h> >> 33 #include <linux/blkdev.h> 35 #include <linux/security.h> 34 #include <linux/security.h> 36 #include <linux/cpuset.h> 35 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 36 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 37 #include <linux/memcontrol.h> >> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> << 45 #include <linux/migrate.h> << 46 #include <linux/pipe_fs_i.h> << 47 #include <linux/splice.h> << 48 #include <linux/rcupdate_wait.h> << 49 #include <linux/sched/mm.h> << 50 #include <asm/pgalloc.h> << 51 #include <asm/tlbflush.h> << 52 #include "internal.h" 44 #include "internal.h" 53 45 54 #define CREATE_TRACE_POINTS 46 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 47 #include <trace/events/filemap.h> 56 48 57 /* 49 /* 58 * FIXME: remove all knowledge of the buffer l 50 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 51 */ 60 #include <linux/buffer_head.h> /* for try_to_f 52 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 53 62 #include <asm/mman.h> 54 #include <asm/mman.h> 63 55 64 #include "swap.h" << 65 << 66 /* 56 /* 67 * Shared mappings implemented 30.11.1994. It' 57 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 58 * though. 69 * 59 * 70 * Shared mappings now work. 15.8.1995 Bruno. 60 * Shared mappings now work. 15.8.1995 Bruno. 71 * 61 * 72 * finished 'unifying' the page and buffer cac 62 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@ 63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 64 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcan 65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 66 */ 77 67 78 /* 68 /* 79 * Lock ordering: 69 * Lock ordering: 80 * 70 * 81 * ->i_mmap_rwsem (truncate_page 71 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->b !! 72 * ->private_lock (__free_pte->__set_page_dirty_buffers) 83 * ->swap_lock (exclusive_swa 73 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock 74 * ->i_pages lock 85 * 75 * 86 * ->i_rwsem !! 76 * ->i_mutex 87 * ->invalidate_lock (acquired by f !! 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 88 * ->i_mmap_rwsem (truncate->unm << 89 * 78 * 90 * ->mmap_lock !! 79 * ->mmap_sem 91 * ->i_mmap_rwsem 80 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (vario 81 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependen 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 94 * 83 * 95 * ->mmap_lock !! 84 * ->mmap_sem 96 * ->invalidate_lock (filemap_fault !! 85 * ->lock_page (access_process_vm) 97 * ->lock_page (filemap_fault << 98 * 86 * 99 * ->i_rwsem (generic_perfo !! 87 * ->i_mutex (generic_perform_write) 100 * ->mmap_lock (fault_in_read !! 88 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 101 * 89 * 102 * bdi->wb.list_lock 90 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeba 91 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single 92 * ->i_pages lock (__sync_single_inode) 105 * 93 * 106 * ->i_mmap_rwsem 94 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) !! 95 * ->anon_vma.lock (vma_adjust) 108 * 96 * 109 * ->anon_vma.lock 97 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_ 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 99 * 112 * ->page_table_lock or pte_lock 100 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_ 101 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_ 102 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_ 103 * ->i_pages lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_m !! 104 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_ran !! 105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 118 * ->private_lock (folio_remove_ !! 106 * ->private_lock (page_remove_rmap->set_page_dirty) 119 * ->i_pages lock (folio_remove_ !! 107 * ->i_pages lock (page_remove_rmap->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_ !! 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 121 * ->inode->i_lock (folio_remove_ !! 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 122 * ->memcg->move_lock (folio_remove_ !! 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 123 * bdi.wb->list_lock (zap_pte_range 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range 112 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range !! 113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) >> 114 * >> 115 * ->i_mmap_rwsem >> 116 * ->tasklist_lock (memory_failure, collect_procs_ao) 126 */ 117 */ 127 118 128 static void mapping_set_update(struct xa_state << 129 struct address_space *mapping) << 130 { << 131 if (dax_mapping(mapping) || shmem_mapp << 132 return; << 133 xas_set_update(xas, workingset_update_ << 134 xas_set_lru(xas, &shadow_nodes); << 135 } << 136 << 137 static void page_cache_delete(struct address_s 119 static void page_cache_delete(struct address_space *mapping, 138 struct foli !! 120 struct page *page, void *shadow) 139 { 121 { 140 XA_STATE(xas, &mapping->i_pages, folio !! 122 XA_STATE(xas, &mapping->i_pages, page->index); 141 long nr = 1; !! 123 unsigned int nr = 1; 142 124 143 mapping_set_update(&xas, mapping); 125 mapping_set_update(&xas, mapping); 144 126 145 xas_set_order(&xas, folio->index, foli !! 127 /* hugetlb pages are represented by a single entry in the xarray */ 146 nr = folio_nr_pages(folio); !! 128 if (!PageHuge(page)) { >> 129 xas_set_order(&xas, page->index, compound_order(page)); >> 130 nr = compound_nr(page); >> 131 } 147 132 148 VM_BUG_ON_FOLIO(!folio_test_locked(fol !! 133 VM_BUG_ON_PAGE(!PageLocked(page), page); >> 134 VM_BUG_ON_PAGE(PageTail(page), page); >> 135 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 149 136 150 xas_store(&xas, shadow); 137 xas_store(&xas, shadow); 151 xas_init_marks(&xas); 138 xas_init_marks(&xas); 152 139 153 folio->mapping = NULL; !! 140 page->mapping = NULL; 154 /* Leave page->index set: truncation l 141 /* Leave page->index set: truncation lookup relies upon it */ >> 142 >> 143 if (shadow) { >> 144 mapping->nrexceptional += nr; >> 145 /* >> 146 * Make sure the nrexceptional update is committed before >> 147 * the nrpages update so that final truncate racing >> 148 * with reclaim does not see both counters 0 at the >> 149 * same time and miss a shadow entry. >> 150 */ >> 151 smp_wmb(); >> 152 } 155 mapping->nrpages -= nr; 153 mapping->nrpages -= nr; 156 } 154 } 157 155 158 static void filemap_unaccount_folio(struct add !! 156 static void unaccount_page_cache_page(struct address_space *mapping, 159 struct folio *folio) !! 157 struct page *page) 160 { 158 { 161 long nr; !! 159 int nr; >> 160 >> 161 /* >> 162 * if we're uptodate, flush out into the cleancache, otherwise >> 163 * invalidate any existing cleancache entries. We can't leave >> 164 * stale data around in the cleancache once our page is gone >> 165 */ >> 166 if (PageUptodate(page) && PageMappedToDisk(page)) >> 167 cleancache_put_page(page); >> 168 else >> 169 cleancache_invalidate_page(mapping, page); >> 170 >> 171 VM_BUG_ON_PAGE(PageTail(page), page); >> 172 VM_BUG_ON_PAGE(page_mapped(page), page); >> 173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { >> 174 int mapcount; 162 175 163 VM_BUG_ON_FOLIO(folio_mapped(folio), f << 164 if (!IS_ENABLED(CONFIG_DEBUG_VM) && un << 165 pr_alert("BUG: Bad page cache 176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 166 current->comm, folio_ !! 177 current->comm, page_to_pfn(page)); 167 dump_page(&folio->page, "still !! 178 dump_page(page, "still mapped when deleted"); 168 dump_stack(); 179 dump_stack(); 169 add_taint(TAINT_BAD_PAGE, LOCK 180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 170 181 171 if (mapping_exiting(mapping) & !! 182 mapcount = page_mapcount(page); 172 int mapcount = folio_m !! 183 if (mapping_exiting(mapping) && 173 !! 184 page_count(page) >= mapcount + 2) { 174 if (folio_ref_count(fo !! 185 /* 175 /* !! 186 * All vmas have already been torn down, so it's 176 * All vmas ha !! 187 * a good bet that actually the page is unmapped, 177 * a good bet !! 188 * and we'd prefer not to leak it: if we're wrong, 178 * and we'd ra !! 189 * some other bad page check should catch it later. 179 * another bad !! 190 */ 180 */ !! 191 page_mapcount_reset(page); 181 atomic_set(&fo !! 192 page_ref_sub(page, mapcount); 182 folio_ref_sub( << 183 } << 184 } 193 } 185 } 194 } 186 195 187 /* hugetlb folios do not participate i !! 196 /* hugetlb pages do not participate in page cache accounting. */ 188 if (folio_test_hugetlb(folio)) !! 197 if (PageHuge(page)) 189 return; 198 return; 190 199 191 nr = folio_nr_pages(folio); !! 200 nr = hpage_nr_pages(page); 192 201 193 __lruvec_stat_mod_folio(folio, NR_FILE !! 202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 194 if (folio_test_swapbacked(folio)) { !! 203 if (PageSwapBacked(page)) { 195 __lruvec_stat_mod_folio(folio, !! 204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 196 if (folio_test_pmd_mappable(fo !! 205 if (PageTransHuge(page)) 197 __lruvec_stat_mod_foli !! 206 __dec_node_page_state(page, NR_SHMEM_THPS); 198 } else if (folio_test_pmd_mappable(fol !! 207 } else if (PageTransHuge(page)) { 199 __lruvec_stat_mod_folio(folio, !! 208 __dec_node_page_state(page, NR_FILE_THPS); 200 filemap_nr_thps_dec(mapping); 209 filemap_nr_thps_dec(mapping); 201 } 210 } 202 211 203 /* 212 /* 204 * At this point folio must be either !! 213 * At this point page must be either written or cleaned by 205 * truncate. Dirty folio here signals !! 214 * truncate. Dirty page here signals a bug and loss of 206 * unwritten data - on ordinary filesy !! 215 * unwritten data. 207 * << 208 * But it's harmless on in-memory file << 209 * occur when a driver which did get_u << 210 * before putting it, while the inode << 211 * 216 * 212 * Below fixes dirty accounting after !! 217 * This fixes dirty accounting after removing the page entirely 213 * but leaves the dirty flag set: it h !! 218 * but leaves PageDirty set: it has no effect for truncated 214 * folio and anyway will be cleared be !! 219 * page and anyway will be cleared before returning page into 215 * buddy allocator. 220 * buddy allocator. 216 */ 221 */ 217 if (WARN_ON_ONCE(folio_test_dirty(foli !! 222 if (WARN_ON_ONCE(PageDirty(page))) 218 mapping_can_writeback !! 223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 219 folio_account_cleaned(folio, i << 220 } 224 } 221 225 222 /* 226 /* 223 * Delete a page from the page cache and free 227 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody els 228 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages 229 * is safe. The caller must hold the i_pages lock. 226 */ 230 */ 227 void __filemap_remove_folio(struct folio *foli !! 231 void __delete_from_page_cache(struct page *page, void *shadow) 228 { 232 { 229 struct address_space *mapping = folio- !! 233 struct address_space *mapping = page->mapping; >> 234 >> 235 trace_mm_filemap_delete_from_page_cache(page); 230 236 231 trace_mm_filemap_delete_from_page_cach !! 237 unaccount_page_cache_page(mapping, page); 232 filemap_unaccount_folio(mapping, folio !! 238 page_cache_delete(mapping, page, shadow); 233 page_cache_delete(mapping, folio, shad << 234 } 239 } 235 240 236 void filemap_free_folio(struct address_space * !! 241 static void page_cache_free_page(struct address_space *mapping, >> 242 struct page *page) 237 { 243 { 238 void (*free_folio)(struct folio *); !! 244 void (*freepage)(struct page *); 239 int refs = 1; << 240 245 241 free_folio = mapping->a_ops->free_foli !! 246 freepage = mapping->a_ops->freepage; 242 if (free_folio) !! 247 if (freepage) 243 free_folio(folio); !! 248 freepage(page); 244 249 245 if (folio_test_large(folio)) !! 250 if (PageTransHuge(page) && !PageHuge(page)) { 246 refs = folio_nr_pages(folio); !! 251 page_ref_sub(page, HPAGE_PMD_NR); 247 folio_put_refs(folio, refs); !! 252 VM_BUG_ON_PAGE(page_count(page) <= 0, page); >> 253 } else { >> 254 put_page(page); >> 255 } 248 } 256 } 249 257 250 /** 258 /** 251 * filemap_remove_folio - Remove folio from pa !! 259 * delete_from_page_cache - delete page from page cache 252 * @folio: The folio. !! 260 * @page: the page which the kernel is trying to remove from page cache 253 * 261 * 254 * This must be called only on folios that are !! 262 * This must be called only on pages that have been verified to be in the page 255 * verified to be in the page cache. It will !! 263 * cache and locked. It will never put the page into the free list, the caller 256 * the free list because the caller has a refe !! 264 * has a reference on the page. 257 */ !! 265 */ 258 void filemap_remove_folio(struct folio *folio) !! 266 void delete_from_page_cache(struct page *page) 259 { !! 267 { 260 struct address_space *mapping = folio- !! 268 struct address_space *mapping = page_mapping(page); 261 !! 269 unsigned long flags; 262 BUG_ON(!folio_test_locked(folio)); << 263 spin_lock(&mapping->host->i_lock); << 264 xa_lock_irq(&mapping->i_pages); << 265 __filemap_remove_folio(folio, NULL); << 266 xa_unlock_irq(&mapping->i_pages); << 267 if (mapping_shrinkable(mapping)) << 268 inode_add_lru(mapping->host); << 269 spin_unlock(&mapping->host->i_lock); << 270 << 271 filemap_free_folio(mapping, folio); << 272 } << 273 270 274 /* !! 271 BUG_ON(!PageLocked(page)); 275 * page_cache_delete_batch - delete several fo !! 272 xa_lock_irqsave(&mapping->i_pages, flags); 276 * @mapping: the mapping to which folios belon !! 273 __delete_from_page_cache(page, NULL); 277 * @fbatch: batch of folios to delete !! 274 xa_unlock_irqrestore(&mapping->i_pages, flags); 278 * !! 275 279 * The function walks over mapping->i_pages an !! 276 page_cache_free_page(mapping, page); 280 * @fbatch from the mapping. The function expe !! 277 } 281 * by page index and is optimised for it to be !! 278 EXPORT_SYMBOL(delete_from_page_cache); 282 * It tolerates holes in @fbatch (mapping entr !! 279 283 * modified). !! 280 /* >> 281 * page_cache_delete_batch - delete several pages from page cache >> 282 * @mapping: the mapping to which pages belong >> 283 * @pvec: pagevec with pages to delete >> 284 * >> 285 * The function walks over mapping->i_pages and removes pages passed in @pvec >> 286 * from the mapping. The function expects @pvec to be sorted by page index >> 287 * and is optimised for it to be dense. >> 288 * It tolerates holes in @pvec (mapping entries at those indices are not >> 289 * modified). The function expects only THP head pages to be present in the >> 290 * @pvec. 284 * 291 * 285 * The function expects the i_pages lock to be 292 * The function expects the i_pages lock to be held. 286 */ 293 */ 287 static void page_cache_delete_batch(struct add 294 static void page_cache_delete_batch(struct address_space *mapping, 288 struct folio_batc !! 295 struct pagevec *pvec) 289 { 296 { 290 XA_STATE(xas, &mapping->i_pages, fbatc !! 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 291 long total_pages = 0; !! 298 int total_pages = 0; 292 int i = 0; 299 int i = 0; 293 struct folio *folio; !! 300 struct page *page; 294 301 295 mapping_set_update(&xas, mapping); 302 mapping_set_update(&xas, mapping); 296 xas_for_each(&xas, folio, ULONG_MAX) { !! 303 xas_for_each(&xas, page, ULONG_MAX) { 297 if (i >= folio_batch_count(fba !! 304 if (i >= pagevec_count(pvec)) 298 break; 305 break; 299 306 300 /* A swap/dax/shadow entry got 307 /* A swap/dax/shadow entry got inserted? Skip it. */ 301 if (xa_is_value(folio)) !! 308 if (xa_is_value(page)) 302 continue; 309 continue; 303 /* 310 /* 304 * A page got inserted in our 311 * A page got inserted in our range? Skip it. We have our 305 * pages locked so they are pr 312 * pages locked so they are protected from being removed. 306 * If we see a page whose inde 313 * If we see a page whose index is higher than ours, it 307 * means our page has been rem 314 * means our page has been removed, which shouldn't be 308 * possible because we're hold 315 * possible because we're holding the PageLock. 309 */ 316 */ 310 if (folio != fbatch->folios[i] !! 317 if (page != pvec->pages[i]) { 311 VM_BUG_ON_FOLIO(folio- !! 318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 312 fbatch !! 319 page); 313 continue; 320 continue; 314 } 321 } 315 322 316 WARN_ON_ONCE(!folio_test_locke !! 323 WARN_ON_ONCE(!PageLocked(page)); 317 324 318 folio->mapping = NULL; !! 325 if (page->index == xas.xa_index) 319 /* Leave folio->index set: tru !! 326 page->mapping = NULL; >> 327 /* Leave page->index set: truncation lookup relies on it */ 320 328 321 i++; !! 329 /* >> 330 * Move to the next page in the vector if this is a regular >> 331 * page or the index is of the last sub-page of this compound >> 332 * page. >> 333 */ >> 334 if (page->index + compound_nr(page) - 1 == xas.xa_index) >> 335 i++; 322 xas_store(&xas, NULL); 336 xas_store(&xas, NULL); 323 total_pages += folio_nr_pages( !! 337 total_pages++; 324 } 338 } 325 mapping->nrpages -= total_pages; 339 mapping->nrpages -= total_pages; 326 } 340 } 327 341 328 void delete_from_page_cache_batch(struct addre 342 void delete_from_page_cache_batch(struct address_space *mapping, 329 struct folio !! 343 struct pagevec *pvec) 330 { 344 { 331 int i; 345 int i; >> 346 unsigned long flags; 332 347 333 if (!folio_batch_count(fbatch)) !! 348 if (!pagevec_count(pvec)) 334 return; 349 return; 335 350 336 spin_lock(&mapping->host->i_lock); !! 351 xa_lock_irqsave(&mapping->i_pages, flags); 337 xa_lock_irq(&mapping->i_pages); !! 352 for (i = 0; i < pagevec_count(pvec); i++) { 338 for (i = 0; i < folio_batch_count(fbat !! 353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 339 struct folio *folio = fbatch-> << 340 << 341 trace_mm_filemap_delete_from_p << 342 filemap_unaccount_folio(mappin << 343 } << 344 page_cache_delete_batch(mapping, fbatc << 345 xa_unlock_irq(&mapping->i_pages); << 346 if (mapping_shrinkable(mapping)) << 347 inode_add_lru(mapping->host); << 348 spin_unlock(&mapping->host->i_lock); << 349 354 350 for (i = 0; i < folio_batch_count(fbat !! 355 unaccount_page_cache_page(mapping, pvec->pages[i]); 351 filemap_free_folio(mapping, fb !! 356 } >> 357 page_cache_delete_batch(mapping, pvec); >> 358 xa_unlock_irqrestore(&mapping->i_pages, flags); >> 359 >> 360 for (i = 0; i < pagevec_count(pvec); i++) >> 361 page_cache_free_page(mapping, pvec->pages[i]); 352 } 362 } 353 363 354 int filemap_check_errors(struct address_space 364 int filemap_check_errors(struct address_space *mapping) 355 { 365 { 356 int ret = 0; 366 int ret = 0; 357 /* Check for outstanding write errors 367 /* Check for outstanding write errors */ 358 if (test_bit(AS_ENOSPC, &mapping->flag 368 if (test_bit(AS_ENOSPC, &mapping->flags) && 359 test_and_clear_bit(AS_ENOSPC, &map 369 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 360 ret = -ENOSPC; 370 ret = -ENOSPC; 361 if (test_bit(AS_EIO, &mapping->flags) 371 if (test_bit(AS_EIO, &mapping->flags) && 362 test_and_clear_bit(AS_EIO, &mappin 372 test_and_clear_bit(AS_EIO, &mapping->flags)) 363 ret = -EIO; 373 ret = -EIO; 364 return ret; 374 return ret; 365 } 375 } 366 EXPORT_SYMBOL(filemap_check_errors); 376 EXPORT_SYMBOL(filemap_check_errors); 367 377 368 static int filemap_check_and_keep_errors(struc 378 static int filemap_check_and_keep_errors(struct address_space *mapping) 369 { 379 { 370 /* Check for outstanding write errors 380 /* Check for outstanding write errors */ 371 if (test_bit(AS_EIO, &mapping->flags)) 381 if (test_bit(AS_EIO, &mapping->flags)) 372 return -EIO; 382 return -EIO; 373 if (test_bit(AS_ENOSPC, &mapping->flag 383 if (test_bit(AS_ENOSPC, &mapping->flags)) 374 return -ENOSPC; 384 return -ENOSPC; 375 return 0; 385 return 0; 376 } 386 } 377 387 378 /** 388 /** 379 * filemap_fdatawrite_wbc - start writeback on << 380 * @mapping: address space structure to wri << 381 * @wbc: the writeback_control controll << 382 * << 383 * Call writepages on the mapping using the pr << 384 * writeout. << 385 * << 386 * Return: %0 on success, negative error code << 387 */ << 388 int filemap_fdatawrite_wbc(struct address_spac << 389 struct writeback_co << 390 { << 391 int ret; << 392 << 393 if (!mapping_can_writeback(mapping) || << 394 !mapping_tagged(mapping, PAGECACHE << 395 return 0; << 396 << 397 wbc_attach_fdatawrite_inode(wbc, mappi << 398 ret = do_writepages(mapping, wbc); << 399 wbc_detach_inode(wbc); << 400 return ret; << 401 } << 402 EXPORT_SYMBOL(filemap_fdatawrite_wbc); << 403 << 404 /** << 405 * __filemap_fdatawrite_range - start writebac 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 406 * @mapping: address space structure to wri 390 * @mapping: address space structure to write 407 * @start: offset in bytes where the rang 391 * @start: offset in bytes where the range starts 408 * @end: offset in bytes where the rang 392 * @end: offset in bytes where the range ends (inclusive) 409 * @sync_mode: enable synchronous operation 393 * @sync_mode: enable synchronous operation 410 * 394 * 411 * Start writeback against all of a mapping's 395 * Start writeback against all of a mapping's dirty pages that lie 412 * within the byte offsets <start, end> inclus 396 * within the byte offsets <start, end> inclusive. 413 * 397 * 414 * If sync_mode is WB_SYNC_ALL then this is a 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 415 * opposed to a regular memory cleansing write 399 * opposed to a regular memory cleansing writeback. The difference between 416 * these two operations is that if a dirty pag 400 * these two operations is that if a dirty page/buffer is encountered, it must 417 * be waited upon, and not just skipped over. 401 * be waited upon, and not just skipped over. 418 * 402 * 419 * Return: %0 on success, negative error code 403 * Return: %0 on success, negative error code otherwise. 420 */ 404 */ 421 int __filemap_fdatawrite_range(struct address_ 405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 422 loff_t end, in 406 loff_t end, int sync_mode) 423 { 407 { >> 408 int ret; 424 struct writeback_control wbc = { 409 struct writeback_control wbc = { 425 .sync_mode = sync_mode, 410 .sync_mode = sync_mode, 426 .nr_to_write = LONG_MAX, 411 .nr_to_write = LONG_MAX, 427 .range_start = start, 412 .range_start = start, 428 .range_end = end, 413 .range_end = end, 429 }; 414 }; 430 415 431 return filemap_fdatawrite_wbc(mapping, !! 416 if (!mapping_cap_writeback_dirty(mapping) || >> 417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) >> 418 return 0; >> 419 >> 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host); >> 421 ret = do_writepages(mapping, &wbc); >> 422 wbc_detach_inode(&wbc); >> 423 return ret; 432 } 424 } 433 425 434 static inline int __filemap_fdatawrite(struct 426 static inline int __filemap_fdatawrite(struct address_space *mapping, 435 int sync_mode) 427 int sync_mode) 436 { 428 { 437 return __filemap_fdatawrite_range(mapp 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 438 } 430 } 439 431 440 int filemap_fdatawrite(struct address_space *m 432 int filemap_fdatawrite(struct address_space *mapping) 441 { 433 { 442 return __filemap_fdatawrite(mapping, W 434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 443 } 435 } 444 EXPORT_SYMBOL(filemap_fdatawrite); 436 EXPORT_SYMBOL(filemap_fdatawrite); 445 437 446 int filemap_fdatawrite_range(struct address_sp 438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 447 loff_t end) 439 loff_t end) 448 { 440 { 449 return __filemap_fdatawrite_range(mapp 441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 450 } 442 } 451 EXPORT_SYMBOL(filemap_fdatawrite_range); 443 EXPORT_SYMBOL(filemap_fdatawrite_range); 452 444 453 /** 445 /** 454 * filemap_flush - mostly a non-blocking flush 446 * filemap_flush - mostly a non-blocking flush 455 * @mapping: target address_space 447 * @mapping: target address_space 456 * 448 * 457 * This is a mostly non-blocking flush. Not s 449 * This is a mostly non-blocking flush. Not suitable for data-integrity 458 * purposes - I/O may not be started against a 450 * purposes - I/O may not be started against all dirty pages. 459 * 451 * 460 * Return: %0 on success, negative error code 452 * Return: %0 on success, negative error code otherwise. 461 */ 453 */ 462 int filemap_flush(struct address_space *mappin 454 int filemap_flush(struct address_space *mapping) 463 { 455 { 464 return __filemap_fdatawrite(mapping, W 456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 465 } 457 } 466 EXPORT_SYMBOL(filemap_flush); 458 EXPORT_SYMBOL(filemap_flush); 467 459 468 /** 460 /** 469 * filemap_range_has_page - check if a page ex 461 * filemap_range_has_page - check if a page exists in range. 470 * @mapping: address space within wh 462 * @mapping: address space within which to check 471 * @start_byte: offset in bytes where t 463 * @start_byte: offset in bytes where the range starts 472 * @end_byte: offset in bytes where t 464 * @end_byte: offset in bytes where the range ends (inclusive) 473 * 465 * 474 * Find at least one page in the range supplie 466 * Find at least one page in the range supplied, usually used to check if 475 * direct writing in this range will trigger a 467 * direct writing in this range will trigger a writeback. 476 * 468 * 477 * Return: %true if at least one page exists i 469 * Return: %true if at least one page exists in the specified range, 478 * %false otherwise. 470 * %false otherwise. 479 */ 471 */ 480 bool filemap_range_has_page(struct address_spa 472 bool filemap_range_has_page(struct address_space *mapping, 481 loff_t start_byte, 473 loff_t start_byte, loff_t end_byte) 482 { 474 { 483 struct folio *folio; !! 475 struct page *page; 484 XA_STATE(xas, &mapping->i_pages, start 476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 485 pgoff_t max = end_byte >> PAGE_SHIFT; 477 pgoff_t max = end_byte >> PAGE_SHIFT; 486 478 487 if (end_byte < start_byte) 479 if (end_byte < start_byte) 488 return false; 480 return false; 489 481 490 rcu_read_lock(); 482 rcu_read_lock(); 491 for (;;) { 483 for (;;) { 492 folio = xas_find(&xas, max); !! 484 page = xas_find(&xas, max); 493 if (xas_retry(&xas, folio)) !! 485 if (xas_retry(&xas, page)) 494 continue; 486 continue; 495 /* Shadow entries don't count 487 /* Shadow entries don't count */ 496 if (xa_is_value(folio)) !! 488 if (xa_is_value(page)) 497 continue; 489 continue; 498 /* 490 /* 499 * We don't need to try to pin 491 * We don't need to try to pin this page; we're about to 500 * release the RCU lock anyway 492 * release the RCU lock anyway. It is enough to know that 501 * there was a page here recen 493 * there was a page here recently. 502 */ 494 */ 503 break; 495 break; 504 } 496 } 505 rcu_read_unlock(); 497 rcu_read_unlock(); 506 498 507 return folio != NULL; !! 499 return page != NULL; 508 } 500 } 509 EXPORT_SYMBOL(filemap_range_has_page); 501 EXPORT_SYMBOL(filemap_range_has_page); 510 502 511 static void __filemap_fdatawait_range(struct a 503 static void __filemap_fdatawait_range(struct address_space *mapping, 512 loff_t st 504 loff_t start_byte, loff_t end_byte) 513 { 505 { 514 pgoff_t index = start_byte >> PAGE_SHI 506 pgoff_t index = start_byte >> PAGE_SHIFT; 515 pgoff_t end = end_byte >> PAGE_SHIFT; 507 pgoff_t end = end_byte >> PAGE_SHIFT; 516 struct folio_batch fbatch; !! 508 struct pagevec pvec; 517 unsigned nr_folios; !! 509 int nr_pages; 518 510 519 folio_batch_init(&fbatch); !! 511 if (end_byte < start_byte) >> 512 return; 520 513 >> 514 pagevec_init(&pvec); 521 while (index <= end) { 515 while (index <= end) { 522 unsigned i; 516 unsigned i; 523 517 524 nr_folios = filemap_get_folios !! 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 525 PAGECACHE_TAG_ !! 519 end, PAGECACHE_TAG_WRITEBACK); 526 !! 520 if (!nr_pages) 527 if (!nr_folios) << 528 break; 521 break; 529 522 530 for (i = 0; i < nr_folios; i++ !! 523 for (i = 0; i < nr_pages; i++) { 531 struct folio *folio = !! 524 struct page *page = pvec.pages[i]; 532 525 533 folio_wait_writeback(f !! 526 wait_on_page_writeback(page); >> 527 ClearPageError(page); 534 } 528 } 535 folio_batch_release(&fbatch); !! 529 pagevec_release(&pvec); 536 cond_resched(); 530 cond_resched(); 537 } 531 } 538 } 532 } 539 533 540 /** 534 /** 541 * filemap_fdatawait_range - wait for writebac 535 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structur 536 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where 537 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where 538 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 539 * 546 * Walk the list of under-writeback pages of t 540 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them 541 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 542 * the address space and return it. 549 * 543 * 550 * Since the error status of the address space 544 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the re 545 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 546 * reporting the error. 553 * 547 * 554 * Return: error status of the address space. 548 * Return: error status of the address space. 555 */ 549 */ 556 int filemap_fdatawait_range(struct address_spa 550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 551 loff_t end_byte) 558 { 552 { 559 __filemap_fdatawait_range(mapping, sta 553 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 554 return filemap_check_errors(mapping); 561 } 555 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 556 EXPORT_SYMBOL(filemap_fdatawait_range); 563 557 564 /** 558 /** 565 * filemap_fdatawait_range_keep_errors - wait 559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 566 * @mapping: address space structur 560 * @mapping: address space structure to wait for 567 * @start_byte: offset in bytes where 561 * @start_byte: offset in bytes where the range starts 568 * @end_byte: offset in bytes where 562 * @end_byte: offset in bytes where the range ends (inclusive) 569 * 563 * 570 * Walk the list of under-writeback pages of t 564 * Walk the list of under-writeback pages of the given address space in the 571 * given range and wait for all of them. Unli 565 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 572 * this function does not clear error status o 566 * this function does not clear error status of the address space. 573 * 567 * 574 * Use this function if callers don't handle e 568 * Use this function if callers don't handle errors themselves. Expected 575 * call sites are system-wide / filesystem-wid 569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 576 * fsfreeze(8) 570 * fsfreeze(8) 577 */ 571 */ 578 int filemap_fdatawait_range_keep_errors(struct 572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 579 loff_t start_byte, loff_t end_ 573 loff_t start_byte, loff_t end_byte) 580 { 574 { 581 __filemap_fdatawait_range(mapping, sta 575 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return filemap_check_and_keep_errors(m 576 return filemap_check_and_keep_errors(mapping); 583 } 577 } 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_err 578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 585 579 586 /** 580 /** 587 * file_fdatawait_range - wait for writeback t 581 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to addre 582 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where 583 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where 584 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 585 * 592 * Walk the list of under-writeback pages of t 586 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for 587 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f 588 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 589 * 596 * Since the error status of the file is advan 590 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the re 591 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 592 * reporting the error. 599 * 593 * 600 * Return: error status of the address space v 594 * Return: error status of the address space vs. the file->f_wb_err cursor. 601 */ 595 */ 602 int file_fdatawait_range(struct file *file, lo 596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 597 { 604 struct address_space *mapping = file-> 598 struct address_space *mapping = file->f_mapping; 605 599 606 __filemap_fdatawait_range(mapping, sta 600 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(f 601 return file_check_and_advance_wb_err(file); 608 } 602 } 609 EXPORT_SYMBOL(file_fdatawait_range); 603 EXPORT_SYMBOL(file_fdatawait_range); 610 604 611 /** 605 /** 612 * filemap_fdatawait_keep_errors - wait for wr 606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait f 607 * @mapping: address space structure to wait for 614 * 608 * 615 * Walk the list of under-writeback pages of t 609 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_f 610 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address 611 * does not clear error status of the address space. 618 * 612 * 619 * Use this function if callers don't handle e 613 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wid 614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 615 * fsfreeze(8) 622 * 616 * 623 * Return: error status of the address space. 617 * Return: error status of the address space. 624 */ 618 */ 625 int filemap_fdatawait_keep_errors(struct addre 619 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 620 { 627 __filemap_fdatawait_range(mapping, 0, 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(m 622 return filemap_check_and_keep_errors(mapping); 629 } 623 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 625 632 /* Returns true if writeback might be needed o 626 /* Returns true if writeback might be needed or already in progress. */ 633 static bool mapping_needs_writeback(struct add 627 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 628 { >> 629 if (dax_mapping(mapping)) >> 630 return mapping->nrexceptional; >> 631 635 return mapping->nrpages; 632 return mapping->nrpages; 636 } 633 } 637 634 638 bool filemap_range_has_writeback(struct addres !! 635 int filemap_write_and_wait(struct address_space *mapping) 639 loff_t start_ << 640 { 636 { 641 XA_STATE(xas, &mapping->i_pages, start !! 637 int err = 0; 642 pgoff_t max = end_byte >> PAGE_SHIFT; << 643 struct folio *folio; << 644 << 645 if (end_byte < start_byte) << 646 return false; << 647 638 648 rcu_read_lock(); !! 639 if (mapping_needs_writeback(mapping)) { 649 xas_for_each(&xas, folio, max) { !! 640 err = filemap_fdatawrite(mapping); 650 if (xas_retry(&xas, folio)) !! 641 /* 651 continue; !! 642 * Even if the above returned error, the pages may be 652 if (xa_is_value(folio)) !! 643 * written partially (e.g. -ENOSPC), so we wait for it. 653 continue; !! 644 * But the -EIO is special case, it may indicate the worst 654 if (folio_test_dirty(folio) || !! 645 * thing (e.g. bug) happened, so we avoid waiting for it. 655 folio_test_wri !! 646 */ 656 break; !! 647 if (err != -EIO) { >> 648 int err2 = filemap_fdatawait(mapping); >> 649 if (!err) >> 650 err = err2; >> 651 } else { >> 652 /* Clear any previously stored errors */ >> 653 filemap_check_errors(mapping); >> 654 } >> 655 } else { >> 656 err = filemap_check_errors(mapping); 657 } 657 } 658 rcu_read_unlock(); !! 658 return err; 659 return folio != NULL; << 660 } 659 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback) !! 660 EXPORT_SYMBOL(filemap_write_and_wait); 662 661 663 /** 662 /** 664 * filemap_write_and_wait_range - write out & 663 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the page 664 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the rang 665 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the rang 666 * @lend: offset in bytes where the range ends (inclusive) 668 * 667 * 669 * Write out and wait upon file offsets lstart 668 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 669 * 671 * Note that @lend is inclusive (describes the 670 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to 671 * that this function can be used to write to the very end-of-file (end = -1). 673 * 672 * 674 * Return: error status of the address space. 673 * Return: error status of the address space. 675 */ 674 */ 676 int filemap_write_and_wait_range(struct addres 675 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart 676 loff_t lstart, loff_t lend) 678 { 677 { 679 int err = 0, err2; !! 678 int err = 0; 680 << 681 if (lend < lstart) << 682 return 0; << 683 679 684 if (mapping_needs_writeback(mapping)) 680 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_ran 681 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 682 WB_SYNC_ALL); 687 /* !! 683 /* See comment of filemap_write_and_wait() */ 688 * Even if the above returned !! 684 if (err != -EIO) { 689 * written partially (e.g. -EN !! 685 int err2 = filemap_fdatawait_range(mapping, 690 * But the -EIO is special cas !! 686 lstart, lend); 691 * thing (e.g. bug) happened, !! 687 if (!err) 692 */ !! 688 err = err2; 693 if (err != -EIO) !! 689 } else { 694 __filemap_fdatawait_ra !! 690 /* Clear any previously stored errors */ >> 691 filemap_check_errors(mapping); >> 692 } >> 693 } else { >> 694 err = filemap_check_errors(mapping); 695 } 695 } 696 err2 = filemap_check_errors(mapping); << 697 if (!err) << 698 err = err2; << 699 return err; 696 return err; 700 } 697 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 698 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 699 703 void __filemap_set_wb_err(struct address_space 700 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 701 { 705 errseq_t eseq = errseq_set(&mapping->w 702 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 703 707 trace_filemap_set_wb_err(mapping, eseq 704 trace_filemap_set_wb_err(mapping, eseq); 708 } 705 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 706 EXPORT_SYMBOL(__filemap_set_wb_err); 710 707 711 /** 708 /** 712 * file_check_and_advance_wb_err - report wb e 709 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance 710 * and advance wb_err to current one 714 * @file: struct file on which the error is be 711 * @file: struct file on which the error is being reported 715 * 712 * 716 * When userland calls fsync (or something lik 713 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that oc 714 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't 715 * since the file was opened if there haven't been any). 719 * 716 * 720 * Grab the wb_err from the mapping. If it mat 717 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all 718 * then just quickly return 0. The file is all caught up. 722 * 719 * 723 * If it doesn't match, then take the mapping 720 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it wor 721 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f 722 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be re 723 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.) 724 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 725 * 729 * While we handle mapping->wb_err with atomic 726 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we m 727 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file d 728 * the latest value swapped in for this file descriptor. 732 * 729 * 733 * Return: %0 on success, negative error code 730 * Return: %0 on success, negative error code otherwise. 734 */ 731 */ 735 int file_check_and_advance_wb_err(struct file 732 int file_check_and_advance_wb_err(struct file *file) 736 { 733 { 737 int err = 0; 734 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_er 735 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file-> 736 struct address_space *mapping = file->f_mapping; 740 737 741 /* Locklessly handle the common case w 738 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old 739 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use 740 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 741 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 742 old = file->f_wb_err; 746 err = errseq_check_and_advance 743 err = errseq_check_and_advance(&mapping->wb_err, 747 744 &file->f_wb_err); 748 trace_file_check_and_advance_w 745 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 746 spin_unlock(&file->f_lock); 750 } 747 } 751 748 752 /* 749 /* 753 * We're mostly using this function as 750 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/ 751 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had 752 * that the legacy code would have had on these flags. 756 */ 753 */ 757 clear_bit(AS_EIO, &mapping->flags); 754 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 755 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 756 return err; 760 } 757 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 758 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 759 763 /** 760 /** 764 * file_write_and_wait_range - write out & wai 761 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space 762 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the rang 763 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the rang 764 * @lend: offset in bytes where the range ends (inclusive) 768 * 765 * 769 * Write out and wait upon file offsets lstart 766 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 767 * 771 * Note that @lend is inclusive (describes the 768 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to 769 * that this function can be used to write to the very end-of-file (end = -1). 773 * 770 * 774 * After writing out and waiting on the data, 771 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and re 772 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * 773 * 777 * Return: %0 on success, negative error code 774 * Return: %0 on success, negative error code otherwise. 778 */ 775 */ 779 int file_write_and_wait_range(struct file *fil 776 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 777 { 781 int err = 0, err2; 778 int err = 0, err2; 782 struct address_space *mapping = file-> 779 struct address_space *mapping = file->f_mapping; 783 780 784 if (lend < lstart) << 785 return 0; << 786 << 787 if (mapping_needs_writeback(mapping)) 781 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_ran 782 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 783 WB_SYNC_ALL); 790 /* See comment of filemap_writ 784 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 785 if (err != -EIO) 792 __filemap_fdatawait_ra 786 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 787 } 794 err2 = file_check_and_advance_wb_err(f 788 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 789 if (!err) 796 err = err2; 790 err = err2; 797 return err; 791 return err; 798 } 792 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 793 EXPORT_SYMBOL(file_write_and_wait_range); 800 794 801 /** 795 /** 802 * replace_page_cache_folio - replace a pageca !! 796 * replace_page_cache_page - replace a pagecache page with a new one 803 * @old: folio to be replaced !! 797 * @old: page to be replaced 804 * @new: folio to replace with !! 798 * @new: page to replace with 805 * !! 799 * @gfp_mask: allocation mode 806 * This function replaces a folio in the pagec !! 800 * 807 * success it acquires the pagecache reference !! 801 * This function replaces a page in the pagecache with a new one. On 808 * drops it for the old folio. Both the old a !! 802 * success it acquires the pagecache reference for the new page and 809 * locked. This function does not add the new !! 803 * drops it for the old page. Both the old and new pages must be >> 804 * locked. This function does not add the new page to the LRU, the 810 * caller must do that. 805 * caller must do that. 811 * 806 * 812 * The remove + add is atomic. This function 807 * The remove + add is atomic. This function cannot fail. >> 808 * >> 809 * Return: %0 813 */ 810 */ 814 void replace_page_cache_folio(struct folio *ol !! 811 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 815 { 812 { 816 struct address_space *mapping = old->m 813 struct address_space *mapping = old->mapping; 817 void (*free_folio)(struct folio *) = m !! 814 void (*freepage)(struct page *) = mapping->a_ops->freepage; 818 pgoff_t offset = old->index; 815 pgoff_t offset = old->index; 819 XA_STATE(xas, &mapping->i_pages, offse 816 XA_STATE(xas, &mapping->i_pages, offset); >> 817 unsigned long flags; 820 818 821 VM_BUG_ON_FOLIO(!folio_test_locked(old !! 819 VM_BUG_ON_PAGE(!PageLocked(old), old); 822 VM_BUG_ON_FOLIO(!folio_test_locked(new !! 820 VM_BUG_ON_PAGE(!PageLocked(new), new); 823 VM_BUG_ON_FOLIO(new->mapping, new); !! 821 VM_BUG_ON_PAGE(new->mapping, new); 824 822 825 folio_get(new); !! 823 get_page(new); 826 new->mapping = mapping; 824 new->mapping = mapping; 827 new->index = offset; 825 new->index = offset; 828 826 829 mem_cgroup_replace_folio(old, new); !! 827 xas_lock_irqsave(&xas, flags); 830 << 831 xas_lock_irq(&xas); << 832 xas_store(&xas, new); 828 xas_store(&xas, new); 833 829 834 old->mapping = NULL; 830 old->mapping = NULL; 835 /* hugetlb pages do not participate in 831 /* hugetlb pages do not participate in page cache accounting. */ 836 if (!folio_test_hugetlb(old)) !! 832 if (!PageHuge(old)) 837 __lruvec_stat_sub_folio(old, N !! 833 __dec_node_page_state(new, NR_FILE_PAGES); 838 if (!folio_test_hugetlb(new)) !! 834 if (!PageHuge(new)) 839 __lruvec_stat_add_folio(new, N !! 835 __inc_node_page_state(new, NR_FILE_PAGES); 840 if (folio_test_swapbacked(old)) !! 836 if (PageSwapBacked(old)) 841 __lruvec_stat_sub_folio(old, N !! 837 __dec_node_page_state(new, NR_SHMEM); 842 if (folio_test_swapbacked(new)) !! 838 if (PageSwapBacked(new)) 843 __lruvec_stat_add_folio(new, N !! 839 __inc_node_page_state(new, NR_SHMEM); 844 xas_unlock_irq(&xas); !! 840 xas_unlock_irqrestore(&xas, flags); 845 if (free_folio) !! 841 mem_cgroup_migrate(old, new); 846 free_folio(old); !! 842 if (freepage) 847 folio_put(old); !! 843 freepage(old); >> 844 put_page(old); >> 845 >> 846 return 0; 848 } 847 } 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); !! 848 EXPORT_SYMBOL_GPL(replace_page_cache_page); 850 849 851 noinline int __filemap_add_folio(struct addres !! 850 static int __add_to_page_cache_locked(struct page *page, 852 struct folio *folio, pgoff_t i !! 851 struct address_space *mapping, >> 852 pgoff_t offset, gfp_t gfp_mask, >> 853 void **shadowp) 853 { 854 { 854 XA_STATE(xas, &mapping->i_pages, index !! 855 XA_STATE(xas, &mapping->i_pages, offset); 855 void *alloced_shadow = NULL; !! 856 int huge = PageHuge(page); 856 int alloced_order = 0; !! 857 struct mem_cgroup *memcg; 857 bool huge; !! 858 int error; 858 long nr; !! 859 void *old; 859 !! 860 860 VM_BUG_ON_FOLIO(!folio_test_locked(fol !! 861 VM_BUG_ON_PAGE(!PageLocked(page), page); 861 VM_BUG_ON_FOLIO(folio_test_swapbacked( !! 862 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 862 VM_BUG_ON_FOLIO(folio_order(folio) < m << 863 folio); << 864 mapping_set_update(&xas, mapping); 863 mapping_set_update(&xas, mapping); 865 864 866 VM_BUG_ON_FOLIO(index & (folio_nr_page !! 865 if (!huge) { 867 xas_set_order(&xas, index, folio_order !! 866 error = mem_cgroup_try_charge(page, current->mm, 868 huge = folio_test_hugetlb(folio); !! 867 gfp_mask, &memcg, false); 869 nr = folio_nr_pages(folio); !! 868 if (error) 870 !! 869 return error; 871 gfp &= GFP_RECLAIM_MASK; !! 870 } 872 folio_ref_add(folio, nr); << 873 folio->mapping = mapping; << 874 folio->index = xas.xa_index; << 875 871 876 for (;;) { !! 872 get_page(page); 877 int order = -1, split_order = !! 873 page->mapping = mapping; 878 void *entry, *old = NULL; !! 874 page->index = offset; 879 875 >> 876 do { 880 xas_lock_irq(&xas); 877 xas_lock_irq(&xas); 881 xas_for_each_conflict(&xas, en !! 878 old = xas_load(&xas); 882 old = entry; !! 879 if (old && !xa_is_value(old)) 883 if (!xa_is_value(entry !! 880 xas_set_err(&xas, -EEXIST); 884 xas_set_err(&x !! 881 xas_store(&xas, page); 885 goto unlock; !! 882 if (xas_error(&xas)) 886 } !! 883 goto unlock; 887 /* << 888 * If a larger entry e << 889 * it will be the firs << 890 */ << 891 if (order == -1) << 892 order = xas_ge << 893 } << 894 884 895 /* entry may have changed befo !! 885 if (xa_is_value(old)) { 896 if (alloced_order && (old != a !! 886 mapping->nrexceptional--; 897 xas_destroy(&xas); << 898 alloced_order = 0; << 899 } << 900 << 901 if (old) { << 902 if (order > 0 && order << 903 /* How to hand << 904 BUG_ON(shmem_m << 905 if (!alloced_o << 906 split_ << 907 goto u << 908 } << 909 xas_split(&xas << 910 xas_reset(&xas << 911 } << 912 if (shadowp) 887 if (shadowp) 913 *shadowp = old 888 *shadowp = old; 914 } 889 } 915 !! 890 mapping->nrpages++; 916 xas_store(&xas, folio); << 917 if (xas_error(&xas)) << 918 goto unlock; << 919 << 920 mapping->nrpages += nr; << 921 891 922 /* hugetlb pages do not partic 892 /* hugetlb pages do not participate in page cache accounting */ 923 if (!huge) { !! 893 if (!huge) 924 __lruvec_stat_mod_foli !! 894 __inc_node_page_state(page, NR_FILE_PAGES); 925 if (folio_test_pmd_map << 926 __lruvec_stat_ << 927 << 928 } << 929 << 930 unlock: 895 unlock: 931 xas_unlock_irq(&xas); 896 xas_unlock_irq(&xas); 932 !! 897 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 933 /* split needed, alloc here an << 934 if (split_order) { << 935 xas_split_alloc(&xas, << 936 if (xas_error(&xas)) << 937 goto error; << 938 alloced_shadow = old; << 939 alloced_order = split_ << 940 xas_reset(&xas); << 941 continue; << 942 } << 943 << 944 if (!xas_nomem(&xas, gfp)) << 945 break; << 946 } << 947 898 948 if (xas_error(&xas)) 899 if (xas_error(&xas)) 949 goto error; 900 goto error; 950 901 951 trace_mm_filemap_add_to_page_cache(fol !! 902 if (!huge) >> 903 mem_cgroup_commit_charge(page, memcg, false, false); >> 904 trace_mm_filemap_add_to_page_cache(page); 952 return 0; 905 return 0; 953 error: 906 error: 954 folio->mapping = NULL; !! 907 page->mapping = NULL; 955 /* Leave page->index set: truncation r 908 /* Leave page->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); !! 909 if (!huge) >> 910 mem_cgroup_cancel_charge(page, memcg, false); >> 911 put_page(page); 957 return xas_error(&xas); 912 return xas_error(&xas); 958 } 913 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERR !! 914 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); >> 915 >> 916 /** >> 917 * add_to_page_cache_locked - add a locked page to the pagecache >> 918 * @page: page to add >> 919 * @mapping: the page's address_space >> 920 * @offset: page index >> 921 * @gfp_mask: page allocation mode >> 922 * >> 923 * This function is used to add a page to the pagecache. It must be locked. >> 924 * This function does not add the page to the LRU. The caller must do that. >> 925 * >> 926 * Return: %0 on success, negative error code otherwise. >> 927 */ >> 928 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, >> 929 pgoff_t offset, gfp_t gfp_mask) >> 930 { >> 931 return __add_to_page_cache_locked(page, mapping, offset, >> 932 gfp_mask, NULL); >> 933 } >> 934 EXPORT_SYMBOL(add_to_page_cache_locked); 960 935 961 int filemap_add_folio(struct address_space *ma !! 936 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 962 pgoff_t index, !! 937 pgoff_t offset, gfp_t gfp_mask) 963 { 938 { 964 void *shadow = NULL; 939 void *shadow = NULL; 965 int ret; 940 int ret; 966 941 967 ret = mem_cgroup_charge(folio, NULL, g !! 942 __SetPageLocked(page); 968 if (ret) !! 943 ret = __add_to_page_cache_locked(page, mapping, offset, 969 return ret; !! 944 gfp_mask, &shadow); 970 !! 945 if (unlikely(ret)) 971 __folio_set_locked(folio); !! 946 __ClearPageLocked(page); 972 ret = __filemap_add_folio(mapping, fol !! 947 else { 973 if (unlikely(ret)) { << 974 mem_cgroup_uncharge(folio); << 975 __folio_clear_locked(folio); << 976 } else { << 977 /* 948 /* 978 * The folio might have been e !! 949 * The page might have been evicted from cache only 979 * recently, in which case it 950 * recently, in which case it should be activated like 980 * any other repeatedly access !! 951 * any other repeatedly accessed page. 981 * The exception is folios get !! 952 * The exception is pages getting rewritten; evicting other 982 * data from the working set, 953 * data from the working set, only to cache data that will 983 * get overwritten with someth 954 * get overwritten with something else, is a waste of memory. 984 */ 955 */ 985 WARN_ON_ONCE(folio_test_active !! 956 WARN_ON_ONCE(PageActive(page)); 986 if (!(gfp & __GFP_WRITE) && sh !! 957 if (!(gfp_mask & __GFP_WRITE) && shadow) 987 workingset_refault(fol !! 958 workingset_refault(page, shadow); 988 folio_add_lru(folio); !! 959 lru_cache_add(page); 989 } 960 } 990 return ret; 961 return ret; 991 } 962 } 992 EXPORT_SYMBOL_GPL(filemap_add_folio); !! 963 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 993 964 994 #ifdef CONFIG_NUMA 965 #ifdef CONFIG_NUMA 995 struct folio *filemap_alloc_folio_noprof(gfp_t !! 966 struct page *__page_cache_alloc(gfp_t gfp) 996 { 967 { 997 int n; 968 int n; 998 struct folio *folio; !! 969 struct page *page; 999 970 1000 if (cpuset_do_page_mem_spread()) { 971 if (cpuset_do_page_mem_spread()) { 1001 unsigned int cpuset_mems_cook 972 unsigned int cpuset_mems_cookie; 1002 do { 973 do { 1003 cpuset_mems_cookie = 974 cpuset_mems_cookie = read_mems_allowed_begin(); 1004 n = cpuset_mem_spread 975 n = cpuset_mem_spread_node(); 1005 folio = __folio_alloc !! 976 page = __alloc_pages_node(n, gfp, 0); 1006 } while (!folio && read_mems_ !! 977 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 1007 978 1008 return folio; !! 979 return page; 1009 } 980 } 1010 return folio_alloc_noprof(gfp, order) !! 981 return alloc_pages(gfp, 0); 1011 } 982 } 1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof); !! 983 EXPORT_SYMBOL(__page_cache_alloc); 1013 #endif 984 #endif 1014 985 1015 /* 986 /* 1016 * filemap_invalidate_lock_two - lock invalid << 1017 * << 1018 * Lock exclusively invalidate_lock of any pa << 1019 * << 1020 * @mapping1: the first mapping to lock << 1021 * @mapping2: the second mapping to lock << 1022 */ << 1023 void filemap_invalidate_lock_two(struct addre << 1024 struct addre << 1025 { << 1026 if (mapping1 > mapping2) << 1027 swap(mapping1, mapping2); << 1028 if (mapping1) << 1029 down_write(&mapping1->invalid << 1030 if (mapping2 && mapping1 != mapping2) << 1031 down_write_nested(&mapping2-> << 1032 } << 1033 EXPORT_SYMBOL(filemap_invalidate_lock_two); << 1034 << 1035 /* << 1036 * filemap_invalidate_unlock_two - unlock inv << 1037 * << 1038 * Unlock exclusive invalidate_lock of any pa << 1039 * << 1040 * @mapping1: the first mapping to unlock << 1041 * @mapping2: the second mapping to unlock << 1042 */ << 1043 void filemap_invalidate_unlock_two(struct add << 1044 struct add << 1045 { << 1046 if (mapping1) << 1047 up_write(&mapping1->invalidat << 1048 if (mapping2 && mapping1 != mapping2) << 1049 up_write(&mapping2->invalidat << 1050 } << 1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two); << 1052 << 1053 /* << 1054 * In order to wait for pages to become avail 987 * In order to wait for pages to become available there must be 1055 * waitqueues associated with pages. By using 988 * waitqueues associated with pages. By using a hash table of 1056 * waitqueues where the bucket discipline is 989 * waitqueues where the bucket discipline is to maintain all 1057 * waiters on the same queue and wake all whe 990 * waiters on the same queue and wake all when any of the pages 1058 * become available, and for the woken contex 991 * become available, and for the woken contexts to check to be 1059 * sure the appropriate page became available 992 * sure the appropriate page became available, this saves space 1060 * at a cost of "thundering herd" phenomena d 993 * at a cost of "thundering herd" phenomena during rare hash 1061 * collisions. 994 * collisions. 1062 */ 995 */ 1063 #define PAGE_WAIT_TABLE_BITS 8 996 #define PAGE_WAIT_TABLE_BITS 8 1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_ 997 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1065 static wait_queue_head_t folio_wait_table[PAG !! 998 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1066 999 1067 static wait_queue_head_t *folio_waitqueue(str !! 1000 static wait_queue_head_t *page_waitqueue(struct page *page) 1068 { 1001 { 1069 return &folio_wait_table[hash_ptr(fol !! 1002 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1070 } 1003 } 1071 1004 1072 void __init pagecache_init(void) 1005 void __init pagecache_init(void) 1073 { 1006 { 1074 int i; 1007 int i; 1075 1008 1076 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; 1009 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1077 init_waitqueue_head(&folio_wa !! 1010 init_waitqueue_head(&page_wait_table[i]); 1078 1011 1079 page_writeback_init(); 1012 page_writeback_init(); 1080 } 1013 } 1081 1014 1082 /* !! 1015 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 1083 * The page wait code treats the "wait->flags !! 1016 struct wait_page_key { 1084 * we have multiple different kinds of waits, !! 1017 struct page *page; 1085 * one. !! 1018 int bit_nr; 1086 * !! 1019 int page_match; 1087 * We have: !! 1020 }; 1088 * !! 1021 1089 * (a) no special bits set: !! 1022 struct wait_page_queue { 1090 * !! 1023 struct page *page; 1091 * We're just waiting for the bit to be !! 1024 int bit_nr; 1092 * calls the wakeup function, we set WQ_ !! 1025 wait_queue_entry_t wait; 1093 * and remove it from the wait queue. !! 1026 }; 1094 * !! 1027 1095 * Simple and straightforward. << 1096 * << 1097 * (b) WQ_FLAG_EXCLUSIVE: << 1098 * << 1099 * The waiter is waiting to get the lock << 1100 * be woken up to avoid any thundering h << 1101 * WQ_FLAG_WOKEN bit, wake it up, and re << 1102 * << 1103 * This is the traditional exclusive wai << 1104 * << 1105 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: << 1106 * << 1107 * The waiter is waiting to get the bit, << 1108 * lock to be transferred to it for fair << 1109 * cannot be taken, we stop walking the << 1110 * the waiter. << 1111 * << 1112 * This is the "fair lock handoff" case, << 1113 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to << 1114 * that it now has the lock. << 1115 */ << 1116 static int wake_page_function(wait_queue_entr 1028 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1117 { 1029 { 1118 unsigned int flags; << 1119 struct wait_page_key *key = arg; 1030 struct wait_page_key *key = arg; 1120 struct wait_page_queue *wait_page 1031 struct wait_page_queue *wait_page 1121 = container_of(wait, struct w 1032 = container_of(wait, struct wait_page_queue, wait); 1122 1033 1123 if (!wake_page_match(wait_page, key)) !! 1034 if (wait_page->page != key->page) 1124 return 0; !! 1035 return 0; >> 1036 key->page_match = 1; 1125 1037 1126 /* !! 1038 if (wait_page->bit_nr != key->bit_nr) 1127 * If it's a lock handoff wait, we ge !! 1039 return 0; 1128 * stop walking (and do not wake it u << 1129 */ << 1130 flags = wait->flags; << 1131 if (flags & WQ_FLAG_EXCLUSIVE) { << 1132 if (test_bit(key->bit_nr, &ke << 1133 return -1; << 1134 if (flags & WQ_FLAG_CUSTOM) { << 1135 if (test_and_set_bit( << 1136 return -1; << 1137 flags |= WQ_FLAG_DONE << 1138 } << 1139 } << 1140 1040 1141 /* 1041 /* 1142 * We are holding the wait-queue lock !! 1042 * Stop walking if it's locked. 1143 * is waiting for this will be checki !! 1043 * Is this safe if put_and_wait_on_page_locked() is in use? 1144 * any locking. !! 1044 * Yes: the waker must hold a reference to this page, and if PG_locked 1145 * !! 1045 * has now already been set by another task, that task must also hold 1146 * So update the flags atomically, an !! 1046 * a reference to the *same usage* of this page; so there is no need 1147 * afterwards to avoid any races. Thi !! 1047 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1148 * with the load-acquire in folio_wai << 1149 */ 1048 */ 1150 smp_store_release(&wait->flags, flags !! 1049 if (test_bit(key->bit_nr, &key->page->flags)) 1151 wake_up_state(wait->private, mode); !! 1050 return -1; 1152 1051 1153 /* !! 1052 return autoremove_wake_function(wait, mode, sync, key); 1154 * Ok, we have successfully done what << 1155 * and we can unconditionally remove << 1156 * << 1157 * Note that this pairs with the "fin << 1158 * waiter, and has to be the absolute << 1159 * After this list_del_init(&wait->en << 1160 * might be de-allocated and the proc << 1161 * exited. << 1162 */ << 1163 list_del_init_careful(&wait->entry); << 1164 return (flags & WQ_FLAG_EXCLUSIVE) != << 1165 } 1053 } 1166 1054 1167 static void folio_wake_bit(struct folio *foli !! 1055 static void wake_up_page_bit(struct page *page, int bit_nr) 1168 { 1056 { 1169 wait_queue_head_t *q = folio_waitqueu !! 1057 wait_queue_head_t *q = page_waitqueue(page); 1170 struct wait_page_key key; 1058 struct wait_page_key key; 1171 unsigned long flags; 1059 unsigned long flags; >> 1060 wait_queue_entry_t bookmark; 1172 1061 1173 key.folio = folio; !! 1062 key.page = page; 1174 key.bit_nr = bit_nr; 1063 key.bit_nr = bit_nr; 1175 key.page_match = 0; 1064 key.page_match = 0; 1176 1065 >> 1066 bookmark.flags = 0; >> 1067 bookmark.private = NULL; >> 1068 bookmark.func = NULL; >> 1069 INIT_LIST_HEAD(&bookmark.entry); >> 1070 1177 spin_lock_irqsave(&q->lock, flags); 1071 spin_lock_irqsave(&q->lock, flags); 1178 __wake_up_locked_key(q, TASK_NORMAL, !! 1072 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); >> 1073 >> 1074 while (bookmark.flags & WQ_FLAG_BOOKMARK) { >> 1075 /* >> 1076 * Take a breather from holding the lock, >> 1077 * allow pages that finish wake up asynchronously >> 1078 * to acquire the lock and remove themselves >> 1079 * from wait queue >> 1080 */ >> 1081 spin_unlock_irqrestore(&q->lock, flags); >> 1082 cpu_relax(); >> 1083 spin_lock_irqsave(&q->lock, flags); >> 1084 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); >> 1085 } 1179 1086 1180 /* 1087 /* 1181 * It's possible to miss clearing wai !! 1088 * It is possible for other pages to have collided on the waitqueue 1182 * waiters, but the hashed waitqueue !! 1089 * hash, so in that case check for a page match. That prevents a long- 1183 * That's okay, it's a rare case. The !! 1090 * term waiter 1184 * 1091 * 1185 * Note that, depending on the page p !! 1092 * It is still possible to miss a case here, when we woke page waiters 1186 * other), the flag may be cleared in !! 1093 * and removed them from the waitqueue, but there are still other 1187 * but that is not required for corre !! 1094 * page waiters. 1188 */ !! 1095 */ 1189 if (!waitqueue_active(q) || !key.page !! 1096 if (!waitqueue_active(q) || !key.page_match) { 1190 folio_clear_waiters(folio); !! 1097 ClearPageWaiters(page); 1191 !! 1098 /* >> 1099 * It's possible to miss clearing Waiters here, when we woke >> 1100 * our page waiters, but the hashed waitqueue has waiters for >> 1101 * other pages on it. >> 1102 * >> 1103 * That's okay, it's a rare case. The next waker will clear it. >> 1104 */ >> 1105 } 1192 spin_unlock_irqrestore(&q->lock, flag 1106 spin_unlock_irqrestore(&q->lock, flags); 1193 } 1107 } 1194 1108 >> 1109 static void wake_up_page(struct page *page, int bit) >> 1110 { >> 1111 if (!PageWaiters(page)) >> 1112 return; >> 1113 wake_up_page_bit(page, bit); >> 1114 } >> 1115 1195 /* 1116 /* 1196 * A choice of three behaviors for folio_wait !! 1117 * A choice of three behaviors for wait_on_page_bit_common(): 1197 */ 1118 */ 1198 enum behavior { 1119 enum behavior { 1199 EXCLUSIVE, /* Hold ref to page a 1120 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1200 * __folio_lock() wai !! 1121 * __lock_page() waiting on then setting PG_locked. 1201 */ 1122 */ 1202 SHARED, /* Hold ref to page a 1123 SHARED, /* Hold ref to page and check the bit when woken, like 1203 * folio_wait_writeba !! 1124 * wait_on_page_writeback() waiting on PG_writeback. 1204 */ 1125 */ 1205 DROP, /* Drop ref to page b 1126 DROP, /* Drop ref to page before wait, no check when woken, 1206 * like folio_put_wai !! 1127 * like put_and_wait_on_page_locked() on PG_locked. 1207 */ 1128 */ 1208 }; 1129 }; 1209 1130 1210 /* !! 1131 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1211 * Attempt to check (or get) the folio flag, !! 1132 struct page *page, int bit_nr, int state, enum behavior behavior) 1212 * if successful. << 1213 */ << 1214 static inline bool folio_trylock_flag(struct << 1215 struc << 1216 { 1133 { 1217 if (wait->flags & WQ_FLAG_EXCLUSIVE) << 1218 if (test_and_set_bit(bit_nr, << 1219 return false; << 1220 } else if (test_bit(bit_nr, &folio->f << 1221 return false; << 1222 << 1223 wait->flags |= WQ_FLAG_WOKEN | WQ_FLA << 1224 return true; << 1225 } << 1226 << 1227 /* How many times do we accept lock stealing << 1228 int sysctl_page_lock_unfairness = 5; << 1229 << 1230 static inline int folio_wait_bit_common(struc << 1231 int state, enum behavior beha << 1232 { << 1233 wait_queue_head_t *q = folio_waitqueu << 1234 int unfairness = sysctl_page_lock_unf << 1235 struct wait_page_queue wait_page; 1134 struct wait_page_queue wait_page; 1236 wait_queue_entry_t *wait = &wait_page 1135 wait_queue_entry_t *wait = &wait_page.wait; >> 1136 bool bit_is_set; 1237 bool thrashing = false; 1137 bool thrashing = false; >> 1138 bool delayacct = false; 1238 unsigned long pflags; 1139 unsigned long pflags; 1239 bool in_thrashing; !! 1140 int ret = 0; 1240 1141 1241 if (bit_nr == PG_locked && 1142 if (bit_nr == PG_locked && 1242 !folio_test_uptodate(folio) && fo !! 1143 !PageUptodate(page) && PageWorkingset(page)) { 1243 delayacct_thrashing_start(&in !! 1144 if (!PageSwapBacked(page)) { >> 1145 delayacct_thrashing_start(); >> 1146 delayacct = true; >> 1147 } 1244 psi_memstall_enter(&pflags); 1148 psi_memstall_enter(&pflags); 1245 thrashing = true; 1149 thrashing = true; 1246 } 1150 } 1247 1151 1248 init_wait(wait); 1152 init_wait(wait); >> 1153 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1249 wait->func = wake_page_function; 1154 wait->func = wake_page_function; 1250 wait_page.folio = folio; !! 1155 wait_page.page = page; 1251 wait_page.bit_nr = bit_nr; 1156 wait_page.bit_nr = bit_nr; 1252 1157 1253 repeat: << 1254 wait->flags = 0; << 1255 if (behavior == EXCLUSIVE) { << 1256 wait->flags = WQ_FLAG_EXCLUSI << 1257 if (--unfairness < 0) << 1258 wait->flags |= WQ_FLA << 1259 } << 1260 << 1261 /* << 1262 * Do one last check whether we can g << 1263 * page bit synchronously. << 1264 * << 1265 * Do the folio_set_waiters() marking << 1266 * to let any waker we _just_ missed << 1267 * need to wake us up (otherwise they << 1268 * even go to the slow case that look << 1269 * page queue), and add ourselves to << 1270 * queue if we need to sleep. << 1271 * << 1272 * This part needs to be done under t << 1273 * lock to avoid races. << 1274 */ << 1275 spin_lock_irq(&q->lock); << 1276 folio_set_waiters(folio); << 1277 if (!folio_trylock_flag(folio, bit_nr << 1278 __add_wait_queue_entry_tail(q << 1279 spin_unlock_irq(&q->lock); << 1280 << 1281 /* << 1282 * From now on, all the logic will be << 1283 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE << 1284 * see whether the page bit testing h << 1285 * been done by the wake function. << 1286 * << 1287 * We can drop our reference to the f << 1288 */ << 1289 if (behavior == DROP) << 1290 folio_put(folio); << 1291 << 1292 /* << 1293 * Note that until the "finish_wait() << 1294 * we see the WQ_FLAG_WOKEN flag, we << 1295 * be very careful with the 'wait->fl << 1296 * we may race with a waker that sets << 1297 */ << 1298 for (;;) { 1158 for (;;) { 1299 unsigned int flags; !! 1159 spin_lock_irq(&q->lock); >> 1160 >> 1161 if (likely(list_empty(&wait->entry))) { >> 1162 __add_wait_queue_entry_tail(q, wait); >> 1163 SetPageWaiters(page); >> 1164 } 1300 1165 1301 set_current_state(state); 1166 set_current_state(state); 1302 1167 1303 /* Loop until we've been woke !! 1168 spin_unlock_irq(&q->lock); 1304 flags = smp_load_acquire(&wai !! 1169 1305 if (!(flags & WQ_FLAG_WOKEN)) !! 1170 bit_is_set = test_bit(bit_nr, &page->flags); 1306 if (signal_pending_st !! 1171 if (behavior == DROP) 1307 break; !! 1172 put_page(page); 1308 1173 >> 1174 if (likely(bit_is_set)) 1309 io_schedule(); 1175 io_schedule(); 1310 continue; !! 1176 >> 1177 if (behavior == EXCLUSIVE) { >> 1178 if (!test_and_set_bit_lock(bit_nr, &page->flags)) >> 1179 break; >> 1180 } else if (behavior == SHARED) { >> 1181 if (!test_bit(bit_nr, &page->flags)) >> 1182 break; 1311 } 1183 } 1312 1184 1313 /* If we were non-exclusive, !! 1185 if (signal_pending_state(state, current)) { 1314 if (behavior != EXCLUSIVE) !! 1186 ret = -EINTR; 1315 break; 1187 break; >> 1188 } 1316 1189 1317 /* If the waker got the lock !! 1190 if (behavior == DROP) { 1318 if (flags & WQ_FLAG_DONE) !! 1191 /* >> 1192 * We can no longer safely access page->flags: >> 1193 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, >> 1194 * there is a risk of waiting forever on a page reused >> 1195 * for something that keeps it locked indefinitely. >> 1196 * But best check for -EINTR above before breaking. >> 1197 */ 1319 break; 1198 break; 1320 !! 1199 } 1321 /* << 1322 * Otherwise, if we're gettin << 1323 * try to get it ourselves. << 1324 * << 1325 * And if that fails, we'll h << 1326 */ << 1327 if (unlikely(test_and_set_bit << 1328 goto repeat; << 1329 << 1330 wait->flags |= WQ_FLAG_DONE; << 1331 break; << 1332 } 1200 } 1333 1201 1334 /* << 1335 * If a signal happened, this 'finish << 1336 * waiter from the wait-queues, but t << 1337 * set. That's ok. The next wakeup wi << 1338 * to do it here would be difficult a << 1339 */ << 1340 finish_wait(q, wait); 1202 finish_wait(q, wait); 1341 1203 1342 if (thrashing) { 1204 if (thrashing) { 1343 delayacct_thrashing_end(&in_t !! 1205 if (delayacct) >> 1206 delayacct_thrashing_end(); 1344 psi_memstall_leave(&pflags); 1207 psi_memstall_leave(&pflags); 1345 } 1208 } 1346 1209 1347 /* 1210 /* 1348 * NOTE! The wait->flags weren't stab !! 1211 * A signal could leave PageWaiters set. Clearing it here if 1349 * 'finish_wait()', and we could have !! 1212 * !waitqueue_active would be possible (by open-coding finish_wait), 1350 * to a signal, and had a wakeup even !! 1213 * but still fail to catch it in the case of wait hash collision. We 1351 * test but before the 'finish_wait() !! 1214 * already can fail to clear wait hash collision cases, so don't 1352 * !! 1215 * bother with signals either. 1353 * So only after the finish_wait() ca << 1354 * if we got woken up or not, so we c << 1355 * return value based on that state w << 1356 * << 1357 * Also note that WQ_FLAG_WOKEN is su << 1358 * waiter, but an exclusive one requi << 1359 */ << 1360 if (behavior == EXCLUSIVE) << 1361 return wait->flags & WQ_FLAG_ << 1362 << 1363 return wait->flags & WQ_FLAG_WOKEN ? << 1364 } << 1365 << 1366 #ifdef CONFIG_MIGRATION << 1367 /** << 1368 * migration_entry_wait_on_locked - Wait for << 1369 * @entry: migration swap entry. << 1370 * @ptl: already locked ptl. This function wi << 1371 * << 1372 * Wait for a migration entry referencing the << 1373 * equivalent to put_and_wait_on_page_locked( << 1374 * this can be called without taking a refere << 1375 * should be called while holding the ptl for << 1376 * the page. << 1377 * << 1378 * Returns after unlocking the ptl. << 1379 * << 1380 * This follows the same logic as folio_wait_ << 1381 * there. << 1382 */ << 1383 void migration_entry_wait_on_locked(swp_entry << 1384 __releases(ptl) << 1385 { << 1386 struct wait_page_queue wait_page; << 1387 wait_queue_entry_t *wait = &wait_page << 1388 bool thrashing = false; << 1389 unsigned long pflags; << 1390 bool in_thrashing; << 1391 wait_queue_head_t *q; << 1392 struct folio *folio = pfn_swap_entry_ << 1393 << 1394 q = folio_waitqueue(folio); << 1395 if (!folio_test_uptodate(folio) && fo << 1396 delayacct_thrashing_start(&in << 1397 psi_memstall_enter(&pflags); << 1398 thrashing = true; << 1399 } << 1400 << 1401 init_wait(wait); << 1402 wait->func = wake_page_function; << 1403 wait_page.folio = folio; << 1404 wait_page.bit_nr = PG_locked; << 1405 wait->flags = 0; << 1406 << 1407 spin_lock_irq(&q->lock); << 1408 folio_set_waiters(folio); << 1409 if (!folio_trylock_flag(folio, PG_loc << 1410 __add_wait_queue_entry_tail(q << 1411 spin_unlock_irq(&q->lock); << 1412 << 1413 /* << 1414 * If a migration entry exists for th << 1415 * a valid reference to the page, and << 1416 * migration entry. So the page is va << 1417 */ 1216 */ 1418 spin_unlock(ptl); << 1419 << 1420 for (;;) { << 1421 unsigned int flags; << 1422 << 1423 set_current_state(TASK_UNINTE << 1424 << 1425 /* Loop until we've been woke << 1426 flags = smp_load_acquire(&wai << 1427 if (!(flags & WQ_FLAG_WOKEN)) << 1428 if (signal_pending_st << 1429 break; << 1430 1217 1431 io_schedule(); !! 1218 return ret; 1432 continue; << 1433 } << 1434 break; << 1435 } << 1436 << 1437 finish_wait(q, wait); << 1438 << 1439 if (thrashing) { << 1440 delayacct_thrashing_end(&in_t << 1441 psi_memstall_leave(&pflags); << 1442 } << 1443 } 1219 } 1444 #endif << 1445 1220 1446 void folio_wait_bit(struct folio *folio, int !! 1221 void wait_on_page_bit(struct page *page, int bit_nr) 1447 { 1222 { 1448 folio_wait_bit_common(folio, bit_nr, !! 1223 wait_queue_head_t *q = page_waitqueue(page); >> 1224 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1449 } 1225 } 1450 EXPORT_SYMBOL(folio_wait_bit); !! 1226 EXPORT_SYMBOL(wait_on_page_bit); 1451 1227 1452 int folio_wait_bit_killable(struct folio *fol !! 1228 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1453 { 1229 { 1454 return folio_wait_bit_common(folio, b !! 1230 wait_queue_head_t *q = page_waitqueue(page); >> 1231 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1455 } 1232 } 1456 EXPORT_SYMBOL(folio_wait_bit_killable); !! 1233 EXPORT_SYMBOL(wait_on_page_bit_killable); 1457 1234 1458 /** 1235 /** 1459 * folio_put_wait_locked - Drop a reference a !! 1236 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1460 * @folio: The folio to wait for. !! 1237 * @page: The page to wait for. 1461 * @state: The sleep state (TASK_KILLABLE, TA << 1462 * 1238 * 1463 * The caller should hold a reference on @fol !! 1239 * The caller should hold a reference on @page. They expect the page to 1464 * become unlocked relatively soon, but do no 1240 * become unlocked relatively soon, but do not wish to hold up migration 1465 * (for example) by holding the reference whi !! 1241 * (for example) by holding the reference while waiting for the page to 1466 * come unlocked. After this function return 1242 * come unlocked. After this function returns, the caller should not 1467 * dereference @folio. !! 1243 * dereference @page. 1468 * << 1469 * Return: 0 if the folio was unlocked or -EI << 1470 */ 1244 */ 1471 static int folio_put_wait_locked(struct folio !! 1245 void put_and_wait_on_page_locked(struct page *page) 1472 { 1246 { 1473 return folio_wait_bit_common(folio, P !! 1247 wait_queue_head_t *q; >> 1248 >> 1249 page = compound_head(page); >> 1250 q = page_waitqueue(page); >> 1251 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1474 } 1252 } 1475 1253 1476 /** 1254 /** 1477 * folio_add_wait_queue - Add an arbitrary wa !! 1255 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1478 * @folio: Folio defining the wait queue of i !! 1256 * @page: Page defining the wait queue of interest 1479 * @waiter: Waiter to add to the queue 1257 * @waiter: Waiter to add to the queue 1480 * 1258 * 1481 * Add an arbitrary @waiter to the wait queue !! 1259 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1482 */ 1260 */ 1483 void folio_add_wait_queue(struct folio *folio !! 1261 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1484 { 1262 { 1485 wait_queue_head_t *q = folio_waitqueu !! 1263 wait_queue_head_t *q = page_waitqueue(page); 1486 unsigned long flags; 1264 unsigned long flags; 1487 1265 1488 spin_lock_irqsave(&q->lock, flags); 1266 spin_lock_irqsave(&q->lock, flags); 1489 __add_wait_queue_entry_tail(q, waiter 1267 __add_wait_queue_entry_tail(q, waiter); 1490 folio_set_waiters(folio); !! 1268 SetPageWaiters(page); 1491 spin_unlock_irqrestore(&q->lock, flag 1269 spin_unlock_irqrestore(&q->lock, flags); 1492 } 1270 } 1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue); !! 1271 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1494 1272 1495 /** !! 1273 #ifndef clear_bit_unlock_is_negative_byte 1496 * folio_unlock - Unlock a locked folio. << 1497 * @folio: The folio. << 1498 * << 1499 * Unlocks the folio and wakes up any thread << 1500 * << 1501 * Context: May be called from interrupt or p << 1502 * called from NMI context. << 1503 */ << 1504 void folio_unlock(struct folio *folio) << 1505 { << 1506 /* Bit 7 allows x86 to check the byte << 1507 BUILD_BUG_ON(PG_waiters != 7); << 1508 BUILD_BUG_ON(PG_locked > 7); << 1509 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1510 if (folio_xor_flags_has_waiters(folio << 1511 folio_wake_bit(folio, PG_lock << 1512 } << 1513 EXPORT_SYMBOL(folio_unlock); << 1514 1274 1515 /** !! 1275 /* 1516 * folio_end_read - End read on a folio. !! 1276 * PG_waiters is the high bit in the same byte as PG_lock. 1517 * @folio: The folio. << 1518 * @success: True if all reads completed succ << 1519 * << 1520 * When all reads against a folio have comple << 1521 * call this function to let the pagecache kn << 1522 * are outstanding. This will unlock the fol << 1523 * sleeping on the lock. The folio will also << 1524 * reads succeeded. << 1525 * << 1526 * Context: May be called from interrupt or p << 1527 * called from NMI context. << 1528 */ << 1529 void folio_end_read(struct folio *folio, bool << 1530 { << 1531 unsigned long mask = 1 << PG_locked; << 1532 << 1533 /* Must be in bottom byte for x86 to << 1534 BUILD_BUG_ON(PG_uptodate > 7); << 1535 VM_BUG_ON_FOLIO(!folio_test_locked(fo << 1536 VM_BUG_ON_FOLIO(folio_test_uptodate(f << 1537 << 1538 if (likely(success)) << 1539 mask |= 1 << PG_uptodate; << 1540 if (folio_xor_flags_has_waiters(folio << 1541 folio_wake_bit(folio, PG_lock << 1542 } << 1543 EXPORT_SYMBOL(folio_end_read); << 1544 << 1545 /** << 1546 * folio_end_private_2 - Clear PG_private_2 a << 1547 * @folio: The folio. << 1548 * 1277 * 1549 * Clear the PG_private_2 bit on a folio and !! 1278 * On x86 (and on many other architectures), we can clear PG_lock and 1550 * it. The folio reference held for PG_priva !! 1279 * test the sign bit at the same time. But if the architecture does >> 1280 * not support that special operation, we just do this all by hand >> 1281 * instead. 1551 * 1282 * 1552 * This is, for example, used when a netfs fo !! 1283 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1553 * disk cache, thereby allowing writes to the !! 1284 * being cleared, but a memory barrier should be unneccssary since it is 1554 * serialised. !! 1285 * in the same byte as PG_locked. 1555 */ 1286 */ 1556 void folio_end_private_2(struct folio *folio) !! 1287 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1557 { 1288 { 1558 VM_BUG_ON_FOLIO(!folio_test_private_2 !! 1289 clear_bit_unlock(nr, mem); 1559 clear_bit_unlock(PG_private_2, folio_ !! 1290 /* smp_mb__after_atomic(); */ 1560 folio_wake_bit(folio, PG_private_2); !! 1291 return test_bit(PG_waiters, mem); 1561 folio_put(folio); << 1562 } 1292 } 1563 EXPORT_SYMBOL(folio_end_private_2); !! 1293 >> 1294 #endif 1564 1295 1565 /** 1296 /** 1566 * folio_wait_private_2 - Wait for PG_private !! 1297 * unlock_page - unlock a locked page 1567 * @folio: The folio to wait on. !! 1298 * @page: the page 1568 * 1299 * 1569 * Wait for PG_private_2 to be cleared on a f !! 1300 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). >> 1301 * Also wakes sleepers in wait_on_page_writeback() because the wakeup >> 1302 * mechanism between PageLocked pages and PageWriteback pages is shared. >> 1303 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. >> 1304 * >> 1305 * Note that this depends on PG_waiters being the sign bit in the byte >> 1306 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to >> 1307 * clear the PG_locked bit and test PG_waiters at the same time fairly >> 1308 * portably (architectures that do LL/SC can test any bit, while x86 can >> 1309 * test the sign bit). 1570 */ 1310 */ 1571 void folio_wait_private_2(struct folio *folio !! 1311 void unlock_page(struct page *page) 1572 { 1312 { 1573 while (folio_test_private_2(folio)) !! 1313 BUILD_BUG_ON(PG_waiters != 7); 1574 folio_wait_bit(folio, PG_priv !! 1314 page = compound_head(page); >> 1315 VM_BUG_ON_PAGE(!PageLocked(page), page); >> 1316 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) >> 1317 wake_up_page_bit(page, PG_locked); 1575 } 1318 } 1576 EXPORT_SYMBOL(folio_wait_private_2); !! 1319 EXPORT_SYMBOL(unlock_page); 1577 1320 1578 /** 1321 /** 1579 * folio_wait_private_2_killable - Wait for P !! 1322 * end_page_writeback - end writeback against a page 1580 * @folio: The folio to wait on. !! 1323 * @page: the page 1581 * << 1582 * Wait for PG_private_2 to be cleared on a f << 1583 * received by the calling task. << 1584 * << 1585 * Return: << 1586 * - 0 if successful. << 1587 * - -EINTR if a fatal signal was encountered << 1588 */ 1324 */ 1589 int folio_wait_private_2_killable(struct foli !! 1325 void end_page_writeback(struct page *page) 1590 { 1326 { 1591 int ret = 0; !! 1327 /* 1592 !! 1328 * TestClearPageReclaim could be used here but it is an atomic 1593 while (folio_test_private_2(folio)) { !! 1329 * operation and overkill in this particular case. Failing to 1594 ret = folio_wait_bit_killable !! 1330 * shuffle a page marked for immediate reclaim is too mild to 1595 if (ret < 0) !! 1331 * justify taking an atomic operation penalty at the end of 1596 break; !! 1332 * ever page writeback. >> 1333 */ >> 1334 if (PageReclaim(page)) { >> 1335 ClearPageReclaim(page); >> 1336 rotate_reclaimable_page(page); 1597 } 1337 } 1598 1338 1599 return ret; !! 1339 if (!test_clear_page_writeback(page)) >> 1340 BUG(); >> 1341 >> 1342 smp_mb__after_atomic(); >> 1343 wake_up_page(page, PG_writeback); 1600 } 1344 } 1601 EXPORT_SYMBOL(folio_wait_private_2_killable); !! 1345 EXPORT_SYMBOL(end_page_writeback); 1602 1346 1603 /** !! 1347 /* 1604 * folio_end_writeback - End writeback agains !! 1348 * After completing I/O on a page, call this routine to update the page 1605 * @folio: The folio. !! 1349 * flags appropriately 1606 * << 1607 * The folio must actually be under writeback << 1608 * << 1609 * Context: May be called from process or int << 1610 */ 1350 */ 1611 void folio_end_writeback(struct folio *folio) !! 1351 void page_endio(struct page *page, bool is_write, int err) 1612 { 1352 { 1613 VM_BUG_ON_FOLIO(!folio_test_writeback !! 1353 if (!is_write) { >> 1354 if (!err) { >> 1355 SetPageUptodate(page); >> 1356 } else { >> 1357 ClearPageUptodate(page); >> 1358 SetPageError(page); >> 1359 } >> 1360 unlock_page(page); >> 1361 } else { >> 1362 if (err) { >> 1363 struct address_space *mapping; 1614 1364 1615 /* !! 1365 SetPageError(page); 1616 * folio_test_clear_reclaim() could b !! 1366 mapping = page_mapping(page); 1617 * atomic operation and overkill in t !! 1367 if (mapping) 1618 * to shuffle a folio marked for imme !! 1368 mapping_set_error(mapping, err); 1619 * a gain to justify taking an atomic !! 1369 } 1620 * end of every folio writeback. !! 1370 end_page_writeback(page); 1621 */ << 1622 if (folio_test_reclaim(folio)) { << 1623 folio_clear_reclaim(folio); << 1624 folio_rotate_reclaimable(foli << 1625 } 1371 } 1626 << 1627 /* << 1628 * Writeback does not hold a folio re << 1629 * on truncation to wait for the clea << 1630 * But here we must make sure that th << 1631 * reused before the folio_wake_bit() << 1632 */ << 1633 folio_get(folio); << 1634 if (__folio_end_writeback(folio)) << 1635 folio_wake_bit(folio, PG_writ << 1636 acct_reclaim_writeback(folio); << 1637 folio_put(folio); << 1638 } 1372 } 1639 EXPORT_SYMBOL(folio_end_writeback); !! 1373 EXPORT_SYMBOL_GPL(page_endio); 1640 1374 1641 /** 1375 /** 1642 * __folio_lock - Get a lock on the folio, as !! 1376 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1643 * @folio: The folio to lock !! 1377 * @__page: the page to lock 1644 */ 1378 */ 1645 void __folio_lock(struct folio *folio) !! 1379 void __lock_page(struct page *__page) 1646 { 1380 { 1647 folio_wait_bit_common(folio, PG_locke !! 1381 struct page *page = compound_head(__page); >> 1382 wait_queue_head_t *q = page_waitqueue(page); >> 1383 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1648 EXCLUSIVE); 1384 EXCLUSIVE); 1649 } 1385 } 1650 EXPORT_SYMBOL(__folio_lock); !! 1386 EXPORT_SYMBOL(__lock_page); 1651 1387 1652 int __folio_lock_killable(struct folio *folio !! 1388 int __lock_page_killable(struct page *__page) 1653 { 1389 { 1654 return folio_wait_bit_common(folio, P !! 1390 struct page *page = compound_head(__page); >> 1391 wait_queue_head_t *q = page_waitqueue(page); >> 1392 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1655 EXCLU 1393 EXCLUSIVE); 1656 } 1394 } 1657 EXPORT_SYMBOL_GPL(__folio_lock_killable); !! 1395 EXPORT_SYMBOL_GPL(__lock_page_killable); 1658 << 1659 static int __folio_lock_async(struct folio *f << 1660 { << 1661 struct wait_queue_head *q = folio_wai << 1662 int ret; << 1663 << 1664 wait->folio = folio; << 1665 wait->bit_nr = PG_locked; << 1666 << 1667 spin_lock_irq(&q->lock); << 1668 __add_wait_queue_entry_tail(q, &wait- << 1669 folio_set_waiters(folio); << 1670 ret = !folio_trylock(folio); << 1671 /* << 1672 * If we were successful now, we know << 1673 * waitqueue as we're still under the << 1674 * safe to remove and return success, << 1675 * isn't going to trigger. << 1676 */ << 1677 if (!ret) << 1678 __remove_wait_queue(q, &wait- << 1679 else << 1680 ret = -EIOCBQUEUED; << 1681 spin_unlock_irq(&q->lock); << 1682 return ret; << 1683 } << 1684 1396 1685 /* 1397 /* 1686 * Return values: 1398 * Return values: 1687 * 0 - folio is locked. !! 1399 * 1 - page is locked; mmap_sem is still held. 1688 * non-zero - folio is not locked. !! 1400 * 0 - page is not locked. 1689 * mmap_lock or per-VMA lock has been rel !! 1401 * mmap_sem has been released (up_read()), unless flags had both 1690 * vma_end_read()), unless flags had both !! 1402 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1691 * FAULT_FLAG_RETRY_NOWAIT set, in which !! 1403 * which case mmap_sem is still held. 1692 * !! 1404 * 1693 * If neither ALLOW_RETRY nor KILLABLE are se !! 1405 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1694 * with the folio locked and the mmap_lock/pe !! 1406 * with the page locked and the mmap_sem unperturbed. 1695 */ 1407 */ 1696 vm_fault_t __folio_lock_or_retry(struct folio !! 1408 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, >> 1409 unsigned int flags) 1697 { 1410 { 1698 unsigned int flags = vmf->flags; !! 1411 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1699 << 1700 if (fault_flag_allow_retry_first(flag << 1701 /* 1412 /* 1702 * CAUTION! In this case, mma !! 1413 * CAUTION! In this case, mmap_sem is not released 1703 * released even though retur !! 1414 * even though return 0. 1704 */ 1415 */ 1705 if (flags & FAULT_FLAG_RETRY_ 1416 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1706 return VM_FAULT_RETRY !! 1417 return 0; 1707 1418 1708 release_fault_lock(vmf); !! 1419 up_read(&mm->mmap_sem); 1709 if (flags & FAULT_FLAG_KILLAB 1420 if (flags & FAULT_FLAG_KILLABLE) 1710 folio_wait_locked_kil !! 1421 wait_on_page_locked_killable(page); 1711 else 1422 else 1712 folio_wait_locked(fol !! 1423 wait_on_page_locked(page); 1713 return VM_FAULT_RETRY; !! 1424 return 0; 1714 } << 1715 if (flags & FAULT_FLAG_KILLABLE) { << 1716 bool ret; << 1717 << 1718 ret = __folio_lock_killable(f << 1719 if (ret) { << 1720 release_fault_lock(vm << 1721 return VM_FAULT_RETRY << 1722 } << 1723 } else { 1425 } else { 1724 __folio_lock(folio); !! 1426 if (flags & FAULT_FLAG_KILLABLE) { 1725 } !! 1427 int ret; 1726 1428 1727 return 0; !! 1429 ret = __lock_page_killable(page); >> 1430 if (ret) { >> 1431 up_read(&mm->mmap_sem); >> 1432 return 0; >> 1433 } >> 1434 } else >> 1435 __lock_page(page); >> 1436 return 1; >> 1437 } 1728 } 1438 } 1729 1439 1730 /** 1440 /** 1731 * page_cache_next_miss() - Find the next gap 1441 * page_cache_next_miss() - Find the next gap in the page cache. 1732 * @mapping: Mapping. 1442 * @mapping: Mapping. 1733 * @index: Index. 1443 * @index: Index. 1734 * @max_scan: Maximum range to search. 1444 * @max_scan: Maximum range to search. 1735 * 1445 * 1736 * Search the range [index, min(index + max_s 1446 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1737 * gap with the lowest index. 1447 * gap with the lowest index. 1738 * 1448 * 1739 * This function may be called under the rcu_ 1449 * This function may be called under the rcu_read_lock. However, this will 1740 * not atomically search a snapshot of the ca 1450 * not atomically search a snapshot of the cache at a single point in time. 1741 * For example, if a gap is created at index 1451 * For example, if a gap is created at index 5, then subsequently a gap is 1742 * created at index 10, page_cache_next_miss 1452 * created at index 10, page_cache_next_miss covering both indices may 1743 * return 10 if called under the rcu_read_loc 1453 * return 10 if called under the rcu_read_lock. 1744 * 1454 * 1745 * Return: The index of the gap if found, oth 1455 * Return: The index of the gap if found, otherwise an index outside the 1746 * range specified (in which case 'return - i 1456 * range specified (in which case 'return - index >= max_scan' will be true). 1747 * In the rare case of index wrap-around, 0 w 1457 * In the rare case of index wrap-around, 0 will be returned. 1748 */ 1458 */ 1749 pgoff_t page_cache_next_miss(struct address_s 1459 pgoff_t page_cache_next_miss(struct address_space *mapping, 1750 pgoff_t index, u 1460 pgoff_t index, unsigned long max_scan) 1751 { 1461 { 1752 XA_STATE(xas, &mapping->i_pages, inde 1462 XA_STATE(xas, &mapping->i_pages, index); 1753 1463 1754 while (max_scan--) { 1464 while (max_scan--) { 1755 void *entry = xas_next(&xas); 1465 void *entry = xas_next(&xas); 1756 if (!entry || xa_is_value(ent 1466 if (!entry || xa_is_value(entry)) 1757 return xas.xa_index; !! 1467 break; 1758 if (xas.xa_index == 0) 1468 if (xas.xa_index == 0) 1759 return 0; !! 1469 break; 1760 } 1470 } 1761 1471 1762 return index + max_scan; !! 1472 return xas.xa_index; 1763 } 1473 } 1764 EXPORT_SYMBOL(page_cache_next_miss); 1474 EXPORT_SYMBOL(page_cache_next_miss); 1765 1475 1766 /** 1476 /** 1767 * page_cache_prev_miss() - Find the previous 1477 * page_cache_prev_miss() - Find the previous gap in the page cache. 1768 * @mapping: Mapping. 1478 * @mapping: Mapping. 1769 * @index: Index. 1479 * @index: Index. 1770 * @max_scan: Maximum range to search. 1480 * @max_scan: Maximum range to search. 1771 * 1481 * 1772 * Search the range [max(index - max_scan + 1 1482 * Search the range [max(index - max_scan + 1, 0), index] for the 1773 * gap with the highest index. 1483 * gap with the highest index. 1774 * 1484 * 1775 * This function may be called under the rcu_ 1485 * This function may be called under the rcu_read_lock. However, this will 1776 * not atomically search a snapshot of the ca 1486 * not atomically search a snapshot of the cache at a single point in time. 1777 * For example, if a gap is created at index 1487 * For example, if a gap is created at index 10, then subsequently a gap is 1778 * created at index 5, page_cache_prev_miss() 1488 * created at index 5, page_cache_prev_miss() covering both indices may 1779 * return 5 if called under the rcu_read_lock 1489 * return 5 if called under the rcu_read_lock. 1780 * 1490 * 1781 * Return: The index of the gap if found, oth 1491 * Return: The index of the gap if found, otherwise an index outside the 1782 * range specified (in which case 'index - re 1492 * range specified (in which case 'index - return >= max_scan' will be true). 1783 * In the rare case of wrap-around, ULONG_MAX 1493 * In the rare case of wrap-around, ULONG_MAX will be returned. 1784 */ 1494 */ 1785 pgoff_t page_cache_prev_miss(struct address_s 1495 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1786 pgoff_t index, u 1496 pgoff_t index, unsigned long max_scan) 1787 { 1497 { 1788 XA_STATE(xas, &mapping->i_pages, inde 1498 XA_STATE(xas, &mapping->i_pages, index); 1789 1499 1790 while (max_scan--) { 1500 while (max_scan--) { 1791 void *entry = xas_prev(&xas); 1501 void *entry = xas_prev(&xas); 1792 if (!entry || xa_is_value(ent 1502 if (!entry || xa_is_value(entry)) 1793 break; 1503 break; 1794 if (xas.xa_index == ULONG_MAX 1504 if (xas.xa_index == ULONG_MAX) 1795 break; 1505 break; 1796 } 1506 } 1797 1507 1798 return xas.xa_index; 1508 return xas.xa_index; 1799 } 1509 } 1800 EXPORT_SYMBOL(page_cache_prev_miss); 1510 EXPORT_SYMBOL(page_cache_prev_miss); 1801 1511 1802 /* !! 1512 /** 1803 * Lockless page cache protocol: !! 1513 * find_get_entry - find and get a page cache entry 1804 * On the lookup side: << 1805 * 1. Load the folio from i_pages << 1806 * 2. Increment the refcount if it's not zero << 1807 * 3. If the folio is not found by xas_reload << 1808 * << 1809 * On the removal side: << 1810 * A. Freeze the page (by zeroing the refcoun << 1811 * B. Remove the page from i_pages << 1812 * C. Return the page to the page allocator << 1813 * << 1814 * This means that any page may have its refe << 1815 * increased by a speculative page cache (or << 1816 * be allocated by another user before the RC << 1817 * Because the refcount temporarily acquired << 1818 * last refcount on the page, any page alloca << 1819 * folio_put(). << 1820 */ << 1821 << 1822 /* << 1823 * filemap_get_entry - Get a page cache entry << 1824 * @mapping: the address_space to search 1514 * @mapping: the address_space to search 1825 * @index: The page cache index. !! 1515 * @offset: the page cache index >> 1516 * >> 1517 * Looks up the page cache slot at @mapping & @offset. If there is a >> 1518 * page cache page, it is returned with an increased refcount. 1826 * 1519 * 1827 * Looks up the page cache entry at @mapping !! 1520 * If the slot holds a shadow entry of a previously evicted page, or a 1828 * it is returned with an increased refcount. !! 1521 * swap entry from shmem/tmpfs, it is returned. 1829 * of a previously evicted folio, or a swap e << 1830 * it is returned without further action. << 1831 * 1522 * 1832 * Return: The folio, swap or shadow entry, % !! 1523 * Return: the found page or shadow entry, %NULL if nothing is found. 1833 */ 1524 */ 1834 void *filemap_get_entry(struct address_space !! 1525 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1835 { 1526 { 1836 XA_STATE(xas, &mapping->i_pages, inde !! 1527 XA_STATE(xas, &mapping->i_pages, offset); 1837 struct folio *folio; !! 1528 struct page *page; 1838 1529 1839 rcu_read_lock(); 1530 rcu_read_lock(); 1840 repeat: 1531 repeat: 1841 xas_reset(&xas); 1532 xas_reset(&xas); 1842 folio = xas_load(&xas); !! 1533 page = xas_load(&xas); 1843 if (xas_retry(&xas, folio)) !! 1534 if (xas_retry(&xas, page)) 1844 goto repeat; 1535 goto repeat; 1845 /* 1536 /* 1846 * A shadow entry of a recently evict 1537 * A shadow entry of a recently evicted page, or a swap entry from 1847 * shmem/tmpfs. Return it without at 1538 * shmem/tmpfs. Return it without attempting to raise page count. 1848 */ 1539 */ 1849 if (!folio || xa_is_value(folio)) !! 1540 if (!page || xa_is_value(page)) 1850 goto out; 1541 goto out; 1851 1542 1852 if (!folio_try_get(folio)) !! 1543 if (!page_cache_get_speculative(page)) 1853 goto repeat; 1544 goto repeat; 1854 1545 1855 if (unlikely(folio != xas_reload(&xas !! 1546 /* 1856 folio_put(folio); !! 1547 * Has the page moved or been split? >> 1548 * This is part of the lockless pagecache protocol. See >> 1549 * include/linux/pagemap.h for details. >> 1550 */ >> 1551 if (unlikely(page != xas_reload(&xas))) { >> 1552 put_page(page); 1857 goto repeat; 1553 goto repeat; 1858 } 1554 } >> 1555 page = find_subpage(page, offset); 1859 out: 1556 out: 1860 rcu_read_unlock(); 1557 rcu_read_unlock(); 1861 1558 1862 return folio; !! 1559 return page; >> 1560 } >> 1561 EXPORT_SYMBOL(find_get_entry); >> 1562 >> 1563 /** >> 1564 * find_lock_entry - locate, pin and lock a page cache entry >> 1565 * @mapping: the address_space to search >> 1566 * @offset: the page cache index >> 1567 * >> 1568 * Looks up the page cache slot at @mapping & @offset. If there is a >> 1569 * page cache page, it is returned locked and with an increased >> 1570 * refcount. >> 1571 * >> 1572 * If the slot holds a shadow entry of a previously evicted page, or a >> 1573 * swap entry from shmem/tmpfs, it is returned. >> 1574 * >> 1575 * find_lock_entry() may sleep. >> 1576 * >> 1577 * Return: the found page or shadow entry, %NULL if nothing is found. >> 1578 */ >> 1579 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) >> 1580 { >> 1581 struct page *page; >> 1582 >> 1583 repeat: >> 1584 page = find_get_entry(mapping, offset); >> 1585 if (page && !xa_is_value(page)) { >> 1586 lock_page(page); >> 1587 /* Has the page been truncated? */ >> 1588 if (unlikely(page_mapping(page) != mapping)) { >> 1589 unlock_page(page); >> 1590 put_page(page); >> 1591 goto repeat; >> 1592 } >> 1593 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); >> 1594 } >> 1595 return page; 1863 } 1596 } >> 1597 EXPORT_SYMBOL(find_lock_entry); 1864 1598 1865 /** 1599 /** 1866 * __filemap_get_folio - Find and get a refer !! 1600 * pagecache_get_page - find and get a page reference 1867 * @mapping: The address_space to search. !! 1601 * @mapping: the address_space to search 1868 * @index: The page index. !! 1602 * @offset: the page index 1869 * @fgp_flags: %FGP flags modify how the foli !! 1603 * @fgp_flags: PCG flags 1870 * @gfp: Memory allocation flags to use if %F !! 1604 * @gfp_mask: gfp mask to use for the page cache data page allocation >> 1605 * >> 1606 * Looks up the page cache slot at @mapping & @offset. >> 1607 * >> 1608 * PCG flags modify how the page is returned. >> 1609 * >> 1610 * @fgp_flags can be: 1871 * 1611 * 1872 * Looks up the page cache entry at @mapping !! 1612 * - FGP_ACCESSED: the page will be marked accessed >> 1613 * - FGP_LOCK: Page is return locked >> 1614 * - FGP_CREAT: If page is not present then a new page is allocated using >> 1615 * @gfp_mask and added to the page cache and the VM's LRU >> 1616 * list. The page is returned locked and with an increased >> 1617 * refcount. >> 1618 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do >> 1619 * its own locking dance if the page is already in cache, or unlock the page >> 1620 * before returning if we had to add the page to pagecache. 1873 * 1621 * 1874 * If %FGP_LOCK or %FGP_CREAT are specified t !! 1622 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1875 * if the %GFP flags specified for %FGP_CREAT !! 1623 * if the GFP flags specified for FGP_CREAT are atomic. 1876 * 1624 * 1877 * If this function returns a folio, it is re !! 1625 * If there is a page cache page, it is returned with an increased refcount. 1878 * 1626 * 1879 * Return: The found folio or an ERR_PTR() ot !! 1627 * Return: the found page or %NULL otherwise. 1880 */ 1628 */ 1881 struct folio *__filemap_get_folio(struct addr !! 1629 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1882 fgf_t fgp_flags, gfp_t gfp) !! 1630 int fgp_flags, gfp_t gfp_mask) 1883 { 1631 { 1884 struct folio *folio; !! 1632 struct page *page; 1885 1633 1886 repeat: 1634 repeat: 1887 folio = filemap_get_entry(mapping, in !! 1635 page = find_get_entry(mapping, offset); 1888 if (xa_is_value(folio)) !! 1636 if (xa_is_value(page)) 1889 folio = NULL; !! 1637 page = NULL; 1890 if (!folio) !! 1638 if (!page) 1891 goto no_page; 1639 goto no_page; 1892 1640 1893 if (fgp_flags & FGP_LOCK) { 1641 if (fgp_flags & FGP_LOCK) { 1894 if (fgp_flags & FGP_NOWAIT) { 1642 if (fgp_flags & FGP_NOWAIT) { 1895 if (!folio_trylock(fo !! 1643 if (!trylock_page(page)) { 1896 folio_put(fol !! 1644 put_page(page); 1897 return ERR_PT !! 1645 return NULL; 1898 } 1646 } 1899 } else { 1647 } else { 1900 folio_lock(folio); !! 1648 lock_page(page); 1901 } 1649 } 1902 1650 1903 /* Has the page been truncate 1651 /* Has the page been truncated? */ 1904 if (unlikely(folio->mapping ! !! 1652 if (unlikely(compound_head(page)->mapping != mapping)) { 1905 folio_unlock(folio); !! 1653 unlock_page(page); 1906 folio_put(folio); !! 1654 put_page(page); 1907 goto repeat; 1655 goto repeat; 1908 } 1656 } 1909 VM_BUG_ON_FOLIO(!folio_contai !! 1657 VM_BUG_ON_PAGE(page->index != offset, page); 1910 } 1658 } 1911 1659 1912 if (fgp_flags & FGP_ACCESSED) 1660 if (fgp_flags & FGP_ACCESSED) 1913 folio_mark_accessed(folio); !! 1661 mark_page_accessed(page); 1914 else if (fgp_flags & FGP_WRITE) { << 1915 /* Clear idle flag for buffer << 1916 if (folio_test_idle(folio)) << 1917 folio_clear_idle(foli << 1918 } << 1919 1662 1920 if (fgp_flags & FGP_STABLE) << 1921 folio_wait_stable(folio); << 1922 no_page: 1663 no_page: 1923 if (!folio && (fgp_flags & FGP_CREAT) !! 1664 if (!page && (fgp_flags & FGP_CREAT)) { 1924 unsigned int min_order = mapp << 1925 unsigned int order = max(min_ << 1926 int err; 1665 int err; 1927 index = mapping_align_index(m !! 1666 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1928 !! 1667 gfp_mask |= __GFP_WRITE; 1929 if ((fgp_flags & FGP_WRITE) & << 1930 gfp |= __GFP_WRITE; << 1931 if (fgp_flags & FGP_NOFS) 1668 if (fgp_flags & FGP_NOFS) 1932 gfp &= ~__GFP_FS; !! 1669 gfp_mask &= ~__GFP_FS; 1933 if (fgp_flags & FGP_NOWAIT) { << 1934 gfp &= ~GFP_KERNEL; << 1935 gfp |= GFP_NOWAIT | _ << 1936 } << 1937 if (WARN_ON_ONCE(!(fgp_flags << 1938 fgp_flags |= FGP_LOCK << 1939 1670 1940 if (order > mapping_max_folio !! 1671 page = __page_cache_alloc(gfp_mask); 1941 order = mapping_max_f !! 1672 if (!page) 1942 /* If we're not aligned, allo !! 1673 return NULL; 1943 if (index & ((1UL << order) - << 1944 order = __ffs(index); << 1945 1674 1946 do { !! 1675 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1947 gfp_t alloc_gfp = gfp !! 1676 fgp_flags |= FGP_LOCK; 1948 1677 1949 err = -ENOMEM; !! 1678 /* Init accessed so avoid atomic mark_page_accessed later */ 1950 if (order > min_order !! 1679 if (fgp_flags & FGP_ACCESSED) 1951 alloc_gfp |= !! 1680 __SetPageReferenced(page); 1952 folio = filemap_alloc << 1953 if (!folio) << 1954 continue; << 1955 << 1956 /* Init accessed so a << 1957 if (fgp_flags & FGP_A << 1958 __folio_set_r << 1959 1681 1960 err = filemap_add_fol !! 1682 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1961 if (!err) !! 1683 if (unlikely(err)) { 1962 break; !! 1684 put_page(page); 1963 folio_put(folio); !! 1685 page = NULL; 1964 folio = NULL; !! 1686 if (err == -EEXIST) 1965 } while (order-- > min_order) !! 1687 goto repeat; >> 1688 } 1966 1689 1967 if (err == -EEXIST) << 1968 goto repeat; << 1969 if (err) << 1970 return ERR_PTR(err); << 1971 /* 1690 /* 1972 * filemap_add_folio locks th !! 1691 * add_to_page_cache_lru locks the page, and for mmap we expect 1973 * we expect an unlocked page !! 1692 * an unlocked page. 1974 */ 1693 */ 1975 if (folio && (fgp_flags & FGP !! 1694 if (page && (fgp_flags & FGP_FOR_MMAP)) 1976 folio_unlock(folio); !! 1695 unlock_page(page); 1977 } 1696 } 1978 1697 1979 if (!folio) !! 1698 return page; 1980 return ERR_PTR(-ENOENT); << 1981 return folio; << 1982 } << 1983 EXPORT_SYMBOL(__filemap_get_folio); << 1984 << 1985 static inline struct folio *find_get_entry(st << 1986 xa_mark_t mark) << 1987 { << 1988 struct folio *folio; << 1989 << 1990 retry: << 1991 if (mark == XA_PRESENT) << 1992 folio = xas_find(xas, max); << 1993 else << 1994 folio = xas_find_marked(xas, << 1995 << 1996 if (xas_retry(xas, folio)) << 1997 goto retry; << 1998 /* << 1999 * A shadow entry of a recently evict << 2000 * entry from shmem/tmpfs or a DAX en << 2001 * without attempting to raise page c << 2002 */ << 2003 if (!folio || xa_is_value(folio)) << 2004 return folio; << 2005 << 2006 if (!folio_try_get(folio)) << 2007 goto reset; << 2008 << 2009 if (unlikely(folio != xas_reload(xas) << 2010 folio_put(folio); << 2011 goto reset; << 2012 } << 2013 << 2014 return folio; << 2015 reset: << 2016 xas_reset(xas); << 2017 goto retry; << 2018 } 1699 } >> 1700 EXPORT_SYMBOL(pagecache_get_page); 2019 1701 2020 /** 1702 /** 2021 * find_get_entries - gang pagecache lookup 1703 * find_get_entries - gang pagecache lookup 2022 * @mapping: The address_space to search 1704 * @mapping: The address_space to search 2023 * @start: The starting page cache index 1705 * @start: The starting page cache index 2024 * @end: The final page index (inclusi !! 1706 * @nr_entries: The maximum number of entries 2025 * @fbatch: Where the resulting entries a !! 1707 * @entries: Where the resulting entries are placed 2026 * @indices: The cache indices correspondi 1708 * @indices: The cache indices corresponding to the entries in @entries 2027 * 1709 * 2028 * find_get_entries() will search for and ret !! 1710 * find_get_entries() will search for and return a group of up to 2029 * the mapping. The entries are placed in @f !! 1711 * @nr_entries entries in the mapping. The entries are placed at 2030 * takes a reference on any actual folios it !! 1712 * @entries. find_get_entries() takes a reference against any actual >> 1713 * pages it returns. >> 1714 * >> 1715 * The search returns a group of mapping-contiguous page cache entries >> 1716 * with ascending indexes. There may be holes in the indices due to >> 1717 * not-present pages. 2031 * 1718 * 2032 * The entries have ascending indexes. The i !! 1719 * Any shadow entries of evicted pages, or swap entries from 2033 * due to not-present entries or large folios << 2034 * << 2035 * Any shadow entries of evicted folios, or s << 2036 * shmem/tmpfs, are included in the returned 1720 * shmem/tmpfs, are included in the returned array. 2037 * 1721 * 2038 * Return: The number of entries which were f !! 1722 * Return: the number of pages and shadow entries which were found. 2039 */ 1723 */ 2040 unsigned find_get_entries(struct address_spac !! 1724 unsigned find_get_entries(struct address_space *mapping, 2041 pgoff_t end, struct folio_bat !! 1725 pgoff_t start, unsigned int nr_entries, >> 1726 struct page **entries, pgoff_t *indices) 2042 { 1727 { 2043 XA_STATE(xas, &mapping->i_pages, *sta !! 1728 XA_STATE(xas, &mapping->i_pages, start); 2044 struct folio *folio; !! 1729 struct page *page; >> 1730 unsigned int ret = 0; >> 1731 >> 1732 if (!nr_entries) >> 1733 return 0; 2045 1734 2046 rcu_read_lock(); 1735 rcu_read_lock(); 2047 while ((folio = find_get_entry(&xas, !! 1736 xas_for_each(&xas, page, ULONG_MAX) { 2048 indices[fbatch->nr] = xas.xa_ !! 1737 if (xas_retry(&xas, page)) 2049 if (!folio_batch_add(fbatch, !! 1738 continue; 2050 break; !! 1739 /* 2051 } !! 1740 * A shadow entry of a recently evicted page, a swap >> 1741 * entry from shmem/tmpfs or a DAX entry. Return it >> 1742 * without attempting to raise page count. >> 1743 */ >> 1744 if (xa_is_value(page)) >> 1745 goto export; 2052 1746 2053 if (folio_batch_count(fbatch)) { !! 1747 if (!page_cache_get_speculative(page)) 2054 unsigned long nr; !! 1748 goto retry; 2055 int idx = folio_batch_count(f !! 1749 2056 !! 1750 /* Has the page moved or been split? */ 2057 folio = fbatch->folios[idx]; !! 1751 if (unlikely(page != xas_reload(&xas))) 2058 if (!xa_is_value(folio)) !! 1752 goto put_page; 2059 nr = folio_nr_pages(f !! 1753 page = find_subpage(page, xas.xa_index); 2060 else !! 1754 2061 nr = 1 << xa_get_orde !! 1755 export: 2062 *start = round_down(indices[i !! 1756 indices[ret] = xas.xa_index; >> 1757 entries[ret] = page; >> 1758 if (++ret == nr_entries) >> 1759 break; >> 1760 continue; >> 1761 put_page: >> 1762 put_page(page); >> 1763 retry: >> 1764 xas_reset(&xas); 2063 } 1765 } 2064 rcu_read_unlock(); 1766 rcu_read_unlock(); 2065 !! 1767 return ret; 2066 return folio_batch_count(fbatch); << 2067 } 1768 } 2068 1769 2069 /** 1770 /** 2070 * find_lock_entries - Find a batch of pageca !! 1771 * find_get_pages_range - gang pagecache lookup 2071 * @mapping: The address_space to search. !! 1772 * @mapping: The address_space to search 2072 * @start: The starting page cache index !! 1773 * @start: The starting page index 2073 * @end: The final page index (inclusi !! 1774 * @end: The final page index (inclusive) 2074 * @fbatch: Where the resulting entries a !! 1775 * @nr_pages: The maximum number of pages 2075 * @indices: The cache indices of the entr !! 1776 * @pages: Where the resulting pages are placed 2076 * << 2077 * find_lock_entries() will return a batch of << 2078 * Swap, shadow and DAX entries are included. << 2079 * locked and with an incremented refcount. << 2080 * by somebody else or under writeback are sk << 2081 * partially outside the range are not return << 2082 * << 2083 * The entries have ascending indexes. The i << 2084 * due to not-present entries, large folios, << 2085 * locked or folios under writeback. << 2086 * 1777 * 2087 * Return: The number of entries which were f !! 1778 * find_get_pages_range() will search for and return a group of up to @nr_pages 2088 */ !! 1779 * pages in the mapping starting at index @start and up to index @end 2089 unsigned find_lock_entries(struct address_spa !! 1780 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2090 pgoff_t end, struct folio_bat !! 1781 * a reference against the returned pages. >> 1782 * >> 1783 * The search returns a group of mapping-contiguous pages with ascending >> 1784 * indexes. There may be holes in the indices due to not-present pages. >> 1785 * We also update @start to index the next page for the traversal. >> 1786 * >> 1787 * Return: the number of pages which were found. If this number is >> 1788 * smaller than @nr_pages, the end of specified range has been >> 1789 * reached. >> 1790 */ >> 1791 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, >> 1792 pgoff_t end, unsigned int nr_pages, >> 1793 struct page **pages) 2091 { 1794 { 2092 XA_STATE(xas, &mapping->i_pages, *sta 1795 XA_STATE(xas, &mapping->i_pages, *start); 2093 struct folio *folio; !! 1796 struct page *page; >> 1797 unsigned ret = 0; >> 1798 >> 1799 if (unlikely(!nr_pages)) >> 1800 return 0; 2094 1801 2095 rcu_read_lock(); 1802 rcu_read_lock(); 2096 while ((folio = find_get_entry(&xas, !! 1803 xas_for_each(&xas, page, end) { 2097 unsigned long base; !! 1804 if (xas_retry(&xas, page)) 2098 unsigned long nr; !! 1805 continue; 2099 !! 1806 /* Skip over shadow, swap and DAX entries */ 2100 if (!xa_is_value(folio)) { !! 1807 if (xa_is_value(page)) 2101 nr = folio_nr_pages(f !! 1808 continue; 2102 base = folio->index; << 2103 /* Omit large folio w << 2104 if (base < *start) << 2105 goto put; << 2106 /* Omit large folio w << 2107 if (base + nr - 1 > e << 2108 goto put; << 2109 if (!folio_trylock(fo << 2110 goto put; << 2111 if (folio->mapping != << 2112 folio_test_writeb << 2113 goto unlock; << 2114 VM_BUG_ON_FOLIO(!foli << 2115 folio << 2116 } else { << 2117 nr = 1 << xas_get_ord << 2118 base = xas.xa_index & << 2119 /* Omit order>0 value << 2120 if (base < *start) << 2121 continue; << 2122 /* Omit order>0 value << 2123 if (base + nr - 1 > e << 2124 break; << 2125 } << 2126 1809 2127 /* Update start now so that l !! 1810 if (!page_cache_get_speculative(page)) 2128 *start = base + nr; !! 1811 goto retry; 2129 indices[fbatch->nr] = xas.xa_ !! 1812 2130 if (!folio_batch_add(fbatch, !! 1813 /* Has the page moved or been split? */ 2131 break; !! 1814 if (unlikely(page != xas_reload(&xas))) >> 1815 goto put_page; >> 1816 >> 1817 pages[ret] = find_subpage(page, xas.xa_index); >> 1818 if (++ret == nr_pages) { >> 1819 *start = xas.xa_index + 1; >> 1820 goto out; >> 1821 } 2132 continue; 1822 continue; 2133 unlock: !! 1823 put_page: 2134 folio_unlock(folio); !! 1824 put_page(page); 2135 put: !! 1825 retry: 2136 folio_put(folio); !! 1826 xas_reset(&xas); 2137 } 1827 } >> 1828 >> 1829 /* >> 1830 * We come here when there is no page beyond @end. We take care to not >> 1831 * overflow the index @start as it confuses some of the callers. This >> 1832 * breaks the iteration when there is a page at index -1 but that is >> 1833 * already broken anyway. >> 1834 */ >> 1835 if (end == (pgoff_t)-1) >> 1836 *start = (pgoff_t)-1; >> 1837 else >> 1838 *start = end + 1; >> 1839 out: 2138 rcu_read_unlock(); 1840 rcu_read_unlock(); 2139 1841 2140 return folio_batch_count(fbatch); !! 1842 return ret; 2141 } 1843 } 2142 1844 2143 /** 1845 /** 2144 * filemap_get_folios - Get a batch of folios !! 1846 * find_get_pages_contig - gang contiguous pagecache lookup 2145 * @mapping: The address_space to search 1847 * @mapping: The address_space to search 2146 * @start: The starting page index !! 1848 * @index: The starting page index 2147 * @end: The final page index (inclusi !! 1849 * @nr_pages: The maximum number of pages 2148 * @fbatch: The batch to fill. !! 1850 * @pages: Where the resulting pages are placed 2149 * 1851 * 2150 * Search for and return a batch of folios in !! 1852 * find_get_pages_contig() works exactly like find_get_pages(), except 2151 * index @start and up to index @end (inclusi !! 1853 * that the returned number of pages are guaranteed to be contiguous. 2152 * in @fbatch with an elevated reference coun << 2153 * 1854 * 2154 * Return: The number of folios which were fo !! 1855 * Return: the number of pages which were found. 2155 * We also update @start to index the next fo << 2156 */ 1856 */ 2157 unsigned filemap_get_folios(struct address_sp !! 1857 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2158 pgoff_t end, struct folio_bat !! 1858 unsigned int nr_pages, struct page **pages) 2159 { 1859 { 2160 return filemap_get_folios_tag(mapping !! 1860 XA_STATE(xas, &mapping->i_pages, index); 2161 } !! 1861 struct page *page; 2162 EXPORT_SYMBOL(filemap_get_folios); !! 1862 unsigned int ret = 0; 2163 << 2164 /** << 2165 * filemap_get_folios_contig - Get a batch of << 2166 * @mapping: The address_space to search << 2167 * @start: The starting page index << 2168 * @end: The final page index (inclusi << 2169 * @fbatch: The batch to fill << 2170 * << 2171 * filemap_get_folios_contig() works exactly << 2172 * except the returned folios are guaranteed << 2173 * not return all contiguous folios if the ba << 2174 * << 2175 * Return: The number of folios found. << 2176 * Also update @start to be positioned for tr << 2177 */ << 2178 1863 2179 unsigned filemap_get_folios_contig(struct add !! 1864 if (unlikely(!nr_pages)) 2180 pgoff_t *start, pgoff_t end, !! 1865 return 0; 2181 { << 2182 XA_STATE(xas, &mapping->i_pages, *sta << 2183 unsigned long nr; << 2184 struct folio *folio; << 2185 1866 2186 rcu_read_lock(); 1867 rcu_read_lock(); 2187 !! 1868 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2188 for (folio = xas_load(&xas); folio && !! 1869 if (xas_retry(&xas, page)) 2189 folio = xas_next(&xas << 2190 if (xas_retry(&xas, folio)) << 2191 continue; 1870 continue; 2192 /* 1871 /* 2193 * If the entry has been swap 1872 * If the entry has been swapped out, we can stop looking. 2194 * No current caller is looki 1873 * No current caller is looking for DAX entries. 2195 */ 1874 */ 2196 if (xa_is_value(folio)) !! 1875 if (xa_is_value(page)) 2197 goto update_start; !! 1876 break; 2198 << 2199 /* If we landed in the middle << 2200 if (xa_is_sibling(folio)) << 2201 goto update_start; << 2202 1877 2203 if (!folio_try_get(folio)) !! 1878 if (!page_cache_get_speculative(page)) 2204 goto retry; 1879 goto retry; 2205 1880 2206 if (unlikely(folio != xas_rel !! 1881 /* Has the page moved or been split? */ 2207 goto put_folio; !! 1882 if (unlikely(page != xas_reload(&xas))) >> 1883 goto put_page; 2208 1884 2209 if (!folio_batch_add(fbatch, !! 1885 pages[ret] = find_subpage(page, xas.xa_index); 2210 nr = folio_nr_pages(f !! 1886 if (++ret == nr_pages) 2211 *start = folio->index !! 1887 break; 2212 goto out; << 2213 } << 2214 continue; 1888 continue; 2215 put_folio: !! 1889 put_page: 2216 folio_put(folio); !! 1890 put_page(page); 2217 << 2218 retry: 1891 retry: 2219 xas_reset(&xas); 1892 xas_reset(&xas); 2220 } 1893 } 2221 << 2222 update_start: << 2223 nr = folio_batch_count(fbatch); << 2224 << 2225 if (nr) { << 2226 folio = fbatch->folios[nr - 1 << 2227 *start = folio_next_index(fol << 2228 } << 2229 out: << 2230 rcu_read_unlock(); 1894 rcu_read_unlock(); 2231 return folio_batch_count(fbatch); !! 1895 return ret; 2232 } 1896 } 2233 EXPORT_SYMBOL(filemap_get_folios_contig); !! 1897 EXPORT_SYMBOL(find_get_pages_contig); 2234 1898 2235 /** 1899 /** 2236 * filemap_get_folios_tag - Get a batch of fo !! 1900 * find_get_pages_range_tag - find and return pages in given range matching @tag 2237 * @mapping: The address_space to search !! 1901 * @mapping: the address_space to search 2238 * @start: The starting page index !! 1902 * @index: the starting page index 2239 * @end: The final page index (inclusi !! 1903 * @end: The final page index (inclusive) 2240 * @tag: The tag index !! 1904 * @tag: the tag index 2241 * @fbatch: The batch to fill !! 1905 * @nr_pages: the maximum number of pages 2242 * !! 1906 * @pages: where the resulting pages are placed 2243 * The first folio may start before @start; i !! 1907 * 2244 * @start. The final folio may extend beyond !! 1908 * Like find_get_pages, except we only return pages which are tagged with 2245 * contain @end. The folios have ascending i !! 1909 * @tag. We update @index to index the next page for the traversal. 2246 * between the folios if there are indices wh << 2247 * page cache. If folios are added to or rem << 2248 * while this is running, they may or may not << 2249 * Only returns folios that are tagged with @ << 2250 * 1910 * 2251 * Return: The number of folios found. !! 1911 * Return: the number of pages which were found. 2252 * Also update @start to index the next folio << 2253 */ 1912 */ 2254 unsigned filemap_get_folios_tag(struct addres !! 1913 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2255 pgoff_t end, xa_mark_ !! 1914 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, >> 1915 struct page **pages) 2256 { 1916 { 2257 XA_STATE(xas, &mapping->i_pages, *sta !! 1917 XA_STATE(xas, &mapping->i_pages, *index); 2258 struct folio *folio; !! 1918 struct page *page; >> 1919 unsigned ret = 0; >> 1920 >> 1921 if (unlikely(!nr_pages)) >> 1922 return 0; 2259 1923 2260 rcu_read_lock(); 1924 rcu_read_lock(); 2261 while ((folio = find_get_entry(&xas, !! 1925 xas_for_each_marked(&xas, page, end, tag) { >> 1926 if (xas_retry(&xas, page)) >> 1927 continue; 2262 /* 1928 /* 2263 * Shadow entries should neve 1929 * Shadow entries should never be tagged, but this iteration 2264 * is lockless so there is a 1930 * is lockless so there is a window for page reclaim to evict 2265 * a page we saw tagged. Skip !! 1931 * a page we saw tagged. Skip over it. 2266 */ 1932 */ 2267 if (xa_is_value(folio)) !! 1933 if (xa_is_value(page)) 2268 continue; 1934 continue; 2269 if (!folio_batch_add(fbatch, !! 1935 2270 unsigned long nr = fo !! 1936 if (!page_cache_get_speculative(page)) 2271 *start = folio->index !! 1937 goto retry; >> 1938 >> 1939 /* Has the page moved or been split? */ >> 1940 if (unlikely(page != xas_reload(&xas))) >> 1941 goto put_page; >> 1942 >> 1943 pages[ret] = find_subpage(page, xas.xa_index); >> 1944 if (++ret == nr_pages) { >> 1945 *index = xas.xa_index + 1; 2272 goto out; 1946 goto out; 2273 } 1947 } >> 1948 continue; >> 1949 put_page: >> 1950 put_page(page); >> 1951 retry: >> 1952 xas_reset(&xas); 2274 } 1953 } >> 1954 2275 /* 1955 /* 2276 * We come here when there is no page !! 1956 * We come here when we got to @end. We take care to not overflow the 2277 * overflow the index @start as it co !! 1957 * index @index as it confuses some of the callers. This breaks the 2278 * breaks the iteration when there is !! 1958 * iteration when there is a page at index -1 but that is already 2279 * already broke anyway. !! 1959 * broken anyway. 2280 */ 1960 */ 2281 if (end == (pgoff_t)-1) 1961 if (end == (pgoff_t)-1) 2282 *start = (pgoff_t)-1; !! 1962 *index = (pgoff_t)-1; 2283 else 1963 else 2284 *start = end + 1; !! 1964 *index = end + 1; 2285 out: 1965 out: 2286 rcu_read_unlock(); 1966 rcu_read_unlock(); 2287 1967 2288 return folio_batch_count(fbatch); !! 1968 return ret; 2289 } 1969 } 2290 EXPORT_SYMBOL(filemap_get_folios_tag); !! 1970 EXPORT_SYMBOL(find_get_pages_range_tag); 2291 1971 2292 /* 1972 /* 2293 * CD/DVDs are error prone. When a medium err 1973 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2294 * a _large_ part of the i/o request. Imagine 1974 * a _large_ part of the i/o request. Imagine the worst scenario: 2295 * 1975 * 2296 * ---R_________________________________ 1976 * ---R__________________________________________B__________ 2297 * ^ reading here 1977 * ^ reading here ^ bad block(assume 4k) 2298 * 1978 * 2299 * read(R) => miss => readahead(R...B) => med 1979 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2300 * => failing the whole request => read(R) => 1980 * => failing the whole request => read(R) => read(R+1) => 2301 * readahead(R+1...B+1) => bang => read(R+2) 1981 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2302 * readahead(R+3...B+2) => bang => read(R+3) 1982 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2303 * readahead(R+4...B+3) => bang => read(R+4) 1983 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2304 * 1984 * 2305 * It is going insane. Fix it by quickly scal 1985 * It is going insane. Fix it by quickly scaling down the readahead size. 2306 */ 1986 */ 2307 static void shrink_readahead_size_eio(struct !! 1987 static void shrink_readahead_size_eio(struct file *filp, >> 1988 struct file_ra_state *ra) 2308 { 1989 { 2309 ra->ra_pages /= 4; 1990 ra->ra_pages /= 4; 2310 } 1991 } 2311 1992 2312 /* !! 1993 /** 2313 * filemap_get_read_batch - Get a batch of fo !! 1994 * generic_file_buffered_read - generic file read routine >> 1995 * @iocb: the iocb to read >> 1996 * @iter: data destination >> 1997 * @written: already copied >> 1998 * >> 1999 * This is a generic file read routine, and uses the >> 2000 * mapping->a_ops->readpage() function for the actual low-level stuff. 2314 * 2001 * 2315 * Get a batch of folios which represent a co !! 2002 * This is really ugly. But the goto's actually try to clarify some 2316 * the file. No exceptional entries will be !! 2003 * of the logic when it comes to error handling etc. 2317 * the middle of a folio, the entire folio wi !! 2004 * 2318 * folio in the batch may have the readahead !! 2005 * Return: 2319 * clear so that the caller can take the appr !! 2006 * * total number of bytes copied, including those the were already @written >> 2007 * * negative error code if nothing was copied 2320 */ 2008 */ 2321 static void filemap_get_read_batch(struct add !! 2009 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2322 pgoff_t index, pgoff_t max, s !! 2010 struct iov_iter *iter, ssize_t written) 2323 { << 2324 XA_STATE(xas, &mapping->i_pages, inde << 2325 struct folio *folio; << 2326 << 2327 rcu_read_lock(); << 2328 for (folio = xas_load(&xas); folio; f << 2329 if (xas_retry(&xas, folio)) << 2330 continue; << 2331 if (xas.xa_index > max || xa_ << 2332 break; << 2333 if (xa_is_sibling(folio)) << 2334 break; << 2335 if (!folio_try_get(folio)) << 2336 goto retry; << 2337 << 2338 if (unlikely(folio != xas_rel << 2339 goto put_folio; << 2340 << 2341 if (!folio_batch_add(fbatch, << 2342 break; << 2343 if (!folio_test_uptodate(foli << 2344 break; << 2345 if (folio_test_readahead(foli << 2346 break; << 2347 xas_advance(&xas, folio_next_ << 2348 continue; << 2349 put_folio: << 2350 folio_put(folio); << 2351 retry: << 2352 xas_reset(&xas); << 2353 } << 2354 rcu_read_unlock(); << 2355 } << 2356 << 2357 static int filemap_read_folio(struct file *fi << 2358 struct folio *folio) << 2359 { << 2360 bool workingset = folio_test_workings << 2361 unsigned long pflags; << 2362 int error; << 2363 << 2364 /* Start the actual read. The read wi << 2365 if (unlikely(workingset)) << 2366 psi_memstall_enter(&pflags); << 2367 error = filler(file, folio); << 2368 if (unlikely(workingset)) << 2369 psi_memstall_leave(&pflags); << 2370 if (error) << 2371 return error; << 2372 << 2373 error = folio_wait_locked_killable(fo << 2374 if (error) << 2375 return error; << 2376 if (folio_test_uptodate(folio)) << 2377 return 0; << 2378 if (file) << 2379 shrink_readahead_size_eio(&fi << 2380 return -EIO; << 2381 } << 2382 << 2383 static bool filemap_range_uptodate(struct add << 2384 loff_t pos, size_t count, str << 2385 bool need_uptodate) << 2386 { << 2387 if (folio_test_uptodate(folio)) << 2388 return true; << 2389 /* pipes can't handle partially uptod << 2390 if (need_uptodate) << 2391 return false; << 2392 if (!mapping->a_ops->is_partially_upt << 2393 return false; << 2394 if (mapping->host->i_blkbits >= folio << 2395 return false; << 2396 << 2397 if (folio_pos(folio) > pos) { << 2398 count -= folio_pos(folio) - p << 2399 pos = 0; << 2400 } else { << 2401 pos -= folio_pos(folio); << 2402 } << 2403 << 2404 return mapping->a_ops->is_partially_u << 2405 } << 2406 << 2407 static int filemap_update_page(struct kiocb * << 2408 struct address_space *mapping << 2409 struct folio *folio, bool nee << 2410 { << 2411 int error; << 2412 << 2413 if (iocb->ki_flags & IOCB_NOWAIT) { << 2414 if (!filemap_invalidate_trylo << 2415 return -EAGAIN; << 2416 } else { << 2417 filemap_invalidate_lock_share << 2418 } << 2419 << 2420 if (!folio_trylock(folio)) { << 2421 error = -EAGAIN; << 2422 if (iocb->ki_flags & (IOCB_NO << 2423 goto unlock_mapping; << 2424 if (!(iocb->ki_flags & IOCB_W << 2425 filemap_invalidate_un << 2426 /* << 2427 * This is where we u << 2428 * previously submitt << 2429 */ << 2430 folio_put_wait_locked << 2431 return AOP_TRUNCATED_ << 2432 } << 2433 error = __folio_lock_async(fo << 2434 if (error) << 2435 goto unlock_mapping; << 2436 } << 2437 << 2438 error = AOP_TRUNCATED_PAGE; << 2439 if (!folio->mapping) << 2440 goto unlock; << 2441 << 2442 error = 0; << 2443 if (filemap_range_uptodate(mapping, i << 2444 need_uptod << 2445 goto unlock; << 2446 << 2447 error = -EAGAIN; << 2448 if (iocb->ki_flags & (IOCB_NOIO | IOC << 2449 goto unlock; << 2450 << 2451 error = filemap_read_folio(iocb->ki_f << 2452 folio); << 2453 goto unlock_mapping; << 2454 unlock: << 2455 folio_unlock(folio); << 2456 unlock_mapping: << 2457 filemap_invalidate_unlock_shared(mapp << 2458 if (error == AOP_TRUNCATED_PAGE) << 2459 folio_put(folio); << 2460 return error; << 2461 } << 2462 << 2463 static int filemap_create_folio(struct file * << 2464 struct address_space *mapping << 2465 struct folio_batch *fbatch) << 2466 { << 2467 struct folio *folio; << 2468 int error; << 2469 unsigned int min_order = mapping_min_ << 2470 pgoff_t index; << 2471 << 2472 folio = filemap_alloc_folio(mapping_g << 2473 if (!folio) << 2474 return -ENOMEM; << 2475 << 2476 /* << 2477 * Protect against truncate / hole pu << 2478 * here assures we cannot instantiate << 2479 * pagecache folios after evicting pa << 2480 * and before actually freeing blocks << 2481 * release invalidate_lock after inse << 2482 * the page cache as the locked folio << 2483 * synchronize with hole punching. Bu << 2484 * such as filemap_update_page() fill << 2485 * pages or ->readahead() that need t << 2486 * while mapping blocks for IO so let << 2487 * well to keep locking rules simple. << 2488 */ << 2489 filemap_invalidate_lock_shared(mappin << 2490 index = (pos >> (PAGE_SHIFT + min_ord << 2491 error = filemap_add_folio(mapping, fo << 2492 mapping_gfp_constrain << 2493 if (error == -EEXIST) << 2494 error = AOP_TRUNCATED_PAGE; << 2495 if (error) << 2496 goto error; << 2497 << 2498 error = filemap_read_folio(file, mapp << 2499 if (error) << 2500 goto error; << 2501 << 2502 filemap_invalidate_unlock_shared(mapp << 2503 folio_batch_add(fbatch, folio); << 2504 return 0; << 2505 error: << 2506 filemap_invalidate_unlock_shared(mapp << 2507 folio_put(folio); << 2508 return error; << 2509 } << 2510 << 2511 static int filemap_readahead(struct kiocb *io << 2512 struct address_space *mapping << 2513 pgoff_t last_index) << 2514 { << 2515 DEFINE_READAHEAD(ractl, file, &file-> << 2516 << 2517 if (iocb->ki_flags & IOCB_NOIO) << 2518 return -EAGAIN; << 2519 page_cache_async_ra(&ractl, folio, la << 2520 return 0; << 2521 } << 2522 << 2523 static int filemap_get_pages(struct kiocb *io << 2524 struct folio_batch *fbatch, b << 2525 { 2011 { 2526 struct file *filp = iocb->ki_filp; 2012 struct file *filp = iocb->ki_filp; 2527 struct address_space *mapping = filp- 2013 struct address_space *mapping = filp->f_mapping; >> 2014 struct inode *inode = mapping->host; 2528 struct file_ra_state *ra = &filp->f_r 2015 struct file_ra_state *ra = &filp->f_ra; 2529 pgoff_t index = iocb->ki_pos >> PAGE_ !! 2016 loff_t *ppos = &iocb->ki_pos; >> 2017 pgoff_t index; 2530 pgoff_t last_index; 2018 pgoff_t last_index; 2531 struct folio *folio; !! 2019 pgoff_t prev_index; 2532 unsigned int flags; !! 2020 unsigned long offset; /* offset into pagecache page */ 2533 int err = 0; !! 2021 unsigned int prev_offset; >> 2022 int error = 0; 2534 2023 2535 /* "last_index" is the index of the p !! 2024 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2536 last_index = DIV_ROUND_UP(iocb->ki_po << 2537 retry: << 2538 if (fatal_signal_pending(current)) << 2539 return -EINTR; << 2540 << 2541 filemap_get_read_batch(mapping, index << 2542 if (!folio_batch_count(fbatch)) { << 2543 if (iocb->ki_flags & IOCB_NOI << 2544 return -EAGAIN; << 2545 if (iocb->ki_flags & IOCB_NOW << 2546 flags = memalloc_noio << 2547 page_cache_sync_readahead(map << 2548 last_index - << 2549 if (iocb->ki_flags & IOCB_NOW << 2550 memalloc_noio_restore << 2551 filemap_get_read_batch(mappin << 2552 } << 2553 if (!folio_batch_count(fbatch)) { << 2554 if (iocb->ki_flags & (IOCB_NO << 2555 return -EAGAIN; << 2556 err = filemap_create_folio(fi << 2557 if (err == AOP_TRUNCATED_PAGE << 2558 goto retry; << 2559 return err; << 2560 } << 2561 << 2562 folio = fbatch->folios[folio_batch_co << 2563 if (folio_test_readahead(folio)) { << 2564 err = filemap_readahead(iocb, << 2565 if (err) << 2566 goto err; << 2567 } << 2568 if (!folio_test_uptodate(folio)) { << 2569 if ((iocb->ki_flags & IOCB_WA << 2570 folio_batch_count(fbatch) << 2571 iocb->ki_flags |= IOC << 2572 err = filemap_update_page(ioc << 2573 nee << 2574 if (err) << 2575 goto err; << 2576 } << 2577 << 2578 trace_mm_filemap_get_pages(mapping, i << 2579 return 0; << 2580 err: << 2581 if (err < 0) << 2582 folio_put(folio); << 2583 if (likely(--fbatch->nr)) << 2584 return 0; 2025 return 0; 2585 if (err == AOP_TRUNCATED_PAGE) !! 2026 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2586 goto retry; << 2587 return err; << 2588 } << 2589 << 2590 static inline bool pos_same_folio(loff_t pos1 << 2591 { << 2592 unsigned int shift = folio_shift(foli << 2593 << 2594 return (pos1 >> shift == pos2 >> shif << 2595 } << 2596 2027 2597 /** !! 2028 index = *ppos >> PAGE_SHIFT; 2598 * filemap_read - Read data from the page cac !! 2029 prev_index = ra->prev_pos >> PAGE_SHIFT; 2599 * @iocb: The iocb to read. !! 2030 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2600 * @iter: Destination for the data. !! 2031 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2601 * @already_read: Number of bytes already rea !! 2032 offset = *ppos & ~PAGE_MASK; 2602 * << 2603 * Copies data from the page cache. If the d << 2604 * uses the readahead and read_folio address_ << 2605 * << 2606 * Return: Total number of bytes copied, incl << 2607 * the caller. If an error happens before an << 2608 * a negative error number. << 2609 */ << 2610 ssize_t filemap_read(struct kiocb *iocb, stru << 2611 ssize_t already_read) << 2612 { << 2613 struct file *filp = iocb->ki_filp; << 2614 struct file_ra_state *ra = &filp->f_r << 2615 struct address_space *mapping = filp- << 2616 struct inode *inode = mapping->host; << 2617 struct folio_batch fbatch; << 2618 int i, error = 0; << 2619 bool writably_mapped; << 2620 loff_t isize, end_offset; << 2621 loff_t last_pos = ra->prev_pos; << 2622 2033 2623 if (unlikely(iocb->ki_pos >= inode->i !! 2034 for (;;) { 2624 return 0; !! 2035 struct page *page; 2625 if (unlikely(!iov_iter_count(iter))) !! 2036 pgoff_t end_index; 2626 return 0; !! 2037 loff_t isize; 2627 !! 2038 unsigned long nr, ret; 2628 iov_iter_truncate(iter, inode->i_sb-> << 2629 folio_batch_init(&fbatch); << 2630 2039 2631 do { << 2632 cond_resched(); 2040 cond_resched(); >> 2041 find_page: >> 2042 if (fatal_signal_pending(current)) { >> 2043 error = -EINTR; >> 2044 goto out; >> 2045 } 2633 2046 2634 /* !! 2047 page = find_get_page(mapping, index); 2635 * If we've already successfu !! 2048 if (!page) { 2636 * can no longer safely retur !! 2049 if (iocb->ki_flags & IOCB_NOWAIT) 2637 * an async read NOWAIT at th !! 2050 goto would_block; 2638 */ !! 2051 page_cache_sync_readahead(mapping, 2639 if ((iocb->ki_flags & IOCB_WA !! 2052 ra, filp, 2640 iocb->ki_flags |= IOC !! 2053 index, last_index - index); 2641 !! 2054 page = find_get_page(mapping, index); 2642 if (unlikely(iocb->ki_pos >= !! 2055 if (unlikely(page == NULL)) 2643 break; !! 2056 goto no_cached_page; 2644 !! 2057 } 2645 error = filemap_get_pages(ioc !! 2058 if (PageReadahead(page)) { 2646 if (error < 0) !! 2059 page_cache_async_readahead(mapping, 2647 break; !! 2060 ra, filp, page, >> 2061 index, last_index - index); >> 2062 } >> 2063 if (!PageUptodate(page)) { >> 2064 if (iocb->ki_flags & IOCB_NOWAIT) { >> 2065 put_page(page); >> 2066 goto would_block; >> 2067 } 2648 2068 >> 2069 /* >> 2070 * See comment in do_read_cache_page on why >> 2071 * wait_on_page_locked is used to avoid unnecessarily >> 2072 * serialisations and why it's safe. >> 2073 */ >> 2074 error = wait_on_page_locked_killable(page); >> 2075 if (unlikely(error)) >> 2076 goto readpage_error; >> 2077 if (PageUptodate(page)) >> 2078 goto page_ok; >> 2079 >> 2080 if (inode->i_blkbits == PAGE_SHIFT || >> 2081 !mapping->a_ops->is_partially_uptodate) >> 2082 goto page_not_up_to_date; >> 2083 /* pipes can't handle partially uptodate pages */ >> 2084 if (unlikely(iov_iter_is_pipe(iter))) >> 2085 goto page_not_up_to_date; >> 2086 if (!trylock_page(page)) >> 2087 goto page_not_up_to_date; >> 2088 /* Did it get truncated before we got the lock? */ >> 2089 if (!page->mapping) >> 2090 goto page_not_up_to_date_locked; >> 2091 if (!mapping->a_ops->is_partially_uptodate(page, >> 2092 offset, iter->count)) >> 2093 goto page_not_up_to_date_locked; >> 2094 unlock_page(page); >> 2095 } >> 2096 page_ok: 2649 /* 2097 /* 2650 * i_size must be checked aft !! 2098 * i_size must be checked after we know the page is Uptodate. 2651 * 2099 * 2652 * Checking i_size after the 2100 * Checking i_size after the check allows us to calculate 2653 * the correct value for "nr" 2101 * the correct value for "nr", which means the zero-filled 2654 * part of the page is not co 2102 * part of the page is not copied back to userspace (unless 2655 * another truncate extends t 2103 * another truncate extends the file - this is desired though). 2656 */ 2104 */ >> 2105 2657 isize = i_size_read(inode); 2106 isize = i_size_read(inode); 2658 if (unlikely(iocb->ki_pos >= !! 2107 end_index = (isize - 1) >> PAGE_SHIFT; 2659 goto put_folios; !! 2108 if (unlikely(!isize || index > end_index)) { 2660 end_offset = min_t(loff_t, is !! 2109 put_page(page); >> 2110 goto out; >> 2111 } >> 2112 >> 2113 /* nr is the maximum number of bytes to copy from this page */ >> 2114 nr = PAGE_SIZE; >> 2115 if (index == end_index) { >> 2116 nr = ((isize - 1) & ~PAGE_MASK) + 1; >> 2117 if (nr <= offset) { >> 2118 put_page(page); >> 2119 goto out; >> 2120 } >> 2121 } >> 2122 nr = nr - offset; >> 2123 >> 2124 /* If users can be writing to this page using arbitrary >> 2125 * virtual addresses, take care about potential aliasing >> 2126 * before reading the page on the kernel side. >> 2127 */ >> 2128 if (mapping_writably_mapped(mapping)) >> 2129 flush_dcache_page(page); 2661 2130 2662 /* 2131 /* 2663 * Once we start copying data !! 2132 * When a sequential read accesses a page several times, 2664 * cachelines that might be c !! 2133 * only mark it as accessed the first time. 2665 */ 2134 */ 2666 writably_mapped = mapping_wri !! 2135 if (prev_index != index || offset != prev_offset) >> 2136 mark_page_accessed(page); >> 2137 prev_index = index; 2667 2138 2668 /* 2139 /* 2669 * When a read accesses the s !! 2140 * Ok, we have the page, and it's up-to-date, so 2670 * mark it as accessed the fi !! 2141 * now we can copy it to user space... 2671 */ 2142 */ 2672 if (!pos_same_folio(iocb->ki_ << 2673 fbatch.fo << 2674 folio_mark_accessed(f << 2675 << 2676 for (i = 0; i < folio_batch_c << 2677 struct folio *folio = << 2678 size_t fsize = folio_ << 2679 size_t offset = iocb- << 2680 size_t bytes = min_t( << 2681 << 2682 size_t copied; << 2683 2143 2684 if (end_offset < foli !! 2144 ret = copy_page_to_iter(page, offset, nr, iter); 2685 break; !! 2145 offset += ret; 2686 if (i > 0) !! 2146 index += offset >> PAGE_SHIFT; 2687 folio_mark_ac !! 2147 offset &= ~PAGE_MASK; 2688 /* !! 2148 prev_offset = offset; 2689 * If users can be wr << 2690 * virtual addresses, << 2691 * before reading the << 2692 */ << 2693 if (writably_mapped) << 2694 flush_dcache_ << 2695 2149 2696 copied = copy_folio_t !! 2150 put_page(page); >> 2151 written += ret; >> 2152 if (!iov_iter_count(iter)) >> 2153 goto out; >> 2154 if (ret < nr) { >> 2155 error = -EFAULT; >> 2156 goto out; >> 2157 } >> 2158 continue; 2697 2159 2698 already_read += copie !! 2160 page_not_up_to_date: 2699 iocb->ki_pos += copie !! 2161 /* Get exclusive access to the page ... */ 2700 last_pos = iocb->ki_p !! 2162 error = lock_page_killable(page); >> 2163 if (unlikely(error)) >> 2164 goto readpage_error; >> 2165 >> 2166 page_not_up_to_date_locked: >> 2167 /* Did it get truncated before we got the lock? */ >> 2168 if (!page->mapping) { >> 2169 unlock_page(page); >> 2170 put_page(page); >> 2171 continue; >> 2172 } 2701 2173 2702 if (copied < bytes) { !! 2174 /* Did somebody else fill it already? */ 2703 error = -EFAU !! 2175 if (PageUptodate(page)) { 2704 break; !! 2176 unlock_page(page); >> 2177 goto page_ok; >> 2178 } >> 2179 >> 2180 readpage: >> 2181 /* >> 2182 * A previous I/O error may have been due to temporary >> 2183 * failures, eg. multipath errors. >> 2184 * PG_error will be set again if readpage fails. >> 2185 */ >> 2186 ClearPageError(page); >> 2187 /* Start the actual read. The read will unlock the page. */ >> 2188 error = mapping->a_ops->readpage(filp, page); >> 2189 >> 2190 if (unlikely(error)) { >> 2191 if (error == AOP_TRUNCATED_PAGE) { >> 2192 put_page(page); >> 2193 error = 0; >> 2194 goto find_page; 2705 } 2195 } >> 2196 goto readpage_error; 2706 } 2197 } 2707 put_folios: << 2708 for (i = 0; i < folio_batch_c << 2709 folio_put(fbatch.foli << 2710 folio_batch_init(&fbatch); << 2711 } while (iov_iter_count(iter) && iocb << 2712 2198 2713 file_accessed(filp); !! 2199 if (!PageUptodate(page)) { 2714 ra->prev_pos = last_pos; !! 2200 error = lock_page_killable(page); 2715 return already_read ? already_read : !! 2201 if (unlikely(error)) 2716 } !! 2202 goto readpage_error; 2717 EXPORT_SYMBOL_GPL(filemap_read); !! 2203 if (!PageUptodate(page)) { 2718 !! 2204 if (page->mapping == NULL) { 2719 int kiocb_write_and_wait(struct kiocb *iocb, !! 2205 /* 2720 { !! 2206 * invalidate_mapping_pages got it 2721 struct address_space *mapping = iocb- !! 2207 */ 2722 loff_t pos = iocb->ki_pos; !! 2208 unlock_page(page); 2723 loff_t end = pos + count - 1; !! 2209 put_page(page); 2724 !! 2210 goto find_page; 2725 if (iocb->ki_flags & IOCB_NOWAIT) { !! 2211 } 2726 if (filemap_range_needs_write !! 2212 unlock_page(page); 2727 return -EAGAIN; !! 2213 shrink_readahead_size_eio(filp, ra); 2728 return 0; !! 2214 error = -EIO; 2729 } !! 2215 goto readpage_error; >> 2216 } >> 2217 unlock_page(page); >> 2218 } 2730 2219 2731 return filemap_write_and_wait_range(m !! 2220 goto page_ok; 2732 } << 2733 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); << 2734 2221 2735 int filemap_invalidate_pages(struct address_s !! 2222 readpage_error: 2736 loff_t pos, loff !! 2223 /* UHHUH! A synchronous read error occurred. Report it */ 2737 { !! 2224 put_page(page); 2738 int ret; !! 2225 goto out; 2739 2226 2740 if (nowait) { !! 2227 no_cached_page: 2741 /* we could block if there ar !! 2228 /* 2742 if (filemap_range_has_page(ma !! 2229 * Ok, it wasn't cached, so we need to create a new 2743 return -EAGAIN; !! 2230 * page.. 2744 } else { !! 2231 */ 2745 ret = filemap_write_and_wait_ !! 2232 page = page_cache_alloc(mapping); 2746 if (ret) !! 2233 if (!page) { 2747 return ret; !! 2234 error = -ENOMEM; >> 2235 goto out; >> 2236 } >> 2237 error = add_to_page_cache_lru(page, mapping, index, >> 2238 mapping_gfp_constraint(mapping, GFP_KERNEL)); >> 2239 if (error) { >> 2240 put_page(page); >> 2241 if (error == -EEXIST) { >> 2242 error = 0; >> 2243 goto find_page; >> 2244 } >> 2245 goto out; >> 2246 } >> 2247 goto readpage; 2748 } 2248 } 2749 2249 2750 /* !! 2250 would_block: 2751 * After a write we want buffered rea !! 2251 error = -EAGAIN; 2752 * the new data. We invalidate clean !! 2252 out: 2753 * about to write. We do this *befor !! 2253 ra->prev_pos = prev_index; 2754 * without clobbering -EIOCBQUEUED fr !! 2254 ra->prev_pos <<= PAGE_SHIFT; 2755 */ !! 2255 ra->prev_pos |= prev_offset; 2756 return invalidate_inode_pages2_range( << 2757 << 2758 } << 2759 << 2760 int kiocb_invalidate_pages(struct kiocb *iocb << 2761 { << 2762 struct address_space *mapping = iocb- << 2763 2256 2764 return filemap_invalidate_pages(mappi !! 2257 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2765 iocb- !! 2258 file_accessed(filp); 2766 iocb- !! 2259 return written ? written : error; 2767 } 2260 } 2768 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); << 2769 2261 2770 /** 2262 /** 2771 * generic_file_read_iter - generic filesyste 2263 * generic_file_read_iter - generic filesystem read routine 2772 * @iocb: kernel I/O control block 2264 * @iocb: kernel I/O control block 2773 * @iter: destination for the data read 2265 * @iter: destination for the data read 2774 * 2266 * 2775 * This is the "read_iter()" routine for all 2267 * This is the "read_iter()" routine for all filesystems 2776 * that can use the page cache directly. 2268 * that can use the page cache directly. 2777 * << 2778 * The IOCB_NOWAIT flag in iocb->ki_flags ind << 2779 * be returned when no data can be read witho << 2780 * to complete; it doesn't prevent readahead. << 2781 * << 2782 * The IOCB_NOIO flag in iocb->ki_flags indic << 2783 * requests shall be made for the read or for << 2784 * can be read, -EAGAIN shall be returned. W << 2785 * triggered, a partial, possibly empty read << 2786 * << 2787 * Return: 2269 * Return: 2788 * * number of bytes copied, even for partial 2270 * * number of bytes copied, even for partial reads 2789 * * negative error code (or 0 if IOCB_NOIO) !! 2271 * * negative error code if nothing was read 2790 */ 2272 */ 2791 ssize_t 2273 ssize_t 2792 generic_file_read_iter(struct kiocb *iocb, st 2274 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2793 { 2275 { 2794 size_t count = iov_iter_count(iter); 2276 size_t count = iov_iter_count(iter); 2795 ssize_t retval = 0; 2277 ssize_t retval = 0; 2796 2278 2797 if (!count) 2279 if (!count) 2798 return 0; /* skip atime */ !! 2280 goto out; /* skip atime */ 2799 2281 2800 if (iocb->ki_flags & IOCB_DIRECT) { 2282 if (iocb->ki_flags & IOCB_DIRECT) { 2801 struct file *file = iocb->ki_ 2283 struct file *file = iocb->ki_filp; 2802 struct address_space *mapping 2284 struct address_space *mapping = file->f_mapping; 2803 struct inode *inode = mapping 2285 struct inode *inode = mapping->host; >> 2286 loff_t size; >> 2287 >> 2288 size = i_size_read(inode); >> 2289 if (iocb->ki_flags & IOCB_NOWAIT) { >> 2290 if (filemap_range_has_page(mapping, iocb->ki_pos, >> 2291 iocb->ki_pos + count - 1)) >> 2292 return -EAGAIN; >> 2293 } else { >> 2294 retval = filemap_write_and_wait_range(mapping, >> 2295 iocb->ki_pos, >> 2296 iocb->ki_pos + count - 1); >> 2297 if (retval < 0) >> 2298 goto out; >> 2299 } 2804 2300 2805 retval = kiocb_write_and_wait << 2806 if (retval < 0) << 2807 return retval; << 2808 file_accessed(file); 2301 file_accessed(file); 2809 2302 2810 retval = mapping->a_ops->dire 2303 retval = mapping->a_ops->direct_IO(iocb, iter); 2811 if (retval >= 0) { 2304 if (retval >= 0) { 2812 iocb->ki_pos += retva 2305 iocb->ki_pos += retval; 2813 count -= retval; 2306 count -= retval; 2814 } 2307 } 2815 if (retval != -EIOCBQUEUED) !! 2308 iov_iter_revert(iter, count - iov_iter_count(iter)); 2816 iov_iter_revert(iter, << 2817 2309 2818 /* 2310 /* 2819 * Btrfs can have a short DIO 2311 * Btrfs can have a short DIO read if we encounter 2820 * compressed extents, so if 2312 * compressed extents, so if there was an error, or if 2821 * we've already read everyth 2313 * we've already read everything we wanted to, or if 2822 * there was a short read bec 2314 * there was a short read because we hit EOF, go ahead 2823 * and return. Otherwise fal 2315 * and return. Otherwise fallthrough to buffered io for 2824 * the rest of the read. Buf 2316 * the rest of the read. Buffered reads will not work for 2825 * DAX files, so don't bother 2317 * DAX files, so don't bother trying. 2826 */ 2318 */ 2827 if (retval < 0 || !count || I !! 2319 if (retval < 0 || !count || iocb->ki_pos >= size || 2828 return retval; !! 2320 IS_DAX(inode)) 2829 if (iocb->ki_pos >= i_size_re !! 2321 goto out; 2830 return retval; << 2831 } << 2832 << 2833 return filemap_read(iocb, iter, retva << 2834 } << 2835 EXPORT_SYMBOL(generic_file_read_iter); << 2836 << 2837 /* << 2838 * Splice subpages from a folio into a pipe. << 2839 */ << 2840 size_t splice_folio_into_pipe(struct pipe_ino << 2841 struct folio *f << 2842 { << 2843 struct page *page; << 2844 size_t spliced = 0, offset = offset_i << 2845 << 2846 page = folio_page(folio, offset / PAG << 2847 size = min(size, folio_size(folio) - << 2848 offset %= PAGE_SIZE; << 2849 << 2850 while (spliced < size && << 2851 !pipe_full(pipe->head, pipe->t << 2852 struct pipe_buffer *buf = pip << 2853 size_t part = min_t(size_t, P << 2854 << 2855 *buf = (struct pipe_buffer) { << 2856 .ops = &page_cache << 2857 .page = page, << 2858 .offset = offset, << 2859 .len = part, << 2860 }; << 2861 folio_get(folio); << 2862 pipe->head++; << 2863 page++; << 2864 spliced += part; << 2865 offset = 0; << 2866 } 2322 } 2867 2323 2868 return spliced; !! 2324 retval = generic_file_buffered_read(iocb, iter, retval); 2869 } << 2870 << 2871 /** << 2872 * filemap_splice_read - Splice data from a << 2873 * @in: The file to read from << 2874 * @ppos: Pointer to the file position to rea << 2875 * @pipe: The pipe to splice into << 2876 * @len: The amount to splice << 2877 * @flags: The SPLICE_F_* flags << 2878 * << 2879 * This function gets folios from a file's pa << 2880 * pipe. Readahead will be called as necessa << 2881 * be used for blockdevs also. << 2882 * << 2883 * Return: On success, the number of bytes re << 2884 * will be updated if appropriate; 0 will be << 2885 * to be read; -EAGAIN will be returned if th << 2886 * other negative error code will be returned << 2887 * if the pipe has insufficient space, we rea << 2888 * hole. << 2889 */ << 2890 ssize_t filemap_splice_read(struct file *in, << 2891 struct pipe_inode << 2892 size_t len, unsig << 2893 { << 2894 struct folio_batch fbatch; << 2895 struct kiocb iocb; << 2896 size_t total_spliced = 0, used, npage << 2897 loff_t isize, end_offset; << 2898 bool writably_mapped; << 2899 int i, error = 0; << 2900 << 2901 if (unlikely(*ppos >= in->f_mapping-> << 2902 return 0; << 2903 << 2904 init_sync_kiocb(&iocb, in); << 2905 iocb.ki_pos = *ppos; << 2906 << 2907 /* Work out how much data we can actu << 2908 used = pipe_occupancy(pipe->head, pip << 2909 npages = max_t(ssize_t, pipe->max_usa << 2910 len = min_t(size_t, len, npages * PAG << 2911 << 2912 folio_batch_init(&fbatch); << 2913 << 2914 do { << 2915 cond_resched(); << 2916 << 2917 if (*ppos >= i_size_read(in-> << 2918 break; << 2919 << 2920 iocb.ki_pos = *ppos; << 2921 error = filemap_get_pages(&io << 2922 if (error < 0) << 2923 break; << 2924 << 2925 /* << 2926 * i_size must be checked aft << 2927 * << 2928 * Checking i_size after the << 2929 * the correct value for "nr" << 2930 * part of the page is not co << 2931 * another truncate extends t << 2932 */ << 2933 isize = i_size_read(in->f_map << 2934 if (unlikely(*ppos >= isize)) << 2935 break; << 2936 end_offset = min_t(loff_t, is << 2937 << 2938 /* << 2939 * Once we start copying data << 2940 * cachelines that might be c << 2941 */ << 2942 writably_mapped = mapping_wri << 2943 << 2944 for (i = 0; i < folio_batch_c << 2945 struct folio *folio = << 2946 size_t n; << 2947 << 2948 if (folio_pos(folio) << 2949 goto out; << 2950 folio_mark_accessed(f << 2951 << 2952 /* << 2953 * If users can be wr << 2954 * virtual addresses, << 2955 * before reading the << 2956 */ << 2957 if (writably_mapped) << 2958 flush_dcache_ << 2959 << 2960 n = min_t(loff_t, len << 2961 n = splice_folio_into << 2962 if (!n) << 2963 goto out; << 2964 len -= n; << 2965 total_spliced += n; << 2966 *ppos += n; << 2967 in->f_ra.prev_pos = * << 2968 if (pipe_full(pipe->h << 2969 goto out; << 2970 } << 2971 << 2972 folio_batch_release(&fbatch); << 2973 } while (len); << 2974 << 2975 out: 2325 out: 2976 folio_batch_release(&fbatch); !! 2326 return retval; 2977 file_accessed(in); << 2978 << 2979 return total_spliced ? total_spliced << 2980 } << 2981 EXPORT_SYMBOL(filemap_splice_read); << 2982 << 2983 static inline loff_t folio_seek_hole_data(str << 2984 struct address_space *mapping << 2985 loff_t start, loff_t end, boo << 2986 { << 2987 const struct address_space_operations << 2988 size_t offset, bsz = i_blocksize(mapp << 2989 << 2990 if (xa_is_value(folio) || folio_test_ << 2991 return seek_data ? start : en << 2992 if (!ops->is_partially_uptodate) << 2993 return seek_data ? end : star << 2994 << 2995 xas_pause(xas); << 2996 rcu_read_unlock(); << 2997 folio_lock(folio); << 2998 if (unlikely(folio->mapping != mappin << 2999 goto unlock; << 3000 << 3001 offset = offset_in_folio(folio, start << 3002 << 3003 do { << 3004 if (ops->is_partially_uptodat << 3005 << 3006 break; << 3007 start = (start + bsz) & ~(bsz << 3008 offset += bsz; << 3009 } while (offset < folio_size(folio)); << 3010 unlock: << 3011 folio_unlock(folio); << 3012 rcu_read_lock(); << 3013 return start; << 3014 } << 3015 << 3016 static inline size_t seek_folio_size(struct x << 3017 { << 3018 if (xa_is_value(folio)) << 3019 return PAGE_SIZE << xas_get_o << 3020 return folio_size(folio); << 3021 } << 3022 << 3023 /** << 3024 * mapping_seek_hole_data - Seek for SEEK_DAT << 3025 * @mapping: Address space to search. << 3026 * @start: First byte to consider. << 3027 * @end: Limit of search (exclusive). << 3028 * @whence: Either SEEK_HOLE or SEEK_DATA. << 3029 * << 3030 * If the page cache knows which blocks conta << 3031 * contain data, your filesystem can use this << 3032 * SEEK_HOLE and SEEK_DATA. This is useful f << 3033 * entirely memory-based such as tmpfs, and f << 3034 * unwritten extents. << 3035 * << 3036 * Return: The requested offset on success, o << 3037 * SEEK_DATA and there is no data after @star << 3038 * after @end - 1, so SEEK_HOLE returns @end << 3039 * and @end contain data. << 3040 */ << 3041 loff_t mapping_seek_hole_data(struct address_ << 3042 loff_t end, int whence) << 3043 { << 3044 XA_STATE(xas, &mapping->i_pages, star << 3045 pgoff_t max = (end - 1) >> PAGE_SHIFT << 3046 bool seek_data = (whence == SEEK_DATA << 3047 struct folio *folio; << 3048 << 3049 if (end <= start) << 3050 return -ENXIO; << 3051 << 3052 rcu_read_lock(); << 3053 while ((folio = find_get_entry(&xas, << 3054 loff_t pos = (u64)xas.xa_inde << 3055 size_t seek_size; << 3056 << 3057 if (start < pos) { << 3058 if (!seek_data) << 3059 goto unlock; << 3060 start = pos; << 3061 } << 3062 << 3063 seek_size = seek_folio_size(& << 3064 pos = round_up((u64)pos + 1, << 3065 start = folio_seek_hole_data( << 3066 seek_data); << 3067 if (start < pos) << 3068 goto unlock; << 3069 if (start >= end) << 3070 break; << 3071 if (seek_size > PAGE_SIZE) << 3072 xas_set(&xas, pos >> << 3073 if (!xa_is_value(folio)) << 3074 folio_put(folio); << 3075 } << 3076 if (seek_data) << 3077 start = -ENXIO; << 3078 unlock: << 3079 rcu_read_unlock(); << 3080 if (folio && !xa_is_value(folio)) << 3081 folio_put(folio); << 3082 if (start > end) << 3083 return end; << 3084 return start; << 3085 } 2327 } >> 2328 EXPORT_SYMBOL(generic_file_read_iter); 3086 2329 3087 #ifdef CONFIG_MMU 2330 #ifdef CONFIG_MMU 3088 #define MMAP_LOTSAMISS (100) 2331 #define MMAP_LOTSAMISS (100) 3089 /* 2332 /* 3090 * lock_folio_maybe_drop_mmap - lock the page !! 2333 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem 3091 * @vmf - the vm_fault for this fault. 2334 * @vmf - the vm_fault for this fault. 3092 * @folio - the folio to lock. !! 2335 * @page - the page to lock. 3093 * @fpin - the pointer to the file we may pin 2336 * @fpin - the pointer to the file we may pin (or is already pinned). 3094 * 2337 * 3095 * This works similar to lock_folio_or_retry !! 2338 * This works similar to lock_page_or_retry in that it can drop the mmap_sem. 3096 * mmap_lock. It differs in that it actually !! 2339 * It differs in that it actually returns the page locked if it returns 1 and 0 3097 * if it returns 1 and 0 if it couldn't lock !! 2340 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin 3098 * to drop the mmap_lock then fpin will point !! 2341 * will point to the pinned file and needs to be fput()'ed at a later point. 3099 * needs to be fput()'ed at a later point. << 3100 */ 2342 */ 3101 static int lock_folio_maybe_drop_mmap(struct !! 2343 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 3102 struct f 2344 struct file **fpin) 3103 { 2345 { 3104 if (folio_trylock(folio)) !! 2346 if (trylock_page(page)) 3105 return 1; 2347 return 1; 3106 2348 3107 /* 2349 /* 3108 * NOTE! This will make us return wit 2350 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3109 * the fault lock still held. That's !! 2351 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT 3110 * is supposed to work. We have way t 2352 * is supposed to work. We have way too many special cases.. 3111 */ 2353 */ 3112 if (vmf->flags & FAULT_FLAG_RETRY_NOW 2354 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3113 return 0; 2355 return 0; 3114 2356 3115 *fpin = maybe_unlock_mmap_for_io(vmf, 2357 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3116 if (vmf->flags & FAULT_FLAG_KILLABLE) 2358 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3117 if (__folio_lock_killable(fol !! 2359 if (__lock_page_killable(page)) { 3118 /* 2360 /* 3119 * We didn't have the !! 2361 * We didn't have the right flags to drop the mmap_sem, 3120 * fault lock, but al !! 2362 * but all fault_handlers only check for fatal signals 3121 * for fatal signals !! 2363 * if we return VM_FAULT_RETRY, so we need to drop the 3122 * so we need to drop !! 2364 * mmap_sem here and return 0 if we don't have a fpin. 3123 * return 0 if we don << 3124 */ 2365 */ 3125 if (*fpin == NULL) 2366 if (*fpin == NULL) 3126 release_fault !! 2367 up_read(&vmf->vma->vm_mm->mmap_sem); 3127 return 0; 2368 return 0; 3128 } 2369 } 3129 } else 2370 } else 3130 __folio_lock(folio); !! 2371 __lock_page(page); 3131 << 3132 return 1; 2372 return 1; 3133 } 2373 } 3134 2374 >> 2375 3135 /* 2376 /* 3136 * Synchronous readahead happens when we don' 2377 * Synchronous readahead happens when we don't even find a page in the page 3137 * cache at all. We don't want to perform IO 2378 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3138 * to drop the mmap sem we return the file th 2379 * to drop the mmap sem we return the file that was pinned in order for us to do 3139 * that. If we didn't pin a file then we ret 2380 * that. If we didn't pin a file then we return NULL. The file that is 3140 * returned needs to be fput()'ed when we're 2381 * returned needs to be fput()'ed when we're done with it. 3141 */ 2382 */ 3142 static struct file *do_sync_mmap_readahead(st 2383 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3143 { 2384 { 3144 struct file *file = vmf->vma->vm_file 2385 struct file *file = vmf->vma->vm_file; 3145 struct file_ra_state *ra = &file->f_r 2386 struct file_ra_state *ra = &file->f_ra; 3146 struct address_space *mapping = file- 2387 struct address_space *mapping = file->f_mapping; 3147 DEFINE_READAHEAD(ractl, file, ra, map << 3148 struct file *fpin = NULL; 2388 struct file *fpin = NULL; 3149 unsigned long vm_flags = vmf->vma->vm !! 2389 pgoff_t offset = vmf->pgoff; 3150 unsigned int mmap_miss; << 3151 << 3152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 3153 /* Use the readahead code, even if re << 3154 if ((vm_flags & VM_HUGEPAGE) && HPAGE << 3155 fpin = maybe_unlock_mmap_for_ << 3156 ractl._index &= ~((unsigned l << 3157 ra->size = HPAGE_PMD_NR; << 3158 /* << 3159 * Fetch two PMD folios, so w << 3160 * readahead, unless we've be << 3161 */ << 3162 if (!(vm_flags & VM_RAND_READ << 3163 ra->size *= 2; << 3164 ra->async_size = HPAGE_PMD_NR << 3165 page_cache_ra_order(&ractl, r << 3166 return fpin; << 3167 } << 3168 #endif << 3169 2390 3170 /* If we don't want any read-ahead, d 2391 /* If we don't want any read-ahead, don't bother */ 3171 if (vm_flags & VM_RAND_READ) !! 2392 if (vmf->vma->vm_flags & VM_RAND_READ) 3172 return fpin; 2393 return fpin; 3173 if (!ra->ra_pages) 2394 if (!ra->ra_pages) 3174 return fpin; 2395 return fpin; 3175 2396 3176 if (vm_flags & VM_SEQ_READ) { !! 2397 if (vmf->vma->vm_flags & VM_SEQ_READ) { 3177 fpin = maybe_unlock_mmap_for_ 2398 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3178 page_cache_sync_ra(&ractl, ra !! 2399 page_cache_sync_readahead(mapping, ra, file, offset, >> 2400 ra->ra_pages); 3179 return fpin; 2401 return fpin; 3180 } 2402 } 3181 2403 3182 /* Avoid banging the cache line if no 2404 /* Avoid banging the cache line if not needed */ 3183 mmap_miss = READ_ONCE(ra->mmap_miss); !! 2405 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 3184 if (mmap_miss < MMAP_LOTSAMISS * 10) !! 2406 ra->mmap_miss++; 3185 WRITE_ONCE(ra->mmap_miss, ++m << 3186 2407 3187 /* 2408 /* 3188 * Do we miss much more than hit in t 2409 * Do we miss much more than hit in this file? If so, 3189 * stop bothering with read-ahead. It 2410 * stop bothering with read-ahead. It will only hurt. 3190 */ 2411 */ 3191 if (mmap_miss > MMAP_LOTSAMISS) !! 2412 if (ra->mmap_miss > MMAP_LOTSAMISS) 3192 return fpin; 2413 return fpin; 3193 2414 3194 /* 2415 /* 3195 * mmap read-around 2416 * mmap read-around 3196 */ 2417 */ 3197 fpin = maybe_unlock_mmap_for_io(vmf, 2418 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3198 ra->start = max_t(long, 0, vmf->pgoff !! 2419 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 3199 ra->size = ra->ra_pages; 2420 ra->size = ra->ra_pages; 3200 ra->async_size = ra->ra_pages / 4; 2421 ra->async_size = ra->ra_pages / 4; 3201 ractl._index = ra->start; !! 2422 ra_submit(ra, mapping, file); 3202 page_cache_ra_order(&ractl, ra, 0); << 3203 return fpin; 2423 return fpin; 3204 } 2424 } 3205 2425 3206 /* 2426 /* 3207 * Asynchronous readahead happens when we fin 2427 * Asynchronous readahead happens when we find the page and PG_readahead, 3208 * so we want to possibly extend the readahea 2428 * so we want to possibly extend the readahead further. We return the file that 3209 * was pinned if we have to drop the mmap_loc !! 2429 * was pinned if we have to drop the mmap_sem in order to do IO. 3210 */ 2430 */ 3211 static struct file *do_async_mmap_readahead(s 2431 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3212 s !! 2432 struct page *page) 3213 { 2433 { 3214 struct file *file = vmf->vma->vm_file 2434 struct file *file = vmf->vma->vm_file; 3215 struct file_ra_state *ra = &file->f_r 2435 struct file_ra_state *ra = &file->f_ra; 3216 DEFINE_READAHEAD(ractl, file, ra, fil !! 2436 struct address_space *mapping = file->f_mapping; 3217 struct file *fpin = NULL; 2437 struct file *fpin = NULL; 3218 unsigned int mmap_miss; !! 2438 pgoff_t offset = vmf->pgoff; 3219 2439 3220 /* If we don't want any read-ahead, d 2440 /* If we don't want any read-ahead, don't bother */ 3221 if (vmf->vma->vm_flags & VM_RAND_READ !! 2441 if (vmf->vma->vm_flags & VM_RAND_READ) 3222 return fpin; 2442 return fpin; 3223 !! 2443 if (ra->mmap_miss > 0) 3224 mmap_miss = READ_ONCE(ra->mmap_miss); !! 2444 ra->mmap_miss--; 3225 if (mmap_miss) !! 2445 if (PageReadahead(page)) { 3226 WRITE_ONCE(ra->mmap_miss, --m << 3227 << 3228 if (folio_test_readahead(folio)) { << 3229 fpin = maybe_unlock_mmap_for_ 2446 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3230 page_cache_async_ra(&ractl, f !! 2447 page_cache_async_readahead(mapping, ra, file, >> 2448 page, offset, ra->ra_pages); 3231 } 2449 } 3232 return fpin; 2450 return fpin; 3233 } 2451 } 3234 2452 3235 static vm_fault_t filemap_fault_recheck_pte_n << 3236 { << 3237 struct vm_area_struct *vma = vmf->vma << 3238 vm_fault_t ret = 0; << 3239 pte_t *ptep; << 3240 << 3241 /* << 3242 * We might have COW'ed a pagecache f << 3243 * anon folio mapped. The original pa << 3244 * might have been evicted. During a << 3245 * the PTE, such as done in do_numa_p << 3246 * temporarily clear the PTE under PT << 3247 * "none" when not holding the PT loc << 3248 * << 3249 * Not rechecking the PTE under PT lo << 3250 * major fault in an mlock'ed region. << 3251 * scenario while holding the PT lock << 3252 * scenarios. Recheck the PTE without << 3253 * the number of times we hold PT loc << 3254 */ << 3255 if (!(vma->vm_flags & VM_LOCKED)) << 3256 return 0; << 3257 << 3258 if (!(vmf->flags & FAULT_FLAG_ORIG_PT << 3259 return 0; << 3260 << 3261 ptep = pte_offset_map_nolock(vma->vm_ << 3262 &vmf->pt << 3263 if (unlikely(!ptep)) << 3264 return VM_FAULT_NOPAGE; << 3265 << 3266 if (unlikely(!pte_none(ptep_get_lockl << 3267 ret = VM_FAULT_NOPAGE; << 3268 } else { << 3269 spin_lock(vmf->ptl); << 3270 if (unlikely(!pte_none(ptep_g << 3271 ret = VM_FAULT_NOPAGE << 3272 spin_unlock(vmf->ptl); << 3273 } << 3274 pte_unmap(ptep); << 3275 return ret; << 3276 } << 3277 << 3278 /** 2453 /** 3279 * filemap_fault - read in file data for page 2454 * filemap_fault - read in file data for page fault handling 3280 * @vmf: struct vm_fault containing de 2455 * @vmf: struct vm_fault containing details of the fault 3281 * 2456 * 3282 * filemap_fault() is invoked via the vma ope 2457 * filemap_fault() is invoked via the vma operations vector for a 3283 * mapped memory region to read in file data 2458 * mapped memory region to read in file data during a page fault. 3284 * 2459 * 3285 * The goto's are kind of ugly, but this stre 2460 * The goto's are kind of ugly, but this streamlines the normal case of having 3286 * it in the page cache, and handles the spec 2461 * it in the page cache, and handles the special cases reasonably without 3287 * having a lot of duplicated code. 2462 * having a lot of duplicated code. 3288 * 2463 * 3289 * vma->vm_mm->mmap_lock must be held on entr !! 2464 * vma->vm_mm->mmap_sem must be held on entry. 3290 * 2465 * 3291 * If our return value has VM_FAULT_RETRY set !! 2466 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem 3292 * may be dropped before doing I/O or by lock !! 2467 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 3293 * 2468 * 3294 * If our return value does not have VM_FAULT !! 2469 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 3295 * has not been released. 2470 * has not been released. 3296 * 2471 * 3297 * We never return with VM_FAULT_RETRY and a 2472 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3298 * 2473 * 3299 * Return: bitwise-OR of %VM_FAULT_ codes. 2474 * Return: bitwise-OR of %VM_FAULT_ codes. 3300 */ 2475 */ 3301 vm_fault_t filemap_fault(struct vm_fault *vmf 2476 vm_fault_t filemap_fault(struct vm_fault *vmf) 3302 { 2477 { 3303 int error; 2478 int error; 3304 struct file *file = vmf->vma->vm_file 2479 struct file *file = vmf->vma->vm_file; 3305 struct file *fpin = NULL; 2480 struct file *fpin = NULL; 3306 struct address_space *mapping = file- 2481 struct address_space *mapping = file->f_mapping; >> 2482 struct file_ra_state *ra = &file->f_ra; 3307 struct inode *inode = mapping->host; 2483 struct inode *inode = mapping->host; 3308 pgoff_t max_idx, index = vmf->pgoff; !! 2484 pgoff_t offset = vmf->pgoff; 3309 struct folio *folio; !! 2485 pgoff_t max_off; >> 2486 struct page *page; 3310 vm_fault_t ret = 0; 2487 vm_fault_t ret = 0; 3311 bool mapping_locked = false; << 3312 2488 3313 max_idx = DIV_ROUND_UP(i_size_read(in !! 2489 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3314 if (unlikely(index >= max_idx)) !! 2490 if (unlikely(offset >= max_off)) 3315 return VM_FAULT_SIGBUS; 2491 return VM_FAULT_SIGBUS; 3316 2492 3317 trace_mm_filemap_fault(mapping, index << 3318 << 3319 /* 2493 /* 3320 * Do we have something in the page c 2494 * Do we have something in the page cache already? 3321 */ 2495 */ 3322 folio = filemap_get_folio(mapping, in !! 2496 page = find_get_page(mapping, offset); 3323 if (likely(!IS_ERR(folio))) { !! 2497 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 3324 /* 2498 /* 3325 * We found the page, so try !! 2499 * We found the page, so try async readahead before 3326 * the lock. !! 2500 * waiting for the lock. 3327 */ 2501 */ 3328 if (!(vmf->flags & FAULT_FLAG !! 2502 fpin = do_async_mmap_readahead(vmf, page); 3329 fpin = do_async_mmap_ !! 2503 } else if (!page) { 3330 if (unlikely(!folio_test_upto << 3331 filemap_invalidate_lo << 3332 mapping_locked = true << 3333 } << 3334 } else { << 3335 ret = filemap_fault_recheck_p << 3336 if (unlikely(ret)) << 3337 return ret; << 3338 << 3339 /* No page in the page cache 2504 /* No page in the page cache at all */ 3340 count_vm_event(PGMAJFAULT); 2505 count_vm_event(PGMAJFAULT); 3341 count_memcg_event_mm(vmf->vma 2506 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3342 ret = VM_FAULT_MAJOR; 2507 ret = VM_FAULT_MAJOR; 3343 fpin = do_sync_mmap_readahead 2508 fpin = do_sync_mmap_readahead(vmf); 3344 retry_find: 2509 retry_find: 3345 /* !! 2510 page = pagecache_get_page(mapping, offset, 3346 * See comment in filemap_cre << 3347 * invalidate_lock << 3348 */ << 3349 if (!mapping_locked) { << 3350 filemap_invalidate_lo << 3351 mapping_locked = true << 3352 } << 3353 folio = __filemap_get_folio(m << 3354 FGP 2511 FGP_CREAT|FGP_FOR_MMAP, 3355 vmf 2512 vmf->gfp_mask); 3356 if (IS_ERR(folio)) { !! 2513 if (!page) { 3357 if (fpin) 2514 if (fpin) 3358 goto out_retr 2515 goto out_retry; 3359 filemap_invalidate_un !! 2516 return vmf_error(-ENOMEM); 3360 return VM_FAULT_OOM; << 3361 } 2517 } 3362 } 2518 } 3363 2519 3364 if (!lock_folio_maybe_drop_mmap(vmf, !! 2520 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 3365 goto out_retry; 2521 goto out_retry; 3366 2522 3367 /* Did it get truncated? */ 2523 /* Did it get truncated? */ 3368 if (unlikely(folio->mapping != mappin !! 2524 if (unlikely(compound_head(page)->mapping != mapping)) { 3369 folio_unlock(folio); !! 2525 unlock_page(page); 3370 folio_put(folio); !! 2526 put_page(page); 3371 goto retry_find; 2527 goto retry_find; 3372 } 2528 } 3373 VM_BUG_ON_FOLIO(!folio_contains(folio !! 2529 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 3374 2530 3375 /* 2531 /* 3376 * We have a locked folio in the page !! 2532 * We have a locked page in the page cache, now we need to check 3377 * that it's up-to-date. If not, it i !! 2533 * that it's up-to-date. If not, it is going to be due to an error. 3378 * or because readahead was otherwise << 3379 */ 2534 */ 3380 if (unlikely(!folio_test_uptodate(fol !! 2535 if (unlikely(!PageUptodate(page))) 3381 /* << 3382 * If the invalidate lock is << 3383 * and uptodate and now it is << 3384 * didn't hold the page lock << 3385 * everything, get the invali << 3386 */ << 3387 if (!mapping_locked) { << 3388 folio_unlock(folio); << 3389 folio_put(folio); << 3390 goto retry_find; << 3391 } << 3392 << 3393 /* << 3394 * OK, the folio is really no << 3395 * VMA has the VM_RAND_READ f << 3396 * arose. Let's read it in di << 3397 */ << 3398 goto page_not_uptodate; 2536 goto page_not_uptodate; 3399 } << 3400 2537 3401 /* 2538 /* 3402 * We've made it this far and we had !! 2539 * We've made it this far and we had to drop our mmap_sem, now is the 3403 * time to return to the upper layer 2540 * time to return to the upper layer and have it re-find the vma and 3404 * redo the fault. 2541 * redo the fault. 3405 */ 2542 */ 3406 if (fpin) { 2543 if (fpin) { 3407 folio_unlock(folio); !! 2544 unlock_page(page); 3408 goto out_retry; 2545 goto out_retry; 3409 } 2546 } 3410 if (mapping_locked) << 3411 filemap_invalidate_unlock_sha << 3412 2547 3413 /* 2548 /* 3414 * Found the page and have a referenc 2549 * Found the page and have a reference on it. 3415 * We must recheck i_size under page 2550 * We must recheck i_size under page lock. 3416 */ 2551 */ 3417 max_idx = DIV_ROUND_UP(i_size_read(in !! 2552 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3418 if (unlikely(index >= max_idx)) { !! 2553 if (unlikely(offset >= max_off)) { 3419 folio_unlock(folio); !! 2554 unlock_page(page); 3420 folio_put(folio); !! 2555 put_page(page); 3421 return VM_FAULT_SIGBUS; 2556 return VM_FAULT_SIGBUS; 3422 } 2557 } 3423 2558 3424 vmf->page = folio_file_page(folio, in !! 2559 vmf->page = page; 3425 return ret | VM_FAULT_LOCKED; 2560 return ret | VM_FAULT_LOCKED; 3426 2561 3427 page_not_uptodate: 2562 page_not_uptodate: 3428 /* 2563 /* 3429 * Umm, take care of errors if the pa 2564 * Umm, take care of errors if the page isn't up-to-date. 3430 * Try to re-read it _once_. We do th 2565 * Try to re-read it _once_. We do this synchronously, 3431 * because there really aren't any pe 2566 * because there really aren't any performance issues here 3432 * and we need to check for errors. 2567 * and we need to check for errors. 3433 */ 2568 */ >> 2569 ClearPageError(page); 3434 fpin = maybe_unlock_mmap_for_io(vmf, 2570 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3435 error = filemap_read_folio(file, mapp !! 2571 error = mapping->a_ops->readpage(file, page); >> 2572 if (!error) { >> 2573 wait_on_page_locked(page); >> 2574 if (!PageUptodate(page)) >> 2575 error = -EIO; >> 2576 } 3436 if (fpin) 2577 if (fpin) 3437 goto out_retry; 2578 goto out_retry; 3438 folio_put(folio); !! 2579 put_page(page); 3439 2580 3440 if (!error || error == AOP_TRUNCATED_ 2581 if (!error || error == AOP_TRUNCATED_PAGE) 3441 goto retry_find; 2582 goto retry_find; 3442 filemap_invalidate_unlock_shared(mapp << 3443 2583 >> 2584 /* Things didn't work out. Return zero to tell the mm layer so. */ >> 2585 shrink_readahead_size_eio(file, ra); 3444 return VM_FAULT_SIGBUS; 2586 return VM_FAULT_SIGBUS; 3445 2587 3446 out_retry: 2588 out_retry: 3447 /* 2589 /* 3448 * We dropped the mmap_lock, we need !! 2590 * We dropped the mmap_sem, we need to return to the fault handler to 3449 * re-find the vma and come back and 2591 * re-find the vma and come back and find our hopefully still populated 3450 * page. 2592 * page. 3451 */ 2593 */ 3452 if (!IS_ERR(folio)) !! 2594 if (page) 3453 folio_put(folio); !! 2595 put_page(page); 3454 if (mapping_locked) << 3455 filemap_invalidate_unlock_sha << 3456 if (fpin) 2596 if (fpin) 3457 fput(fpin); 2597 fput(fpin); 3458 return ret | VM_FAULT_RETRY; 2598 return ret | VM_FAULT_RETRY; 3459 } 2599 } 3460 EXPORT_SYMBOL(filemap_fault); 2600 EXPORT_SYMBOL(filemap_fault); 3461 2601 3462 static bool filemap_map_pmd(struct vm_fault * !! 2602 void filemap_map_pages(struct vm_fault *vmf, 3463 pgoff_t start) !! 2603 pgoff_t start_pgoff, pgoff_t end_pgoff) 3464 { << 3465 struct mm_struct *mm = vmf->vma->vm_m << 3466 << 3467 /* Huge page is mapped? No need to pr << 3468 if (pmd_trans_huge(*vmf->pmd)) { << 3469 folio_unlock(folio); << 3470 folio_put(folio); << 3471 return true; << 3472 } << 3473 << 3474 if (pmd_none(*vmf->pmd) && folio_test << 3475 struct page *page = folio_fil << 3476 vm_fault_t ret = do_set_pmd(v << 3477 if (!ret) { << 3478 /* The page is mapped << 3479 folio_unlock(folio); << 3480 return true; << 3481 } << 3482 } << 3483 << 3484 if (pmd_none(*vmf->pmd) && vmf->preal << 3485 pmd_install(mm, vmf->pmd, &vm << 3486 << 3487 return false; << 3488 } << 3489 << 3490 static struct folio *next_uptodate_folio(stru << 3491 struct address_space *mapping << 3492 { 2604 { 3493 struct folio *folio = xas_next_entry( !! 2605 struct file *file = vmf->vma->vm_file; >> 2606 struct address_space *mapping = file->f_mapping; >> 2607 pgoff_t last_pgoff = start_pgoff; 3494 unsigned long max_idx; 2608 unsigned long max_idx; >> 2609 XA_STATE(xas, &mapping->i_pages, start_pgoff); >> 2610 struct page *page; 3495 2611 3496 do { !! 2612 rcu_read_lock(); 3497 if (!folio) !! 2613 xas_for_each(&xas, page, end_pgoff) { 3498 return NULL; !! 2614 if (xas_retry(&xas, page)) 3499 if (xas_retry(xas, folio)) << 3500 continue; << 3501 if (xa_is_value(folio)) << 3502 continue; << 3503 if (folio_test_locked(folio)) << 3504 continue; << 3505 if (!folio_try_get(folio)) << 3506 continue; 2615 continue; 3507 /* Has the page moved or been !! 2616 if (xa_is_value(page)) 3508 if (unlikely(folio != xas_rel !! 2617 goto next; 3509 goto skip; << 3510 if (!folio_test_uptodate(foli << 3511 goto skip; << 3512 if (!folio_trylock(folio)) << 3513 goto skip; << 3514 if (folio->mapping != mapping << 3515 goto unlock; << 3516 if (!folio_test_uptodate(foli << 3517 goto unlock; << 3518 max_idx = DIV_ROUND_UP(i_size << 3519 if (xas->xa_index >= max_idx) << 3520 goto unlock; << 3521 return folio; << 3522 unlock: << 3523 folio_unlock(folio); << 3524 skip: << 3525 folio_put(folio); << 3526 } while ((folio = xas_next_entry(xas, << 3527 << 3528 return NULL; << 3529 } << 3530 << 3531 /* << 3532 * Map page range [start_page, start_page + n << 3533 * start_page is gotten from start by folio_p << 3534 */ << 3535 static vm_fault_t filemap_map_folio_range(str << 3536 struct folio *folio, << 3537 unsigned long addr, u << 3538 unsigned long *rss, u << 3539 { << 3540 vm_fault_t ret = 0; << 3541 struct page *page = folio_page(folio, << 3542 unsigned int count = 0; << 3543 pte_t *old_ptep = vmf->pte; << 3544 << 3545 do { << 3546 if (PageHWPoison(page + count << 3547 goto skip; << 3548 2618 3549 /* 2619 /* 3550 * If there are too many foli !! 2620 * Check for a locked page first, as a speculative 3551 * in a file, they will proba !! 2621 * reference may adversely influence page migration. 3552 * In such situation, read-ah << 3553 * Don't decrease mmap_miss i << 3554 * we can stop read-ahead. << 3555 */ 2622 */ 3556 if (!folio_test_workingset(fo !! 2623 if (PageLocked(page)) 3557 (*mmap_miss)++; !! 2624 goto next; >> 2625 if (!page_cache_get_speculative(page)) >> 2626 goto next; 3558 2627 3559 /* !! 2628 /* Has the page moved or been split? */ 3560 * NOTE: If there're PTE mark !! 2629 if (unlikely(page != xas_reload(&xas))) 3561 * handled in the specific fa << 3562 * fault-around logic. << 3563 */ << 3564 if (!pte_none(ptep_get(&vmf-> << 3565 goto skip; 2630 goto skip; >> 2631 page = find_subpage(page, xas.xa_index); 3566 2632 3567 count++; !! 2633 if (!PageUptodate(page) || 3568 continue; !! 2634 PageReadahead(page) || 3569 skip: !! 2635 PageHWPoison(page)) 3570 if (count) { !! 2636 goto skip; 3571 set_pte_range(vmf, fo !! 2637 if (!trylock_page(page)) 3572 *rss += count; !! 2638 goto skip; 3573 folio_ref_add(folio, << 3574 if (in_range(vmf->add << 3575 ret = VM_FAUL << 3576 } << 3577 << 3578 count++; << 3579 page += count; << 3580 vmf->pte += count; << 3581 addr += count * PAGE_SIZE; << 3582 count = 0; << 3583 } while (--nr_pages > 0); << 3584 << 3585 if (count) { << 3586 set_pte_range(vmf, folio, pag << 3587 *rss += count; << 3588 folio_ref_add(folio, count); << 3589 if (in_range(vmf->address, ad << 3590 ret = VM_FAULT_NOPAGE << 3591 } << 3592 << 3593 vmf->pte = old_ptep; << 3594 << 3595 return ret; << 3596 } << 3597 << 3598 static vm_fault_t filemap_map_order0_folio(st << 3599 struct folio *folio, unsigned << 3600 unsigned long *rss, unsigned << 3601 { << 3602 vm_fault_t ret = 0; << 3603 struct page *page = &folio->page; << 3604 << 3605 if (PageHWPoison(page)) << 3606 return ret; << 3607 << 3608 /* See comment of filemap_map_folio_r << 3609 if (!folio_test_workingset(folio)) << 3610 (*mmap_miss)++; << 3611 << 3612 /* << 3613 * NOTE: If there're PTE markers, we' << 3614 * handled in the specific fault path << 3615 * the fault-around logic. << 3616 */ << 3617 if (!pte_none(ptep_get(vmf->pte))) << 3618 return ret; << 3619 << 3620 if (vmf->address == addr) << 3621 ret = VM_FAULT_NOPAGE; << 3622 << 3623 set_pte_range(vmf, folio, page, 1, ad << 3624 (*rss)++; << 3625 folio_ref_inc(folio); << 3626 << 3627 return ret; << 3628 } << 3629 << 3630 vm_fault_t filemap_map_pages(struct vm_fault << 3631 pgoff_t start_pg << 3632 { << 3633 struct vm_area_struct *vma = vmf->vma << 3634 struct file *file = vma->vm_file; << 3635 struct address_space *mapping = file- << 3636 pgoff_t file_end, last_pgoff = start_ << 3637 unsigned long addr; << 3638 XA_STATE(xas, &mapping->i_pages, star << 3639 struct folio *folio; << 3640 vm_fault_t ret = 0; << 3641 unsigned long rss = 0; << 3642 unsigned int nr_pages = 0, mmap_miss << 3643 << 3644 rcu_read_lock(); << 3645 folio = next_uptodate_folio(&xas, map << 3646 if (!folio) << 3647 goto out; << 3648 << 3649 if (filemap_map_pmd(vmf, folio, start << 3650 ret = VM_FAULT_NOPAGE; << 3651 goto out; << 3652 } << 3653 2639 3654 addr = vma->vm_start + ((start_pgoff !! 2640 if (page->mapping != mapping || !PageUptodate(page)) 3655 vmf->pte = pte_offset_map_lock(vma->v !! 2641 goto unlock; 3656 if (!vmf->pte) { << 3657 folio_unlock(folio); << 3658 folio_put(folio); << 3659 goto out; << 3660 } << 3661 2642 3662 file_end = DIV_ROUND_UP(i_size_read(m !! 2643 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3663 if (end_pgoff > file_end) !! 2644 if (page->index >= max_idx) 3664 end_pgoff = file_end; !! 2645 goto unlock; 3665 2646 3666 folio_type = mm_counter_file(folio); !! 2647 if (file->f_ra.mmap_miss > 0) 3667 do { !! 2648 file->f_ra.mmap_miss--; 3668 unsigned long end; << 3669 2649 3670 addr += (xas.xa_index - last_ !! 2650 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3671 vmf->pte += xas.xa_index - la !! 2651 if (vmf->pte) >> 2652 vmf->pte += xas.xa_index - last_pgoff; 3672 last_pgoff = xas.xa_index; 2653 last_pgoff = xas.xa_index; 3673 end = folio_next_index(folio) !! 2654 if (alloc_set_pte(vmf, NULL, page)) 3674 nr_pages = min(end, end_pgoff !! 2655 goto unlock; 3675 !! 2656 unlock_page(page); 3676 if (!folio_test_large(folio)) !! 2657 goto next; 3677 ret |= filemap_map_or !! 2658 unlock: 3678 folio !! 2659 unlock_page(page); 3679 else !! 2660 skip: 3680 ret |= filemap_map_fo !! 2661 put_page(page); 3681 xas.x !! 2662 next: 3682 nr_pa !! 2663 /* Huge page is mapped? No need to proceed. */ 3683 !! 2664 if (pmd_trans_huge(*vmf->pmd)) 3684 folio_unlock(folio); !! 2665 break; 3685 folio_put(folio); !! 2666 } 3686 } while ((folio = next_uptodate_folio << 3687 add_mm_counter(vma->vm_mm, folio_type << 3688 pte_unmap_unlock(vmf->pte, vmf->ptl); << 3689 trace_mm_filemap_map_pages(mapping, s << 3690 out: << 3691 rcu_read_unlock(); 2667 rcu_read_unlock(); 3692 << 3693 mmap_miss_saved = READ_ONCE(file->f_r << 3694 if (mmap_miss >= mmap_miss_saved) << 3695 WRITE_ONCE(file->f_ra.mmap_mi << 3696 else << 3697 WRITE_ONCE(file->f_ra.mmap_mi << 3698 << 3699 return ret; << 3700 } 2668 } 3701 EXPORT_SYMBOL(filemap_map_pages); 2669 EXPORT_SYMBOL(filemap_map_pages); 3702 2670 3703 vm_fault_t filemap_page_mkwrite(struct vm_fau 2671 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3704 { 2672 { 3705 struct address_space *mapping = vmf-> !! 2673 struct page *page = vmf->page; 3706 struct folio *folio = page_folio(vmf- !! 2674 struct inode *inode = file_inode(vmf->vma->vm_file); 3707 vm_fault_t ret = VM_FAULT_LOCKED; 2675 vm_fault_t ret = VM_FAULT_LOCKED; 3708 2676 3709 sb_start_pagefault(mapping->host->i_s !! 2677 sb_start_pagefault(inode->i_sb); 3710 file_update_time(vmf->vma->vm_file); 2678 file_update_time(vmf->vma->vm_file); 3711 folio_lock(folio); !! 2679 lock_page(page); 3712 if (folio->mapping != mapping) { !! 2680 if (page->mapping != inode->i_mapping) { 3713 folio_unlock(folio); !! 2681 unlock_page(page); 3714 ret = VM_FAULT_NOPAGE; 2682 ret = VM_FAULT_NOPAGE; 3715 goto out; 2683 goto out; 3716 } 2684 } 3717 /* 2685 /* 3718 * We mark the folio dirty already he !! 2686 * We mark the page dirty already here so that when freeze is in 3719 * progress, we are guaranteed that w 2687 * progress, we are guaranteed that writeback during freezing will 3720 * see the dirty folio and writeprote !! 2688 * see the dirty page and writeprotect it again. 3721 */ 2689 */ 3722 folio_mark_dirty(folio); !! 2690 set_page_dirty(page); 3723 folio_wait_stable(folio); !! 2691 wait_for_stable_page(page); 3724 out: 2692 out: 3725 sb_end_pagefault(mapping->host->i_sb) !! 2693 sb_end_pagefault(inode->i_sb); 3726 return ret; 2694 return ret; 3727 } 2695 } 3728 2696 3729 const struct vm_operations_struct generic_fil 2697 const struct vm_operations_struct generic_file_vm_ops = { 3730 .fault = filemap_fault, 2698 .fault = filemap_fault, 3731 .map_pages = filemap_map_pages, 2699 .map_pages = filemap_map_pages, 3732 .page_mkwrite = filemap_page_mkwrit 2700 .page_mkwrite = filemap_page_mkwrite, 3733 }; 2701 }; 3734 2702 3735 /* This is used for a general mmap of a disk 2703 /* This is used for a general mmap of a disk file */ 3736 2704 3737 int generic_file_mmap(struct file *file, stru !! 2705 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3738 { 2706 { 3739 struct address_space *mapping = file- 2707 struct address_space *mapping = file->f_mapping; 3740 2708 3741 if (!mapping->a_ops->read_folio) !! 2709 if (!mapping->a_ops->readpage) 3742 return -ENOEXEC; 2710 return -ENOEXEC; 3743 file_accessed(file); 2711 file_accessed(file); 3744 vma->vm_ops = &generic_file_vm_ops; 2712 vma->vm_ops = &generic_file_vm_ops; 3745 return 0; 2713 return 0; 3746 } 2714 } 3747 2715 3748 /* 2716 /* 3749 * This is for filesystems which do not imple 2717 * This is for filesystems which do not implement ->writepage. 3750 */ 2718 */ 3751 int generic_file_readonly_mmap(struct file *f 2719 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3752 { 2720 { 3753 if (vma_is_shared_maywrite(vma)) !! 2721 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3754 return -EINVAL; 2722 return -EINVAL; 3755 return generic_file_mmap(file, vma); 2723 return generic_file_mmap(file, vma); 3756 } 2724 } 3757 #else 2725 #else 3758 vm_fault_t filemap_page_mkwrite(struct vm_fau 2726 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3759 { 2727 { 3760 return VM_FAULT_SIGBUS; 2728 return VM_FAULT_SIGBUS; 3761 } 2729 } 3762 int generic_file_mmap(struct file *file, stru !! 2730 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3763 { 2731 { 3764 return -ENOSYS; 2732 return -ENOSYS; 3765 } 2733 } 3766 int generic_file_readonly_mmap(struct file *f !! 2734 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3767 { 2735 { 3768 return -ENOSYS; 2736 return -ENOSYS; 3769 } 2737 } 3770 #endif /* CONFIG_MMU */ 2738 #endif /* CONFIG_MMU */ 3771 2739 3772 EXPORT_SYMBOL(filemap_page_mkwrite); 2740 EXPORT_SYMBOL(filemap_page_mkwrite); 3773 EXPORT_SYMBOL(generic_file_mmap); 2741 EXPORT_SYMBOL(generic_file_mmap); 3774 EXPORT_SYMBOL(generic_file_readonly_mmap); 2742 EXPORT_SYMBOL(generic_file_readonly_mmap); 3775 2743 3776 static struct folio *do_read_cache_folio(stru !! 2744 static struct page *wait_on_page_read(struct page *page) 3777 pgoff_t index, filler_t fille << 3778 { 2745 { 3779 struct folio *folio; !! 2746 if (!IS_ERR(page)) { 3780 int err; !! 2747 wait_on_page_locked(page); >> 2748 if (!PageUptodate(page)) { >> 2749 put_page(page); >> 2750 page = ERR_PTR(-EIO); >> 2751 } >> 2752 } >> 2753 return page; >> 2754 } 3781 2755 3782 if (!filler) !! 2756 static struct page *do_read_cache_page(struct address_space *mapping, 3783 filler = mapping->a_ops->read !! 2757 pgoff_t index, >> 2758 int (*filler)(void *, struct page *), >> 2759 void *data, >> 2760 gfp_t gfp) >> 2761 { >> 2762 struct page *page; >> 2763 int err; 3784 repeat: 2764 repeat: 3785 folio = filemap_get_folio(mapping, in !! 2765 page = find_get_page(mapping, index); 3786 if (IS_ERR(folio)) { !! 2766 if (!page) { 3787 folio = filemap_alloc_folio(g !! 2767 page = __page_cache_alloc(gfp); 3788 m !! 2768 if (!page) 3789 if (!folio) << 3790 return ERR_PTR(-ENOME 2769 return ERR_PTR(-ENOMEM); 3791 index = mapping_align_index(m !! 2770 err = add_to_page_cache_lru(page, mapping, index, gfp); 3792 err = filemap_add_folio(mappi << 3793 if (unlikely(err)) { 2771 if (unlikely(err)) { 3794 folio_put(folio); !! 2772 put_page(page); 3795 if (err == -EEXIST) 2773 if (err == -EEXIST) 3796 goto repeat; 2774 goto repeat; 3797 /* Presumably ENOMEM 2775 /* Presumably ENOMEM for xarray node */ 3798 return ERR_PTR(err); 2776 return ERR_PTR(err); 3799 } 2777 } 3800 2778 3801 goto filler; !! 2779 filler: >> 2780 if (filler) >> 2781 err = filler(data, page); >> 2782 else >> 2783 err = mapping->a_ops->readpage(data, page); >> 2784 >> 2785 if (err < 0) { >> 2786 put_page(page); >> 2787 return ERR_PTR(err); >> 2788 } >> 2789 >> 2790 page = wait_on_page_read(page); >> 2791 if (IS_ERR(page)) >> 2792 return page; >> 2793 goto out; 3802 } 2794 } 3803 if (folio_test_uptodate(folio)) !! 2795 if (PageUptodate(page)) 3804 goto out; 2796 goto out; 3805 2797 3806 if (!folio_trylock(folio)) { !! 2798 /* 3807 folio_put_wait_locked(folio, !! 2799 * Page is not up to date and may be locked due one of the following 3808 goto repeat; !! 2800 * case a: Page is being filled and the page lock is held 3809 } !! 2801 * case b: Read/write error clearing the page uptodate status >> 2802 * case c: Truncation in progress (page locked) >> 2803 * case d: Reclaim in progress >> 2804 * >> 2805 * Case a, the page will be up to date when the page is unlocked. >> 2806 * There is no need to serialise on the page lock here as the page >> 2807 * is pinned so the lock gives no additional protection. Even if the >> 2808 * the page is truncated, the data is still valid if PageUptodate as >> 2809 * it's a race vs truncate race. >> 2810 * Case b, the page will not be up to date >> 2811 * Case c, the page may be truncated but in itself, the data may still >> 2812 * be valid after IO completes as it's a read vs truncate race. The >> 2813 * operation must restart if the page is not uptodate on unlock but >> 2814 * otherwise serialising on page lock to stabilise the mapping gives >> 2815 * no additional guarantees to the caller as the page lock is >> 2816 * released before return. >> 2817 * Case d, similar to truncation. If reclaim holds the page lock, it >> 2818 * will be a race with remove_mapping that determines if the mapping >> 2819 * is valid on unlock but otherwise the data is valid and there is >> 2820 * no need to serialise with page lock. >> 2821 * >> 2822 * As the page lock gives no additional guarantee, we optimistically >> 2823 * wait on the page to be unlocked and check if it's up to date and >> 2824 * use the page if it is. Otherwise, the page lock is required to >> 2825 * distinguish between the different cases. The motivation is that we >> 2826 * avoid spurious serialisations and wakeups when multiple processes >> 2827 * wait on the same page for IO to complete. >> 2828 */ >> 2829 wait_on_page_locked(page); >> 2830 if (PageUptodate(page)) >> 2831 goto out; 3810 2832 3811 /* Folio was truncated from mapping * !! 2833 /* Distinguish between all the cases under the safety of the lock */ 3812 if (!folio->mapping) { !! 2834 lock_page(page); 3813 folio_unlock(folio); !! 2835 3814 folio_put(folio); !! 2836 /* Case c or d, restart the operation */ >> 2837 if (!page->mapping) { >> 2838 unlock_page(page); >> 2839 put_page(page); 3815 goto repeat; 2840 goto repeat; 3816 } 2841 } 3817 2842 3818 /* Someone else locked and filled the 2843 /* Someone else locked and filled the page in a very small window */ 3819 if (folio_test_uptodate(folio)) { !! 2844 if (PageUptodate(page)) { 3820 folio_unlock(folio); !! 2845 unlock_page(page); 3821 goto out; 2846 goto out; 3822 } 2847 } 3823 !! 2848 goto filler; 3824 filler: << 3825 err = filemap_read_folio(file, filler << 3826 if (err) { << 3827 folio_put(folio); << 3828 if (err == AOP_TRUNCATED_PAGE << 3829 goto repeat; << 3830 return ERR_PTR(err); << 3831 } << 3832 2849 3833 out: 2850 out: 3834 folio_mark_accessed(folio); !! 2851 mark_page_accessed(page); 3835 return folio; !! 2852 return page; 3836 } << 3837 << 3838 /** << 3839 * read_cache_folio - Read into page cache, f << 3840 * @mapping: The address_space to read from. << 3841 * @index: The index to read. << 3842 * @filler: Function to perform the read, or << 3843 * @file: Passed to filler function, may be N << 3844 * << 3845 * Read one page into the page cache. If it << 3846 * will contain @index, but it may not be the << 3847 * << 3848 * If the filler function returns an error, i << 3849 * caller. << 3850 * << 3851 * Context: May sleep. Expects mapping->inva << 3852 * Return: An uptodate folio on success, ERR_ << 3853 */ << 3854 struct folio *read_cache_folio(struct address << 3855 filler_t filler, struct file << 3856 { << 3857 return do_read_cache_folio(mapping, i << 3858 mapping_gfp_mask(mapp << 3859 } 2853 } 3860 EXPORT_SYMBOL(read_cache_folio); << 3861 2854 3862 /** 2855 /** 3863 * mapping_read_folio_gfp - Read into page ca !! 2856 * read_cache_page - read into page cache, fill it if needed 3864 * @mapping: The address_space for the fol !! 2857 * @mapping: the page's address_space 3865 * @index: The index that the allocated !! 2858 * @index: the page index 3866 * @gfp: The page allocator flags to u !! 2859 * @filler: function to perform the read 3867 * !! 2860 * @data: first arg to filler(data, page) function, often left as NULL 3868 * This is the same as "read_cache_folio(mapp << 3869 * any new memory allocations done using the << 3870 * 2861 * 3871 * The most likely error from this function i !! 2862 * Read into the page cache. If a page already exists, and PageUptodate() is 3872 * possible and so is EINTR. If ->read_folio !! 2863 * not set, try to fill the page and wait for it to become unlocked. 3873 * that will be returned to the caller. << 3874 * 2864 * 3875 * The function expects mapping->invalidate_l !! 2865 * If the page does not get brought uptodate, return -EIO. 3876 * 2866 * 3877 * Return: Uptodate folio on success, ERR_PTR !! 2867 * Return: up to date page on success, ERR_PTR() on failure. 3878 */ 2868 */ 3879 struct folio *mapping_read_folio_gfp(struct a << 3880 pgoff_t index, gfp_t gfp) << 3881 { << 3882 return do_read_cache_folio(mapping, i << 3883 } << 3884 EXPORT_SYMBOL(mapping_read_folio_gfp); << 3885 << 3886 static struct page *do_read_cache_page(struct << 3887 pgoff_t index, filler_t *fill << 3888 { << 3889 struct folio *folio; << 3890 << 3891 folio = do_read_cache_folio(mapping, << 3892 if (IS_ERR(folio)) << 3893 return &folio->page; << 3894 return folio_file_page(folio, index); << 3895 } << 3896 << 3897 struct page *read_cache_page(struct address_s 2869 struct page *read_cache_page(struct address_space *mapping, 3898 pgoff_t index, filler !! 2870 pgoff_t index, >> 2871 int (*filler)(void *, struct page *), >> 2872 void *data) 3899 { 2873 { 3900 return do_read_cache_page(mapping, in !! 2874 return do_read_cache_page(mapping, index, filler, data, 3901 mapping_gfp_mask(mapp 2875 mapping_gfp_mask(mapping)); 3902 } 2876 } 3903 EXPORT_SYMBOL(read_cache_page); 2877 EXPORT_SYMBOL(read_cache_page); 3904 2878 3905 /** 2879 /** 3906 * read_cache_page_gfp - read into page cache 2880 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3907 * @mapping: the page's address_space 2881 * @mapping: the page's address_space 3908 * @index: the page index 2882 * @index: the page index 3909 * @gfp: the page allocator flags to u 2883 * @gfp: the page allocator flags to use if allocating 3910 * 2884 * 3911 * This is the same as "read_mapping_page(map 2885 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3912 * any new page allocations done using the sp 2886 * any new page allocations done using the specified allocation flags. 3913 * 2887 * 3914 * If the page does not get brought uptodate, 2888 * If the page does not get brought uptodate, return -EIO. 3915 * 2889 * 3916 * The function expects mapping->invalidate_l << 3917 * << 3918 * Return: up to date page on success, ERR_PT 2890 * Return: up to date page on success, ERR_PTR() on failure. 3919 */ 2891 */ 3920 struct page *read_cache_page_gfp(struct addre 2892 struct page *read_cache_page_gfp(struct address_space *mapping, 3921 pgoff_t index 2893 pgoff_t index, 3922 gfp_t gfp) 2894 gfp_t gfp) 3923 { 2895 { 3924 return do_read_cache_page(mapping, in 2896 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3925 } 2897 } 3926 EXPORT_SYMBOL(read_cache_page_gfp); 2898 EXPORT_SYMBOL(read_cache_page_gfp); 3927 2899 3928 /* 2900 /* >> 2901 * Don't operate on ranges the page cache doesn't support, and don't exceed the >> 2902 * LFS limits. If pos is under the limit it becomes a short access. If it >> 2903 * exceeds the limit we return -EFBIG. >> 2904 */ >> 2905 static int generic_write_check_limits(struct file *file, loff_t pos, >> 2906 loff_t *count) >> 2907 { >> 2908 struct inode *inode = file->f_mapping->host; >> 2909 loff_t max_size = inode->i_sb->s_maxbytes; >> 2910 loff_t limit = rlimit(RLIMIT_FSIZE); >> 2911 >> 2912 if (limit != RLIM_INFINITY) { >> 2913 if (pos >= limit) { >> 2914 send_sig(SIGXFSZ, current, 0); >> 2915 return -EFBIG; >> 2916 } >> 2917 *count = min(*count, limit - pos); >> 2918 } >> 2919 >> 2920 if (!(file->f_flags & O_LARGEFILE)) >> 2921 max_size = MAX_NON_LFS; >> 2922 >> 2923 if (unlikely(pos >= max_size)) >> 2924 return -EFBIG; >> 2925 >> 2926 *count = min(*count, max_size - pos); >> 2927 >> 2928 return 0; >> 2929 } >> 2930 >> 2931 /* >> 2932 * Performs necessary checks before doing a write >> 2933 * >> 2934 * Can adjust writing position or amount of bytes to write. >> 2935 * Returns appropriate error code that caller should return or >> 2936 * zero in case that write should be allowed. >> 2937 */ >> 2938 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) >> 2939 { >> 2940 struct file *file = iocb->ki_filp; >> 2941 struct inode *inode = file->f_mapping->host; >> 2942 loff_t count; >> 2943 int ret; >> 2944 >> 2945 if (IS_SWAPFILE(inode)) >> 2946 return -ETXTBSY; >> 2947 >> 2948 if (!iov_iter_count(from)) >> 2949 return 0; >> 2950 >> 2951 /* FIXME: this is for backwards compatibility with 2.4 */ >> 2952 if (iocb->ki_flags & IOCB_APPEND) >> 2953 iocb->ki_pos = i_size_read(inode); >> 2954 >> 2955 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) >> 2956 return -EINVAL; >> 2957 >> 2958 count = iov_iter_count(from); >> 2959 ret = generic_write_check_limits(file, iocb->ki_pos, &count); >> 2960 if (ret) >> 2961 return ret; >> 2962 >> 2963 iov_iter_truncate(from, count); >> 2964 return iov_iter_count(from); >> 2965 } >> 2966 EXPORT_SYMBOL(generic_write_checks); >> 2967 >> 2968 /* >> 2969 * Performs necessary checks before doing a clone. >> 2970 * >> 2971 * Can adjust amount of bytes to clone via @req_count argument. >> 2972 * Returns appropriate error code that caller should return or >> 2973 * zero in case the clone should be allowed. >> 2974 */ >> 2975 int generic_remap_checks(struct file *file_in, loff_t pos_in, >> 2976 struct file *file_out, loff_t pos_out, >> 2977 loff_t *req_count, unsigned int remap_flags) >> 2978 { >> 2979 struct inode *inode_in = file_in->f_mapping->host; >> 2980 struct inode *inode_out = file_out->f_mapping->host; >> 2981 uint64_t count = *req_count; >> 2982 uint64_t bcount; >> 2983 loff_t size_in, size_out; >> 2984 loff_t bs = inode_out->i_sb->s_blocksize; >> 2985 int ret; >> 2986 >> 2987 /* The start of both ranges must be aligned to an fs block. */ >> 2988 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) >> 2989 return -EINVAL; >> 2990 >> 2991 /* Ensure offsets don't wrap. */ >> 2992 if (pos_in + count < pos_in || pos_out + count < pos_out) >> 2993 return -EINVAL; >> 2994 >> 2995 size_in = i_size_read(inode_in); >> 2996 size_out = i_size_read(inode_out); >> 2997 >> 2998 /* Dedupe requires both ranges to be within EOF. */ >> 2999 if ((remap_flags & REMAP_FILE_DEDUP) && >> 3000 (pos_in >= size_in || pos_in + count > size_in || >> 3001 pos_out >= size_out || pos_out + count > size_out)) >> 3002 return -EINVAL; >> 3003 >> 3004 /* Ensure the infile range is within the infile. */ >> 3005 if (pos_in >= size_in) >> 3006 return -EINVAL; >> 3007 count = min(count, size_in - (uint64_t)pos_in); >> 3008 >> 3009 ret = generic_write_check_limits(file_out, pos_out, &count); >> 3010 if (ret) >> 3011 return ret; >> 3012 >> 3013 /* >> 3014 * If the user wanted us to link to the infile's EOF, round up to the >> 3015 * next block boundary for this check. >> 3016 * >> 3017 * Otherwise, make sure the count is also block-aligned, having >> 3018 * already confirmed the starting offsets' block alignment. >> 3019 */ >> 3020 if (pos_in + count == size_in) { >> 3021 bcount = ALIGN(size_in, bs) - pos_in; >> 3022 } else { >> 3023 if (!IS_ALIGNED(count, bs)) >> 3024 count = ALIGN_DOWN(count, bs); >> 3025 bcount = count; >> 3026 } >> 3027 >> 3028 /* Don't allow overlapped cloning within the same file. */ >> 3029 if (inode_in == inode_out && >> 3030 pos_out + bcount > pos_in && >> 3031 pos_out < pos_in + bcount) >> 3032 return -EINVAL; >> 3033 >> 3034 /* >> 3035 * We shortened the request but the caller can't deal with that, so >> 3036 * bounce the request back to userspace. >> 3037 */ >> 3038 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) >> 3039 return -EINVAL; >> 3040 >> 3041 *req_count = count; >> 3042 return 0; >> 3043 } >> 3044 >> 3045 >> 3046 /* >> 3047 * Performs common checks before doing a file copy/clone >> 3048 * from @file_in to @file_out. >> 3049 */ >> 3050 int generic_file_rw_checks(struct file *file_in, struct file *file_out) >> 3051 { >> 3052 struct inode *inode_in = file_inode(file_in); >> 3053 struct inode *inode_out = file_inode(file_out); >> 3054 >> 3055 /* Don't copy dirs, pipes, sockets... */ >> 3056 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) >> 3057 return -EISDIR; >> 3058 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) >> 3059 return -EINVAL; >> 3060 >> 3061 if (!(file_in->f_mode & FMODE_READ) || >> 3062 !(file_out->f_mode & FMODE_WRITE) || >> 3063 (file_out->f_flags & O_APPEND)) >> 3064 return -EBADF; >> 3065 >> 3066 return 0; >> 3067 } >> 3068 >> 3069 /* >> 3070 * Performs necessary checks before doing a file copy >> 3071 * >> 3072 * Can adjust amount of bytes to copy via @req_count argument. >> 3073 * Returns appropriate error code that caller should return or >> 3074 * zero in case the copy should be allowed. >> 3075 */ >> 3076 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, >> 3077 struct file *file_out, loff_t pos_out, >> 3078 size_t *req_count, unsigned int flags) >> 3079 { >> 3080 struct inode *inode_in = file_inode(file_in); >> 3081 struct inode *inode_out = file_inode(file_out); >> 3082 uint64_t count = *req_count; >> 3083 loff_t size_in; >> 3084 int ret; >> 3085 >> 3086 ret = generic_file_rw_checks(file_in, file_out); >> 3087 if (ret) >> 3088 return ret; >> 3089 >> 3090 /* Don't touch certain kinds of inodes */ >> 3091 if (IS_IMMUTABLE(inode_out)) >> 3092 return -EPERM; >> 3093 >> 3094 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) >> 3095 return -ETXTBSY; >> 3096 >> 3097 /* Ensure offsets don't wrap. */ >> 3098 if (pos_in + count < pos_in || pos_out + count < pos_out) >> 3099 return -EOVERFLOW; >> 3100 >> 3101 /* Shorten the copy to EOF */ >> 3102 size_in = i_size_read(inode_in); >> 3103 if (pos_in >= size_in) >> 3104 count = 0; >> 3105 else >> 3106 count = min(count, size_in - (uint64_t)pos_in); >> 3107 >> 3108 ret = generic_write_check_limits(file_out, pos_out, &count); >> 3109 if (ret) >> 3110 return ret; >> 3111 >> 3112 /* Don't allow overlapped copying within the same file. */ >> 3113 if (inode_in == inode_out && >> 3114 pos_out + count > pos_in && >> 3115 pos_out < pos_in + count) >> 3116 return -EINVAL; >> 3117 >> 3118 *req_count = count; >> 3119 return 0; >> 3120 } >> 3121 >> 3122 int pagecache_write_begin(struct file *file, struct address_space *mapping, >> 3123 loff_t pos, unsigned len, unsigned flags, >> 3124 struct page **pagep, void **fsdata) >> 3125 { >> 3126 const struct address_space_operations *aops = mapping->a_ops; >> 3127 >> 3128 return aops->write_begin(file, mapping, pos, len, flags, >> 3129 pagep, fsdata); >> 3130 } >> 3131 EXPORT_SYMBOL(pagecache_write_begin); >> 3132 >> 3133 int pagecache_write_end(struct file *file, struct address_space *mapping, >> 3134 loff_t pos, unsigned len, unsigned copied, >> 3135 struct page *page, void *fsdata) >> 3136 { >> 3137 const struct address_space_operations *aops = mapping->a_ops; >> 3138 >> 3139 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); >> 3140 } >> 3141 EXPORT_SYMBOL(pagecache_write_end); >> 3142 >> 3143 /* 3929 * Warn about a page cache invalidation failu 3144 * Warn about a page cache invalidation failure during a direct I/O write. 3930 */ 3145 */ 3931 static void dio_warn_stale_pagecache(struct f !! 3146 void dio_warn_stale_pagecache(struct file *filp) 3932 { 3147 { 3933 static DEFINE_RATELIMIT_STATE(_rs, 86 3148 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3934 char pathname[128]; 3149 char pathname[128]; >> 3150 struct inode *inode = file_inode(filp); 3935 char *path; 3151 char *path; 3936 3152 3937 errseq_set(&filp->f_mapping->wb_err, !! 3153 errseq_set(&inode->i_mapping->wb_err, -EIO); 3938 if (__ratelimit(&_rs)) { 3154 if (__ratelimit(&_rs)) { 3939 path = file_path(filp, pathna 3155 path = file_path(filp, pathname, sizeof(pathname)); 3940 if (IS_ERR(path)) 3156 if (IS_ERR(path)) 3941 path = "(unknown)"; 3157 path = "(unknown)"; 3942 pr_crit("Page cache invalidat 3158 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3943 pr_crit("File: %s PID: %d Com 3159 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3944 current->comm); 3160 current->comm); 3945 } 3161 } 3946 } 3162 } 3947 3163 3948 void kiocb_invalidate_post_direct_write(struc << 3949 { << 3950 struct address_space *mapping = iocb- << 3951 << 3952 if (mapping->nrpages && << 3953 invalidate_inode_pages2_range(map << 3954 iocb->ki_pos >> PAGE_ << 3955 (iocb->ki_pos + count << 3956 dio_warn_stale_pagecache(iocb << 3957 } << 3958 << 3959 ssize_t 3164 ssize_t 3960 generic_file_direct_write(struct kiocb *iocb, 3165 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3961 { 3166 { 3962 struct address_space *mapping = iocb- !! 3167 struct file *file = iocb->ki_filp; 3963 size_t write_len = iov_iter_count(fro !! 3168 struct address_space *mapping = file->f_mapping; 3964 ssize_t written; !! 3169 struct inode *inode = mapping->host; >> 3170 loff_t pos = iocb->ki_pos; >> 3171 ssize_t written; >> 3172 size_t write_len; >> 3173 pgoff_t end; >> 3174 >> 3175 write_len = iov_iter_count(from); >> 3176 end = (pos + write_len - 1) >> PAGE_SHIFT; >> 3177 >> 3178 if (iocb->ki_flags & IOCB_NOWAIT) { >> 3179 /* If there are pages to writeback, return */ >> 3180 if (filemap_range_has_page(inode->i_mapping, pos, >> 3181 pos + write_len - 1)) >> 3182 return -EAGAIN; >> 3183 } else { >> 3184 written = filemap_write_and_wait_range(mapping, pos, >> 3185 pos + write_len - 1); >> 3186 if (written) >> 3187 goto out; >> 3188 } 3965 3189 3966 /* 3190 /* >> 3191 * After a write we want buffered reads to be sure to go to disk to get >> 3192 * the new data. We invalidate clean cached page from the region we're >> 3193 * about to write. We do this *before* the write so that we can return >> 3194 * without clobbering -EIOCBQUEUED from ->direct_IO(). >> 3195 */ >> 3196 written = invalidate_inode_pages2_range(mapping, >> 3197 pos >> PAGE_SHIFT, end); >> 3198 /* 3967 * If a page can not be invalidated, 3199 * If a page can not be invalidated, return 0 to fall back 3968 * to buffered write. 3200 * to buffered write. 3969 */ 3201 */ 3970 written = kiocb_invalidate_pages(iocb << 3971 if (written) { 3202 if (written) { 3972 if (written == -EBUSY) 3203 if (written == -EBUSY) 3973 return 0; 3204 return 0; 3974 return written; !! 3205 goto out; 3975 } 3206 } 3976 3207 3977 written = mapping->a_ops->direct_IO(i 3208 written = mapping->a_ops->direct_IO(iocb, from); 3978 3209 3979 /* 3210 /* 3980 * Finally, try again to invalidate c 3211 * Finally, try again to invalidate clean pages which might have been 3981 * cached by non-direct readahead, or 3212 * cached by non-direct readahead, or faulted in by get_user_pages() 3982 * if the source of the write was an 3213 * if the source of the write was an mmap'ed region of the file 3983 * we're writing. Either one is a pr 3214 * we're writing. Either one is a pretty crazy thing to do, 3984 * so we don't support it 100%. If t 3215 * so we don't support it 100%. If this invalidation 3985 * fails, tough, the write still work 3216 * fails, tough, the write still worked... 3986 * 3217 * 3987 * Most of the time we do not need th 3218 * Most of the time we do not need this since dio_complete() will do 3988 * the invalidation for us. However t 3219 * the invalidation for us. However there are some file systems that 3989 * do not end up with dio_complete() 3220 * do not end up with dio_complete() being called, so let's not break 3990 * them by removing it completely. 3221 * them by removing it completely. 3991 * 3222 * 3992 * Noticeable example is a blkdev_dir 3223 * Noticeable example is a blkdev_direct_IO(). 3993 * 3224 * 3994 * Skip invalidation for async writes 3225 * Skip invalidation for async writes or if mapping has no pages. 3995 */ 3226 */ 3996 if (written > 0) { !! 3227 if (written > 0 && mapping->nrpages && 3997 struct inode *inode = mapping !! 3228 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3998 loff_t pos = iocb->ki_pos; !! 3229 dio_warn_stale_pagecache(file); 3999 3230 4000 kiocb_invalidate_post_direct_ !! 3231 if (written > 0) { 4001 pos += written; 3232 pos += written; 4002 write_len -= written; 3233 write_len -= written; 4003 if (pos > i_size_read(inode) 3234 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4004 i_size_write(inode, p 3235 i_size_write(inode, pos); 4005 mark_inode_dirty(inod 3236 mark_inode_dirty(inode); 4006 } 3237 } 4007 iocb->ki_pos = pos; 3238 iocb->ki_pos = pos; 4008 } 3239 } 4009 if (written != -EIOCBQUEUED) !! 3240 iov_iter_revert(from, write_len - iov_iter_count(from)); 4010 iov_iter_revert(from, write_l !! 3241 out: 4011 return written; 3242 return written; 4012 } 3243 } 4013 EXPORT_SYMBOL(generic_file_direct_write); 3244 EXPORT_SYMBOL(generic_file_direct_write); 4014 3245 4015 ssize_t generic_perform_write(struct kiocb *i !! 3246 /* >> 3247 * Find or create a page at the given pagecache position. Return the locked >> 3248 * page. This function is specifically for buffered writes. >> 3249 */ >> 3250 struct page *grab_cache_page_write_begin(struct address_space *mapping, >> 3251 pgoff_t index, unsigned flags) >> 3252 { >> 3253 struct page *page; >> 3254 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; >> 3255 >> 3256 if (flags & AOP_FLAG_NOFS) >> 3257 fgp_flags |= FGP_NOFS; >> 3258 >> 3259 page = pagecache_get_page(mapping, index, fgp_flags, >> 3260 mapping_gfp_mask(mapping)); >> 3261 if (page) >> 3262 wait_for_stable_page(page); >> 3263 >> 3264 return page; >> 3265 } >> 3266 EXPORT_SYMBOL(grab_cache_page_write_begin); >> 3267 >> 3268 ssize_t generic_perform_write(struct file *file, >> 3269 struct iov_iter *i, loff_t pos) 4016 { 3270 { 4017 struct file *file = iocb->ki_filp; << 4018 loff_t pos = iocb->ki_pos; << 4019 struct address_space *mapping = file- 3271 struct address_space *mapping = file->f_mapping; 4020 const struct address_space_operations 3272 const struct address_space_operations *a_ops = mapping->a_ops; 4021 size_t chunk = mapping_max_folio_size << 4022 long status = 0; 3273 long status = 0; 4023 ssize_t written = 0; 3274 ssize_t written = 0; >> 3275 unsigned int flags = 0; 4024 3276 4025 do { 3277 do { 4026 struct folio *folio; !! 3278 struct page *page; 4027 size_t offset; /* Of !! 3279 unsigned long offset; /* Offset into pagecache page */ 4028 size_t bytes; /* By !! 3280 unsigned long bytes; /* Bytes to write to page */ 4029 size_t copied; /* By 3281 size_t copied; /* Bytes copied from user */ 4030 void *fsdata = NULL; !! 3282 void *fsdata; 4031 3283 4032 bytes = iov_iter_count(i); !! 3284 offset = (pos & (PAGE_SIZE - 1)); 4033 retry: !! 3285 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4034 offset = pos & (chunk - 1); !! 3286 iov_iter_count(i)); 4035 bytes = min(chunk - offset, b << 4036 balance_dirty_pages_ratelimit << 4037 3287 >> 3288 again: 4038 /* 3289 /* 4039 * Bring in the user page tha 3290 * Bring in the user page that we will copy from _first_. 4040 * Otherwise there's a nasty 3291 * Otherwise there's a nasty deadlock on copying from the 4041 * same page as we're writing 3292 * same page as we're writing to, without it being marked 4042 * up-to-date. 3293 * up-to-date. >> 3294 * >> 3295 * Not only is this an optimisation, but it is also required >> 3296 * to check that the address is actually valid, when atomic >> 3297 * usercopies are used, below. 4043 */ 3298 */ 4044 if (unlikely(fault_in_iov_ite !! 3299 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 4045 status = -EFAULT; 3300 status = -EFAULT; 4046 break; 3301 break; 4047 } 3302 } 4048 3303 4049 if (fatal_signal_pending(curr 3304 if (fatal_signal_pending(current)) { 4050 status = -EINTR; 3305 status = -EINTR; 4051 break; 3306 break; 4052 } 3307 } 4053 3308 4054 status = a_ops->write_begin(f !! 3309 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 4055 !! 3310 &page, &fsdata); 4056 if (unlikely(status < 0)) 3311 if (unlikely(status < 0)) 4057 break; 3312 break; 4058 3313 4059 offset = offset_in_folio(foli << 4060 if (bytes > folio_size(folio) << 4061 bytes = folio_size(fo << 4062 << 4063 if (mapping_writably_mapped(m 3314 if (mapping_writably_mapped(mapping)) 4064 flush_dcache_folio(fo !! 3315 flush_dcache_page(page); 4065 3316 4066 copied = copy_folio_from_iter !! 3317 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 4067 flush_dcache_folio(folio); !! 3318 flush_dcache_page(page); 4068 3319 4069 status = a_ops->write_end(fil 3320 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4070 !! 3321 page, fsdata); 4071 if (unlikely(status != copied !! 3322 if (unlikely(status < 0)) 4072 iov_iter_revert(i, co !! 3323 break; 4073 if (unlikely(status < !! 3324 copied = status; 4074 break; !! 3325 4075 } << 4076 cond_resched(); 3326 cond_resched(); 4077 3327 4078 if (unlikely(status == 0)) { !! 3328 iov_iter_advance(i, copied); >> 3329 if (unlikely(copied == 0)) { 4079 /* 3330 /* 4080 * A short copy made !! 3331 * If we were unable to copy any data at all, we must 4081 * thing entirely. M !! 3332 * fall back to a single segment length write. 4082 * halfway through, m !! 3333 * 4083 * might be severe me !! 3334 * If we didn't fallback here, we could livelock >> 3335 * because not all segments in the iov can be copied at >> 3336 * once without a pagefault. 4084 */ 3337 */ 4085 if (chunk > PAGE_SIZE !! 3338 bytes = min_t(unsigned long, PAGE_SIZE - offset, 4086 chunk /= 2; !! 3339 iov_iter_single_seg_count(i)); 4087 if (copied) { !! 3340 goto again; 4088 bytes = copie << 4089 goto retry; << 4090 } << 4091 } else { << 4092 pos += status; << 4093 written += status; << 4094 } 3341 } >> 3342 pos += copied; >> 3343 written += copied; >> 3344 >> 3345 balance_dirty_pages_ratelimited(mapping); 4095 } while (iov_iter_count(i)); 3346 } while (iov_iter_count(i)); 4096 3347 4097 if (!written) !! 3348 return written ? written : status; 4098 return status; << 4099 iocb->ki_pos += written; << 4100 return written; << 4101 } 3349 } 4102 EXPORT_SYMBOL(generic_perform_write); 3350 EXPORT_SYMBOL(generic_perform_write); 4103 3351 4104 /** 3352 /** 4105 * __generic_file_write_iter - write data to 3353 * __generic_file_write_iter - write data to a file 4106 * @iocb: IO state structure (file, off 3354 * @iocb: IO state structure (file, offset, etc.) 4107 * @from: iov_iter with data to write 3355 * @from: iov_iter with data to write 4108 * 3356 * 4109 * This function does all the work needed for 3357 * This function does all the work needed for actually writing data to a 4110 * file. It does all basic checks, removes SU 3358 * file. It does all basic checks, removes SUID from the file, updates 4111 * modification times and calls proper subrou 3359 * modification times and calls proper subroutines depending on whether we 4112 * do direct IO or a standard buffered write. 3360 * do direct IO or a standard buffered write. 4113 * 3361 * 4114 * It expects i_rwsem to be grabbed unless we !! 3362 * It expects i_mutex to be grabbed unless we work on a block device or similar 4115 * object which does not need locking at all. 3363 * object which does not need locking at all. 4116 * 3364 * 4117 * This function does *not* take care of sync 3365 * This function does *not* take care of syncing data in case of O_SYNC write. 4118 * A caller has to handle it. This is mainly 3366 * A caller has to handle it. This is mainly due to the fact that we want to 4119 * avoid syncing under i_rwsem. !! 3367 * avoid syncing under i_mutex. 4120 * 3368 * 4121 * Return: 3369 * Return: 4122 * * number of bytes written, even for trunca 3370 * * number of bytes written, even for truncated writes 4123 * * negative error code if no data has been 3371 * * negative error code if no data has been written at all 4124 */ 3372 */ 4125 ssize_t __generic_file_write_iter(struct kioc 3373 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4126 { 3374 { 4127 struct file *file = iocb->ki_filp; 3375 struct file *file = iocb->ki_filp; 4128 struct address_space *mapping = file- !! 3376 struct address_space * mapping = file->f_mapping; 4129 struct inode *inode = mapping->host; !! 3377 struct inode *inode = mapping->host; 4130 ssize_t ret; !! 3378 ssize_t written = 0; 4131 !! 3379 ssize_t err; 4132 ret = file_remove_privs(file); !! 3380 ssize_t status; 4133 if (ret) !! 3381 4134 return ret; !! 3382 /* We can write back this queue in page reclaim */ >> 3383 current->backing_dev_info = inode_to_bdi(inode); >> 3384 err = file_remove_privs(file); >> 3385 if (err) >> 3386 goto out; 4135 3387 4136 ret = file_update_time(file); !! 3388 err = file_update_time(file); 4137 if (ret) !! 3389 if (err) 4138 return ret; !! 3390 goto out; 4139 3391 4140 if (iocb->ki_flags & IOCB_DIRECT) { 3392 if (iocb->ki_flags & IOCB_DIRECT) { 4141 ret = generic_file_direct_wri !! 3393 loff_t pos, endbyte; >> 3394 >> 3395 written = generic_file_direct_write(iocb, from); 4142 /* 3396 /* 4143 * If the write stopped short 3397 * If the write stopped short of completing, fall back to 4144 * buffered writes. Some fil 3398 * buffered writes. Some filesystems do this for writes to 4145 * holes, for example. For D 3399 * holes, for example. For DAX files, a buffered write will 4146 * not succeed (even if it di 3400 * not succeed (even if it did, DAX does not handle dirty 4147 * page-cache pages correctly 3401 * page-cache pages correctly). 4148 */ 3402 */ 4149 if (ret < 0 || !iov_iter_coun !! 3403 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4150 return ret; !! 3404 goto out; 4151 return direct_write_fallback( << 4152 generic_perfo << 4153 } << 4154 3405 4155 return generic_perform_write(iocb, fr !! 3406 status = generic_perform_write(file, from, pos = iocb->ki_pos); >> 3407 /* >> 3408 * If generic_perform_write() returned a synchronous error >> 3409 * then we want to return the number of bytes which were >> 3410 * direct-written, or the error code if that was zero. Note >> 3411 * that this differs from normal direct-io semantics, which >> 3412 * will return -EFOO even if some bytes were written. >> 3413 */ >> 3414 if (unlikely(status < 0)) { >> 3415 err = status; >> 3416 goto out; >> 3417 } >> 3418 /* >> 3419 * We need to ensure that the page cache pages are written to >> 3420 * disk and invalidated to preserve the expected O_DIRECT >> 3421 * semantics. >> 3422 */ >> 3423 endbyte = pos + status - 1; >> 3424 err = filemap_write_and_wait_range(mapping, pos, endbyte); >> 3425 if (err == 0) { >> 3426 iocb->ki_pos = endbyte + 1; >> 3427 written += status; >> 3428 invalidate_mapping_pages(mapping, >> 3429 pos >> PAGE_SHIFT, >> 3430 endbyte >> PAGE_SHIFT); >> 3431 } else { >> 3432 /* >> 3433 * We don't know how much we wrote, so just return >> 3434 * the number of bytes which were direct-written >> 3435 */ >> 3436 } >> 3437 } else { >> 3438 written = generic_perform_write(file, from, iocb->ki_pos); >> 3439 if (likely(written > 0)) >> 3440 iocb->ki_pos += written; >> 3441 } >> 3442 out: >> 3443 current->backing_dev_info = NULL; >> 3444 return written ? written : err; 4156 } 3445 } 4157 EXPORT_SYMBOL(__generic_file_write_iter); 3446 EXPORT_SYMBOL(__generic_file_write_iter); 4158 3447 4159 /** 3448 /** 4160 * generic_file_write_iter - write data to a 3449 * generic_file_write_iter - write data to a file 4161 * @iocb: IO state structure 3450 * @iocb: IO state structure 4162 * @from: iov_iter with data to write 3451 * @from: iov_iter with data to write 4163 * 3452 * 4164 * This is a wrapper around __generic_file_wr 3453 * This is a wrapper around __generic_file_write_iter() to be used by most 4165 * filesystems. It takes care of syncing the 3454 * filesystems. It takes care of syncing the file in case of O_SYNC file 4166 * and acquires i_rwsem as needed. !! 3455 * and acquires i_mutex as needed. 4167 * Return: 3456 * Return: 4168 * * negative error code if no data has been 3457 * * negative error code if no data has been written at all of 4169 * vfs_fsync_range() failed for a synchrono 3458 * vfs_fsync_range() failed for a synchronous write 4170 * * number of bytes written, even for trunca 3459 * * number of bytes written, even for truncated writes 4171 */ 3460 */ 4172 ssize_t generic_file_write_iter(struct kiocb 3461 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4173 { 3462 { 4174 struct file *file = iocb->ki_filp; 3463 struct file *file = iocb->ki_filp; 4175 struct inode *inode = file->f_mapping 3464 struct inode *inode = file->f_mapping->host; 4176 ssize_t ret; 3465 ssize_t ret; 4177 3466 4178 inode_lock(inode); 3467 inode_lock(inode); 4179 ret = generic_write_checks(iocb, from 3468 ret = generic_write_checks(iocb, from); 4180 if (ret > 0) 3469 if (ret > 0) 4181 ret = __generic_file_write_it 3470 ret = __generic_file_write_iter(iocb, from); 4182 inode_unlock(inode); 3471 inode_unlock(inode); 4183 3472 4184 if (ret > 0) 3473 if (ret > 0) 4185 ret = generic_write_sync(iocb 3474 ret = generic_write_sync(iocb, ret); 4186 return ret; 3475 return ret; 4187 } 3476 } 4188 EXPORT_SYMBOL(generic_file_write_iter); 3477 EXPORT_SYMBOL(generic_file_write_iter); 4189 3478 4190 /** 3479 /** 4191 * filemap_release_folio() - Release fs-speci !! 3480 * try_to_release_page() - release old fs-specific metadata on a page 4192 * @folio: The folio which the kernel is tryi << 4193 * @gfp: Memory allocation flags (and I/O mod << 4194 * 3481 * 4195 * The address_space is trying to release any !! 3482 * @page: the page which the kernel is trying to free 4196 * (presumably at folio->private). !! 3483 * @gfp_mask: memory allocation flags (and I/O mode) 4197 * 3484 * 4198 * This will also be called if the private_2 !! 3485 * The address_space is to try to release any data against the page 4199 * indicating that the folio has other metada !! 3486 * (presumably at page->private). 4200 * 3487 * 4201 * The @gfp argument specifies whether I/O ma !! 3488 * This may also be called if PG_fscache is set on a page, indicating that the 4202 * this page (__GFP_IO), and whether the call !! 3489 * page is known to the local caching routines. 4203 * (__GFP_RECLAIM & __GFP_FS). << 4204 * 3490 * 4205 * Return: %true if the release was successfu !! 3491 * The @gfp_mask argument specifies whether I/O may be performed to release 4206 */ !! 3492 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 4207 bool filemap_release_folio(struct folio *foli !! 3493 * 4208 { !! 3494 * Return: %1 if the release was successful, otherwise return zero. 4209 struct address_space * const mapping << 4210 << 4211 BUG_ON(!folio_test_locked(folio)); << 4212 if (!folio_needs_release(folio)) << 4213 return true; << 4214 if (folio_test_writeback(folio)) << 4215 return false; << 4216 << 4217 if (mapping && mapping->a_ops->releas << 4218 return mapping->a_ops->releas << 4219 return try_to_free_buffers(folio); << 4220 } << 4221 EXPORT_SYMBOL(filemap_release_folio); << 4222 << 4223 /** << 4224 * filemap_invalidate_inode - Invalidate/forc << 4225 * @inode: The inode to flush << 4226 * @flush: Set to write back rather than simp << 4227 * @start: First byte to in range. << 4228 * @end: Last byte in range (inclusive), or L << 4229 * onwards. << 4230 * << 4231 * Invalidate all the folios on an inode that << 4232 * range, possibly writing them back first. << 4233 * undertaken, the invalidate lock is held to << 4234 * installed. << 4235 */ << 4236 int filemap_invalidate_inode(struct inode *in << 4237 loff_t start, lo << 4238 { << 4239 struct address_space *mapping = inode << 4240 pgoff_t first = start >> PAGE_SHIFT; << 4241 pgoff_t last = end >> PAGE_SHIFT; << 4242 pgoff_t nr = end == LLONG_MAX ? ULONG << 4243 << 4244 if (!mapping || !mapping->nrpages || << 4245 goto out; << 4246 << 4247 /* Prevent new folios from being adde << 4248 filemap_invalidate_lock(mapping); << 4249 << 4250 if (!mapping->nrpages) << 4251 goto unlock; << 4252 << 4253 unmap_mapping_pages(mapping, first, n << 4254 << 4255 /* Write back the data if we're asked << 4256 if (flush) { << 4257 struct writeback_control wbc << 4258 .sync_mode = WB_ << 4259 .nr_to_write = LON << 4260 .range_start = sta << 4261 .range_end = end << 4262 }; << 4263 << 4264 filemap_fdatawrite_wbc(mappin << 4265 } << 4266 << 4267 /* Wait for writeback to complete on << 4268 invalidate_inode_pages2_range(mapping << 4269 << 4270 unlock: << 4271 filemap_invalidate_unlock(mapping); << 4272 out: << 4273 return filemap_check_errors(mapping); << 4274 } << 4275 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); << 4276 << 4277 #ifdef CONFIG_CACHESTAT_SYSCALL << 4278 /** << 4279 * filemap_cachestat() - compute the page cac << 4280 * @mapping: The mapping to compute the st << 4281 * @first_index: The starting page cac << 4282 * @last_index: The final page index (inclusi << 4283 * @cs: the cachestat struct to write the res << 4284 * << 4285 * This will query the page cache statistics << 4286 * page range of [first_index, last_index] (i << 4287 * queried include: number of dirty pages, nu << 4288 * writeback, and the number of (recently) ev << 4289 */ 3495 */ 4290 static void filemap_cachestat(struct address_ !! 3496 int try_to_release_page(struct page *page, gfp_t gfp_mask) 4291 pgoff_t first_index, pgoff_t << 4292 { 3497 { 4293 XA_STATE(xas, &mapping->i_pages, firs !! 3498 struct address_space * const mapping = page->mapping; 4294 struct folio *folio; << 4295 << 4296 /* Flush stats (and potentially sleep << 4297 mem_cgroup_flush_stats_ratelimited(NU << 4298 << 4299 rcu_read_lock(); << 4300 xas_for_each(&xas, folio, last_index) << 4301 int order; << 4302 unsigned long nr_pages; << 4303 pgoff_t folio_first_index, fo << 4304 << 4305 /* << 4306 * Don't deref the folio. It << 4307 * get freed (and reused) und << 4308 * << 4309 * We *could* pin it, but tha << 4310 * what should be a fast and << 4311 * << 4312 * Instead, derive all inform << 4313 * the rcu-protected xarray. << 4314 */ << 4315 3499 4316 if (xas_retry(&xas, folio)) !! 3500 BUG_ON(!PageLocked(page)); 4317 continue; !! 3501 if (PageWriteback(page)) 4318 !! 3502 return 0; 4319 order = xas_get_order(&xas); << 4320 nr_pages = 1 << order; << 4321 folio_first_index = round_dow << 4322 folio_last_index = folio_firs << 4323 << 4324 /* Folios might straddle the << 4325 if (folio_first_index < first << 4326 nr_pages -= first_ind << 4327 << 4328 if (folio_last_index > last_i << 4329 nr_pages -= folio_las << 4330 << 4331 if (xa_is_value(folio)) { << 4332 /* page is evicted */ << 4333 void *shadow = (void << 4334 bool workingset; /* n << 4335 << 4336 cs->nr_evicted += nr_ << 4337 << 4338 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ << 4339 if (shmem_mapping(map << 4340 /* shmem file << 4341 swp_entry_t s << 4342 << 4343 /* swapin err << 4344 if (non_swap_ << 4345 goto << 4346 << 4347 /* << 4348 * Getting a << 4349 * inode mean << 4350 * shmem_unus << 4351 * ensures sw << 4352 * freeing th << 4353 * we can rac << 4354 * invalidati << 4355 * a shadow i << 4356 */ << 4357 shadow = get_ << 4358 if (!shadow) << 4359 goto << 4360 } << 4361 #endif << 4362 if (workingset_test_r << 4363 cs->nr_recent << 4364 << 4365 goto resched; << 4366 } << 4367 << 4368 /* page is in cache */ << 4369 cs->nr_cache += nr_pages; << 4370 << 4371 if (xas_get_mark(&xas, PAGECA << 4372 cs->nr_dirty += nr_pa << 4373 << 4374 if (xas_get_mark(&xas, PAGECA << 4375 cs->nr_writeback += n << 4376 3503 4377 resched: !! 3504 if (mapping && mapping->a_ops->releasepage) 4378 if (need_resched()) { !! 3505 return mapping->a_ops->releasepage(page, gfp_mask); 4379 xas_pause(&xas); !! 3506 return try_to_free_buffers(page); 4380 cond_resched_rcu(); << 4381 } << 4382 } << 4383 rcu_read_unlock(); << 4384 } 3507 } 4385 3508 4386 /* !! 3509 EXPORT_SYMBOL(try_to_release_page); 4387 * The cachestat(2) system call. << 4388 * << 4389 * cachestat() returns the page cache statist << 4390 * bytes range specified by `off` and `len`: << 4391 * number of dirty pages, number of pages mar << 4392 * number of evicted pages, and number of rec << 4393 * << 4394 * An evicted page is a page that is previous << 4395 * but has been evicted since. A page is rece << 4396 * eviction was recent enough that its reentr << 4397 * indicate that it is actively being used by << 4398 * there is memory pressure on the system. << 4399 * << 4400 * `off` and `len` must be non-negative integ << 4401 * the queried range is [`off`, `off` + `len` << 4402 * we will query in the range from `off` to t << 4403 * << 4404 * The `flags` argument is unused for now, bu << 4405 * extensibility. User should pass 0 (i.e no << 4406 * << 4407 * Currently, hugetlbfs is not supported. << 4408 * << 4409 * Because the status of a page can change af << 4410 * but before it returns to the application, << 4411 * contain stale information. << 4412 * << 4413 * return values: << 4414 * zero - success << 4415 * -EFAULT - cstat or cstat_range points << 4416 * -EINVAL - invalid flags << 4417 * -EBADF - invalid file descriptor << 4418 * -EOPNOTSUPP - file descriptor is of a hug << 4419 */ << 4420 SYSCALL_DEFINE4(cachestat, unsigned int, fd, << 4421 struct cachestat_range __user << 4422 struct cachestat __user *, cs << 4423 { << 4424 struct fd f = fdget(fd); << 4425 struct address_space *mapping; << 4426 struct cachestat_range csr; << 4427 struct cachestat cs; << 4428 pgoff_t first_index, last_index; << 4429 << 4430 if (!fd_file(f)) << 4431 return -EBADF; << 4432 << 4433 if (copy_from_user(&csr, cstat_range, << 4434 sizeof(struct cachest << 4435 fdput(f); << 4436 return -EFAULT; << 4437 } << 4438 << 4439 /* hugetlbfs is not supported */ << 4440 if (is_file_hugepages(fd_file(f))) { << 4441 fdput(f); << 4442 return -EOPNOTSUPP; << 4443 } << 4444 << 4445 if (flags != 0) { << 4446 fdput(f); << 4447 return -EINVAL; << 4448 } << 4449 << 4450 first_index = csr.off >> PAGE_SHIFT; << 4451 last_index = << 4452 csr.len == 0 ? ULONG_MAX : (c << 4453 memset(&cs, 0, sizeof(struct cachesta << 4454 mapping = fd_file(f)->f_mapping; << 4455 filemap_cachestat(mapping, first_inde << 4456 fdput(f); << 4457 << 4458 if (copy_to_user(cstat, &cs, sizeof(s << 4459 return -EFAULT; << 4460 << 4461 return 0; << 4462 } << 4463 #endif /* CONFIG_CACHESTAT_SYSCALL */ << 4464 3510
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.