1 << 2 // SPDX-License-Identifier: GPL-2.0-only << 3 /* 1 /* 4 * linux/mm/memory.c 2 * linux/mm/memory.c 5 * 3 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linu 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 5 */ 8 6 9 /* 7 /* 10 * demand-loading started 01.12.91 - seems it 8 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to imp 9 * things wanted, and it should be easy to implement. - Linus 12 */ 10 */ 13 11 14 /* 12 /* 15 * Ok, demand-loading was easy, shared pages a 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Li 14 * pages started 02.12.91, seems to work. - Linus. 17 * 15 * 18 * Tested sharing by executing about 30 /bin/s 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have fr 17 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 18 * far as I could see. 21 * 19 * 22 * Also corrected some "invalidate()"s - I was 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 21 */ 24 22 25 /* 23 /* 26 * Real VM (paging to/from disk) started 18.12 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 25 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I g 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to 27 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device cha 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 29 */ 32 30 33 /* 31 /* 34 * 05.04.94 - Multi-page memory management a 32 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconc 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 34 * 37 * 16.07.99 - Support of BIGMEM added by Ger 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.d 36 * (Gerhard.Wichert@pdb.siemens.de) 39 * 37 * 40 * Aug/Sep 2004 Changed to four level page tab 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 39 */ 42 40 43 #include <linux/kernel_stat.h> 41 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 42 #include <linux/mm.h> 45 #include <linux/mm_inline.h> << 46 #include <linux/sched/mm.h> 43 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 44 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 45 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 46 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 47 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 48 #include <linux/mman.h> 52 #include <linux/swap.h> 49 #include <linux/swap.h> 53 #include <linux/highmem.h> 50 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 51 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 52 #include <linux/memremap.h> 56 #include <linux/kmsan.h> << 57 #include <linux/ksm.h> 53 #include <linux/ksm.h> 58 #include <linux/rmap.h> 54 #include <linux/rmap.h> 59 #include <linux/export.h> 55 #include <linux/export.h> 60 #include <linux/delayacct.h> 56 #include <linux/delayacct.h> 61 #include <linux/init.h> 57 #include <linux/init.h> 62 #include <linux/pfn_t.h> 58 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 59 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 60 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 61 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 62 #include <linux/swapops.h> 67 #include <linux/elf.h> 63 #include <linux/elf.h> 68 #include <linux/gfp.h> 64 #include <linux/gfp.h> 69 #include <linux/migrate.h> 65 #include <linux/migrate.h> 70 #include <linux/string.h> 66 #include <linux/string.h> 71 #include <linux/memory-tiers.h> !! 67 #include <linux/dma-debug.h> 72 #include <linux/debugfs.h> 68 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 69 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 70 #include <linux/dax.h> 75 #include <linux/oom.h> 71 #include <linux/oom.h> 76 #include <linux/numa.h> << 77 #include <linux/perf_event.h> << 78 #include <linux/ptrace.h> << 79 #include <linux/vmalloc.h> << 80 #include <linux/sched/sysctl.h> << 81 << 82 #include <trace/events/kmem.h> << 83 72 84 #include <asm/io.h> 73 #include <asm/io.h> 85 #include <asm/mmu_context.h> 74 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 75 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 76 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 77 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 78 #include <asm/tlbflush.h> >> 79 #include <asm/pgtable.h> 90 80 91 #include "pgalloc-track.h" << 92 #include "internal.h" 81 #include "internal.h" 93 #include "swap.h" << 94 82 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing c 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 85 #endif 98 86 99 #ifndef CONFIG_NUMA !! 87 #ifndef CONFIG_NEED_MULTIPLE_NODES >> 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 100 unsigned long max_mapnr; 89 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 90 EXPORT_SYMBOL(max_mapnr); 102 91 103 struct page *mem_map; 92 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 93 EXPORT_SYMBOL(mem_map); 105 #endif 94 #endif 106 95 107 static vm_fault_t do_fault(struct vm_fault *vm << 108 static vm_fault_t do_anonymous_page(struct vm_ << 109 static bool vmf_pte_changed(struct vm_fault *v << 110 << 111 /* << 112 * Return true if the original pte was a uffd- << 113 * wr-protected). << 114 */ << 115 static __always_inline bool vmf_orig_pte_uffd_ << 116 { << 117 if (!userfaultfd_wp(vmf->vma)) << 118 return false; << 119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE << 120 return false; << 121 << 122 return pte_marker_uffd_wp(vmf->orig_pt << 123 } << 124 << 125 /* 96 /* 126 * A number of key systems in x86 including io 97 * A number of key systems in x86 including ioremap() rely on the assumption 127 * that high_memory defines the upper bound on 98 * that high_memory defines the upper bound on direct map memory, then end 128 * of ZONE_NORMAL. !! 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and >> 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL >> 101 * and ZONE_HIGHMEM. 129 */ 102 */ 130 void *high_memory; 103 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 104 EXPORT_SYMBOL(high_memory); 132 105 133 /* 106 /* 134 * Randomize the address space (stacks, mmaps, 107 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 108 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk f 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can seg 110 * as ancient (libc5 based) binaries can segfault. ) 138 */ 111 */ 139 int randomize_va_space __read_mostly = 112 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 113 #ifdef CONFIG_COMPAT_BRK 141 1; 114 1; 142 #else 115 #else 143 2; 116 2; 144 #endif 117 #endif 145 118 146 #ifndef arch_wants_old_prefaulted_pte << 147 static inline bool arch_wants_old_prefaulted_p << 148 { << 149 /* << 150 * Transitioning a PTE from 'old' to ' << 151 * some architectures, even if it's pe << 152 * default, "false" means prefaulted e << 153 */ << 154 return false; << 155 } << 156 #endif << 157 << 158 static int __init disable_randmaps(char *s) 119 static int __init disable_randmaps(char *s) 159 { 120 { 160 randomize_va_space = 0; 121 randomize_va_space = 0; 161 return 1; 122 return 1; 162 } 123 } 163 __setup("norandmaps", disable_randmaps); 124 __setup("norandmaps", disable_randmaps); 164 125 165 unsigned long zero_pfn __read_mostly; 126 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 127 EXPORT_SYMBOL(zero_pfn); 167 128 168 unsigned long highest_memmap_pfn __read_mostly 129 unsigned long highest_memmap_pfn __read_mostly; 169 130 170 /* 131 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE i 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 133 */ 173 static int __init init_zero_pfn(void) 134 static int __init init_zero_pfn(void) 174 { 135 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 137 return 0; 177 } 138 } 178 early_initcall(init_zero_pfn); !! 139 core_initcall(init_zero_pfn); >> 140 >> 141 >> 142 #if defined(SPLIT_RSS_COUNTING) >> 143 >> 144 void sync_mm_rss(struct mm_struct *mm) >> 145 { >> 146 int i; >> 147 >> 148 for (i = 0; i < NR_MM_COUNTERS; i++) { >> 149 if (current->rss_stat.count[i]) { >> 150 add_mm_counter(mm, i, current->rss_stat.count[i]); >> 151 current->rss_stat.count[i] = 0; >> 152 } >> 153 } >> 154 current->rss_stat.events = 0; >> 155 } >> 156 >> 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) >> 158 { >> 159 struct task_struct *task = current; >> 160 >> 161 if (likely(task->mm == mm)) >> 162 task->rss_stat.count[member] += val; >> 163 else >> 164 add_mm_counter(mm, member, val); >> 165 } >> 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) >> 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) >> 168 >> 169 /* sync counter once per 64 page faults */ >> 170 #define TASK_RSS_EVENTS_THRESH (64) >> 171 static void check_sync_rss_stat(struct task_struct *task) >> 172 { >> 173 if (unlikely(task != current)) >> 174 return; >> 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) >> 176 sync_mm_rss(task->mm); >> 177 } >> 178 #else /* SPLIT_RSS_COUNTING */ >> 179 >> 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) >> 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) >> 182 >> 183 static void check_sync_rss_stat(struct task_struct *task) >> 184 { >> 185 } >> 186 >> 187 #endif /* SPLIT_RSS_COUNTING */ >> 188 >> 189 #ifdef HAVE_GENERIC_MMU_GATHER >> 190 >> 191 static bool tlb_next_batch(struct mmu_gather *tlb) >> 192 { >> 193 struct mmu_gather_batch *batch; >> 194 >> 195 batch = tlb->active; >> 196 if (batch->next) { >> 197 tlb->active = batch->next; >> 198 return true; >> 199 } >> 200 >> 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) >> 202 return false; >> 203 >> 204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); >> 205 if (!batch) >> 206 return false; >> 207 >> 208 tlb->batch_count++; >> 209 batch->next = NULL; >> 210 batch->nr = 0; >> 211 batch->max = MAX_GATHER_BATCH; >> 212 >> 213 tlb->active->next = batch; >> 214 tlb->active = batch; >> 215 >> 216 return true; >> 217 } >> 218 >> 219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, >> 220 unsigned long start, unsigned long end) >> 221 { >> 222 tlb->mm = mm; >> 223 >> 224 /* Is it from 0 to ~0? */ >> 225 tlb->fullmm = !(start | (end+1)); >> 226 tlb->need_flush_all = 0; >> 227 tlb->local.next = NULL; >> 228 tlb->local.nr = 0; >> 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); >> 230 tlb->active = &tlb->local; >> 231 tlb->batch_count = 0; >> 232 >> 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE >> 234 tlb->batch = NULL; >> 235 #endif >> 236 tlb->page_size = 0; >> 237 >> 238 __tlb_reset_range(tlb); >> 239 } >> 240 >> 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) >> 242 { >> 243 if (!tlb->end) >> 244 return; 179 245 180 void mm_trace_rss_stat(struct mm_struct *mm, i !! 246 tlb_flush(tlb); >> 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); >> 248 __tlb_reset_range(tlb); >> 249 } >> 250 >> 251 static void tlb_flush_mmu_free(struct mmu_gather *tlb) >> 252 { >> 253 struct mmu_gather_batch *batch; >> 254 >> 255 #ifdef CONFIG_HAVE_RCU_TABLE_FREE >> 256 tlb_table_flush(tlb); >> 257 #endif >> 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { >> 259 free_pages_and_swap_cache(batch->pages, batch->nr); >> 260 batch->nr = 0; >> 261 } >> 262 tlb->active = &tlb->local; >> 263 } >> 264 >> 265 void tlb_flush_mmu(struct mmu_gather *tlb) >> 266 { >> 267 tlb_flush_mmu_tlbonly(tlb); >> 268 tlb_flush_mmu_free(tlb); >> 269 } >> 270 >> 271 /* tlb_finish_mmu >> 272 * Called at the end of the shootdown operation to free up any resources >> 273 * that were required. >> 274 */ >> 275 void arch_tlb_finish_mmu(struct mmu_gather *tlb, >> 276 unsigned long start, unsigned long end, bool force) >> 277 { >> 278 struct mmu_gather_batch *batch, *next; >> 279 >> 280 if (force) >> 281 __tlb_adjust_range(tlb, start, end - start); >> 282 >> 283 tlb_flush_mmu(tlb); >> 284 >> 285 /* keep the page table cache within bounds */ >> 286 check_pgt_cache(); >> 287 >> 288 for (batch = tlb->local.next; batch; batch = next) { >> 289 next = batch->next; >> 290 free_pages((unsigned long)batch, 0); >> 291 } >> 292 tlb->local.next = NULL; >> 293 } >> 294 >> 295 /* __tlb_remove_page >> 296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while >> 297 * handling the additional races in SMP caused by other CPUs caching valid >> 298 * mappings in their TLBs. Returns the number of free page slots left. >> 299 * When out of page slots we must call tlb_flush_mmu(). >> 300 *returns true if the caller should flush. >> 301 */ >> 302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 181 { 303 { 182 trace_rss_stat(mm, member); !! 304 struct mmu_gather_batch *batch; >> 305 >> 306 VM_BUG_ON(!tlb->end); >> 307 VM_WARN_ON(tlb->page_size != page_size); >> 308 >> 309 batch = tlb->active; >> 310 /* >> 311 * Add the page and check if we are full. If so >> 312 * force a flush. >> 313 */ >> 314 batch->pages[batch->nr++] = page; >> 315 if (batch->nr == batch->max) { >> 316 if (!tlb_next_batch(tlb)) >> 317 return true; >> 318 batch = tlb->active; >> 319 } >> 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page); >> 321 >> 322 return false; >> 323 } >> 324 >> 325 #endif /* HAVE_GENERIC_MMU_GATHER */ >> 326 >> 327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE >> 328 >> 329 /* >> 330 * See the comment near struct mmu_table_batch. >> 331 */ >> 332 >> 333 /* >> 334 * If we want tlb_remove_table() to imply TLB invalidates. >> 335 */ >> 336 static inline void tlb_table_invalidate(struct mmu_gather *tlb) >> 337 { >> 338 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE >> 339 /* >> 340 * Invalidate page-table caches used by hardware walkers. Then we still >> 341 * need to RCU-sched wait while freeing the pages because software >> 342 * walkers can still be in-flight. >> 343 */ >> 344 tlb_flush_mmu_tlbonly(tlb); >> 345 #endif >> 346 } >> 347 >> 348 static void tlb_remove_table_smp_sync(void *arg) >> 349 { >> 350 /* Simply deliver the interrupt */ >> 351 } >> 352 >> 353 static void tlb_remove_table_one(void *table) >> 354 { >> 355 /* >> 356 * This isn't an RCU grace period and hence the page-tables cannot be >> 357 * assumed to be actually RCU-freed. >> 358 * >> 359 * It is however sufficient for software page-table walkers that rely on >> 360 * IRQ disabling. See the comment near struct mmu_table_batch. >> 361 */ >> 362 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); >> 363 __tlb_remove_table(table); >> 364 } >> 365 >> 366 static void tlb_remove_table_rcu(struct rcu_head *head) >> 367 { >> 368 struct mmu_table_batch *batch; >> 369 int i; >> 370 >> 371 batch = container_of(head, struct mmu_table_batch, rcu); >> 372 >> 373 for (i = 0; i < batch->nr; i++) >> 374 __tlb_remove_table(batch->tables[i]); >> 375 >> 376 free_page((unsigned long)batch); >> 377 } >> 378 >> 379 void tlb_table_flush(struct mmu_gather *tlb) >> 380 { >> 381 struct mmu_table_batch **batch = &tlb->batch; >> 382 >> 383 if (*batch) { >> 384 tlb_table_invalidate(tlb); >> 385 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); >> 386 *batch = NULL; >> 387 } >> 388 } >> 389 >> 390 void tlb_remove_table(struct mmu_gather *tlb, void *table) >> 391 { >> 392 struct mmu_table_batch **batch = &tlb->batch; >> 393 >> 394 if (*batch == NULL) { >> 395 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); >> 396 if (*batch == NULL) { >> 397 tlb_table_invalidate(tlb); >> 398 tlb_remove_table_one(table); >> 399 return; >> 400 } >> 401 (*batch)->nr = 0; >> 402 } >> 403 >> 404 (*batch)->tables[(*batch)->nr++] = table; >> 405 if ((*batch)->nr == MAX_TABLE_BATCH) >> 406 tlb_table_flush(tlb); >> 407 } >> 408 >> 409 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ >> 410 >> 411 /** >> 412 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down >> 413 * @tlb: the mmu_gather structure to initialize >> 414 * @mm: the mm_struct of the target address space >> 415 * @start: start of the region that will be removed from the page-table >> 416 * @end: end of the region that will be removed from the page-table >> 417 * >> 418 * Called to initialize an (on-stack) mmu_gather structure for page-table >> 419 * tear-down from @mm. The @start and @end are set to 0 and -1 >> 420 * respectively when @mm is without users and we're going to destroy >> 421 * the full address space (exit/execve). >> 422 */ >> 423 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, >> 424 unsigned long start, unsigned long end) >> 425 { >> 426 arch_tlb_gather_mmu(tlb, mm, start, end); >> 427 inc_tlb_flush_pending(tlb->mm); >> 428 } >> 429 >> 430 void tlb_finish_mmu(struct mmu_gather *tlb, >> 431 unsigned long start, unsigned long end) >> 432 { >> 433 /* >> 434 * If there are parallel threads are doing PTE changes on same range >> 435 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB >> 436 * flush by batching, a thread has stable TLB entry can fail to flush >> 437 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB >> 438 * forcefully if we detect parallel PTE batching threads. >> 439 */ >> 440 bool force = mm_tlb_flush_nested(tlb->mm); >> 441 >> 442 arch_tlb_finish_mmu(tlb, start, end, force); >> 443 dec_tlb_flush_pending(tlb->mm); 183 } 444 } 184 445 185 /* 446 /* 186 * Note: this doesn't free the actual pages th 447 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all 448 * has been handled earlier when unmapping all the memory regions. 188 */ 449 */ 189 static void free_pte_range(struct mmu_gather * 450 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 451 unsigned long addr) 191 { 452 { 192 pgtable_t token = pmd_pgtable(*pmd); 453 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 454 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 455 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 456 mm_dec_nr_ptes(tlb->mm); 196 } 457 } 197 458 198 static inline void free_pmd_range(struct mmu_g 459 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long 460 unsigned long addr, unsigned long end, 200 unsigned long 461 unsigned long floor, unsigned long ceiling) 201 { 462 { 202 pmd_t *pmd; 463 pmd_t *pmd; 203 unsigned long next; 464 unsigned long next; 204 unsigned long start; 465 unsigned long start; 205 466 206 start = addr; 467 start = addr; 207 pmd = pmd_offset(pud, addr); 468 pmd = pmd_offset(pud, addr); 208 do { 469 do { 209 next = pmd_addr_end(addr, end) 470 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd) 471 if (pmd_none_or_clear_bad(pmd)) 211 continue; 472 continue; 212 free_pte_range(tlb, pmd, addr) 473 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != e 474 } while (pmd++, addr = next, addr != end); 214 475 215 start &= PUD_MASK; 476 start &= PUD_MASK; 216 if (start < floor) 477 if (start < floor) 217 return; 478 return; 218 if (ceiling) { 479 if (ceiling) { 219 ceiling &= PUD_MASK; 480 ceiling &= PUD_MASK; 220 if (!ceiling) 481 if (!ceiling) 221 return; 482 return; 222 } 483 } 223 if (end - 1 > ceiling - 1) 484 if (end - 1 > ceiling - 1) 224 return; 485 return; 225 486 226 pmd = pmd_offset(pud, start); 487 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 488 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 489 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 490 mm_dec_nr_pmds(tlb->mm); 230 } 491 } 231 492 232 static inline void free_pud_range(struct mmu_g 493 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long 494 unsigned long addr, unsigned long end, 234 unsigned long 495 unsigned long floor, unsigned long ceiling) 235 { 496 { 236 pud_t *pud; 497 pud_t *pud; 237 unsigned long next; 498 unsigned long next; 238 unsigned long start; 499 unsigned long start; 239 500 240 start = addr; 501 start = addr; 241 pud = pud_offset(p4d, addr); 502 pud = pud_offset(p4d, addr); 242 do { 503 do { 243 next = pud_addr_end(addr, end) 504 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud) 505 if (pud_none_or_clear_bad(pud)) 245 continue; 506 continue; 246 free_pmd_range(tlb, pud, addr, 507 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != e 508 } while (pud++, addr = next, addr != end); 248 509 249 start &= P4D_MASK; 510 start &= P4D_MASK; 250 if (start < floor) 511 if (start < floor) 251 return; 512 return; 252 if (ceiling) { 513 if (ceiling) { 253 ceiling &= P4D_MASK; 514 ceiling &= P4D_MASK; 254 if (!ceiling) 515 if (!ceiling) 255 return; 516 return; 256 } 517 } 257 if (end - 1 > ceiling - 1) 518 if (end - 1 > ceiling - 1) 258 return; 519 return; 259 520 260 pud = pud_offset(p4d, start); 521 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 522 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 523 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 524 mm_dec_nr_puds(tlb->mm); 264 } 525 } 265 526 266 static inline void free_p4d_range(struct mmu_g 527 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long 528 unsigned long addr, unsigned long end, 268 unsigned long 529 unsigned long floor, unsigned long ceiling) 269 { 530 { 270 p4d_t *p4d; 531 p4d_t *p4d; 271 unsigned long next; 532 unsigned long next; 272 unsigned long start; 533 unsigned long start; 273 534 274 start = addr; 535 start = addr; 275 p4d = p4d_offset(pgd, addr); 536 p4d = p4d_offset(pgd, addr); 276 do { 537 do { 277 next = p4d_addr_end(addr, end) 538 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d) 539 if (p4d_none_or_clear_bad(p4d)) 279 continue; 540 continue; 280 free_pud_range(tlb, p4d, addr, 541 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != e 542 } while (p4d++, addr = next, addr != end); 282 543 283 start &= PGDIR_MASK; 544 start &= PGDIR_MASK; 284 if (start < floor) 545 if (start < floor) 285 return; 546 return; 286 if (ceiling) { 547 if (ceiling) { 287 ceiling &= PGDIR_MASK; 548 ceiling &= PGDIR_MASK; 288 if (!ceiling) 549 if (!ceiling) 289 return; 550 return; 290 } 551 } 291 if (end - 1 > ceiling - 1) 552 if (end - 1 > ceiling - 1) 292 return; 553 return; 293 554 294 p4d = p4d_offset(pgd, start); 555 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 556 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 557 p4d_free_tlb(tlb, p4d, start); 297 } 558 } 298 559 299 /* 560 /* 300 * This function frees user-level page tables 561 * This function frees user-level page tables of a process. 301 */ 562 */ 302 void free_pgd_range(struct mmu_gather *tlb, 563 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, un 564 unsigned long addr, unsigned long end, 304 unsigned long floor, u 565 unsigned long floor, unsigned long ceiling) 305 { 566 { 306 pgd_t *pgd; 567 pgd_t *pgd; 307 unsigned long next; 568 unsigned long next; 308 569 309 /* 570 /* 310 * The next few lines have given us lo 571 * The next few lines have given us lots of grief... 311 * 572 * 312 * Why are we testing PMD* at this top 573 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, 574 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom j 575 * go all the way down to the bottom just to discover that. 315 * 576 * 316 * Why all these "- 1"s? Because 0 re 577 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of 578 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks w 579 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 580 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ce 581 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" a 582 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical) 583 * that end 0 case should be mythical). 323 * 584 * 324 * Wherever addr is brought up or ceil 585 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 586 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about w 587 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go 588 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 589 * 329 * Whereas we round start (addr) and c 590 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order 591 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so 592 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - t 593 * bother to round floor or end up - the tests don't need that. 333 */ 594 */ 334 595 335 addr &= PMD_MASK; 596 addr &= PMD_MASK; 336 if (addr < floor) { 597 if (addr < floor) { 337 addr += PMD_SIZE; 598 addr += PMD_SIZE; 338 if (!addr) 599 if (!addr) 339 return; 600 return; 340 } 601 } 341 if (ceiling) { 602 if (ceiling) { 342 ceiling &= PMD_MASK; 603 ceiling &= PMD_MASK; 343 if (!ceiling) 604 if (!ceiling) 344 return; 605 return; 345 } 606 } 346 if (end - 1 > ceiling - 1) 607 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 608 end -= PMD_SIZE; 348 if (addr > end - 1) 609 if (addr > end - 1) 349 return; 610 return; 350 /* 611 /* 351 * We add page table cache pages with 612 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb 613 * (see pte_free_tlb()), flush the tlb if we need 353 */ 614 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); !! 615 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 616 pgd = pgd_offset(tlb->mm, addr); 356 do { 617 do { 357 next = pgd_addr_end(addr, end) 618 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd) 619 if (pgd_none_or_clear_bad(pgd)) 359 continue; 620 continue; 360 free_p4d_range(tlb, pgd, addr, 621 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != e 622 } while (pgd++, addr = next, addr != end); 362 } 623 } 363 624 364 void free_pgtables(struct mmu_gather *tlb, str !! 625 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 365 struct vm_area_struct *vma, !! 626 unsigned long floor, unsigned long ceiling) 366 unsigned long ceiling, bool << 367 { 627 { 368 struct unlink_vma_file_batch vb; !! 628 while (vma) { 369 !! 629 struct vm_area_struct *next = vma->vm_next; 370 do { << 371 unsigned long addr = vma->vm_s 630 unsigned long addr = vma->vm_start; 372 struct vm_area_struct *next; << 373 << 374 /* << 375 * Note: USER_PGTABLES_CEILING << 376 * be 0. This will underflow << 377 */ << 378 next = mas_find(mas, ceiling - << 379 if (unlikely(xa_is_zero(next)) << 380 next = NULL; << 381 631 382 /* 632 /* 383 * Hide vma from rmap and trun 633 * Hide vma from rmap and truncate_pagecache before freeing 384 * pgtables 634 * pgtables 385 */ 635 */ 386 if (mm_wr_locked) << 387 vma_start_write(vma); << 388 unlink_anon_vmas(vma); 636 unlink_anon_vmas(vma); >> 637 unlink_file_vma(vma); 389 638 390 if (is_vm_hugetlb_page(vma)) { 639 if (is_vm_hugetlb_page(vma)) { 391 unlink_file_vma(vma); << 392 hugetlb_free_pgd_range 640 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 393 floor, next ? 641 floor, next ? next->vm_start : ceiling); 394 } else { 642 } else { 395 unlink_file_vma_batch_ << 396 unlink_file_vma_batch_ << 397 << 398 /* 643 /* 399 * Optimization: gathe 644 * Optimization: gather nearby vmas into one call down 400 */ 645 */ 401 while (next && next->v 646 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 402 && !is_vm_huget 647 && !is_vm_hugetlb_page(next)) { 403 vma = next; 648 vma = next; 404 next = mas_fin !! 649 next = vma->vm_next; 405 if (unlikely(x << 406 next = << 407 if (mm_wr_lock << 408 vma_st << 409 unlink_anon_vm 650 unlink_anon_vmas(vma); 410 unlink_file_vm !! 651 unlink_file_vma(vma); 411 } 652 } 412 unlink_file_vma_batch_ << 413 free_pgd_range(tlb, ad 653 free_pgd_range(tlb, addr, vma->vm_end, 414 floor, next ? 654 floor, next ? next->vm_start : ceiling); 415 } 655 } 416 vma = next; 656 vma = next; 417 } while (vma); !! 657 } 418 } 658 } 419 659 420 void pmd_install(struct mm_struct *mm, pmd_t * !! 660 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 421 { 661 { 422 spinlock_t *ptl = pmd_lock(mm, pmd); !! 662 spinlock_t *ptl; >> 663 pgtable_t new = pte_alloc_one(mm, address); >> 664 if (!new) >> 665 return -ENOMEM; 423 666 >> 667 /* >> 668 * Ensure all pte setup (eg. pte page lock and page clearing) are >> 669 * visible before the pte is made visible to other CPUs by being >> 670 * put into page tables. >> 671 * >> 672 * The other side of the story is the pointer chasing in the page >> 673 * table walking code (when walking the page table without locking; >> 674 * ie. most of the time). Fortunately, these data accesses consist >> 675 * of a chain of data-dependent loads, meaning most CPUs (alpha >> 676 * being the notable exception) will already guarantee loads are >> 677 * seen in-order. See the alpha page table accessors for the >> 678 * smp_read_barrier_depends() barriers in page table walking code. >> 679 */ >> 680 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ >> 681 >> 682 ptl = pmd_lock(mm, pmd); 424 if (likely(pmd_none(*pmd))) { /* Has 683 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 425 mm_inc_nr_ptes(mm); 684 mm_inc_nr_ptes(mm); 426 /* !! 685 pmd_populate(mm, pmd, new); 427 * Ensure all pte setup (eg. p !! 686 new = NULL; 428 * visible before the pte is m << 429 * put into page tables. << 430 * << 431 * The other side of the story << 432 * table walking code (when wa << 433 * ie. most of the time). Fort << 434 * of a chain of data-dependen << 435 * being the notable exception << 436 * seen in-order. See the alph << 437 * smp_rmb() barriers in page << 438 */ << 439 smp_wmb(); /* Could be smp_wmb << 440 pmd_populate(mm, pmd, *pte); << 441 *pte = NULL; << 442 } 687 } 443 spin_unlock(ptl); 688 spin_unlock(ptl); 444 } << 445 << 446 int __pte_alloc(struct mm_struct *mm, pmd_t *p << 447 { << 448 pgtable_t new = pte_alloc_one(mm); << 449 if (!new) << 450 return -ENOMEM; << 451 << 452 pmd_install(mm, pmd, &new); << 453 if (new) 689 if (new) 454 pte_free(mm, new); 690 pte_free(mm, new); 455 return 0; 691 return 0; 456 } 692 } 457 693 458 int __pte_alloc_kernel(pmd_t *pmd) !! 694 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 459 { 695 { 460 pte_t *new = pte_alloc_one_kernel(&ini !! 696 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 461 if (!new) 697 if (!new) 462 return -ENOMEM; 698 return -ENOMEM; 463 699 >> 700 smp_wmb(); /* See comment in __pte_alloc */ >> 701 464 spin_lock(&init_mm.page_table_lock); 702 spin_lock(&init_mm.page_table_lock); 465 if (likely(pmd_none(*pmd))) { /* Has 703 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 466 smp_wmb(); /* See comment in p << 467 pmd_populate_kernel(&init_mm, 704 pmd_populate_kernel(&init_mm, pmd, new); 468 new = NULL; 705 new = NULL; 469 } 706 } 470 spin_unlock(&init_mm.page_table_lock); 707 spin_unlock(&init_mm.page_table_lock); 471 if (new) 708 if (new) 472 pte_free_kernel(&init_mm, new) 709 pte_free_kernel(&init_mm, new); 473 return 0; 710 return 0; 474 } 711 } 475 712 476 static inline void init_rss_vec(int *rss) 713 static inline void init_rss_vec(int *rss) 477 { 714 { 478 memset(rss, 0, sizeof(int) * NR_MM_COU 715 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 479 } 716 } 480 717 481 static inline void add_mm_rss_vec(struct mm_st 718 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 482 { 719 { 483 int i; 720 int i; 484 721 >> 722 if (current->mm == mm) >> 723 sync_mm_rss(mm); 485 for (i = 0; i < NR_MM_COUNTERS; i++) 724 for (i = 0; i < NR_MM_COUNTERS; i++) 486 if (rss[i]) 725 if (rss[i]) 487 add_mm_counter(mm, i, 726 add_mm_counter(mm, i, rss[i]); 488 } 727 } 489 728 490 /* 729 /* 491 * This function is called to print an error w 730 * This function is called to print an error when a bad pte 492 * is found. For example, we might have a PFN- 731 * is found. For example, we might have a PFN-mapped pte in 493 * a region that doesn't allow it. 732 * a region that doesn't allow it. 494 * 733 * 495 * The calling function must still handle the 734 * The calling function must still handle the error. 496 */ 735 */ 497 static void print_bad_pte(struct vm_area_struc 736 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 498 pte_t pte, struct pa 737 pte_t pte, struct page *page) 499 { 738 { 500 pgd_t *pgd = pgd_offset(vma->vm_mm, ad 739 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 501 p4d_t *p4d = p4d_offset(pgd, addr); 740 p4d_t *p4d = p4d_offset(pgd, addr); 502 pud_t *pud = pud_offset(p4d, addr); 741 pud_t *pud = pud_offset(p4d, addr); 503 pmd_t *pmd = pmd_offset(pud, addr); 742 pmd_t *pmd = pmd_offset(pud, addr); 504 struct address_space *mapping; 743 struct address_space *mapping; 505 pgoff_t index; 744 pgoff_t index; 506 static unsigned long resume; 745 static unsigned long resume; 507 static unsigned long nr_shown; 746 static unsigned long nr_shown; 508 static unsigned long nr_unshown; 747 static unsigned long nr_unshown; 509 748 510 /* 749 /* 511 * Allow a burst of 60 reports, then k 750 * Allow a burst of 60 reports, then keep quiet for that minute; 512 * or allow a steady drip of one repor 751 * or allow a steady drip of one report per second. 513 */ 752 */ 514 if (nr_shown == 60) { 753 if (nr_shown == 60) { 515 if (time_before(jiffies, resum 754 if (time_before(jiffies, resume)) { 516 nr_unshown++; 755 nr_unshown++; 517 return; 756 return; 518 } 757 } 519 if (nr_unshown) { 758 if (nr_unshown) { 520 pr_alert("BUG: Bad pag 759 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 521 nr_unshown); 760 nr_unshown); 522 nr_unshown = 0; 761 nr_unshown = 0; 523 } 762 } 524 nr_shown = 0; 763 nr_shown = 0; 525 } 764 } 526 if (nr_shown++ == 0) 765 if (nr_shown++ == 0) 527 resume = jiffies + 60 * HZ; 766 resume = jiffies + 60 * HZ; 528 767 529 mapping = vma->vm_file ? vma->vm_file- 768 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 530 index = linear_page_index(vma, addr); 769 index = linear_page_index(vma, addr); 531 770 532 pr_alert("BUG: Bad page map in process 771 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 533 current->comm, 772 current->comm, 534 (long long)pte_val(pte), (lon 773 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 535 if (page) 774 if (page) 536 dump_page(page, "bad pte"); 775 dump_page(page, "bad pte"); 537 pr_alert("addr:%px vm_flags:%08lx anon !! 776 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 538 (void *)addr, vma->vm_flags, 777 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 539 pr_alert("file:%pD fault:%ps mmap:%ps !! 778 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 540 vma->vm_file, 779 vma->vm_file, 541 vma->vm_ops ? vma->vm_ops->fa 780 vma->vm_ops ? vma->vm_ops->fault : NULL, 542 vma->vm_file ? vma->vm_file-> 781 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 543 mapping ? mapping->a_ops->rea !! 782 mapping ? mapping->a_ops->readpage : NULL); 544 dump_stack(); 783 dump_stack(); 545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_ 784 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 546 } 785 } 547 786 548 /* 787 /* 549 * vm_normal_page -- This function gets the "s 788 * vm_normal_page -- This function gets the "struct page" associated with a pte. 550 * 789 * 551 * "Special" mappings do not wish to be associ 790 * "Special" mappings do not wish to be associated with a "struct page" (either 552 * it doesn't exist, or it exists but they don 791 * it doesn't exist, or it exists but they don't want to touch it). In this 553 * case, NULL is returned here. "Normal" mappi 792 * case, NULL is returned here. "Normal" mappings do have a struct page. 554 * 793 * 555 * There are 2 broad cases. Firstly, an archit 794 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 556 * pte bit, in which case this function is tri 795 * pte bit, in which case this function is trivial. Secondly, an architecture 557 * may not have a spare pte bit, which require 796 * may not have a spare pte bit, which requires a more complicated scheme, 558 * described below. 797 * described below. 559 * 798 * 560 * A raw VM_PFNMAP mapping (ie. one that is no 799 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 561 * special mapping (even if there are underlyi 800 * special mapping (even if there are underlying and valid "struct pages"). 562 * COWed pages of a VM_PFNMAP are always norma 801 * COWed pages of a VM_PFNMAP are always normal. 563 * 802 * 564 * The way we recognize COWed pages within VM_ 803 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 565 * rules set up by "remap_pfn_range()": the vm 804 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 566 * set, and the vm_pgoff will point to the fir 805 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 567 * mapping will always honor the rule 806 * mapping will always honor the rule 568 * 807 * 569 * pfn_of_page == vma->vm_pgoff + ((addr 808 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 570 * 809 * 571 * And for normal mappings this is false. 810 * And for normal mappings this is false. 572 * 811 * 573 * This restricts such mappings to be a linear 812 * This restricts such mappings to be a linear translation from virtual address 574 * to pfn. To get around this restriction, we 813 * to pfn. To get around this restriction, we allow arbitrary mappings so long 575 * as the vma is not a COW mapping; in that ca 814 * as the vma is not a COW mapping; in that case, we know that all ptes are 576 * special (because none can have been COWed). 815 * special (because none can have been COWed). 577 * 816 * 578 * 817 * 579 * In order to support COW of arbitrary specia 818 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 580 * 819 * 581 * VM_MIXEDMAP mappings can likewise contain m 820 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 582 * page" backing, however the difference is th 821 * page" backing, however the difference is that _all_ pages with a struct 583 * page (that is, those where pfn_valid is tru 822 * page (that is, those where pfn_valid is true) are refcounted and considered 584 * normal pages by the VM. The only exception !! 823 * normal pages by the VM. The disadvantage is that pages are refcounted 585 * *never* refcounted. !! 824 * (which can be slower and simply not an option for some PFNMAP users). The 586 * !! 825 * advantage is that we don't have to follow the strict linearity rule of 587 * The disadvantage is that pages are refcount !! 826 * PFNMAP mappings in order to support COWable mappings. 588 * simply not an option for some PFNMAP users) << 589 * don't have to follow the strict linearity r << 590 * order to support COWable mappings. << 591 * 827 * 592 */ 828 */ 593 struct page *vm_normal_page(struct vm_area_str !! 829 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 594 pte_t pte) !! 830 pte_t pte, bool with_public_device) 595 { 831 { 596 unsigned long pfn = pte_pfn(pte); 832 unsigned long pfn = pte_pfn(pte); 597 833 598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPE 834 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 599 if (likely(!pte_special(pte))) 835 if (likely(!pte_special(pte))) 600 goto check_pfn; 836 goto check_pfn; 601 if (vma->vm_ops && vma->vm_ops 837 if (vma->vm_ops && vma->vm_ops->find_special_page) 602 return vma->vm_ops->fi 838 return vma->vm_ops->find_special_page(vma, addr); 603 if (vma->vm_flags & (VM_PFNMAP 839 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 604 return NULL; 840 return NULL; 605 if (is_zero_pfn(pfn)) 841 if (is_zero_pfn(pfn)) 606 return NULL; 842 return NULL; 607 if (pte_devmap(pte)) !! 843 608 /* 844 /* 609 * NOTE: New users of ZONE_DEV !! 845 * Device public pages are special pages (they are ZONE_DEVICE 610 * and will have refcounts inc !! 846 * pages but different from persistent memory). They behave 611 * when they are inserted into !! 847 * allmost like normal pages. The difference is that they are 612 * return here. Legacy ZONE_DE !! 848 * not on the lru and thus should never be involve with any- 613 * do not have refcounts. Exam !! 849 * thing that involve lru manipulation (mlock, numa balancing, 614 * MEMORY_DEVICE_FS_DAX type i !! 850 * ...). >> 851 * >> 852 * This is why we still want to return NULL for such page from >> 853 * vm_normal_page() so that we do not have to special case all >> 854 * call site of vm_normal_page(). 615 */ 855 */ 616 return NULL; !! 856 if (likely(pfn <= highest_memmap_pfn)) { >> 857 struct page *page = pfn_to_page(pfn); 617 858 >> 859 if (is_device_public_page(page)) { >> 860 if (with_public_device) >> 861 return page; >> 862 return NULL; >> 863 } >> 864 } 618 print_bad_pte(vma, addr, pte, 865 print_bad_pte(vma, addr, pte, NULL); 619 return NULL; 866 return NULL; 620 } 867 } 621 868 622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case f 869 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 623 870 624 if (unlikely(vma->vm_flags & (VM_PFNMA 871 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 625 if (vma->vm_flags & VM_MIXEDMA 872 if (vma->vm_flags & VM_MIXEDMAP) { 626 if (!pfn_valid(pfn)) 873 if (!pfn_valid(pfn)) 627 return NULL; 874 return NULL; 628 if (is_zero_pfn(pfn)) << 629 return NULL; << 630 goto out; 875 goto out; 631 } else { 876 } else { 632 unsigned long off; 877 unsigned long off; 633 off = (addr - vma->vm_ 878 off = (addr - vma->vm_start) >> PAGE_SHIFT; 634 if (pfn == vma->vm_pgo 879 if (pfn == vma->vm_pgoff + off) 635 return NULL; 880 return NULL; 636 if (!is_cow_mapping(vm 881 if (!is_cow_mapping(vma->vm_flags)) 637 return NULL; 882 return NULL; 638 } 883 } 639 } 884 } 640 885 641 if (is_zero_pfn(pfn)) 886 if (is_zero_pfn(pfn)) 642 return NULL; 887 return NULL; 643 888 644 check_pfn: 889 check_pfn: 645 if (unlikely(pfn > highest_memmap_pfn) 890 if (unlikely(pfn > highest_memmap_pfn)) { 646 print_bad_pte(vma, addr, pte, 891 print_bad_pte(vma, addr, pte, NULL); 647 return NULL; 892 return NULL; 648 } 893 } 649 894 650 /* 895 /* 651 * NOTE! We still have PageReserved() 896 * NOTE! We still have PageReserved() pages in the page tables. 652 * eg. VDSO mappings can cause them to 897 * eg. VDSO mappings can cause them to exist. 653 */ 898 */ 654 out: 899 out: 655 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); << 656 return pfn_to_page(pfn); 900 return pfn_to_page(pfn); 657 } 901 } 658 902 659 struct folio *vm_normal_folio(struct vm_area_s !! 903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 660 pte_t pte) << 661 { << 662 struct page *page = vm_normal_page(vma << 663 << 664 if (page) << 665 return page_folio(page); << 666 return NULL; << 667 } << 668 << 669 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES << 670 struct page *vm_normal_page_pmd(struct vm_area 904 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 671 pmd_t pmd) 905 pmd_t pmd) 672 { 906 { 673 unsigned long pfn = pmd_pfn(pmd); 907 unsigned long pfn = pmd_pfn(pmd); 674 908 675 /* Currently it's only used for huge p !! 909 /* 676 if (unlikely(pmd_special(pmd))) !! 910 * There is no pmd_special() but there may be special pmds, e.g. 677 return NULL; !! 911 * in a direct-access (dax) mapping, so let's just replicate the 678 !! 912 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. >> 913 */ 679 if (unlikely(vma->vm_flags & (VM_PFNMA 914 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 680 if (vma->vm_flags & VM_MIXEDMA 915 if (vma->vm_flags & VM_MIXEDMAP) { 681 if (!pfn_valid(pfn)) 916 if (!pfn_valid(pfn)) 682 return NULL; 917 return NULL; 683 goto out; 918 goto out; 684 } else { 919 } else { 685 unsigned long off; 920 unsigned long off; 686 off = (addr - vma->vm_ 921 off = (addr - vma->vm_start) >> PAGE_SHIFT; 687 if (pfn == vma->vm_pgo 922 if (pfn == vma->vm_pgoff + off) 688 return NULL; 923 return NULL; 689 if (!is_cow_mapping(vm 924 if (!is_cow_mapping(vma->vm_flags)) 690 return NULL; 925 return NULL; 691 } 926 } 692 } 927 } 693 928 694 if (pmd_devmap(pmd)) !! 929 if (is_zero_pfn(pfn)) 695 return NULL; << 696 if (is_huge_zero_pmd(pmd)) << 697 return NULL; 930 return NULL; 698 if (unlikely(pfn > highest_memmap_pfn) 931 if (unlikely(pfn > highest_memmap_pfn)) 699 return NULL; 932 return NULL; 700 933 701 /* 934 /* 702 * NOTE! We still have PageReserved() 935 * NOTE! We still have PageReserved() pages in the page tables. 703 * eg. VDSO mappings can cause them to 936 * eg. VDSO mappings can cause them to exist. 704 */ 937 */ 705 out: 938 out: 706 return pfn_to_page(pfn); 939 return pfn_to_page(pfn); 707 } 940 } 708 << 709 struct folio *vm_normal_folio_pmd(struct vm_ar << 710 unsigned lon << 711 { << 712 struct page *page = vm_normal_page_pmd << 713 << 714 if (page) << 715 return page_folio(page); << 716 return NULL; << 717 } << 718 #endif 941 #endif 719 942 720 static void restore_exclusive_pte(struct vm_ar << 721 struct page << 722 pte_t *ptep) << 723 { << 724 struct folio *folio = page_folio(page) << 725 pte_t orig_pte; << 726 pte_t pte; << 727 swp_entry_t entry; << 728 << 729 orig_pte = ptep_get(ptep); << 730 pte = pte_mkold(mk_pte(page, READ_ONCE << 731 if (pte_swp_soft_dirty(orig_pte)) << 732 pte = pte_mksoft_dirty(pte); << 733 << 734 entry = pte_to_swp_entry(orig_pte); << 735 if (pte_swp_uffd_wp(orig_pte)) << 736 pte = pte_mkuffd_wp(pte); << 737 else if (is_writable_device_exclusive_ << 738 pte = maybe_mkwrite(pte_mkdirt << 739 << 740 VM_BUG_ON_FOLIO(pte_write(pte) && (!fo << 741 Pag << 742 << 743 /* << 744 * No need to take a page reference as << 745 * created when the swap entry was mad << 746 */ << 747 if (folio_test_anon(folio)) << 748 folio_add_anon_rmap_pte(folio, << 749 else << 750 /* << 751 * Currently device exclusive << 752 * memory so the entry shouldn << 753 */ << 754 WARN_ON_ONCE(1); << 755 << 756 set_pte_at(vma->vm_mm, address, ptep, << 757 << 758 /* << 759 * No need to invalidate - it was non- << 760 * secondary CPUs may have mappings th << 761 */ << 762 update_mmu_cache(vma, address, ptep); << 763 } << 764 << 765 /* << 766 * Tries to restore an exclusive pte if the pa << 767 * sleeping. << 768 */ << 769 static int << 770 try_restore_exclusive_pte(pte_t *src_pte, stru << 771 unsigned long addr) << 772 { << 773 swp_entry_t entry = pte_to_swp_entry(p << 774 struct page *page = pfn_swap_entry_to_ << 775 << 776 if (trylock_page(page)) { << 777 restore_exclusive_pte(vma, pag << 778 unlock_page(page); << 779 return 0; << 780 } << 781 << 782 return -EBUSY; << 783 } << 784 << 785 /* 943 /* 786 * copy one vm_area from one task to the other 944 * copy one vm_area from one task to the other. Assumes the page tables 787 * already present in the new task to be clear 945 * already present in the new task to be cleared in the whole range 788 * covered by this vma. 946 * covered by this vma. 789 */ 947 */ 790 948 791 static unsigned long !! 949 static inline unsigned long 792 copy_nonpresent_pte(struct mm_struct *dst_mm, !! 950 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 793 pte_t *dst_pte, pte_t *src_pte !! 951 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 794 struct vm_area_struct *src_vma !! 952 unsigned long addr, int *rss) 795 { !! 953 { 796 unsigned long vm_flags = dst_vma->vm_f !! 954 unsigned long vm_flags = vma->vm_flags; 797 pte_t orig_pte = ptep_get(src_pte); !! 955 pte_t pte = *src_pte; 798 pte_t pte = orig_pte; << 799 struct folio *folio; << 800 struct page *page; 956 struct page *page; 801 swp_entry_t entry = pte_to_swp_entry(o << 802 957 803 if (likely(!non_swap_entry(entry))) { !! 958 /* pte contains position in swap or file, so copy. */ 804 if (swap_duplicate(entry) < 0) !! 959 if (unlikely(!pte_present(pte))) { 805 return -EIO; !! 960 swp_entry_t entry = pte_to_swp_entry(pte); 806 !! 961 807 /* make sure dst_mm is on swap !! 962 if (likely(!non_swap_entry(entry))) { 808 if (unlikely(list_empty(&dst_m !! 963 if (swap_duplicate(entry) < 0) 809 spin_lock(&mmlist_lock !! 964 return entry.val; 810 if (list_empty(&dst_mm !! 965 811 list_add(&dst_ !! 966 /* make sure dst_mm is on swapoff's mmlist. */ 812 !! 967 if (unlikely(list_empty(&dst_mm->mmlist))) { 813 spin_unlock(&mmlist_lo !! 968 spin_lock(&mmlist_lock); 814 } !! 969 if (list_empty(&dst_mm->mmlist)) 815 /* Mark the swap entry as shar !! 970 list_add(&dst_mm->mmlist, 816 if (pte_swp_exclusive(orig_pte !! 971 &src_mm->mmlist); 817 pte = pte_swp_clear_ex !! 972 spin_unlock(&mmlist_lock); 818 set_pte_at(src_mm, add !! 973 } 819 } !! 974 rss[MM_SWAPENTS]++; 820 rss[MM_SWAPENTS]++; !! 975 } else if (is_migration_entry(entry)) { 821 } else if (is_migration_entry(entry)) !! 976 page = migration_entry_to_page(entry); 822 folio = pfn_swap_entry_folio(e !! 977 >> 978 rss[mm_counter(page)]++; 823 979 824 rss[mm_counter(folio)]++; !! 980 if (is_write_migration_entry(entry) && >> 981 is_cow_mapping(vm_flags)) { >> 982 /* >> 983 * COW mappings require pages in both >> 984 * parent and child to be set to read. >> 985 */ >> 986 make_migration_entry_read(&entry); >> 987 pte = swp_entry_to_pte(entry); >> 988 if (pte_swp_soft_dirty(*src_pte)) >> 989 pte = pte_swp_mksoft_dirty(pte); >> 990 set_pte_at(src_mm, addr, src_pte, pte); >> 991 } >> 992 } else if (is_device_private_entry(entry)) { >> 993 page = device_private_entry_to_page(entry); 825 994 826 if (!is_readable_migration_ent << 827 is_cow_mapping << 828 /* 995 /* 829 * COW mappings requir !! 996 * Update rss count even for unaddressable pages, as 830 * to be set to read. !! 997 * they should treated just like normal pages in this 831 * now shared. !! 998 * respect. >> 999 * >> 1000 * We will likely want to have some new rss counters >> 1001 * for unaddressable pages, at some point. But for now >> 1002 * keep things as they are. 832 */ 1003 */ 833 entry = make_readable_ !! 1004 get_page(page); 834 !! 1005 rss[mm_counter(page)]++; 835 pte = swp_entry_to_pte !! 1006 page_dup_rmap(page, false); 836 if (pte_swp_soft_dirty << 837 pte = pte_swp_ << 838 if (pte_swp_uffd_wp(or << 839 pte = pte_swp_ << 840 set_pte_at(src_mm, add << 841 } << 842 } else if (is_device_private_entry(ent << 843 page = pfn_swap_entry_to_page( << 844 folio = page_folio(page); << 845 1007 846 /* !! 1008 /* 847 * Update rss count even for u !! 1009 * We do not preserve soft-dirty information, because so 848 * they should treated just li !! 1010 * far, checkpoint/restore is the only feature that 849 * respect. !! 1011 * requires that. And checkpoint/restore does not work 850 * !! 1012 * when a device driver is involved (you cannot easily 851 * We will likely want to have !! 1013 * save and restore device driver state). 852 * for unaddressable pages, at !! 1014 */ 853 * keep things as they are. !! 1015 if (is_write_device_private_entry(entry) && 854 */ !! 1016 is_cow_mapping(vm_flags)) { 855 folio_get(folio); !! 1017 make_device_private_entry_read(&entry); 856 rss[mm_counter(folio)]++; !! 1018 pte = swp_entry_to_pte(entry); 857 /* Cannot fail as these pages !! 1019 set_pte_at(src_mm, addr, src_pte, pte); 858 folio_try_dup_anon_rmap_pte(fo !! 1020 } 859 << 860 /* << 861 * We do not preserve soft-dir << 862 * far, checkpoint/restore is << 863 * requires that. And checkpoi << 864 * when a device driver is inv << 865 * save and restore device dri << 866 */ << 867 if (is_writable_device_private << 868 is_cow_mapping(vm_flags)) << 869 entry = make_readable_ << 870 << 871 pte = swp_entry_to_pte << 872 if (pte_swp_uffd_wp(or << 873 pte = pte_swp_ << 874 set_pte_at(src_mm, add << 875 } 1021 } 876 } else if (is_device_exclusive_entry(e !! 1022 goto out_set_pte; 877 /* << 878 * Make device exclusive entri << 879 * original entry then copying << 880 * exclusive entries currently << 881 * (ie. COW) mappings. << 882 */ << 883 VM_BUG_ON(!is_cow_mapping(src_ << 884 if (try_restore_exclusive_pte( << 885 return -EBUSY; << 886 return -ENOENT; << 887 } else if (is_pte_marker_entry(entry)) << 888 pte_marker marker = copy_pte_m << 889 << 890 if (marker) << 891 set_pte_at(dst_mm, add << 892 make_pte_ma << 893 return 0; << 894 } 1023 } 895 if (!userfaultfd_wp(dst_vma)) << 896 pte = pte_swp_clear_uffd_wp(pt << 897 set_pte_at(dst_mm, addr, dst_pte, pte) << 898 return 0; << 899 } << 900 << 901 /* << 902 * Copy a present and normal page. << 903 * << 904 * NOTE! The usual case is that this isn't req << 905 * instead, the caller can just increase the p << 906 * and re-use the pte the traditional way. << 907 * << 908 * And if we need a pre-allocated page but don << 909 * one, return a negative error to let the pre << 910 * code know so that it can do so outside the << 911 * lock. << 912 */ << 913 static inline int << 914 copy_present_page(struct vm_area_struct *dst_v << 915 pte_t *dst_pte, pte_t *src_p << 916 struct folio **prealloc, str << 917 { << 918 struct folio *new_folio; << 919 pte_t pte; << 920 1024 921 new_folio = *prealloc; !! 1025 /* 922 if (!new_folio) !! 1026 * If it's a COW mapping, write protect it both 923 return -EAGAIN; !! 1027 * in the parent and the child 924 !! 1028 */ 925 /* !! 1029 if (is_cow_mapping(vm_flags)) { 926 * We have a prealloc page, all good! !! 1030 ptep_set_wrprotect(src_mm, addr, src_pte); 927 * over and copy the page & arm it. << 928 */ << 929 << 930 if (copy_mc_user_highpage(&new_folio-> << 931 return -EHWPOISON; << 932 << 933 *prealloc = NULL; << 934 __folio_mark_uptodate(new_folio); << 935 folio_add_new_anon_rmap(new_folio, dst << 936 folio_add_lru_vma(new_folio, dst_vma); << 937 rss[MM_ANONPAGES]++; << 938 << 939 /* All done, just insert the new page << 940 pte = mk_pte(&new_folio->page, dst_vma << 941 pte = maybe_mkwrite(pte_mkdirty(pte), << 942 if (userfaultfd_pte_wp(dst_vma, ptep_g << 943 /* Uffd-wp needs to be deliver << 944 pte = pte_mkuffd_wp(pte); << 945 set_pte_at(dst_vma->vm_mm, addr, dst_p << 946 return 0; << 947 } << 948 << 949 static __always_inline void __copy_present_pte << 950 struct vm_area_struct *src_vma << 951 pte_t pte, unsigned long addr, << 952 { << 953 struct mm_struct *src_mm = src_vma->vm << 954 << 955 /* If it's a COW mapping, write protec << 956 if (is_cow_mapping(src_vma->vm_flags) << 957 wrprotect_ptes(src_mm, addr, s << 958 pte = pte_wrprotect(pte); 1031 pte = pte_wrprotect(pte); 959 } 1032 } 960 1033 961 /* If it's a shared mapping, mark it c !! 1034 /* 962 if (src_vma->vm_flags & VM_SHARED) !! 1035 * If it's a shared mapping, mark it clean in >> 1036 * the child >> 1037 */ >> 1038 if (vm_flags & VM_SHARED) 963 pte = pte_mkclean(pte); 1039 pte = pte_mkclean(pte); 964 pte = pte_mkold(pte); 1040 pte = pte_mkold(pte); 965 1041 966 if (!userfaultfd_wp(dst_vma)) !! 1042 page = vm_normal_page(vma, addr, pte); 967 pte = pte_clear_uffd_wp(pte); !! 1043 if (page) { >> 1044 get_page(page); >> 1045 page_dup_rmap(page, false); >> 1046 rss[mm_counter(page)]++; >> 1047 } else if (pte_devmap(pte)) { >> 1048 page = pte_page(pte); 968 1049 969 set_ptes(dst_vma->vm_mm, addr, dst_pte << 970 } << 971 << 972 /* << 973 * Copy one present PTE, trying to batch-proce << 974 * consecutive pages of the same folio by copy << 975 * << 976 * Returns -EAGAIN if one preallocated page is << 977 * Otherwise, returns the number of copied PTE << 978 */ << 979 static inline int << 980 copy_present_ptes(struct vm_area_struct *dst_v << 981 pte_t *dst_pte, pte_t *src_pt << 982 int max_nr, int *rss, struct << 983 { << 984 struct page *page; << 985 struct folio *folio; << 986 bool any_writable; << 987 fpb_t flags = 0; << 988 int err, nr; << 989 << 990 page = vm_normal_page(src_vma, addr, p << 991 if (unlikely(!page)) << 992 goto copy_pte; << 993 << 994 folio = page_folio(page); << 995 << 996 /* << 997 * If we likely have to copy, just don << 998 * sure that the common "small folio" << 999 * by keeping the batching logic separ << 1000 */ << 1001 if (unlikely(!*prealloc && folio_test << 1002 if (src_vma->vm_flags & VM_SH << 1003 flags |= FPB_IGNORE_D << 1004 if (!vma_soft_dirty_enabled(s << 1005 flags |= FPB_IGNORE_S << 1006 << 1007 nr = folio_pte_batch(folio, a << 1008 &any_wri << 1009 folio_ref_add(folio, nr); << 1010 if (folio_test_anon(folio)) { << 1011 if (unlikely(folio_tr << 1012 << 1013 folio_ref_sub << 1014 return -EAGAI << 1015 } << 1016 rss[MM_ANONPAGES] += << 1017 VM_WARN_ON_FOLIO(Page << 1018 } else { << 1019 folio_dup_file_rmap_p << 1020 rss[mm_counter_file(f << 1021 } << 1022 if (any_writable) << 1023 pte = pte_mkwrite(pte << 1024 __copy_present_ptes(dst_vma, << 1025 addr, nr) << 1026 return nr; << 1027 } << 1028 << 1029 folio_get(folio); << 1030 if (folio_test_anon(folio)) { << 1031 /* 1050 /* 1032 * If this page may have been !! 1051 * Cache coherent device memory behave like regular page and 1033 * copy the page immediately !! 1052 * not like persistent memory page. For more informations see 1034 * guarantee the pinned page !! 1053 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 1035 * future. << 1036 */ 1054 */ 1037 if (unlikely(folio_try_dup_an !! 1055 if (is_device_public_page(page)) { 1038 /* Page may be pinned !! 1056 get_page(page); 1039 folio_put(folio); !! 1057 page_dup_rmap(page, false); 1040 err = copy_present_pa !! 1058 rss[mm_counter(page)]++; 1041 << 1042 return err ? err : 1; << 1043 } 1059 } 1044 rss[MM_ANONPAGES]++; << 1045 VM_WARN_ON_FOLIO(PageAnonExcl << 1046 } else { << 1047 folio_dup_file_rmap_pte(folio << 1048 rss[mm_counter_file(folio)]++ << 1049 } << 1050 << 1051 copy_pte: << 1052 __copy_present_ptes(dst_vma, src_vma, << 1053 return 1; << 1054 } << 1055 << 1056 static inline struct folio *folio_prealloc(st << 1057 struct vm_area_struct *vma, u << 1058 { << 1059 struct folio *new_folio; << 1060 << 1061 if (need_zero) << 1062 new_folio = vma_alloc_zeroed_ << 1063 else << 1064 new_folio = vma_alloc_folio(G << 1065 a << 1066 << 1067 if (!new_folio) << 1068 return NULL; << 1069 << 1070 if (mem_cgroup_charge(new_folio, src_ << 1071 folio_put(new_folio); << 1072 return NULL; << 1073 } 1060 } 1074 folio_throttle_swaprate(new_folio, GF << 1075 1061 1076 return new_folio; !! 1062 out_set_pte: >> 1063 set_pte_at(dst_mm, addr, dst_pte, pte); >> 1064 return 0; 1077 } 1065 } 1078 1066 1079 static int !! 1067 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1080 copy_pte_range(struct vm_area_struct *dst_vma !! 1068 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 1081 pmd_t *dst_pmd, pmd_t *src_pmd !! 1069 unsigned long addr, unsigned long end) 1082 unsigned long end) << 1083 { 1070 { 1084 struct mm_struct *dst_mm = dst_vma->v << 1085 struct mm_struct *src_mm = src_vma->v << 1086 pte_t *orig_src_pte, *orig_dst_pte; 1071 pte_t *orig_src_pte, *orig_dst_pte; 1087 pte_t *src_pte, *dst_pte; 1072 pte_t *src_pte, *dst_pte; 1088 pte_t ptent; << 1089 spinlock_t *src_ptl, *dst_ptl; 1073 spinlock_t *src_ptl, *dst_ptl; 1090 int progress, max_nr, ret = 0; !! 1074 int progress = 0; 1091 int rss[NR_MM_COUNTERS]; 1075 int rss[NR_MM_COUNTERS]; 1092 swp_entry_t entry = (swp_entry_t){0}; 1076 swp_entry_t entry = (swp_entry_t){0}; 1093 struct folio *prealloc = NULL; << 1094 int nr; << 1095 1077 1096 again: 1078 again: 1097 progress = 0; << 1098 init_rss_vec(rss); 1079 init_rss_vec(rss); 1099 1080 1100 /* << 1101 * copy_pmd_range()'s prior pmd_none_ << 1102 * error handling here, assume that e << 1103 * protects anon from unexpected THP << 1104 * protected by mmap_lock-less collap << 1105 * (whereas vma_needs_copy() skips ar << 1106 * can remove such assumptions later, << 1107 */ << 1108 dst_pte = pte_alloc_map_lock(dst_mm, 1081 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1109 if (!dst_pte) { !! 1082 if (!dst_pte) 1110 ret = -ENOMEM; !! 1083 return -ENOMEM; 1111 goto out; !! 1084 src_pte = pte_offset_map(src_pmd, addr); 1112 } !! 1085 src_ptl = pte_lockptr(src_mm, src_pmd); 1113 src_pte = pte_offset_map_nolock(src_m << 1114 if (!src_pte) { << 1115 pte_unmap_unlock(dst_pte, dst << 1116 /* ret == 0 */ << 1117 goto out; << 1118 } << 1119 spin_lock_nested(src_ptl, SINGLE_DEPT 1086 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1120 orig_src_pte = src_pte; 1087 orig_src_pte = src_pte; 1121 orig_dst_pte = dst_pte; 1088 orig_dst_pte = dst_pte; 1122 arch_enter_lazy_mmu_mode(); 1089 arch_enter_lazy_mmu_mode(); 1123 1090 1124 do { 1091 do { 1125 nr = 1; << 1126 << 1127 /* 1092 /* 1128 * We are holding two locks a 1093 * We are holding two locks at this point - either of them 1129 * could generate latencies i 1094 * could generate latencies in another task on another CPU. 1130 */ 1095 */ 1131 if (progress >= 32) { 1096 if (progress >= 32) { 1132 progress = 0; 1097 progress = 0; 1133 if (need_resched() || 1098 if (need_resched() || 1134 spin_needbreak(sr 1099 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1135 break; 1100 break; 1136 } 1101 } 1137 ptent = ptep_get(src_pte); !! 1102 if (pte_none(*src_pte)) { 1138 if (pte_none(ptent)) { << 1139 progress++; 1103 progress++; 1140 continue; 1104 continue; 1141 } 1105 } 1142 if (unlikely(!pte_present(pte !! 1106 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1143 ret = copy_nonpresent !! 1107 vma, addr, rss); 1144 !! 1108 if (entry.val) 1145 << 1146 << 1147 if (ret == -EIO) { << 1148 entry = pte_t << 1149 break; << 1150 } else if (ret == -EB << 1151 break; << 1152 } else if (!ret) { << 1153 progress += 8 << 1154 continue; << 1155 } << 1156 ptent = ptep_get(src_ << 1157 VM_WARN_ON_ONCE(!pte_ << 1158 << 1159 /* << 1160 * Device exclusive e << 1161 * the now present pt << 1162 */ << 1163 WARN_ON_ONCE(ret != - << 1164 } << 1165 /* copy_present_ptes() will c << 1166 max_nr = (end - addr) / PAGE_ << 1167 ret = copy_present_ptes(dst_v << 1168 ptent << 1169 /* << 1170 * If we need a pre-allocated << 1171 * locks, allocate, and try a << 1172 * If copy failed due to hwpo << 1173 */ << 1174 if (unlikely(ret == -EAGAIN | << 1175 break; 1109 break; 1176 if (unlikely(prealloc)) { !! 1110 progress += 8; 1177 /* !! 1111 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1178 * pre-alloc page can << 1179 * to strictly follow << 1180 * will allocate page << 1181 * could only happen << 1182 */ << 1183 folio_put(prealloc); << 1184 prealloc = NULL; << 1185 } << 1186 nr = ret; << 1187 progress += 8 * nr; << 1188 } while (dst_pte += nr, src_pte += nr << 1189 addr != end); << 1190 1112 1191 arch_leave_lazy_mmu_mode(); 1113 arch_leave_lazy_mmu_mode(); 1192 pte_unmap_unlock(orig_src_pte, src_pt !! 1114 spin_unlock(src_ptl); >> 1115 pte_unmap(orig_src_pte); 1193 add_mm_rss_vec(dst_mm, rss); 1116 add_mm_rss_vec(dst_mm, rss); 1194 pte_unmap_unlock(orig_dst_pte, dst_pt 1117 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1195 cond_resched(); 1118 cond_resched(); 1196 1119 1197 if (ret == -EIO) { !! 1120 if (entry.val) { 1198 VM_WARN_ON_ONCE(!entry.val); !! 1121 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1199 if (add_swap_count_continuati << 1200 ret = -ENOMEM; << 1201 goto out; << 1202 } << 1203 entry.val = 0; << 1204 } else if (ret == -EBUSY || unlikely( << 1205 goto out; << 1206 } else if (ret == -EAGAIN) { << 1207 prealloc = folio_prealloc(src << 1208 if (!prealloc) << 1209 return -ENOMEM; 1122 return -ENOMEM; 1210 } else if (ret < 0) { !! 1123 progress = 0; 1211 VM_WARN_ON_ONCE(1); << 1212 } 1124 } 1213 << 1214 /* We've captured and resolved the er << 1215 ret = 0; << 1216 << 1217 if (addr != end) 1125 if (addr != end) 1218 goto again; 1126 goto again; 1219 out: !! 1127 return 0; 1220 if (unlikely(prealloc)) << 1221 folio_put(prealloc); << 1222 return ret; << 1223 } 1128 } 1224 1129 1225 static inline int !! 1130 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1226 copy_pmd_range(struct vm_area_struct *dst_vma !! 1131 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1227 pud_t *dst_pud, pud_t *src_pud !! 1132 unsigned long addr, unsigned long end) 1228 unsigned long end) << 1229 { 1133 { 1230 struct mm_struct *dst_mm = dst_vma->v << 1231 struct mm_struct *src_mm = src_vma->v << 1232 pmd_t *src_pmd, *dst_pmd; 1134 pmd_t *src_pmd, *dst_pmd; 1233 unsigned long next; 1135 unsigned long next; 1234 1136 1235 dst_pmd = pmd_alloc(dst_mm, dst_pud, 1137 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1236 if (!dst_pmd) 1138 if (!dst_pmd) 1237 return -ENOMEM; 1139 return -ENOMEM; 1238 src_pmd = pmd_offset(src_pud, addr); 1140 src_pmd = pmd_offset(src_pud, addr); 1239 do { 1141 do { 1240 next = pmd_addr_end(addr, end 1142 next = pmd_addr_end(addr, end); 1241 if (is_swap_pmd(*src_pmd) || 1143 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1242 || pmd_devmap(*src_pm 1144 || pmd_devmap(*src_pmd)) { 1243 int err; 1145 int err; 1244 VM_BUG_ON_VMA(next-ad !! 1146 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1245 err = copy_huge_pmd(d !! 1147 err = copy_huge_pmd(dst_mm, src_mm, 1246 a !! 1148 dst_pmd, src_pmd, addr, vma); 1247 if (err == -ENOMEM) 1149 if (err == -ENOMEM) 1248 return -ENOME 1150 return -ENOMEM; 1249 if (!err) 1151 if (!err) 1250 continue; 1152 continue; 1251 /* fall through */ 1153 /* fall through */ 1252 } 1154 } 1253 if (pmd_none_or_clear_bad(src 1155 if (pmd_none_or_clear_bad(src_pmd)) 1254 continue; 1156 continue; 1255 if (copy_pte_range(dst_vma, s !! 1157 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1256 addr, next !! 1158 vma, addr, next)) 1257 return -ENOMEM; 1159 return -ENOMEM; 1258 } while (dst_pmd++, src_pmd++, addr = 1160 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1259 return 0; 1161 return 0; 1260 } 1162 } 1261 1163 1262 static inline int !! 1164 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1263 copy_pud_range(struct vm_area_struct *dst_vma !! 1165 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1264 p4d_t *dst_p4d, p4d_t *src_p4d !! 1166 unsigned long addr, unsigned long end) 1265 unsigned long end) << 1266 { 1167 { 1267 struct mm_struct *dst_mm = dst_vma->v << 1268 struct mm_struct *src_mm = src_vma->v << 1269 pud_t *src_pud, *dst_pud; 1168 pud_t *src_pud, *dst_pud; 1270 unsigned long next; 1169 unsigned long next; 1271 1170 1272 dst_pud = pud_alloc(dst_mm, dst_p4d, 1171 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1273 if (!dst_pud) 1172 if (!dst_pud) 1274 return -ENOMEM; 1173 return -ENOMEM; 1275 src_pud = pud_offset(src_p4d, addr); 1174 src_pud = pud_offset(src_p4d, addr); 1276 do { 1175 do { 1277 next = pud_addr_end(addr, end 1176 next = pud_addr_end(addr, end); 1278 if (pud_trans_huge(*src_pud) 1177 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1279 int err; 1178 int err; 1280 1179 1281 VM_BUG_ON_VMA(next-ad !! 1180 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1282 err = copy_huge_pud(d 1181 err = copy_huge_pud(dst_mm, src_mm, 1283 d !! 1182 dst_pud, src_pud, addr, vma); 1284 if (err == -ENOMEM) 1183 if (err == -ENOMEM) 1285 return -ENOME 1184 return -ENOMEM; 1286 if (!err) 1185 if (!err) 1287 continue; 1186 continue; 1288 /* fall through */ 1187 /* fall through */ 1289 } 1188 } 1290 if (pud_none_or_clear_bad(src 1189 if (pud_none_or_clear_bad(src_pud)) 1291 continue; 1190 continue; 1292 if (copy_pmd_range(dst_vma, s !! 1191 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1293 addr, next !! 1192 vma, addr, next)) 1294 return -ENOMEM; 1193 return -ENOMEM; 1295 } while (dst_pud++, src_pud++, addr = 1194 } while (dst_pud++, src_pud++, addr = next, addr != end); 1296 return 0; 1195 return 0; 1297 } 1196 } 1298 1197 1299 static inline int !! 1198 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1300 copy_p4d_range(struct vm_area_struct *dst_vma !! 1199 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1301 pgd_t *dst_pgd, pgd_t *src_pgd !! 1200 unsigned long addr, unsigned long end) 1302 unsigned long end) << 1303 { 1201 { 1304 struct mm_struct *dst_mm = dst_vma->v << 1305 p4d_t *src_p4d, *dst_p4d; 1202 p4d_t *src_p4d, *dst_p4d; 1306 unsigned long next; 1203 unsigned long next; 1307 1204 1308 dst_p4d = p4d_alloc(dst_mm, dst_pgd, 1205 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1309 if (!dst_p4d) 1206 if (!dst_p4d) 1310 return -ENOMEM; 1207 return -ENOMEM; 1311 src_p4d = p4d_offset(src_pgd, addr); 1208 src_p4d = p4d_offset(src_pgd, addr); 1312 do { 1209 do { 1313 next = p4d_addr_end(addr, end 1210 next = p4d_addr_end(addr, end); 1314 if (p4d_none_or_clear_bad(src 1211 if (p4d_none_or_clear_bad(src_p4d)) 1315 continue; 1212 continue; 1316 if (copy_pud_range(dst_vma, s !! 1213 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1317 addr, next !! 1214 vma, addr, next)) 1318 return -ENOMEM; 1215 return -ENOMEM; 1319 } while (dst_p4d++, src_p4d++, addr = 1216 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1320 return 0; 1217 return 0; 1321 } 1218 } 1322 1219 1323 /* !! 1220 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1324 * Return true if the vma needs to copy the p !! 1221 struct vm_area_struct *vma) 1325 * false when we can speed up fork() by allow << 1326 * when the child accesses the memory range. << 1327 */ << 1328 static bool << 1329 vma_needs_copy(struct vm_area_struct *dst_vma << 1330 { << 1331 /* << 1332 * Always copy pgtables when dst_vma << 1333 * file-backed (e.g. shmem). Because << 1334 * contains uffd-wp protection inform << 1335 * retrieve from page cache, and skip << 1336 */ << 1337 if (userfaultfd_wp(dst_vma)) << 1338 return true; << 1339 << 1340 if (src_vma->vm_flags & (VM_PFNMAP | << 1341 return true; << 1342 << 1343 if (src_vma->anon_vma) << 1344 return true; << 1345 << 1346 /* << 1347 * Don't copy ptes where a page fault << 1348 * becomes much lighter when there ar << 1349 * mappings. The tradeoff is that cop << 1350 * than faulting. << 1351 */ << 1352 return false; << 1353 } << 1354 << 1355 int << 1356 copy_page_range(struct vm_area_struct *dst_vm << 1357 { 1222 { 1358 pgd_t *src_pgd, *dst_pgd; 1223 pgd_t *src_pgd, *dst_pgd; 1359 unsigned long next; 1224 unsigned long next; 1360 unsigned long addr = src_vma->vm_star !! 1225 unsigned long addr = vma->vm_start; 1361 unsigned long end = src_vma->vm_end; !! 1226 unsigned long end = vma->vm_end; 1362 struct mm_struct *dst_mm = dst_vma->v !! 1227 unsigned long mmun_start; /* For mmu_notifiers */ 1363 struct mm_struct *src_mm = src_vma->v !! 1228 unsigned long mmun_end; /* For mmu_notifiers */ 1364 struct mmu_notifier_range range; << 1365 bool is_cow; 1229 bool is_cow; 1366 int ret; 1230 int ret; 1367 1231 1368 if (!vma_needs_copy(dst_vma, src_vma) !! 1232 /* >> 1233 * Don't copy ptes where a page fault will fill them correctly. >> 1234 * Fork becomes much lighter when there are big shared or private >> 1235 * readonly mappings. The tradeoff is that copy_page_range is more >> 1236 * efficient than faulting. >> 1237 */ >> 1238 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && >> 1239 !vma->anon_vma) 1369 return 0; 1240 return 0; 1370 1241 1371 if (is_vm_hugetlb_page(src_vma)) !! 1242 if (is_vm_hugetlb_page(vma)) 1372 return copy_hugetlb_page_rang !! 1243 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1373 1244 1374 if (unlikely(src_vma->vm_flags & VM_P !! 1245 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1375 /* 1246 /* 1376 * We do not free on error ca 1247 * We do not free on error cases below as remove_vma 1377 * gets called on error from 1248 * gets called on error from higher level routine 1378 */ 1249 */ 1379 ret = track_pfn_copy(src_vma) !! 1250 ret = track_pfn_copy(vma); 1380 if (ret) 1251 if (ret) 1381 return ret; 1252 return ret; 1382 } 1253 } 1383 1254 1384 /* 1255 /* 1385 * We need to invalidate the secondar 1256 * We need to invalidate the secondary MMU mappings only when 1386 * there could be a permission downgr 1257 * there could be a permission downgrade on the ptes of the 1387 * parent mm. And a permission downgr 1258 * parent mm. And a permission downgrade will only happen if 1388 * is_cow_mapping() returns true. 1259 * is_cow_mapping() returns true. 1389 */ 1260 */ 1390 is_cow = is_cow_mapping(src_vma->vm_f !! 1261 is_cow = is_cow_mapping(vma->vm_flags); 1391 !! 1262 mmun_start = addr; 1392 if (is_cow) { !! 1263 mmun_end = end; 1393 mmu_notifier_range_init(&rang !! 1264 if (is_cow) 1394 0, sr !! 1265 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1395 mmu_notifier_invalidate_range !! 1266 mmun_end); 1396 /* << 1397 * Disabling preemption is no << 1398 * the read side doesn't spin << 1399 * << 1400 * Use the raw variant of the << 1401 * lockdep complaining about << 1402 */ << 1403 vma_assert_write_locked(src_v << 1404 raw_write_seqcount_begin(&src << 1405 } << 1406 1267 1407 ret = 0; 1268 ret = 0; 1408 dst_pgd = pgd_offset(dst_mm, addr); 1269 dst_pgd = pgd_offset(dst_mm, addr); 1409 src_pgd = pgd_offset(src_mm, addr); 1270 src_pgd = pgd_offset(src_mm, addr); 1410 do { 1271 do { 1411 next = pgd_addr_end(addr, end 1272 next = pgd_addr_end(addr, end); 1412 if (pgd_none_or_clear_bad(src 1273 if (pgd_none_or_clear_bad(src_pgd)) 1413 continue; 1274 continue; 1414 if (unlikely(copy_p4d_range(d !! 1275 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1415 a !! 1276 vma, addr, next))) { 1416 untrack_pfn_clear(dst << 1417 ret = -ENOMEM; 1277 ret = -ENOMEM; 1418 break; 1278 break; 1419 } 1279 } 1420 } while (dst_pgd++, src_pgd++, addr = 1280 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1421 1281 1422 if (is_cow) { !! 1282 if (is_cow) 1423 raw_write_seqcount_end(&src_m !! 1283 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1424 mmu_notifier_invalidate_range << 1425 } << 1426 return ret; 1284 return ret; 1427 } 1285 } 1428 1286 1429 /* Whether we should zap all COWed (private) << 1430 static inline bool should_zap_cows(struct zap << 1431 { << 1432 /* By default, zap all pages */ << 1433 if (!details) << 1434 return true; << 1435 << 1436 /* Or, we zap COWed pages only if the << 1437 return details->even_cows; << 1438 } << 1439 << 1440 /* Decides whether we should zap this folio w << 1441 static inline bool should_zap_folio(struct za << 1442 struct fo << 1443 { << 1444 /* If we can make a decision without << 1445 if (should_zap_cows(details)) << 1446 return true; << 1447 << 1448 /* Otherwise we should only zap non-a << 1449 return !folio_test_anon(folio); << 1450 } << 1451 << 1452 static inline bool zap_drop_file_uffd_wp(stru << 1453 { << 1454 if (!details) << 1455 return false; << 1456 << 1457 return details->zap_flags & ZAP_FLAG_ << 1458 } << 1459 << 1460 /* << 1461 * This function makes sure that we'll replac << 1462 * swap special pte marker when necessary. Mu << 1463 */ << 1464 static inline void << 1465 zap_install_uffd_wp_if_needed(struct vm_area_ << 1466 unsigned long a << 1467 struct zap_deta << 1468 { << 1469 /* Zap on anonymous always means drop << 1470 if (vma_is_anonymous(vma)) << 1471 return; << 1472 << 1473 if (zap_drop_file_uffd_wp(details)) << 1474 return; << 1475 << 1476 for (;;) { << 1477 /* the PFN in the PTE is irre << 1478 pte_install_uffd_wp_if_needed << 1479 if (--nr == 0) << 1480 break; << 1481 pte++; << 1482 addr += PAGE_SIZE; << 1483 } << 1484 } << 1485 << 1486 static __always_inline void zap_present_folio << 1487 struct vm_area_struct *vma, s << 1488 struct page *page, pte_t *pte << 1489 unsigned long addr, struct za << 1490 bool *force_flush, bool *forc << 1491 { << 1492 struct mm_struct *mm = tlb->mm; << 1493 bool delay_rmap = false; << 1494 << 1495 if (!folio_test_anon(folio)) { << 1496 ptent = get_and_clear_full_pt << 1497 if (pte_dirty(ptent)) { << 1498 folio_mark_dirty(foli << 1499 if (tlb_delay_rmap(tl << 1500 delay_rmap = << 1501 *force_flush << 1502 } << 1503 } << 1504 if (pte_young(ptent) && likel << 1505 folio_mark_accessed(f << 1506 rss[mm_counter(folio)] -= nr; << 1507 } else { << 1508 /* We don't need up-to-date a << 1509 clear_full_ptes(mm, addr, pte << 1510 rss[MM_ANONPAGES] -= nr; << 1511 } << 1512 /* Checking a single PTE in a batch i << 1513 arch_check_zapped_pte(vma, ptent); << 1514 tlb_remove_tlb_entries(tlb, pte, nr, << 1515 if (unlikely(userfaultfd_pte_wp(vma, << 1516 zap_install_uffd_wp_if_needed << 1517 << 1518 << 1519 if (!delay_rmap) { << 1520 folio_remove_rmap_ptes(folio, << 1521 << 1522 if (unlikely(folio_mapcount(f << 1523 print_bad_pte(vma, ad << 1524 } << 1525 if (unlikely(__tlb_remove_folio_pages << 1526 *force_flush = true; << 1527 *force_break = true; << 1528 } << 1529 } << 1530 << 1531 /* << 1532 * Zap or skip at least one present PTE, tryi << 1533 * PTEs that map consecutive pages of the sam << 1534 * << 1535 * Returns the number of processed (skipped o << 1536 */ << 1537 static inline int zap_present_ptes(struct mmu << 1538 struct vm_area_struct *vma, p << 1539 unsigned int max_nr, unsigned << 1540 struct zap_details *details, << 1541 bool *force_break) << 1542 { << 1543 const fpb_t fpb_flags = FPB_IGNORE_DI << 1544 struct mm_struct *mm = tlb->mm; << 1545 struct folio *folio; << 1546 struct page *page; << 1547 int nr; << 1548 << 1549 page = vm_normal_page(vma, addr, pten << 1550 if (!page) { << 1551 /* We don't need up-to-date a << 1552 ptep_get_and_clear_full(mm, a << 1553 arch_check_zapped_pte(vma, pt << 1554 tlb_remove_tlb_entry(tlb, pte << 1555 if (userfaultfd_pte_wp(vma, p << 1556 zap_install_uffd_wp_i << 1557 << 1558 ksm_might_unmap_zero_page(mm, << 1559 return 1; << 1560 } << 1561 << 1562 folio = page_folio(page); << 1563 if (unlikely(!should_zap_folio(detail << 1564 return 1; << 1565 << 1566 /* << 1567 * Make sure that the common "small f << 1568 * by keeping the batching logic sepa << 1569 */ << 1570 if (unlikely(folio_test_large(folio) << 1571 nr = folio_pte_batch(folio, a << 1572 NULL, NU << 1573 << 1574 zap_present_folio_ptes(tlb, v << 1575 addr, << 1576 force_ << 1577 return nr; << 1578 } << 1579 zap_present_folio_ptes(tlb, vma, foli << 1580 details, rss, << 1581 return 1; << 1582 } << 1583 << 1584 static unsigned long zap_pte_range(struct mmu 1287 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1585 struct vm_are 1288 struct vm_area_struct *vma, pmd_t *pmd, 1586 unsigned long 1289 unsigned long addr, unsigned long end, 1587 struct zap_de 1290 struct zap_details *details) 1588 { 1291 { 1589 bool force_flush = false, force_break << 1590 struct mm_struct *mm = tlb->mm; 1292 struct mm_struct *mm = tlb->mm; >> 1293 int force_flush = 0; 1591 int rss[NR_MM_COUNTERS]; 1294 int rss[NR_MM_COUNTERS]; 1592 spinlock_t *ptl; 1295 spinlock_t *ptl; 1593 pte_t *start_pte; 1296 pte_t *start_pte; 1594 pte_t *pte; 1297 pte_t *pte; 1595 swp_entry_t entry; 1298 swp_entry_t entry; 1596 int nr; << 1597 1299 1598 tlb_change_page_size(tlb, PAGE_SIZE); !! 1300 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); >> 1301 again: 1599 init_rss_vec(rss); 1302 init_rss_vec(rss); 1600 start_pte = pte = pte_offset_map_lock !! 1303 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1601 if (!pte) !! 1304 pte = start_pte; 1602 return addr; << 1603 << 1604 flush_tlb_batched_pending(mm); 1305 flush_tlb_batched_pending(mm); 1605 arch_enter_lazy_mmu_mode(); 1306 arch_enter_lazy_mmu_mode(); 1606 do { 1307 do { 1607 pte_t ptent = ptep_get(pte); !! 1308 pte_t ptent = *pte; 1608 struct folio *folio; << 1609 struct page *page; << 1610 int max_nr; << 1611 << 1612 nr = 1; << 1613 if (pte_none(ptent)) 1309 if (pte_none(ptent)) 1614 continue; 1310 continue; 1615 1311 1616 if (need_resched()) << 1617 break; << 1618 << 1619 if (pte_present(ptent)) { 1312 if (pte_present(ptent)) { 1620 max_nr = (end - addr) !! 1313 struct page *page; 1621 nr = zap_present_ptes !! 1314 1622 !! 1315 page = _vm_normal_page(vma, addr, ptent, true); 1623 !! 1316 if (unlikely(details) && page) { 1624 if (unlikely(force_br !! 1317 /* 1625 addr += nr * !! 1318 * unmap_shared_mapping_pages() wants to >> 1319 * invalidate cache without truncating: >> 1320 * unmap shared but keep private pages. >> 1321 */ >> 1322 if (details->check_mapping && >> 1323 details->check_mapping != page_rmapping(page)) >> 1324 continue; >> 1325 } >> 1326 ptent = ptep_get_and_clear_full(mm, addr, pte, >> 1327 tlb->fullmm); >> 1328 tlb_remove_tlb_entry(tlb, pte, addr); >> 1329 if (unlikely(!page)) >> 1330 continue; >> 1331 >> 1332 if (!PageAnon(page)) { >> 1333 if (pte_dirty(ptent)) { >> 1334 force_flush = 1; >> 1335 set_page_dirty(page); >> 1336 } >> 1337 if (pte_young(ptent) && >> 1338 likely(!(vma->vm_flags & VM_SEQ_READ))) >> 1339 mark_page_accessed(page); >> 1340 } >> 1341 rss[mm_counter(page)]--; >> 1342 page_remove_rmap(page, false); >> 1343 if (unlikely(page_mapcount(page) < 0)) >> 1344 print_bad_pte(vma, addr, ptent, page); >> 1345 if (unlikely(__tlb_remove_page(tlb, page))) { >> 1346 force_flush = 1; >> 1347 addr += PAGE_SIZE; 1626 break; 1348 break; 1627 } 1349 } 1628 continue; 1350 continue; 1629 } 1351 } 1630 1352 1631 entry = pte_to_swp_entry(pten 1353 entry = pte_to_swp_entry(ptent); 1632 if (is_device_private_entry(e !! 1354 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1633 is_device_exclusive_entry !! 1355 struct page *page = device_private_entry_to_page(entry); 1634 page = pfn_swap_entry !! 1356 1635 folio = page_folio(pa !! 1357 if (unlikely(details && details->check_mapping)) { 1636 if (unlikely(!should_ !! 1358 /* 1637 continue; !! 1359 * unmap_shared_mapping_pages() wants to 1638 /* !! 1360 * invalidate cache without truncating: 1639 * Both device privat !! 1361 * unmap shared but keep private pages. 1640 * work with anonymou !! 1362 */ 1641 * consider uffd-wp b !! 1363 if (details->check_mapping != 1642 * see zap_install_uf !! 1364 page_rmapping(page)) 1643 */ !! 1365 continue; 1644 WARN_ON_ONCE(!vma_is_ !! 1366 } 1645 rss[mm_counter(folio) !! 1367 1646 if (is_device_private !! 1368 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1647 folio_remove_ !! 1369 rss[mm_counter(page)]--; 1648 folio_put(folio); !! 1370 page_remove_rmap(page, false); 1649 } else if (!non_swap_entry(en !! 1371 put_page(page); 1650 max_nr = (end - addr) !! 1372 continue; 1651 nr = swap_pte_batch(p !! 1373 } 1652 /* Genuine swap entri !! 1374 1653 if (!should_zap_cows( !! 1375 /* If details->check_mapping, we leave swap entries. */ 1654 continue; !! 1376 if (unlikely(details)) 1655 rss[MM_SWAPENTS] -= n !! 1377 continue; 1656 free_swap_and_cache_n !! 1378 1657 } else if (is_migration_entry !! 1379 entry = pte_to_swp_entry(ptent); 1658 folio = pfn_swap_entr !! 1380 if (!non_swap_entry(entry)) 1659 if (!should_zap_folio !! 1381 rss[MM_SWAPENTS]--; 1660 continue; !! 1382 else if (is_migration_entry(entry)) { 1661 rss[mm_counter(folio) !! 1383 struct page *page; 1662 } else if (pte_marker_entry_u !! 1384 1663 /* !! 1385 page = migration_entry_to_page(entry); 1664 * For anon: always d !! 1386 rss[mm_counter(page)]--; 1665 * drop the marker if !! 1387 } 1666 */ !! 1388 if (unlikely(!free_swap_and_cache(entry))) 1667 if (!vma_is_anonymous !! 1389 print_bad_pte(vma, addr, ptent, NULL); 1668 !zap_drop_file_uf !! 1390 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1669 continue; !! 1391 } while (pte++, addr += PAGE_SIZE, addr != end); 1670 } else if (is_hwpoison_entry( << 1671 is_poisoned_swp_en << 1672 if (!should_zap_cows( << 1673 continue; << 1674 } else { << 1675 /* We should have cov << 1676 pr_alert("unrecognize << 1677 WARN_ON_ONCE(1); << 1678 } << 1679 clear_not_present_full_ptes(m << 1680 zap_install_uffd_wp_if_needed << 1681 } while (pte += nr, addr += PAGE_SIZE << 1682 1392 1683 add_mm_rss_vec(mm, rss); 1393 add_mm_rss_vec(mm, rss); 1684 arch_leave_lazy_mmu_mode(); 1394 arch_leave_lazy_mmu_mode(); 1685 1395 1686 /* Do the actual TLB flush before dro 1396 /* Do the actual TLB flush before dropping ptl */ 1687 if (force_flush) { !! 1397 if (force_flush) 1688 tlb_flush_mmu_tlbonly(tlb); 1398 tlb_flush_mmu_tlbonly(tlb); 1689 tlb_flush_rmaps(tlb, vma); << 1690 } << 1691 pte_unmap_unlock(start_pte, ptl); 1399 pte_unmap_unlock(start_pte, ptl); 1692 1400 1693 /* 1401 /* 1694 * If we forced a TLB flush (either d 1402 * If we forced a TLB flush (either due to running out of 1695 * batch buffers or because we needed 1403 * batch buffers or because we needed to flush dirty TLB 1696 * entries before releasing the ptl), 1404 * entries before releasing the ptl), free the batched 1697 * memory too. Come back again if we !! 1405 * memory too. Restart if we didn't do everything. 1698 */ 1406 */ 1699 if (force_flush) !! 1407 if (force_flush) { 1700 tlb_flush_mmu(tlb); !! 1408 force_flush = 0; >> 1409 tlb_flush_mmu_free(tlb); >> 1410 if (addr != end) >> 1411 goto again; >> 1412 } 1701 1413 1702 return addr; 1414 return addr; 1703 } 1415 } 1704 1416 1705 static inline unsigned long zap_pmd_range(str 1417 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1706 struct vm_are 1418 struct vm_area_struct *vma, pud_t *pud, 1707 unsigned long 1419 unsigned long addr, unsigned long end, 1708 struct zap_de 1420 struct zap_details *details) 1709 { 1421 { 1710 pmd_t *pmd; 1422 pmd_t *pmd; 1711 unsigned long next; 1423 unsigned long next; 1712 1424 1713 pmd = pmd_offset(pud, addr); 1425 pmd = pmd_offset(pud, addr); 1714 do { 1426 do { 1715 next = pmd_addr_end(addr, end 1427 next = pmd_addr_end(addr, end); 1716 if (is_swap_pmd(*pmd) || pmd_ 1428 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1717 if (next - addr != HP 1429 if (next - addr != HPAGE_PMD_SIZE) 1718 __split_huge_ 1430 __split_huge_pmd(vma, pmd, addr, false, NULL); 1719 else if (zap_huge_pmd !! 1431 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1720 addr = next; !! 1432 goto next; 1721 continue; << 1722 } << 1723 /* fall through */ 1433 /* fall through */ 1724 } else if (details && details << 1725 folio_test_pmd_map << 1726 next - addr == HPA << 1727 spinlock_t *ptl = pmd << 1728 /* << 1729 * Take and drop THP << 1730 * prematurely, while << 1731 * but not yet decrem << 1732 */ << 1733 spin_unlock(ptl); << 1734 } 1434 } 1735 if (pmd_none(*pmd)) { !! 1435 /* 1736 addr = next; !! 1436 * Here there can be other concurrent MADV_DONTNEED or 1737 continue; !! 1437 * trans huge page faults running, and if the pmd is 1738 } !! 1438 * none or trans huge it can change under us. This is 1739 addr = zap_pte_range(tlb, vma !! 1439 * because MADV_DONTNEED holds the mmap_sem in read 1740 if (addr != next) !! 1440 * mode. 1741 pmd--; !! 1441 */ 1742 } while (pmd++, cond_resched(), addr !! 1442 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) >> 1443 goto next; >> 1444 next = zap_pte_range(tlb, vma, pmd, addr, next, details); >> 1445 next: >> 1446 cond_resched(); >> 1447 } while (pmd++, addr = next, addr != end); 1743 1448 1744 return addr; 1449 return addr; 1745 } 1450 } 1746 1451 1747 static inline unsigned long zap_pud_range(str 1452 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1748 struct vm_are 1453 struct vm_area_struct *vma, p4d_t *p4d, 1749 unsigned long 1454 unsigned long addr, unsigned long end, 1750 struct zap_de 1455 struct zap_details *details) 1751 { 1456 { 1752 pud_t *pud; 1457 pud_t *pud; 1753 unsigned long next; 1458 unsigned long next; 1754 1459 1755 pud = pud_offset(p4d, addr); 1460 pud = pud_offset(p4d, addr); 1756 do { 1461 do { 1757 next = pud_addr_end(addr, end 1462 next = pud_addr_end(addr, end); 1758 if (pud_trans_huge(*pud) || p 1463 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1759 if (next - addr != HP 1464 if (next - addr != HPAGE_PUD_SIZE) { 1760 mmap_assert_l !! 1465 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1761 split_huge_pu 1466 split_huge_pud(vma, pud, addr); 1762 } else if (zap_huge_p 1467 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1763 goto next; 1468 goto next; 1764 /* fall through */ 1469 /* fall through */ 1765 } 1470 } 1766 if (pud_none_or_clear_bad(pud 1471 if (pud_none_or_clear_bad(pud)) 1767 continue; 1472 continue; 1768 next = zap_pmd_range(tlb, vma 1473 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1769 next: 1474 next: 1770 cond_resched(); 1475 cond_resched(); 1771 } while (pud++, addr = next, addr != 1476 } while (pud++, addr = next, addr != end); 1772 1477 1773 return addr; 1478 return addr; 1774 } 1479 } 1775 1480 1776 static inline unsigned long zap_p4d_range(str 1481 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1777 struct vm_are 1482 struct vm_area_struct *vma, pgd_t *pgd, 1778 unsigned long 1483 unsigned long addr, unsigned long end, 1779 struct zap_de 1484 struct zap_details *details) 1780 { 1485 { 1781 p4d_t *p4d; 1486 p4d_t *p4d; 1782 unsigned long next; 1487 unsigned long next; 1783 1488 1784 p4d = p4d_offset(pgd, addr); 1489 p4d = p4d_offset(pgd, addr); 1785 do { 1490 do { 1786 next = p4d_addr_end(addr, end 1491 next = p4d_addr_end(addr, end); 1787 if (p4d_none_or_clear_bad(p4d 1492 if (p4d_none_or_clear_bad(p4d)) 1788 continue; 1493 continue; 1789 next = zap_pud_range(tlb, vma 1494 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1790 } while (p4d++, addr = next, addr != 1495 } while (p4d++, addr = next, addr != end); 1791 1496 1792 return addr; 1497 return addr; 1793 } 1498 } 1794 1499 1795 void unmap_page_range(struct mmu_gather *tlb, 1500 void unmap_page_range(struct mmu_gather *tlb, 1796 struct vm_area_s 1501 struct vm_area_struct *vma, 1797 unsigned long ad 1502 unsigned long addr, unsigned long end, 1798 struct zap_detai 1503 struct zap_details *details) 1799 { 1504 { 1800 pgd_t *pgd; 1505 pgd_t *pgd; 1801 unsigned long next; 1506 unsigned long next; 1802 1507 1803 BUG_ON(addr >= end); 1508 BUG_ON(addr >= end); 1804 tlb_start_vma(tlb, vma); 1509 tlb_start_vma(tlb, vma); 1805 pgd = pgd_offset(vma->vm_mm, addr); 1510 pgd = pgd_offset(vma->vm_mm, addr); 1806 do { 1511 do { 1807 next = pgd_addr_end(addr, end 1512 next = pgd_addr_end(addr, end); 1808 if (pgd_none_or_clear_bad(pgd 1513 if (pgd_none_or_clear_bad(pgd)) 1809 continue; 1514 continue; 1810 next = zap_p4d_range(tlb, vma 1515 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1811 } while (pgd++, addr = next, addr != 1516 } while (pgd++, addr = next, addr != end); 1812 tlb_end_vma(tlb, vma); 1517 tlb_end_vma(tlb, vma); 1813 } 1518 } 1814 1519 1815 1520 1816 static void unmap_single_vma(struct mmu_gathe 1521 static void unmap_single_vma(struct mmu_gather *tlb, 1817 struct vm_area_struct *vma, u 1522 struct vm_area_struct *vma, unsigned long start_addr, 1818 unsigned long end_addr, 1523 unsigned long end_addr, 1819 struct zap_details *details, !! 1524 struct zap_details *details) 1820 { 1525 { 1821 unsigned long start = max(vma->vm_sta 1526 unsigned long start = max(vma->vm_start, start_addr); 1822 unsigned long end; 1527 unsigned long end; 1823 1528 1824 if (start >= vma->vm_end) 1529 if (start >= vma->vm_end) 1825 return; 1530 return; 1826 end = min(vma->vm_end, end_addr); 1531 end = min(vma->vm_end, end_addr); 1827 if (end <= vma->vm_start) 1532 if (end <= vma->vm_start) 1828 return; 1533 return; 1829 1534 1830 if (vma->vm_file) 1535 if (vma->vm_file) 1831 uprobe_munmap(vma, start, end 1536 uprobe_munmap(vma, start, end); 1832 1537 1833 if (unlikely(vma->vm_flags & VM_PFNMA 1538 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1834 untrack_pfn(vma, 0, 0, mm_wr_ !! 1539 untrack_pfn(vma, 0, 0); 1835 1540 1836 if (start != end) { 1541 if (start != end) { 1837 if (unlikely(is_vm_hugetlb_pa 1542 if (unlikely(is_vm_hugetlb_page(vma))) { 1838 /* 1543 /* 1839 * It is undesirable 1544 * It is undesirable to test vma->vm_file as it 1840 * should be non-null 1545 * should be non-null for valid hugetlb area. 1841 * However, vm_file w 1546 * However, vm_file will be NULL in the error 1842 * cleanup path of mm 1547 * cleanup path of mmap_region. When 1843 * hugetlbfs ->mmap m 1548 * hugetlbfs ->mmap method fails, 1844 * mmap_region() null 1549 * mmap_region() nullifies vma->vm_file 1845 * before calling thi 1550 * before calling this function to clean up. 1846 * Since no pte has a 1551 * Since no pte has actually been setup, it is 1847 * safe to do nothing 1552 * safe to do nothing in this case. 1848 */ 1553 */ 1849 if (vma->vm_file) { 1554 if (vma->vm_file) { 1850 zap_flags_t z !! 1555 i_mmap_lock_write(vma->vm_file->f_mapping); 1851 details-> !! 1556 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1852 __unmap_hugep !! 1557 i_mmap_unlock_write(vma->vm_file->f_mapping); 1853 << 1854 } 1558 } 1855 } else 1559 } else 1856 unmap_page_range(tlb, 1560 unmap_page_range(tlb, vma, start, end, details); 1857 } 1561 } 1858 } 1562 } 1859 1563 1860 /** 1564 /** 1861 * unmap_vmas - unmap a range of memory cover 1565 * unmap_vmas - unmap a range of memory covered by a list of vma's 1862 * @tlb: address of the caller's struct mmu_g 1566 * @tlb: address of the caller's struct mmu_gather 1863 * @mas: the maple state << 1864 * @vma: the starting vma 1567 * @vma: the starting vma 1865 * @start_addr: virtual address at which to s 1568 * @start_addr: virtual address at which to start unmapping 1866 * @end_addr: virtual address at which to end 1569 * @end_addr: virtual address at which to end unmapping 1867 * @tree_end: The maximum index to check << 1868 * @mm_wr_locked: lock flag << 1869 * 1570 * 1870 * Unmap all pages in the vma list. 1571 * Unmap all pages in the vma list. 1871 * 1572 * 1872 * Only addresses between `start' and `end' w 1573 * Only addresses between `start' and `end' will be unmapped. 1873 * 1574 * 1874 * The VMA list must be sorted in ascending v 1575 * The VMA list must be sorted in ascending virtual address order. 1875 * 1576 * 1876 * unmap_vmas() assumes that the caller will 1577 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1877 * range after unmap_vmas() returns. So the 1578 * range after unmap_vmas() returns. So the only responsibility here is to 1878 * ensure that any thus-far unmapped pages ar 1579 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1879 * drops the lock and schedules. 1580 * drops the lock and schedules. 1880 */ 1581 */ 1881 void unmap_vmas(struct mmu_gather *tlb, struc !! 1582 void unmap_vmas(struct mmu_gather *tlb, 1882 struct vm_area_struct *vma, u 1583 struct vm_area_struct *vma, unsigned long start_addr, 1883 unsigned long end_addr, unsig !! 1584 unsigned long end_addr) 1884 bool mm_wr_locked) << 1885 { 1585 { 1886 struct mmu_notifier_range range; !! 1586 struct mm_struct *mm = vma->vm_mm; 1887 struct zap_details details = { << 1888 .zap_flags = ZAP_FLAG_DROP_MA << 1889 /* Careful - we need to zap p << 1890 .even_cows = true, << 1891 }; << 1892 1587 1893 mmu_notifier_range_init(&range, MMU_N !! 1588 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1894 start_addr, e !! 1589 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1895 mmu_notifier_invalidate_range_start(& !! 1590 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1896 do { !! 1591 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1897 unsigned long start = start_a !! 1592 } 1898 unsigned long end = end_addr; !! 1593 1899 hugetlb_zap_begin(vma, &start !! 1594 /** 1900 unmap_single_vma(tlb, vma, st !! 1595 * zap_page_range - remove user pages in a given range 1901 mm_wr_locked !! 1596 * @vma: vm_area_struct holding the applicable pages 1902 hugetlb_zap_end(vma, &details !! 1597 * @start: starting address of pages to zap 1903 vma = mas_find(mas, tree_end !! 1598 * @size: number of bytes to zap 1904 } while (vma && likely(!xa_is_zero(vm !! 1599 * 1905 mmu_notifier_invalidate_range_end(&ra !! 1600 * Caller must protect the VMA list >> 1601 */ >> 1602 void zap_page_range(struct vm_area_struct *vma, unsigned long start, >> 1603 unsigned long size) >> 1604 { >> 1605 struct mm_struct *mm = vma->vm_mm; >> 1606 struct mmu_gather tlb; >> 1607 unsigned long end = start + size; >> 1608 >> 1609 lru_add_drain(); >> 1610 tlb_gather_mmu(&tlb, mm, start, end); >> 1611 update_hiwater_rss(mm); >> 1612 mmu_notifier_invalidate_range_start(mm, start, end); >> 1613 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { >> 1614 unmap_single_vma(&tlb, vma, start, end, NULL); >> 1615 >> 1616 /* >> 1617 * zap_page_range does not specify whether mmap_sem should be >> 1618 * held for read or write. That allows parallel zap_page_range >> 1619 * operations to unmap a PTE and defer a flush meaning that >> 1620 * this call observes pte_none and fails to flush the TLB. >> 1621 * Rather than adding a complex API, ensure that no stale >> 1622 * TLB entries exist when this call returns. >> 1623 */ >> 1624 flush_tlb_range(vma, start, end); >> 1625 } >> 1626 >> 1627 mmu_notifier_invalidate_range_end(mm, start, end); >> 1628 tlb_finish_mmu(&tlb, start, end); 1906 } 1629 } 1907 1630 1908 /** 1631 /** 1909 * zap_page_range_single - remove user pages 1632 * zap_page_range_single - remove user pages in a given range 1910 * @vma: vm_area_struct holding the applicabl 1633 * @vma: vm_area_struct holding the applicable pages 1911 * @address: starting address of pages to zap 1634 * @address: starting address of pages to zap 1912 * @size: number of bytes to zap 1635 * @size: number of bytes to zap 1913 * @details: details of shared cache invalida 1636 * @details: details of shared cache invalidation 1914 * 1637 * 1915 * The range must fit into one VMA. 1638 * The range must fit into one VMA. 1916 */ 1639 */ 1917 void zap_page_range_single(struct vm_area_str !! 1640 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1918 unsigned long size, struct za 1641 unsigned long size, struct zap_details *details) 1919 { 1642 { 1920 const unsigned long end = address + s !! 1643 struct mm_struct *mm = vma->vm_mm; 1921 struct mmu_notifier_range range; << 1922 struct mmu_gather tlb; 1644 struct mmu_gather tlb; >> 1645 unsigned long end = address + size; 1923 1646 1924 lru_add_drain(); 1647 lru_add_drain(); 1925 mmu_notifier_range_init(&range, MMU_N !! 1648 tlb_gather_mmu(&tlb, mm, address, end); 1926 address, end) !! 1649 update_hiwater_rss(mm); 1927 hugetlb_zap_begin(vma, &range.start, !! 1650 mmu_notifier_invalidate_range_start(mm, address, end); 1928 tlb_gather_mmu(&tlb, vma->vm_mm); !! 1651 unmap_single_vma(&tlb, vma, address, end, details); 1929 update_hiwater_rss(vma->vm_mm); !! 1652 mmu_notifier_invalidate_range_end(mm, address, end); 1930 mmu_notifier_invalidate_range_start(& !! 1653 tlb_finish_mmu(&tlb, address, end); 1931 /* << 1932 * unmap 'address-end' not 'range.sta << 1933 * could have been expanded for huget << 1934 */ << 1935 unmap_single_vma(&tlb, vma, address, << 1936 mmu_notifier_invalidate_range_end(&ra << 1937 tlb_finish_mmu(&tlb); << 1938 hugetlb_zap_end(vma, details); << 1939 } 1654 } 1940 1655 1941 /** 1656 /** 1942 * zap_vma_ptes - remove ptes mapping the vma 1657 * zap_vma_ptes - remove ptes mapping the vma 1943 * @vma: vm_area_struct holding ptes to be za 1658 * @vma: vm_area_struct holding ptes to be zapped 1944 * @address: starting address of pages to zap 1659 * @address: starting address of pages to zap 1945 * @size: number of bytes to zap 1660 * @size: number of bytes to zap 1946 * 1661 * 1947 * This function only unmaps ptes assigned to 1662 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1948 * 1663 * 1949 * The entire address range must be fully con 1664 * The entire address range must be fully contained within the vma. 1950 * 1665 * 1951 */ 1666 */ 1952 void zap_vma_ptes(struct vm_area_struct *vma, 1667 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1953 unsigned long size) 1668 unsigned long size) 1954 { 1669 { 1955 if (!range_in_vma(vma, address, addre !! 1670 if (address < vma->vm_start || address + size > vma->vm_end || 1956 !(vma->vm_flags & VM_ 1671 !(vma->vm_flags & VM_PFNMAP)) 1957 return; 1672 return; 1958 1673 1959 zap_page_range_single(vma, address, s 1674 zap_page_range_single(vma, address, size, NULL); 1960 } 1675 } 1961 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1676 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1962 1677 1963 static pmd_t *walk_to_pmd(struct mm_struct *m !! 1678 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, >> 1679 spinlock_t **ptl) 1964 { 1680 { 1965 pgd_t *pgd; 1681 pgd_t *pgd; 1966 p4d_t *p4d; 1682 p4d_t *p4d; 1967 pud_t *pud; 1683 pud_t *pud; 1968 pmd_t *pmd; 1684 pmd_t *pmd; 1969 1685 1970 pgd = pgd_offset(mm, addr); 1686 pgd = pgd_offset(mm, addr); 1971 p4d = p4d_alloc(mm, pgd, addr); 1687 p4d = p4d_alloc(mm, pgd, addr); 1972 if (!p4d) 1688 if (!p4d) 1973 return NULL; 1689 return NULL; 1974 pud = pud_alloc(mm, p4d, addr); 1690 pud = pud_alloc(mm, p4d, addr); 1975 if (!pud) 1691 if (!pud) 1976 return NULL; 1692 return NULL; 1977 pmd = pmd_alloc(mm, pud, addr); 1693 pmd = pmd_alloc(mm, pud, addr); 1978 if (!pmd) 1694 if (!pmd) 1979 return NULL; 1695 return NULL; 1980 1696 1981 VM_BUG_ON(pmd_trans_huge(*pmd)); 1697 VM_BUG_ON(pmd_trans_huge(*pmd)); 1982 return pmd; << 1983 } << 1984 << 1985 pte_t *__get_locked_pte(struct mm_struct *mm, << 1986 spinlock_t **ptl) << 1987 { << 1988 pmd_t *pmd = walk_to_pmd(mm, addr); << 1989 << 1990 if (!pmd) << 1991 return NULL; << 1992 return pte_alloc_map_lock(mm, pmd, ad 1698 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1993 } 1699 } 1994 1700 1995 static bool vm_mixed_zeropage_allowed(struct !! 1701 /* 1996 { !! 1702 * This is the old fallback for page remapping. 1997 VM_WARN_ON_ONCE(vma->vm_flags & VM_PF !! 1703 * 1998 /* !! 1704 * For historical reasons, it only allows reserved pages. Only 1999 * Whoever wants to forbid the zeropa !! 1705 * old drivers should use this, and they needed to mark their 2000 * might already have been mapped has !! 1706 * pages reserved for the old functions anyway. 2001 * bail out on any zeropages. Zeropag !! 1707 */ 2002 * be unshared using FAULT_FLAG_UNSHA << 2003 */ << 2004 if (mm_forbids_zeropage(vma->vm_mm)) << 2005 return false; << 2006 /* zeropages in COW mappings are comm << 2007 if (is_cow_mapping(vma->vm_flags)) << 2008 return true; << 2009 /* Mappings that do not allow for wri << 2010 if (!(vma->vm_flags & (VM_WRITE | VM_ << 2011 return true; << 2012 /* << 2013 * Why not allow any VMA that has vm_ << 2014 * find the shared zeropage and longt << 2015 * be problematic as soon as the zero << 2016 * page due to vma->vm_ops->pfn_mkwri << 2017 * now differ to what GUP looked up. << 2018 * FOLL_LONGTERM and VM_IO is incompa << 2019 * check_vma_flags). << 2020 */ << 2021 return vma->vm_ops && vma->vm_ops->pf << 2022 (vma_is_fsdax(vma) || vma->vm_ << 2023 } << 2024 << 2025 static int validate_page_before_insert(struct << 2026 struct << 2027 { << 2028 struct folio *folio = page_folio(page << 2029 << 2030 if (!folio_ref_count(folio)) << 2031 return -EINVAL; << 2032 if (unlikely(is_zero_folio(folio))) { << 2033 if (!vm_mixed_zeropage_allowe << 2034 return -EINVAL; << 2035 return 0; << 2036 } << 2037 if (folio_test_anon(folio) || folio_t << 2038 page_has_type(page)) << 2039 return -EINVAL; << 2040 flush_dcache_folio(folio); << 2041 return 0; << 2042 } << 2043 << 2044 static int insert_page_into_pte_locked(struct << 2045 unsigned long addr, s << 2046 { << 2047 struct folio *folio = page_folio(page << 2048 pte_t pteval; << 2049 << 2050 if (!pte_none(ptep_get(pte))) << 2051 return -EBUSY; << 2052 /* Ok, finally just insert the thing. << 2053 pteval = mk_pte(page, prot); << 2054 if (unlikely(is_zero_folio(folio))) { << 2055 pteval = pte_mkspecial(pteval << 2056 } else { << 2057 folio_get(folio); << 2058 inc_mm_counter(vma->vm_mm, mm << 2059 folio_add_file_rmap_pte(folio << 2060 } << 2061 set_pte_at(vma->vm_mm, addr, pte, pte << 2062 return 0; << 2063 } << 2064 << 2065 static int insert_page(struct vm_area_struct 1708 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2066 struct page *page, pg 1709 struct page *page, pgprot_t prot) 2067 { 1710 { >> 1711 struct mm_struct *mm = vma->vm_mm; 2068 int retval; 1712 int retval; 2069 pte_t *pte; 1713 pte_t *pte; 2070 spinlock_t *ptl; 1714 spinlock_t *ptl; 2071 1715 2072 retval = validate_page_before_insert( !! 1716 retval = -EINVAL; 2073 if (retval) !! 1717 if (PageAnon(page)) 2074 goto out; 1718 goto out; 2075 retval = -ENOMEM; 1719 retval = -ENOMEM; 2076 pte = get_locked_pte(vma->vm_mm, addr !! 1720 flush_dcache_page(page); >> 1721 pte = get_locked_pte(mm, addr, &ptl); 2077 if (!pte) 1722 if (!pte) 2078 goto out; 1723 goto out; 2079 retval = insert_page_into_pte_locked( !! 1724 retval = -EBUSY; 2080 pte_unmap_unlock(pte, ptl); !! 1725 if (!pte_none(*pte)) 2081 out: !! 1726 goto out_unlock; 2082 return retval; << 2083 } << 2084 << 2085 static int insert_page_in_batch_locked(struct << 2086 unsigned long addr, s << 2087 { << 2088 int err; << 2089 << 2090 err = validate_page_before_insert(vma << 2091 if (err) << 2092 return err; << 2093 return insert_page_into_pte_locked(vm << 2094 } << 2095 << 2096 /* insert_pages() amortizes the cost of spinl << 2097 * when inserting pages in a loop. << 2098 */ << 2099 static int insert_pages(struct vm_area_struct << 2100 struct page **pages, << 2101 { << 2102 pmd_t *pmd = NULL; << 2103 pte_t *start_pte, *pte; << 2104 spinlock_t *pte_lock; << 2105 struct mm_struct *const mm = vma->vm_ << 2106 unsigned long curr_page_idx = 0; << 2107 unsigned long remaining_pages_total = << 2108 unsigned long pages_to_write_in_pmd; << 2109 int ret; << 2110 more: << 2111 ret = -EFAULT; << 2112 pmd = walk_to_pmd(mm, addr); << 2113 if (!pmd) << 2114 goto out; << 2115 << 2116 pages_to_write_in_pmd = min_t(unsigne << 2117 remaining_pages_total, PTRS_P << 2118 1727 2119 /* Allocate the PTE if necessary; tak !! 1728 /* Ok, finally just insert the thing.. */ 2120 ret = -ENOMEM; !! 1729 get_page(page); 2121 if (pte_alloc(mm, pmd)) !! 1730 inc_mm_counter_fast(mm, mm_counter_file(page)); 2122 goto out; !! 1731 page_add_file_rmap(page, false); >> 1732 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2123 1733 2124 while (pages_to_write_in_pmd) { !! 1734 retval = 0; 2125 int pte_idx = 0; !! 1735 pte_unmap_unlock(pte, ptl); 2126 const int batch_size = min_t( !! 1736 return retval; 2127 !! 1737 out_unlock: 2128 start_pte = pte_offset_map_lo !! 1738 pte_unmap_unlock(pte, ptl); 2129 if (!start_pte) { << 2130 ret = -EFAULT; << 2131 goto out; << 2132 } << 2133 for (pte = start_pte; pte_idx << 2134 int err = insert_page << 2135 addr, pages[c << 2136 if (unlikely(err)) { << 2137 pte_unmap_unl << 2138 ret = err; << 2139 remaining_pag << 2140 goto out; << 2141 } << 2142 addr += PAGE_SIZE; << 2143 ++curr_page_idx; << 2144 } << 2145 pte_unmap_unlock(start_pte, p << 2146 pages_to_write_in_pmd -= batc << 2147 remaining_pages_total -= batc << 2148 } << 2149 if (remaining_pages_total) << 2150 goto more; << 2151 ret = 0; << 2152 out: 1739 out: 2153 *num = remaining_pages_total; !! 1740 return retval; 2154 return ret; << 2155 } << 2156 << 2157 /** << 2158 * vm_insert_pages - insert multiple pages in << 2159 * @vma: user vma to map to << 2160 * @addr: target start user address of these << 2161 * @pages: source kernel pages << 2162 * @num: in: number of pages to map. out: num << 2163 * mapped. (0 means all pages were successful << 2164 * << 2165 * Preferred over vm_insert_page() when inser << 2166 * << 2167 * In case of error, we may have mapped a sub << 2168 * pages. It is the caller's responsibility t << 2169 * << 2170 * The same restrictions apply as in vm_inser << 2171 */ << 2172 int vm_insert_pages(struct vm_area_struct *vm << 2173 struct page **pages, << 2174 { << 2175 const unsigned long end_addr = addr + << 2176 << 2177 if (addr < vma->vm_start || end_addr << 2178 return -EFAULT; << 2179 if (!(vma->vm_flags & VM_MIXEDMAP)) { << 2180 BUG_ON(mmap_read_trylock(vma- << 2181 BUG_ON(vma->vm_flags & VM_PFN << 2182 vm_flags_set(vma, VM_MIXEDMAP << 2183 } << 2184 /* Defer page refcount checking till << 2185 return insert_pages(vma, addr, pages, << 2186 } 1741 } 2187 EXPORT_SYMBOL(vm_insert_pages); << 2188 1742 2189 /** 1743 /** 2190 * vm_insert_page - insert single page into u 1744 * vm_insert_page - insert single page into user vma 2191 * @vma: user vma to map to 1745 * @vma: user vma to map to 2192 * @addr: target user address of this page 1746 * @addr: target user address of this page 2193 * @page: source kernel page 1747 * @page: source kernel page 2194 * 1748 * 2195 * This allows drivers to insert individual p 1749 * This allows drivers to insert individual pages they've allocated 2196 * into a user vma. The zeropage is supported !! 1750 * into a user vma. 2197 * see vm_mixed_zeropage_allowed(). << 2198 * 1751 * 2199 * The page has to be a nice clean _individua 1752 * The page has to be a nice clean _individual_ kernel allocation. 2200 * If you allocate a compound page, you need 1753 * If you allocate a compound page, you need to have marked it as 2201 * such (__GFP_COMP), or manually just split 1754 * such (__GFP_COMP), or manually just split the page up yourself 2202 * (see split_page()). 1755 * (see split_page()). 2203 * 1756 * 2204 * NOTE! Traditionally this was done with "re 1757 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2205 * took an arbitrary page protection paramete 1758 * took an arbitrary page protection parameter. This doesn't allow 2206 * that. Your vma protection will have to be 1759 * that. Your vma protection will have to be set up correctly, which 2207 * means that if you want a shared writable m 1760 * means that if you want a shared writable mapping, you'd better 2208 * ask for a shared writable mapping! 1761 * ask for a shared writable mapping! 2209 * 1762 * 2210 * The page does not need to be reserved. 1763 * The page does not need to be reserved. 2211 * 1764 * 2212 * Usually this function is called from f_op- 1765 * Usually this function is called from f_op->mmap() handler 2213 * under mm->mmap_lock write-lock, so it can !! 1766 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2214 * Caller must set VM_MIXEDMAP on vma if it w 1767 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2215 * function from other places, for example fr 1768 * function from other places, for example from page-fault handler. 2216 * << 2217 * Return: %0 on success, negative error code << 2218 */ 1769 */ 2219 int vm_insert_page(struct vm_area_struct *vma 1770 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2220 struct page *page) 1771 struct page *page) 2221 { 1772 { 2222 if (addr < vma->vm_start || addr >= v 1773 if (addr < vma->vm_start || addr >= vma->vm_end) 2223 return -EFAULT; 1774 return -EFAULT; >> 1775 if (!page_count(page)) >> 1776 return -EINVAL; 2224 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1777 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2225 BUG_ON(mmap_read_trylock(vma- !! 1778 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2226 BUG_ON(vma->vm_flags & VM_PFN 1779 BUG_ON(vma->vm_flags & VM_PFNMAP); 2227 vm_flags_set(vma, VM_MIXEDMAP !! 1780 vma->vm_flags |= VM_MIXEDMAP; 2228 } 1781 } 2229 return insert_page(vma, addr, page, v 1782 return insert_page(vma, addr, page, vma->vm_page_prot); 2230 } 1783 } 2231 EXPORT_SYMBOL(vm_insert_page); 1784 EXPORT_SYMBOL(vm_insert_page); 2232 1785 2233 /* !! 1786 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2234 * __vm_map_pages - maps range of kernel page << 2235 * @vma: user vma to map to << 2236 * @pages: pointer to array of source kernel << 2237 * @num: number of pages in page array << 2238 * @offset: user's requested vm_pgoff << 2239 * << 2240 * This allows drivers to map range of kernel << 2241 * The zeropage is supported in some VMAs, se << 2242 * vm_mixed_zeropage_allowed(). << 2243 * << 2244 * Return: 0 on success and error code otherw << 2245 */ << 2246 static int __vm_map_pages(struct vm_area_stru << 2247 unsigned long << 2248 { << 2249 unsigned long count = vma_pages(vma); << 2250 unsigned long uaddr = vma->vm_start; << 2251 int ret, i; << 2252 << 2253 /* Fail if the user requested offset << 2254 if (offset >= num) << 2255 return -ENXIO; << 2256 << 2257 /* Fail if the user requested size ex << 2258 if (count > num - offset) << 2259 return -ENXIO; << 2260 << 2261 for (i = 0; i < count; i++) { << 2262 ret = vm_insert_page(vma, uad << 2263 if (ret < 0) << 2264 return ret; << 2265 uaddr += PAGE_SIZE; << 2266 } << 2267 << 2268 return 0; << 2269 } << 2270 << 2271 /** << 2272 * vm_map_pages - maps range of kernel pages << 2273 * @vma: user vma to map to << 2274 * @pages: pointer to array of source kernel << 2275 * @num: number of pages in page array << 2276 * << 2277 * Maps an object consisting of @num pages, c << 2278 * requested vm_pgoff << 2279 * << 2280 * If we fail to insert any page into the vma << 2281 * immediately leaving any previously inserte << 2282 * from the mmap handler may immediately retu << 2283 * will destroy the vma, removing any success << 2284 * callers should make their own arrangements << 2285 * << 2286 * Context: Process context. Called by mmap h << 2287 * Return: 0 on success and error code otherw << 2288 */ << 2289 int vm_map_pages(struct vm_area_struct *vma, << 2290 unsigned long << 2291 { << 2292 return __vm_map_pages(vma, pages, num << 2293 } << 2294 EXPORT_SYMBOL(vm_map_pages); << 2295 << 2296 /** << 2297 * vm_map_pages_zero - map range of kernel pa << 2298 * @vma: user vma to map to << 2299 * @pages: pointer to array of source kernel << 2300 * @num: number of pages in page array << 2301 * << 2302 * Similar to vm_map_pages(), except that it << 2303 * to 0. This function is intended for the dr << 2304 * vm_pgoff. << 2305 * << 2306 * Context: Process context. Called by mmap h << 2307 * Return: 0 on success and error code otherw << 2308 */ << 2309 int vm_map_pages_zero(struct vm_area_struct * << 2310 unsigned long << 2311 { << 2312 return __vm_map_pages(vma, pages, num << 2313 } << 2314 EXPORT_SYMBOL(vm_map_pages_zero); << 2315 << 2316 static vm_fault_t insert_pfn(struct vm_area_s << 2317 pfn_t pfn, pgprot_t p 1787 pfn_t pfn, pgprot_t prot, bool mkwrite) 2318 { 1788 { 2319 struct mm_struct *mm = vma->vm_mm; 1789 struct mm_struct *mm = vma->vm_mm; >> 1790 int retval; 2320 pte_t *pte, entry; 1791 pte_t *pte, entry; 2321 spinlock_t *ptl; 1792 spinlock_t *ptl; 2322 1793 >> 1794 retval = -ENOMEM; 2323 pte = get_locked_pte(mm, addr, &ptl); 1795 pte = get_locked_pte(mm, addr, &ptl); 2324 if (!pte) 1796 if (!pte) 2325 return VM_FAULT_OOM; !! 1797 goto out; 2326 entry = ptep_get(pte); !! 1798 retval = -EBUSY; 2327 if (!pte_none(entry)) { !! 1799 if (!pte_none(*pte)) { 2328 if (mkwrite) { 1800 if (mkwrite) { 2329 /* 1801 /* 2330 * For read faults on 1802 * For read faults on private mappings the PFN passed 2331 * in may not match t 1803 * in may not match the PFN we have mapped if the 2332 * mapped PFN is a wr 1804 * mapped PFN is a writeable COW page. In the mkwrite 2333 * case we are creati 1805 * case we are creating a writable PTE for a shared 2334 * mapping and we exp !! 1806 * mapping and we expect the PFNs to match. 2335 * don't match, we ar << 2336 * allocation and map << 2337 * update. << 2338 */ 1807 */ 2339 if (pte_pfn(entry) != !! 1808 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 2340 WARN_ON_ONCE( << 2341 goto out_unlo 1809 goto out_unlock; 2342 } !! 1810 entry = *pte; 2343 entry = pte_mkyoung(e !! 1811 goto out_mkwrite; 2344 entry = maybe_mkwrite !! 1812 } else 2345 if (ptep_set_access_f !! 1813 goto out_unlock; 2346 update_mmu_ca << 2347 } << 2348 goto out_unlock; << 2349 } 1814 } 2350 1815 2351 /* Ok, finally just insert the thing. 1816 /* Ok, finally just insert the thing.. */ 2352 if (pfn_t_devmap(pfn)) 1817 if (pfn_t_devmap(pfn)) 2353 entry = pte_mkdevmap(pfn_t_pt 1818 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2354 else 1819 else 2355 entry = pte_mkspecial(pfn_t_p 1820 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2356 1821 >> 1822 out_mkwrite: 2357 if (mkwrite) { 1823 if (mkwrite) { 2358 entry = pte_mkyoung(entry); 1824 entry = pte_mkyoung(entry); 2359 entry = maybe_mkwrite(pte_mkd 1825 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2360 } 1826 } 2361 1827 2362 set_pte_at(mm, addr, pte, entry); 1828 set_pte_at(mm, addr, pte, entry); 2363 update_mmu_cache(vma, addr, pte); /* 1829 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2364 1830 >> 1831 retval = 0; 2365 out_unlock: 1832 out_unlock: 2366 pte_unmap_unlock(pte, ptl); 1833 pte_unmap_unlock(pte, ptl); 2367 return VM_FAULT_NOPAGE; !! 1834 out: >> 1835 return retval; 2368 } 1836 } 2369 1837 2370 /** 1838 /** 2371 * vmf_insert_pfn_prot - insert single pfn in !! 1839 * vm_insert_pfn - insert single pfn into user vma >> 1840 * @vma: user vma to map to >> 1841 * @addr: target user address of this page >> 1842 * @pfn: source kernel pfn >> 1843 * >> 1844 * Similar to vm_insert_page, this allows drivers to insert individual pages >> 1845 * they've allocated into a user vma. Same comments apply. >> 1846 * >> 1847 * This function should only be called from a vm_ops->fault handler, and >> 1848 * in that case the handler should return NULL. >> 1849 * >> 1850 * vma cannot be a COW mapping. >> 1851 * >> 1852 * As this is called only for pages that do not currently exist, we >> 1853 * do not need to flush old virtual caches or the TLB. >> 1854 */ >> 1855 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, >> 1856 unsigned long pfn) >> 1857 { >> 1858 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); >> 1859 } >> 1860 EXPORT_SYMBOL(vm_insert_pfn); >> 1861 >> 1862 /** >> 1863 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2372 * @vma: user vma to map to 1864 * @vma: user vma to map to 2373 * @addr: target user address of this page 1865 * @addr: target user address of this page 2374 * @pfn: source kernel pfn 1866 * @pfn: source kernel pfn 2375 * @pgprot: pgprot flags for the inserted pag 1867 * @pgprot: pgprot flags for the inserted page 2376 * 1868 * 2377 * This is exactly like vmf_insert_pfn(), exc !! 1869 * This is exactly like vm_insert_pfn, except that it allows drivers to 2378 * to override pgprot on a per-page basis. 1870 * to override pgprot on a per-page basis. 2379 * 1871 * 2380 * This only makes sense for IO mappings, and 1872 * This only makes sense for IO mappings, and it makes no sense for 2381 * COW mappings. In general, using multiple !! 1873 * cow mappings. In general, using multiple vmas is preferable; 2382 * vmf_insert_pfn_prot should only be used if !! 1874 * vm_insert_pfn_prot should only be used if using multiple VMAs is 2383 * impractical. 1875 * impractical. 2384 * << 2385 * pgprot typically only differs from @vma->v << 2386 * caching- and encryption bits different tha << 2387 * because the caching- or encryption mode ma << 2388 * << 2389 * This is ok as long as @vma->vm_page_prot i << 2390 * to set caching and encryption bits for tho << 2391 * This is ensured by core vm only modifying << 2392 * functions that don't touch caching- or enc << 2393 * if needed. (See for example mprotect()). << 2394 * << 2395 * Also when new page-table entries are creat << 2396 * fault() callback, and never using the valu << 2397 * except for page-table entries that point t << 2398 * of COW. << 2399 * << 2400 * Context: Process context. May allocate us << 2401 * Return: vm_fault_t value. << 2402 */ 1876 */ 2403 vm_fault_t vmf_insert_pfn_prot(struct vm_area !! 1877 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2404 unsigned long pfn, pg 1878 unsigned long pfn, pgprot_t pgprot) 2405 { 1879 { >> 1880 int ret; 2406 /* 1881 /* 2407 * Technically, architectures with pt 1882 * Technically, architectures with pte_special can avoid all these 2408 * restrictions (same for remap_pfn_r 1883 * restrictions (same for remap_pfn_range). However we would like 2409 * consistency in testing and feature 1884 * consistency in testing and feature parity among all, so we should 2410 * try to keep these invariants in pl 1885 * try to keep these invariants in place for everybody. 2411 */ 1886 */ 2412 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|V 1887 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2413 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM 1888 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2414 1889 (VM_PFNMAP|VM_MIXEDMAP)); 2415 BUG_ON((vma->vm_flags & VM_PFNMAP) && 1890 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2416 BUG_ON((vma->vm_flags & VM_MIXEDMAP) 1891 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2417 1892 2418 if (addr < vma->vm_start || addr >= v 1893 if (addr < vma->vm_start || addr >= vma->vm_end) 2419 return VM_FAULT_SIGBUS; !! 1894 return -EFAULT; 2420 1895 2421 if (!pfn_modify_allowed(pfn, pgprot)) 1896 if (!pfn_modify_allowed(pfn, pgprot)) 2422 return VM_FAULT_SIGBUS; !! 1897 return -EACCES; 2423 1898 2424 track_pfn_insert(vma, &pgprot, __pfn_ 1899 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2425 1900 2426 return insert_pfn(vma, addr, __pfn_to !! 1901 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2427 false); 1902 false); 2428 } << 2429 EXPORT_SYMBOL(vmf_insert_pfn_prot); << 2430 1903 2431 /** !! 1904 return ret; 2432 * vmf_insert_pfn - insert single pfn into us << 2433 * @vma: user vma to map to << 2434 * @addr: target user address of this page << 2435 * @pfn: source kernel pfn << 2436 * << 2437 * Similar to vm_insert_page, this allows dri << 2438 * they've allocated into a user vma. Same co << 2439 * << 2440 * This function should only be called from a << 2441 * in that case the handler should return the << 2442 * << 2443 * vma cannot be a COW mapping. << 2444 * << 2445 * As this is called only for pages that do n << 2446 * do not need to flush old virtual caches or << 2447 * << 2448 * Context: Process context. May allocate us << 2449 * Return: vm_fault_t value. << 2450 */ << 2451 vm_fault_t vmf_insert_pfn(struct vm_area_stru << 2452 unsigned long pfn) << 2453 { << 2454 return vmf_insert_pfn_prot(vma, addr, << 2455 } 1905 } 2456 EXPORT_SYMBOL(vmf_insert_pfn); !! 1906 EXPORT_SYMBOL(vm_insert_pfn_prot); 2457 1907 2458 static bool vm_mixed_ok(struct vm_area_struct !! 1908 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2459 { 1909 { 2460 if (unlikely(is_zero_pfn(pfn_t_to_pfn << 2461 (mkwrite || !vm_mixed_zeropage_al << 2462 return false; << 2463 /* these checks mirror the abort cond 1910 /* these checks mirror the abort conditions in vm_normal_page */ 2464 if (vma->vm_flags & VM_MIXEDMAP) 1911 if (vma->vm_flags & VM_MIXEDMAP) 2465 return true; 1912 return true; 2466 if (pfn_t_devmap(pfn)) 1913 if (pfn_t_devmap(pfn)) 2467 return true; 1914 return true; 2468 if (pfn_t_special(pfn)) 1915 if (pfn_t_special(pfn)) 2469 return true; 1916 return true; 2470 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1917 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2471 return true; 1918 return true; 2472 return false; 1919 return false; 2473 } 1920 } 2474 1921 2475 static vm_fault_t __vm_insert_mixed(struct vm !! 1922 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2476 unsigned long addr, pfn_t pfn !! 1923 pfn_t pfn, bool mkwrite) 2477 { 1924 { 2478 pgprot_t pgprot = vma->vm_page_prot; 1925 pgprot_t pgprot = vma->vm_page_prot; 2479 int err; << 2480 1926 2481 if (!vm_mixed_ok(vma, pfn, mkwrite)) !! 1927 BUG_ON(!vm_mixed_ok(vma, pfn)); 2482 return VM_FAULT_SIGBUS; << 2483 1928 2484 if (addr < vma->vm_start || addr >= v 1929 if (addr < vma->vm_start || addr >= vma->vm_end) 2485 return VM_FAULT_SIGBUS; !! 1930 return -EFAULT; 2486 1931 2487 track_pfn_insert(vma, &pgprot, pfn); 1932 track_pfn_insert(vma, &pgprot, pfn); 2488 1933 2489 if (!pfn_modify_allowed(pfn_t_to_pfn( 1934 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2490 return VM_FAULT_SIGBUS; !! 1935 return -EACCES; 2491 1936 2492 /* 1937 /* 2493 * If we don't have pte special, then 1938 * If we don't have pte special, then we have to use the pfn_valid() 2494 * based VM_MIXEDMAP scheme (see vm_n 1939 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2495 * refcount the page if pfn_valid is 1940 * refcount the page if pfn_valid is true (hence insert_page rather 2496 * than insert_pfn). If a zero_pfn w 1941 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2497 * without pte special, it would ther 1942 * without pte special, it would there be refcounted as a normal page. 2498 */ 1943 */ 2499 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_S 1944 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2500 !pfn_t_devmap(pfn) && pfn_t_valid 1945 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2501 struct page *page; 1946 struct page *page; 2502 1947 2503 /* 1948 /* 2504 * At this point we are commi 1949 * At this point we are committed to insert_page() 2505 * regardless of whether the 1950 * regardless of whether the caller specified flags that 2506 * result in pfn_t_has_page() 1951 * result in pfn_t_has_page() == false. 2507 */ 1952 */ 2508 page = pfn_to_page(pfn_t_to_p 1953 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2509 err = insert_page(vma, addr, !! 1954 return insert_page(vma, addr, page, pgprot); 2510 } else { << 2511 return insert_pfn(vma, addr, << 2512 } 1955 } 2513 !! 1956 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2514 if (err == -ENOMEM) << 2515 return VM_FAULT_OOM; << 2516 if (err < 0 && err != -EBUSY) << 2517 return VM_FAULT_SIGBUS; << 2518 << 2519 return VM_FAULT_NOPAGE; << 2520 } 1957 } 2521 1958 2522 vm_fault_t vmf_insert_mixed(struct vm_area_st !! 1959 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2523 pfn_t pfn) !! 1960 pfn_t pfn) 2524 { 1961 { 2525 return __vm_insert_mixed(vma, addr, p 1962 return __vm_insert_mixed(vma, addr, pfn, false); >> 1963 2526 } 1964 } 2527 EXPORT_SYMBOL(vmf_insert_mixed); !! 1965 EXPORT_SYMBOL(vm_insert_mixed); 2528 1966 2529 /* 1967 /* 2530 * If the insertion of PTE failed because so 1968 * If the insertion of PTE failed because someone else already added a 2531 * different entry in the mean time, we trea 1969 * different entry in the mean time, we treat that as success as we assume 2532 * the same entry was actually inserted. 1970 * the same entry was actually inserted. 2533 */ 1971 */ >> 1972 2534 vm_fault_t vmf_insert_mixed_mkwrite(struct vm 1973 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2535 unsigned long addr, pfn_t pfn 1974 unsigned long addr, pfn_t pfn) 2536 { 1975 { 2537 return __vm_insert_mixed(vma, addr, p !! 1976 int err; >> 1977 >> 1978 err = __vm_insert_mixed(vma, addr, pfn, true); >> 1979 if (err == -ENOMEM) >> 1980 return VM_FAULT_OOM; >> 1981 if (err < 0 && err != -EBUSY) >> 1982 return VM_FAULT_SIGBUS; >> 1983 return VM_FAULT_NOPAGE; 2538 } 1984 } >> 1985 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2539 1986 2540 /* 1987 /* 2541 * maps a range of physical memory into the r 1988 * maps a range of physical memory into the requested pages. the old 2542 * mappings are removed. any references to no 1989 * mappings are removed. any references to nonexistent pages results 2543 * in null mappings (currently treated as "co 1990 * in null mappings (currently treated as "copy-on-access") 2544 */ 1991 */ 2545 static int remap_pte_range(struct mm_struct * 1992 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2546 unsigned long addr, u 1993 unsigned long addr, unsigned long end, 2547 unsigned long pfn, pg 1994 unsigned long pfn, pgprot_t prot) 2548 { 1995 { 2549 pte_t *pte, *mapped_pte; !! 1996 pte_t *pte; 2550 spinlock_t *ptl; 1997 spinlock_t *ptl; 2551 int err = 0; 1998 int err = 0; 2552 1999 2553 mapped_pte = pte = pte_alloc_map_lock !! 2000 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2554 if (!pte) 2001 if (!pte) 2555 return -ENOMEM; 2002 return -ENOMEM; 2556 arch_enter_lazy_mmu_mode(); 2003 arch_enter_lazy_mmu_mode(); 2557 do { 2004 do { 2558 BUG_ON(!pte_none(ptep_get(pte !! 2005 BUG_ON(!pte_none(*pte)); 2559 if (!pfn_modify_allowed(pfn, 2006 if (!pfn_modify_allowed(pfn, prot)) { 2560 err = -EACCES; 2007 err = -EACCES; 2561 break; 2008 break; 2562 } 2009 } 2563 set_pte_at(mm, addr, pte, pte 2010 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2564 pfn++; 2011 pfn++; 2565 } while (pte++, addr += PAGE_SIZE, ad 2012 } while (pte++, addr += PAGE_SIZE, addr != end); 2566 arch_leave_lazy_mmu_mode(); 2013 arch_leave_lazy_mmu_mode(); 2567 pte_unmap_unlock(mapped_pte, ptl); !! 2014 pte_unmap_unlock(pte - 1, ptl); 2568 return err; 2015 return err; 2569 } 2016 } 2570 2017 2571 static inline int remap_pmd_range(struct mm_s 2018 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2572 unsigned long addr, u 2019 unsigned long addr, unsigned long end, 2573 unsigned long pfn, pg 2020 unsigned long pfn, pgprot_t prot) 2574 { 2021 { 2575 pmd_t *pmd; 2022 pmd_t *pmd; 2576 unsigned long next; 2023 unsigned long next; 2577 int err; 2024 int err; 2578 2025 2579 pfn -= addr >> PAGE_SHIFT; 2026 pfn -= addr >> PAGE_SHIFT; 2580 pmd = pmd_alloc(mm, pud, addr); 2027 pmd = pmd_alloc(mm, pud, addr); 2581 if (!pmd) 2028 if (!pmd) 2582 return -ENOMEM; 2029 return -ENOMEM; 2583 VM_BUG_ON(pmd_trans_huge(*pmd)); 2030 VM_BUG_ON(pmd_trans_huge(*pmd)); 2584 do { 2031 do { 2585 next = pmd_addr_end(addr, end 2032 next = pmd_addr_end(addr, end); 2586 err = remap_pte_range(mm, pmd 2033 err = remap_pte_range(mm, pmd, addr, next, 2587 pfn + (addr > 2034 pfn + (addr >> PAGE_SHIFT), prot); 2588 if (err) 2035 if (err) 2589 return err; 2036 return err; 2590 } while (pmd++, addr = next, addr != 2037 } while (pmd++, addr = next, addr != end); 2591 return 0; 2038 return 0; 2592 } 2039 } 2593 2040 2594 static inline int remap_pud_range(struct mm_s 2041 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2595 unsigned long addr, u 2042 unsigned long addr, unsigned long end, 2596 unsigned long pfn, pg 2043 unsigned long pfn, pgprot_t prot) 2597 { 2044 { 2598 pud_t *pud; 2045 pud_t *pud; 2599 unsigned long next; 2046 unsigned long next; 2600 int err; 2047 int err; 2601 2048 2602 pfn -= addr >> PAGE_SHIFT; 2049 pfn -= addr >> PAGE_SHIFT; 2603 pud = pud_alloc(mm, p4d, addr); 2050 pud = pud_alloc(mm, p4d, addr); 2604 if (!pud) 2051 if (!pud) 2605 return -ENOMEM; 2052 return -ENOMEM; 2606 do { 2053 do { 2607 next = pud_addr_end(addr, end 2054 next = pud_addr_end(addr, end); 2608 err = remap_pmd_range(mm, pud 2055 err = remap_pmd_range(mm, pud, addr, next, 2609 pfn + (addr > 2056 pfn + (addr >> PAGE_SHIFT), prot); 2610 if (err) 2057 if (err) 2611 return err; 2058 return err; 2612 } while (pud++, addr = next, addr != 2059 } while (pud++, addr = next, addr != end); 2613 return 0; 2060 return 0; 2614 } 2061 } 2615 2062 2616 static inline int remap_p4d_range(struct mm_s 2063 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2617 unsigned long addr, u 2064 unsigned long addr, unsigned long end, 2618 unsigned long pfn, pg 2065 unsigned long pfn, pgprot_t prot) 2619 { 2066 { 2620 p4d_t *p4d; 2067 p4d_t *p4d; 2621 unsigned long next; 2068 unsigned long next; 2622 int err; 2069 int err; 2623 2070 2624 pfn -= addr >> PAGE_SHIFT; 2071 pfn -= addr >> PAGE_SHIFT; 2625 p4d = p4d_alloc(mm, pgd, addr); 2072 p4d = p4d_alloc(mm, pgd, addr); 2626 if (!p4d) 2073 if (!p4d) 2627 return -ENOMEM; 2074 return -ENOMEM; 2628 do { 2075 do { 2629 next = p4d_addr_end(addr, end 2076 next = p4d_addr_end(addr, end); 2630 err = remap_pud_range(mm, p4d 2077 err = remap_pud_range(mm, p4d, addr, next, 2631 pfn + (addr > 2078 pfn + (addr >> PAGE_SHIFT), prot); 2632 if (err) 2079 if (err) 2633 return err; 2080 return err; 2634 } while (p4d++, addr = next, addr != 2081 } while (p4d++, addr = next, addr != end); 2635 return 0; 2082 return 0; 2636 } 2083 } 2637 2084 2638 static int remap_pfn_range_internal(struct vm !! 2085 /** 2639 unsigned long pfn, unsigned l !! 2086 * remap_pfn_range - remap kernel memory to userspace >> 2087 * @vma: user vma to map to >> 2088 * @addr: target user address to start at >> 2089 * @pfn: physical address of kernel memory >> 2090 * @size: size of map area >> 2091 * @prot: page protection flags for this mapping >> 2092 * >> 2093 * Note: this is only safe if the mm semaphore is held when called. >> 2094 */ >> 2095 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, >> 2096 unsigned long pfn, unsigned long size, pgprot_t prot) 2640 { 2097 { 2641 pgd_t *pgd; 2098 pgd_t *pgd; 2642 unsigned long next; 2099 unsigned long next; 2643 unsigned long end = addr + PAGE_ALIGN 2100 unsigned long end = addr + PAGE_ALIGN(size); 2644 struct mm_struct *mm = vma->vm_mm; 2101 struct mm_struct *mm = vma->vm_mm; >> 2102 unsigned long remap_pfn = pfn; 2645 int err; 2103 int err; 2646 2104 2647 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)) << 2648 return -EINVAL; << 2649 << 2650 /* 2105 /* 2651 * Physically remapped pages are spec 2106 * Physically remapped pages are special. Tell the 2652 * rest of the world about it: 2107 * rest of the world about it: 2653 * VM_IO tells people not to look a 2108 * VM_IO tells people not to look at these pages 2654 * (accesses can have side effec 2109 * (accesses can have side effects). 2655 * VM_PFNMAP tells the core MM that 2110 * VM_PFNMAP tells the core MM that the base pages are just 2656 * raw PFN mappings, and do not 2111 * raw PFN mappings, and do not have a "struct page" associated 2657 * with them. 2112 * with them. 2658 * VM_DONTEXPAND 2113 * VM_DONTEXPAND 2659 * Disable vma merging and expan 2114 * Disable vma merging and expanding with mremap(). 2660 * VM_DONTDUMP 2115 * VM_DONTDUMP 2661 * Omit vma from core dump, even 2116 * Omit vma from core dump, even when VM_IO turned off. 2662 * 2117 * 2663 * There's a horrible special case to 2118 * There's a horrible special case to handle copy-on-write 2664 * behaviour that some programs depen 2119 * behaviour that some programs depend on. We mark the "original" 2665 * un-COW'ed pages by matching them u 2120 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2666 * See vm_normal_page() for details. 2121 * See vm_normal_page() for details. 2667 */ 2122 */ 2668 if (is_cow_mapping(vma->vm_flags)) { 2123 if (is_cow_mapping(vma->vm_flags)) { 2669 if (addr != vma->vm_start || 2124 if (addr != vma->vm_start || end != vma->vm_end) 2670 return -EINVAL; 2125 return -EINVAL; 2671 vma->vm_pgoff = pfn; 2126 vma->vm_pgoff = pfn; 2672 } 2127 } 2673 2128 2674 vm_flags_set(vma, VM_IO | VM_PFNMAP | !! 2129 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); >> 2130 if (err) >> 2131 return -EINVAL; >> 2132 >> 2133 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2675 2134 2676 BUG_ON(addr >= end); 2135 BUG_ON(addr >= end); 2677 pfn -= addr >> PAGE_SHIFT; 2136 pfn -= addr >> PAGE_SHIFT; 2678 pgd = pgd_offset(mm, addr); 2137 pgd = pgd_offset(mm, addr); 2679 flush_cache_range(vma, addr, end); 2138 flush_cache_range(vma, addr, end); 2680 do { 2139 do { 2681 next = pgd_addr_end(addr, end 2140 next = pgd_addr_end(addr, end); 2682 err = remap_p4d_range(mm, pgd 2141 err = remap_p4d_range(mm, pgd, addr, next, 2683 pfn + (addr > 2142 pfn + (addr >> PAGE_SHIFT), prot); 2684 if (err) 2143 if (err) 2685 return err; !! 2144 break; 2686 } while (pgd++, addr = next, addr != 2145 } while (pgd++, addr = next, addr != end); 2687 2146 2688 return 0; << 2689 } << 2690 << 2691 /* << 2692 * Variant of remap_pfn_range that does not c << 2693 * must have pre-validated the caching bits o << 2694 */ << 2695 int remap_pfn_range_notrack(struct vm_area_st << 2696 unsigned long pfn, unsigned l << 2697 { << 2698 int error = remap_pfn_range_internal( << 2699 << 2700 if (!error) << 2701 return 0; << 2702 << 2703 /* << 2704 * A partial pfn range mapping is dan << 2705 * maintain page reference counts, an << 2706 * pages due to the error. So zap it << 2707 */ << 2708 zap_page_range_single(vma, addr, size << 2709 return error; << 2710 } << 2711 << 2712 /** << 2713 * remap_pfn_range - remap kernel memory to u << 2714 * @vma: user vma to map to << 2715 * @addr: target page aligned user address to << 2716 * @pfn: page frame number of kernel physical << 2717 * @size: size of mapping area << 2718 * @prot: page protection flags for this mapp << 2719 * << 2720 * Note: this is only safe if the mm semaphor << 2721 * << 2722 * Return: %0 on success, negative error code << 2723 */ << 2724 int remap_pfn_range(struct vm_area_struct *vm << 2725 unsigned long pfn, unsign << 2726 { << 2727 int err; << 2728 << 2729 err = track_pfn_remap(vma, &prot, pfn << 2730 if (err) 2147 if (err) 2731 return -EINVAL; !! 2148 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2732 2149 2733 err = remap_pfn_range_notrack(vma, ad << 2734 if (err) << 2735 untrack_pfn(vma, pfn, PAGE_AL << 2736 return err; 2150 return err; 2737 } 2151 } 2738 EXPORT_SYMBOL(remap_pfn_range); 2152 EXPORT_SYMBOL(remap_pfn_range); 2739 2153 2740 /** 2154 /** 2741 * vm_iomap_memory - remap memory to userspac 2155 * vm_iomap_memory - remap memory to userspace 2742 * @vma: user vma to map to 2156 * @vma: user vma to map to 2743 * @start: start of the physical memory to be !! 2157 * @start: start of area 2744 * @len: size of area 2158 * @len: size of area 2745 * 2159 * 2746 * This is a simplified io_remap_pfn_range() 2160 * This is a simplified io_remap_pfn_range() for common driver use. The 2747 * driver just needs to give us the physical 2161 * driver just needs to give us the physical memory range to be mapped, 2748 * we'll figure out the rest from the vma inf 2162 * we'll figure out the rest from the vma information. 2749 * 2163 * 2750 * NOTE! Some drivers might want to tweak vma 2164 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2751 * whatever write-combining details or simila 2165 * whatever write-combining details or similar. 2752 * << 2753 * Return: %0 on success, negative error code << 2754 */ 2166 */ 2755 int vm_iomap_memory(struct vm_area_struct *vm 2167 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2756 { 2168 { 2757 unsigned long vm_len, pfn, pages; 2169 unsigned long vm_len, pfn, pages; 2758 2170 2759 /* Check that the physical memory are 2171 /* Check that the physical memory area passed in looks valid */ 2760 if (start + len < start) 2172 if (start + len < start) 2761 return -EINVAL; 2173 return -EINVAL; 2762 /* 2174 /* 2763 * You *really* shouldn't map things 2175 * You *really* shouldn't map things that aren't page-aligned, 2764 * but we've historically allowed it 2176 * but we've historically allowed it because IO memory might 2765 * just have smaller alignment. 2177 * just have smaller alignment. 2766 */ 2178 */ 2767 len += start & ~PAGE_MASK; 2179 len += start & ~PAGE_MASK; 2768 pfn = start >> PAGE_SHIFT; 2180 pfn = start >> PAGE_SHIFT; 2769 pages = (len + ~PAGE_MASK) >> PAGE_SH 2181 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2770 if (pfn + pages < pfn) 2182 if (pfn + pages < pfn) 2771 return -EINVAL; 2183 return -EINVAL; 2772 2184 2773 /* We start the mapping 'vm_pgoff' pa 2185 /* We start the mapping 'vm_pgoff' pages into the area */ 2774 if (vma->vm_pgoff > pages) 2186 if (vma->vm_pgoff > pages) 2775 return -EINVAL; 2187 return -EINVAL; 2776 pfn += vma->vm_pgoff; 2188 pfn += vma->vm_pgoff; 2777 pages -= vma->vm_pgoff; 2189 pages -= vma->vm_pgoff; 2778 2190 2779 /* Can we fit all of the mapping? */ 2191 /* Can we fit all of the mapping? */ 2780 vm_len = vma->vm_end - vma->vm_start; 2192 vm_len = vma->vm_end - vma->vm_start; 2781 if (vm_len >> PAGE_SHIFT > pages) 2193 if (vm_len >> PAGE_SHIFT > pages) 2782 return -EINVAL; 2194 return -EINVAL; 2783 2195 2784 /* Ok, let it rip */ 2196 /* Ok, let it rip */ 2785 return io_remap_pfn_range(vma, vma->v 2197 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2786 } 2198 } 2787 EXPORT_SYMBOL(vm_iomap_memory); 2199 EXPORT_SYMBOL(vm_iomap_memory); 2788 2200 2789 static int apply_to_pte_range(struct mm_struc 2201 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2790 unsigned 2202 unsigned long addr, unsigned long end, 2791 pte_fn_t !! 2203 pte_fn_t fn, void *data) 2792 pgtbl_mo << 2793 { 2204 { 2794 pte_t *pte, *mapped_pte; !! 2205 pte_t *pte; 2795 int err = 0; !! 2206 int err; 2796 spinlock_t *ptl; !! 2207 pgtable_t token; >> 2208 spinlock_t *uninitialized_var(ptl); 2797 2209 2798 if (create) { !! 2210 pte = (mm == &init_mm) ? 2799 mapped_pte = pte = (mm == &in !! 2211 pte_alloc_kernel(pmd, addr) : 2800 pte_alloc_kernel_trac !! 2212 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2801 pte_alloc_map_lock(mm !! 2213 if (!pte) 2802 if (!pte) !! 2214 return -ENOMEM; 2803 return -ENOMEM; !! 2215 2804 } else { !! 2216 BUG_ON(pmd_huge(*pmd)); 2805 mapped_pte = pte = (mm == &in << 2806 pte_offset_kernel(pmd << 2807 pte_offset_map_lock(m << 2808 if (!pte) << 2809 return -EINVAL; << 2810 } << 2811 2217 2812 arch_enter_lazy_mmu_mode(); 2218 arch_enter_lazy_mmu_mode(); 2813 2219 2814 if (fn) { !! 2220 token = pmd_pgtable(*pmd); 2815 do { !! 2221 2816 if (create || !pte_no !! 2222 do { 2817 err = fn(pte+ !! 2223 err = fn(pte++, token, addr, data); 2818 if (err) !! 2224 if (err) 2819 break !! 2225 break; 2820 } !! 2226 } while (addr += PAGE_SIZE, addr != end); 2821 } while (addr += PAGE_SIZE, a << 2822 } << 2823 *mask |= PGTBL_PTE_MODIFIED; << 2824 2227 2825 arch_leave_lazy_mmu_mode(); 2228 arch_leave_lazy_mmu_mode(); 2826 2229 2827 if (mm != &init_mm) 2230 if (mm != &init_mm) 2828 pte_unmap_unlock(mapped_pte, !! 2231 pte_unmap_unlock(pte-1, ptl); 2829 return err; 2232 return err; 2830 } 2233 } 2831 2234 2832 static int apply_to_pmd_range(struct mm_struc 2235 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2833 unsigned 2236 unsigned long addr, unsigned long end, 2834 pte_fn_t !! 2237 pte_fn_t fn, void *data) 2835 pgtbl_mo << 2836 { 2238 { 2837 pmd_t *pmd; 2239 pmd_t *pmd; 2838 unsigned long next; 2240 unsigned long next; 2839 int err = 0; !! 2241 int err; 2840 2242 2841 BUG_ON(pud_leaf(*pud)); !! 2243 BUG_ON(pud_huge(*pud)); 2842 2244 2843 if (create) { !! 2245 pmd = pmd_alloc(mm, pud, addr); 2844 pmd = pmd_alloc_track(mm, pud !! 2246 if (!pmd) 2845 if (!pmd) !! 2247 return -ENOMEM; 2846 return -ENOMEM; << 2847 } else { << 2848 pmd = pmd_offset(pud, addr); << 2849 } << 2850 do { 2248 do { 2851 next = pmd_addr_end(addr, end 2249 next = pmd_addr_end(addr, end); 2852 if (pmd_none(*pmd) && !create !! 2250 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2853 continue; << 2854 if (WARN_ON_ONCE(pmd_leaf(*pm << 2855 return -EINVAL; << 2856 if (!pmd_none(*pmd) && WARN_O << 2857 if (!create) << 2858 continue; << 2859 pmd_clear_bad(pmd); << 2860 } << 2861 err = apply_to_pte_range(mm, << 2862 fn, << 2863 if (err) 2251 if (err) 2864 break; 2252 break; 2865 } while (pmd++, addr = next, addr != 2253 } while (pmd++, addr = next, addr != end); 2866 << 2867 return err; 2254 return err; 2868 } 2255 } 2869 2256 2870 static int apply_to_pud_range(struct mm_struc 2257 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2871 unsigned 2258 unsigned long addr, unsigned long end, 2872 pte_fn_t !! 2259 pte_fn_t fn, void *data) 2873 pgtbl_mo << 2874 { 2260 { 2875 pud_t *pud; 2261 pud_t *pud; 2876 unsigned long next; 2262 unsigned long next; 2877 int err = 0; !! 2263 int err; 2878 2264 2879 if (create) { !! 2265 pud = pud_alloc(mm, p4d, addr); 2880 pud = pud_alloc_track(mm, p4d !! 2266 if (!pud) 2881 if (!pud) !! 2267 return -ENOMEM; 2882 return -ENOMEM; << 2883 } else { << 2884 pud = pud_offset(p4d, addr); << 2885 } << 2886 do { 2268 do { 2887 next = pud_addr_end(addr, end 2269 next = pud_addr_end(addr, end); 2888 if (pud_none(*pud) && !create !! 2270 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2889 continue; << 2890 if (WARN_ON_ONCE(pud_leaf(*pu << 2891 return -EINVAL; << 2892 if (!pud_none(*pud) && WARN_O << 2893 if (!create) << 2894 continue; << 2895 pud_clear_bad(pud); << 2896 } << 2897 err = apply_to_pmd_range(mm, << 2898 fn, << 2899 if (err) 2271 if (err) 2900 break; 2272 break; 2901 } while (pud++, addr = next, addr != 2273 } while (pud++, addr = next, addr != end); 2902 << 2903 return err; 2274 return err; 2904 } 2275 } 2905 2276 2906 static int apply_to_p4d_range(struct mm_struc 2277 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2907 unsigned 2278 unsigned long addr, unsigned long end, 2908 pte_fn_t !! 2279 pte_fn_t fn, void *data) 2909 pgtbl_mo << 2910 { 2280 { 2911 p4d_t *p4d; 2281 p4d_t *p4d; 2912 unsigned long next; 2282 unsigned long next; 2913 int err = 0; !! 2283 int err; 2914 2284 2915 if (create) { !! 2285 p4d = p4d_alloc(mm, pgd, addr); 2916 p4d = p4d_alloc_track(mm, pgd !! 2286 if (!p4d) 2917 if (!p4d) !! 2287 return -ENOMEM; 2918 return -ENOMEM; << 2919 } else { << 2920 p4d = p4d_offset(pgd, addr); << 2921 } << 2922 do { 2288 do { 2923 next = p4d_addr_end(addr, end 2289 next = p4d_addr_end(addr, end); 2924 if (p4d_none(*p4d) && !create !! 2290 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2925 continue; << 2926 if (WARN_ON_ONCE(p4d_leaf(*p4 << 2927 return -EINVAL; << 2928 if (!p4d_none(*p4d) && WARN_O << 2929 if (!create) << 2930 continue; << 2931 p4d_clear_bad(p4d); << 2932 } << 2933 err = apply_to_pud_range(mm, << 2934 fn, << 2935 if (err) 2291 if (err) 2936 break; 2292 break; 2937 } while (p4d++, addr = next, addr != 2293 } while (p4d++, addr = next, addr != end); 2938 << 2939 return err; 2294 return err; 2940 } 2295 } 2941 2296 2942 static int __apply_to_page_range(struct mm_st !! 2297 /* 2943 unsigned lon !! 2298 * Scan a region of virtual memory, filling in page tables as necessary 2944 void *data, !! 2299 * and calling a provided function on each leaf page table. >> 2300 */ >> 2301 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, >> 2302 unsigned long size, pte_fn_t fn, void *data) 2945 { 2303 { 2946 pgd_t *pgd; 2304 pgd_t *pgd; 2947 unsigned long start = addr, next; !! 2305 unsigned long next; 2948 unsigned long end = addr + size; 2306 unsigned long end = addr + size; 2949 pgtbl_mod_mask mask = 0; !! 2307 int err; 2950 int err = 0; << 2951 2308 2952 if (WARN_ON(addr >= end)) 2309 if (WARN_ON(addr >= end)) 2953 return -EINVAL; 2310 return -EINVAL; 2954 2311 2955 pgd = pgd_offset(mm, addr); 2312 pgd = pgd_offset(mm, addr); 2956 do { 2313 do { 2957 next = pgd_addr_end(addr, end 2314 next = pgd_addr_end(addr, end); 2958 if (pgd_none(*pgd) && !create !! 2315 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2959 continue; << 2960 if (WARN_ON_ONCE(pgd_leaf(*pg << 2961 return -EINVAL; << 2962 if (!pgd_none(*pgd) && WARN_O << 2963 if (!create) << 2964 continue; << 2965 pgd_clear_bad(pgd); << 2966 } << 2967 err = apply_to_p4d_range(mm, << 2968 fn, << 2969 if (err) 2316 if (err) 2970 break; 2317 break; 2971 } while (pgd++, addr = next, addr != 2318 } while (pgd++, addr = next, addr != end); 2972 2319 2973 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) << 2974 arch_sync_kernel_mappings(sta << 2975 << 2976 return err; 2320 return err; 2977 } 2321 } 2978 << 2979 /* << 2980 * Scan a region of virtual memory, filling i << 2981 * and calling a provided function on each le << 2982 */ << 2983 int apply_to_page_range(struct mm_struct *mm, << 2984 unsigned long size, p << 2985 { << 2986 return __apply_to_page_range(mm, addr << 2987 } << 2988 EXPORT_SYMBOL_GPL(apply_to_page_range); 2322 EXPORT_SYMBOL_GPL(apply_to_page_range); 2989 2323 2990 /* 2324 /* 2991 * Scan a region of virtual memory, calling a << 2992 * each leaf page table where it exists. << 2993 * << 2994 * Unlike apply_to_page_range, this does _not << 2995 * where they are absent. << 2996 */ << 2997 int apply_to_existing_page_range(struct mm_st << 2998 unsigned lon << 2999 { << 3000 return __apply_to_page_range(mm, addr << 3001 } << 3002 EXPORT_SYMBOL_GPL(apply_to_existing_page_rang << 3003 << 3004 /* << 3005 * handle_pte_fault chooses page fault handle 2325 * handle_pte_fault chooses page fault handler according to an entry which was 3006 * read non-atomically. Before making any co 2326 * read non-atomically. Before making any commitment, on those architectures 3007 * or configurations (e.g. i386 with PAE) whi 2327 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3008 * parts, do_swap_page must check under lock 2328 * parts, do_swap_page must check under lock before unmapping the pte and 3009 * proceeding (but do_wp_page is only called 2329 * proceeding (but do_wp_page is only called after already making such a check; 3010 * and do_anonymous_page can safely check lat 2330 * and do_anonymous_page can safely check later on). 3011 */ 2331 */ 3012 static inline int pte_unmap_same(struct vm_fa !! 2332 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, >> 2333 pte_t *page_table, pte_t orig_pte) 3013 { 2334 { 3014 int same = 1; 2335 int same = 1; 3015 #if defined(CONFIG_SMP) || defined(CONFIG_PRE !! 2336 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 3016 if (sizeof(pte_t) > sizeof(unsigned l 2337 if (sizeof(pte_t) > sizeof(unsigned long)) { 3017 spin_lock(vmf->ptl); !! 2338 spinlock_t *ptl = pte_lockptr(mm, pmd); 3018 same = pte_same(ptep_get(vmf- !! 2339 spin_lock(ptl); 3019 spin_unlock(vmf->ptl); !! 2340 same = pte_same(*page_table, orig_pte); >> 2341 spin_unlock(ptl); 3020 } 2342 } 3021 #endif 2343 #endif 3022 pte_unmap(vmf->pte); !! 2344 pte_unmap(page_table); 3023 vmf->pte = NULL; << 3024 return same; 2345 return same; 3025 } 2346 } 3026 2347 3027 /* !! 2348 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 3028 * Return: << 3029 * 0: copied succeeded << 3030 * -EHWPOISON: copy failed due to hw << 3031 * -EAGAIN: copied failed (some o << 3032 */ << 3033 static inline int __wp_page_copy_user(struct << 3034 struct << 3035 { 2349 { 3036 int ret; !! 2350 debug_dma_assert_idle(src); 3037 void *kaddr; << 3038 void __user *uaddr; << 3039 struct vm_area_struct *vma = vmf->vma << 3040 struct mm_struct *mm = vma->vm_mm; << 3041 unsigned long addr = vmf->address; << 3042 << 3043 if (likely(src)) { << 3044 if (copy_mc_user_highpage(dst << 3045 return -EHWPOISON; << 3046 return 0; << 3047 } << 3048 2351 3049 /* 2352 /* 3050 * If the source page was a PFN mappi 2353 * If the source page was a PFN mapping, we don't have 3051 * a "struct page" for it. We do a be 2354 * a "struct page" for it. We do a best-effort copy by 3052 * just copying from the original use 2355 * just copying from the original user address. If that 3053 * fails, we just zero-fill it. Live 2356 * fails, we just zero-fill it. Live with it. 3054 */ 2357 */ 3055 kaddr = kmap_local_page(dst); !! 2358 if (unlikely(!src)) { 3056 pagefault_disable(); !! 2359 void *kaddr = kmap_atomic(dst); 3057 uaddr = (void __user *)(addr & PAGE_M !! 2360 void __user *uaddr = (void __user *)(va & PAGE_MASK); 3058 << 3059 /* << 3060 * On architectures with software "ac << 3061 * take a double page fault, so mark << 3062 */ << 3063 vmf->pte = NULL; << 3064 if (!arch_has_hw_pte_young() && !pte_ << 3065 pte_t entry; << 3066 << 3067 vmf->pte = pte_offset_map_loc << 3068 if (unlikely(!vmf->pte || !pt << 3069 /* << 3070 * Other thread has a << 3071 * and update local t << 3072 */ << 3073 if (vmf->pte) << 3074 update_mmu_tl << 3075 ret = -EAGAIN; << 3076 goto pte_unlock; << 3077 } << 3078 << 3079 entry = pte_mkyoung(vmf->orig << 3080 if (ptep_set_access_flags(vma << 3081 update_mmu_cache_rang << 3082 } << 3083 << 3084 /* << 3085 * This really shouldn't fail, becaus << 3086 * in the page tables. But it might j << 3087 * in which case we just give up and << 3088 * zeroes. << 3089 */ << 3090 if (__copy_from_user_inatomic(kaddr, << 3091 if (vmf->pte) << 3092 goto warn; << 3093 << 3094 /* Re-validate under PTL if t << 3095 vmf->pte = pte_offset_map_loc << 3096 if (unlikely(!vmf->pte || !pt << 3097 /* The PTE changed un << 3098 if (vmf->pte) << 3099 update_mmu_tl << 3100 ret = -EAGAIN; << 3101 goto pte_unlock; << 3102 } << 3103 2361 3104 /* 2362 /* 3105 * The same page can be mappe !! 2363 * This really shouldn't fail, because the page is there 3106 * Try to copy again under PT !! 2364 * in the page tables. But it might just be unreadable, >> 2365 * in which case we just give up and fill the result with >> 2366 * zeroes. 3107 */ 2367 */ 3108 if (__copy_from_user_inatomic !! 2368 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 3109 /* << 3110 * Give a warn in cas << 3111 * use-case << 3112 */ << 3113 warn: << 3114 WARN_ON_ONCE(1); << 3115 clear_page(kaddr); 2369 clear_page(kaddr); 3116 } !! 2370 kunmap_atomic(kaddr); 3117 } !! 2371 flush_dcache_page(dst); 3118 !! 2372 } else 3119 ret = 0; !! 2373 copy_user_highpage(dst, src, va, vma); 3120 << 3121 pte_unlock: << 3122 if (vmf->pte) << 3123 pte_unmap_unlock(vmf->pte, vm << 3124 pagefault_enable(); << 3125 kunmap_local(kaddr); << 3126 flush_dcache_page(dst); << 3127 << 3128 return ret; << 3129 } 2374 } 3130 2375 3131 static gfp_t __get_fault_gfp_mask(struct vm_a 2376 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3132 { 2377 { 3133 struct file *vm_file = vma->vm_file; 2378 struct file *vm_file = vma->vm_file; 3134 2379 3135 if (vm_file) 2380 if (vm_file) 3136 return mapping_gfp_mask(vm_fi 2381 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3137 2382 3138 /* 2383 /* 3139 * Special mappings (e.g. VDSO) do no 2384 * Special mappings (e.g. VDSO) do not have any file so fake 3140 * a default GFP_KERNEL for them. 2385 * a default GFP_KERNEL for them. 3141 */ 2386 */ 3142 return GFP_KERNEL; 2387 return GFP_KERNEL; 3143 } 2388 } 3144 2389 3145 /* 2390 /* 3146 * Notify the address space that the page is 2391 * Notify the address space that the page is about to become writable so that 3147 * it can prohibit this or wait for the page 2392 * it can prohibit this or wait for the page to get into an appropriate state. 3148 * 2393 * 3149 * We do this without the lock held, so that 2394 * We do this without the lock held, so that it can sleep if it needs to. 3150 */ 2395 */ 3151 static vm_fault_t do_page_mkwrite(struct vm_f !! 2396 static int do_page_mkwrite(struct vm_fault *vmf) 3152 { 2397 { 3153 vm_fault_t ret; !! 2398 int ret; >> 2399 struct page *page = vmf->page; 3154 unsigned int old_flags = vmf->flags; 2400 unsigned int old_flags = vmf->flags; 3155 2401 3156 vmf->flags = FAULT_FLAG_WRITE|FAULT_F 2402 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3157 2403 3158 if (vmf->vma->vm_file && << 3159 IS_SWAPFILE(vmf->vma->vm_file->f_ << 3160 return VM_FAULT_SIGBUS; << 3161 << 3162 ret = vmf->vma->vm_ops->page_mkwrite( 2404 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3163 /* Restore original flags so that cal 2405 /* Restore original flags so that caller is not surprised */ 3164 vmf->flags = old_flags; 2406 vmf->flags = old_flags; 3165 if (unlikely(ret & (VM_FAULT_ERROR | 2407 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3166 return ret; 2408 return ret; 3167 if (unlikely(!(ret & VM_FAULT_LOCKED) 2409 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3168 folio_lock(folio); !! 2410 lock_page(page); 3169 if (!folio->mapping) { !! 2411 if (!page->mapping) { 3170 folio_unlock(folio); !! 2412 unlock_page(page); 3171 return 0; /* retry */ 2413 return 0; /* retry */ 3172 } 2414 } 3173 ret |= VM_FAULT_LOCKED; 2415 ret |= VM_FAULT_LOCKED; 3174 } else 2416 } else 3175 VM_BUG_ON_FOLIO(!folio_test_l !! 2417 VM_BUG_ON_PAGE(!PageLocked(page), page); 3176 return ret; 2418 return ret; 3177 } 2419 } 3178 2420 3179 /* 2421 /* 3180 * Handle dirtying of a page in shared file m 2422 * Handle dirtying of a page in shared file mapping on a write fault. 3181 * 2423 * 3182 * The function expects the page to be locked 2424 * The function expects the page to be locked and unlocks it. 3183 */ 2425 */ 3184 static vm_fault_t fault_dirty_shared_page(str !! 2426 static void fault_dirty_shared_page(struct vm_area_struct *vma, >> 2427 struct page *page) 3185 { 2428 { 3186 struct vm_area_struct *vma = vmf->vma << 3187 struct address_space *mapping; 2429 struct address_space *mapping; 3188 struct folio *folio = page_folio(vmf- << 3189 bool dirtied; 2430 bool dirtied; 3190 bool page_mkwrite = vma->vm_ops && vm 2431 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3191 2432 3192 dirtied = folio_mark_dirty(folio); !! 2433 dirtied = set_page_dirty(page); 3193 VM_BUG_ON_FOLIO(folio_test_anon(folio !! 2434 VM_BUG_ON_PAGE(PageAnon(page), page); 3194 /* 2435 /* 3195 * Take a local copy of the address_s !! 2436 * Take a local copy of the address_space - page.mapping may be zeroed 3196 * by truncate after folio_unlock(). !! 2437 * by truncate after unlock_page(). The address_space itself remains 3197 * pinned by vma->vm_file's reference !! 2438 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3198 * release semantics to prevent the c 2439 * release semantics to prevent the compiler from undoing this copying. 3199 */ 2440 */ 3200 mapping = folio_raw_mapping(folio); !! 2441 mapping = page_rmapping(page); 3201 folio_unlock(folio); !! 2442 unlock_page(page); 3202 2443 3203 if (!page_mkwrite) << 3204 file_update_time(vma->vm_file << 3205 << 3206 /* << 3207 * Throttle page dirtying rate down t << 3208 * << 3209 * mapping may be NULL here because s << 3210 * set page.mapping but still dirty t << 3211 * << 3212 * Drop the mmap_lock before waiting << 3213 * is pinning the mapping, as per abo << 3214 */ << 3215 if ((dirtied || page_mkwrite) && mapp 2444 if ((dirtied || page_mkwrite) && mapping) { 3216 struct file *fpin; !! 2445 /* 3217 !! 2446 * Some device drivers do not set page.mapping 3218 fpin = maybe_unlock_mmap_for_ !! 2447 * but still dirty their pages >> 2448 */ 3219 balance_dirty_pages_ratelimit 2449 balance_dirty_pages_ratelimited(mapping); 3220 if (fpin) { << 3221 fput(fpin); << 3222 return VM_FAULT_COMPL << 3223 } << 3224 } 2450 } 3225 2451 3226 return 0; !! 2452 if (!page_mkwrite) >> 2453 file_update_time(vma->vm_file); 3227 } 2454 } 3228 2455 3229 /* 2456 /* 3230 * Handle write page faults for pages that ca 2457 * Handle write page faults for pages that can be reused in the current vma 3231 * 2458 * 3232 * This can happen either due to the mapping 2459 * This can happen either due to the mapping being with the VM_SHARED flag, 3233 * or due to us being the last reference stan 2460 * or due to us being the last reference standing to the page. In either 3234 * case, all we need to do here is to mark th 2461 * case, all we need to do here is to mark the page as writable and update 3235 * any related book-keeping. 2462 * any related book-keeping. 3236 */ 2463 */ 3237 static inline void wp_page_reuse(struct vm_fa !! 2464 static inline void wp_page_reuse(struct vm_fault *vmf) 3238 __releases(vmf->ptl) 2465 __releases(vmf->ptl) 3239 { 2466 { 3240 struct vm_area_struct *vma = vmf->vma 2467 struct vm_area_struct *vma = vmf->vma; >> 2468 struct page *page = vmf->page; 3241 pte_t entry; 2469 pte_t entry; 3242 !! 2470 /* 3243 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_W !! 2471 * Clear the pages cpupid information as the existing 3244 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->o !! 2472 * information potentially belongs to a now completely 3245 !! 2473 * unrelated process. 3246 if (folio) { !! 2474 */ 3247 VM_BUG_ON(folio_test_anon(fol !! 2475 if (page) 3248 !PageAnonExclusive( !! 2476 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3249 /* << 3250 * Clear the folio's cpupid i << 3251 * information potentially be << 3252 * unrelated process. << 3253 */ << 3254 folio_xchg_last_cpupid(folio, << 3255 } << 3256 2477 3257 flush_cache_page(vma, vmf->address, p 2478 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3258 entry = pte_mkyoung(vmf->orig_pte); 2479 entry = pte_mkyoung(vmf->orig_pte); 3259 entry = maybe_mkwrite(pte_mkdirty(ent 2480 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3260 if (ptep_set_access_flags(vma, vmf->a 2481 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3261 update_mmu_cache_range(vmf, v !! 2482 update_mmu_cache(vma, vmf->address, vmf->pte); 3262 pte_unmap_unlock(vmf->pte, vmf->ptl); 2483 pte_unmap_unlock(vmf->pte, vmf->ptl); 3263 count_vm_event(PGREUSE); << 3264 } 2484 } 3265 2485 3266 /* 2486 /* 3267 * We could add a bitflag somewhere, but for !! 2487 * Handle the case of a page which we actually need to copy to a new page. 3268 * vm_ops that have a ->map_pages have been a << 3269 * the mmap_lock to be held. << 3270 */ << 3271 static inline vm_fault_t vmf_can_call_fault(c << 3272 { << 3273 struct vm_area_struct *vma = vmf->vma << 3274 << 3275 if (vma->vm_ops->map_pages || !(vmf-> << 3276 return 0; << 3277 vma_end_read(vma); << 3278 return VM_FAULT_RETRY; << 3279 } << 3280 << 3281 /** << 3282 * __vmf_anon_prepare - Prepare to handle an << 3283 * @vmf: The vm_fault descriptor passed from << 3284 * << 3285 * When preparing to insert an anonymous page << 3286 * fault handler, call this function rather t << 3287 * If this vma does not already have an assoc << 3288 * only protected by the per-VMA lock, the ca << 3289 * mmap_lock held. __anon_vma_prepare() will << 3290 * determine if this VMA can share its anon_v << 3291 * do with only the per-VMA lock held for thi << 3292 * 2488 * 3293 * Return: 0 if fault handling can proceed. !! 2489 * Called with mmap_sem locked and the old page referenced, but 3294 * returned to the caller. << 3295 */ << 3296 vm_fault_t __vmf_anon_prepare(struct vm_fault << 3297 { << 3298 struct vm_area_struct *vma = vmf->vma << 3299 vm_fault_t ret = 0; << 3300 << 3301 if (likely(vma->anon_vma)) << 3302 return 0; << 3303 if (vmf->flags & FAULT_FLAG_VMA_LOCK) << 3304 if (!mmap_read_trylock(vma->v << 3305 return VM_FAULT_RETRY << 3306 } << 3307 if (__anon_vma_prepare(vma)) << 3308 ret = VM_FAULT_OOM; << 3309 if (vmf->flags & FAULT_FLAG_VMA_LOCK) << 3310 mmap_read_unlock(vma->vm_mm); << 3311 return ret; << 3312 } << 3313 << 3314 /* << 3315 * Handle the case of a page which we actuall << 3316 * either due to COW or unsharing. << 3317 * << 3318 * Called with mmap_lock locked and the old p << 3319 * without the ptl held. 2490 * without the ptl held. 3320 * 2491 * 3321 * High level logic flow: 2492 * High level logic flow: 3322 * 2493 * 3323 * - Allocate a page, copy the content of the 2494 * - Allocate a page, copy the content of the old page to the new one. 3324 * - Handle book keeping and accounting - cgr 2495 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3325 * - Take the PTL. If the pte changed, bail o 2496 * - Take the PTL. If the pte changed, bail out and release the allocated page 3326 * - If the pte is still the way we remember 2497 * - If the pte is still the way we remember it, update the page table and all 3327 * relevant references. This includes dropp 2498 * relevant references. This includes dropping the reference the page-table 3328 * held to the old page, as well as updatin 2499 * held to the old page, as well as updating the rmap. 3329 * - In any case, unlock the PTL and drop the 2500 * - In any case, unlock the PTL and drop the reference we took to the old page. 3330 */ 2501 */ 3331 static vm_fault_t wp_page_copy(struct vm_faul !! 2502 static int wp_page_copy(struct vm_fault *vmf) 3332 { 2503 { 3333 const bool unshare = vmf->flags & FAU << 3334 struct vm_area_struct *vma = vmf->vma 2504 struct vm_area_struct *vma = vmf->vma; 3335 struct mm_struct *mm = vma->vm_mm; 2505 struct mm_struct *mm = vma->vm_mm; 3336 struct folio *old_folio = NULL; !! 2506 struct page *old_page = vmf->page; 3337 struct folio *new_folio = NULL; !! 2507 struct page *new_page = NULL; 3338 pte_t entry; 2508 pte_t entry; 3339 int page_copied = 0; 2509 int page_copied = 0; 3340 struct mmu_notifier_range range; !! 2510 const unsigned long mmun_start = vmf->address & PAGE_MASK; 3341 vm_fault_t ret; !! 2511 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 3342 bool pfn_is_zero; !! 2512 struct mem_cgroup *memcg; 3343 << 3344 delayacct_wpcopy_start(); << 3345 << 3346 if (vmf->page) << 3347 old_folio = page_folio(vmf->p << 3348 ret = vmf_anon_prepare(vmf); << 3349 if (unlikely(ret)) << 3350 goto out; << 3351 2513 3352 pfn_is_zero = is_zero_pfn(pte_pfn(vmf !! 2514 if (unlikely(anon_vma_prepare(vma))) 3353 new_folio = folio_prealloc(mm, vma, v << 3354 if (!new_folio) << 3355 goto oom; 2515 goto oom; 3356 2516 3357 if (!pfn_is_zero) { !! 2517 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3358 int err; !! 2518 new_page = alloc_zeroed_user_highpage_movable(vma, 3359 !! 2519 vmf->address); 3360 err = __wp_page_copy_user(&ne !! 2520 if (!new_page) 3361 if (err) { !! 2521 goto oom; 3362 /* !! 2522 } else { 3363 * COW failed, if the !! 2523 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3364 * it's fine. If not, !! 2524 vmf->address); 3365 * the same address a !! 2525 if (!new_page) 3366 * from the second at !! 2526 goto oom; 3367 * The -EHWPOISON cas !! 2527 cow_user_page(new_page, old_page, vmf->address, vma); 3368 */ << 3369 folio_put(new_folio); << 3370 if (old_folio) << 3371 folio_put(old << 3372 << 3373 delayacct_wpcopy_end( << 3374 return err == -EHWPOI << 3375 } << 3376 kmsan_copy_page_meta(&new_fol << 3377 } 2528 } 3378 2529 3379 __folio_mark_uptodate(new_folio); !! 2530 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) >> 2531 goto oom_free_new; >> 2532 >> 2533 __SetPageUptodate(new_page); 3380 2534 3381 mmu_notifier_range_init(&range, MMU_N !! 2535 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3382 vmf->address << 3383 (vmf->address << 3384 mmu_notifier_invalidate_range_start(& << 3385 2536 3386 /* 2537 /* 3387 * Re-check the pte - we dropped the 2538 * Re-check the pte - we dropped the lock 3388 */ 2539 */ 3389 vmf->pte = pte_offset_map_lock(mm, vm 2540 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3390 if (likely(vmf->pte && pte_same(ptep_ !! 2541 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3391 if (old_folio) { !! 2542 if (old_page) { 3392 if (!folio_test_anon( !! 2543 if (!PageAnon(old_page)) { 3393 dec_mm_counte !! 2544 dec_mm_counter_fast(mm, 3394 inc_mm_counte !! 2545 mm_counter_file(old_page)); >> 2546 inc_mm_counter_fast(mm, MM_ANONPAGES); 3395 } 2547 } 3396 } else { 2548 } else { 3397 ksm_might_unmap_zero_ !! 2549 inc_mm_counter_fast(mm, MM_ANONPAGES); 3398 inc_mm_counter(mm, MM << 3399 } 2550 } 3400 flush_cache_page(vma, vmf->ad 2551 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3401 entry = mk_pte(&new_folio->pa !! 2552 entry = mk_pte(new_page, vma->vm_page_prot); 3402 entry = pte_sw_mkyoung(entry) !! 2553 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3403 if (unlikely(unshare)) { << 3404 if (pte_soft_dirty(vm << 3405 entry = pte_m << 3406 if (pte_uffd_wp(vmf-> << 3407 entry = pte_m << 3408 } else { << 3409 entry = maybe_mkwrite << 3410 } << 3411 << 3412 /* 2554 /* 3413 * Clear the pte entry and fl 2555 * Clear the pte entry and flush it first, before updating the 3414 * pte with the new entry, to !! 2556 * pte with the new entry. This will avoid a race condition 3415 * sync. This code used to se !! 2557 * seen in the presence of one thread doing SMC and another 3416 * that left a window where t !! 2558 * thread doing COW. 3417 * some TLBs while the old PT !! 2559 */ >> 2560 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); >> 2561 page_add_new_anon_rmap(new_page, vma, vmf->address, false); >> 2562 mem_cgroup_commit_charge(new_page, memcg, false, false); >> 2563 lru_cache_add_active_or_unevictable(new_page, vma); >> 2564 /* >> 2565 * We call the notify macro here because, when using secondary >> 2566 * mmu page tables (such as kvm shadow page tables), we want the >> 2567 * new page to be mapped directly into the secondary page table. 3418 */ 2568 */ 3419 ptep_clear_flush(vma, vmf->ad !! 2569 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3420 folio_add_new_anon_rmap(new_f !! 2570 update_mmu_cache(vma, vmf->address, vmf->pte); 3421 folio_add_lru_vma(new_folio, !! 2571 if (old_page) { 3422 BUG_ON(unshare && pte_write(e << 3423 set_pte_at(mm, vmf->address, << 3424 update_mmu_cache_range(vmf, v << 3425 if (old_folio) { << 3426 /* 2572 /* 3427 * Only after switchi 2573 * Only after switching the pte to the new page may 3428 * we remove the mapc 2574 * we remove the mapcount here. Otherwise another 3429 * process may come a 2575 * process may come and find the rmap count decremented 3430 * before the pte is 2576 * before the pte is switched to the new page, and 3431 * "reuse" the old pa 2577 * "reuse" the old page writing into it while our pte 3432 * here still points 2578 * here still points into it and can be read by other 3433 * threads. 2579 * threads. 3434 * 2580 * 3435 * The critical issue 2581 * The critical issue is to order this 3436 * folio_remove_rmap_ !! 2582 * page_remove_rmap with the ptp_clear_flush above. 3437 * above. Those store !! 2583 * Those stores are ordered by (if nothing else,) 3438 * the barrier presen 2584 * the barrier present in the atomic_add_negative 3439 * in folio_remove_rm !! 2585 * in page_remove_rmap. 3440 * 2586 * 3441 * Then the TLB flush 2587 * Then the TLB flush in ptep_clear_flush ensures that 3442 * no process can acc 2588 * no process can access the old page before the 3443 * decremented mapcou 2589 * decremented mapcount is visible. And the old page 3444 * cannot be reused u 2590 * cannot be reused until after the decremented 3445 * mapcount is visibl 2591 * mapcount is visible. So transitively, TLBs to 3446 * old page will be f 2592 * old page will be flushed before it can be reused. 3447 */ 2593 */ 3448 folio_remove_rmap_pte !! 2594 page_remove_rmap(old_page, false); 3449 } 2595 } 3450 2596 3451 /* Free the old page.. */ 2597 /* Free the old page.. */ 3452 new_folio = old_folio; !! 2598 new_page = old_page; 3453 page_copied = 1; 2599 page_copied = 1; 3454 pte_unmap_unlock(vmf->pte, vm !! 2600 } else { 3455 } else if (vmf->pte) { !! 2601 mem_cgroup_cancel_charge(new_page, memcg, false); 3456 update_mmu_tlb(vma, vmf->addr << 3457 pte_unmap_unlock(vmf->pte, vm << 3458 } 2602 } 3459 2603 3460 mmu_notifier_invalidate_range_end(&ra !! 2604 if (new_page) 3461 !! 2605 put_page(new_page); 3462 if (new_folio) << 3463 folio_put(new_folio); << 3464 if (old_folio) { << 3465 if (page_copied) << 3466 free_swap_cache(old_f << 3467 folio_put(old_folio); << 3468 } << 3469 2606 3470 delayacct_wpcopy_end(); !! 2607 pte_unmap_unlock(vmf->pte, vmf->ptl); 3471 return 0; !! 2608 /* >> 2609 * No need to double call mmu_notifier->invalidate_range() callback as >> 2610 * the above ptep_clear_flush_notify() did already call it. >> 2611 */ >> 2612 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); >> 2613 if (old_page) { >> 2614 /* >> 2615 * Don't let another task, with possibly unlocked vma, >> 2616 * keep the mlocked page. >> 2617 */ >> 2618 if (page_copied && (vma->vm_flags & VM_LOCKED)) { >> 2619 lock_page(old_page); /* LRU manipulation */ >> 2620 if (PageMlocked(old_page)) >> 2621 munlock_vma_page(old_page); >> 2622 unlock_page(old_page); >> 2623 } >> 2624 put_page(old_page); >> 2625 } >> 2626 return page_copied ? VM_FAULT_WRITE : 0; >> 2627 oom_free_new: >> 2628 put_page(new_page); 3472 oom: 2629 oom: 3473 ret = VM_FAULT_OOM; !! 2630 if (old_page) 3474 out: !! 2631 put_page(old_page); 3475 if (old_folio) !! 2632 return VM_FAULT_OOM; 3476 folio_put(old_folio); << 3477 << 3478 delayacct_wpcopy_end(); << 3479 return ret; << 3480 } 2633 } 3481 2634 3482 /** 2635 /** 3483 * finish_mkwrite_fault - finish page fault f 2636 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3484 * writeable once the 2637 * writeable once the page is prepared 3485 * 2638 * 3486 * @vmf: structure describing the fault 2639 * @vmf: structure describing the fault 3487 * @folio: the folio of vmf->page << 3488 * 2640 * 3489 * This function handles all that is needed t 2641 * This function handles all that is needed to finish a write page fault in a 3490 * shared mapping due to PTE being read-only 2642 * shared mapping due to PTE being read-only once the mapped page is prepared. 3491 * It handles locking of PTE and modifying it !! 2643 * It handles locking of PTE and modifying it. The function returns >> 2644 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE >> 2645 * lock. 3492 * 2646 * 3493 * The function expects the page to be locked 2647 * The function expects the page to be locked or other protection against 3494 * concurrent faults / writeback (such as DAX 2648 * concurrent faults / writeback (such as DAX radix tree locks). 3495 * << 3496 * Return: %0 on success, %VM_FAULT_NOPAGE wh << 3497 * we acquired PTE lock. << 3498 */ 2649 */ 3499 static vm_fault_t finish_mkwrite_fault(struct !! 2650 int finish_mkwrite_fault(struct vm_fault *vmf) 3500 { 2651 { 3501 WARN_ON_ONCE(!(vmf->vma->vm_flags & V 2652 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3502 vmf->pte = pte_offset_map_lock(vmf->v 2653 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3503 &vmf-> 2654 &vmf->ptl); 3504 if (!vmf->pte) << 3505 return VM_FAULT_NOPAGE; << 3506 /* 2655 /* 3507 * We might have raced with another p 2656 * We might have raced with another page fault while we released the 3508 * pte_offset_map_lock. 2657 * pte_offset_map_lock. 3509 */ 2658 */ 3510 if (!pte_same(ptep_get(vmf->pte), vmf !! 2659 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3511 update_mmu_tlb(vmf->vma, vmf- << 3512 pte_unmap_unlock(vmf->pte, vm 2660 pte_unmap_unlock(vmf->pte, vmf->ptl); 3513 return VM_FAULT_NOPAGE; 2661 return VM_FAULT_NOPAGE; 3514 } 2662 } 3515 wp_page_reuse(vmf, folio); !! 2663 wp_page_reuse(vmf); 3516 return 0; 2664 return 0; 3517 } 2665 } 3518 2666 3519 /* 2667 /* 3520 * Handle write page faults for VM_MIXEDMAP o 2668 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3521 * mapping 2669 * mapping 3522 */ 2670 */ 3523 static vm_fault_t wp_pfn_shared(struct vm_fau !! 2671 static int wp_pfn_shared(struct vm_fault *vmf) 3524 { 2672 { 3525 struct vm_area_struct *vma = vmf->vma 2673 struct vm_area_struct *vma = vmf->vma; 3526 2674 3527 if (vma->vm_ops && vma->vm_ops->pfn_m 2675 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3528 vm_fault_t ret; !! 2676 int ret; 3529 2677 3530 pte_unmap_unlock(vmf->pte, vm 2678 pte_unmap_unlock(vmf->pte, vmf->ptl); 3531 ret = vmf_can_call_fault(vmf) << 3532 if (ret) << 3533 return ret; << 3534 << 3535 vmf->flags |= FAULT_FLAG_MKWR 2679 vmf->flags |= FAULT_FLAG_MKWRITE; 3536 ret = vma->vm_ops->pfn_mkwrit 2680 ret = vma->vm_ops->pfn_mkwrite(vmf); 3537 if (ret & (VM_FAULT_ERROR | V 2681 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3538 return ret; 2682 return ret; 3539 return finish_mkwrite_fault(v !! 2683 return finish_mkwrite_fault(vmf); 3540 } 2684 } 3541 wp_page_reuse(vmf, NULL); !! 2685 wp_page_reuse(vmf); 3542 return 0; !! 2686 return VM_FAULT_WRITE; 3543 } 2687 } 3544 2688 3545 static vm_fault_t wp_page_shared(struct vm_fa !! 2689 static int wp_page_shared(struct vm_fault *vmf) 3546 __releases(vmf->ptl) 2690 __releases(vmf->ptl) 3547 { 2691 { 3548 struct vm_area_struct *vma = vmf->vma 2692 struct vm_area_struct *vma = vmf->vma; 3549 vm_fault_t ret = 0; << 3550 2693 3551 folio_get(folio); !! 2694 get_page(vmf->page); 3552 2695 3553 if (vma->vm_ops && vma->vm_ops->page_ 2696 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3554 vm_fault_t tmp; !! 2697 int tmp; 3555 2698 3556 pte_unmap_unlock(vmf->pte, vm 2699 pte_unmap_unlock(vmf->pte, vmf->ptl); 3557 tmp = vmf_can_call_fault(vmf) !! 2700 tmp = do_page_mkwrite(vmf); 3558 if (tmp) { << 3559 folio_put(folio); << 3560 return tmp; << 3561 } << 3562 << 3563 tmp = do_page_mkwrite(vmf, fo << 3564 if (unlikely(!tmp || (tmp & 2701 if (unlikely(!tmp || (tmp & 3565 (VM_FAU 2702 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3566 folio_put(folio); !! 2703 put_page(vmf->page); 3567 return tmp; 2704 return tmp; 3568 } 2705 } 3569 tmp = finish_mkwrite_fault(vm !! 2706 tmp = finish_mkwrite_fault(vmf); 3570 if (unlikely(tmp & (VM_FAULT_ 2707 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3571 folio_unlock(folio); !! 2708 unlock_page(vmf->page); 3572 folio_put(folio); !! 2709 put_page(vmf->page); 3573 return tmp; 2710 return tmp; 3574 } 2711 } 3575 } else { 2712 } else { 3576 wp_page_reuse(vmf, folio); !! 2713 wp_page_reuse(vmf); 3577 folio_lock(folio); !! 2714 lock_page(vmf->page); 3578 } 2715 } 3579 ret |= fault_dirty_shared_page(vmf); !! 2716 fault_dirty_shared_page(vma, vmf->page); 3580 folio_put(folio); !! 2717 put_page(vmf->page); 3581 2718 3582 return ret; !! 2719 return VM_FAULT_WRITE; 3583 } << 3584 << 3585 static bool wp_can_reuse_anon_folio(struct fo << 3586 struct vm << 3587 { << 3588 /* << 3589 * We could currently only reuse a su << 3590 * other subpages of the large folios << 3591 * let's just consistently not reuse << 3592 * reuse in that scenario, and give b << 3593 * sooner. << 3594 */ << 3595 if (folio_test_large(folio)) << 3596 return false; << 3597 << 3598 /* << 3599 * We have to verify under folio lock << 3600 * just an optimization to avoid lock << 3601 * the swapcache if there is little h << 3602 * << 3603 * KSM doesn't necessarily raise the << 3604 */ << 3605 if (folio_test_ksm(folio) || folio_re << 3606 return false; << 3607 if (!folio_test_lru(folio)) << 3608 /* << 3609 * We cannot easily detect+ha << 3610 * remote LRU caches or refer << 3611 */ << 3612 lru_add_drain(); << 3613 if (folio_ref_count(folio) > 1 + foli << 3614 return false; << 3615 if (!folio_trylock(folio)) << 3616 return false; << 3617 if (folio_test_swapcache(folio)) << 3618 folio_free_swap(folio); << 3619 if (folio_test_ksm(folio) || folio_re << 3620 folio_unlock(folio); << 3621 return false; << 3622 } << 3623 /* << 3624 * Ok, we've got the only folio refer << 3625 * and the folio is locked, it's dark << 3626 * sunglasses. Hit it. << 3627 */ << 3628 folio_move_anon_rmap(folio, vma); << 3629 folio_unlock(folio); << 3630 return true; << 3631 } 2720 } 3632 2721 3633 /* 2722 /* 3634 * This routine handles present pages, when !! 2723 * This routine handles present pages, when users try to write 3635 * * users try to write to a shared page (FAU !! 2724 * to a shared page. It is done by copying the page to a new address 3636 * * GUP wants to take a R/O pin on a possibl !! 2725 * and decrementing the shared-page counter for the old page. 3637 * (FAULT_FLAG_UNSHARE) << 3638 * << 3639 * It is done by copying the page to a new ad << 3640 * shared-page counter for the old page. << 3641 * 2726 * 3642 * Note that this routine assumes that the pr 2727 * Note that this routine assumes that the protection checks have been 3643 * done by the caller (the low-level page fau 2728 * done by the caller (the low-level page fault routine in most cases). 3644 * Thus, with FAULT_FLAG_WRITE, we can safely !! 2729 * Thus we can safely just mark it writable once we've done any necessary 3645 * done any necessary COW. !! 2730 * COW. 3646 * 2731 * 3647 * In case of FAULT_FLAG_WRITE, we also mark !! 2732 * We also mark the page dirty at this point even though the page will 3648 * though the page will change only once the !! 2733 * change only once the write actually happens. This avoids a few races, 3649 * avoids a few races, and potentially makes !! 2734 * and potentially makes it more efficient. 3650 * 2735 * 3651 * We enter with non-exclusive mmap_lock (to !! 2736 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3652 * but allow concurrent faults), with pte bot 2737 * but allow concurrent faults), with pte both mapped and locked. 3653 * We return with mmap_lock still held, but p !! 2738 * We return with mmap_sem still held, but pte unmapped and unlocked. 3654 */ 2739 */ 3655 static vm_fault_t do_wp_page(struct vm_fault !! 2740 static int do_wp_page(struct vm_fault *vmf) 3656 __releases(vmf->ptl) 2741 __releases(vmf->ptl) 3657 { 2742 { 3658 const bool unshare = vmf->flags & FAU << 3659 struct vm_area_struct *vma = vmf->vma 2743 struct vm_area_struct *vma = vmf->vma; 3660 struct folio *folio = NULL; << 3661 pte_t pte; << 3662 << 3663 if (likely(!unshare)) { << 3664 if (userfaultfd_pte_wp(vma, p << 3665 if (!userfaultfd_wp_a << 3666 pte_unmap_unl << 3667 return handle << 3668 } << 3669 << 3670 /* << 3671 * Nothing needed (ca << 3672 * etc.) because we'r << 3673 * which is completel << 3674 */ << 3675 pte = pte_clear_uffd_ << 3676 << 3677 set_pte_at(vma->vm_mm << 3678 /* << 3679 * Update this to be << 3680 * handling << 3681 */ << 3682 vmf->orig_pte = pte; << 3683 } << 3684 << 3685 /* << 3686 * Userfaultfd write-protect << 3687 * is flushed in this case be << 3688 */ << 3689 if (unlikely(userfaultfd_wp(v << 3690 mm_tlb_flush_pen << 3691 flush_tlb_page(vmf->v << 3692 } << 3693 2744 3694 vmf->page = vm_normal_page(vma, vmf-> 2745 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3695 !! 2746 if (!vmf->page) { 3696 if (vmf->page) << 3697 folio = page_folio(vmf->page) << 3698 << 3699 /* << 3700 * Shared mapping: we are guaranteed << 3701 * FAULT_FLAG_WRITE set at this point << 3702 */ << 3703 if (vma->vm_flags & (VM_SHARED | VM_M << 3704 /* 2747 /* 3705 * VM_MIXEDMAP !pfn_valid() c 2748 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3706 * VM_PFNMAP VMA. 2749 * VM_PFNMAP VMA. 3707 * 2750 * 3708 * We should not cow pages in 2751 * We should not cow pages in a shared writeable mapping. 3709 * Just mark the pages writab 2752 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3710 */ 2753 */ 3711 if (!vmf->page) !! 2754 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == >> 2755 (VM_WRITE|VM_SHARED)) 3712 return wp_pfn_shared( 2756 return wp_pfn_shared(vmf); 3713 return wp_page_shared(vmf, fo !! 2757 >> 2758 pte_unmap_unlock(vmf->pte, vmf->ptl); >> 2759 return wp_page_copy(vmf); 3714 } 2760 } 3715 2761 3716 /* 2762 /* 3717 * Private mapping: create an exclusi !! 2763 * Take out anonymous pages first, anonymous shared vmas are 3718 * is impossible. We might miss VM_WR !! 2764 * not dirty accountable. 3719 * << 3720 * If we encounter a page that is mar << 3721 * the page without further checks. << 3722 */ 2765 */ 3723 if (folio && folio_test_anon(folio) & !! 2766 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 3724 (PageAnonExclusive(vmf->page) || !! 2767 int total_map_swapcount; 3725 if (!PageAnonExclusive(vmf->p !! 2768 if (!trylock_page(vmf->page)) { 3726 SetPageAnonExclusive( !! 2769 get_page(vmf->page); 3727 if (unlikely(unshare)) { << 3728 pte_unmap_unlock(vmf- 2770 pte_unmap_unlock(vmf->pte, vmf->ptl); 3729 return 0; !! 2771 lock_page(vmf->page); >> 2772 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, >> 2773 vmf->address, &vmf->ptl); >> 2774 if (!pte_same(*vmf->pte, vmf->orig_pte)) { >> 2775 unlock_page(vmf->page); >> 2776 pte_unmap_unlock(vmf->pte, vmf->ptl); >> 2777 put_page(vmf->page); >> 2778 return 0; >> 2779 } >> 2780 put_page(vmf->page); 3730 } 2781 } 3731 wp_page_reuse(vmf, folio); !! 2782 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 3732 return 0; !! 2783 if (total_map_swapcount == 1) { >> 2784 /* >> 2785 * The page is all ours. Move it to >> 2786 * our anon_vma so the rmap code will >> 2787 * not search our parent or siblings. >> 2788 * Protected against the rmap code by >> 2789 * the page lock. >> 2790 */ >> 2791 page_move_anon_rmap(vmf->page, vma); >> 2792 } >> 2793 unlock_page(vmf->page); >> 2794 wp_page_reuse(vmf); >> 2795 return VM_FAULT_WRITE; >> 2796 } >> 2797 unlock_page(vmf->page); >> 2798 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == >> 2799 (VM_WRITE|VM_SHARED))) { >> 2800 return wp_page_shared(vmf); 3733 } 2801 } >> 2802 3734 /* 2803 /* 3735 * Ok, we need to copy. Oh, well.. 2804 * Ok, we need to copy. Oh, well.. 3736 */ 2805 */ 3737 if (folio) !! 2806 get_page(vmf->page); 3738 folio_get(folio); << 3739 2807 3740 pte_unmap_unlock(vmf->pte, vmf->ptl); 2808 pte_unmap_unlock(vmf->pte, vmf->ptl); 3741 #ifdef CONFIG_KSM << 3742 if (folio && folio_test_ksm(folio)) << 3743 count_vm_event(COW_KSM); << 3744 #endif << 3745 return wp_page_copy(vmf); 2809 return wp_page_copy(vmf); 3746 } 2810 } 3747 2811 3748 static void unmap_mapping_range_vma(struct vm 2812 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3749 unsigned long start_addr, uns 2813 unsigned long start_addr, unsigned long end_addr, 3750 struct zap_details *details) 2814 struct zap_details *details) 3751 { 2815 { 3752 zap_page_range_single(vma, start_addr 2816 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3753 } 2817 } 3754 2818 3755 static inline void unmap_mapping_range_tree(s 2819 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3756 p << 3757 p << 3758 s 2820 struct zap_details *details) 3759 { 2821 { 3760 struct vm_area_struct *vma; 2822 struct vm_area_struct *vma; 3761 pgoff_t vba, vea, zba, zea; 2823 pgoff_t vba, vea, zba, zea; 3762 2824 3763 vma_interval_tree_foreach(vma, root, !! 2825 vma_interval_tree_foreach(vma, root, >> 2826 details->first_index, details->last_index) { >> 2827 3764 vba = vma->vm_pgoff; 2828 vba = vma->vm_pgoff; 3765 vea = vba + vma_pages(vma) - 2829 vea = vba + vma_pages(vma) - 1; 3766 zba = max(first_index, vba); !! 2830 zba = details->first_index; 3767 zea = min(last_index, vea); !! 2831 if (zba < vba) >> 2832 zba = vba; >> 2833 zea = details->last_index; >> 2834 if (zea > vea) >> 2835 zea = vea; 3768 2836 3769 unmap_mapping_range_vma(vma, 2837 unmap_mapping_range_vma(vma, 3770 ((zba - vba) << PAGE_ 2838 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3771 ((zea - vba + 1) << P 2839 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3772 details); 2840 details); 3773 } 2841 } 3774 } 2842 } 3775 2843 3776 /** 2844 /** 3777 * unmap_mapping_folio() - Unmap single folio << 3778 * @folio: The locked folio to be unmapped. << 3779 * << 3780 * Unmap this folio from any userspace proces << 3781 * Typically, for efficiency, the range of ne << 3782 * unmapped by unmap_mapping_pages() or unmap << 3783 * truncation or invalidation holds the lock << 3784 * the page has been remapped again: and then << 3785 * to unmap it finally. << 3786 */ << 3787 void unmap_mapping_folio(struct folio *folio) << 3788 { << 3789 struct address_space *mapping = folio << 3790 struct zap_details details = { }; << 3791 pgoff_t first_index; << 3792 pgoff_t last_index; << 3793 << 3794 VM_BUG_ON(!folio_test_locked(folio)); << 3795 << 3796 first_index = folio->index; << 3797 last_index = folio_next_index(folio) << 3798 << 3799 details.even_cows = false; << 3800 details.single_folio = folio; << 3801 details.zap_flags = ZAP_FLAG_DROP_MAR << 3802 << 3803 i_mmap_lock_read(mapping); << 3804 if (unlikely(!RB_EMPTY_ROOT(&mapping- << 3805 unmap_mapping_range_tree(&map << 3806 last << 3807 i_mmap_unlock_read(mapping); << 3808 } << 3809 << 3810 /** << 3811 * unmap_mapping_pages() - Unmap pages from p 2845 * unmap_mapping_pages() - Unmap pages from processes. 3812 * @mapping: The address space containing pag 2846 * @mapping: The address space containing pages to be unmapped. 3813 * @start: Index of first page to be unmapped 2847 * @start: Index of first page to be unmapped. 3814 * @nr: Number of pages to be unmapped. 0 to 2848 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3815 * @even_cows: Whether to unmap even private 2849 * @even_cows: Whether to unmap even private COWed pages. 3816 * 2850 * 3817 * Unmap the pages in this address space from 2851 * Unmap the pages in this address space from any userspace process which 3818 * has them mmaped. Generally, you want to r 2852 * has them mmaped. Generally, you want to remove COWed pages as well when 3819 * a file is being truncated, but not when in 2853 * a file is being truncated, but not when invalidating pages from the page 3820 * cache. 2854 * cache. 3821 */ 2855 */ 3822 void unmap_mapping_pages(struct address_space 2856 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3823 pgoff_t nr, bool even_cows) 2857 pgoff_t nr, bool even_cows) 3824 { 2858 { 3825 struct zap_details details = { }; 2859 struct zap_details details = { }; 3826 pgoff_t first_index = start; << 3827 pgoff_t last_index = start + nr - 1; << 3828 2860 3829 details.even_cows = even_cows; !! 2861 details.check_mapping = even_cows ? NULL : mapping; 3830 if (last_index < first_index) !! 2862 details.first_index = start; 3831 last_index = ULONG_MAX; !! 2863 details.last_index = start + nr - 1; >> 2864 if (details.last_index < details.first_index) >> 2865 details.last_index = ULONG_MAX; 3832 2866 3833 i_mmap_lock_read(mapping); !! 2867 i_mmap_lock_write(mapping); 3834 if (unlikely(!RB_EMPTY_ROOT(&mapping- 2868 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3835 unmap_mapping_range_tree(&map !! 2869 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3836 last !! 2870 i_mmap_unlock_write(mapping); 3837 i_mmap_unlock_read(mapping); << 3838 } 2871 } 3839 EXPORT_SYMBOL_GPL(unmap_mapping_pages); << 3840 2872 3841 /** 2873 /** 3842 * unmap_mapping_range - unmap the portion of 2874 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3843 * address_space corresponding to the specifi 2875 * address_space corresponding to the specified byte range in the underlying 3844 * file. 2876 * file. 3845 * 2877 * 3846 * @mapping: the address space containing mma 2878 * @mapping: the address space containing mmaps to be unmapped. 3847 * @holebegin: byte in first page to unmap, r 2879 * @holebegin: byte in first page to unmap, relative to the start of 3848 * the underlying file. This will be rounded 2880 * the underlying file. This will be rounded down to a PAGE_SIZE 3849 * boundary. Note that this is different fro 2881 * boundary. Note that this is different from truncate_pagecache(), which 3850 * must keep the partial page. In contrast, 2882 * must keep the partial page. In contrast, we must get rid of 3851 * partial pages. 2883 * partial pages. 3852 * @holelen: size of prospective hole in byte 2884 * @holelen: size of prospective hole in bytes. This will be rounded 3853 * up to a PAGE_SIZE boundary. A holelen of 2885 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3854 * end of the file. 2886 * end of the file. 3855 * @even_cows: 1 when truncating a file, unma 2887 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3856 * but 0 when invalidating pagecache, don't t 2888 * but 0 when invalidating pagecache, don't throw away private data. 3857 */ 2889 */ 3858 void unmap_mapping_range(struct address_space 2890 void unmap_mapping_range(struct address_space *mapping, 3859 loff_t const holebegin, loff_ 2891 loff_t const holebegin, loff_t const holelen, int even_cows) 3860 { 2892 { 3861 pgoff_t hba = (pgoff_t)(holebegin) >> !! 2893 pgoff_t hba = holebegin >> PAGE_SHIFT; 3862 pgoff_t hlen = ((pgoff_t)(holelen) + !! 2894 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3863 2895 3864 /* Check for overflow. */ 2896 /* Check for overflow. */ 3865 if (sizeof(holelen) > sizeof(hlen)) { 2897 if (sizeof(holelen) > sizeof(hlen)) { 3866 long long holeend = 2898 long long holeend = 3867 (holebegin + holelen 2899 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3868 if (holeend & ~(long long)ULO 2900 if (holeend & ~(long long)ULONG_MAX) 3869 hlen = ULONG_MAX - hb 2901 hlen = ULONG_MAX - hba + 1; 3870 } 2902 } 3871 2903 3872 unmap_mapping_pages(mapping, hba, hle 2904 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3873 } 2905 } 3874 EXPORT_SYMBOL(unmap_mapping_range); 2906 EXPORT_SYMBOL(unmap_mapping_range); 3875 2907 3876 /* 2908 /* 3877 * Restore a potential device exclusive pte t !! 2909 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3878 */ << 3879 static vm_fault_t remove_device_exclusive_ent << 3880 { << 3881 struct folio *folio = page_folio(vmf- << 3882 struct vm_area_struct *vma = vmf->vma << 3883 struct mmu_notifier_range range; << 3884 vm_fault_t ret; << 3885 << 3886 /* << 3887 * We need a reference to lock the fo << 3888 * the PTL so a racing thread can rem << 3889 * entry and unmap it. If the folio i << 3890 * have been removed already. If it h << 3891 * been re-allocated after being free << 3892 * unlock it. << 3893 */ << 3894 if (!folio_try_get(folio)) << 3895 return 0; << 3896 << 3897 ret = folio_lock_or_retry(folio, vmf) << 3898 if (ret) { << 3899 folio_put(folio); << 3900 return ret; << 3901 } << 3902 mmu_notifier_range_init_owner(&range, << 3903 vma->vm_mm, v << 3904 (vmf->address << 3905 mmu_notifier_invalidate_range_start(& << 3906 << 3907 vmf->pte = pte_offset_map_lock(vma->v << 3908 &vmf->ptl); << 3909 if (likely(vmf->pte && pte_same(ptep_ << 3910 restore_exclusive_pte(vma, vm << 3911 << 3912 if (vmf->pte) << 3913 pte_unmap_unlock(vmf->pte, vm << 3914 folio_unlock(folio); << 3915 folio_put(folio); << 3916 << 3917 mmu_notifier_invalidate_range_end(&ra << 3918 return 0; << 3919 } << 3920 << 3921 static inline bool should_try_to_free_swap(st << 3922 st << 3923 un << 3924 { << 3925 if (!folio_test_swapcache(folio)) << 3926 return false; << 3927 if (mem_cgroup_swap_full(folio) || (v << 3928 folio_test_mlocked(folio)) << 3929 return true; << 3930 /* << 3931 * If we want to map a page that's in << 3932 * have to detect via the refcount if << 3933 * user. Try freeing the swapcache to << 3934 * reference only in case it's likely << 3935 */ << 3936 return (fault_flags & FAULT_FLAG_WRIT << 3937 folio_ref_count(folio) == (1 << 3938 } << 3939 << 3940 static vm_fault_t pte_marker_clear(struct vm_ << 3941 { << 3942 vmf->pte = pte_offset_map_lock(vmf->v << 3943 vmf->a << 3944 if (!vmf->pte) << 3945 return 0; << 3946 /* << 3947 * Be careful so that we will only re << 3948 * none pte. Otherwise it means the << 3949 * << 3950 * This should also cover the case wh << 3951 * quickly from a PTE_MARKER_UFFD_WP << 3952 * So is_pte_marker() check is not en << 3953 */ << 3954 if (pte_same(vmf->orig_pte, ptep_get( << 3955 pte_clear(vmf->vma->vm_mm, vm << 3956 pte_unmap_unlock(vmf->pte, vmf->ptl); << 3957 return 0; << 3958 } << 3959 << 3960 static vm_fault_t do_pte_missing(struct vm_fa << 3961 { << 3962 if (vma_is_anonymous(vmf->vma)) << 3963 return do_anonymous_page(vmf) << 3964 else << 3965 return do_fault(vmf); << 3966 } << 3967 << 3968 /* << 3969 * This is actually a page-missing access, bu << 3970 * installed. It means this pte was wr-prote << 3971 */ << 3972 static vm_fault_t pte_marker_handle_uffd_wp(s << 3973 { << 3974 /* << 3975 * Just in case there're leftover spe << 3976 * got unregistered - we can simply c << 3977 */ << 3978 if (unlikely(!userfaultfd_wp(vmf->vma << 3979 return pte_marker_clear(vmf); << 3980 << 3981 return do_pte_missing(vmf); << 3982 } << 3983 << 3984 static vm_fault_t handle_pte_marker(struct vm << 3985 { << 3986 swp_entry_t entry = pte_to_swp_entry( << 3987 unsigned long marker = pte_marker_get << 3988 << 3989 /* << 3990 * PTE markers should never be empty. << 3991 * the best thing to do is to kill th << 3992 */ << 3993 if (WARN_ON_ONCE(!marker)) << 3994 return VM_FAULT_SIGBUS; << 3995 << 3996 /* Higher priority than uffd-wp when << 3997 if (marker & PTE_MARKER_POISONED) << 3998 return VM_FAULT_HWPOISON; << 3999 << 4000 if (pte_marker_entry_uffd_wp(entry)) << 4001 return pte_marker_handle_uffd << 4002 << 4003 /* This is an unknown pte marker */ << 4004 return VM_FAULT_SIGBUS; << 4005 } << 4006 << 4007 static struct folio *__alloc_swap_folio(struc << 4008 { << 4009 struct vm_area_struct *vma = vmf->vma << 4010 struct folio *folio; << 4011 swp_entry_t entry; << 4012 << 4013 folio = vma_alloc_folio(GFP_HIGHUSER_ << 4014 vmf->address, << 4015 if (!folio) << 4016 return NULL; << 4017 << 4018 entry = pte_to_swp_entry(vmf->orig_pt << 4019 if (mem_cgroup_swapin_charge_folio(fo << 4020 GF << 4021 folio_put(folio); << 4022 return NULL; << 4023 } << 4024 << 4025 return folio; << 4026 } << 4027 << 4028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 4029 static inline int non_swapcache_batch(swp_ent << 4030 { << 4031 struct swap_info_struct *si = swp_swa << 4032 pgoff_t offset = swp_offset(entry); << 4033 int i; << 4034 << 4035 /* << 4036 * While allocating a large folio and << 4037 * the case the being faulted pte doe << 4038 * ensure all PTEs have no cache as w << 4039 * swap devices while the content is << 4040 */ << 4041 for (i = 0; i < max_nr; i++) { << 4042 if ((si->swap_map[offset + i] << 4043 return i; << 4044 } << 4045 << 4046 return i; << 4047 } << 4048 << 4049 /* << 4050 * Check if the PTEs within a range are conti << 4051 * and have consistent swapcache, zeromap. << 4052 */ << 4053 static bool can_swapin_thp(struct vm_fault *v << 4054 { << 4055 unsigned long addr; << 4056 swp_entry_t entry; << 4057 int idx; << 4058 pte_t pte; << 4059 << 4060 addr = ALIGN_DOWN(vmf->address, nr_pa << 4061 idx = (vmf->address - addr) / PAGE_SI << 4062 pte = ptep_get(ptep); << 4063 << 4064 if (!pte_same(pte, pte_move_swp_offse << 4065 return false; << 4066 entry = pte_to_swp_entry(pte); << 4067 if (swap_pte_batch(ptep, nr_pages, pt << 4068 return false; << 4069 << 4070 /* << 4071 * swap_read_folio() can't handle the << 4072 * from different backends. And they << 4073 * things might be added once zswap s << 4074 */ << 4075 if (unlikely(swap_zeromap_batch(entry << 4076 return false; << 4077 if (unlikely(non_swapcache_batch(entr << 4078 return false; << 4079 << 4080 return true; << 4081 } << 4082 << 4083 static inline unsigned long thp_swap_suitable << 4084 << 4085 << 4086 { << 4087 int order, nr; << 4088 << 4089 order = highest_order(orders); << 4090 << 4091 /* << 4092 * To swap in a THP with nr pages, we << 4093 * is aligned with that number, as it << 4094 * This helps filter out most invalid << 4095 */ << 4096 while (orders) { << 4097 nr = 1 << order; << 4098 if ((addr >> PAGE_SHIFT) % nr << 4099 break; << 4100 order = next_order(&orders, o << 4101 } << 4102 << 4103 return orders; << 4104 } << 4105 << 4106 static struct folio *alloc_swap_folio(struct << 4107 { << 4108 struct vm_area_struct *vma = vmf->vma << 4109 unsigned long orders; << 4110 struct folio *folio; << 4111 unsigned long addr; << 4112 swp_entry_t entry; << 4113 spinlock_t *ptl; << 4114 pte_t *pte; << 4115 gfp_t gfp; << 4116 int order; << 4117 << 4118 /* << 4119 * If uffd is active for the vma we n << 4120 * maintain the uffd semantics. << 4121 */ << 4122 if (unlikely(userfaultfd_armed(vma))) << 4123 goto fallback; << 4124 << 4125 /* << 4126 * A large swapped out folio could be << 4127 * lack handling for such cases, so f << 4128 * folio. << 4129 */ << 4130 if (!zswap_never_enabled()) << 4131 goto fallback; << 4132 << 4133 entry = pte_to_swp_entry(vmf->orig_pt << 4134 /* << 4135 * Get a list of all the (large) orde << 4136 * and suitable for swapping THP. << 4137 */ << 4138 orders = thp_vma_allowable_orders(vma << 4139 TVA_IN_PF | TVA_ENFOR << 4140 orders = thp_vma_suitable_orders(vma, << 4141 orders = thp_swap_suitable_orders(swp << 4142 vmf << 4143 << 4144 if (!orders) << 4145 goto fallback; << 4146 << 4147 pte = pte_offset_map_lock(vmf->vma->v << 4148 vmf->addres << 4149 if (unlikely(!pte)) << 4150 goto fallback; << 4151 << 4152 /* << 4153 * For do_swap_page, find the highest << 4154 * completely swap entries with conti << 4155 */ << 4156 order = highest_order(orders); << 4157 while (orders) { << 4158 addr = ALIGN_DOWN(vmf->addres << 4159 if (can_swapin_thp(vmf, pte + << 4160 break; << 4161 order = next_order(&orders, o << 4162 } << 4163 << 4164 pte_unmap_unlock(pte, ptl); << 4165 << 4166 /* Try allocating the highest of the << 4167 gfp = vma_thp_gfp_mask(vma); << 4168 while (orders) { << 4169 addr = ALIGN_DOWN(vmf->addres << 4170 folio = vma_alloc_folio(gfp, << 4171 if (folio) { << 4172 if (!mem_cgroup_swapi << 4173 << 4174 return folio; << 4175 folio_put(folio); << 4176 } << 4177 order = next_order(&orders, o << 4178 } << 4179 << 4180 fallback: << 4181 return __alloc_swap_folio(vmf); << 4182 } << 4183 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ << 4184 static struct folio *alloc_swap_folio(struct << 4185 { << 4186 return __alloc_swap_folio(vmf); << 4187 } << 4188 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ << 4189 << 4190 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); << 4191 << 4192 /* << 4193 * We enter with non-exclusive mmap_lock (to << 4194 * but allow concurrent faults), and pte mapp 2910 * but allow concurrent faults), and pte mapped but not yet locked. 4195 * We return with pte unmapped and unlocked. 2911 * We return with pte unmapped and unlocked. 4196 * 2912 * 4197 * We return with the mmap_lock locked or unl !! 2913 * We return with the mmap_sem locked or unlocked in the same cases 4198 * as does filemap_fault(). 2914 * as does filemap_fault(). 4199 */ 2915 */ 4200 vm_fault_t do_swap_page(struct vm_fault *vmf) !! 2916 int do_swap_page(struct vm_fault *vmf) 4201 { 2917 { 4202 struct vm_area_struct *vma = vmf->vma 2918 struct vm_area_struct *vma = vmf->vma; 4203 struct folio *swapcache, *folio = NUL !! 2919 struct page *page = NULL, *swapcache; 4204 DECLARE_WAITQUEUE(wait, current); !! 2920 struct mem_cgroup *memcg; 4205 struct page *page; << 4206 struct swap_info_struct *si = NULL; << 4207 rmap_t rmap_flags = RMAP_NONE; << 4208 bool need_clear_cache = false; << 4209 bool exclusive = false; << 4210 swp_entry_t entry; 2921 swp_entry_t entry; 4211 pte_t pte; 2922 pte_t pte; 4212 vm_fault_t ret = 0; !! 2923 int locked; 4213 void *shadow = NULL; !! 2924 int exclusive = 0; 4214 int nr_pages; !! 2925 int ret = 0; 4215 unsigned long page_idx; << 4216 unsigned long address; << 4217 pte_t *ptep; << 4218 2926 4219 if (!pte_unmap_same(vmf)) !! 2927 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 4220 goto out; 2928 goto out; 4221 2929 4222 entry = pte_to_swp_entry(vmf->orig_pt 2930 entry = pte_to_swp_entry(vmf->orig_pte); 4223 if (unlikely(non_swap_entry(entry))) 2931 if (unlikely(non_swap_entry(entry))) { 4224 if (is_migration_entry(entry) 2932 if (is_migration_entry(entry)) { 4225 migration_entry_wait( 2933 migration_entry_wait(vma->vm_mm, vmf->pmd, 4226 2934 vmf->address); 4227 } else if (is_device_exclusiv << 4228 vmf->page = pfn_swap_ << 4229 ret = remove_device_e << 4230 } else if (is_device_private_ 2935 } else if (is_device_private_entry(entry)) { 4231 if (vmf->flags & FAUL << 4232 /* << 4233 * migrate_to << 4234 * under VMA << 4235 */ << 4236 vma_end_read( << 4237 ret = VM_FAUL << 4238 goto out; << 4239 } << 4240 << 4241 vmf->page = pfn_swap_ << 4242 vmf->pte = pte_offset << 4243 vmf-> << 4244 if (unlikely(!vmf->pt << 4245 !pte_sam << 4246 << 4247 goto unlock; << 4248 << 4249 /* 2936 /* 4250 * Get a page referen !! 2937 * For un-addressable device memory we call the pgmap 4251 * freed. !! 2938 * fault handler callback. The callback must migrate >> 2939 * the page back to some CPU accessible page. 4252 */ 2940 */ 4253 get_page(vmf->page); !! 2941 ret = device_private_entry_fault(vma, vmf->address, entry, 4254 pte_unmap_unlock(vmf- !! 2942 vmf->flags, vmf->pmd); 4255 ret = vmf->page->pgma << 4256 put_page(vmf->page); << 4257 } else if (is_hwpoison_entry( 2943 } else if (is_hwpoison_entry(entry)) { 4258 ret = VM_FAULT_HWPOIS 2944 ret = VM_FAULT_HWPOISON; 4259 } else if (is_pte_marker_entr << 4260 ret = handle_pte_mark << 4261 } else { 2945 } else { 4262 print_bad_pte(vma, vm 2946 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4263 ret = VM_FAULT_SIGBUS 2947 ret = VM_FAULT_SIGBUS; 4264 } 2948 } 4265 goto out; 2949 goto out; 4266 } 2950 } 4267 2951 4268 /* Prevent swapoff from happening to << 4269 si = get_swap_device(entry); << 4270 if (unlikely(!si)) << 4271 goto out; << 4272 << 4273 folio = swap_cache_get_folio(entry, v << 4274 if (folio) << 4275 page = folio_file_page(folio, << 4276 swapcache = folio; << 4277 << 4278 if (!folio) { << 4279 if (data_race(si->flags & SWP << 4280 __swap_count(entry) == 1) << 4281 /* skip swapcache */ << 4282 folio = alloc_swap_fo << 4283 if (folio) { << 4284 __folio_set_l << 4285 __folio_set_s << 4286 << 4287 nr_pages = fo << 4288 if (folio_tes << 4289 entry << 4290 /* << 4291 * Prevent pa << 4292 * the cache << 4293 * may finish << 4294 * swapout re << 4295 * undetectab << 4296 * to entry r << 4297 */ << 4298 if (swapcache << 4299 /* << 4300 * Re << 4301 * re << 4302 */ << 4303 add_w << 4304 sched << 4305 remov << 4306 goto << 4307 } << 4308 need_clear_ca << 4309 << 4310 mem_cgroup_sw << 4311 2952 4312 shadow = get_ !! 2953 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 4313 if (shadow) !! 2954 page = lookup_swap_cache(entry, vma, vmf->address); 4314 worki !! 2955 swapcache = page; 4315 2956 4316 folio_add_lru !! 2957 if (!page) { >> 2958 struct swap_info_struct *si = swp_swap_info(entry); 4317 2959 4318 /* To provide !! 2960 if (si->flags & SWP_SYNCHRONOUS_IO && 4319 folio->swap = !! 2961 __swap_count(si, entry) == 1) { 4320 swap_read_fol !! 2962 /* skip swapcache */ 4321 folio->privat !! 2963 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, >> 2964 vmf->address); >> 2965 if (page) { >> 2966 __SetPageLocked(page); >> 2967 __SetPageSwapBacked(page); >> 2968 set_page_private(page, entry.val); >> 2969 lru_cache_add_anon(page); >> 2970 swap_readpage(page, true); 4322 } 2971 } 4323 } else { 2972 } else { 4324 folio = swapin_readah !! 2973 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4325 2974 vmf); 4326 swapcache = folio; !! 2975 swapcache = page; 4327 } 2976 } 4328 2977 4329 if (!folio) { !! 2978 if (!page) { 4330 /* 2979 /* 4331 * Back out if somebo 2980 * Back out if somebody else faulted in this pte 4332 * while we released 2981 * while we released the pte lock. 4333 */ 2982 */ 4334 vmf->pte = pte_offset 2983 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4335 vmf-> 2984 vmf->address, &vmf->ptl); 4336 if (likely(vmf->pte & !! 2985 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 4337 pte_same(p << 4338 ret = VM_FAUL 2986 ret = VM_FAULT_OOM; >> 2987 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 4339 goto unlock; 2988 goto unlock; 4340 } 2989 } 4341 2990 4342 /* Had to read the page from 2991 /* Had to read the page from swap area: Major fault */ 4343 ret = VM_FAULT_MAJOR; 2992 ret = VM_FAULT_MAJOR; 4344 count_vm_event(PGMAJFAULT); 2993 count_vm_event(PGMAJFAULT); 4345 count_memcg_event_mm(vma->vm_ 2994 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4346 page = folio_file_page(folio, << 4347 } else if (PageHWPoison(page)) { 2995 } else if (PageHWPoison(page)) { 4348 /* 2996 /* 4349 * hwpoisoned dirty swapcache 2997 * hwpoisoned dirty swapcache pages are kept for killing 4350 * owner processes (which may 2998 * owner processes (which may be unknown at hwpoison time) 4351 */ 2999 */ 4352 ret = VM_FAULT_HWPOISON; 3000 ret = VM_FAULT_HWPOISON; >> 3001 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 4353 goto out_release; 3002 goto out_release; 4354 } 3003 } 4355 3004 4356 ret |= folio_lock_or_retry(folio, vmf !! 3005 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 4357 if (ret & VM_FAULT_RETRY) << 4358 goto out_release; << 4359 3006 4360 if (swapcache) { !! 3007 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 4361 /* !! 3008 if (!locked) { 4362 * Make sure folio_free_swap( !! 3009 ret |= VM_FAULT_RETRY; 4363 * swapcache from under us. !! 3010 goto out_release; 4364 * below, are not enough to e !! 3011 } 4365 * swapcache, we need to chec << 4366 * changed. << 4367 */ << 4368 if (unlikely(!folio_test_swap << 4369 page_swap_entry( << 4370 goto out_page; << 4371 3012 4372 /* !! 3013 /* 4373 * KSM sometimes has to copy !! 3014 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 4374 * page->index of !PageKSM() !! 3015 * release the swapcache from under us. The page pin, and pte_same 4375 * anon VMA -- PageKSM() is l !! 3016 * test below, are not enough to exclude that. Even if it is still 4376 */ !! 3017 * swapcache, we need to check that the page's swap has not changed. 4377 folio = ksm_might_need_to_cop !! 3018 */ 4378 if (unlikely(!folio)) { !! 3019 if (unlikely((!PageSwapCache(page) || 4379 ret = VM_FAULT_OOM; !! 3020 page_private(page) != entry.val)) && swapcache) 4380 folio = swapcache; !! 3021 goto out_page; 4381 goto out_page; << 4382 } else if (unlikely(folio == << 4383 ret = VM_FAULT_HWPOIS << 4384 folio = swapcache; << 4385 goto out_page; << 4386 } << 4387 if (folio != swapcache) << 4388 page = folio_page(fol << 4389 3022 4390 /* !! 3023 page = ksm_might_need_to_copy(page, vma, vmf->address); 4391 * If we want to map a page t !! 3024 if (unlikely(!page)) { 4392 * have to detect via the ref !! 3025 ret = VM_FAULT_OOM; 4393 * owner. Try removing the ex !! 3026 page = swapcache; 4394 * caches if required. !! 3027 goto out_page; 4395 */ << 4396 if ((vmf->flags & FAULT_FLAG_ << 4397 !folio_test_ksm(folio) && << 4398 lru_add_drain(); << 4399 } 3028 } 4400 3029 4401 folio_throttle_swaprate(folio, GFP_KE !! 3030 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, >> 3031 &memcg, false)) { >> 3032 ret = VM_FAULT_OOM; >> 3033 goto out_page; >> 3034 } 4402 3035 4403 /* 3036 /* 4404 * Back out if somebody else already 3037 * Back out if somebody else already faulted in this pte. 4405 */ 3038 */ 4406 vmf->pte = pte_offset_map_lock(vma->v 3039 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4407 &vmf->ptl); 3040 &vmf->ptl); 4408 if (unlikely(!vmf->pte || !pte_same(p !! 3041 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 4409 goto out_nomap; 3042 goto out_nomap; 4410 3043 4411 if (unlikely(!folio_test_uptodate(fol !! 3044 if (unlikely(!PageUptodate(page))) { 4412 ret = VM_FAULT_SIGBUS; 3045 ret = VM_FAULT_SIGBUS; 4413 goto out_nomap; 3046 goto out_nomap; 4414 } 3047 } 4415 3048 4416 /* allocated large folios for SWP_SYN << 4417 if (folio_test_large(folio) && !folio << 4418 unsigned long nr = folio_nr_p << 4419 unsigned long folio_start = A << 4420 unsigned long idx = (vmf->add << 4421 pte_t *folio_ptep = vmf->pte << 4422 pte_t folio_pte = ptep_get(fo << 4423 << 4424 if (!pte_same(folio_pte, pte_ << 4425 swap_pte_batch(folio_ptep << 4426 goto out_nomap; << 4427 << 4428 page_idx = idx; << 4429 address = folio_start; << 4430 ptep = folio_ptep; << 4431 goto check_folio; << 4432 } << 4433 << 4434 nr_pages = 1; << 4435 page_idx = 0; << 4436 address = vmf->address; << 4437 ptep = vmf->pte; << 4438 if (folio_test_large(folio) && folio_ << 4439 int nr = folio_nr_pages(folio << 4440 unsigned long idx = folio_pag << 4441 unsigned long folio_start = a << 4442 unsigned long folio_end = fol << 4443 pte_t *folio_ptep; << 4444 pte_t folio_pte; << 4445 << 4446 if (unlikely(folio_start < ma << 4447 goto check_folio; << 4448 if (unlikely(folio_end > pmd_ << 4449 goto check_folio; << 4450 << 4451 folio_ptep = vmf->pte - idx; << 4452 folio_pte = ptep_get(folio_pt << 4453 if (!pte_same(folio_pte, pte_ << 4454 swap_pte_batch(folio_ptep << 4455 goto check_folio; << 4456 << 4457 page_idx = idx; << 4458 address = folio_start; << 4459 ptep = folio_ptep; << 4460 nr_pages = nr; << 4461 entry = folio->swap; << 4462 page = &folio->page; << 4463 } << 4464 << 4465 check_folio: << 4466 /* << 4467 * PG_anon_exclusive reuses PG_mapped << 4468 * must never point at an anonymous p << 4469 * PG_anon_exclusive. Sanity check th << 4470 * no filesystem set PG_mappedtodisk << 4471 * check after taking the PT lock and << 4472 * concurrently faulted in this page << 4473 */ << 4474 BUG_ON(!folio_test_anon(folio) && fol << 4475 BUG_ON(folio_test_anon(folio) && Page << 4476 << 4477 /* << 4478 * Check under PT lock (to protect ag << 4479 * the swap entry concurrently) for c << 4480 */ << 4481 if (!folio_test_ksm(folio)) { << 4482 exclusive = pte_swp_exclusive << 4483 if (folio != swapcache) { << 4484 /* << 4485 * We have a fresh pa << 4486 * swapcache -> certa << 4487 */ << 4488 exclusive = true; << 4489 } else if (exclusive && folio << 4490 data_race(si->flags << 4491 /* << 4492 * This is tricky: no << 4493 * concurrent page mo << 4494 * << 4495 * So if we stumble o << 4496 * we must not set th << 4497 * map it writable wi << 4498 * while still under << 4499 * << 4500 * For these problema << 4501 * exclusive marker: << 4502 * writeback only if << 4503 * there are no unexp << 4504 * unmapping succeede << 4505 * further GUP refere << 4506 * appear, so droppin << 4507 * it only R/O is fin << 4508 */ << 4509 exclusive = false; << 4510 } << 4511 } << 4512 << 4513 /* << 4514 * Some architectures may have to res << 4515 * when reading from swap. This metad << 4516 * so this must be called before swap << 4517 */ << 4518 arch_swap_restore(folio_swap(entry, f << 4519 << 4520 /* 3049 /* 4521 * Remove the swap entry and conditio !! 3050 * The page isn't present yet, go ahead with the fault. 4522 * We're already holding a reference !! 3051 * 4523 * yet. !! 3052 * Be careful about the sequence of operations here. >> 3053 * To get its accounting right, reuse_swap_page() must be called >> 3054 * while the page is counted on swap but not yet in mapcount i.e. >> 3055 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() >> 3056 * must be called after the swap_free(), or it will never succeed. 4524 */ 3057 */ 4525 swap_free_nr(entry, nr_pages); << 4526 if (should_try_to_free_swap(folio, vm << 4527 folio_free_swap(folio); << 4528 3058 4529 add_mm_counter(vma->vm_mm, MM_ANONPAG !! 3059 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4530 add_mm_counter(vma->vm_mm, MM_SWAPENT !! 3060 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 4531 pte = mk_pte(page, vma->vm_page_prot) 3061 pte = mk_pte(page, vma->vm_page_prot); >> 3062 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { >> 3063 pte = maybe_mkwrite(pte_mkdirty(pte), vma); >> 3064 vmf->flags &= ~FAULT_FLAG_WRITE; >> 3065 ret |= VM_FAULT_WRITE; >> 3066 exclusive = RMAP_EXCLUSIVE; >> 3067 } >> 3068 flush_icache_page(vma, page); 4532 if (pte_swp_soft_dirty(vmf->orig_pte) 3069 if (pte_swp_soft_dirty(vmf->orig_pte)) 4533 pte = pte_mksoft_dirty(pte); 3070 pte = pte_mksoft_dirty(pte); 4534 if (pte_swp_uffd_wp(vmf->orig_pte)) !! 3071 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4535 pte = pte_mkuffd_wp(pte); !! 3072 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4536 !! 3073 vmf->orig_pte = pte; 4537 /* << 4538 * Same logic as in do_wp_page(); how << 4539 * certainly not shared either becaus << 4540 * exposing them to the swapcache or << 4541 * exclusivity. << 4542 */ << 4543 if (!folio_test_ksm(folio) && << 4544 (exclusive || folio_ref_count(fol << 4545 if ((vma->vm_flags & VM_WRITE << 4546 !pte_needs_soft_dirty_wp( << 4547 pte = pte_mkwrite(pte << 4548 if (vmf->flags & FAUL << 4549 pte = pte_mkd << 4550 vmf->flags &= << 4551 } << 4552 } << 4553 rmap_flags |= RMAP_EXCLUSIVE; << 4554 } << 4555 folio_ref_add(folio, nr_pages - 1); << 4556 flush_icache_pages(vma, page, nr_page << 4557 vmf->orig_pte = pte_advance_pfn(pte, << 4558 3074 4559 /* ksm created a completely new copy 3075 /* ksm created a completely new copy */ 4560 if (unlikely(folio != swapcache && sw !! 3076 if (unlikely(page != swapcache && swapcache)) { 4561 folio_add_new_anon_rmap(folio !! 3077 page_add_new_anon_rmap(page, vma, vmf->address, false); 4562 folio_add_lru_vma(folio, vma) !! 3078 mem_cgroup_commit_charge(page, memcg, false, false); 4563 } else if (!folio_test_anon(folio)) { !! 3079 lru_cache_add_active_or_unevictable(page, vma); 4564 /* << 4565 * We currently only expect s << 4566 * fully exclusive or fully s << 4567 * folios which are fully exc << 4568 * folios within swapcache he << 4569 */ << 4570 VM_WARN_ON_ONCE(folio_test_la << 4571 VM_WARN_ON_FOLIO(!folio_test_ << 4572 folio_add_new_anon_rmap(folio << 4573 } else { 3080 } else { 4574 folio_add_anon_rmap_ptes(foli !! 3081 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 4575 rmap_ !! 3082 mem_cgroup_commit_charge(page, memcg, true, false); >> 3083 activate_page(page); 4576 } 3084 } 4577 3085 4578 VM_BUG_ON(!folio_test_anon(folio) || !! 3086 swap_free(entry); 4579 (pte_write(pte) && !P !! 3087 if (mem_cgroup_swap_full(page) || 4580 set_ptes(vma->vm_mm, address, ptep, p !! 3088 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 4581 arch_do_swap_page_nr(vma->vm_mm, vma, !! 3089 try_to_free_swap(page); 4582 pte, pte, nr_pages); !! 3090 unlock_page(page); 4583 !! 3091 if (page != swapcache && swapcache) { 4584 folio_unlock(folio); << 4585 if (folio != swapcache && swapcache) << 4586 /* 3092 /* 4587 * Hold the lock to avoid the 3093 * Hold the lock to avoid the swap entry to be reused 4588 * until we take the PT lock 3094 * until we take the PT lock for the pte_same() check 4589 * (to avoid false positives 3095 * (to avoid false positives from pte_same). For 4590 * further safety release the 3096 * further safety release the lock after the swap_free 4591 * so that the swap count won 3097 * so that the swap count won't change under a 4592 * parallel locked swapcache. 3098 * parallel locked swapcache. 4593 */ 3099 */ 4594 folio_unlock(swapcache); !! 3100 unlock_page(swapcache); 4595 folio_put(swapcache); !! 3101 put_page(swapcache); 4596 } 3102 } 4597 3103 4598 if (vmf->flags & FAULT_FLAG_WRITE) { 3104 if (vmf->flags & FAULT_FLAG_WRITE) { 4599 ret |= do_wp_page(vmf); 3105 ret |= do_wp_page(vmf); 4600 if (ret & VM_FAULT_ERROR) 3106 if (ret & VM_FAULT_ERROR) 4601 ret &= VM_FAULT_ERROR 3107 ret &= VM_FAULT_ERROR; 4602 goto out; 3108 goto out; 4603 } 3109 } 4604 3110 4605 /* No need to invalidate - it was non 3111 /* No need to invalidate - it was non-present before */ 4606 update_mmu_cache_range(vmf, vma, addr !! 3112 update_mmu_cache(vma, vmf->address, vmf->pte); 4607 unlock: 3113 unlock: 4608 if (vmf->pte) !! 3114 pte_unmap_unlock(vmf->pte, vmf->ptl); 4609 pte_unmap_unlock(vmf->pte, vm << 4610 out: 3115 out: 4611 /* Clear the swap cache pin for direc << 4612 if (need_clear_cache) { << 4613 swapcache_clear(si, entry, nr << 4614 if (waitqueue_active(&swapcac << 4615 wake_up(&swapcache_wq << 4616 } << 4617 if (si) << 4618 put_swap_device(si); << 4619 return ret; 3116 return ret; 4620 out_nomap: 3117 out_nomap: 4621 if (vmf->pte) !! 3118 mem_cgroup_cancel_charge(page, memcg, false); 4622 pte_unmap_unlock(vmf->pte, vm !! 3119 pte_unmap_unlock(vmf->pte, vmf->ptl); 4623 out_page: 3120 out_page: 4624 folio_unlock(folio); !! 3121 unlock_page(page); 4625 out_release: 3122 out_release: 4626 folio_put(folio); !! 3123 put_page(page); 4627 if (folio != swapcache && swapcache) !! 3124 if (page != swapcache && swapcache) { 4628 folio_unlock(swapcache); !! 3125 unlock_page(swapcache); 4629 folio_put(swapcache); !! 3126 put_page(swapcache); 4630 } << 4631 if (need_clear_cache) { << 4632 swapcache_clear(si, entry, nr << 4633 if (waitqueue_active(&swapcac << 4634 wake_up(&swapcache_wq << 4635 } 3127 } 4636 if (si) << 4637 put_swap_device(si); << 4638 return ret; 3128 return ret; 4639 } 3129 } 4640 3130 4641 static bool pte_range_none(pte_t *pte, int nr << 4642 { << 4643 int i; << 4644 << 4645 for (i = 0; i < nr_pages; i++) { << 4646 if (!pte_none(ptep_get_lockle << 4647 return false; << 4648 } << 4649 << 4650 return true; << 4651 } << 4652 << 4653 static struct folio *alloc_anon_folio(struct << 4654 { << 4655 struct vm_area_struct *vma = vmf->vma << 4656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 4657 unsigned long orders; << 4658 struct folio *folio; << 4659 unsigned long addr; << 4660 pte_t *pte; << 4661 gfp_t gfp; << 4662 int order; << 4663 << 4664 /* << 4665 * If uffd is active for the vma we n << 4666 * maintain the uffd semantics. << 4667 */ << 4668 if (unlikely(userfaultfd_armed(vma))) << 4669 goto fallback; << 4670 << 4671 /* << 4672 * Get a list of all the (large) orde << 4673 * for this vma. Then filter out the << 4674 * the faulting address and still be << 4675 */ << 4676 orders = thp_vma_allowable_orders(vma << 4677 TVA_IN_PF | TVA_ENFOR << 4678 orders = thp_vma_suitable_orders(vma, << 4679 << 4680 if (!orders) << 4681 goto fallback; << 4682 << 4683 pte = pte_offset_map(vmf->pmd, vmf->a << 4684 if (!pte) << 4685 return ERR_PTR(-EAGAIN); << 4686 << 4687 /* << 4688 * Find the highest order where the a << 4689 * pte_none(). Note that all remainin << 4690 * pte_none(). << 4691 */ << 4692 order = highest_order(orders); << 4693 while (orders) { << 4694 addr = ALIGN_DOWN(vmf->addres << 4695 if (pte_range_none(pte + pte_ << 4696 break; << 4697 order = next_order(&orders, o << 4698 } << 4699 << 4700 pte_unmap(pte); << 4701 << 4702 if (!orders) << 4703 goto fallback; << 4704 << 4705 /* Try allocating the highest of the << 4706 gfp = vma_thp_gfp_mask(vma); << 4707 while (orders) { << 4708 addr = ALIGN_DOWN(vmf->addres << 4709 folio = vma_alloc_folio(gfp, << 4710 if (folio) { << 4711 if (mem_cgroup_charge << 4712 count_mthp_st << 4713 folio_put(fol << 4714 goto next; << 4715 } << 4716 folio_throttle_swapra << 4717 folio_zero_user(folio << 4718 return folio; << 4719 } << 4720 next: << 4721 count_mthp_stat(order, MTHP_S << 4722 order = next_order(&orders, o << 4723 } << 4724 << 4725 fallback: << 4726 #endif << 4727 return folio_prealloc(vma->vm_mm, vma << 4728 } << 4729 << 4730 /* 3131 /* 4731 * We enter with non-exclusive mmap_lock (to !! 3132 * We enter with non-exclusive mmap_sem (to exclude vma changes, 4732 * but allow concurrent faults), and pte mapp 3133 * but allow concurrent faults), and pte mapped but not yet locked. 4733 * We return with mmap_lock still held, but p !! 3134 * We return with mmap_sem still held, but pte unmapped and unlocked. 4734 */ 3135 */ 4735 static vm_fault_t do_anonymous_page(struct vm !! 3136 static int do_anonymous_page(struct vm_fault *vmf) 4736 { 3137 { 4737 struct vm_area_struct *vma = vmf->vma 3138 struct vm_area_struct *vma = vmf->vma; 4738 unsigned long addr = vmf->address; !! 3139 struct mem_cgroup *memcg; 4739 struct folio *folio; !! 3140 struct page *page; 4740 vm_fault_t ret = 0; !! 3141 int ret = 0; 4741 int nr_pages = 1; << 4742 pte_t entry; 3142 pte_t entry; 4743 3143 4744 /* File mapping without ->vm_ops ? */ 3144 /* File mapping without ->vm_ops ? */ 4745 if (vma->vm_flags & VM_SHARED) 3145 if (vma->vm_flags & VM_SHARED) 4746 return VM_FAULT_SIGBUS; 3146 return VM_FAULT_SIGBUS; 4747 3147 4748 /* 3148 /* 4749 * Use pte_alloc() instead of pte_all !! 3149 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4750 * be distinguished from a transient !! 3150 * pte_offset_map() on pmds where a huge pmd might be created >> 3151 * from a different thread. >> 3152 * >> 3153 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when >> 3154 * parallel threads are excluded by other means. >> 3155 * >> 3156 * Here we only have down_read(mmap_sem). 4751 */ 3157 */ 4752 if (pte_alloc(vma->vm_mm, vmf->pmd)) !! 3158 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 4753 return VM_FAULT_OOM; 3159 return VM_FAULT_OOM; 4754 3160 >> 3161 /* See the comment in pte_alloc_one_map() */ >> 3162 if (unlikely(pmd_trans_unstable(vmf->pmd))) >> 3163 return 0; >> 3164 4755 /* Use the zero-page for reads */ 3165 /* Use the zero-page for reads */ 4756 if (!(vmf->flags & FAULT_FLAG_WRITE) 3166 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4757 !mm_forbids_zeropage( 3167 !mm_forbids_zeropage(vma->vm_mm)) { 4758 entry = pte_mkspecial(pfn_pte 3168 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4759 3169 vma->vm_page_prot)); 4760 vmf->pte = pte_offset_map_loc 3170 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4761 vmf->address, 3171 vmf->address, &vmf->ptl); 4762 if (!vmf->pte) !! 3172 if (!pte_none(*vmf->pte)) 4763 goto unlock; << 4764 if (vmf_pte_changed(vmf)) { << 4765 update_mmu_tlb(vma, v << 4766 goto unlock; 3173 goto unlock; 4767 } << 4768 ret = check_stable_address_sp 3174 ret = check_stable_address_space(vma->vm_mm); 4769 if (ret) 3175 if (ret) 4770 goto unlock; 3176 goto unlock; 4771 /* Deliver the page fault to 3177 /* Deliver the page fault to userland, check inside PT lock */ 4772 if (userfaultfd_missing(vma)) 3178 if (userfaultfd_missing(vma)) { 4773 pte_unmap_unlock(vmf- 3179 pte_unmap_unlock(vmf->pte, vmf->ptl); 4774 return handle_userfau 3180 return handle_userfault(vmf, VM_UFFD_MISSING); 4775 } 3181 } 4776 goto setpte; 3182 goto setpte; 4777 } 3183 } 4778 3184 4779 /* Allocate our own private page. */ 3185 /* Allocate our own private page. */ 4780 ret = vmf_anon_prepare(vmf); !! 3186 if (unlikely(anon_vma_prepare(vma))) 4781 if (ret) !! 3187 goto oom; 4782 return ret; !! 3188 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 4783 /* Returns NULL on OOM or ERR_PTR(-EA !! 3189 if (!page) 4784 folio = alloc_anon_folio(vmf); << 4785 if (IS_ERR(folio)) << 4786 return 0; << 4787 if (!folio) << 4788 goto oom; 3190 goto oom; 4789 3191 4790 nr_pages = folio_nr_pages(folio); !! 3192 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 4791 addr = ALIGN_DOWN(vmf->address, nr_pa !! 3193 goto oom_free_page; 4792 3194 4793 /* 3195 /* 4794 * The memory barrier inside __folio_ !! 3196 * The memory barrier inside __SetPageUptodate makes sure that 4795 * preceding stores to the page conte !! 3197 * preceeding stores to the page contents become visible before 4796 * the set_pte_at() write. 3198 * the set_pte_at() write. 4797 */ 3199 */ 4798 __folio_mark_uptodate(folio); !! 3200 __SetPageUptodate(page); 4799 3201 4800 entry = mk_pte(&folio->page, vma->vm_ !! 3202 entry = mk_pte(page, vma->vm_page_prot); 4801 entry = pte_sw_mkyoung(entry); << 4802 if (vma->vm_flags & VM_WRITE) 3203 if (vma->vm_flags & VM_WRITE) 4803 entry = pte_mkwrite(pte_mkdir !! 3204 entry = pte_mkwrite(pte_mkdirty(entry)); 4804 3205 4805 vmf->pte = pte_offset_map_lock(vma->v !! 3206 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4806 if (!vmf->pte) !! 3207 &vmf->ptl); 4807 goto release; !! 3208 if (!pte_none(*vmf->pte)) 4808 if (nr_pages == 1 && vmf_pte_changed( << 4809 update_mmu_tlb(vma, addr, vmf << 4810 goto release; << 4811 } else if (nr_pages > 1 && !pte_range << 4812 update_mmu_tlb_range(vma, add << 4813 goto release; 3209 goto release; 4814 } << 4815 3210 4816 ret = check_stable_address_space(vma- 3211 ret = check_stable_address_space(vma->vm_mm); 4817 if (ret) 3212 if (ret) 4818 goto release; 3213 goto release; 4819 3214 4820 /* Deliver the page fault to userland 3215 /* Deliver the page fault to userland, check inside PT lock */ 4821 if (userfaultfd_missing(vma)) { 3216 if (userfaultfd_missing(vma)) { 4822 pte_unmap_unlock(vmf->pte, vm 3217 pte_unmap_unlock(vmf->pte, vmf->ptl); 4823 folio_put(folio); !! 3218 mem_cgroup_cancel_charge(page, memcg, false); >> 3219 put_page(page); 4824 return handle_userfault(vmf, 3220 return handle_userfault(vmf, VM_UFFD_MISSING); 4825 } 3221 } 4826 3222 4827 folio_ref_add(folio, nr_pages - 1); !! 3223 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4828 add_mm_counter(vma->vm_mm, MM_ANONPAG !! 3224 page_add_new_anon_rmap(page, vma, vmf->address, false); 4829 count_mthp_stat(folio_order(folio), M !! 3225 mem_cgroup_commit_charge(page, memcg, false, false); 4830 folio_add_new_anon_rmap(folio, vma, a !! 3226 lru_cache_add_active_or_unevictable(page, vma); 4831 folio_add_lru_vma(folio, vma); << 4832 setpte: 3227 setpte: 4833 if (vmf_orig_pte_uffd_wp(vmf)) !! 3228 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4834 entry = pte_mkuffd_wp(entry); << 4835 set_ptes(vma->vm_mm, addr, vmf->pte, << 4836 3229 4837 /* No need to invalidate - it was non 3230 /* No need to invalidate - it was non-present before */ 4838 update_mmu_cache_range(vmf, vma, addr !! 3231 update_mmu_cache(vma, vmf->address, vmf->pte); 4839 unlock: 3232 unlock: 4840 if (vmf->pte) !! 3233 pte_unmap_unlock(vmf->pte, vmf->ptl); 4841 pte_unmap_unlock(vmf->pte, vm << 4842 return ret; 3234 return ret; 4843 release: 3235 release: 4844 folio_put(folio); !! 3236 mem_cgroup_cancel_charge(page, memcg, false); >> 3237 put_page(page); 4845 goto unlock; 3238 goto unlock; >> 3239 oom_free_page: >> 3240 put_page(page); 4846 oom: 3241 oom: 4847 return VM_FAULT_OOM; 3242 return VM_FAULT_OOM; 4848 } 3243 } 4849 3244 4850 /* 3245 /* 4851 * The mmap_lock must have been held on entry !! 3246 * The mmap_sem must have been held on entry, and may have been 4852 * released depending on flags and vma->vm_op 3247 * released depending on flags and vma->vm_ops->fault() return value. 4853 * See filemap_fault() and __lock_page_retry( 3248 * See filemap_fault() and __lock_page_retry(). 4854 */ 3249 */ 4855 static vm_fault_t __do_fault(struct vm_fault !! 3250 static int __do_fault(struct vm_fault *vmf) 4856 { 3251 { 4857 struct vm_area_struct *vma = vmf->vma 3252 struct vm_area_struct *vma = vmf->vma; 4858 struct folio *folio; !! 3253 int ret; 4859 vm_fault_t ret; << 4860 << 4861 /* << 4862 * Preallocate pte before we take pag << 4863 * deadlocks for memcg reclaim which << 4864 * lock_ << 4865 * SetPa << 4866 * unloc << 4867 * lock_page(B) << 4868 * lock_ << 4869 * pte_alloc_one << 4870 * shrink_folio_list << 4871 * wait_on_page_writeback(A) << 4872 * SetPa << 4873 * unloc << 4874 * # flu << 4875 */ << 4876 if (pmd_none(*vmf->pmd) && !vmf->prea << 4877 vmf->prealloc_pte = pte_alloc << 4878 if (!vmf->prealloc_pte) << 4879 return VM_FAULT_OOM; << 4880 } << 4881 3254 4882 ret = vma->vm_ops->fault(vmf); 3255 ret = vma->vm_ops->fault(vmf); 4883 if (unlikely(ret & (VM_FAULT_ERROR | 3256 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4884 VM_FAULT_DONE_COW 3257 VM_FAULT_DONE_COW))) 4885 return ret; 3258 return ret; 4886 3259 4887 folio = page_folio(vmf->page); << 4888 if (unlikely(PageHWPoison(vmf->page)) 3260 if (unlikely(PageHWPoison(vmf->page))) { 4889 vm_fault_t poisonret = VM_FAU !! 3261 if (ret & VM_FAULT_LOCKED) 4890 if (ret & VM_FAULT_LOCKED) { !! 3262 unlock_page(vmf->page); 4891 if (page_mapped(vmf-> !! 3263 put_page(vmf->page); 4892 unmap_mapping << 4893 /* Retry if a clean f << 4894 if (mapping_evict_fol << 4895 poisonret = V << 4896 folio_unlock(folio); << 4897 } << 4898 folio_put(folio); << 4899 vmf->page = NULL; 3264 vmf->page = NULL; 4900 return poisonret; !! 3265 return VM_FAULT_HWPOISON; 4901 } 3266 } 4902 3267 4903 if (unlikely(!(ret & VM_FAULT_LOCKED) 3268 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4904 folio_lock(folio); !! 3269 lock_page(vmf->page); 4905 else 3270 else 4906 VM_BUG_ON_PAGE(!folio_test_lo !! 3271 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4907 3272 4908 return ret; 3273 return ret; 4909 } 3274 } 4910 3275 4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE !! 3276 /* >> 3277 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. >> 3278 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check >> 3279 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly >> 3280 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. >> 3281 */ >> 3282 static int pmd_devmap_trans_unstable(pmd_t *pmd) >> 3283 { >> 3284 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); >> 3285 } >> 3286 >> 3287 static int pte_alloc_one_map(struct vm_fault *vmf) >> 3288 { >> 3289 struct vm_area_struct *vma = vmf->vma; >> 3290 >> 3291 if (!pmd_none(*vmf->pmd)) >> 3292 goto map_pte; >> 3293 if (vmf->prealloc_pte) { >> 3294 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); >> 3295 if (unlikely(!pmd_none(*vmf->pmd))) { >> 3296 spin_unlock(vmf->ptl); >> 3297 goto map_pte; >> 3298 } >> 3299 >> 3300 mm_inc_nr_ptes(vma->vm_mm); >> 3301 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); >> 3302 spin_unlock(vmf->ptl); >> 3303 vmf->prealloc_pte = NULL; >> 3304 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { >> 3305 return VM_FAULT_OOM; >> 3306 } >> 3307 map_pte: >> 3308 /* >> 3309 * If a huge pmd materialized under us just retry later. Use >> 3310 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of >> 3311 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge >> 3312 * under us and then back to pmd_none, as a result of MADV_DONTNEED >> 3313 * running immediately after a huge pmd fault in a different thread of >> 3314 * this mm, in turn leading to a misleading pmd_trans_huge() retval. >> 3315 * All we have to ensure is that it is a regular pmd that we can walk >> 3316 * with pte_offset_map() and we can do that through an atomic read in >> 3317 * C, which is what pmd_trans_unstable() provides. >> 3318 */ >> 3319 if (pmd_devmap_trans_unstable(vmf->pmd)) >> 3320 return VM_FAULT_NOPAGE; >> 3321 >> 3322 /* >> 3323 * At this point we know that our vmf->pmd points to a page of ptes >> 3324 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() >> 3325 * for the duration of the fault. If a racing MADV_DONTNEED runs and >> 3326 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still >> 3327 * be valid and we will re-check to make sure the vmf->pte isn't >> 3328 * pte_none() under vmf->ptl protection when we return to >> 3329 * alloc_set_pte(). >> 3330 */ >> 3331 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, >> 3332 &vmf->ptl); >> 3333 return 0; >> 3334 } >> 3335 >> 3336 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE >> 3337 >> 3338 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) >> 3339 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, >> 3340 unsigned long haddr) >> 3341 { >> 3342 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != >> 3343 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) >> 3344 return false; >> 3345 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) >> 3346 return false; >> 3347 return true; >> 3348 } >> 3349 4912 static void deposit_prealloc_pte(struct vm_fa 3350 static void deposit_prealloc_pte(struct vm_fault *vmf) 4913 { 3351 { 4914 struct vm_area_struct *vma = vmf->vma 3352 struct vm_area_struct *vma = vmf->vma; 4915 3353 4916 pgtable_trans_huge_deposit(vma->vm_mm 3354 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4917 /* 3355 /* 4918 * We are going to consume the preall 3356 * We are going to consume the prealloc table, 4919 * count that as nr_ptes. 3357 * count that as nr_ptes. 4920 */ 3358 */ 4921 mm_inc_nr_ptes(vma->vm_mm); 3359 mm_inc_nr_ptes(vma->vm_mm); 4922 vmf->prealloc_pte = NULL; 3360 vmf->prealloc_pte = NULL; 4923 } 3361 } 4924 3362 4925 vm_fault_t do_set_pmd(struct vm_fault *vmf, s !! 3363 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 4926 { 3364 { 4927 struct folio *folio = page_folio(page << 4928 struct vm_area_struct *vma = vmf->vma 3365 struct vm_area_struct *vma = vmf->vma; 4929 bool write = vmf->flags & FAULT_FLAG_ 3366 bool write = vmf->flags & FAULT_FLAG_WRITE; 4930 unsigned long haddr = vmf->address & 3367 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4931 pmd_t entry; 3368 pmd_t entry; 4932 vm_fault_t ret = VM_FAULT_FALLBACK; !! 3369 int i, ret; 4933 3370 4934 /* !! 3371 if (!transhuge_vma_suitable(vma, haddr)) 4935 * It is too late to allocate a small !! 3372 return VM_FAULT_FALLBACK; 4936 * folio in the pagecache: especially << 4937 * PMD mappings, but PTE-mapped THP a << 4938 * PMD mappings if THPs are disabled. << 4939 */ << 4940 if (thp_disabled_by_hw() || vma_thp_d << 4941 return ret; << 4942 3373 4943 if (!thp_vma_suitable_order(vma, hadd !! 3374 ret = VM_FAULT_FALLBACK; 4944 return ret; !! 3375 page = compound_head(page); 4945 << 4946 if (folio_order(folio) != HPAGE_PMD_O << 4947 return ret; << 4948 page = &folio->page; << 4949 3376 4950 /* 3377 /* 4951 * Just backoff if any subpage of a T !! 3378 * Archs like ppc64 need additonal space to store information 4952 * the corrupted page may mapped by P << 4953 * check. This kind of THP just can << 4954 * the corrupted subpage should trigg << 4955 */ << 4956 if (unlikely(folio_test_has_hwpoisone << 4957 return ret; << 4958 << 4959 /* << 4960 * Archs like ppc64 need additional s << 4961 * related to pte entry. Use the prea 3379 * related to pte entry. Use the preallocated table for that. 4962 */ 3380 */ 4963 if (arch_needs_pgtable_deposit() && ! 3381 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4964 vmf->prealloc_pte = pte_alloc !! 3382 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 4965 if (!vmf->prealloc_pte) 3383 if (!vmf->prealloc_pte) 4966 return VM_FAULT_OOM; 3384 return VM_FAULT_OOM; >> 3385 smp_wmb(); /* See comment in __pte_alloc() */ 4967 } 3386 } 4968 3387 4969 vmf->ptl = pmd_lock(vma->vm_mm, vmf-> 3388 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4970 if (unlikely(!pmd_none(*vmf->pmd))) 3389 if (unlikely(!pmd_none(*vmf->pmd))) 4971 goto out; 3390 goto out; 4972 3391 4973 flush_icache_pages(vma, page, HPAGE_P !! 3392 for (i = 0; i < HPAGE_PMD_NR; i++) >> 3393 flush_icache_page(vma, page + i); 4974 3394 4975 entry = mk_huge_pmd(page, vma->vm_pag 3395 entry = mk_huge_pmd(page, vma->vm_page_prot); 4976 if (write) 3396 if (write) 4977 entry = maybe_pmd_mkwrite(pmd 3397 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4978 3398 4979 add_mm_counter(vma->vm_mm, mm_counter !! 3399 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 4980 folio_add_file_rmap_pmd(folio, page, !! 3400 page_add_file_rmap(page, true); 4981 << 4982 /* 3401 /* 4983 * deposit and withdraw with pmd lock 3402 * deposit and withdraw with pmd lock held 4984 */ 3403 */ 4985 if (arch_needs_pgtable_deposit()) 3404 if (arch_needs_pgtable_deposit()) 4986 deposit_prealloc_pte(vmf); 3405 deposit_prealloc_pte(vmf); 4987 3406 4988 set_pmd_at(vma->vm_mm, haddr, vmf->pm 3407 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4989 3408 4990 update_mmu_cache_pmd(vma, haddr, vmf- 3409 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4991 3410 4992 /* fault is handled */ 3411 /* fault is handled */ 4993 ret = 0; 3412 ret = 0; 4994 count_vm_event(THP_FILE_MAPPED); 3413 count_vm_event(THP_FILE_MAPPED); 4995 out: 3414 out: 4996 spin_unlock(vmf->ptl); 3415 spin_unlock(vmf->ptl); 4997 return ret; 3416 return ret; 4998 } 3417 } 4999 #else 3418 #else 5000 vm_fault_t do_set_pmd(struct vm_fault *vmf, s !! 3419 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 5001 { 3420 { 5002 return VM_FAULT_FALLBACK; !! 3421 BUILD_BUG(); >> 3422 return 0; 5003 } 3423 } 5004 #endif 3424 #endif 5005 3425 5006 /** 3426 /** 5007 * set_pte_range - Set a range of PTEs to poi !! 3427 * alloc_set_pte - setup new PTE entry for given page and add reverse page 5008 * @vmf: Fault decription. !! 3428 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 5009 * @folio: The folio that contains @page. !! 3429 * 5010 * @page: The first page to create a PTE for. !! 3430 * @vmf: fault environment 5011 * @nr: The number of PTEs to create. !! 3431 * @memcg: memcg to charge page (only for private mappings) 5012 * @addr: The first address to create a PTE f !! 3432 * @page: page to map >> 3433 * >> 3434 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on >> 3435 * return. >> 3436 * >> 3437 * Target users are page handler itself and implementations of >> 3438 * vm_ops->map_pages. 5013 */ 3439 */ 5014 void set_pte_range(struct vm_fault *vmf, stru !! 3440 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 5015 struct page *page, unsigned i !! 3441 struct page *page) 5016 { 3442 { 5017 struct vm_area_struct *vma = vmf->vma 3443 struct vm_area_struct *vma = vmf->vma; 5018 bool write = vmf->flags & FAULT_FLAG_ 3444 bool write = vmf->flags & FAULT_FLAG_WRITE; 5019 bool prefault = !in_range(vmf->addres << 5020 pte_t entry; 3445 pte_t entry; >> 3446 int ret; 5021 3447 5022 flush_icache_pages(vma, page, nr); !! 3448 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 5023 entry = mk_pte(page, vma->vm_page_pro !! 3449 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { >> 3450 /* THP on COW? */ >> 3451 VM_BUG_ON_PAGE(memcg, page); 5024 3452 5025 if (prefault && arch_wants_old_prefau !! 3453 ret = do_set_pmd(vmf, page); 5026 entry = pte_mkold(entry); !! 3454 if (ret != VM_FAULT_FALLBACK) 5027 else !! 3455 return ret; 5028 entry = pte_sw_mkyoung(entry) !! 3456 } 5029 3457 >> 3458 if (!vmf->pte) { >> 3459 ret = pte_alloc_one_map(vmf); >> 3460 if (ret) >> 3461 return ret; >> 3462 } >> 3463 >> 3464 /* Re-check under ptl */ >> 3465 if (unlikely(!pte_none(*vmf->pte))) >> 3466 return VM_FAULT_NOPAGE; >> 3467 >> 3468 flush_icache_page(vma, page); >> 3469 entry = mk_pte(page, vma->vm_page_prot); 5030 if (write) 3470 if (write) 5031 entry = maybe_mkwrite(pte_mkd 3471 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5032 if (unlikely(vmf_orig_pte_uffd_wp(vmf << 5033 entry = pte_mkuffd_wp(entry); << 5034 /* copy-on-write page */ 3472 /* copy-on-write page */ 5035 if (write && !(vma->vm_flags & VM_SHA 3473 if (write && !(vma->vm_flags & VM_SHARED)) { 5036 VM_BUG_ON_FOLIO(nr != 1, foli !! 3474 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 5037 folio_add_new_anon_rmap(folio !! 3475 page_add_new_anon_rmap(page, vma, vmf->address, false); 5038 folio_add_lru_vma(folio, vma) !! 3476 mem_cgroup_commit_charge(page, memcg, false, false); >> 3477 lru_cache_add_active_or_unevictable(page, vma); 5039 } else { 3478 } else { 5040 folio_add_file_rmap_ptes(foli !! 3479 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); >> 3480 page_add_file_rmap(page, false); 5041 } 3481 } 5042 set_ptes(vma->vm_mm, addr, vmf->pte, !! 3482 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 5043 3483 5044 /* no need to invalidate: a not-prese 3484 /* no need to invalidate: a not-present page won't be cached */ 5045 update_mmu_cache_range(vmf, vma, addr !! 3485 update_mmu_cache(vma, vmf->address, vmf->pte); 5046 } << 5047 3486 5048 static bool vmf_pte_changed(struct vm_fault * !! 3487 return 0; 5049 { << 5050 if (vmf->flags & FAULT_FLAG_ORIG_PTE_ << 5051 return !pte_same(ptep_get(vmf << 5052 << 5053 return !pte_none(ptep_get(vmf->pte)); << 5054 } 3488 } 5055 3489 >> 3490 5056 /** 3491 /** 5057 * finish_fault - finish page fault once we h 3492 * finish_fault - finish page fault once we have prepared the page to fault 5058 * 3493 * 5059 * @vmf: structure describing the fault 3494 * @vmf: structure describing the fault 5060 * 3495 * 5061 * This function handles all that is needed t 3496 * This function handles all that is needed to finish a page fault once the 5062 * page to fault in is prepared. It handles l 3497 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5063 * given page, adds reverse page mapping, han 3498 * given page, adds reverse page mapping, handles memcg charges and LRU 5064 * addition. !! 3499 * addition. The function returns 0 on success, VM_FAULT_ code in case of >> 3500 * error. 5065 * 3501 * 5066 * The function expects the page to be locked 3502 * The function expects the page to be locked and on success it consumes a 5067 * reference of a page being mapped (for the 3503 * reference of a page being mapped (for the PTE which maps it). 5068 * << 5069 * Return: %0 on success, %VM_FAULT_ code in << 5070 */ 3504 */ 5071 vm_fault_t finish_fault(struct vm_fault *vmf) !! 3505 int finish_fault(struct vm_fault *vmf) 5072 { 3506 { 5073 struct vm_area_struct *vma = vmf->vma << 5074 struct page *page; 3507 struct page *page; 5075 struct folio *folio; !! 3508 int ret = 0; 5076 vm_fault_t ret; << 5077 bool is_cow = (vmf->flags & FAULT_FLA << 5078 !(vma->vm_flags & VM_SH << 5079 int type, nr_pages; << 5080 unsigned long addr = vmf->address; << 5081 3509 5082 /* Did we COW the page? */ 3510 /* Did we COW the page? */ 5083 if (is_cow) !! 3511 if ((vmf->flags & FAULT_FLAG_WRITE) && >> 3512 !(vmf->vma->vm_flags & VM_SHARED)) 5084 page = vmf->cow_page; 3513 page = vmf->cow_page; 5085 else 3514 else 5086 page = vmf->page; 3515 page = vmf->page; 5087 3516 5088 /* 3517 /* 5089 * check even for read faults because 3518 * check even for read faults because we might have lost our CoWed 5090 * page 3519 * page 5091 */ 3520 */ 5092 if (!(vma->vm_flags & VM_SHARED)) { !! 3521 if (!(vmf->vma->vm_flags & VM_SHARED)) 5093 ret = check_stable_address_sp !! 3522 ret = check_stable_address_space(vmf->vma->vm_mm); 5094 if (ret) !! 3523 if (!ret) 5095 return ret; !! 3524 ret = alloc_set_pte(vmf, vmf->memcg, page); 5096 } !! 3525 if (vmf->pte) 5097 !! 3526 pte_unmap_unlock(vmf->pte, vmf->ptl); 5098 if (pmd_none(*vmf->pmd)) { << 5099 if (PageTransCompound(page)) << 5100 ret = do_set_pmd(vmf, << 5101 if (ret != VM_FAULT_F << 5102 return ret; << 5103 } << 5104 << 5105 if (vmf->prealloc_pte) << 5106 pmd_install(vma->vm_m << 5107 else if (unlikely(pte_alloc(v << 5108 return VM_FAULT_OOM; << 5109 } << 5110 << 5111 folio = page_folio(page); << 5112 nr_pages = folio_nr_pages(folio); << 5113 << 5114 /* << 5115 * Using per-page fault to maintain t << 5116 * approach also applies to non-anony << 5117 * inflating the RSS of the process. << 5118 */ << 5119 if (!vma_is_anon_shmem(vma) || unlike << 5120 nr_pages = 1; << 5121 } else if (nr_pages > 1) { << 5122 pgoff_t idx = folio_page_idx( << 5123 /* The page offset of vmf->ad << 5124 pgoff_t vma_off = vmf->pgoff << 5125 /* The index of the entry in << 5126 pgoff_t pte_off = pte_index(v << 5127 << 5128 /* << 5129 * Fallback to per-page fault << 5130 * cache beyond the VMA limit << 5131 */ << 5132 if (unlikely(vma_off < idx || << 5133 vma_off + (nr_pag << 5134 pte_off < idx || << 5135 pte_off + (nr_pag << 5136 nr_pages = 1; << 5137 } else { << 5138 /* Now we can set map << 5139 addr = vmf->address - << 5140 page = &folio->page; << 5141 } << 5142 } << 5143 << 5144 vmf->pte = pte_offset_map_lock(vma->v << 5145 addr, << 5146 if (!vmf->pte) << 5147 return VM_FAULT_NOPAGE; << 5148 << 5149 /* Re-check under ptl */ << 5150 if (nr_pages == 1 && unlikely(vmf_pte << 5151 update_mmu_tlb(vma, addr, vmf << 5152 ret = VM_FAULT_NOPAGE; << 5153 goto unlock; << 5154 } else if (nr_pages > 1 && !pte_range << 5155 update_mmu_tlb_range(vma, add << 5156 ret = VM_FAULT_NOPAGE; << 5157 goto unlock; << 5158 } << 5159 << 5160 folio_ref_add(folio, nr_pages - 1); << 5161 set_pte_range(vmf, folio, page, nr_pa << 5162 type = is_cow ? MM_ANONPAGES : mm_cou << 5163 add_mm_counter(vma->vm_mm, type, nr_p << 5164 ret = 0; << 5165 << 5166 unlock: << 5167 pte_unmap_unlock(vmf->pte, vmf->ptl); << 5168 return ret; 3527 return ret; 5169 } 3528 } 5170 3529 5171 static unsigned long fault_around_pages __rea !! 3530 static unsigned long fault_around_bytes __read_mostly = 5172 65536 >> PAGE_SHIFT; !! 3531 rounddown_pow_of_two(65536); 5173 3532 5174 #ifdef CONFIG_DEBUG_FS 3533 #ifdef CONFIG_DEBUG_FS 5175 static int fault_around_bytes_get(void *data, 3534 static int fault_around_bytes_get(void *data, u64 *val) 5176 { 3535 { 5177 *val = fault_around_pages << PAGE_SHI !! 3536 *val = fault_around_bytes; 5178 return 0; 3537 return 0; 5179 } 3538 } 5180 3539 5181 /* 3540 /* 5182 * fault_around_bytes must be rounded down to 3541 * fault_around_bytes must be rounded down to the nearest page order as it's 5183 * what do_fault_around() expects to see. 3542 * what do_fault_around() expects to see. 5184 */ 3543 */ 5185 static int fault_around_bytes_set(void *data, 3544 static int fault_around_bytes_set(void *data, u64 val) 5186 { 3545 { 5187 if (val / PAGE_SIZE > PTRS_PER_PTE) 3546 if (val / PAGE_SIZE > PTRS_PER_PTE) 5188 return -EINVAL; 3547 return -EINVAL; 5189 !! 3548 if (val > PAGE_SIZE) 5190 /* !! 3549 fault_around_bytes = rounddown_pow_of_two(val); 5191 * The minimum value is 1 page, howev !! 3550 else 5192 * at all. See should_fault_around(). !! 3551 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 5193 */ << 5194 val = max(val, PAGE_SIZE); << 5195 fault_around_pages = rounddown_pow_of << 5196 << 5197 return 0; 3552 return 0; 5198 } 3553 } 5199 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_f 3554 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5200 fault_around_bytes_get, fault 3555 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5201 3556 5202 static int __init fault_around_debugfs(void) 3557 static int __init fault_around_debugfs(void) 5203 { 3558 { 5204 debugfs_create_file_unsafe("fault_aro !! 3559 void *ret; 5205 &fault_aro !! 3560 >> 3561 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, >> 3562 &fault_around_bytes_fops); >> 3563 if (!ret) >> 3564 pr_warn("Failed to create fault_around_bytes in debugfs"); 5206 return 0; 3565 return 0; 5207 } 3566 } 5208 late_initcall(fault_around_debugfs); 3567 late_initcall(fault_around_debugfs); 5209 #endif 3568 #endif 5210 3569 5211 /* 3570 /* 5212 * do_fault_around() tries to map few pages a 3571 * do_fault_around() tries to map few pages around the fault address. The hope 5213 * is that the pages will be needed soon and 3572 * is that the pages will be needed soon and this will lower the number of 5214 * faults to handle. 3573 * faults to handle. 5215 * 3574 * 5216 * It uses vm_ops->map_pages() to map the pag 3575 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5217 * not ready to be mapped: not up-to-date, lo 3576 * not ready to be mapped: not up-to-date, locked, etc. 5218 * 3577 * 5219 * This function doesn't cross VMA or page ta !! 3578 * This function is called with the page table lock taken. In the split ptlock 5220 * map_pages() and acquire a PTE lock only on !! 3579 * case the page table lock only protects only those entries which belong to >> 3580 * the page table corresponding to the fault address. 5221 * 3581 * 5222 * fault_around_pages defines how many pages !! 3582 * This function doesn't cross the VMA boundaries, in order to call map_pages() >> 3583 * only once. >> 3584 * >> 3585 * fault_around_bytes defines how many bytes we'll try to map. 5223 * do_fault_around() expects it to be set to 3586 * do_fault_around() expects it to be set to a power of two less than or equal 5224 * to PTRS_PER_PTE. 3587 * to PTRS_PER_PTE. 5225 * 3588 * 5226 * The virtual address of the area that we ma 3589 * The virtual address of the area that we map is naturally aligned to 5227 * fault_around_pages * PAGE_SIZE rounded dow !! 3590 * fault_around_bytes rounded down to the machine page size 5228 * (and therefore to page order). This way i 3591 * (and therefore to page order). This way it's easier to guarantee 5229 * that we don't cross page table boundaries. 3592 * that we don't cross page table boundaries. 5230 */ 3593 */ 5231 static vm_fault_t do_fault_around(struct vm_f !! 3594 static int do_fault_around(struct vm_fault *vmf) 5232 { 3595 { 5233 pgoff_t nr_pages = READ_ONCE(fault_ar !! 3596 unsigned long address = vmf->address, nr_pages, mask; 5234 pgoff_t pte_off = pte_index(vmf->addr !! 3597 pgoff_t start_pgoff = vmf->pgoff; 5235 /* The page offset of vmf->address wi !! 3598 pgoff_t end_pgoff; 5236 pgoff_t vma_off = vmf->pgoff - vmf->v !! 3599 int off, ret = 0; 5237 pgoff_t from_pte, to_pte; !! 3600 5238 vm_fault_t ret; !! 3601 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 5239 !! 3602 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 5240 /* The PTE offset of the start addres !! 3603 5241 from_pte = max(ALIGN_DOWN(pte_off, nr !! 3604 vmf->address = max(address & mask, vmf->vma->vm_start); 5242 pte_off - min(pte_off, !! 3605 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 5243 !! 3606 start_pgoff -= off; 5244 /* The PTE offset of the end address, !! 3607 5245 to_pte = min3(from_pte + nr_pages, (p !! 3608 /* 5246 pte_off + vma_pages(vmf !! 3609 * end_pgoff is either the end of the page table, the end of >> 3610 * the vma or nr_pages from start_pgoff, depending what is nearest. >> 3611 */ >> 3612 end_pgoff = start_pgoff - >> 3613 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + >> 3614 PTRS_PER_PTE - 1; >> 3615 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, >> 3616 start_pgoff + nr_pages - 1); 5247 3617 5248 if (pmd_none(*vmf->pmd)) { 3618 if (pmd_none(*vmf->pmd)) { 5249 vmf->prealloc_pte = pte_alloc !! 3619 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, >> 3620 vmf->address); 5250 if (!vmf->prealloc_pte) 3621 if (!vmf->prealloc_pte) 5251 return VM_FAULT_OOM; !! 3622 goto out; >> 3623 smp_wmb(); /* See comment in __pte_alloc() */ 5252 } 3624 } 5253 3625 5254 rcu_read_lock(); !! 3626 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 5255 ret = vmf->vma->vm_ops->map_pages(vmf << 5256 vmf->pgoff + from_pte << 5257 vmf->pgoff + to_pte - << 5258 rcu_read_unlock(); << 5259 3627 5260 return ret; !! 3628 /* Huge page is mapped? Page fault is solved */ 5261 } !! 3629 if (pmd_trans_huge(*vmf->pmd)) { 5262 !! 3630 ret = VM_FAULT_NOPAGE; 5263 /* Return true if we should do read fault-aro !! 3631 goto out; 5264 static inline bool should_fault_around(struct !! 3632 } 5265 { << 5266 /* No ->map_pages? No way to fault a << 5267 if (!vmf->vma->vm_ops->map_pages) << 5268 return false; << 5269 3633 5270 if (uffd_disable_fault_around(vmf->vm !! 3634 /* ->map_pages() haven't done anything useful. Cold page cache? */ 5271 return false; !! 3635 if (!vmf->pte) >> 3636 goto out; 5272 3637 5273 /* A single page implies no faulting !! 3638 /* check if the page fault is solved */ 5274 return fault_around_pages > 1; !! 3639 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); >> 3640 if (!pte_none(*vmf->pte)) >> 3641 ret = VM_FAULT_NOPAGE; >> 3642 pte_unmap_unlock(vmf->pte, vmf->ptl); >> 3643 out: >> 3644 vmf->address = address; >> 3645 vmf->pte = NULL; >> 3646 return ret; 5275 } 3647 } 5276 3648 5277 static vm_fault_t do_read_fault(struct vm_fau !! 3649 static int do_read_fault(struct vm_fault *vmf) 5278 { 3650 { 5279 vm_fault_t ret = 0; !! 3651 struct vm_area_struct *vma = vmf->vma; 5280 struct folio *folio; !! 3652 int ret = 0; 5281 3653 5282 /* 3654 /* 5283 * Let's call ->map_pages() first and 3655 * Let's call ->map_pages() first and use ->fault() as fallback 5284 * if page by the offset is not ready 3656 * if page by the offset is not ready to be mapped (cold cache or 5285 * something). 3657 * something). 5286 */ 3658 */ 5287 if (should_fault_around(vmf)) { !! 3659 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 5288 ret = do_fault_around(vmf); 3660 ret = do_fault_around(vmf); 5289 if (ret) 3661 if (ret) 5290 return ret; 3662 return ret; 5291 } 3663 } 5292 3664 5293 ret = vmf_can_call_fault(vmf); << 5294 if (ret) << 5295 return ret; << 5296 << 5297 ret = __do_fault(vmf); 3665 ret = __do_fault(vmf); 5298 if (unlikely(ret & (VM_FAULT_ERROR | 3666 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5299 return ret; 3667 return ret; 5300 3668 5301 ret |= finish_fault(vmf); 3669 ret |= finish_fault(vmf); 5302 folio = page_folio(vmf->page); !! 3670 unlock_page(vmf->page); 5303 folio_unlock(folio); << 5304 if (unlikely(ret & (VM_FAULT_ERROR | 3671 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5305 folio_put(folio); !! 3672 put_page(vmf->page); 5306 return ret; 3673 return ret; 5307 } 3674 } 5308 3675 5309 static vm_fault_t do_cow_fault(struct vm_faul !! 3676 static int do_cow_fault(struct vm_fault *vmf) 5310 { 3677 { 5311 struct vm_area_struct *vma = vmf->vma 3678 struct vm_area_struct *vma = vmf->vma; 5312 struct folio *folio; !! 3679 int ret; 5313 vm_fault_t ret; << 5314 3680 5315 ret = vmf_can_call_fault(vmf); !! 3681 if (unlikely(anon_vma_prepare(vma))) 5316 if (!ret) !! 3682 return VM_FAULT_OOM; 5317 ret = vmf_anon_prepare(vmf); << 5318 if (ret) << 5319 return ret; << 5320 3683 5321 folio = folio_prealloc(vma->vm_mm, vm !! 3684 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 5322 if (!folio) !! 3685 if (!vmf->cow_page) 5323 return VM_FAULT_OOM; 3686 return VM_FAULT_OOM; 5324 3687 5325 vmf->cow_page = &folio->page; !! 3688 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, >> 3689 &vmf->memcg, false)) { >> 3690 put_page(vmf->cow_page); >> 3691 return VM_FAULT_OOM; >> 3692 } 5326 3693 5327 ret = __do_fault(vmf); 3694 ret = __do_fault(vmf); 5328 if (unlikely(ret & (VM_FAULT_ERROR | 3695 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5329 goto uncharge_out; 3696 goto uncharge_out; 5330 if (ret & VM_FAULT_DONE_COW) 3697 if (ret & VM_FAULT_DONE_COW) 5331 return ret; 3698 return ret; 5332 3699 5333 if (copy_mc_user_highpage(vmf->cow_pa !! 3700 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 5334 ret = VM_FAULT_HWPOISON; !! 3701 __SetPageUptodate(vmf->cow_page); 5335 goto unlock; << 5336 } << 5337 __folio_mark_uptodate(folio); << 5338 3702 5339 ret |= finish_fault(vmf); 3703 ret |= finish_fault(vmf); 5340 unlock: << 5341 unlock_page(vmf->page); 3704 unlock_page(vmf->page); 5342 put_page(vmf->page); 3705 put_page(vmf->page); 5343 if (unlikely(ret & (VM_FAULT_ERROR | 3706 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5344 goto uncharge_out; 3707 goto uncharge_out; 5345 return ret; 3708 return ret; 5346 uncharge_out: 3709 uncharge_out: 5347 folio_put(folio); !! 3710 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); >> 3711 put_page(vmf->cow_page); 5348 return ret; 3712 return ret; 5349 } 3713 } 5350 3714 5351 static vm_fault_t do_shared_fault(struct vm_f !! 3715 static int do_shared_fault(struct vm_fault *vmf) 5352 { 3716 { 5353 struct vm_area_struct *vma = vmf->vma 3717 struct vm_area_struct *vma = vmf->vma; 5354 vm_fault_t ret, tmp; !! 3718 int ret, tmp; 5355 struct folio *folio; << 5356 << 5357 ret = vmf_can_call_fault(vmf); << 5358 if (ret) << 5359 return ret; << 5360 3719 5361 ret = __do_fault(vmf); 3720 ret = __do_fault(vmf); 5362 if (unlikely(ret & (VM_FAULT_ERROR | 3721 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5363 return ret; 3722 return ret; 5364 3723 5365 folio = page_folio(vmf->page); << 5366 << 5367 /* 3724 /* 5368 * Check if the backing address space 3725 * Check if the backing address space wants to know that the page is 5369 * about to become writable 3726 * about to become writable 5370 */ 3727 */ 5371 if (vma->vm_ops->page_mkwrite) { 3728 if (vma->vm_ops->page_mkwrite) { 5372 folio_unlock(folio); !! 3729 unlock_page(vmf->page); 5373 tmp = do_page_mkwrite(vmf, fo !! 3730 tmp = do_page_mkwrite(vmf); 5374 if (unlikely(!tmp || 3731 if (unlikely(!tmp || 5375 (tmp & (VM_FA 3732 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5376 folio_put(folio); !! 3733 put_page(vmf->page); 5377 return tmp; 3734 return tmp; 5378 } 3735 } 5379 } 3736 } 5380 3737 5381 ret |= finish_fault(vmf); 3738 ret |= finish_fault(vmf); 5382 if (unlikely(ret & (VM_FAULT_ERROR | 3739 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5383 VM_FA 3740 VM_FAULT_RETRY))) { 5384 folio_unlock(folio); !! 3741 unlock_page(vmf->page); 5385 folio_put(folio); !! 3742 put_page(vmf->page); 5386 return ret; 3743 return ret; 5387 } 3744 } 5388 3745 5389 ret |= fault_dirty_shared_page(vmf); !! 3746 fault_dirty_shared_page(vma, vmf->page); 5390 return ret; 3747 return ret; 5391 } 3748 } 5392 3749 5393 /* 3750 /* 5394 * We enter with non-exclusive mmap_lock (to !! 3751 * We enter with non-exclusive mmap_sem (to exclude vma changes, 5395 * but allow concurrent faults). 3752 * but allow concurrent faults). 5396 * The mmap_lock may have been released depen !! 3753 * The mmap_sem may have been released depending on flags and our 5397 * return value. See filemap_fault() and __f !! 3754 * return value. See filemap_fault() and __lock_page_or_retry(). 5398 * If mmap_lock is released, vma may become i << 5399 * by other thread calling munmap()). << 5400 */ 3755 */ 5401 static vm_fault_t do_fault(struct vm_fault *v !! 3756 static int do_fault(struct vm_fault *vmf) 5402 { 3757 { 5403 struct vm_area_struct *vma = vmf->vma 3758 struct vm_area_struct *vma = vmf->vma; 5404 struct mm_struct *vm_mm = vma->vm_mm; !! 3759 int ret; 5405 vm_fault_t ret; << 5406 << 5407 /* << 5408 * The VMA was not fully populated on << 5409 */ << 5410 if (!vma->vm_ops->fault) { << 5411 vmf->pte = pte_offset_map_loc << 5412 << 5413 if (unlikely(!vmf->pte)) << 5414 ret = VM_FAULT_SIGBUS << 5415 else { << 5416 /* << 5417 * Make sure this is << 5418 * by holding ptl and << 5419 * of pte involves: t << 5420 * we don't have conc << 5421 * followed by an upd << 5422 */ << 5423 if (unlikely(pte_none << 5424 ret = VM_FAUL << 5425 else << 5426 ret = VM_FAUL << 5427 3760 5428 pte_unmap_unlock(vmf- !! 3761 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 5429 } !! 3762 if (!vma->vm_ops->fault) 5430 } else if (!(vmf->flags & FAULT_FLAG_ !! 3763 ret = VM_FAULT_SIGBUS; >> 3764 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5431 ret = do_read_fault(vmf); 3765 ret = do_read_fault(vmf); 5432 else if (!(vma->vm_flags & VM_SHARED) 3766 else if (!(vma->vm_flags & VM_SHARED)) 5433 ret = do_cow_fault(vmf); 3767 ret = do_cow_fault(vmf); 5434 else 3768 else 5435 ret = do_shared_fault(vmf); 3769 ret = do_shared_fault(vmf); 5436 3770 5437 /* preallocated pagetable is unused: 3771 /* preallocated pagetable is unused: free it */ 5438 if (vmf->prealloc_pte) { 3772 if (vmf->prealloc_pte) { 5439 pte_free(vm_mm, vmf->prealloc !! 3773 pte_free(vma->vm_mm, vmf->prealloc_pte); 5440 vmf->prealloc_pte = NULL; 3774 vmf->prealloc_pte = NULL; 5441 } 3775 } 5442 return ret; 3776 return ret; 5443 } 3777 } 5444 3778 5445 int numa_migrate_check(struct folio *folio, s !! 3779 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 5446 unsigned long addr, int !! 3780 unsigned long addr, int page_nid, 5447 bool writable, int *las !! 3781 int *flags) 5448 { 3782 { 5449 struct vm_area_struct *vma = vmf->vma !! 3783 get_page(page); 5450 << 5451 /* << 5452 * Avoid grouping on RO pages in gene << 5453 * much anyway since they can be in s << 5454 * the case where a mapping is writab << 5455 * to it but pte_write gets cleared d << 5456 * pte_dirty has unpredictable behavi << 5457 * background writeback, dirty balanc << 5458 */ << 5459 if (!writable) << 5460 *flags |= TNF_NO_GROUP; << 5461 << 5462 /* << 5463 * Flag if the folio is shared betwee << 5464 * is later used when determining whe << 5465 */ << 5466 if (folio_likely_mapped_shared(folio) << 5467 *flags |= TNF_SHARED; << 5468 /* << 5469 * For memory tiering mode, cpupid of << 5470 * to record page access time. So us << 5471 */ << 5472 if (folio_use_access_time(folio)) << 5473 *last_cpupid = (-1 & LAST_CPU << 5474 else << 5475 *last_cpupid = folio_last_cpu << 5476 << 5477 /* Record the current PID acceesing V << 5478 vma_set_access_pid_bit(vma); << 5479 3784 5480 count_vm_numa_event(NUMA_HINT_FAULTS) 3785 count_vm_numa_event(NUMA_HINT_FAULTS); 5481 #ifdef CONFIG_NUMA_BALANCING !! 3786 if (page_nid == numa_node_id()) { 5482 count_memcg_folio_events(folio, NUMA_ << 5483 #endif << 5484 if (folio_nid(folio) == numa_node_id( << 5485 count_vm_numa_event(NUMA_HINT 3787 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5486 *flags |= TNF_FAULT_LOCAL; 3788 *flags |= TNF_FAULT_LOCAL; 5487 } 3789 } 5488 3790 5489 return mpol_misplaced(folio, vmf, add !! 3791 return mpol_misplaced(page, vma, addr); 5490 } << 5491 << 5492 static void numa_rebuild_single_mapping(struc << 5493 unsig << 5494 bool << 5495 { << 5496 pte_t pte, old_pte; << 5497 << 5498 old_pte = ptep_modify_prot_start(vma, << 5499 pte = pte_modify(old_pte, vma->vm_pag << 5500 pte = pte_mkyoung(pte); << 5501 if (writable) << 5502 pte = pte_mkwrite(pte, vma); << 5503 ptep_modify_prot_commit(vma, fault_ad << 5504 update_mmu_cache_range(vmf, vma, faul << 5505 } << 5506 << 5507 static void numa_rebuild_large_mapping(struct << 5508 struct << 5509 bool i << 5510 { << 5511 int nr = pte_pfn(fault_pte) - folio_p << 5512 unsigned long start, end, addr = vmf- << 5513 unsigned long addr_start = addr - (nr << 5514 unsigned long pt_start = ALIGN_DOWN(a << 5515 pte_t *start_ptep; << 5516 << 5517 /* Stay within the VMA and within the << 5518 start = max3(addr_start, pt_start, vm << 5519 end = min3(addr_start + folio_size(fo << 5520 vma->vm_end); << 5521 start_ptep = vmf->pte - ((addr - star << 5522 << 5523 /* Restore all PTEs' mapping of the l << 5524 for (addr = start; addr != end; start << 5525 pte_t ptent = ptep_get(start_ << 5526 bool writable = false; << 5527 << 5528 if (!pte_present(ptent) || !p << 5529 continue; << 5530 << 5531 if (pfn_folio(pte_pfn(ptent)) << 5532 continue; << 5533 << 5534 if (!ignore_writable) { << 5535 ptent = pte_modify(pt << 5536 writable = pte_write( << 5537 if (!writable && pte_ << 5538 can_change_pte_wr << 5539 writable = tr << 5540 } << 5541 << 5542 numa_rebuild_single_mapping(v << 5543 } << 5544 } 3792 } 5545 3793 5546 static vm_fault_t do_numa_page(struct vm_faul !! 3794 static int do_numa_page(struct vm_fault *vmf) 5547 { 3795 { 5548 struct vm_area_struct *vma = vmf->vma 3796 struct vm_area_struct *vma = vmf->vma; 5549 struct folio *folio = NULL; !! 3797 struct page *page = NULL; 5550 int nid = NUMA_NO_NODE; !! 3798 int page_nid = -1; 5551 bool writable = false, ignore_writabl << 5552 bool pte_write_upgrade = vma_wants_ma << 5553 int last_cpupid; 3799 int last_cpupid; 5554 int target_nid; 3800 int target_nid; 5555 pte_t pte, old_pte; !! 3801 bool migrated = false; 5556 int flags = 0, nr_pages; !! 3802 pte_t pte; >> 3803 bool was_writable = pte_savedwrite(vmf->orig_pte); >> 3804 int flags = 0; 5557 3805 5558 /* 3806 /* 5559 * The pte cannot be used safely unti !! 3807 * The "pte" at this point cannot be used safely without 5560 * table lock, that its contents have !! 3808 * validation through pte_unmap_same(). It's of NUMA type but >> 3809 * the pfn may be screwed if the read is non atomic. 5561 */ 3810 */ >> 3811 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 5562 spin_lock(vmf->ptl); 3812 spin_lock(vmf->ptl); 5563 /* Read the live PTE from the page ta !! 3813 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 5564 old_pte = ptep_get(vmf->pte); << 5565 << 5566 if (unlikely(!pte_same(old_pte, vmf-> << 5567 pte_unmap_unlock(vmf->pte, vm 3814 pte_unmap_unlock(vmf->pte, vmf->ptl); 5568 return 0; !! 3815 goto out; 5569 } 3816 } 5570 3817 5571 pte = pte_modify(old_pte, vma->vm_pag << 5572 << 5573 /* 3818 /* 5574 * Detect now whether the PTE could b !! 3819 * Make it present again, Depending on how arch implementes non 5575 * is only valid while holding the PT !! 3820 * accessible ptes, some can allow access by kernel mode. 5576 */ 3821 */ 5577 writable = pte_write(pte); !! 3822 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 5578 if (!writable && pte_write_upgrade && !! 3823 pte = pte_modify(pte, vma->vm_page_prot); 5579 can_change_pte_writable(vma, vmf- !! 3824 pte = pte_mkyoung(pte); 5580 writable = true; !! 3825 if (was_writable) 5581 !! 3826 pte = pte_mkwrite(pte); 5582 folio = vm_normal_folio(vma, vmf->add !! 3827 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 5583 if (!folio || folio_is_zone_device(fo !! 3828 update_mmu_cache(vma, vmf->address, vmf->pte); 5584 goto out_map; << 5585 << 5586 nid = folio_nid(folio); << 5587 nr_pages = folio_nr_pages(folio); << 5588 << 5589 target_nid = numa_migrate_check(folio << 5590 writa << 5591 if (target_nid == NUMA_NO_NODE) << 5592 goto out_map; << 5593 if (migrate_misplaced_folio_prepare(f << 5594 flags |= TNF_MIGRATE_FAIL; << 5595 goto out_map; << 5596 } << 5597 /* The folio is isolated and isolatio << 5598 pte_unmap_unlock(vmf->pte, vmf->ptl); << 5599 writable = false; << 5600 ignore_writable = true; << 5601 3829 5602 /* Migrate to the requested node */ !! 3830 page = vm_normal_page(vma, vmf->address, pte); 5603 if (!migrate_misplaced_folio(folio, v !! 3831 if (!page) { 5604 nid = target_nid; !! 3832 pte_unmap_unlock(vmf->pte, vmf->ptl); 5605 flags |= TNF_MIGRATED; << 5606 task_numa_fault(last_cpupid, << 5607 return 0; 3833 return 0; 5608 } 3834 } 5609 3835 5610 flags |= TNF_MIGRATE_FAIL; !! 3836 /* TODO: handle PTE-mapped THP */ 5611 vmf->pte = pte_offset_map_lock(vma->v !! 3837 if (PageCompound(page)) { 5612 vmf->a << 5613 if (unlikely(!vmf->pte)) << 5614 return 0; << 5615 if (unlikely(!pte_same(ptep_get(vmf-> << 5616 pte_unmap_unlock(vmf->pte, vm 3838 pte_unmap_unlock(vmf->pte, vmf->ptl); 5617 return 0; 3839 return 0; 5618 } 3840 } 5619 out_map: !! 3841 5620 /* 3842 /* 5621 * Make it present again, depending o !! 3843 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5622 * non-accessible ptes, some can allo !! 3844 * much anyway since they can be in shared cache state. This misses >> 3845 * the case where a mapping is writable but the process never writes >> 3846 * to it but pte_write gets cleared during protection updates and >> 3847 * pte_dirty has unpredictable behaviour between PTE scan updates, >> 3848 * background writeback, dirty balancing and application behaviour. 5623 */ 3849 */ 5624 if (folio && folio_test_large(folio)) !! 3850 if (!pte_write(pte)) 5625 numa_rebuild_large_mapping(vm !! 3851 flags |= TNF_NO_GROUP; 5626 pt !! 3852 5627 else !! 3853 /* 5628 numa_rebuild_single_mapping(v !! 3854 * Flag if the page is shared between multiple address spaces. This 5629 w !! 3855 * is later used when determining whether to group tasks together >> 3856 */ >> 3857 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) >> 3858 flags |= TNF_SHARED; >> 3859 >> 3860 last_cpupid = page_cpupid_last(page); >> 3861 page_nid = page_to_nid(page); >> 3862 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, >> 3863 &flags); 5630 pte_unmap_unlock(vmf->pte, vmf->ptl); 3864 pte_unmap_unlock(vmf->pte, vmf->ptl); >> 3865 if (target_nid == -1) { >> 3866 put_page(page); >> 3867 goto out; >> 3868 } 5631 3869 5632 if (nid != NUMA_NO_NODE) !! 3870 /* Migrate to the requested node */ 5633 task_numa_fault(last_cpupid, !! 3871 migrated = migrate_misplaced_page(page, vma, target_nid); >> 3872 if (migrated) { >> 3873 page_nid = target_nid; >> 3874 flags |= TNF_MIGRATED; >> 3875 } else >> 3876 flags |= TNF_MIGRATE_FAIL; >> 3877 >> 3878 out: >> 3879 if (page_nid != -1) >> 3880 task_numa_fault(last_cpupid, page_nid, 1, flags); 5634 return 0; 3881 return 0; 5635 } 3882 } 5636 3883 5637 static inline vm_fault_t create_huge_pmd(stru !! 3884 static inline int create_huge_pmd(struct vm_fault *vmf) 5638 { 3885 { 5639 struct vm_area_struct *vma = vmf->vma !! 3886 if (vma_is_anonymous(vmf->vma)) 5640 if (vma_is_anonymous(vma)) << 5641 return do_huge_pmd_anonymous_ 3887 return do_huge_pmd_anonymous_page(vmf); 5642 if (vma->vm_ops->huge_fault) !! 3888 if (vmf->vma->vm_ops->huge_fault) 5643 return vma->vm_ops->huge_faul !! 3889 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 5644 return VM_FAULT_FALLBACK; 3890 return VM_FAULT_FALLBACK; 5645 } 3891 } 5646 3892 5647 /* `inline' is required to avoid gcc 4.1.2 bu 3893 /* `inline' is required to avoid gcc 4.1.2 build error */ 5648 static inline vm_fault_t wp_huge_pmd(struct v !! 3894 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 5649 { 3895 { 5650 struct vm_area_struct *vma = vmf->vma !! 3896 if (vma_is_anonymous(vmf->vma)) 5651 const bool unshare = vmf->flags & FAU !! 3897 return do_huge_pmd_wp_page(vmf, orig_pmd); 5652 vm_fault_t ret; !! 3898 if (vmf->vma->vm_ops->huge_fault) 5653 !! 3899 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 5654 if (vma_is_anonymous(vma)) { !! 3900 5655 if (likely(!unshare) && !! 3901 /* COW handled on pte level: split pmd */ 5656 userfaultfd_huge_pmd_wp(v !! 3902 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 5657 if (userfaultfd_wp_as !! 3903 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 5658 goto split; << 5659 return handle_userfau << 5660 } << 5661 return do_huge_pmd_wp_page(vm << 5662 } << 5663 << 5664 if (vma->vm_flags & (VM_SHARED | VM_M << 5665 if (vma->vm_ops->huge_fault) << 5666 ret = vma->vm_ops->hu << 5667 if (!(ret & VM_FAULT_ << 5668 return ret; << 5669 } << 5670 } << 5671 << 5672 split: << 5673 /* COW or write-notify handled on pte << 5674 __split_huge_pmd(vma, vmf->pmd, vmf-> << 5675 3904 5676 return VM_FAULT_FALLBACK; 3905 return VM_FAULT_FALLBACK; 5677 } 3906 } 5678 3907 5679 static vm_fault_t create_huge_pud(struct vm_f !! 3908 static inline bool vma_is_accessible(struct vm_area_struct *vma) 5680 { 3909 { 5681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !! 3910 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 5682 defined(CONFIG_HAVE_ARCH_TRANSPARENT_ !! 3911 } 5683 struct vm_area_struct *vma = vmf->vma !! 3912 >> 3913 static int create_huge_pud(struct vm_fault *vmf) >> 3914 { >> 3915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5684 /* No support for anonymous transpare 3916 /* No support for anonymous transparent PUD pages yet */ 5685 if (vma_is_anonymous(vma)) !! 3917 if (vma_is_anonymous(vmf->vma)) 5686 return VM_FAULT_FALLBACK; 3918 return VM_FAULT_FALLBACK; 5687 if (vma->vm_ops->huge_fault) !! 3919 if (vmf->vma->vm_ops->huge_fault) 5688 return vma->vm_ops->huge_faul !! 3920 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 5689 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3921 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5690 return VM_FAULT_FALLBACK; 3922 return VM_FAULT_FALLBACK; 5691 } 3923 } 5692 3924 5693 static vm_fault_t wp_huge_pud(struct vm_fault !! 3925 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5694 { 3926 { 5695 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !! 3927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5696 defined(CONFIG_HAVE_ARCH_TRANSPARENT_ << 5697 struct vm_area_struct *vma = vmf->vma << 5698 vm_fault_t ret; << 5699 << 5700 /* No support for anonymous transpare 3928 /* No support for anonymous transparent PUD pages yet */ 5701 if (vma_is_anonymous(vma)) !! 3929 if (vma_is_anonymous(vmf->vma)) 5702 goto split; !! 3930 return VM_FAULT_FALLBACK; 5703 if (vma->vm_flags & (VM_SHARED | VM_M !! 3931 if (vmf->vma->vm_ops->huge_fault) 5704 if (vma->vm_ops->huge_fault) !! 3932 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 5705 ret = vma->vm_ops->hu !! 3933 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5706 if (!(ret & VM_FAULT_ << 5707 return ret; << 5708 } << 5709 } << 5710 split: << 5711 /* COW or write-notify not handled on << 5712 __split_huge_pud(vma, vmf->pud, vmf-> << 5713 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONF << 5714 return VM_FAULT_FALLBACK; 3934 return VM_FAULT_FALLBACK; 5715 } 3935 } 5716 3936 5717 /* 3937 /* 5718 * These routines also need to handle stuff l 3938 * These routines also need to handle stuff like marking pages dirty 5719 * and/or accessed for architectures that don 3939 * and/or accessed for architectures that don't do it in hardware (most 5720 * RISC architectures). The early dirtying i 3940 * RISC architectures). The early dirtying is also good on the i386. 5721 * 3941 * 5722 * There is also a hook called "update_mmu_ca 3942 * There is also a hook called "update_mmu_cache()" that architectures 5723 * with external mmu caches can use to update 3943 * with external mmu caches can use to update those (ie the Sparc or 5724 * PowerPC hashed page tables that act as ext 3944 * PowerPC hashed page tables that act as extended TLBs). 5725 * 3945 * 5726 * We enter with non-exclusive mmap_lock (to !! 3946 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 5727 * concurrent faults). 3947 * concurrent faults). 5728 * 3948 * 5729 * The mmap_lock may have been released depen !! 3949 * The mmap_sem may have been released depending on flags and our return value. 5730 * See filemap_fault() and __folio_lock_or_re !! 3950 * See filemap_fault() and __lock_page_or_retry(). 5731 */ 3951 */ 5732 static vm_fault_t handle_pte_fault(struct vm_ !! 3952 static int handle_pte_fault(struct vm_fault *vmf) 5733 { 3953 { 5734 pte_t entry; 3954 pte_t entry; 5735 3955 5736 if (unlikely(pmd_none(*vmf->pmd))) { 3956 if (unlikely(pmd_none(*vmf->pmd))) { 5737 /* 3957 /* 5738 * Leave __pte_alloc() until 3958 * Leave __pte_alloc() until later: because vm_ops->fault may 5739 * want to allocate huge page 3959 * want to allocate huge page, and if we expose page table 5740 * for an instant, it will be 3960 * for an instant, it will be difficult to retract from 5741 * concurrent faults and from 3961 * concurrent faults and from rmap lookups. 5742 */ 3962 */ 5743 vmf->pte = NULL; 3963 vmf->pte = NULL; 5744 vmf->flags &= ~FAULT_FLAG_ORI << 5745 } else { 3964 } else { >> 3965 /* See comment in pte_alloc_one_map() */ >> 3966 if (pmd_devmap_trans_unstable(vmf->pmd)) >> 3967 return 0; 5746 /* 3968 /* 5747 * A regular pmd is establish 3969 * A regular pmd is established and it can't morph into a huge 5748 * pmd by anon khugepaged, si !! 3970 * pmd from under us anymore at this point because we hold the 5749 * mode; but shmem or file co !! 3971 * mmap_sem read mode and khugepaged takes it in write mode. 5750 * it into a huge pmd: just r !! 3972 * So now it's safe to run pte_offset_map(). 5751 */ 3973 */ 5752 vmf->pte = pte_offset_map_nol !! 3974 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 5753 !! 3975 vmf->orig_pte = *vmf->pte; 5754 if (unlikely(!vmf->pte)) << 5755 return 0; << 5756 vmf->orig_pte = ptep_get_lock << 5757 vmf->flags |= FAULT_FLAG_ORIG << 5758 3976 >> 3977 /* >> 3978 * some architectures can have larger ptes than wordsize, >> 3979 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and >> 3980 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic >> 3981 * accesses. The code below just needs a consistent view >> 3982 * for the ifs and we later double check anyway with the >> 3983 * ptl lock held. So here a barrier will do. >> 3984 */ >> 3985 barrier(); 5759 if (pte_none(vmf->orig_pte)) 3986 if (pte_none(vmf->orig_pte)) { 5760 pte_unmap(vmf->pte); 3987 pte_unmap(vmf->pte); 5761 vmf->pte = NULL; 3988 vmf->pte = NULL; 5762 } 3989 } 5763 } 3990 } 5764 3991 5765 if (!vmf->pte) !! 3992 if (!vmf->pte) { 5766 return do_pte_missing(vmf); !! 3993 if (vma_is_anonymous(vmf->vma)) >> 3994 return do_anonymous_page(vmf); >> 3995 else >> 3996 return do_fault(vmf); >> 3997 } 5767 3998 5768 if (!pte_present(vmf->orig_pte)) 3999 if (!pte_present(vmf->orig_pte)) 5769 return do_swap_page(vmf); 4000 return do_swap_page(vmf); 5770 4001 5771 if (pte_protnone(vmf->orig_pte) && vm 4002 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5772 return do_numa_page(vmf); 4003 return do_numa_page(vmf); 5773 4004 >> 4005 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 5774 spin_lock(vmf->ptl); 4006 spin_lock(vmf->ptl); 5775 entry = vmf->orig_pte; 4007 entry = vmf->orig_pte; 5776 if (unlikely(!pte_same(ptep_get(vmf-> !! 4008 if (unlikely(!pte_same(*vmf->pte, entry))) 5777 update_mmu_tlb(vmf->vma, vmf- << 5778 goto unlock; 4009 goto unlock; 5779 } !! 4010 if (vmf->flags & FAULT_FLAG_WRITE) { 5780 if (vmf->flags & (FAULT_FLAG_WRITE|FA << 5781 if (!pte_write(entry)) 4011 if (!pte_write(entry)) 5782 return do_wp_page(vmf 4012 return do_wp_page(vmf); 5783 else if (likely(vmf->flags & !! 4013 entry = pte_mkdirty(entry); 5784 entry = pte_mkdirty(e << 5785 } 4014 } 5786 entry = pte_mkyoung(entry); 4015 entry = pte_mkyoung(entry); 5787 if (ptep_set_access_flags(vmf->vma, v 4016 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5788 vmf->flags & 4017 vmf->flags & FAULT_FLAG_WRITE)) { 5789 update_mmu_cache_range(vmf, v !! 4018 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 5790 vmf->pte, 1); << 5791 } else { 4019 } else { 5792 /* Skip spurious TLB flush fo << 5793 if (vmf->flags & FAULT_FLAG_T << 5794 goto unlock; << 5795 /* 4020 /* 5796 * This is needed only for pr 4021 * This is needed only for protection faults but the arch code 5797 * is not yet telling us if t 4022 * is not yet telling us if this is a protection fault or not. 5798 * This still avoids useless 4023 * This still avoids useless tlb flushes for .text page faults 5799 * with threads. 4024 * with threads. 5800 */ 4025 */ 5801 if (vmf->flags & FAULT_FLAG_W 4026 if (vmf->flags & FAULT_FLAG_WRITE) 5802 flush_tlb_fix_spuriou !! 4027 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 5803 << 5804 } 4028 } 5805 unlock: 4029 unlock: 5806 pte_unmap_unlock(vmf->pte, vmf->ptl); 4030 pte_unmap_unlock(vmf->pte, vmf->ptl); 5807 return 0; 4031 return 0; 5808 } 4032 } 5809 4033 5810 /* 4034 /* 5811 * On entry, we hold either the VMA lock or t !! 4035 * By the time we get here, we already hold the mm semaphore 5812 * (FAULT_FLAG_VMA_LOCK tells you which). If !! 4036 * 5813 * the result, the mmap_lock is not held on e !! 4037 * The mmap_sem may have been released depending on flags and our 5814 * and __folio_lock_or_retry(). !! 4038 * return value. See filemap_fault() and __lock_page_or_retry(). 5815 */ 4039 */ 5816 static vm_fault_t __handle_mm_fault(struct vm !! 4040 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5817 unsigned long address, unsign !! 4041 unsigned int flags) 5818 { 4042 { 5819 struct vm_fault vmf = { 4043 struct vm_fault vmf = { 5820 .vma = vma, 4044 .vma = vma, 5821 .address = address & PAGE_MAS 4045 .address = address & PAGE_MASK, 5822 .real_address = address, << 5823 .flags = flags, 4046 .flags = flags, 5824 .pgoff = linear_page_index(vm 4047 .pgoff = linear_page_index(vma, address), 5825 .gfp_mask = __get_fault_gfp_m 4048 .gfp_mask = __get_fault_gfp_mask(vma), 5826 }; 4049 }; >> 4050 unsigned int dirty = flags & FAULT_FLAG_WRITE; 5827 struct mm_struct *mm = vma->vm_mm; 4051 struct mm_struct *mm = vma->vm_mm; 5828 unsigned long vm_flags = vma->vm_flag << 5829 pgd_t *pgd; 4052 pgd_t *pgd; 5830 p4d_t *p4d; 4053 p4d_t *p4d; 5831 vm_fault_t ret; !! 4054 int ret; 5832 4055 5833 pgd = pgd_offset(mm, address); 4056 pgd = pgd_offset(mm, address); 5834 p4d = p4d_alloc(mm, pgd, address); 4057 p4d = p4d_alloc(mm, pgd, address); 5835 if (!p4d) 4058 if (!p4d) 5836 return VM_FAULT_OOM; 4059 return VM_FAULT_OOM; 5837 4060 5838 vmf.pud = pud_alloc(mm, p4d, address) 4061 vmf.pud = pud_alloc(mm, p4d, address); 5839 if (!vmf.pud) 4062 if (!vmf.pud) 5840 return VM_FAULT_OOM; 4063 return VM_FAULT_OOM; 5841 retry_pud: !! 4064 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 5842 if (pud_none(*vmf.pud) && << 5843 thp_vma_allowable_order(vma, vm_f << 5844 TVA_IN_PF | T << 5845 ret = create_huge_pud(&vmf); 4065 ret = create_huge_pud(&vmf); 5846 if (!(ret & VM_FAULT_FALLBACK 4066 if (!(ret & VM_FAULT_FALLBACK)) 5847 return ret; 4067 return ret; 5848 } else { 4068 } else { 5849 pud_t orig_pud = *vmf.pud; 4069 pud_t orig_pud = *vmf.pud; 5850 4070 5851 barrier(); 4071 barrier(); 5852 if (pud_trans_huge(orig_pud) 4072 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5853 4073 5854 /* !! 4074 /* NUMA case for anonymous PUDs would go here */ 5855 * TODO once we suppo !! 4075 5856 * FAULT_FLAG_UNSHARE !! 4076 if (dirty && !pud_write(orig_pud)) { 5857 */ << 5858 if ((flags & FAULT_FL << 5859 ret = wp_huge 4077 ret = wp_huge_pud(&vmf, orig_pud); 5860 if (!(ret & V 4078 if (!(ret & VM_FAULT_FALLBACK)) 5861 retur 4079 return ret; 5862 } else { 4080 } else { 5863 huge_pud_set_ 4081 huge_pud_set_accessed(&vmf, orig_pud); 5864 return 0; 4082 return 0; 5865 } 4083 } 5866 } 4084 } 5867 } 4085 } 5868 4086 5869 vmf.pmd = pmd_alloc(mm, vmf.pud, addr 4087 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5870 if (!vmf.pmd) 4088 if (!vmf.pmd) 5871 return VM_FAULT_OOM; 4089 return VM_FAULT_OOM; 5872 !! 4090 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 5873 /* Huge pud page fault raced with pmd << 5874 if (pud_trans_unstable(vmf.pud)) << 5875 goto retry_pud; << 5876 << 5877 if (pmd_none(*vmf.pmd) && << 5878 thp_vma_allowable_order(vma, vm_f << 5879 TVA_IN_PF | T << 5880 ret = create_huge_pmd(&vmf); 4091 ret = create_huge_pmd(&vmf); 5881 if (!(ret & VM_FAULT_FALLBACK 4092 if (!(ret & VM_FAULT_FALLBACK)) 5882 return ret; 4093 return ret; 5883 } else { 4094 } else { 5884 vmf.orig_pmd = pmdp_get_lockl !! 4095 pmd_t orig_pmd = *vmf.pmd; 5885 4096 5886 if (unlikely(is_swap_pmd(vmf. !! 4097 barrier(); >> 4098 if (unlikely(is_swap_pmd(orig_pmd))) { 5887 VM_BUG_ON(thp_migrati 4099 VM_BUG_ON(thp_migration_supported() && 5888 !is !! 4100 !is_pmd_migration_entry(orig_pmd)); 5889 if (is_pmd_migration_ !! 4101 if (is_pmd_migration_entry(orig_pmd)) 5890 pmd_migration 4102 pmd_migration_entry_wait(mm, vmf.pmd); 5891 return 0; 4103 return 0; 5892 } 4104 } 5893 if (pmd_trans_huge(vmf.orig_p !! 4105 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 5894 if (pmd_protnone(vmf. !! 4106 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 5895 return do_hug !! 4107 return do_huge_pmd_numa_page(&vmf, orig_pmd); 5896 !! 4108 5897 if ((flags & (FAULT_F !! 4109 if (dirty && !pmd_write(orig_pmd)) { 5898 !pmd_write(vmf.or !! 4110 ret = wp_huge_pmd(&vmf, orig_pmd); 5899 ret = wp_huge << 5900 if (!(ret & V 4111 if (!(ret & VM_FAULT_FALLBACK)) 5901 retur 4112 return ret; 5902 } else { 4113 } else { 5903 huge_pmd_set_ !! 4114 huge_pmd_set_accessed(&vmf, orig_pmd); 5904 return 0; 4115 return 0; 5905 } 4116 } 5906 } 4117 } 5907 } 4118 } 5908 4119 5909 return handle_pte_fault(&vmf); 4120 return handle_pte_fault(&vmf); 5910 } 4121 } 5911 4122 5912 /** << 5913 * mm_account_fault - Do page fault accountin << 5914 * @mm: mm from which memcg should be extract << 5915 * @regs: the pt_regs struct pointer. When s << 5916 * of perf event counters, but we'll s << 5917 * the task who triggered this page fa << 5918 * @address: the faulted address. << 5919 * @flags: the fault flags. << 5920 * @ret: the fault retcode. << 5921 * << 5922 * This will take care of most of the page fa << 5923 * will also include the PERF_COUNT_SW_PAGE_F << 5924 * updates. However, note that the handling << 5925 * still be in per-arch page fault handlers a << 5926 */ << 5927 static inline void mm_account_fault(struct mm << 5928 unsigned << 5929 vm_fault_ << 5930 { << 5931 bool major; << 5932 << 5933 /* Incomplete faults will be accounte << 5934 if (ret & VM_FAULT_RETRY) << 5935 return; << 5936 << 5937 /* << 5938 * To preserve the behavior of older << 5939 * both successful and failed faults, << 5940 * which ignore failed cases. << 5941 */ << 5942 count_vm_event(PGFAULT); << 5943 count_memcg_event_mm(mm, PGFAULT); << 5944 << 5945 /* << 5946 * Do not account for unsuccessful fa << 5947 * valid). That includes arch_vma_ac << 5948 * reaching here. So this is not a "t << 5949 * counter. We should use the hw pro << 5950 */ << 5951 if (ret & VM_FAULT_ERROR) << 5952 return; << 5953 << 5954 /* << 5955 * We define the fault as a major fau << 5956 * is VM_FAULT_MAJOR, or if it retrie << 5957 * handle it immediately previously). << 5958 */ << 5959 major = (ret & VM_FAULT_MAJOR) || (fl << 5960 << 5961 if (major) << 5962 current->maj_flt++; << 5963 else << 5964 current->min_flt++; << 5965 << 5966 /* << 5967 * If the fault is done for GUP, regs << 5968 * accounting for the per thread faul << 5969 * fault, and we skip the perf event << 5970 */ << 5971 if (!regs) << 5972 return; << 5973 << 5974 if (major) << 5975 perf_sw_event(PERF_COUNT_SW_P << 5976 else << 5977 perf_sw_event(PERF_COUNT_SW_P << 5978 } << 5979 << 5980 #ifdef CONFIG_LRU_GEN << 5981 static void lru_gen_enter_fault(struct vm_are << 5982 { << 5983 /* the LRU algorithm only applies to << 5984 current->in_lru_fault = vma_has_recen << 5985 } << 5986 << 5987 static void lru_gen_exit_fault(void) << 5988 { << 5989 current->in_lru_fault = false; << 5990 } << 5991 #else << 5992 static void lru_gen_enter_fault(struct vm_are << 5993 { << 5994 } << 5995 << 5996 static void lru_gen_exit_fault(void) << 5997 { << 5998 } << 5999 #endif /* CONFIG_LRU_GEN */ << 6000 << 6001 static vm_fault_t sanitize_fault_flags(struct << 6002 unsign << 6003 { << 6004 if (unlikely(*flags & FAULT_FLAG_UNSH << 6005 if (WARN_ON_ONCE(*flags & FAU << 6006 return VM_FAULT_SIGSE << 6007 /* << 6008 * FAULT_FLAG_UNSHARE only ap << 6009 * just treat it like an ordi << 6010 */ << 6011 if (!is_cow_mapping(vma->vm_f << 6012 *flags &= ~FAULT_FLAG << 6013 } else if (*flags & FAULT_FLAG_WRITE) << 6014 /* Write faults on read-only << 6015 if (WARN_ON_ONCE(!(vma->vm_fl << 6016 return VM_FAULT_SIGSE << 6017 /* ... and FOLL_FORCE only ap << 6018 if (WARN_ON_ONCE(!(vma->vm_fl << 6019 !is_cow_mapp << 6020 return VM_FAULT_SIGSE << 6021 } << 6022 #ifdef CONFIG_PER_VMA_LOCK << 6023 /* << 6024 * Per-VMA locks can't be used with F << 6025 * the assumption that lock is droppe << 6026 */ << 6027 if (WARN_ON_ONCE((*flags & << 6028 (FAULT_FLAG_VMA_LOCK << 6029 (FAULT_FLAG_VMA_LOCK << 6030 return VM_FAULT_SIGSEGV; << 6031 #endif << 6032 << 6033 return 0; << 6034 } << 6035 << 6036 /* 4123 /* 6037 * By the time we get here, we already hold t 4124 * By the time we get here, we already hold the mm semaphore 6038 * 4125 * 6039 * The mmap_lock may have been released depen !! 4126 * The mmap_sem may have been released depending on flags and our 6040 * return value. See filemap_fault() and __f !! 4127 * return value. See filemap_fault() and __lock_page_or_retry(). 6041 */ 4128 */ 6042 vm_fault_t handle_mm_fault(struct vm_area_str !! 4129 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6043 unsigned int flags !! 4130 unsigned int flags) 6044 { 4131 { 6045 /* If the fault handler drops the mma !! 4132 int ret; 6046 struct mm_struct *mm = vma->vm_mm; << 6047 vm_fault_t ret; << 6048 bool is_droppable; << 6049 4133 6050 __set_current_state(TASK_RUNNING); 4134 __set_current_state(TASK_RUNNING); 6051 4135 6052 ret = sanitize_fault_flags(vma, &flag !! 4136 count_vm_event(PGFAULT); 6053 if (ret) !! 4137 count_memcg_event_mm(vma->vm_mm, PGFAULT); 6054 goto out; !! 4138 >> 4139 /* do counter updates before entering really critical section. */ >> 4140 check_sync_rss_stat(current); 6055 4141 6056 if (!arch_vma_access_permitted(vma, f 4142 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6057 f 4143 flags & FAULT_FLAG_INSTRUCTION, 6058 f !! 4144 flags & FAULT_FLAG_REMOTE)) 6059 ret = VM_FAULT_SIGSEGV; !! 4145 return VM_FAULT_SIGSEGV; 6060 goto out; << 6061 } << 6062 << 6063 is_droppable = !!(vma->vm_flags & VM_ << 6064 4146 6065 /* 4147 /* 6066 * Enable the memcg OOM handling for 4148 * Enable the memcg OOM handling for faults triggered in user 6067 * space. Kernel faults are handled 4149 * space. Kernel faults are handled more gracefully. 6068 */ 4150 */ 6069 if (flags & FAULT_FLAG_USER) 4151 if (flags & FAULT_FLAG_USER) 6070 mem_cgroup_enter_user_fault() !! 4152 mem_cgroup_oom_enable(); 6071 << 6072 lru_gen_enter_fault(vma); << 6073 4153 6074 if (unlikely(is_vm_hugetlb_page(vma)) 4154 if (unlikely(is_vm_hugetlb_page(vma))) 6075 ret = hugetlb_fault(vma->vm_m 4155 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6076 else 4156 else 6077 ret = __handle_mm_fault(vma, 4157 ret = __handle_mm_fault(vma, address, flags); 6078 4158 6079 /* << 6080 * Warning: It is no longer safe to d << 6081 * because mmap_lock might have been << 6082 * vma might be destroyed from undern << 6083 */ << 6084 << 6085 lru_gen_exit_fault(); << 6086 << 6087 /* If the mapping is droppable, then << 6088 if (is_droppable) << 6089 ret &= ~VM_FAULT_OOM; << 6090 << 6091 if (flags & FAULT_FLAG_USER) { 4159 if (flags & FAULT_FLAG_USER) { 6092 mem_cgroup_exit_user_fault(); !! 4160 mem_cgroup_oom_disable(); 6093 /* 4161 /* 6094 * The task may have entered 4162 * The task may have entered a memcg OOM situation but 6095 * if the allocation error wa 4163 * if the allocation error was handled gracefully (no 6096 * VM_FAULT_OOM), there is no 4164 * VM_FAULT_OOM), there is no need to kill anything. 6097 * Just clean up the OOM stat 4165 * Just clean up the OOM state peacefully. 6098 */ 4166 */ 6099 if (task_in_memcg_oom(current 4167 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6100 mem_cgroup_oom_synchr 4168 mem_cgroup_oom_synchronize(false); 6101 } 4169 } 6102 out: << 6103 mm_account_fault(mm, regs, address, f << 6104 4170 6105 return ret; 4171 return ret; 6106 } 4172 } 6107 EXPORT_SYMBOL_GPL(handle_mm_fault); 4173 EXPORT_SYMBOL_GPL(handle_mm_fault); 6108 4174 6109 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA << 6110 #include <linux/extable.h> << 6111 << 6112 static inline bool get_mmap_lock_carefully(st << 6113 { << 6114 if (likely(mmap_read_trylock(mm))) << 6115 return true; << 6116 << 6117 if (regs && !user_mode(regs)) { << 6118 unsigned long ip = exception_ << 6119 if (!search_exception_tables( << 6120 return false; << 6121 } << 6122 << 6123 return !mmap_read_lock_killable(mm); << 6124 } << 6125 << 6126 static inline bool mmap_upgrade_trylock(struc << 6127 { << 6128 /* << 6129 * We don't have this operation yet. << 6130 * << 6131 * It should be easy enough to do: it << 6132 * atomic_long_try_cmpxchg_acquire << 6133 * from RWSEM_READER_BIAS -> RWSEM_WR << 6134 * it also needs the proper lockdep m << 6135 */ << 6136 return false; << 6137 } << 6138 << 6139 static inline bool upgrade_mmap_lock_carefull << 6140 { << 6141 mmap_read_unlock(mm); << 6142 if (regs && !user_mode(regs)) { << 6143 unsigned long ip = exception_ << 6144 if (!search_exception_tables( << 6145 return false; << 6146 } << 6147 return !mmap_write_lock_killable(mm); << 6148 } << 6149 << 6150 /* << 6151 * Helper for page fault handling. << 6152 * << 6153 * This is kind of equivalend to "mmap_read_l << 6154 * by "find_extend_vma()", except it's a lot << 6155 * the locking (and will drop the lock on fai << 6156 * << 6157 * For example, if we have a kernel bug that << 6158 * fault, we don't want to just use mmap_read << 6159 * the mm lock, because that would deadlock i << 6160 * to happen while we're holding the mm lock << 6161 * << 6162 * So this checks the exception tables on ker << 6163 * order to only do this all for instructions << 6164 * expected to fault. << 6165 * << 6166 * We can also actually take the mm lock for << 6167 * need to extend the vma, which helps the VM << 6168 */ << 6169 struct vm_area_struct *lock_mm_and_find_vma(s << 6170 unsigned long addr, s << 6171 { << 6172 struct vm_area_struct *vma; << 6173 << 6174 if (!get_mmap_lock_carefully(mm, regs << 6175 return NULL; << 6176 << 6177 vma = find_vma(mm, addr); << 6178 if (likely(vma && (vma->vm_start <= a << 6179 return vma; << 6180 << 6181 /* << 6182 * Well, dang. We might still be succ << 6183 * if we can extend a vma to do so. << 6184 */ << 6185 if (!vma || !(vma->vm_flags & VM_GROW << 6186 mmap_read_unlock(mm); << 6187 return NULL; << 6188 } << 6189 << 6190 /* << 6191 * We can try to upgrade the mmap loc << 6192 * in which case we can continue to u << 6193 * we already looked up. << 6194 * << 6195 * Otherwise we'll have to drop the m << 6196 * re-take it, and also look up the v << 6197 * re-checking it. << 6198 */ << 6199 if (!mmap_upgrade_trylock(mm)) { << 6200 if (!upgrade_mmap_lock_carefu << 6201 return NULL; << 6202 << 6203 vma = find_vma(mm, addr); << 6204 if (!vma) << 6205 goto fail; << 6206 if (vma->vm_start <= addr) << 6207 goto success; << 6208 if (!(vma->vm_flags & VM_GROW << 6209 goto fail; << 6210 } << 6211 << 6212 if (expand_stack_locked(vma, addr)) << 6213 goto fail; << 6214 << 6215 success: << 6216 mmap_write_downgrade(mm); << 6217 return vma; << 6218 << 6219 fail: << 6220 mmap_write_unlock(mm); << 6221 return NULL; << 6222 } << 6223 #endif << 6224 << 6225 #ifdef CONFIG_PER_VMA_LOCK << 6226 /* << 6227 * Lookup and lock a VMA under RCU protection << 6228 * stable and not isolated. If the VMA is not << 6229 * function returns NULL. << 6230 */ << 6231 struct vm_area_struct *lock_vma_under_rcu(str << 6232 uns << 6233 { << 6234 MA_STATE(mas, &mm->mm_mt, address, ad << 6235 struct vm_area_struct *vma; << 6236 << 6237 rcu_read_lock(); << 6238 retry: << 6239 vma = mas_walk(&mas); << 6240 if (!vma) << 6241 goto inval; << 6242 << 6243 if (!vma_start_read(vma)) << 6244 goto inval; << 6245 << 6246 /* Check if the VMA got isolated afte << 6247 if (vma->detached) { << 6248 vma_end_read(vma); << 6249 count_vm_vma_lock_event(VMA_L << 6250 /* The area was replaced with << 6251 goto retry; << 6252 } << 6253 /* << 6254 * At this point, we have a stable re << 6255 * locked and we know it hasn't alrea << 6256 * From here on, we can access the VM << 6257 * fields are accessible for RCU read << 6258 */ << 6259 << 6260 /* Check since vm_start/vm_end might << 6261 if (unlikely(address < vma->vm_start << 6262 goto inval_end_read; << 6263 << 6264 rcu_read_unlock(); << 6265 return vma; << 6266 << 6267 inval_end_read: << 6268 vma_end_read(vma); << 6269 inval: << 6270 rcu_read_unlock(); << 6271 count_vm_vma_lock_event(VMA_LOCK_ABOR << 6272 return NULL; << 6273 } << 6274 #endif /* CONFIG_PER_VMA_LOCK */ << 6275 << 6276 #ifndef __PAGETABLE_P4D_FOLDED 4175 #ifndef __PAGETABLE_P4D_FOLDED 6277 /* 4176 /* 6278 * Allocate p4d page table. 4177 * Allocate p4d page table. 6279 * We've already handled the fast-path in-lin 4178 * We've already handled the fast-path in-line. 6280 */ 4179 */ 6281 int __p4d_alloc(struct mm_struct *mm, pgd_t * 4180 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6282 { 4181 { 6283 p4d_t *new = p4d_alloc_one(mm, addres 4182 p4d_t *new = p4d_alloc_one(mm, address); 6284 if (!new) 4183 if (!new) 6285 return -ENOMEM; 4184 return -ENOMEM; 6286 4185 >> 4186 smp_wmb(); /* See comment in __pte_alloc */ >> 4187 6287 spin_lock(&mm->page_table_lock); 4188 spin_lock(&mm->page_table_lock); 6288 if (pgd_present(*pgd)) { /* An !! 4189 if (pgd_present(*pgd)) /* Another has populated it */ 6289 p4d_free(mm, new); 4190 p4d_free(mm, new); 6290 } else { !! 4191 else 6291 smp_wmb(); /* See comment in << 6292 pgd_populate(mm, pgd, new); 4192 pgd_populate(mm, pgd, new); 6293 } << 6294 spin_unlock(&mm->page_table_lock); 4193 spin_unlock(&mm->page_table_lock); 6295 return 0; 4194 return 0; 6296 } 4195 } 6297 #endif /* __PAGETABLE_P4D_FOLDED */ 4196 #endif /* __PAGETABLE_P4D_FOLDED */ 6298 4197 6299 #ifndef __PAGETABLE_PUD_FOLDED 4198 #ifndef __PAGETABLE_PUD_FOLDED 6300 /* 4199 /* 6301 * Allocate page upper directory. 4200 * Allocate page upper directory. 6302 * We've already handled the fast-path in-lin 4201 * We've already handled the fast-path in-line. 6303 */ 4202 */ 6304 int __pud_alloc(struct mm_struct *mm, p4d_t * 4203 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6305 { 4204 { 6306 pud_t *new = pud_alloc_one(mm, addres 4205 pud_t *new = pud_alloc_one(mm, address); 6307 if (!new) 4206 if (!new) 6308 return -ENOMEM; 4207 return -ENOMEM; 6309 4208 >> 4209 smp_wmb(); /* See comment in __pte_alloc */ >> 4210 6310 spin_lock(&mm->page_table_lock); 4211 spin_lock(&mm->page_table_lock); >> 4212 #ifndef __ARCH_HAS_5LEVEL_HACK 6311 if (!p4d_present(*p4d)) { 4213 if (!p4d_present(*p4d)) { 6312 mm_inc_nr_puds(mm); 4214 mm_inc_nr_puds(mm); 6313 smp_wmb(); /* See comment in << 6314 p4d_populate(mm, p4d, new); 4215 p4d_populate(mm, p4d, new); 6315 } else /* Another has populated it * 4216 } else /* Another has populated it */ 6316 pud_free(mm, new); 4217 pud_free(mm, new); >> 4218 #else >> 4219 if (!pgd_present(*p4d)) { >> 4220 mm_inc_nr_puds(mm); >> 4221 pgd_populate(mm, p4d, new); >> 4222 } else /* Another has populated it */ >> 4223 pud_free(mm, new); >> 4224 #endif /* __ARCH_HAS_5LEVEL_HACK */ 6317 spin_unlock(&mm->page_table_lock); 4225 spin_unlock(&mm->page_table_lock); 6318 return 0; 4226 return 0; 6319 } 4227 } 6320 #endif /* __PAGETABLE_PUD_FOLDED */ 4228 #endif /* __PAGETABLE_PUD_FOLDED */ 6321 4229 6322 #ifndef __PAGETABLE_PMD_FOLDED 4230 #ifndef __PAGETABLE_PMD_FOLDED 6323 /* 4231 /* 6324 * Allocate page middle directory. 4232 * Allocate page middle directory. 6325 * We've already handled the fast-path in-lin 4233 * We've already handled the fast-path in-line. 6326 */ 4234 */ 6327 int __pmd_alloc(struct mm_struct *mm, pud_t * 4235 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6328 { 4236 { 6329 spinlock_t *ptl; 4237 spinlock_t *ptl; 6330 pmd_t *new = pmd_alloc_one(mm, addres 4238 pmd_t *new = pmd_alloc_one(mm, address); 6331 if (!new) 4239 if (!new) 6332 return -ENOMEM; 4240 return -ENOMEM; 6333 4241 >> 4242 smp_wmb(); /* See comment in __pte_alloc */ >> 4243 6334 ptl = pud_lock(mm, pud); 4244 ptl = pud_lock(mm, pud); >> 4245 #ifndef __ARCH_HAS_4LEVEL_HACK 6335 if (!pud_present(*pud)) { 4246 if (!pud_present(*pud)) { 6336 mm_inc_nr_pmds(mm); 4247 mm_inc_nr_pmds(mm); 6337 smp_wmb(); /* See comment in << 6338 pud_populate(mm, pud, new); 4248 pud_populate(mm, pud, new); 6339 } else { /* Another has popula !! 4249 } else /* Another has populated it */ 6340 pmd_free(mm, new); 4250 pmd_free(mm, new); 6341 } !! 4251 #else >> 4252 if (!pgd_present(*pud)) { >> 4253 mm_inc_nr_pmds(mm); >> 4254 pgd_populate(mm, pud, new); >> 4255 } else /* Another has populated it */ >> 4256 pmd_free(mm, new); >> 4257 #endif /* __ARCH_HAS_4LEVEL_HACK */ 6342 spin_unlock(ptl); 4258 spin_unlock(ptl); 6343 return 0; 4259 return 0; 6344 } 4260 } 6345 #endif /* __PAGETABLE_PMD_FOLDED */ 4261 #endif /* __PAGETABLE_PMD_FOLDED */ 6346 4262 6347 static inline void pfnmap_args_setup(struct f !! 4263 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 6348 spinlock !! 4264 unsigned long *start, unsigned long *end, 6349 pgprot_t !! 4265 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 6350 unsigned << 6351 bool spe << 6352 { << 6353 args->lock = lock; << 6354 args->ptep = ptep; << 6355 args->pfn = pfn_base + ((args->addres << 6356 args->pgprot = pgprot; << 6357 args->writable = writable; << 6358 args->special = special; << 6359 } << 6360 << 6361 static inline void pfnmap_lockdep_assert(stru << 6362 { << 6363 #ifdef CONFIG_LOCKDEP << 6364 struct file *file = vma->vm_file; << 6365 struct address_space *mapping = file << 6366 << 6367 if (mapping) << 6368 lockdep_assert(lockdep_is_hel << 6369 lockdep_is_hel << 6370 else << 6371 lockdep_assert(lockdep_is_hel << 6372 #endif << 6373 } << 6374 << 6375 /** << 6376 * follow_pfnmap_start() - Look up a pfn mapp << 6377 * @args: Pointer to struct @follow_pfnmap_ar << 6378 * << 6379 * The caller needs to setup args->vma and ar << 6380 * virtual address as the target of such look << 6381 * the results will be put into other output << 6382 * << 6383 * After the caller finished using the fields << 6384 * another follow_pfnmap_end() to proper rele << 6385 * of such look up request. << 6386 * << 6387 * During the start() and end() calls, the re << 6388 * as proper locks will be held. After the e << 6389 * in @follow_pfnmap_args will be invalid to << 6390 * use of such information after end() may re << 6391 * by the caller with page table updates, oth << 6392 * security bug. << 6393 * << 6394 * If the PTE maps a refcounted page, callers << 6395 * against invalidation with MMU notifiers; o << 6396 * a later point in time can trigger use-afte << 6397 * << 6398 * Only IO mappings and raw PFN mappings are << 6399 * should be taken for read, and the mmap sem << 6400 * before the end() is invoked. << 6401 * << 6402 * This function must not be used to modify P << 6403 * << 6404 * Return: zero on success, negative otherwis << 6405 */ << 6406 int follow_pfnmap_start(struct follow_pfnmap_ << 6407 { 4266 { 6408 struct vm_area_struct *vma = args->vm !! 4267 pgd_t *pgd; 6409 unsigned long address = args->address !! 4268 p4d_t *p4d; 6410 struct mm_struct *mm = vma->vm_mm; !! 4269 pud_t *pud; 6411 spinlock_t *lock; !! 4270 pmd_t *pmd; 6412 pgd_t *pgdp; !! 4271 pte_t *ptep; 6413 p4d_t *p4dp, p4d; << 6414 pud_t *pudp, pud; << 6415 pmd_t *pmdp, pmd; << 6416 pte_t *ptep, pte; << 6417 << 6418 pfnmap_lockdep_assert(vma); << 6419 4272 6420 if (unlikely(address < vma->vm_start !! 4273 pgd = pgd_offset(mm, address); >> 4274 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 6421 goto out; 4275 goto out; 6422 4276 6423 if (!(vma->vm_flags & (VM_IO | VM_PFN !! 4277 p4d = p4d_offset(pgd, address); 6424 goto out; !! 4278 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 6425 retry: << 6426 pgdp = pgd_offset(mm, address); << 6427 if (pgd_none(*pgdp) || unlikely(pgd_b << 6428 goto out; 4279 goto out; 6429 4280 6430 p4dp = p4d_offset(pgdp, address); !! 4281 pud = pud_offset(p4d, address); 6431 p4d = READ_ONCE(*p4dp); !! 4282 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 6432 if (p4d_none(p4d) || unlikely(p4d_bad << 6433 goto out; 4283 goto out; 6434 4284 6435 pudp = pud_offset(p4dp, address); !! 4285 pmd = pmd_offset(pud, address); 6436 pud = READ_ONCE(*pudp); !! 4286 VM_BUG_ON(pmd_trans_huge(*pmd)); 6437 if (pud_none(pud)) << 6438 goto out; << 6439 if (pud_leaf(pud)) { << 6440 lock = pud_lock(mm, pudp); << 6441 if (!unlikely(pud_leaf(pud))) << 6442 spin_unlock(lock); << 6443 goto retry; << 6444 } << 6445 pfnmap_args_setup(args, lock, << 6446 pud_pfn(pud << 6447 pud_special << 6448 return 0; << 6449 } << 6450 4287 6451 pmdp = pmd_offset(pudp, address); !! 4288 if (pmd_huge(*pmd)) { 6452 pmd = pmdp_get_lockless(pmdp); !! 4289 if (!pmdpp) 6453 if (pmd_leaf(pmd)) { !! 4290 goto out; 6454 lock = pmd_lock(mm, pmdp); !! 4291 6455 if (!unlikely(pmd_leaf(pmd))) !! 4292 if (start && end) { 6456 spin_unlock(lock); !! 4293 *start = address & PMD_MASK; 6457 goto retry; !! 4294 *end = *start + PMD_SIZE; 6458 } !! 4295 mmu_notifier_invalidate_range_start(mm, *start, *end); 6459 pfnmap_args_setup(args, lock, !! 4296 } 6460 pmd_pfn(pmd !! 4297 *ptlp = pmd_lock(mm, pmd); 6461 pmd_special !! 4298 if (pmd_huge(*pmd)) { 6462 return 0; !! 4299 *pmdpp = pmd; >> 4300 return 0; >> 4301 } >> 4302 spin_unlock(*ptlp); >> 4303 if (start && end) >> 4304 mmu_notifier_invalidate_range_end(mm, *start, *end); 6463 } 4305 } 6464 4306 6465 ptep = pte_offset_map_lock(mm, pmdp, !! 4307 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 6466 if (!ptep) << 6467 goto out; 4308 goto out; 6468 pte = ptep_get(ptep); !! 4309 6469 if (!pte_present(pte)) !! 4310 if (start && end) { >> 4311 *start = address & PAGE_MASK; >> 4312 *end = *start + PAGE_SIZE; >> 4313 mmu_notifier_invalidate_range_start(mm, *start, *end); >> 4314 } >> 4315 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); >> 4316 if (!pte_present(*ptep)) 6470 goto unlock; 4317 goto unlock; 6471 pfnmap_args_setup(args, lock, ptep, p !! 4318 *ptepp = ptep; 6472 pte_pfn(pte), PAGE_ << 6473 pte_special(pte)); << 6474 return 0; 4319 return 0; 6475 unlock: 4320 unlock: 6476 pte_unmap_unlock(ptep, lock); !! 4321 pte_unmap_unlock(ptep, *ptlp); >> 4322 if (start && end) >> 4323 mmu_notifier_invalidate_range_end(mm, *start, *end); 6477 out: 4324 out: 6478 return -EINVAL; 4325 return -EINVAL; 6479 } 4326 } 6480 EXPORT_SYMBOL_GPL(follow_pfnmap_start); !! 4327 >> 4328 static inline int follow_pte(struct mm_struct *mm, unsigned long address, >> 4329 pte_t **ptepp, spinlock_t **ptlp) >> 4330 { >> 4331 int res; >> 4332 >> 4333 /* (void) is needed to make gcc happy */ >> 4334 (void) __cond_lock(*ptlp, >> 4335 !(res = __follow_pte_pmd(mm, address, NULL, NULL, >> 4336 ptepp, NULL, ptlp))); >> 4337 return res; >> 4338 } >> 4339 >> 4340 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, >> 4341 unsigned long *start, unsigned long *end, >> 4342 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) >> 4343 { >> 4344 int res; >> 4345 >> 4346 /* (void) is needed to make gcc happy */ >> 4347 (void) __cond_lock(*ptlp, >> 4348 !(res = __follow_pte_pmd(mm, address, start, end, >> 4349 ptepp, pmdpp, ptlp))); >> 4350 return res; >> 4351 } >> 4352 EXPORT_SYMBOL(follow_pte_pmd); 6481 4353 6482 /** 4354 /** 6483 * follow_pfnmap_end(): End a follow_pfnmap_s !! 4355 * follow_pfn - look up PFN at a user virtual address 6484 * @args: Pointer to struct @follow_pfnmap_ar !! 4356 * @vma: memory mapping >> 4357 * @address: user virtual address >> 4358 * @pfn: location to store found PFN >> 4359 * >> 4360 * Only IO mappings and raw PFN mappings are allowed. 6485 * 4361 * 6486 * Must be used in pair of follow_pfnmap_star !! 4362 * Returns zero and the pfn at @pfn on success, -ve otherwise. 6487 * above for more information. << 6488 */ 4363 */ 6489 void follow_pfnmap_end(struct follow_pfnmap_a !! 4364 int follow_pfn(struct vm_area_struct *vma, unsigned long address, >> 4365 unsigned long *pfn) 6490 { 4366 { 6491 if (args->lock) !! 4367 int ret = -EINVAL; 6492 spin_unlock(args->lock); !! 4368 spinlock_t *ptl; 6493 if (args->ptep) !! 4369 pte_t *ptep; 6494 pte_unmap(args->ptep); !! 4370 >> 4371 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) >> 4372 return ret; >> 4373 >> 4374 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); >> 4375 if (ret) >> 4376 return ret; >> 4377 *pfn = pte_pfn(*ptep); >> 4378 pte_unmap_unlock(ptep, ptl); >> 4379 return 0; 6495 } 4380 } 6496 EXPORT_SYMBOL_GPL(follow_pfnmap_end); !! 4381 EXPORT_SYMBOL(follow_pfn); 6497 4382 6498 #ifdef CONFIG_HAVE_IOREMAP_PROT 4383 #ifdef CONFIG_HAVE_IOREMAP_PROT 6499 /** !! 4384 int follow_phys(struct vm_area_struct *vma, 6500 * generic_access_phys - generic implementati !! 4385 unsigned long address, unsigned int flags, 6501 * @vma: the vma to access !! 4386 unsigned long *prot, resource_size_t *phys) 6502 * @addr: userspace address, not relative off !! 4387 { 6503 * @buf: buffer to read/write !! 4388 int ret = -EINVAL; 6504 * @len: length of transfer !! 4389 pte_t *ptep, pte; 6505 * @write: set to FOLL_WRITE when writing, ot !! 4390 spinlock_t *ptl; 6506 * !! 4391 6507 * This is a generic implementation for &vm_o !! 4392 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6508 * iomem mapping. This callback is used by ac !! 4393 goto out; 6509 * not page based. !! 4394 6510 */ !! 4395 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) >> 4396 goto out; >> 4397 pte = *ptep; >> 4398 >> 4399 if ((flags & FOLL_WRITE) && !pte_write(pte)) >> 4400 goto unlock; >> 4401 >> 4402 *prot = pgprot_val(pte_pgprot(pte)); >> 4403 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; >> 4404 >> 4405 ret = 0; >> 4406 unlock: >> 4407 pte_unmap_unlock(ptep, ptl); >> 4408 out: >> 4409 return ret; >> 4410 } >> 4411 6511 int generic_access_phys(struct vm_area_struct 4412 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6512 void *buf, int len, i 4413 void *buf, int len, int write) 6513 { 4414 { 6514 resource_size_t phys_addr; 4415 resource_size_t phys_addr; 6515 unsigned long prot = 0; 4416 unsigned long prot = 0; 6516 void __iomem *maddr; 4417 void __iomem *maddr; 6517 int offset = offset_in_page(addr); !! 4418 int offset = addr & (PAGE_SIZE-1); 6518 int ret = -EINVAL; << 6519 bool writable; << 6520 struct follow_pfnmap_args args = { .v << 6521 << 6522 retry: << 6523 if (follow_pfnmap_start(&args)) << 6524 return -EINVAL; << 6525 prot = pgprot_val(args.pgprot); << 6526 phys_addr = (resource_size_t)args.pfn << 6527 writable = args.writable; << 6528 follow_pfnmap_end(&args); << 6529 4419 6530 if ((write & FOLL_WRITE) && !writable !! 4420 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 6531 return -EINVAL; 4421 return -EINVAL; 6532 4422 6533 maddr = ioremap_prot(phys_addr, PAGE_ 4423 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6534 if (!maddr) 4424 if (!maddr) 6535 return -ENOMEM; 4425 return -ENOMEM; 6536 4426 6537 if (follow_pfnmap_start(&args)) << 6538 goto out_unmap; << 6539 << 6540 if ((prot != pgprot_val(args.pgprot)) << 6541 (phys_addr != (args.pfn << PAGE_S << 6542 (writable != args.writable)) { << 6543 follow_pfnmap_end(&args); << 6544 iounmap(maddr); << 6545 goto retry; << 6546 } << 6547 << 6548 if (write) 4427 if (write) 6549 memcpy_toio(maddr + offset, b 4428 memcpy_toio(maddr + offset, buf, len); 6550 else 4429 else 6551 memcpy_fromio(buf, maddr + of 4430 memcpy_fromio(buf, maddr + offset, len); 6552 ret = len; << 6553 follow_pfnmap_end(&args); << 6554 out_unmap: << 6555 iounmap(maddr); 4431 iounmap(maddr); 6556 4432 6557 return ret; !! 4433 return len; 6558 } 4434 } 6559 EXPORT_SYMBOL_GPL(generic_access_phys); 4435 EXPORT_SYMBOL_GPL(generic_access_phys); 6560 #endif 4436 #endif 6561 4437 6562 /* 4438 /* 6563 * Access another process' address space as g !! 4439 * Access another process' address space as given in mm. If non-NULL, use the >> 4440 * given task for page fault accounting. 6564 */ 4441 */ 6565 static int __access_remote_vm(struct mm_struc !! 4442 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 6566 void *buf, int !! 4443 unsigned long addr, void *buf, int len, unsigned int gup_flags) 6567 { 4444 { >> 4445 struct vm_area_struct *vma; 6568 void *old_buf = buf; 4446 void *old_buf = buf; 6569 int write = gup_flags & FOLL_WRITE; 4447 int write = gup_flags & FOLL_WRITE; 6570 4448 6571 if (mmap_read_lock_killable(mm)) !! 4449 down_read(&mm->mmap_sem); 6572 return 0; << 6573 << 6574 /* Untag the address before looking u << 6575 addr = untagged_addr_remote(mm, addr) << 6576 << 6577 /* Avoid triggering the temporary war << 6578 if (!vma_lookup(mm, addr) && !expand_ << 6579 return 0; << 6580 << 6581 /* ignore errors, just check how much 4450 /* ignore errors, just check how much was successfully transferred */ 6582 while (len) { 4451 while (len) { 6583 int bytes, offset; !! 4452 int bytes, ret, offset; 6584 void *maddr; 4453 void *maddr; 6585 struct vm_area_struct *vma = !! 4454 struct page *page = NULL; 6586 struct page *page = get_user_ << 6587 << 6588 << 6589 if (IS_ERR(page)) { << 6590 /* We might need to e << 6591 vma = vma_lookup(mm, << 6592 if (!vma) { << 6593 vma = expand_ << 6594 << 6595 /* mmap_lock << 6596 if (!vma) << 6597 retur << 6598 << 6599 /* Try again << 6600 continue; << 6601 } << 6602 4455 >> 4456 ret = get_user_pages_remote(tsk, mm, addr, 1, >> 4457 gup_flags, &page, &vma, NULL); >> 4458 if (ret <= 0) { >> 4459 #ifndef CONFIG_HAVE_IOREMAP_PROT >> 4460 break; >> 4461 #else 6603 /* 4462 /* 6604 * Check if this is a 4463 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6605 * we can access usin 4464 * we can access using slightly different code. 6606 */ 4465 */ 6607 bytes = 0; !! 4466 vma = find_vma(mm, addr); 6608 #ifdef CONFIG_HAVE_IOREMAP_PROT !! 4467 if (!vma || vma->vm_start > addr) >> 4468 break; 6609 if (vma->vm_ops && vm 4469 if (vma->vm_ops && vma->vm_ops->access) 6610 bytes = vma-> !! 4470 ret = vma->vm_ops->access(vma, addr, buf, 6611 !! 4471 len, write); 6612 #endif !! 4472 if (ret <= 0) 6613 if (bytes <= 0) << 6614 break; 4473 break; >> 4474 bytes = ret; >> 4475 #endif 6615 } else { 4476 } else { 6616 bytes = len; 4477 bytes = len; 6617 offset = addr & (PAGE 4478 offset = addr & (PAGE_SIZE-1); 6618 if (bytes > PAGE_SIZE 4479 if (bytes > PAGE_SIZE-offset) 6619 bytes = PAGE_ 4480 bytes = PAGE_SIZE-offset; 6620 4481 6621 maddr = kmap_local_pa !! 4482 maddr = kmap(page); 6622 if (write) { 4483 if (write) { 6623 copy_to_user_ 4484 copy_to_user_page(vma, page, addr, 6624 4485 maddr + offset, buf, bytes); 6625 set_page_dirt 4486 set_page_dirty_lock(page); 6626 } else { 4487 } else { 6627 copy_from_use 4488 copy_from_user_page(vma, page, addr, 6628 4489 buf, maddr + offset, bytes); 6629 } 4490 } 6630 unmap_and_put_page(pa !! 4491 kunmap(page); >> 4492 put_page(page); 6631 } 4493 } 6632 len -= bytes; 4494 len -= bytes; 6633 buf += bytes; 4495 buf += bytes; 6634 addr += bytes; 4496 addr += bytes; 6635 } 4497 } 6636 mmap_read_unlock(mm); !! 4498 up_read(&mm->mmap_sem); 6637 4499 6638 return buf - old_buf; 4500 return buf - old_buf; 6639 } 4501 } 6640 4502 6641 /** 4503 /** 6642 * access_remote_vm - access another process' 4504 * access_remote_vm - access another process' address space 6643 * @mm: the mm_struct of the target a 4505 * @mm: the mm_struct of the target address space 6644 * @addr: start address to access 4506 * @addr: start address to access 6645 * @buf: source or destination buffer 4507 * @buf: source or destination buffer 6646 * @len: number of bytes to transfer 4508 * @len: number of bytes to transfer 6647 * @gup_flags: flags modifying lookup behavi 4509 * @gup_flags: flags modifying lookup behaviour 6648 * 4510 * 6649 * The caller must hold a reference on @mm. 4511 * The caller must hold a reference on @mm. 6650 * << 6651 * Return: number of bytes copied from source << 6652 */ 4512 */ 6653 int access_remote_vm(struct mm_struct *mm, un 4513 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6654 void *buf, int len, unsigned 4514 void *buf, int len, unsigned int gup_flags) 6655 { 4515 { 6656 return __access_remote_vm(mm, addr, b !! 4516 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 6657 } 4517 } 6658 4518 6659 /* 4519 /* 6660 * Access another process' address space. 4520 * Access another process' address space. 6661 * Source/target buffer must be kernel space, 4521 * Source/target buffer must be kernel space, 6662 * Do not walk the page table directly, use g 4522 * Do not walk the page table directly, use get_user_pages 6663 */ 4523 */ 6664 int access_process_vm(struct task_struct *tsk 4524 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6665 void *buf, int len, unsigned 4525 void *buf, int len, unsigned int gup_flags) 6666 { 4526 { 6667 struct mm_struct *mm; 4527 struct mm_struct *mm; 6668 int ret; 4528 int ret; 6669 4529 6670 mm = get_task_mm(tsk); 4530 mm = get_task_mm(tsk); 6671 if (!mm) 4531 if (!mm) 6672 return 0; 4532 return 0; 6673 4533 6674 ret = __access_remote_vm(mm, addr, bu !! 4534 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 6675 4535 6676 mmput(mm); 4536 mmput(mm); 6677 4537 6678 return ret; 4538 return ret; 6679 } 4539 } 6680 EXPORT_SYMBOL_GPL(access_process_vm); 4540 EXPORT_SYMBOL_GPL(access_process_vm); 6681 4541 6682 /* 4542 /* 6683 * Print the name of a VMA. 4543 * Print the name of a VMA. 6684 */ 4544 */ 6685 void print_vma_addr(char *prefix, unsigned lo 4545 void print_vma_addr(char *prefix, unsigned long ip) 6686 { 4546 { 6687 struct mm_struct *mm = current->mm; 4547 struct mm_struct *mm = current->mm; 6688 struct vm_area_struct *vma; 4548 struct vm_area_struct *vma; 6689 4549 6690 /* 4550 /* 6691 * we might be running from an atomic 4551 * we might be running from an atomic context so we cannot sleep 6692 */ 4552 */ 6693 if (!mmap_read_trylock(mm)) !! 4553 if (!down_read_trylock(&mm->mmap_sem)) 6694 return; 4554 return; 6695 4555 6696 vma = vma_lookup(mm, ip); !! 4556 vma = find_vma(mm, ip); 6697 if (vma && vma->vm_file) { 4557 if (vma && vma->vm_file) { 6698 struct file *f = vma->vm_file 4558 struct file *f = vma->vm_file; 6699 ip -= vma->vm_start; !! 4559 char *buf = (char *)__get_free_page(GFP_NOWAIT); 6700 ip += vma->vm_pgoff << PAGE_S !! 4560 if (buf) { 6701 printk("%s%pD[%lx,%lx+%lx]", !! 4561 char *p; 6702 vma->vm_start !! 4562 6703 vma->vm_end - !! 4563 p = file_path(f, buf, PAGE_SIZE); >> 4564 if (IS_ERR(p)) >> 4565 p = "?"; >> 4566 printk("%s%s[%lx+%lx]", prefix, kbasename(p), >> 4567 vma->vm_start, >> 4568 vma->vm_end - vma->vm_start); >> 4569 free_page((unsigned long)buf); >> 4570 } 6704 } 4571 } 6705 mmap_read_unlock(mm); !! 4572 up_read(&mm->mmap_sem); 6706 } 4573 } 6707 4574 6708 #if defined(CONFIG_PROVE_LOCKING) || defined( 4575 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6709 void __might_fault(const char *file, int line 4576 void __might_fault(const char *file, int line) 6710 { 4577 { >> 4578 /* >> 4579 * Some code (nfs/sunrpc) uses socket ops on kernel memory while >> 4580 * holding the mmap_sem, this is safe because kernel memory doesn't >> 4581 * get paged out, therefore we'll never actually fault, and the >> 4582 * below annotations will generate false positives. >> 4583 */ >> 4584 if (uaccess_kernel()) >> 4585 return; 6711 if (pagefault_disabled()) 4586 if (pagefault_disabled()) 6712 return; 4587 return; 6713 __might_sleep(file, line); !! 4588 __might_sleep(file, line, 0); 6714 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4589 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6715 if (current->mm) 4590 if (current->mm) 6716 might_lock_read(¤t->mm- !! 4591 might_lock_read(¤t->mm->mmap_sem); 6717 #endif 4592 #endif 6718 } 4593 } 6719 EXPORT_SYMBOL(__might_fault); 4594 EXPORT_SYMBOL(__might_fault); 6720 #endif 4595 #endif 6721 4596 6722 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || d 4597 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6723 /* !! 4598 static void clear_gigantic_page(struct page *page, 6724 * Process all subpages of the specified huge !! 4599 unsigned long addr, 6725 * operation. The target subpage will be pro !! 4600 unsigned int pages_per_huge_page) 6726 * cache lines hot. << 6727 */ << 6728 static inline int process_huge_page( << 6729 unsigned long addr_hint, unsigned int << 6730 int (*process_subpage)(unsigned long << 6731 void *arg) << 6732 { 4601 { 6733 int i, n, base, l, ret; !! 4602 int i; >> 4603 struct page *p = page; >> 4604 >> 4605 might_sleep(); >> 4606 for (i = 0; i < pages_per_huge_page; >> 4607 i++, p = mem_map_next(p, page, i)) { >> 4608 cond_resched(); >> 4609 clear_user_highpage(p, addr + i * PAGE_SIZE); >> 4610 } >> 4611 } >> 4612 void clear_huge_page(struct page *page, >> 4613 unsigned long addr_hint, unsigned int pages_per_huge_page) >> 4614 { >> 4615 int i, n, base, l; 6734 unsigned long addr = addr_hint & 4616 unsigned long addr = addr_hint & 6735 ~(((unsigned long)nr_pages << !! 4617 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6736 4618 6737 /* Process target subpage last to kee !! 4619 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { >> 4620 clear_gigantic_page(page, addr, pages_per_huge_page); >> 4621 return; >> 4622 } >> 4623 >> 4624 /* Clear sub-page to access last to keep its cache lines hot */ 6738 might_sleep(); 4625 might_sleep(); 6739 n = (addr_hint - addr) / PAGE_SIZE; 4626 n = (addr_hint - addr) / PAGE_SIZE; 6740 if (2 * n <= nr_pages) { !! 4627 if (2 * n <= pages_per_huge_page) { 6741 /* If target subpage in first !! 4628 /* If sub-page to access in first half of huge page */ 6742 base = 0; 4629 base = 0; 6743 l = n; 4630 l = n; 6744 /* Process subpages at the en !! 4631 /* Clear sub-pages at the end of huge page */ 6745 for (i = nr_pages - 1; i >= 2 !! 4632 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 6746 cond_resched(); 4633 cond_resched(); 6747 ret = process_subpage !! 4634 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 6748 if (ret) << 6749 return ret; << 6750 } 4635 } 6751 } else { 4636 } else { 6752 /* If target subpage in secon !! 4637 /* If sub-page to access in second half of huge page */ 6753 base = nr_pages - 2 * (nr_pag !! 4638 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 6754 l = nr_pages - n; !! 4639 l = pages_per_huge_page - n; 6755 /* Process subpages at the be !! 4640 /* Clear sub-pages at the begin of huge page */ 6756 for (i = 0; i < base; i++) { 4641 for (i = 0; i < base; i++) { 6757 cond_resched(); 4642 cond_resched(); 6758 ret = process_subpage !! 4643 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 6759 if (ret) << 6760 return ret; << 6761 } 4644 } 6762 } 4645 } 6763 /* 4646 /* 6764 * Process remaining subpages in left !! 4647 * Clear remaining sub-pages in left-right-left-right pattern 6765 * towards the target subpage !! 4648 * towards the sub-page to access 6766 */ 4649 */ 6767 for (i = 0; i < l; i++) { 4650 for (i = 0; i < l; i++) { 6768 int left_idx = base + i; 4651 int left_idx = base + i; 6769 int right_idx = base + 2 * l 4652 int right_idx = base + 2 * l - 1 - i; 6770 4653 6771 cond_resched(); 4654 cond_resched(); 6772 ret = process_subpage(addr + !! 4655 clear_user_highpage(page + left_idx, 6773 if (ret) !! 4656 addr + left_idx * PAGE_SIZE); 6774 return ret; << 6775 cond_resched(); 4657 cond_resched(); 6776 ret = process_subpage(addr + !! 4658 clear_user_highpage(page + right_idx, 6777 if (ret) !! 4659 addr + right_idx * PAGE_SIZE); 6778 return ret; << 6779 } 4660 } 6780 return 0; << 6781 } 4661 } 6782 4662 6783 static void clear_gigantic_page(struct folio !! 4663 static void copy_user_gigantic_page(struct page *dst, struct page *src, 6784 unsigned int !! 4664 unsigned long addr, >> 4665 struct vm_area_struct *vma, >> 4666 unsigned int pages_per_huge_page) 6785 { 4667 { 6786 int i; 4668 int i; >> 4669 struct page *dst_base = dst; >> 4670 struct page *src_base = src; 6787 4671 6788 might_sleep(); !! 4672 for (i = 0; i < pages_per_huge_page; ) { 6789 for (i = 0; i < nr_pages; i++) { << 6790 cond_resched(); 4673 cond_resched(); 6791 clear_user_highpage(folio_pag !! 4674 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 6792 } << 6793 } << 6794 << 6795 static int clear_subpage(unsigned long addr, << 6796 { << 6797 struct folio *folio = arg; << 6798 << 6799 clear_user_highpage(folio_page(folio, << 6800 return 0; << 6801 } << 6802 4675 6803 /** !! 4676 i++; 6804 * folio_zero_user - Zero a folio which will !! 4677 dst = mem_map_next(dst, dst_base, i); 6805 * @folio: The folio to zero. !! 4678 src = mem_map_next(src, src_base, i); 6806 * @addr_hint: The address will be accessed o !! 4679 } 6807 */ << 6808 void folio_zero_user(struct folio *folio, uns << 6809 { << 6810 unsigned int nr_pages = folio_nr_page << 6811 << 6812 if (unlikely(nr_pages > MAX_ORDER_NR_ << 6813 clear_gigantic_page(folio, ad << 6814 else << 6815 process_huge_page(addr_hint, << 6816 } 4680 } 6817 4681 6818 static int copy_user_gigantic_page(struct fol !! 4682 void copy_user_huge_page(struct page *dst, struct page *src, 6819 unsigned l !! 4683 unsigned long addr, struct vm_area_struct *vma, 6820 struct vm_ !! 4684 unsigned int pages_per_huge_page) 6821 unsigned i << 6822 { 4685 { 6823 int i; 4686 int i; 6824 struct page *dst_page; << 6825 struct page *src_page; << 6826 4687 6827 for (i = 0; i < nr_pages; i++) { !! 4688 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6828 dst_page = folio_page(dst, i) !! 4689 copy_user_gigantic_page(dst, src, addr, vma, 6829 src_page = folio_page(src, i) !! 4690 pages_per_huge_page); >> 4691 return; >> 4692 } 6830 4693 >> 4694 might_sleep(); >> 4695 for (i = 0; i < pages_per_huge_page; i++) { 6831 cond_resched(); 4696 cond_resched(); 6832 if (copy_mc_user_highpage(dst !! 4697 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 6833 add << 6834 return -EHWPOISON; << 6835 } 4698 } 6836 return 0; << 6837 } << 6838 << 6839 struct copy_subpage_arg { << 6840 struct folio *dst; << 6841 struct folio *src; << 6842 struct vm_area_struct *vma; << 6843 }; << 6844 << 6845 static int copy_subpage(unsigned long addr, i << 6846 { << 6847 struct copy_subpage_arg *copy_arg = a << 6848 struct page *dst = folio_page(copy_ar << 6849 struct page *src = folio_page(copy_ar << 6850 << 6851 if (copy_mc_user_highpage(dst, src, a << 6852 return -EHWPOISON; << 6853 return 0; << 6854 } << 6855 << 6856 int copy_user_large_folio(struct folio *dst, << 6857 unsigned long addr_ << 6858 { << 6859 unsigned int nr_pages = folio_nr_page << 6860 struct copy_subpage_arg arg = { << 6861 .dst = dst, << 6862 .src = src, << 6863 .vma = vma, << 6864 }; << 6865 << 6866 if (unlikely(nr_pages > MAX_ORDER_NR_ << 6867 return copy_user_gigantic_pag << 6868 << 6869 return process_huge_page(addr_hint, n << 6870 } 4699 } 6871 4700 6872 long copy_folio_from_user(struct folio *dst_f !! 4701 long copy_huge_page_from_user(struct page *dst_page, 6873 const void __user !! 4702 const void __user *usr_src, 6874 bool allow_pagefau !! 4703 unsigned int pages_per_huge_page, >> 4704 bool allow_pagefault) 6875 { 4705 { 6876 void *kaddr; !! 4706 void *src = (void *)usr_src; >> 4707 void *page_kaddr; 6877 unsigned long i, rc = 0; 4708 unsigned long i, rc = 0; 6878 unsigned int nr_pages = folio_nr_page !! 4709 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 6879 unsigned long ret_val = nr_pages * PA !! 4710 6880 struct page *subpage; !! 4711 for (i = 0; i < pages_per_huge_page; i++) { 6881 !! 4712 if (allow_pagefault) 6882 for (i = 0; i < nr_pages; i++) { !! 4713 page_kaddr = kmap(dst_page + i); 6883 subpage = folio_page(dst_foli !! 4714 else 6884 kaddr = kmap_local_page(subpa !! 4715 page_kaddr = kmap_atomic(dst_page + i); 6885 if (!allow_pagefault) !! 4716 rc = copy_from_user(page_kaddr, 6886 pagefault_disable(); !! 4717 (const void __user *)(src + i * PAGE_SIZE), 6887 rc = copy_from_user(kaddr, us !! 4718 PAGE_SIZE); 6888 if (!allow_pagefault) !! 4719 if (allow_pagefault) 6889 pagefault_enable(); !! 4720 kunmap(dst_page + i); 6890 kunmap_local(kaddr); !! 4721 else >> 4722 kunmap_atomic(page_kaddr); 6891 4723 6892 ret_val -= (PAGE_SIZE - rc); 4724 ret_val -= (PAGE_SIZE - rc); 6893 if (rc) 4725 if (rc) 6894 break; 4726 break; 6895 4727 6896 flush_dcache_page(subpage); << 6897 << 6898 cond_resched(); 4728 cond_resched(); 6899 } 4729 } 6900 return ret_val; 4730 return ret_val; 6901 } 4731 } 6902 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONF 4732 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6903 4733 6904 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLO !! 4734 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6905 4735 6906 static struct kmem_cache *page_ptl_cachep; 4736 static struct kmem_cache *page_ptl_cachep; 6907 4737 6908 void __init ptlock_cache_init(void) 4738 void __init ptlock_cache_init(void) 6909 { 4739 { 6910 page_ptl_cachep = kmem_cache_create(" 4740 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6911 SLAB_PANIC, NULL); 4741 SLAB_PANIC, NULL); 6912 } 4742 } 6913 4743 6914 bool ptlock_alloc(struct ptdesc *ptdesc) !! 4744 bool ptlock_alloc(struct page *page) 6915 { 4745 { 6916 spinlock_t *ptl; 4746 spinlock_t *ptl; 6917 4747 6918 ptl = kmem_cache_alloc(page_ptl_cache 4748 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6919 if (!ptl) 4749 if (!ptl) 6920 return false; 4750 return false; 6921 ptdesc->ptl = ptl; !! 4751 page->ptl = ptl; 6922 return true; 4752 return true; 6923 } 4753 } 6924 4754 6925 void ptlock_free(struct ptdesc *ptdesc) !! 4755 void ptlock_free(struct page *page) 6926 { 4756 { 6927 kmem_cache_free(page_ptl_cachep, ptde !! 4757 kmem_cache_free(page_ptl_cachep, page->ptl); 6928 } 4758 } 6929 #endif 4759 #endif 6930 << 6931 void vma_pgtable_walk_begin(struct vm_area_st << 6932 { << 6933 if (is_vm_hugetlb_page(vma)) << 6934 hugetlb_vma_lock_read(vma); << 6935 } << 6936 << 6937 void vma_pgtable_walk_end(struct vm_area_stru << 6938 { << 6939 if (is_vm_hugetlb_page(vma)) << 6940 hugetlb_vma_unlock_read(vma); << 6941 } << 6942 4760
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.