1 << 2 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 3 /* 2 /* 4 * linux/mm/memory.c 3 * linux/mm/memory.c 5 * 4 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linu 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 6 */ 8 7 9 /* 8 /* 10 * demand-loading started 01.12.91 - seems it 9 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to imp 10 * things wanted, and it should be easy to implement. - Linus 12 */ 11 */ 13 12 14 /* 13 /* 15 * Ok, demand-loading was easy, shared pages a 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Li 15 * pages started 02.12.91, seems to work. - Linus. 17 * 16 * 18 * Tested sharing by executing about 30 /bin/s 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have fr 18 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 19 * far as I could see. 21 * 20 * 22 * Also corrected some "invalidate()"s - I was 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 22 */ 24 23 25 /* 24 /* 26 * Real VM (paging to/from disk) started 18.12 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 26 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I g 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to 28 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device cha 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 30 */ 32 31 33 /* 32 /* 34 * 05.04.94 - Multi-page memory management a 33 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconc 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 35 * 37 * 16.07.99 - Support of BIGMEM added by Ger 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.d 37 * (Gerhard.Wichert@pdb.siemens.de) 39 * 38 * 40 * Aug/Sep 2004 Changed to four level page tab 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 40 */ 42 41 43 #include <linux/kernel_stat.h> 42 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 43 #include <linux/mm.h> 45 #include <linux/mm_inline.h> << 46 #include <linux/sched/mm.h> 44 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 45 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 47 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 48 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 49 #include <linux/mman.h> 52 #include <linux/swap.h> 50 #include <linux/swap.h> 53 #include <linux/highmem.h> 51 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 52 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 53 #include <linux/memremap.h> 56 #include <linux/kmsan.h> << 57 #include <linux/ksm.h> 54 #include <linux/ksm.h> 58 #include <linux/rmap.h> 55 #include <linux/rmap.h> 59 #include <linux/export.h> 56 #include <linux/export.h> 60 #include <linux/delayacct.h> 57 #include <linux/delayacct.h> 61 #include <linux/init.h> 58 #include <linux/init.h> 62 #include <linux/pfn_t.h> 59 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 60 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 61 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 62 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 63 #include <linux/swapops.h> 67 #include <linux/elf.h> 64 #include <linux/elf.h> 68 #include <linux/gfp.h> 65 #include <linux/gfp.h> 69 #include <linux/migrate.h> 66 #include <linux/migrate.h> 70 #include <linux/string.h> 67 #include <linux/string.h> 71 #include <linux/memory-tiers.h> << 72 #include <linux/debugfs.h> 68 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 69 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 70 #include <linux/dax.h> 75 #include <linux/oom.h> 71 #include <linux/oom.h> 76 #include <linux/numa.h> 72 #include <linux/numa.h> 77 #include <linux/perf_event.h> 73 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 74 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 75 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> << 81 76 82 #include <trace/events/kmem.h> 77 #include <trace/events/kmem.h> 83 78 84 #include <asm/io.h> 79 #include <asm/io.h> 85 #include <asm/mmu_context.h> 80 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 81 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 82 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 83 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 84 #include <asm/tlbflush.h> 90 85 91 #include "pgalloc-track.h" 86 #include "pgalloc-track.h" 92 #include "internal.h" 87 #include "internal.h" 93 #include "swap.h" << 94 88 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && 89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing c 90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 91 #endif 98 92 99 #ifndef CONFIG_NUMA !! 93 #ifndef CONFIG_NEED_MULTIPLE_NODES >> 94 /* use the per-pgdat data instead for discontigmem - mbligh */ 100 unsigned long max_mapnr; 95 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 96 EXPORT_SYMBOL(max_mapnr); 102 97 103 struct page *mem_map; 98 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 99 EXPORT_SYMBOL(mem_map); 105 #endif 100 #endif 106 101 107 static vm_fault_t do_fault(struct vm_fault *vm << 108 static vm_fault_t do_anonymous_page(struct vm_ << 109 static bool vmf_pte_changed(struct vm_fault *v << 110 << 111 /* << 112 * Return true if the original pte was a uffd- << 113 * wr-protected). << 114 */ << 115 static __always_inline bool vmf_orig_pte_uffd_ << 116 { << 117 if (!userfaultfd_wp(vmf->vma)) << 118 return false; << 119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE << 120 return false; << 121 << 122 return pte_marker_uffd_wp(vmf->orig_pt << 123 } << 124 << 125 /* 102 /* 126 * A number of key systems in x86 including io 103 * A number of key systems in x86 including ioremap() rely on the assumption 127 * that high_memory defines the upper bound on 104 * that high_memory defines the upper bound on direct map memory, then end 128 * of ZONE_NORMAL. !! 105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and >> 106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL >> 107 * and ZONE_HIGHMEM. 129 */ 108 */ 130 void *high_memory; 109 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 110 EXPORT_SYMBOL(high_memory); 132 111 133 /* 112 /* 134 * Randomize the address space (stacks, mmaps, 113 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 114 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk f 115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can seg 116 * as ancient (libc5 based) binaries can segfault. ) 138 */ 117 */ 139 int randomize_va_space __read_mostly = 118 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 119 #ifdef CONFIG_COMPAT_BRK 141 1; 120 1; 142 #else 121 #else 143 2; 122 2; 144 #endif 123 #endif 145 124 146 #ifndef arch_wants_old_prefaulted_pte !! 125 #ifndef arch_faults_on_old_pte 147 static inline bool arch_wants_old_prefaulted_p !! 126 static inline bool arch_faults_on_old_pte(void) 148 { 127 { 149 /* 128 /* 150 * Transitioning a PTE from 'old' to ' !! 129 * Those arches which don't have hw access flag feature need to 151 * some architectures, even if it's pe !! 130 * implement their own helper. By default, "true" means pagefault 152 * default, "false" means prefaulted e !! 131 * will be hit on old pte. 153 */ 132 */ 154 return false; !! 133 return true; 155 } 134 } 156 #endif 135 #endif 157 136 158 static int __init disable_randmaps(char *s) 137 static int __init disable_randmaps(char *s) 159 { 138 { 160 randomize_va_space = 0; 139 randomize_va_space = 0; 161 return 1; 140 return 1; 162 } 141 } 163 __setup("norandmaps", disable_randmaps); 142 __setup("norandmaps", disable_randmaps); 164 143 165 unsigned long zero_pfn __read_mostly; 144 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 145 EXPORT_SYMBOL(zero_pfn); 167 146 168 unsigned long highest_memmap_pfn __read_mostly 147 unsigned long highest_memmap_pfn __read_mostly; 169 148 170 /* 149 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE i 150 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 151 */ 173 static int __init init_zero_pfn(void) 152 static int __init init_zero_pfn(void) 174 { 153 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 154 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 155 return 0; 177 } 156 } 178 early_initcall(init_zero_pfn); 157 early_initcall(init_zero_pfn); 179 158 180 void mm_trace_rss_stat(struct mm_struct *mm, i !! 159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 181 { 160 { 182 trace_rss_stat(mm, member); !! 161 trace_rss_stat(mm, member, count); 183 } 162 } 184 163 >> 164 #if defined(SPLIT_RSS_COUNTING) >> 165 >> 166 void sync_mm_rss(struct mm_struct *mm) >> 167 { >> 168 int i; >> 169 >> 170 for (i = 0; i < NR_MM_COUNTERS; i++) { >> 171 if (current->rss_stat.count[i]) { >> 172 add_mm_counter(mm, i, current->rss_stat.count[i]); >> 173 current->rss_stat.count[i] = 0; >> 174 } >> 175 } >> 176 current->rss_stat.events = 0; >> 177 } >> 178 >> 179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) >> 180 { >> 181 struct task_struct *task = current; >> 182 >> 183 if (likely(task->mm == mm)) >> 184 task->rss_stat.count[member] += val; >> 185 else >> 186 add_mm_counter(mm, member, val); >> 187 } >> 188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) >> 189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) >> 190 >> 191 /* sync counter once per 64 page faults */ >> 192 #define TASK_RSS_EVENTS_THRESH (64) >> 193 static void check_sync_rss_stat(struct task_struct *task) >> 194 { >> 195 if (unlikely(task != current)) >> 196 return; >> 197 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) >> 198 sync_mm_rss(task->mm); >> 199 } >> 200 #else /* SPLIT_RSS_COUNTING */ >> 201 >> 202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) >> 203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) >> 204 >> 205 static void check_sync_rss_stat(struct task_struct *task) >> 206 { >> 207 } >> 208 >> 209 #endif /* SPLIT_RSS_COUNTING */ >> 210 185 /* 211 /* 186 * Note: this doesn't free the actual pages th 212 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all 213 * has been handled earlier when unmapping all the memory regions. 188 */ 214 */ 189 static void free_pte_range(struct mmu_gather * 215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 216 unsigned long addr) 191 { 217 { 192 pgtable_t token = pmd_pgtable(*pmd); 218 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 219 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 220 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 221 mm_dec_nr_ptes(tlb->mm); 196 } 222 } 197 223 198 static inline void free_pmd_range(struct mmu_g 224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long 225 unsigned long addr, unsigned long end, 200 unsigned long 226 unsigned long floor, unsigned long ceiling) 201 { 227 { 202 pmd_t *pmd; 228 pmd_t *pmd; 203 unsigned long next; 229 unsigned long next; 204 unsigned long start; 230 unsigned long start; 205 231 206 start = addr; 232 start = addr; 207 pmd = pmd_offset(pud, addr); 233 pmd = pmd_offset(pud, addr); 208 do { 234 do { 209 next = pmd_addr_end(addr, end) 235 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd) 236 if (pmd_none_or_clear_bad(pmd)) 211 continue; 237 continue; 212 free_pte_range(tlb, pmd, addr) 238 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != e 239 } while (pmd++, addr = next, addr != end); 214 240 215 start &= PUD_MASK; 241 start &= PUD_MASK; 216 if (start < floor) 242 if (start < floor) 217 return; 243 return; 218 if (ceiling) { 244 if (ceiling) { 219 ceiling &= PUD_MASK; 245 ceiling &= PUD_MASK; 220 if (!ceiling) 246 if (!ceiling) 221 return; 247 return; 222 } 248 } 223 if (end - 1 > ceiling - 1) 249 if (end - 1 > ceiling - 1) 224 return; 250 return; 225 251 226 pmd = pmd_offset(pud, start); 252 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 253 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 254 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 255 mm_dec_nr_pmds(tlb->mm); 230 } 256 } 231 257 232 static inline void free_pud_range(struct mmu_g 258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long 259 unsigned long addr, unsigned long end, 234 unsigned long 260 unsigned long floor, unsigned long ceiling) 235 { 261 { 236 pud_t *pud; 262 pud_t *pud; 237 unsigned long next; 263 unsigned long next; 238 unsigned long start; 264 unsigned long start; 239 265 240 start = addr; 266 start = addr; 241 pud = pud_offset(p4d, addr); 267 pud = pud_offset(p4d, addr); 242 do { 268 do { 243 next = pud_addr_end(addr, end) 269 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud) 270 if (pud_none_or_clear_bad(pud)) 245 continue; 271 continue; 246 free_pmd_range(tlb, pud, addr, 272 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != e 273 } while (pud++, addr = next, addr != end); 248 274 249 start &= P4D_MASK; 275 start &= P4D_MASK; 250 if (start < floor) 276 if (start < floor) 251 return; 277 return; 252 if (ceiling) { 278 if (ceiling) { 253 ceiling &= P4D_MASK; 279 ceiling &= P4D_MASK; 254 if (!ceiling) 280 if (!ceiling) 255 return; 281 return; 256 } 282 } 257 if (end - 1 > ceiling - 1) 283 if (end - 1 > ceiling - 1) 258 return; 284 return; 259 285 260 pud = pud_offset(p4d, start); 286 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 287 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 288 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 289 mm_dec_nr_puds(tlb->mm); 264 } 290 } 265 291 266 static inline void free_p4d_range(struct mmu_g 292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long 293 unsigned long addr, unsigned long end, 268 unsigned long 294 unsigned long floor, unsigned long ceiling) 269 { 295 { 270 p4d_t *p4d; 296 p4d_t *p4d; 271 unsigned long next; 297 unsigned long next; 272 unsigned long start; 298 unsigned long start; 273 299 274 start = addr; 300 start = addr; 275 p4d = p4d_offset(pgd, addr); 301 p4d = p4d_offset(pgd, addr); 276 do { 302 do { 277 next = p4d_addr_end(addr, end) 303 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d) 304 if (p4d_none_or_clear_bad(p4d)) 279 continue; 305 continue; 280 free_pud_range(tlb, p4d, addr, 306 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != e 307 } while (p4d++, addr = next, addr != end); 282 308 283 start &= PGDIR_MASK; 309 start &= PGDIR_MASK; 284 if (start < floor) 310 if (start < floor) 285 return; 311 return; 286 if (ceiling) { 312 if (ceiling) { 287 ceiling &= PGDIR_MASK; 313 ceiling &= PGDIR_MASK; 288 if (!ceiling) 314 if (!ceiling) 289 return; 315 return; 290 } 316 } 291 if (end - 1 > ceiling - 1) 317 if (end - 1 > ceiling - 1) 292 return; 318 return; 293 319 294 p4d = p4d_offset(pgd, start); 320 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 321 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 322 p4d_free_tlb(tlb, p4d, start); 297 } 323 } 298 324 299 /* 325 /* 300 * This function frees user-level page tables 326 * This function frees user-level page tables of a process. 301 */ 327 */ 302 void free_pgd_range(struct mmu_gather *tlb, 328 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, un 329 unsigned long addr, unsigned long end, 304 unsigned long floor, u 330 unsigned long floor, unsigned long ceiling) 305 { 331 { 306 pgd_t *pgd; 332 pgd_t *pgd; 307 unsigned long next; 333 unsigned long next; 308 334 309 /* 335 /* 310 * The next few lines have given us lo 336 * The next few lines have given us lots of grief... 311 * 337 * 312 * Why are we testing PMD* at this top 338 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, 339 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom j 340 * go all the way down to the bottom just to discover that. 315 * 341 * 316 * Why all these "- 1"s? Because 0 re 342 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of 343 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks w 344 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 345 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ce 346 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" a 347 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical) 348 * that end 0 case should be mythical). 323 * 349 * 324 * Wherever addr is brought up or ceil 350 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 351 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about w 352 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go 353 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 354 * 329 * Whereas we round start (addr) and c 355 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order 356 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so 357 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - t 358 * bother to round floor or end up - the tests don't need that. 333 */ 359 */ 334 360 335 addr &= PMD_MASK; 361 addr &= PMD_MASK; 336 if (addr < floor) { 362 if (addr < floor) { 337 addr += PMD_SIZE; 363 addr += PMD_SIZE; 338 if (!addr) 364 if (!addr) 339 return; 365 return; 340 } 366 } 341 if (ceiling) { 367 if (ceiling) { 342 ceiling &= PMD_MASK; 368 ceiling &= PMD_MASK; 343 if (!ceiling) 369 if (!ceiling) 344 return; 370 return; 345 } 371 } 346 if (end - 1 > ceiling - 1) 372 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 373 end -= PMD_SIZE; 348 if (addr > end - 1) 374 if (addr > end - 1) 349 return; 375 return; 350 /* 376 /* 351 * We add page table cache pages with 377 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb 378 * (see pte_free_tlb()), flush the tlb if we need 353 */ 379 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 380 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 381 pgd = pgd_offset(tlb->mm, addr); 356 do { 382 do { 357 next = pgd_addr_end(addr, end) 383 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd) 384 if (pgd_none_or_clear_bad(pgd)) 359 continue; 385 continue; 360 free_p4d_range(tlb, pgd, addr, 386 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != e 387 } while (pgd++, addr = next, addr != end); 362 } 388 } 363 389 364 void free_pgtables(struct mmu_gather *tlb, str !! 390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 365 struct vm_area_struct *vma, !! 391 unsigned long floor, unsigned long ceiling) 366 unsigned long ceiling, bool << 367 { 392 { 368 struct unlink_vma_file_batch vb; !! 393 while (vma) { 369 !! 394 struct vm_area_struct *next = vma->vm_next; 370 do { << 371 unsigned long addr = vma->vm_s 395 unsigned long addr = vma->vm_start; 372 struct vm_area_struct *next; << 373 << 374 /* << 375 * Note: USER_PGTABLES_CEILING << 376 * be 0. This will underflow << 377 */ << 378 next = mas_find(mas, ceiling - << 379 if (unlikely(xa_is_zero(next)) << 380 next = NULL; << 381 396 382 /* 397 /* 383 * Hide vma from rmap and trun 398 * Hide vma from rmap and truncate_pagecache before freeing 384 * pgtables 399 * pgtables 385 */ 400 */ 386 if (mm_wr_locked) << 387 vma_start_write(vma); << 388 unlink_anon_vmas(vma); 401 unlink_anon_vmas(vma); >> 402 unlink_file_vma(vma); 389 403 390 if (is_vm_hugetlb_page(vma)) { 404 if (is_vm_hugetlb_page(vma)) { 391 unlink_file_vma(vma); << 392 hugetlb_free_pgd_range 405 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 393 floor, next ? 406 floor, next ? next->vm_start : ceiling); 394 } else { 407 } else { 395 unlink_file_vma_batch_ << 396 unlink_file_vma_batch_ << 397 << 398 /* 408 /* 399 * Optimization: gathe 409 * Optimization: gather nearby vmas into one call down 400 */ 410 */ 401 while (next && next->v 411 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 402 && !is_vm_huget 412 && !is_vm_hugetlb_page(next)) { 403 vma = next; 413 vma = next; 404 next = mas_fin !! 414 next = vma->vm_next; 405 if (unlikely(x << 406 next = << 407 if (mm_wr_lock << 408 vma_st << 409 unlink_anon_vm 415 unlink_anon_vmas(vma); 410 unlink_file_vm !! 416 unlink_file_vma(vma); 411 } 417 } 412 unlink_file_vma_batch_ << 413 free_pgd_range(tlb, ad 418 free_pgd_range(tlb, addr, vma->vm_end, 414 floor, next ? 419 floor, next ? next->vm_start : ceiling); 415 } 420 } 416 vma = next; 421 vma = next; 417 } while (vma); << 418 } << 419 << 420 void pmd_install(struct mm_struct *mm, pmd_t * << 421 { << 422 spinlock_t *ptl = pmd_lock(mm, pmd); << 423 << 424 if (likely(pmd_none(*pmd))) { /* Has << 425 mm_inc_nr_ptes(mm); << 426 /* << 427 * Ensure all pte setup (eg. p << 428 * visible before the pte is m << 429 * put into page tables. << 430 * << 431 * The other side of the story << 432 * table walking code (when wa << 433 * ie. most of the time). Fort << 434 * of a chain of data-dependen << 435 * being the notable exception << 436 * seen in-order. See the alph << 437 * smp_rmb() barriers in page << 438 */ << 439 smp_wmb(); /* Could be smp_wmb << 440 pmd_populate(mm, pmd, *pte); << 441 *pte = NULL; << 442 } 422 } 443 spin_unlock(ptl); << 444 } 423 } 445 424 446 int __pte_alloc(struct mm_struct *mm, pmd_t *p 425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 447 { 426 { >> 427 spinlock_t *ptl; 448 pgtable_t new = pte_alloc_one(mm); 428 pgtable_t new = pte_alloc_one(mm); 449 if (!new) 429 if (!new) 450 return -ENOMEM; 430 return -ENOMEM; 451 431 452 pmd_install(mm, pmd, &new); !! 432 /* >> 433 * Ensure all pte setup (eg. pte page lock and page clearing) are >> 434 * visible before the pte is made visible to other CPUs by being >> 435 * put into page tables. >> 436 * >> 437 * The other side of the story is the pointer chasing in the page >> 438 * table walking code (when walking the page table without locking; >> 439 * ie. most of the time). Fortunately, these data accesses consist >> 440 * of a chain of data-dependent loads, meaning most CPUs (alpha >> 441 * being the notable exception) will already guarantee loads are >> 442 * seen in-order. See the alpha page table accessors for the >> 443 * smp_rmb() barriers in page table walking code. >> 444 */ >> 445 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ >> 446 >> 447 ptl = pmd_lock(mm, pmd); >> 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ >> 449 mm_inc_nr_ptes(mm); >> 450 pmd_populate(mm, pmd, new); >> 451 new = NULL; >> 452 } >> 453 spin_unlock(ptl); 453 if (new) 454 if (new) 454 pte_free(mm, new); 455 pte_free(mm, new); 455 return 0; 456 return 0; 456 } 457 } 457 458 458 int __pte_alloc_kernel(pmd_t *pmd) 459 int __pte_alloc_kernel(pmd_t *pmd) 459 { 460 { 460 pte_t *new = pte_alloc_one_kernel(&ini 461 pte_t *new = pte_alloc_one_kernel(&init_mm); 461 if (!new) 462 if (!new) 462 return -ENOMEM; 463 return -ENOMEM; 463 464 >> 465 smp_wmb(); /* See comment in __pte_alloc */ >> 466 464 spin_lock(&init_mm.page_table_lock); 467 spin_lock(&init_mm.page_table_lock); 465 if (likely(pmd_none(*pmd))) { /* Has 468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 466 smp_wmb(); /* See comment in p << 467 pmd_populate_kernel(&init_mm, 469 pmd_populate_kernel(&init_mm, pmd, new); 468 new = NULL; 470 new = NULL; 469 } 471 } 470 spin_unlock(&init_mm.page_table_lock); 472 spin_unlock(&init_mm.page_table_lock); 471 if (new) 473 if (new) 472 pte_free_kernel(&init_mm, new) 474 pte_free_kernel(&init_mm, new); 473 return 0; 475 return 0; 474 } 476 } 475 477 476 static inline void init_rss_vec(int *rss) 478 static inline void init_rss_vec(int *rss) 477 { 479 { 478 memset(rss, 0, sizeof(int) * NR_MM_COU 480 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 479 } 481 } 480 482 481 static inline void add_mm_rss_vec(struct mm_st 483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 482 { 484 { 483 int i; 485 int i; 484 486 >> 487 if (current->mm == mm) >> 488 sync_mm_rss(mm); 485 for (i = 0; i < NR_MM_COUNTERS; i++) 489 for (i = 0; i < NR_MM_COUNTERS; i++) 486 if (rss[i]) 490 if (rss[i]) 487 add_mm_counter(mm, i, 491 add_mm_counter(mm, i, rss[i]); 488 } 492 } 489 493 490 /* 494 /* 491 * This function is called to print an error w 495 * This function is called to print an error when a bad pte 492 * is found. For example, we might have a PFN- 496 * is found. For example, we might have a PFN-mapped pte in 493 * a region that doesn't allow it. 497 * a region that doesn't allow it. 494 * 498 * 495 * The calling function must still handle the 499 * The calling function must still handle the error. 496 */ 500 */ 497 static void print_bad_pte(struct vm_area_struc 501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 498 pte_t pte, struct pa 502 pte_t pte, struct page *page) 499 { 503 { 500 pgd_t *pgd = pgd_offset(vma->vm_mm, ad 504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 501 p4d_t *p4d = p4d_offset(pgd, addr); 505 p4d_t *p4d = p4d_offset(pgd, addr); 502 pud_t *pud = pud_offset(p4d, addr); 506 pud_t *pud = pud_offset(p4d, addr); 503 pmd_t *pmd = pmd_offset(pud, addr); 507 pmd_t *pmd = pmd_offset(pud, addr); 504 struct address_space *mapping; 508 struct address_space *mapping; 505 pgoff_t index; 509 pgoff_t index; 506 static unsigned long resume; 510 static unsigned long resume; 507 static unsigned long nr_shown; 511 static unsigned long nr_shown; 508 static unsigned long nr_unshown; 512 static unsigned long nr_unshown; 509 513 510 /* 514 /* 511 * Allow a burst of 60 reports, then k 515 * Allow a burst of 60 reports, then keep quiet for that minute; 512 * or allow a steady drip of one repor 516 * or allow a steady drip of one report per second. 513 */ 517 */ 514 if (nr_shown == 60) { 518 if (nr_shown == 60) { 515 if (time_before(jiffies, resum 519 if (time_before(jiffies, resume)) { 516 nr_unshown++; 520 nr_unshown++; 517 return; 521 return; 518 } 522 } 519 if (nr_unshown) { 523 if (nr_unshown) { 520 pr_alert("BUG: Bad pag 524 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 521 nr_unshown); 525 nr_unshown); 522 nr_unshown = 0; 526 nr_unshown = 0; 523 } 527 } 524 nr_shown = 0; 528 nr_shown = 0; 525 } 529 } 526 if (nr_shown++ == 0) 530 if (nr_shown++ == 0) 527 resume = jiffies + 60 * HZ; 531 resume = jiffies + 60 * HZ; 528 532 529 mapping = vma->vm_file ? vma->vm_file- 533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 530 index = linear_page_index(vma, addr); 534 index = linear_page_index(vma, addr); 531 535 532 pr_alert("BUG: Bad page map in process 536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 533 current->comm, 537 current->comm, 534 (long long)pte_val(pte), (lon 538 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 535 if (page) 539 if (page) 536 dump_page(page, "bad pte"); 540 dump_page(page, "bad pte"); 537 pr_alert("addr:%px vm_flags:%08lx anon 541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 538 (void *)addr, vma->vm_flags, 542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 539 pr_alert("file:%pD fault:%ps mmap:%ps !! 543 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 540 vma->vm_file, 544 vma->vm_file, 541 vma->vm_ops ? vma->vm_ops->fa 545 vma->vm_ops ? vma->vm_ops->fault : NULL, 542 vma->vm_file ? vma->vm_file-> 546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 543 mapping ? mapping->a_ops->rea !! 547 mapping ? mapping->a_ops->readpage : NULL); 544 dump_stack(); 548 dump_stack(); 545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_ 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 546 } 550 } 547 551 548 /* 552 /* 549 * vm_normal_page -- This function gets the "s 553 * vm_normal_page -- This function gets the "struct page" associated with a pte. 550 * 554 * 551 * "Special" mappings do not wish to be associ 555 * "Special" mappings do not wish to be associated with a "struct page" (either 552 * it doesn't exist, or it exists but they don 556 * it doesn't exist, or it exists but they don't want to touch it). In this 553 * case, NULL is returned here. "Normal" mappi 557 * case, NULL is returned here. "Normal" mappings do have a struct page. 554 * 558 * 555 * There are 2 broad cases. Firstly, an archit 559 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 556 * pte bit, in which case this function is tri 560 * pte bit, in which case this function is trivial. Secondly, an architecture 557 * may not have a spare pte bit, which require 561 * may not have a spare pte bit, which requires a more complicated scheme, 558 * described below. 562 * described below. 559 * 563 * 560 * A raw VM_PFNMAP mapping (ie. one that is no 564 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 561 * special mapping (even if there are underlyi 565 * special mapping (even if there are underlying and valid "struct pages"). 562 * COWed pages of a VM_PFNMAP are always norma 566 * COWed pages of a VM_PFNMAP are always normal. 563 * 567 * 564 * The way we recognize COWed pages within VM_ 568 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 565 * rules set up by "remap_pfn_range()": the vm 569 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 566 * set, and the vm_pgoff will point to the fir 570 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 567 * mapping will always honor the rule 571 * mapping will always honor the rule 568 * 572 * 569 * pfn_of_page == vma->vm_pgoff + ((addr 573 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 570 * 574 * 571 * And for normal mappings this is false. 575 * And for normal mappings this is false. 572 * 576 * 573 * This restricts such mappings to be a linear 577 * This restricts such mappings to be a linear translation from virtual address 574 * to pfn. To get around this restriction, we 578 * to pfn. To get around this restriction, we allow arbitrary mappings so long 575 * as the vma is not a COW mapping; in that ca 579 * as the vma is not a COW mapping; in that case, we know that all ptes are 576 * special (because none can have been COWed). 580 * special (because none can have been COWed). 577 * 581 * 578 * 582 * 579 * In order to support COW of arbitrary specia 583 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 580 * 584 * 581 * VM_MIXEDMAP mappings can likewise contain m 585 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 582 * page" backing, however the difference is th 586 * page" backing, however the difference is that _all_ pages with a struct 583 * page (that is, those where pfn_valid is tru 587 * page (that is, those where pfn_valid is true) are refcounted and considered 584 * normal pages by the VM. The only exception !! 588 * normal pages by the VM. The disadvantage is that pages are refcounted 585 * *never* refcounted. !! 589 * (which can be slower and simply not an option for some PFNMAP users). The 586 * !! 590 * advantage is that we don't have to follow the strict linearity rule of 587 * The disadvantage is that pages are refcount !! 591 * PFNMAP mappings in order to support COWable mappings. 588 * simply not an option for some PFNMAP users) << 589 * don't have to follow the strict linearity r << 590 * order to support COWable mappings. << 591 * 592 * 592 */ 593 */ 593 struct page *vm_normal_page(struct vm_area_str 594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 594 pte_t pte) 595 pte_t pte) 595 { 596 { 596 unsigned long pfn = pte_pfn(pte); 597 unsigned long pfn = pte_pfn(pte); 597 598 598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPE 599 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 599 if (likely(!pte_special(pte))) 600 if (likely(!pte_special(pte))) 600 goto check_pfn; 601 goto check_pfn; 601 if (vma->vm_ops && vma->vm_ops 602 if (vma->vm_ops && vma->vm_ops->find_special_page) 602 return vma->vm_ops->fi 603 return vma->vm_ops->find_special_page(vma, addr); 603 if (vma->vm_flags & (VM_PFNMAP 604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 604 return NULL; 605 return NULL; 605 if (is_zero_pfn(pfn)) 606 if (is_zero_pfn(pfn)) 606 return NULL; 607 return NULL; 607 if (pte_devmap(pte)) 608 if (pte_devmap(pte)) 608 /* << 609 * NOTE: New users of ZONE_DEV << 610 * and will have refcounts inc << 611 * when they are inserted into << 612 * return here. Legacy ZONE_DE << 613 * do not have refcounts. Exam << 614 * MEMORY_DEVICE_FS_DAX type i << 615 */ << 616 return NULL; 609 return NULL; 617 610 618 print_bad_pte(vma, addr, pte, 611 print_bad_pte(vma, addr, pte, NULL); 619 return NULL; 612 return NULL; 620 } 613 } 621 614 622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case f 615 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 623 616 624 if (unlikely(vma->vm_flags & (VM_PFNMA 617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 625 if (vma->vm_flags & VM_MIXEDMA 618 if (vma->vm_flags & VM_MIXEDMAP) { 626 if (!pfn_valid(pfn)) 619 if (!pfn_valid(pfn)) 627 return NULL; 620 return NULL; 628 if (is_zero_pfn(pfn)) << 629 return NULL; << 630 goto out; 621 goto out; 631 } else { 622 } else { 632 unsigned long off; 623 unsigned long off; 633 off = (addr - vma->vm_ 624 off = (addr - vma->vm_start) >> PAGE_SHIFT; 634 if (pfn == vma->vm_pgo 625 if (pfn == vma->vm_pgoff + off) 635 return NULL; 626 return NULL; 636 if (!is_cow_mapping(vm 627 if (!is_cow_mapping(vma->vm_flags)) 637 return NULL; 628 return NULL; 638 } 629 } 639 } 630 } 640 631 641 if (is_zero_pfn(pfn)) 632 if (is_zero_pfn(pfn)) 642 return NULL; 633 return NULL; 643 634 644 check_pfn: 635 check_pfn: 645 if (unlikely(pfn > highest_memmap_pfn) 636 if (unlikely(pfn > highest_memmap_pfn)) { 646 print_bad_pte(vma, addr, pte, 637 print_bad_pte(vma, addr, pte, NULL); 647 return NULL; 638 return NULL; 648 } 639 } 649 640 650 /* 641 /* 651 * NOTE! We still have PageReserved() 642 * NOTE! We still have PageReserved() pages in the page tables. 652 * eg. VDSO mappings can cause them to 643 * eg. VDSO mappings can cause them to exist. 653 */ 644 */ 654 out: 645 out: 655 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); << 656 return pfn_to_page(pfn); 646 return pfn_to_page(pfn); 657 } 647 } 658 648 659 struct folio *vm_normal_folio(struct vm_area_s !! 649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 660 pte_t pte) << 661 { << 662 struct page *page = vm_normal_page(vma << 663 << 664 if (page) << 665 return page_folio(page); << 666 return NULL; << 667 } << 668 << 669 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES << 670 struct page *vm_normal_page_pmd(struct vm_area 650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 671 pmd_t pmd) 651 pmd_t pmd) 672 { 652 { 673 unsigned long pfn = pmd_pfn(pmd); 653 unsigned long pfn = pmd_pfn(pmd); 674 654 675 /* Currently it's only used for huge p !! 655 /* 676 if (unlikely(pmd_special(pmd))) !! 656 * There is no pmd_special() but there may be special pmds, e.g. 677 return NULL; !! 657 * in a direct-access (dax) mapping, so let's just replicate the 678 !! 658 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. >> 659 */ 679 if (unlikely(vma->vm_flags & (VM_PFNMA 660 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 680 if (vma->vm_flags & VM_MIXEDMA 661 if (vma->vm_flags & VM_MIXEDMAP) { 681 if (!pfn_valid(pfn)) 662 if (!pfn_valid(pfn)) 682 return NULL; 663 return NULL; 683 goto out; 664 goto out; 684 } else { 665 } else { 685 unsigned long off; 666 unsigned long off; 686 off = (addr - vma->vm_ 667 off = (addr - vma->vm_start) >> PAGE_SHIFT; 687 if (pfn == vma->vm_pgo 668 if (pfn == vma->vm_pgoff + off) 688 return NULL; 669 return NULL; 689 if (!is_cow_mapping(vm 670 if (!is_cow_mapping(vma->vm_flags)) 690 return NULL; 671 return NULL; 691 } 672 } 692 } 673 } 693 674 694 if (pmd_devmap(pmd)) 675 if (pmd_devmap(pmd)) 695 return NULL; 676 return NULL; 696 if (is_huge_zero_pmd(pmd)) 677 if (is_huge_zero_pmd(pmd)) 697 return NULL; 678 return NULL; 698 if (unlikely(pfn > highest_memmap_pfn) 679 if (unlikely(pfn > highest_memmap_pfn)) 699 return NULL; 680 return NULL; 700 681 701 /* 682 /* 702 * NOTE! We still have PageReserved() 683 * NOTE! We still have PageReserved() pages in the page tables. 703 * eg. VDSO mappings can cause them to 684 * eg. VDSO mappings can cause them to exist. 704 */ 685 */ 705 out: 686 out: 706 return pfn_to_page(pfn); 687 return pfn_to_page(pfn); 707 } 688 } 708 << 709 struct folio *vm_normal_folio_pmd(struct vm_ar << 710 unsigned lon << 711 { << 712 struct page *page = vm_normal_page_pmd << 713 << 714 if (page) << 715 return page_folio(page); << 716 return NULL; << 717 } << 718 #endif 689 #endif 719 690 720 static void restore_exclusive_pte(struct vm_ar << 721 struct page << 722 pte_t *ptep) << 723 { << 724 struct folio *folio = page_folio(page) << 725 pte_t orig_pte; << 726 pte_t pte; << 727 swp_entry_t entry; << 728 << 729 orig_pte = ptep_get(ptep); << 730 pte = pte_mkold(mk_pte(page, READ_ONCE << 731 if (pte_swp_soft_dirty(orig_pte)) << 732 pte = pte_mksoft_dirty(pte); << 733 << 734 entry = pte_to_swp_entry(orig_pte); << 735 if (pte_swp_uffd_wp(orig_pte)) << 736 pte = pte_mkuffd_wp(pte); << 737 else if (is_writable_device_exclusive_ << 738 pte = maybe_mkwrite(pte_mkdirt << 739 << 740 VM_BUG_ON_FOLIO(pte_write(pte) && (!fo << 741 Pag << 742 << 743 /* << 744 * No need to take a page reference as << 745 * created when the swap entry was mad << 746 */ << 747 if (folio_test_anon(folio)) << 748 folio_add_anon_rmap_pte(folio, << 749 else << 750 /* << 751 * Currently device exclusive << 752 * memory so the entry shouldn << 753 */ << 754 WARN_ON_ONCE(1); << 755 << 756 set_pte_at(vma->vm_mm, address, ptep, << 757 << 758 /* << 759 * No need to invalidate - it was non- << 760 * secondary CPUs may have mappings th << 761 */ << 762 update_mmu_cache(vma, address, ptep); << 763 } << 764 << 765 /* << 766 * Tries to restore an exclusive pte if the pa << 767 * sleeping. << 768 */ << 769 static int << 770 try_restore_exclusive_pte(pte_t *src_pte, stru << 771 unsigned long addr) << 772 { << 773 swp_entry_t entry = pte_to_swp_entry(p << 774 struct page *page = pfn_swap_entry_to_ << 775 << 776 if (trylock_page(page)) { << 777 restore_exclusive_pte(vma, pag << 778 unlock_page(page); << 779 return 0; << 780 } << 781 << 782 return -EBUSY; << 783 } << 784 << 785 /* 691 /* 786 * copy one vm_area from one task to the other 692 * copy one vm_area from one task to the other. Assumes the page tables 787 * already present in the new task to be clear 693 * already present in the new task to be cleared in the whole range 788 * covered by this vma. 694 * covered by this vma. 789 */ 695 */ 790 696 791 static unsigned long 697 static unsigned long 792 copy_nonpresent_pte(struct mm_struct *dst_mm, 698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 793 pte_t *dst_pte, pte_t *src_pte !! 699 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 794 struct vm_area_struct *src_vma !! 700 unsigned long addr, int *rss) 795 { 701 { 796 unsigned long vm_flags = dst_vma->vm_f !! 702 unsigned long vm_flags = vma->vm_flags; 797 pte_t orig_pte = ptep_get(src_pte); !! 703 pte_t pte = *src_pte; 798 pte_t pte = orig_pte; << 799 struct folio *folio; << 800 struct page *page; 704 struct page *page; 801 swp_entry_t entry = pte_to_swp_entry(o !! 705 swp_entry_t entry = pte_to_swp_entry(pte); 802 706 803 if (likely(!non_swap_entry(entry))) { 707 if (likely(!non_swap_entry(entry))) { 804 if (swap_duplicate(entry) < 0) 708 if (swap_duplicate(entry) < 0) 805 return -EIO; !! 709 return entry.val; 806 710 807 /* make sure dst_mm is on swap 711 /* make sure dst_mm is on swapoff's mmlist. */ 808 if (unlikely(list_empty(&dst_m 712 if (unlikely(list_empty(&dst_mm->mmlist))) { 809 spin_lock(&mmlist_lock 713 spin_lock(&mmlist_lock); 810 if (list_empty(&dst_mm 714 if (list_empty(&dst_mm->mmlist)) 811 list_add(&dst_ 715 list_add(&dst_mm->mmlist, 812 716 &src_mm->mmlist); 813 spin_unlock(&mmlist_lo 717 spin_unlock(&mmlist_lock); 814 } 718 } 815 /* Mark the swap entry as shar << 816 if (pte_swp_exclusive(orig_pte << 817 pte = pte_swp_clear_ex << 818 set_pte_at(src_mm, add << 819 } << 820 rss[MM_SWAPENTS]++; 719 rss[MM_SWAPENTS]++; 821 } else if (is_migration_entry(entry)) 720 } else if (is_migration_entry(entry)) { 822 folio = pfn_swap_entry_folio(e !! 721 page = migration_entry_to_page(entry); 823 722 824 rss[mm_counter(folio)]++; !! 723 rss[mm_counter(page)]++; 825 724 826 if (!is_readable_migration_ent !! 725 if (is_write_migration_entry(entry) && 827 is_cow_mapping 726 is_cow_mapping(vm_flags)) { 828 /* 727 /* 829 * COW mappings requir !! 728 * COW mappings require pages in both 830 * to be set to read. !! 729 * parent and child to be set to read. 831 * now shared. << 832 */ 730 */ 833 entry = make_readable_ !! 731 make_migration_entry_read(&entry); 834 << 835 pte = swp_entry_to_pte 732 pte = swp_entry_to_pte(entry); 836 if (pte_swp_soft_dirty !! 733 if (pte_swp_soft_dirty(*src_pte)) 837 pte = pte_swp_ 734 pte = pte_swp_mksoft_dirty(pte); 838 if (pte_swp_uffd_wp(or !! 735 if (pte_swp_uffd_wp(*src_pte)) 839 pte = pte_swp_ 736 pte = pte_swp_mkuffd_wp(pte); 840 set_pte_at(src_mm, add 737 set_pte_at(src_mm, addr, src_pte, pte); 841 } 738 } 842 } else if (is_device_private_entry(ent 739 } else if (is_device_private_entry(entry)) { 843 page = pfn_swap_entry_to_page( !! 740 page = device_private_entry_to_page(entry); 844 folio = page_folio(page); << 845 741 846 /* 742 /* 847 * Update rss count even for u 743 * Update rss count even for unaddressable pages, as 848 * they should treated just li 744 * they should treated just like normal pages in this 849 * respect. 745 * respect. 850 * 746 * 851 * We will likely want to have 747 * We will likely want to have some new rss counters 852 * for unaddressable pages, at 748 * for unaddressable pages, at some point. But for now 853 * keep things as they are. 749 * keep things as they are. 854 */ 750 */ 855 folio_get(folio); !! 751 get_page(page); 856 rss[mm_counter(folio)]++; !! 752 rss[mm_counter(page)]++; 857 /* Cannot fail as these pages !! 753 page_dup_rmap(page, false); 858 folio_try_dup_anon_rmap_pte(fo << 859 754 860 /* 755 /* 861 * We do not preserve soft-dir 756 * We do not preserve soft-dirty information, because so 862 * far, checkpoint/restore is 757 * far, checkpoint/restore is the only feature that 863 * requires that. And checkpoi 758 * requires that. And checkpoint/restore does not work 864 * when a device driver is inv 759 * when a device driver is involved (you cannot easily 865 * save and restore device dri 760 * save and restore device driver state). 866 */ 761 */ 867 if (is_writable_device_private !! 762 if (is_write_device_private_entry(entry) && 868 is_cow_mapping(vm_flags)) 763 is_cow_mapping(vm_flags)) { 869 entry = make_readable_ !! 764 make_device_private_entry_read(&entry); 870 << 871 pte = swp_entry_to_pte 765 pte = swp_entry_to_pte(entry); 872 if (pte_swp_uffd_wp(or !! 766 if (pte_swp_uffd_wp(*src_pte)) 873 pte = pte_swp_ 767 pte = pte_swp_mkuffd_wp(pte); 874 set_pte_at(src_mm, add 768 set_pte_at(src_mm, addr, src_pte, pte); 875 } 769 } 876 } else if (is_device_exclusive_entry(e << 877 /* << 878 * Make device exclusive entri << 879 * original entry then copying << 880 * exclusive entries currently << 881 * (ie. COW) mappings. << 882 */ << 883 VM_BUG_ON(!is_cow_mapping(src_ << 884 if (try_restore_exclusive_pte( << 885 return -EBUSY; << 886 return -ENOENT; << 887 } else if (is_pte_marker_entry(entry)) << 888 pte_marker marker = copy_pte_m << 889 << 890 if (marker) << 891 set_pte_at(dst_mm, add << 892 make_pte_ma << 893 return 0; << 894 } 770 } 895 if (!userfaultfd_wp(dst_vma)) << 896 pte = pte_swp_clear_uffd_wp(pt << 897 set_pte_at(dst_mm, addr, dst_pte, pte) 771 set_pte_at(dst_mm, addr, dst_pte, pte); 898 return 0; 772 return 0; 899 } 773 } 900 774 901 /* 775 /* 902 * Copy a present and normal page. !! 776 * Copy a present and normal page if necessary. 903 * 777 * 904 * NOTE! The usual case is that this isn't req !! 778 * NOTE! The usual case is that this doesn't need to do 905 * instead, the caller can just increase the p !! 779 * anything, and can just return a positive value. That 906 * and re-use the pte the traditional way. !! 780 * will let the caller know that it can just increase >> 781 * the page refcount and re-use the pte the traditional >> 782 * way. >> 783 * >> 784 * But _if_ we need to copy it because it needs to be >> 785 * pinned in the parent (and the child should get its own >> 786 * copy rather than just a reference to the same page), >> 787 * we'll do that here and return zero to let the caller >> 788 * know we're done. 907 * 789 * 908 * And if we need a pre-allocated page but don 790 * And if we need a pre-allocated page but don't yet have 909 * one, return a negative error to let the pre 791 * one, return a negative error to let the preallocation 910 * code know so that it can do so outside the 792 * code know so that it can do so outside the page table 911 * lock. 793 * lock. 912 */ 794 */ 913 static inline int 795 static inline int 914 copy_present_page(struct vm_area_struct *dst_v 796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 915 pte_t *dst_pte, pte_t *src_p 797 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 916 struct folio **prealloc, str !! 798 struct page **prealloc, pte_t pte, struct page *page) 917 { 799 { 918 struct folio *new_folio; !! 800 struct mm_struct *src_mm = src_vma->vm_mm; 919 pte_t pte; !! 801 struct page *new_page; >> 802 >> 803 if (!is_cow_mapping(src_vma->vm_flags)) >> 804 return 1; 920 805 921 new_folio = *prealloc; !! 806 /* 922 if (!new_folio) !! 807 * What we want to do is to check whether this page may >> 808 * have been pinned by the parent process. If so, >> 809 * instead of wrprotect the pte on both sides, we copy >> 810 * the page immediately so that we'll always guarantee >> 811 * the pinned page won't be randomly replaced in the >> 812 * future. >> 813 * >> 814 * The page pinning checks are just "has this mm ever >> 815 * seen pinning", along with the (inexact) check of >> 816 * the page count. That might give false positives for >> 817 * for pinning, but it will work correctly. >> 818 */ >> 819 if (likely(!atomic_read(&src_mm->has_pinned))) >> 820 return 1; >> 821 if (likely(!page_maybe_dma_pinned(page))) >> 822 return 1; >> 823 >> 824 new_page = *prealloc; >> 825 if (!new_page) 923 return -EAGAIN; 826 return -EAGAIN; 924 827 925 /* 828 /* 926 * We have a prealloc page, all good! 829 * We have a prealloc page, all good! Take it 927 * over and copy the page & arm it. 830 * over and copy the page & arm it. 928 */ 831 */ 929 << 930 if (copy_mc_user_highpage(&new_folio-> << 931 return -EHWPOISON; << 932 << 933 *prealloc = NULL; 832 *prealloc = NULL; 934 __folio_mark_uptodate(new_folio); !! 833 copy_user_highpage(new_page, page, addr, src_vma); 935 folio_add_new_anon_rmap(new_folio, dst !! 834 __SetPageUptodate(new_page); 936 folio_add_lru_vma(new_folio, dst_vma); !! 835 page_add_new_anon_rmap(new_page, dst_vma, addr, false); 937 rss[MM_ANONPAGES]++; !! 836 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); >> 837 rss[mm_counter(new_page)]++; 938 838 939 /* All done, just insert the new page 839 /* All done, just insert the new page copy in the child */ 940 pte = mk_pte(&new_folio->page, dst_vma !! 840 pte = mk_pte(new_page, dst_vma->vm_page_prot); 941 pte = maybe_mkwrite(pte_mkdirty(pte), 841 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 942 if (userfaultfd_pte_wp(dst_vma, ptep_g << 943 /* Uffd-wp needs to be deliver << 944 pte = pte_mkuffd_wp(pte); << 945 set_pte_at(dst_vma->vm_mm, addr, dst_p 842 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 946 return 0; 843 return 0; 947 } 844 } 948 845 949 static __always_inline void __copy_present_pte << 950 struct vm_area_struct *src_vma << 951 pte_t pte, unsigned long addr, << 952 { << 953 struct mm_struct *src_mm = src_vma->vm << 954 << 955 /* If it's a COW mapping, write protec << 956 if (is_cow_mapping(src_vma->vm_flags) << 957 wrprotect_ptes(src_mm, addr, s << 958 pte = pte_wrprotect(pte); << 959 } << 960 << 961 /* If it's a shared mapping, mark it c << 962 if (src_vma->vm_flags & VM_SHARED) << 963 pte = pte_mkclean(pte); << 964 pte = pte_mkold(pte); << 965 << 966 if (!userfaultfd_wp(dst_vma)) << 967 pte = pte_clear_uffd_wp(pte); << 968 << 969 set_ptes(dst_vma->vm_mm, addr, dst_pte << 970 } << 971 << 972 /* 846 /* 973 * Copy one present PTE, trying to batch-proce !! 847 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 974 * consecutive pages of the same folio by copy !! 848 * is required to copy this pte. 975 * << 976 * Returns -EAGAIN if one preallocated page is << 977 * Otherwise, returns the number of copied PTE << 978 */ 849 */ 979 static inline int 850 static inline int 980 copy_present_ptes(struct vm_area_struct *dst_v !! 851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 981 pte_t *dst_pte, pte_t *src_pt !! 852 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 982 int max_nr, int *rss, struct !! 853 struct page **prealloc) 983 { 854 { >> 855 struct mm_struct *src_mm = src_vma->vm_mm; >> 856 unsigned long vm_flags = src_vma->vm_flags; >> 857 pte_t pte = *src_pte; 984 struct page *page; 858 struct page *page; 985 struct folio *folio; << 986 bool any_writable; << 987 fpb_t flags = 0; << 988 int err, nr; << 989 859 990 page = vm_normal_page(src_vma, addr, p 860 page = vm_normal_page(src_vma, addr, pte); 991 if (unlikely(!page)) !! 861 if (page) { 992 goto copy_pte; !! 862 int retval; 993 863 994 folio = page_folio(page); !! 864 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, >> 865 addr, rss, prealloc, pte, page); >> 866 if (retval <= 0) >> 867 return retval; 995 868 996 /* !! 869 get_page(page); 997 * If we likely have to copy, just don !! 870 page_dup_rmap(page, false); 998 * sure that the common "small folio" !! 871 rss[mm_counter(page)]++; 999 * by keeping the batching logic separ << 1000 */ << 1001 if (unlikely(!*prealloc && folio_test << 1002 if (src_vma->vm_flags & VM_SH << 1003 flags |= FPB_IGNORE_D << 1004 if (!vma_soft_dirty_enabled(s << 1005 flags |= FPB_IGNORE_S << 1006 << 1007 nr = folio_pte_batch(folio, a << 1008 &any_wri << 1009 folio_ref_add(folio, nr); << 1010 if (folio_test_anon(folio)) { << 1011 if (unlikely(folio_tr << 1012 << 1013 folio_ref_sub << 1014 return -EAGAI << 1015 } << 1016 rss[MM_ANONPAGES] += << 1017 VM_WARN_ON_FOLIO(Page << 1018 } else { << 1019 folio_dup_file_rmap_p << 1020 rss[mm_counter_file(f << 1021 } << 1022 if (any_writable) << 1023 pte = pte_mkwrite(pte << 1024 __copy_present_ptes(dst_vma, << 1025 addr, nr) << 1026 return nr; << 1027 } 872 } 1028 873 1029 folio_get(folio); !! 874 /* 1030 if (folio_test_anon(folio)) { !! 875 * If it's a COW mapping, write protect it both 1031 /* !! 876 * in the parent and the child 1032 * If this page may have been !! 877 */ 1033 * copy the page immediately !! 878 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 1034 * guarantee the pinned page !! 879 ptep_set_wrprotect(src_mm, addr, src_pte); 1035 * future. !! 880 pte = pte_wrprotect(pte); 1036 */ << 1037 if (unlikely(folio_try_dup_an << 1038 /* Page may be pinned << 1039 folio_put(folio); << 1040 err = copy_present_pa << 1041 << 1042 return err ? err : 1; << 1043 } << 1044 rss[MM_ANONPAGES]++; << 1045 VM_WARN_ON_FOLIO(PageAnonExcl << 1046 } else { << 1047 folio_dup_file_rmap_pte(folio << 1048 rss[mm_counter_file(folio)]++ << 1049 } 881 } 1050 882 1051 copy_pte: !! 883 /* 1052 __copy_present_ptes(dst_vma, src_vma, !! 884 * If it's a shared mapping, mark it clean in 1053 return 1; !! 885 * the child >> 886 */ >> 887 if (vm_flags & VM_SHARED) >> 888 pte = pte_mkclean(pte); >> 889 pte = pte_mkold(pte); >> 890 >> 891 /* >> 892 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA >> 893 * does not have the VM_UFFD_WP, which means that the uffd >> 894 * fork event is not enabled. >> 895 */ >> 896 if (!(vm_flags & VM_UFFD_WP)) >> 897 pte = pte_clear_uffd_wp(pte); >> 898 >> 899 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); >> 900 return 0; 1054 } 901 } 1055 902 1056 static inline struct folio *folio_prealloc(st !! 903 static inline struct page * 1057 struct vm_area_struct *vma, u !! 904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, >> 905 unsigned long addr) 1058 { 906 { 1059 struct folio *new_folio; !! 907 struct page *new_page; 1060 << 1061 if (need_zero) << 1062 new_folio = vma_alloc_zeroed_ << 1063 else << 1064 new_folio = vma_alloc_folio(G << 1065 a << 1066 908 1067 if (!new_folio) !! 909 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); >> 910 if (!new_page) 1068 return NULL; 911 return NULL; 1069 912 1070 if (mem_cgroup_charge(new_folio, src_ !! 913 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { 1071 folio_put(new_folio); !! 914 put_page(new_page); 1072 return NULL; 915 return NULL; 1073 } 916 } 1074 folio_throttle_swaprate(new_folio, GF !! 917 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 1075 918 1076 return new_folio; !! 919 return new_page; 1077 } 920 } 1078 921 1079 static int 922 static int 1080 copy_pte_range(struct vm_area_struct *dst_vma 923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1081 pmd_t *dst_pmd, pmd_t *src_pmd 924 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1082 unsigned long end) 925 unsigned long end) 1083 { 926 { 1084 struct mm_struct *dst_mm = dst_vma->v 927 struct mm_struct *dst_mm = dst_vma->vm_mm; 1085 struct mm_struct *src_mm = src_vma->v 928 struct mm_struct *src_mm = src_vma->vm_mm; 1086 pte_t *orig_src_pte, *orig_dst_pte; 929 pte_t *orig_src_pte, *orig_dst_pte; 1087 pte_t *src_pte, *dst_pte; 930 pte_t *src_pte, *dst_pte; 1088 pte_t ptent; << 1089 spinlock_t *src_ptl, *dst_ptl; 931 spinlock_t *src_ptl, *dst_ptl; 1090 int progress, max_nr, ret = 0; !! 932 int progress, ret = 0; 1091 int rss[NR_MM_COUNTERS]; 933 int rss[NR_MM_COUNTERS]; 1092 swp_entry_t entry = (swp_entry_t){0}; 934 swp_entry_t entry = (swp_entry_t){0}; 1093 struct folio *prealloc = NULL; !! 935 struct page *prealloc = NULL; 1094 int nr; << 1095 936 1096 again: 937 again: 1097 progress = 0; 938 progress = 0; 1098 init_rss_vec(rss); 939 init_rss_vec(rss); 1099 940 1100 /* << 1101 * copy_pmd_range()'s prior pmd_none_ << 1102 * error handling here, assume that e << 1103 * protects anon from unexpected THP << 1104 * protected by mmap_lock-less collap << 1105 * (whereas vma_needs_copy() skips ar << 1106 * can remove such assumptions later, << 1107 */ << 1108 dst_pte = pte_alloc_map_lock(dst_mm, 941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1109 if (!dst_pte) { 942 if (!dst_pte) { 1110 ret = -ENOMEM; 943 ret = -ENOMEM; 1111 goto out; 944 goto out; 1112 } 945 } 1113 src_pte = pte_offset_map_nolock(src_m !! 946 src_pte = pte_offset_map(src_pmd, addr); 1114 if (!src_pte) { !! 947 src_ptl = pte_lockptr(src_mm, src_pmd); 1115 pte_unmap_unlock(dst_pte, dst << 1116 /* ret == 0 */ << 1117 goto out; << 1118 } << 1119 spin_lock_nested(src_ptl, SINGLE_DEPT 948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1120 orig_src_pte = src_pte; 949 orig_src_pte = src_pte; 1121 orig_dst_pte = dst_pte; 950 orig_dst_pte = dst_pte; 1122 arch_enter_lazy_mmu_mode(); 951 arch_enter_lazy_mmu_mode(); 1123 952 1124 do { 953 do { 1125 nr = 1; << 1126 << 1127 /* 954 /* 1128 * We are holding two locks a 955 * We are holding two locks at this point - either of them 1129 * could generate latencies i 956 * could generate latencies in another task on another CPU. 1130 */ 957 */ 1131 if (progress >= 32) { 958 if (progress >= 32) { 1132 progress = 0; 959 progress = 0; 1133 if (need_resched() || 960 if (need_resched() || 1134 spin_needbreak(sr 961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1135 break; 962 break; 1136 } 963 } 1137 ptent = ptep_get(src_pte); !! 964 if (pte_none(*src_pte)) { 1138 if (pte_none(ptent)) { << 1139 progress++; 965 progress++; 1140 continue; 966 continue; 1141 } 967 } 1142 if (unlikely(!pte_present(pte !! 968 if (unlikely(!pte_present(*src_pte))) { 1143 ret = copy_nonpresent !! 969 entry.val = copy_nonpresent_pte(dst_mm, src_mm, 1144 !! 970 dst_pte, src_pte, 1145 !! 971 src_vma, addr, rss); 1146 !! 972 if (entry.val) 1147 if (ret == -EIO) { << 1148 entry = pte_t << 1149 break; 973 break; 1150 } else if (ret == -EB !! 974 progress += 8; 1151 break; !! 975 continue; 1152 } else if (!ret) { << 1153 progress += 8 << 1154 continue; << 1155 } << 1156 ptent = ptep_get(src_ << 1157 VM_WARN_ON_ONCE(!pte_ << 1158 << 1159 /* << 1160 * Device exclusive e << 1161 * the now present pt << 1162 */ << 1163 WARN_ON_ONCE(ret != - << 1164 } 976 } 1165 /* copy_present_ptes() will c !! 977 /* copy_present_pte() will clear `*prealloc' if consumed */ 1166 max_nr = (end - addr) / PAGE_ !! 978 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1167 ret = copy_present_ptes(dst_v !! 979 addr, rss, &prealloc); 1168 ptent << 1169 /* 980 /* 1170 * If we need a pre-allocated 981 * If we need a pre-allocated page for this pte, drop the 1171 * locks, allocate, and try a 982 * locks, allocate, and try again. 1172 * If copy failed due to hwpo << 1173 */ 983 */ 1174 if (unlikely(ret == -EAGAIN | !! 984 if (unlikely(ret == -EAGAIN)) 1175 break; 985 break; 1176 if (unlikely(prealloc)) { 986 if (unlikely(prealloc)) { 1177 /* 987 /* 1178 * pre-alloc page can 988 * pre-alloc page cannot be reused by next time so as 1179 * to strictly follow 989 * to strictly follow mempolicy (e.g., alloc_page_vma() 1180 * will allocate page 990 * will allocate page according to address). This 1181 * could only happen 991 * could only happen if one pinned pte changed. 1182 */ 992 */ 1183 folio_put(prealloc); !! 993 put_page(prealloc); 1184 prealloc = NULL; 994 prealloc = NULL; 1185 } 995 } 1186 nr = ret; !! 996 progress += 8; 1187 progress += 8 * nr; !! 997 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1188 } while (dst_pte += nr, src_pte += nr << 1189 addr != end); << 1190 998 1191 arch_leave_lazy_mmu_mode(); 999 arch_leave_lazy_mmu_mode(); 1192 pte_unmap_unlock(orig_src_pte, src_pt !! 1000 spin_unlock(src_ptl); >> 1001 pte_unmap(orig_src_pte); 1193 add_mm_rss_vec(dst_mm, rss); 1002 add_mm_rss_vec(dst_mm, rss); 1194 pte_unmap_unlock(orig_dst_pte, dst_pt 1003 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1195 cond_resched(); 1004 cond_resched(); 1196 1005 1197 if (ret == -EIO) { !! 1006 if (entry.val) { 1198 VM_WARN_ON_ONCE(!entry.val); << 1199 if (add_swap_count_continuati 1007 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1200 ret = -ENOMEM; 1008 ret = -ENOMEM; 1201 goto out; 1009 goto out; 1202 } 1010 } 1203 entry.val = 0; 1011 entry.val = 0; 1204 } else if (ret == -EBUSY || unlikely( !! 1012 } else if (ret) { 1205 goto out; !! 1013 WARN_ON_ONCE(ret != -EAGAIN); 1206 } else if (ret == -EAGAIN) { !! 1014 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1207 prealloc = folio_prealloc(src << 1208 if (!prealloc) 1015 if (!prealloc) 1209 return -ENOMEM; 1016 return -ENOMEM; 1210 } else if (ret < 0) { !! 1017 /* We've captured and resolved the error. Reset, try again. */ 1211 VM_WARN_ON_ONCE(1); !! 1018 ret = 0; 1212 } 1019 } 1213 << 1214 /* We've captured and resolved the er << 1215 ret = 0; << 1216 << 1217 if (addr != end) 1020 if (addr != end) 1218 goto again; 1021 goto again; 1219 out: 1022 out: 1220 if (unlikely(prealloc)) 1023 if (unlikely(prealloc)) 1221 folio_put(prealloc); !! 1024 put_page(prealloc); 1222 return ret; 1025 return ret; 1223 } 1026 } 1224 1027 1225 static inline int 1028 static inline int 1226 copy_pmd_range(struct vm_area_struct *dst_vma 1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1227 pud_t *dst_pud, pud_t *src_pud 1030 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1228 unsigned long end) 1031 unsigned long end) 1229 { 1032 { 1230 struct mm_struct *dst_mm = dst_vma->v 1033 struct mm_struct *dst_mm = dst_vma->vm_mm; 1231 struct mm_struct *src_mm = src_vma->v 1034 struct mm_struct *src_mm = src_vma->vm_mm; 1232 pmd_t *src_pmd, *dst_pmd; 1035 pmd_t *src_pmd, *dst_pmd; 1233 unsigned long next; 1036 unsigned long next; 1234 1037 1235 dst_pmd = pmd_alloc(dst_mm, dst_pud, 1038 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1236 if (!dst_pmd) 1039 if (!dst_pmd) 1237 return -ENOMEM; 1040 return -ENOMEM; 1238 src_pmd = pmd_offset(src_pud, addr); 1041 src_pmd = pmd_offset(src_pud, addr); 1239 do { 1042 do { 1240 next = pmd_addr_end(addr, end 1043 next = pmd_addr_end(addr, end); 1241 if (is_swap_pmd(*src_pmd) || 1044 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1242 || pmd_devmap(*src_pm 1045 || pmd_devmap(*src_pmd)) { 1243 int err; 1046 int err; 1244 VM_BUG_ON_VMA(next-ad 1047 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1245 err = copy_huge_pmd(d !! 1048 err = copy_huge_pmd(dst_mm, src_mm, 1246 a !! 1049 dst_pmd, src_pmd, addr, src_vma); 1247 if (err == -ENOMEM) 1050 if (err == -ENOMEM) 1248 return -ENOME 1051 return -ENOMEM; 1249 if (!err) 1052 if (!err) 1250 continue; 1053 continue; 1251 /* fall through */ 1054 /* fall through */ 1252 } 1055 } 1253 if (pmd_none_or_clear_bad(src 1056 if (pmd_none_or_clear_bad(src_pmd)) 1254 continue; 1057 continue; 1255 if (copy_pte_range(dst_vma, s 1058 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1256 addr, next 1059 addr, next)) 1257 return -ENOMEM; 1060 return -ENOMEM; 1258 } while (dst_pmd++, src_pmd++, addr = 1061 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1259 return 0; 1062 return 0; 1260 } 1063 } 1261 1064 1262 static inline int 1065 static inline int 1263 copy_pud_range(struct vm_area_struct *dst_vma 1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1264 p4d_t *dst_p4d, p4d_t *src_p4d 1067 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1265 unsigned long end) 1068 unsigned long end) 1266 { 1069 { 1267 struct mm_struct *dst_mm = dst_vma->v 1070 struct mm_struct *dst_mm = dst_vma->vm_mm; 1268 struct mm_struct *src_mm = src_vma->v 1071 struct mm_struct *src_mm = src_vma->vm_mm; 1269 pud_t *src_pud, *dst_pud; 1072 pud_t *src_pud, *dst_pud; 1270 unsigned long next; 1073 unsigned long next; 1271 1074 1272 dst_pud = pud_alloc(dst_mm, dst_p4d, 1075 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1273 if (!dst_pud) 1076 if (!dst_pud) 1274 return -ENOMEM; 1077 return -ENOMEM; 1275 src_pud = pud_offset(src_p4d, addr); 1078 src_pud = pud_offset(src_p4d, addr); 1276 do { 1079 do { 1277 next = pud_addr_end(addr, end 1080 next = pud_addr_end(addr, end); 1278 if (pud_trans_huge(*src_pud) 1081 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1279 int err; 1082 int err; 1280 1083 1281 VM_BUG_ON_VMA(next-ad 1084 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1282 err = copy_huge_pud(d 1085 err = copy_huge_pud(dst_mm, src_mm, 1283 d 1086 dst_pud, src_pud, addr, src_vma); 1284 if (err == -ENOMEM) 1087 if (err == -ENOMEM) 1285 return -ENOME 1088 return -ENOMEM; 1286 if (!err) 1089 if (!err) 1287 continue; 1090 continue; 1288 /* fall through */ 1091 /* fall through */ 1289 } 1092 } 1290 if (pud_none_or_clear_bad(src 1093 if (pud_none_or_clear_bad(src_pud)) 1291 continue; 1094 continue; 1292 if (copy_pmd_range(dst_vma, s 1095 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1293 addr, next 1096 addr, next)) 1294 return -ENOMEM; 1097 return -ENOMEM; 1295 } while (dst_pud++, src_pud++, addr = 1098 } while (dst_pud++, src_pud++, addr = next, addr != end); 1296 return 0; 1099 return 0; 1297 } 1100 } 1298 1101 1299 static inline int 1102 static inline int 1300 copy_p4d_range(struct vm_area_struct *dst_vma 1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1301 pgd_t *dst_pgd, pgd_t *src_pgd 1104 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1302 unsigned long end) 1105 unsigned long end) 1303 { 1106 { 1304 struct mm_struct *dst_mm = dst_vma->v 1107 struct mm_struct *dst_mm = dst_vma->vm_mm; 1305 p4d_t *src_p4d, *dst_p4d; 1108 p4d_t *src_p4d, *dst_p4d; 1306 unsigned long next; 1109 unsigned long next; 1307 1110 1308 dst_p4d = p4d_alloc(dst_mm, dst_pgd, 1111 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1309 if (!dst_p4d) 1112 if (!dst_p4d) 1310 return -ENOMEM; 1113 return -ENOMEM; 1311 src_p4d = p4d_offset(src_pgd, addr); 1114 src_p4d = p4d_offset(src_pgd, addr); 1312 do { 1115 do { 1313 next = p4d_addr_end(addr, end 1116 next = p4d_addr_end(addr, end); 1314 if (p4d_none_or_clear_bad(src 1117 if (p4d_none_or_clear_bad(src_p4d)) 1315 continue; 1118 continue; 1316 if (copy_pud_range(dst_vma, s 1119 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1317 addr, next 1120 addr, next)) 1318 return -ENOMEM; 1121 return -ENOMEM; 1319 } while (dst_p4d++, src_p4d++, addr = 1122 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1320 return 0; 1123 return 0; 1321 } 1124 } 1322 1125 1323 /* << 1324 * Return true if the vma needs to copy the p << 1325 * false when we can speed up fork() by allow << 1326 * when the child accesses the memory range. << 1327 */ << 1328 static bool << 1329 vma_needs_copy(struct vm_area_struct *dst_vma << 1330 { << 1331 /* << 1332 * Always copy pgtables when dst_vma << 1333 * file-backed (e.g. shmem). Because << 1334 * contains uffd-wp protection inform << 1335 * retrieve from page cache, and skip << 1336 */ << 1337 if (userfaultfd_wp(dst_vma)) << 1338 return true; << 1339 << 1340 if (src_vma->vm_flags & (VM_PFNMAP | << 1341 return true; << 1342 << 1343 if (src_vma->anon_vma) << 1344 return true; << 1345 << 1346 /* << 1347 * Don't copy ptes where a page fault << 1348 * becomes much lighter when there ar << 1349 * mappings. The tradeoff is that cop << 1350 * than faulting. << 1351 */ << 1352 return false; << 1353 } << 1354 << 1355 int 1126 int 1356 copy_page_range(struct vm_area_struct *dst_vm 1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1357 { 1128 { 1358 pgd_t *src_pgd, *dst_pgd; 1129 pgd_t *src_pgd, *dst_pgd; 1359 unsigned long next; 1130 unsigned long next; 1360 unsigned long addr = src_vma->vm_star 1131 unsigned long addr = src_vma->vm_start; 1361 unsigned long end = src_vma->vm_end; 1132 unsigned long end = src_vma->vm_end; 1362 struct mm_struct *dst_mm = dst_vma->v 1133 struct mm_struct *dst_mm = dst_vma->vm_mm; 1363 struct mm_struct *src_mm = src_vma->v 1134 struct mm_struct *src_mm = src_vma->vm_mm; 1364 struct mmu_notifier_range range; 1135 struct mmu_notifier_range range; 1365 bool is_cow; 1136 bool is_cow; 1366 int ret; 1137 int ret; 1367 1138 1368 if (!vma_needs_copy(dst_vma, src_vma) !! 1139 /* >> 1140 * Don't copy ptes where a page fault will fill them correctly. >> 1141 * Fork becomes much lighter when there are big shared or private >> 1142 * readonly mappings. The tradeoff is that copy_page_range is more >> 1143 * efficient than faulting. >> 1144 */ >> 1145 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && >> 1146 !src_vma->anon_vma) 1369 return 0; 1147 return 0; 1370 1148 1371 if (is_vm_hugetlb_page(src_vma)) 1149 if (is_vm_hugetlb_page(src_vma)) 1372 return copy_hugetlb_page_rang !! 1150 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1373 1151 1374 if (unlikely(src_vma->vm_flags & VM_P 1152 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1375 /* 1153 /* 1376 * We do not free on error ca 1154 * We do not free on error cases below as remove_vma 1377 * gets called on error from 1155 * gets called on error from higher level routine 1378 */ 1156 */ 1379 ret = track_pfn_copy(src_vma) 1157 ret = track_pfn_copy(src_vma); 1380 if (ret) 1158 if (ret) 1381 return ret; 1159 return ret; 1382 } 1160 } 1383 1161 1384 /* 1162 /* 1385 * We need to invalidate the secondar 1163 * We need to invalidate the secondary MMU mappings only when 1386 * there could be a permission downgr 1164 * there could be a permission downgrade on the ptes of the 1387 * parent mm. And a permission downgr 1165 * parent mm. And a permission downgrade will only happen if 1388 * is_cow_mapping() returns true. 1166 * is_cow_mapping() returns true. 1389 */ 1167 */ 1390 is_cow = is_cow_mapping(src_vma->vm_f 1168 is_cow = is_cow_mapping(src_vma->vm_flags); 1391 1169 1392 if (is_cow) { 1170 if (is_cow) { 1393 mmu_notifier_range_init(&rang 1171 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1394 0, sr !! 1172 0, src_vma, src_mm, addr, end); 1395 mmu_notifier_invalidate_range 1173 mmu_notifier_invalidate_range_start(&range); 1396 /* 1174 /* 1397 * Disabling preemption is no 1175 * Disabling preemption is not needed for the write side, as 1398 * the read side doesn't spin 1176 * the read side doesn't spin, but goes to the mmap_lock. 1399 * 1177 * 1400 * Use the raw variant of the 1178 * Use the raw variant of the seqcount_t write API to avoid 1401 * lockdep complaining about 1179 * lockdep complaining about preemptibility. 1402 */ 1180 */ 1403 vma_assert_write_locked(src_v !! 1181 mmap_assert_write_locked(src_mm); 1404 raw_write_seqcount_begin(&src 1182 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1405 } 1183 } 1406 1184 1407 ret = 0; 1185 ret = 0; 1408 dst_pgd = pgd_offset(dst_mm, addr); 1186 dst_pgd = pgd_offset(dst_mm, addr); 1409 src_pgd = pgd_offset(src_mm, addr); 1187 src_pgd = pgd_offset(src_mm, addr); 1410 do { 1188 do { 1411 next = pgd_addr_end(addr, end 1189 next = pgd_addr_end(addr, end); 1412 if (pgd_none_or_clear_bad(src 1190 if (pgd_none_or_clear_bad(src_pgd)) 1413 continue; 1191 continue; 1414 if (unlikely(copy_p4d_range(d 1192 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1415 a 1193 addr, next))) { 1416 untrack_pfn_clear(dst << 1417 ret = -ENOMEM; 1194 ret = -ENOMEM; 1418 break; 1195 break; 1419 } 1196 } 1420 } while (dst_pgd++, src_pgd++, addr = 1197 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1421 1198 1422 if (is_cow) { 1199 if (is_cow) { 1423 raw_write_seqcount_end(&src_m 1200 raw_write_seqcount_end(&src_mm->write_protect_seq); 1424 mmu_notifier_invalidate_range 1201 mmu_notifier_invalidate_range_end(&range); 1425 } 1202 } 1426 return ret; 1203 return ret; 1427 } 1204 } 1428 1205 1429 /* Whether we should zap all COWed (private) << 1430 static inline bool should_zap_cows(struct zap << 1431 { << 1432 /* By default, zap all pages */ << 1433 if (!details) << 1434 return true; << 1435 << 1436 /* Or, we zap COWed pages only if the << 1437 return details->even_cows; << 1438 } << 1439 << 1440 /* Decides whether we should zap this folio w << 1441 static inline bool should_zap_folio(struct za << 1442 struct fo << 1443 { << 1444 /* If we can make a decision without << 1445 if (should_zap_cows(details)) << 1446 return true; << 1447 << 1448 /* Otherwise we should only zap non-a << 1449 return !folio_test_anon(folio); << 1450 } << 1451 << 1452 static inline bool zap_drop_file_uffd_wp(stru << 1453 { << 1454 if (!details) << 1455 return false; << 1456 << 1457 return details->zap_flags & ZAP_FLAG_ << 1458 } << 1459 << 1460 /* << 1461 * This function makes sure that we'll replac << 1462 * swap special pte marker when necessary. Mu << 1463 */ << 1464 static inline void << 1465 zap_install_uffd_wp_if_needed(struct vm_area_ << 1466 unsigned long a << 1467 struct zap_deta << 1468 { << 1469 /* Zap on anonymous always means drop << 1470 if (vma_is_anonymous(vma)) << 1471 return; << 1472 << 1473 if (zap_drop_file_uffd_wp(details)) << 1474 return; << 1475 << 1476 for (;;) { << 1477 /* the PFN in the PTE is irre << 1478 pte_install_uffd_wp_if_needed << 1479 if (--nr == 0) << 1480 break; << 1481 pte++; << 1482 addr += PAGE_SIZE; << 1483 } << 1484 } << 1485 << 1486 static __always_inline void zap_present_folio << 1487 struct vm_area_struct *vma, s << 1488 struct page *page, pte_t *pte << 1489 unsigned long addr, struct za << 1490 bool *force_flush, bool *forc << 1491 { << 1492 struct mm_struct *mm = tlb->mm; << 1493 bool delay_rmap = false; << 1494 << 1495 if (!folio_test_anon(folio)) { << 1496 ptent = get_and_clear_full_pt << 1497 if (pte_dirty(ptent)) { << 1498 folio_mark_dirty(foli << 1499 if (tlb_delay_rmap(tl << 1500 delay_rmap = << 1501 *force_flush << 1502 } << 1503 } << 1504 if (pte_young(ptent) && likel << 1505 folio_mark_accessed(f << 1506 rss[mm_counter(folio)] -= nr; << 1507 } else { << 1508 /* We don't need up-to-date a << 1509 clear_full_ptes(mm, addr, pte << 1510 rss[MM_ANONPAGES] -= nr; << 1511 } << 1512 /* Checking a single PTE in a batch i << 1513 arch_check_zapped_pte(vma, ptent); << 1514 tlb_remove_tlb_entries(tlb, pte, nr, << 1515 if (unlikely(userfaultfd_pte_wp(vma, << 1516 zap_install_uffd_wp_if_needed << 1517 << 1518 << 1519 if (!delay_rmap) { << 1520 folio_remove_rmap_ptes(folio, << 1521 << 1522 if (unlikely(folio_mapcount(f << 1523 print_bad_pte(vma, ad << 1524 } << 1525 if (unlikely(__tlb_remove_folio_pages << 1526 *force_flush = true; << 1527 *force_break = true; << 1528 } << 1529 } << 1530 << 1531 /* << 1532 * Zap or skip at least one present PTE, tryi << 1533 * PTEs that map consecutive pages of the sam << 1534 * << 1535 * Returns the number of processed (skipped o << 1536 */ << 1537 static inline int zap_present_ptes(struct mmu << 1538 struct vm_area_struct *vma, p << 1539 unsigned int max_nr, unsigned << 1540 struct zap_details *details, << 1541 bool *force_break) << 1542 { << 1543 const fpb_t fpb_flags = FPB_IGNORE_DI << 1544 struct mm_struct *mm = tlb->mm; << 1545 struct folio *folio; << 1546 struct page *page; << 1547 int nr; << 1548 << 1549 page = vm_normal_page(vma, addr, pten << 1550 if (!page) { << 1551 /* We don't need up-to-date a << 1552 ptep_get_and_clear_full(mm, a << 1553 arch_check_zapped_pte(vma, pt << 1554 tlb_remove_tlb_entry(tlb, pte << 1555 if (userfaultfd_pte_wp(vma, p << 1556 zap_install_uffd_wp_i << 1557 << 1558 ksm_might_unmap_zero_page(mm, << 1559 return 1; << 1560 } << 1561 << 1562 folio = page_folio(page); << 1563 if (unlikely(!should_zap_folio(detail << 1564 return 1; << 1565 << 1566 /* << 1567 * Make sure that the common "small f << 1568 * by keeping the batching logic sepa << 1569 */ << 1570 if (unlikely(folio_test_large(folio) << 1571 nr = folio_pte_batch(folio, a << 1572 NULL, NU << 1573 << 1574 zap_present_folio_ptes(tlb, v << 1575 addr, << 1576 force_ << 1577 return nr; << 1578 } << 1579 zap_present_folio_ptes(tlb, vma, foli << 1580 details, rss, << 1581 return 1; << 1582 } << 1583 << 1584 static unsigned long zap_pte_range(struct mmu 1206 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1585 struct vm_are 1207 struct vm_area_struct *vma, pmd_t *pmd, 1586 unsigned long 1208 unsigned long addr, unsigned long end, 1587 struct zap_de 1209 struct zap_details *details) 1588 { 1210 { 1589 bool force_flush = false, force_break << 1590 struct mm_struct *mm = tlb->mm; 1211 struct mm_struct *mm = tlb->mm; >> 1212 int force_flush = 0; 1591 int rss[NR_MM_COUNTERS]; 1213 int rss[NR_MM_COUNTERS]; 1592 spinlock_t *ptl; 1214 spinlock_t *ptl; 1593 pte_t *start_pte; 1215 pte_t *start_pte; 1594 pte_t *pte; 1216 pte_t *pte; 1595 swp_entry_t entry; 1217 swp_entry_t entry; 1596 int nr; << 1597 1218 1598 tlb_change_page_size(tlb, PAGE_SIZE); 1219 tlb_change_page_size(tlb, PAGE_SIZE); >> 1220 again: 1599 init_rss_vec(rss); 1221 init_rss_vec(rss); 1600 start_pte = pte = pte_offset_map_lock !! 1222 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1601 if (!pte) !! 1223 pte = start_pte; 1602 return addr; << 1603 << 1604 flush_tlb_batched_pending(mm); 1224 flush_tlb_batched_pending(mm); 1605 arch_enter_lazy_mmu_mode(); 1225 arch_enter_lazy_mmu_mode(); 1606 do { 1226 do { 1607 pte_t ptent = ptep_get(pte); !! 1227 pte_t ptent = *pte; 1608 struct folio *folio; << 1609 struct page *page; << 1610 int max_nr; << 1611 << 1612 nr = 1; << 1613 if (pte_none(ptent)) 1228 if (pte_none(ptent)) 1614 continue; 1229 continue; 1615 1230 1616 if (need_resched()) 1231 if (need_resched()) 1617 break; 1232 break; 1618 1233 1619 if (pte_present(ptent)) { 1234 if (pte_present(ptent)) { 1620 max_nr = (end - addr) !! 1235 struct page *page; 1621 nr = zap_present_ptes !! 1236 1622 !! 1237 page = vm_normal_page(vma, addr, ptent); 1623 !! 1238 if (unlikely(details) && page) { 1624 if (unlikely(force_br !! 1239 /* 1625 addr += nr * !! 1240 * unmap_shared_mapping_pages() wants to >> 1241 * invalidate cache without truncating: >> 1242 * unmap shared but keep private pages. >> 1243 */ >> 1244 if (details->check_mapping && >> 1245 details->check_mapping != page_rmapping(page)) >> 1246 continue; >> 1247 } >> 1248 ptent = ptep_get_and_clear_full(mm, addr, pte, >> 1249 tlb->fullmm); >> 1250 tlb_remove_tlb_entry(tlb, pte, addr); >> 1251 if (unlikely(!page)) >> 1252 continue; >> 1253 >> 1254 if (!PageAnon(page)) { >> 1255 if (pte_dirty(ptent)) { >> 1256 force_flush = 1; >> 1257 set_page_dirty(page); >> 1258 } >> 1259 if (pte_young(ptent) && >> 1260 likely(!(vma->vm_flags & VM_SEQ_READ))) >> 1261 mark_page_accessed(page); >> 1262 } >> 1263 rss[mm_counter(page)]--; >> 1264 page_remove_rmap(page, false); >> 1265 if (unlikely(page_mapcount(page) < 0)) >> 1266 print_bad_pte(vma, addr, ptent, page); >> 1267 if (unlikely(__tlb_remove_page(tlb, page))) { >> 1268 force_flush = 1; >> 1269 addr += PAGE_SIZE; 1626 break; 1270 break; 1627 } 1271 } 1628 continue; 1272 continue; 1629 } 1273 } 1630 1274 1631 entry = pte_to_swp_entry(pten 1275 entry = pte_to_swp_entry(ptent); 1632 if (is_device_private_entry(e !! 1276 if (is_device_private_entry(entry)) { 1633 is_device_exclusive_entry !! 1277 struct page *page = device_private_entry_to_page(entry); 1634 page = pfn_swap_entry !! 1278 1635 folio = page_folio(pa !! 1279 if (unlikely(details && details->check_mapping)) { 1636 if (unlikely(!should_ !! 1280 /* 1637 continue; !! 1281 * unmap_shared_mapping_pages() wants to 1638 /* !! 1282 * invalidate cache without truncating: 1639 * Both device privat !! 1283 * unmap shared but keep private pages. 1640 * work with anonymou !! 1284 */ 1641 * consider uffd-wp b !! 1285 if (details->check_mapping != 1642 * see zap_install_uf !! 1286 page_rmapping(page)) 1643 */ !! 1287 continue; 1644 WARN_ON_ONCE(!vma_is_ !! 1288 } 1645 rss[mm_counter(folio) !! 1289 1646 if (is_device_private !! 1290 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1647 folio_remove_ !! 1291 rss[mm_counter(page)]--; 1648 folio_put(folio); !! 1292 page_remove_rmap(page, false); 1649 } else if (!non_swap_entry(en !! 1293 put_page(page); 1650 max_nr = (end - addr) !! 1294 continue; 1651 nr = swap_pte_batch(p << 1652 /* Genuine swap entri << 1653 if (!should_zap_cows( << 1654 continue; << 1655 rss[MM_SWAPENTS] -= n << 1656 free_swap_and_cache_n << 1657 } else if (is_migration_entry << 1658 folio = pfn_swap_entr << 1659 if (!should_zap_folio << 1660 continue; << 1661 rss[mm_counter(folio) << 1662 } else if (pte_marker_entry_u << 1663 /* << 1664 * For anon: always d << 1665 * drop the marker if << 1666 */ << 1667 if (!vma_is_anonymous << 1668 !zap_drop_file_uf << 1669 continue; << 1670 } else if (is_hwpoison_entry( << 1671 is_poisoned_swp_en << 1672 if (!should_zap_cows( << 1673 continue; << 1674 } else { << 1675 /* We should have cov << 1676 pr_alert("unrecognize << 1677 WARN_ON_ONCE(1); << 1678 } 1295 } 1679 clear_not_present_full_ptes(m !! 1296 1680 zap_install_uffd_wp_if_needed !! 1297 /* If details->check_mapping, we leave swap entries. */ 1681 } while (pte += nr, addr += PAGE_SIZE !! 1298 if (unlikely(details)) >> 1299 continue; >> 1300 >> 1301 if (!non_swap_entry(entry)) >> 1302 rss[MM_SWAPENTS]--; >> 1303 else if (is_migration_entry(entry)) { >> 1304 struct page *page; >> 1305 >> 1306 page = migration_entry_to_page(entry); >> 1307 rss[mm_counter(page)]--; >> 1308 } >> 1309 if (unlikely(!free_swap_and_cache(entry))) >> 1310 print_bad_pte(vma, addr, ptent, NULL); >> 1311 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); >> 1312 } while (pte++, addr += PAGE_SIZE, addr != end); 1682 1313 1683 add_mm_rss_vec(mm, rss); 1314 add_mm_rss_vec(mm, rss); 1684 arch_leave_lazy_mmu_mode(); 1315 arch_leave_lazy_mmu_mode(); 1685 1316 1686 /* Do the actual TLB flush before dro 1317 /* Do the actual TLB flush before dropping ptl */ 1687 if (force_flush) { !! 1318 if (force_flush) 1688 tlb_flush_mmu_tlbonly(tlb); 1319 tlb_flush_mmu_tlbonly(tlb); 1689 tlb_flush_rmaps(tlb, vma); << 1690 } << 1691 pte_unmap_unlock(start_pte, ptl); 1320 pte_unmap_unlock(start_pte, ptl); 1692 1321 1693 /* 1322 /* 1694 * If we forced a TLB flush (either d 1323 * If we forced a TLB flush (either due to running out of 1695 * batch buffers or because we needed 1324 * batch buffers or because we needed to flush dirty TLB 1696 * entries before releasing the ptl), 1325 * entries before releasing the ptl), free the batched 1697 * memory too. Come back again if we !! 1326 * memory too. Restart if we didn't do everything. 1698 */ 1327 */ 1699 if (force_flush) !! 1328 if (force_flush) { >> 1329 force_flush = 0; 1700 tlb_flush_mmu(tlb); 1330 tlb_flush_mmu(tlb); >> 1331 } >> 1332 >> 1333 if (addr != end) { >> 1334 cond_resched(); >> 1335 goto again; >> 1336 } 1701 1337 1702 return addr; 1338 return addr; 1703 } 1339 } 1704 1340 1705 static inline unsigned long zap_pmd_range(str 1341 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1706 struct vm_are 1342 struct vm_area_struct *vma, pud_t *pud, 1707 unsigned long 1343 unsigned long addr, unsigned long end, 1708 struct zap_de 1344 struct zap_details *details) 1709 { 1345 { 1710 pmd_t *pmd; 1346 pmd_t *pmd; 1711 unsigned long next; 1347 unsigned long next; 1712 1348 1713 pmd = pmd_offset(pud, addr); 1349 pmd = pmd_offset(pud, addr); 1714 do { 1350 do { 1715 next = pmd_addr_end(addr, end 1351 next = pmd_addr_end(addr, end); 1716 if (is_swap_pmd(*pmd) || pmd_ 1352 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1717 if (next - addr != HP 1353 if (next - addr != HPAGE_PMD_SIZE) 1718 __split_huge_ 1354 __split_huge_pmd(vma, pmd, addr, false, NULL); 1719 else if (zap_huge_pmd !! 1355 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1720 addr = next; !! 1356 goto next; 1721 continue; << 1722 } << 1723 /* fall through */ 1357 /* fall through */ 1724 } else if (details && details << 1725 folio_test_pmd_map << 1726 next - addr == HPA << 1727 spinlock_t *ptl = pmd << 1728 /* << 1729 * Take and drop THP << 1730 * prematurely, while << 1731 * but not yet decrem << 1732 */ << 1733 spin_unlock(ptl); << 1734 } 1358 } 1735 if (pmd_none(*pmd)) { !! 1359 /* 1736 addr = next; !! 1360 * Here there can be other concurrent MADV_DONTNEED or 1737 continue; !! 1361 * trans huge page faults running, and if the pmd is 1738 } !! 1362 * none or trans huge it can change under us. This is 1739 addr = zap_pte_range(tlb, vma !! 1363 * because MADV_DONTNEED holds the mmap_lock in read 1740 if (addr != next) !! 1364 * mode. 1741 pmd--; !! 1365 */ 1742 } while (pmd++, cond_resched(), addr !! 1366 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) >> 1367 goto next; >> 1368 next = zap_pte_range(tlb, vma, pmd, addr, next, details); >> 1369 next: >> 1370 cond_resched(); >> 1371 } while (pmd++, addr = next, addr != end); 1743 1372 1744 return addr; 1373 return addr; 1745 } 1374 } 1746 1375 1747 static inline unsigned long zap_pud_range(str 1376 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1748 struct vm_are 1377 struct vm_area_struct *vma, p4d_t *p4d, 1749 unsigned long 1378 unsigned long addr, unsigned long end, 1750 struct zap_de 1379 struct zap_details *details) 1751 { 1380 { 1752 pud_t *pud; 1381 pud_t *pud; 1753 unsigned long next; 1382 unsigned long next; 1754 1383 1755 pud = pud_offset(p4d, addr); 1384 pud = pud_offset(p4d, addr); 1756 do { 1385 do { 1757 next = pud_addr_end(addr, end 1386 next = pud_addr_end(addr, end); 1758 if (pud_trans_huge(*pud) || p 1387 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1759 if (next - addr != HP 1388 if (next - addr != HPAGE_PUD_SIZE) { 1760 mmap_assert_l 1389 mmap_assert_locked(tlb->mm); 1761 split_huge_pu 1390 split_huge_pud(vma, pud, addr); 1762 } else if (zap_huge_p 1391 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1763 goto next; 1392 goto next; 1764 /* fall through */ 1393 /* fall through */ 1765 } 1394 } 1766 if (pud_none_or_clear_bad(pud 1395 if (pud_none_or_clear_bad(pud)) 1767 continue; 1396 continue; 1768 next = zap_pmd_range(tlb, vma 1397 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1769 next: 1398 next: 1770 cond_resched(); 1399 cond_resched(); 1771 } while (pud++, addr = next, addr != 1400 } while (pud++, addr = next, addr != end); 1772 1401 1773 return addr; 1402 return addr; 1774 } 1403 } 1775 1404 1776 static inline unsigned long zap_p4d_range(str 1405 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1777 struct vm_are 1406 struct vm_area_struct *vma, pgd_t *pgd, 1778 unsigned long 1407 unsigned long addr, unsigned long end, 1779 struct zap_de 1408 struct zap_details *details) 1780 { 1409 { 1781 p4d_t *p4d; 1410 p4d_t *p4d; 1782 unsigned long next; 1411 unsigned long next; 1783 1412 1784 p4d = p4d_offset(pgd, addr); 1413 p4d = p4d_offset(pgd, addr); 1785 do { 1414 do { 1786 next = p4d_addr_end(addr, end 1415 next = p4d_addr_end(addr, end); 1787 if (p4d_none_or_clear_bad(p4d 1416 if (p4d_none_or_clear_bad(p4d)) 1788 continue; 1417 continue; 1789 next = zap_pud_range(tlb, vma 1418 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1790 } while (p4d++, addr = next, addr != 1419 } while (p4d++, addr = next, addr != end); 1791 1420 1792 return addr; 1421 return addr; 1793 } 1422 } 1794 1423 1795 void unmap_page_range(struct mmu_gather *tlb, 1424 void unmap_page_range(struct mmu_gather *tlb, 1796 struct vm_area_s 1425 struct vm_area_struct *vma, 1797 unsigned long ad 1426 unsigned long addr, unsigned long end, 1798 struct zap_detai 1427 struct zap_details *details) 1799 { 1428 { 1800 pgd_t *pgd; 1429 pgd_t *pgd; 1801 unsigned long next; 1430 unsigned long next; 1802 1431 1803 BUG_ON(addr >= end); 1432 BUG_ON(addr >= end); 1804 tlb_start_vma(tlb, vma); 1433 tlb_start_vma(tlb, vma); 1805 pgd = pgd_offset(vma->vm_mm, addr); 1434 pgd = pgd_offset(vma->vm_mm, addr); 1806 do { 1435 do { 1807 next = pgd_addr_end(addr, end 1436 next = pgd_addr_end(addr, end); 1808 if (pgd_none_or_clear_bad(pgd 1437 if (pgd_none_or_clear_bad(pgd)) 1809 continue; 1438 continue; 1810 next = zap_p4d_range(tlb, vma 1439 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1811 } while (pgd++, addr = next, addr != 1440 } while (pgd++, addr = next, addr != end); 1812 tlb_end_vma(tlb, vma); 1441 tlb_end_vma(tlb, vma); 1813 } 1442 } 1814 1443 1815 1444 1816 static void unmap_single_vma(struct mmu_gathe 1445 static void unmap_single_vma(struct mmu_gather *tlb, 1817 struct vm_area_struct *vma, u 1446 struct vm_area_struct *vma, unsigned long start_addr, 1818 unsigned long end_addr, 1447 unsigned long end_addr, 1819 struct zap_details *details, !! 1448 struct zap_details *details) 1820 { 1449 { 1821 unsigned long start = max(vma->vm_sta 1450 unsigned long start = max(vma->vm_start, start_addr); 1822 unsigned long end; 1451 unsigned long end; 1823 1452 1824 if (start >= vma->vm_end) 1453 if (start >= vma->vm_end) 1825 return; 1454 return; 1826 end = min(vma->vm_end, end_addr); 1455 end = min(vma->vm_end, end_addr); 1827 if (end <= vma->vm_start) 1456 if (end <= vma->vm_start) 1828 return; 1457 return; 1829 1458 1830 if (vma->vm_file) 1459 if (vma->vm_file) 1831 uprobe_munmap(vma, start, end 1460 uprobe_munmap(vma, start, end); 1832 1461 1833 if (unlikely(vma->vm_flags & VM_PFNMA 1462 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1834 untrack_pfn(vma, 0, 0, mm_wr_ !! 1463 untrack_pfn(vma, 0, 0); 1835 1464 1836 if (start != end) { 1465 if (start != end) { 1837 if (unlikely(is_vm_hugetlb_pa 1466 if (unlikely(is_vm_hugetlb_page(vma))) { 1838 /* 1467 /* 1839 * It is undesirable 1468 * It is undesirable to test vma->vm_file as it 1840 * should be non-null 1469 * should be non-null for valid hugetlb area. 1841 * However, vm_file w 1470 * However, vm_file will be NULL in the error 1842 * cleanup path of mm 1471 * cleanup path of mmap_region. When 1843 * hugetlbfs ->mmap m 1472 * hugetlbfs ->mmap method fails, 1844 * mmap_region() null 1473 * mmap_region() nullifies vma->vm_file 1845 * before calling thi 1474 * before calling this function to clean up. 1846 * Since no pte has a 1475 * Since no pte has actually been setup, it is 1847 * safe to do nothing 1476 * safe to do nothing in this case. 1848 */ 1477 */ 1849 if (vma->vm_file) { 1478 if (vma->vm_file) { 1850 zap_flags_t z !! 1479 i_mmap_lock_write(vma->vm_file->f_mapping); 1851 details-> !! 1480 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1852 __unmap_hugep !! 1481 i_mmap_unlock_write(vma->vm_file->f_mapping); 1853 << 1854 } 1482 } 1855 } else 1483 } else 1856 unmap_page_range(tlb, 1484 unmap_page_range(tlb, vma, start, end, details); 1857 } 1485 } 1858 } 1486 } 1859 1487 1860 /** 1488 /** 1861 * unmap_vmas - unmap a range of memory cover 1489 * unmap_vmas - unmap a range of memory covered by a list of vma's 1862 * @tlb: address of the caller's struct mmu_g 1490 * @tlb: address of the caller's struct mmu_gather 1863 * @mas: the maple state << 1864 * @vma: the starting vma 1491 * @vma: the starting vma 1865 * @start_addr: virtual address at which to s 1492 * @start_addr: virtual address at which to start unmapping 1866 * @end_addr: virtual address at which to end 1493 * @end_addr: virtual address at which to end unmapping 1867 * @tree_end: The maximum index to check << 1868 * @mm_wr_locked: lock flag << 1869 * 1494 * 1870 * Unmap all pages in the vma list. 1495 * Unmap all pages in the vma list. 1871 * 1496 * 1872 * Only addresses between `start' and `end' w 1497 * Only addresses between `start' and `end' will be unmapped. 1873 * 1498 * 1874 * The VMA list must be sorted in ascending v 1499 * The VMA list must be sorted in ascending virtual address order. 1875 * 1500 * 1876 * unmap_vmas() assumes that the caller will 1501 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1877 * range after unmap_vmas() returns. So the 1502 * range after unmap_vmas() returns. So the only responsibility here is to 1878 * ensure that any thus-far unmapped pages ar 1503 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1879 * drops the lock and schedules. 1504 * drops the lock and schedules. 1880 */ 1505 */ 1881 void unmap_vmas(struct mmu_gather *tlb, struc !! 1506 void unmap_vmas(struct mmu_gather *tlb, 1882 struct vm_area_struct *vma, u 1507 struct vm_area_struct *vma, unsigned long start_addr, 1883 unsigned long end_addr, unsig !! 1508 unsigned long end_addr) 1884 bool mm_wr_locked) << 1885 { 1509 { 1886 struct mmu_notifier_range range; 1510 struct mmu_notifier_range range; 1887 struct zap_details details = { << 1888 .zap_flags = ZAP_FLAG_DROP_MA << 1889 /* Careful - we need to zap p << 1890 .even_cows = true, << 1891 }; << 1892 1511 1893 mmu_notifier_range_init(&range, MMU_N !! 1512 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1894 start_addr, e 1513 start_addr, end_addr); 1895 mmu_notifier_invalidate_range_start(& 1514 mmu_notifier_invalidate_range_start(&range); 1896 do { !! 1515 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1897 unsigned long start = start_a !! 1516 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1898 unsigned long end = end_addr; !! 1517 mmu_notifier_invalidate_range_end(&range); 1899 hugetlb_zap_begin(vma, &start !! 1518 } 1900 unmap_single_vma(tlb, vma, st !! 1519 1901 mm_wr_locked !! 1520 /** 1902 hugetlb_zap_end(vma, &details !! 1521 * zap_page_range - remove user pages in a given range 1903 vma = mas_find(mas, tree_end !! 1522 * @vma: vm_area_struct holding the applicable pages 1904 } while (vma && likely(!xa_is_zero(vm !! 1523 * @start: starting address of pages to zap >> 1524 * @size: number of bytes to zap >> 1525 * >> 1526 * Caller must protect the VMA list >> 1527 */ >> 1528 void zap_page_range(struct vm_area_struct *vma, unsigned long start, >> 1529 unsigned long size) >> 1530 { >> 1531 struct mmu_notifier_range range; >> 1532 struct mmu_gather tlb; >> 1533 >> 1534 lru_add_drain(); >> 1535 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, >> 1536 start, start + size); >> 1537 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); >> 1538 update_hiwater_rss(vma->vm_mm); >> 1539 mmu_notifier_invalidate_range_start(&range); >> 1540 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) >> 1541 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1905 mmu_notifier_invalidate_range_end(&ra 1542 mmu_notifier_invalidate_range_end(&range); >> 1543 tlb_finish_mmu(&tlb, start, range.end); 1906 } 1544 } 1907 1545 1908 /** 1546 /** 1909 * zap_page_range_single - remove user pages 1547 * zap_page_range_single - remove user pages in a given range 1910 * @vma: vm_area_struct holding the applicabl 1548 * @vma: vm_area_struct holding the applicable pages 1911 * @address: starting address of pages to zap 1549 * @address: starting address of pages to zap 1912 * @size: number of bytes to zap 1550 * @size: number of bytes to zap 1913 * @details: details of shared cache invalida 1551 * @details: details of shared cache invalidation 1914 * 1552 * 1915 * The range must fit into one VMA. 1553 * The range must fit into one VMA. 1916 */ 1554 */ 1917 void zap_page_range_single(struct vm_area_str !! 1555 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1918 unsigned long size, struct za 1556 unsigned long size, struct zap_details *details) 1919 { 1557 { 1920 const unsigned long end = address + s << 1921 struct mmu_notifier_range range; 1558 struct mmu_notifier_range range; 1922 struct mmu_gather tlb; 1559 struct mmu_gather tlb; 1923 1560 1924 lru_add_drain(); 1561 lru_add_drain(); 1925 mmu_notifier_range_init(&range, MMU_N !! 1562 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1926 address, end) !! 1563 address, address + size); 1927 hugetlb_zap_begin(vma, &range.start, !! 1564 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1928 tlb_gather_mmu(&tlb, vma->vm_mm); << 1929 update_hiwater_rss(vma->vm_mm); 1565 update_hiwater_rss(vma->vm_mm); 1930 mmu_notifier_invalidate_range_start(& 1566 mmu_notifier_invalidate_range_start(&range); 1931 /* !! 1567 unmap_single_vma(&tlb, vma, address, range.end, details); 1932 * unmap 'address-end' not 'range.sta << 1933 * could have been expanded for huget << 1934 */ << 1935 unmap_single_vma(&tlb, vma, address, << 1936 mmu_notifier_invalidate_range_end(&ra 1568 mmu_notifier_invalidate_range_end(&range); 1937 tlb_finish_mmu(&tlb); !! 1569 tlb_finish_mmu(&tlb, address, range.end); 1938 hugetlb_zap_end(vma, details); << 1939 } 1570 } 1940 1571 1941 /** 1572 /** 1942 * zap_vma_ptes - remove ptes mapping the vma 1573 * zap_vma_ptes - remove ptes mapping the vma 1943 * @vma: vm_area_struct holding ptes to be za 1574 * @vma: vm_area_struct holding ptes to be zapped 1944 * @address: starting address of pages to zap 1575 * @address: starting address of pages to zap 1945 * @size: number of bytes to zap 1576 * @size: number of bytes to zap 1946 * 1577 * 1947 * This function only unmaps ptes assigned to 1578 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1948 * 1579 * 1949 * The entire address range must be fully con 1580 * The entire address range must be fully contained within the vma. 1950 * 1581 * 1951 */ 1582 */ 1952 void zap_vma_ptes(struct vm_area_struct *vma, 1583 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1953 unsigned long size) 1584 unsigned long size) 1954 { 1585 { 1955 if (!range_in_vma(vma, address, addre !! 1586 if (address < vma->vm_start || address + size > vma->vm_end || 1956 !(vma->vm_flags & VM_ 1587 !(vma->vm_flags & VM_PFNMAP)) 1957 return; 1588 return; 1958 1589 1959 zap_page_range_single(vma, address, s 1590 zap_page_range_single(vma, address, size, NULL); 1960 } 1591 } 1961 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1592 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1962 1593 1963 static pmd_t *walk_to_pmd(struct mm_struct *m 1594 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1964 { 1595 { 1965 pgd_t *pgd; 1596 pgd_t *pgd; 1966 p4d_t *p4d; 1597 p4d_t *p4d; 1967 pud_t *pud; 1598 pud_t *pud; 1968 pmd_t *pmd; 1599 pmd_t *pmd; 1969 1600 1970 pgd = pgd_offset(mm, addr); 1601 pgd = pgd_offset(mm, addr); 1971 p4d = p4d_alloc(mm, pgd, addr); 1602 p4d = p4d_alloc(mm, pgd, addr); 1972 if (!p4d) 1603 if (!p4d) 1973 return NULL; 1604 return NULL; 1974 pud = pud_alloc(mm, p4d, addr); 1605 pud = pud_alloc(mm, p4d, addr); 1975 if (!pud) 1606 if (!pud) 1976 return NULL; 1607 return NULL; 1977 pmd = pmd_alloc(mm, pud, addr); 1608 pmd = pmd_alloc(mm, pud, addr); 1978 if (!pmd) 1609 if (!pmd) 1979 return NULL; 1610 return NULL; 1980 1611 1981 VM_BUG_ON(pmd_trans_huge(*pmd)); 1612 VM_BUG_ON(pmd_trans_huge(*pmd)); 1982 return pmd; 1613 return pmd; 1983 } 1614 } 1984 1615 1985 pte_t *__get_locked_pte(struct mm_struct *mm, 1616 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1986 spinlock_t **ptl) 1617 spinlock_t **ptl) 1987 { 1618 { 1988 pmd_t *pmd = walk_to_pmd(mm, addr); 1619 pmd_t *pmd = walk_to_pmd(mm, addr); 1989 1620 1990 if (!pmd) 1621 if (!pmd) 1991 return NULL; 1622 return NULL; 1992 return pte_alloc_map_lock(mm, pmd, ad 1623 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1993 } 1624 } 1994 1625 1995 static bool vm_mixed_zeropage_allowed(struct !! 1626 static int validate_page_before_insert(struct page *page) 1996 { << 1997 VM_WARN_ON_ONCE(vma->vm_flags & VM_PF << 1998 /* << 1999 * Whoever wants to forbid the zeropa << 2000 * might already have been mapped has << 2001 * bail out on any zeropages. Zeropag << 2002 * be unshared using FAULT_FLAG_UNSHA << 2003 */ << 2004 if (mm_forbids_zeropage(vma->vm_mm)) << 2005 return false; << 2006 /* zeropages in COW mappings are comm << 2007 if (is_cow_mapping(vma->vm_flags)) << 2008 return true; << 2009 /* Mappings that do not allow for wri << 2010 if (!(vma->vm_flags & (VM_WRITE | VM_ << 2011 return true; << 2012 /* << 2013 * Why not allow any VMA that has vm_ << 2014 * find the shared zeropage and longt << 2015 * be problematic as soon as the zero << 2016 * page due to vma->vm_ops->pfn_mkwri << 2017 * now differ to what GUP looked up. << 2018 * FOLL_LONGTERM and VM_IO is incompa << 2019 * check_vma_flags). << 2020 */ << 2021 return vma->vm_ops && vma->vm_ops->pf << 2022 (vma_is_fsdax(vma) || vma->vm_ << 2023 } << 2024 << 2025 static int validate_page_before_insert(struct << 2026 struct << 2027 { 1627 { 2028 struct folio *folio = page_folio(page !! 1628 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 2029 << 2030 if (!folio_ref_count(folio)) << 2031 return -EINVAL; 1629 return -EINVAL; 2032 if (unlikely(is_zero_folio(folio))) { !! 1630 flush_dcache_page(page); 2033 if (!vm_mixed_zeropage_allowe << 2034 return -EINVAL; << 2035 return 0; << 2036 } << 2037 if (folio_test_anon(folio) || folio_t << 2038 page_has_type(page)) << 2039 return -EINVAL; << 2040 flush_dcache_folio(folio); << 2041 return 0; 1631 return 0; 2042 } 1632 } 2043 1633 2044 static int insert_page_into_pte_locked(struct !! 1634 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 2045 unsigned long addr, s 1635 unsigned long addr, struct page *page, pgprot_t prot) 2046 { 1636 { 2047 struct folio *folio = page_folio(page !! 1637 if (!pte_none(*pte)) 2048 pte_t pteval; << 2049 << 2050 if (!pte_none(ptep_get(pte))) << 2051 return -EBUSY; 1638 return -EBUSY; 2052 /* Ok, finally just insert the thing. 1639 /* Ok, finally just insert the thing.. */ 2053 pteval = mk_pte(page, prot); !! 1640 get_page(page); 2054 if (unlikely(is_zero_folio(folio))) { !! 1641 inc_mm_counter_fast(mm, mm_counter_file(page)); 2055 pteval = pte_mkspecial(pteval !! 1642 page_add_file_rmap(page, false); 2056 } else { !! 1643 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2057 folio_get(folio); << 2058 inc_mm_counter(vma->vm_mm, mm << 2059 folio_add_file_rmap_pte(folio << 2060 } << 2061 set_pte_at(vma->vm_mm, addr, pte, pte << 2062 return 0; 1644 return 0; 2063 } 1645 } 2064 1646 >> 1647 /* >> 1648 * This is the old fallback for page remapping. >> 1649 * >> 1650 * For historical reasons, it only allows reserved pages. Only >> 1651 * old drivers should use this, and they needed to mark their >> 1652 * pages reserved for the old functions anyway. >> 1653 */ 2065 static int insert_page(struct vm_area_struct 1654 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2066 struct page *page, pg 1655 struct page *page, pgprot_t prot) 2067 { 1656 { >> 1657 struct mm_struct *mm = vma->vm_mm; 2068 int retval; 1658 int retval; 2069 pte_t *pte; 1659 pte_t *pte; 2070 spinlock_t *ptl; 1660 spinlock_t *ptl; 2071 1661 2072 retval = validate_page_before_insert( !! 1662 retval = validate_page_before_insert(page); 2073 if (retval) 1663 if (retval) 2074 goto out; 1664 goto out; 2075 retval = -ENOMEM; 1665 retval = -ENOMEM; 2076 pte = get_locked_pte(vma->vm_mm, addr !! 1666 pte = get_locked_pte(mm, addr, &ptl); 2077 if (!pte) 1667 if (!pte) 2078 goto out; 1668 goto out; 2079 retval = insert_page_into_pte_locked( !! 1669 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 2080 pte_unmap_unlock(pte, ptl); 1670 pte_unmap_unlock(pte, ptl); 2081 out: 1671 out: 2082 return retval; 1672 return retval; 2083 } 1673 } 2084 1674 2085 static int insert_page_in_batch_locked(struct !! 1675 #ifdef pte_index >> 1676 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 2086 unsigned long addr, s 1677 unsigned long addr, struct page *page, pgprot_t prot) 2087 { 1678 { 2088 int err; 1679 int err; 2089 1680 2090 err = validate_page_before_insert(vma !! 1681 if (!page_count(page)) >> 1682 return -EINVAL; >> 1683 err = validate_page_before_insert(page); 2091 if (err) 1684 if (err) 2092 return err; 1685 return err; 2093 return insert_page_into_pte_locked(vm !! 1686 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 2094 } 1687 } 2095 1688 2096 /* insert_pages() amortizes the cost of spinl 1689 /* insert_pages() amortizes the cost of spinlock operations 2097 * when inserting pages in a loop. !! 1690 * when inserting pages in a loop. Arch *must* define pte_index. 2098 */ 1691 */ 2099 static int insert_pages(struct vm_area_struct 1692 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2100 struct page **pages, 1693 struct page **pages, unsigned long *num, pgprot_t prot) 2101 { 1694 { 2102 pmd_t *pmd = NULL; 1695 pmd_t *pmd = NULL; 2103 pte_t *start_pte, *pte; 1696 pte_t *start_pte, *pte; 2104 spinlock_t *pte_lock; 1697 spinlock_t *pte_lock; 2105 struct mm_struct *const mm = vma->vm_ 1698 struct mm_struct *const mm = vma->vm_mm; 2106 unsigned long curr_page_idx = 0; 1699 unsigned long curr_page_idx = 0; 2107 unsigned long remaining_pages_total = 1700 unsigned long remaining_pages_total = *num; 2108 unsigned long pages_to_write_in_pmd; 1701 unsigned long pages_to_write_in_pmd; 2109 int ret; 1702 int ret; 2110 more: 1703 more: 2111 ret = -EFAULT; 1704 ret = -EFAULT; 2112 pmd = walk_to_pmd(mm, addr); 1705 pmd = walk_to_pmd(mm, addr); 2113 if (!pmd) 1706 if (!pmd) 2114 goto out; 1707 goto out; 2115 1708 2116 pages_to_write_in_pmd = min_t(unsigne 1709 pages_to_write_in_pmd = min_t(unsigned long, 2117 remaining_pages_total, PTRS_P 1710 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2118 1711 2119 /* Allocate the PTE if necessary; tak 1712 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2120 ret = -ENOMEM; 1713 ret = -ENOMEM; 2121 if (pte_alloc(mm, pmd)) 1714 if (pte_alloc(mm, pmd)) 2122 goto out; 1715 goto out; 2123 1716 2124 while (pages_to_write_in_pmd) { 1717 while (pages_to_write_in_pmd) { 2125 int pte_idx = 0; 1718 int pte_idx = 0; 2126 const int batch_size = min_t( 1719 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2127 1720 2128 start_pte = pte_offset_map_lo 1721 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2129 if (!start_pte) { << 2130 ret = -EFAULT; << 2131 goto out; << 2132 } << 2133 for (pte = start_pte; pte_idx 1722 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2134 int err = insert_page !! 1723 int err = insert_page_in_batch_locked(mm, pte, 2135 addr, pages[c 1724 addr, pages[curr_page_idx], prot); 2136 if (unlikely(err)) { 1725 if (unlikely(err)) { 2137 pte_unmap_unl 1726 pte_unmap_unlock(start_pte, pte_lock); 2138 ret = err; 1727 ret = err; 2139 remaining_pag 1728 remaining_pages_total -= pte_idx; 2140 goto out; 1729 goto out; 2141 } 1730 } 2142 addr += PAGE_SIZE; 1731 addr += PAGE_SIZE; 2143 ++curr_page_idx; 1732 ++curr_page_idx; 2144 } 1733 } 2145 pte_unmap_unlock(start_pte, p 1734 pte_unmap_unlock(start_pte, pte_lock); 2146 pages_to_write_in_pmd -= batc 1735 pages_to_write_in_pmd -= batch_size; 2147 remaining_pages_total -= batc 1736 remaining_pages_total -= batch_size; 2148 } 1737 } 2149 if (remaining_pages_total) 1738 if (remaining_pages_total) 2150 goto more; 1739 goto more; 2151 ret = 0; 1740 ret = 0; 2152 out: 1741 out: 2153 *num = remaining_pages_total; 1742 *num = remaining_pages_total; 2154 return ret; 1743 return ret; 2155 } 1744 } >> 1745 #endif /* ifdef pte_index */ 2156 1746 2157 /** 1747 /** 2158 * vm_insert_pages - insert multiple pages in 1748 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2159 * @vma: user vma to map to 1749 * @vma: user vma to map to 2160 * @addr: target start user address of these 1750 * @addr: target start user address of these pages 2161 * @pages: source kernel pages 1751 * @pages: source kernel pages 2162 * @num: in: number of pages to map. out: num 1752 * @num: in: number of pages to map. out: number of pages that were *not* 2163 * mapped. (0 means all pages were successful 1753 * mapped. (0 means all pages were successfully mapped). 2164 * 1754 * 2165 * Preferred over vm_insert_page() when inser 1755 * Preferred over vm_insert_page() when inserting multiple pages. 2166 * 1756 * 2167 * In case of error, we may have mapped a sub 1757 * In case of error, we may have mapped a subset of the provided 2168 * pages. It is the caller's responsibility t 1758 * pages. It is the caller's responsibility to account for this case. 2169 * 1759 * 2170 * The same restrictions apply as in vm_inser 1760 * The same restrictions apply as in vm_insert_page(). 2171 */ 1761 */ 2172 int vm_insert_pages(struct vm_area_struct *vm 1762 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2173 struct page **pages, 1763 struct page **pages, unsigned long *num) 2174 { 1764 { >> 1765 #ifdef pte_index 2175 const unsigned long end_addr = addr + 1766 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2176 1767 2177 if (addr < vma->vm_start || end_addr 1768 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2178 return -EFAULT; 1769 return -EFAULT; 2179 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1770 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2180 BUG_ON(mmap_read_trylock(vma- 1771 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2181 BUG_ON(vma->vm_flags & VM_PFN 1772 BUG_ON(vma->vm_flags & VM_PFNMAP); 2182 vm_flags_set(vma, VM_MIXEDMAP !! 1773 vma->vm_flags |= VM_MIXEDMAP; 2183 } 1774 } 2184 /* Defer page refcount checking till 1775 /* Defer page refcount checking till we're about to map that page. */ 2185 return insert_pages(vma, addr, pages, 1776 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); >> 1777 #else >> 1778 unsigned long idx = 0, pgcount = *num; >> 1779 int err = -EINVAL; >> 1780 >> 1781 for (; idx < pgcount; ++idx) { >> 1782 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); >> 1783 if (err) >> 1784 break; >> 1785 } >> 1786 *num = pgcount - idx; >> 1787 return err; >> 1788 #endif /* ifdef pte_index */ 2186 } 1789 } 2187 EXPORT_SYMBOL(vm_insert_pages); 1790 EXPORT_SYMBOL(vm_insert_pages); 2188 1791 2189 /** 1792 /** 2190 * vm_insert_page - insert single page into u 1793 * vm_insert_page - insert single page into user vma 2191 * @vma: user vma to map to 1794 * @vma: user vma to map to 2192 * @addr: target user address of this page 1795 * @addr: target user address of this page 2193 * @page: source kernel page 1796 * @page: source kernel page 2194 * 1797 * 2195 * This allows drivers to insert individual p 1798 * This allows drivers to insert individual pages they've allocated 2196 * into a user vma. The zeropage is supported !! 1799 * into a user vma. 2197 * see vm_mixed_zeropage_allowed(). << 2198 * 1800 * 2199 * The page has to be a nice clean _individua 1801 * The page has to be a nice clean _individual_ kernel allocation. 2200 * If you allocate a compound page, you need 1802 * If you allocate a compound page, you need to have marked it as 2201 * such (__GFP_COMP), or manually just split 1803 * such (__GFP_COMP), or manually just split the page up yourself 2202 * (see split_page()). 1804 * (see split_page()). 2203 * 1805 * 2204 * NOTE! Traditionally this was done with "re 1806 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2205 * took an arbitrary page protection paramete 1807 * took an arbitrary page protection parameter. This doesn't allow 2206 * that. Your vma protection will have to be 1808 * that. Your vma protection will have to be set up correctly, which 2207 * means that if you want a shared writable m 1809 * means that if you want a shared writable mapping, you'd better 2208 * ask for a shared writable mapping! 1810 * ask for a shared writable mapping! 2209 * 1811 * 2210 * The page does not need to be reserved. 1812 * The page does not need to be reserved. 2211 * 1813 * 2212 * Usually this function is called from f_op- 1814 * Usually this function is called from f_op->mmap() handler 2213 * under mm->mmap_lock write-lock, so it can 1815 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2214 * Caller must set VM_MIXEDMAP on vma if it w 1816 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2215 * function from other places, for example fr 1817 * function from other places, for example from page-fault handler. 2216 * 1818 * 2217 * Return: %0 on success, negative error code 1819 * Return: %0 on success, negative error code otherwise. 2218 */ 1820 */ 2219 int vm_insert_page(struct vm_area_struct *vma 1821 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2220 struct page *page) 1822 struct page *page) 2221 { 1823 { 2222 if (addr < vma->vm_start || addr >= v 1824 if (addr < vma->vm_start || addr >= vma->vm_end) 2223 return -EFAULT; 1825 return -EFAULT; >> 1826 if (!page_count(page)) >> 1827 return -EINVAL; 2224 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1828 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2225 BUG_ON(mmap_read_trylock(vma- 1829 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2226 BUG_ON(vma->vm_flags & VM_PFN 1830 BUG_ON(vma->vm_flags & VM_PFNMAP); 2227 vm_flags_set(vma, VM_MIXEDMAP !! 1831 vma->vm_flags |= VM_MIXEDMAP; 2228 } 1832 } 2229 return insert_page(vma, addr, page, v 1833 return insert_page(vma, addr, page, vma->vm_page_prot); 2230 } 1834 } 2231 EXPORT_SYMBOL(vm_insert_page); 1835 EXPORT_SYMBOL(vm_insert_page); 2232 1836 2233 /* 1837 /* 2234 * __vm_map_pages - maps range of kernel page 1838 * __vm_map_pages - maps range of kernel pages into user vma 2235 * @vma: user vma to map to 1839 * @vma: user vma to map to 2236 * @pages: pointer to array of source kernel 1840 * @pages: pointer to array of source kernel pages 2237 * @num: number of pages in page array 1841 * @num: number of pages in page array 2238 * @offset: user's requested vm_pgoff 1842 * @offset: user's requested vm_pgoff 2239 * 1843 * 2240 * This allows drivers to map range of kernel 1844 * This allows drivers to map range of kernel pages into a user vma. 2241 * The zeropage is supported in some VMAs, se << 2242 * vm_mixed_zeropage_allowed(). << 2243 * 1845 * 2244 * Return: 0 on success and error code otherw 1846 * Return: 0 on success and error code otherwise. 2245 */ 1847 */ 2246 static int __vm_map_pages(struct vm_area_stru 1848 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2247 unsigned long 1849 unsigned long num, unsigned long offset) 2248 { 1850 { 2249 unsigned long count = vma_pages(vma); 1851 unsigned long count = vma_pages(vma); 2250 unsigned long uaddr = vma->vm_start; 1852 unsigned long uaddr = vma->vm_start; 2251 int ret, i; 1853 int ret, i; 2252 1854 2253 /* Fail if the user requested offset 1855 /* Fail if the user requested offset is beyond the end of the object */ 2254 if (offset >= num) 1856 if (offset >= num) 2255 return -ENXIO; 1857 return -ENXIO; 2256 1858 2257 /* Fail if the user requested size ex 1859 /* Fail if the user requested size exceeds available object size */ 2258 if (count > num - offset) 1860 if (count > num - offset) 2259 return -ENXIO; 1861 return -ENXIO; 2260 1862 2261 for (i = 0; i < count; i++) { 1863 for (i = 0; i < count; i++) { 2262 ret = vm_insert_page(vma, uad 1864 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2263 if (ret < 0) 1865 if (ret < 0) 2264 return ret; 1866 return ret; 2265 uaddr += PAGE_SIZE; 1867 uaddr += PAGE_SIZE; 2266 } 1868 } 2267 1869 2268 return 0; 1870 return 0; 2269 } 1871 } 2270 1872 2271 /** 1873 /** 2272 * vm_map_pages - maps range of kernel pages 1874 * vm_map_pages - maps range of kernel pages starts with non zero offset 2273 * @vma: user vma to map to 1875 * @vma: user vma to map to 2274 * @pages: pointer to array of source kernel 1876 * @pages: pointer to array of source kernel pages 2275 * @num: number of pages in page array 1877 * @num: number of pages in page array 2276 * 1878 * 2277 * Maps an object consisting of @num pages, c 1879 * Maps an object consisting of @num pages, catering for the user's 2278 * requested vm_pgoff 1880 * requested vm_pgoff 2279 * 1881 * 2280 * If we fail to insert any page into the vma 1882 * If we fail to insert any page into the vma, the function will return 2281 * immediately leaving any previously inserte 1883 * immediately leaving any previously inserted pages present. Callers 2282 * from the mmap handler may immediately retu 1884 * from the mmap handler may immediately return the error as their caller 2283 * will destroy the vma, removing any success 1885 * will destroy the vma, removing any successfully inserted pages. Other 2284 * callers should make their own arrangements 1886 * callers should make their own arrangements for calling unmap_region(). 2285 * 1887 * 2286 * Context: Process context. Called by mmap h 1888 * Context: Process context. Called by mmap handlers. 2287 * Return: 0 on success and error code otherw 1889 * Return: 0 on success and error code otherwise. 2288 */ 1890 */ 2289 int vm_map_pages(struct vm_area_struct *vma, 1891 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2290 unsigned long 1892 unsigned long num) 2291 { 1893 { 2292 return __vm_map_pages(vma, pages, num 1894 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2293 } 1895 } 2294 EXPORT_SYMBOL(vm_map_pages); 1896 EXPORT_SYMBOL(vm_map_pages); 2295 1897 2296 /** 1898 /** 2297 * vm_map_pages_zero - map range of kernel pa 1899 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2298 * @vma: user vma to map to 1900 * @vma: user vma to map to 2299 * @pages: pointer to array of source kernel 1901 * @pages: pointer to array of source kernel pages 2300 * @num: number of pages in page array 1902 * @num: number of pages in page array 2301 * 1903 * 2302 * Similar to vm_map_pages(), except that it 1904 * Similar to vm_map_pages(), except that it explicitly sets the offset 2303 * to 0. This function is intended for the dr 1905 * to 0. This function is intended for the drivers that did not consider 2304 * vm_pgoff. 1906 * vm_pgoff. 2305 * 1907 * 2306 * Context: Process context. Called by mmap h 1908 * Context: Process context. Called by mmap handlers. 2307 * Return: 0 on success and error code otherw 1909 * Return: 0 on success and error code otherwise. 2308 */ 1910 */ 2309 int vm_map_pages_zero(struct vm_area_struct * 1911 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2310 unsigned long 1912 unsigned long num) 2311 { 1913 { 2312 return __vm_map_pages(vma, pages, num 1914 return __vm_map_pages(vma, pages, num, 0); 2313 } 1915 } 2314 EXPORT_SYMBOL(vm_map_pages_zero); 1916 EXPORT_SYMBOL(vm_map_pages_zero); 2315 1917 2316 static vm_fault_t insert_pfn(struct vm_area_s 1918 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2317 pfn_t pfn, pgprot_t p 1919 pfn_t pfn, pgprot_t prot, bool mkwrite) 2318 { 1920 { 2319 struct mm_struct *mm = vma->vm_mm; 1921 struct mm_struct *mm = vma->vm_mm; 2320 pte_t *pte, entry; 1922 pte_t *pte, entry; 2321 spinlock_t *ptl; 1923 spinlock_t *ptl; 2322 1924 2323 pte = get_locked_pte(mm, addr, &ptl); 1925 pte = get_locked_pte(mm, addr, &ptl); 2324 if (!pte) 1926 if (!pte) 2325 return VM_FAULT_OOM; 1927 return VM_FAULT_OOM; 2326 entry = ptep_get(pte); !! 1928 if (!pte_none(*pte)) { 2327 if (!pte_none(entry)) { << 2328 if (mkwrite) { 1929 if (mkwrite) { 2329 /* 1930 /* 2330 * For read faults on 1931 * For read faults on private mappings the PFN passed 2331 * in may not match t 1932 * in may not match the PFN we have mapped if the 2332 * mapped PFN is a wr 1933 * mapped PFN is a writeable COW page. In the mkwrite 2333 * case we are creati 1934 * case we are creating a writable PTE for a shared 2334 * mapping and we exp 1935 * mapping and we expect the PFNs to match. If they 2335 * don't match, we ar 1936 * don't match, we are likely racing with block 2336 * allocation and map 1937 * allocation and mapping invalidation so just skip the 2337 * update. 1938 * update. 2338 */ 1939 */ 2339 if (pte_pfn(entry) != !! 1940 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2340 WARN_ON_ONCE( !! 1941 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2341 goto out_unlo 1942 goto out_unlock; 2342 } 1943 } 2343 entry = pte_mkyoung(e !! 1944 entry = pte_mkyoung(*pte); 2344 entry = maybe_mkwrite 1945 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2345 if (ptep_set_access_f 1946 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2346 update_mmu_ca 1947 update_mmu_cache(vma, addr, pte); 2347 } 1948 } 2348 goto out_unlock; 1949 goto out_unlock; 2349 } 1950 } 2350 1951 2351 /* Ok, finally just insert the thing. 1952 /* Ok, finally just insert the thing.. */ 2352 if (pfn_t_devmap(pfn)) 1953 if (pfn_t_devmap(pfn)) 2353 entry = pte_mkdevmap(pfn_t_pt 1954 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2354 else 1955 else 2355 entry = pte_mkspecial(pfn_t_p 1956 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2356 1957 2357 if (mkwrite) { 1958 if (mkwrite) { 2358 entry = pte_mkyoung(entry); 1959 entry = pte_mkyoung(entry); 2359 entry = maybe_mkwrite(pte_mkd 1960 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2360 } 1961 } 2361 1962 2362 set_pte_at(mm, addr, pte, entry); 1963 set_pte_at(mm, addr, pte, entry); 2363 update_mmu_cache(vma, addr, pte); /* 1964 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2364 1965 2365 out_unlock: 1966 out_unlock: 2366 pte_unmap_unlock(pte, ptl); 1967 pte_unmap_unlock(pte, ptl); 2367 return VM_FAULT_NOPAGE; 1968 return VM_FAULT_NOPAGE; 2368 } 1969 } 2369 1970 2370 /** 1971 /** 2371 * vmf_insert_pfn_prot - insert single pfn in 1972 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2372 * @vma: user vma to map to 1973 * @vma: user vma to map to 2373 * @addr: target user address of this page 1974 * @addr: target user address of this page 2374 * @pfn: source kernel pfn 1975 * @pfn: source kernel pfn 2375 * @pgprot: pgprot flags for the inserted pag 1976 * @pgprot: pgprot flags for the inserted page 2376 * 1977 * 2377 * This is exactly like vmf_insert_pfn(), exc 1978 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2378 * to override pgprot on a per-page basis. 1979 * to override pgprot on a per-page basis. 2379 * 1980 * 2380 * This only makes sense for IO mappings, and 1981 * This only makes sense for IO mappings, and it makes no sense for 2381 * COW mappings. In general, using multiple 1982 * COW mappings. In general, using multiple vmas is preferable; 2382 * vmf_insert_pfn_prot should only be used if 1983 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2383 * impractical. 1984 * impractical. 2384 * 1985 * 2385 * pgprot typically only differs from @vma->v !! 1986 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2386 * caching- and encryption bits different tha !! 1987 * a value of @pgprot different from that of @vma->vm_page_prot. 2387 * because the caching- or encryption mode ma << 2388 * << 2389 * This is ok as long as @vma->vm_page_prot i << 2390 * to set caching and encryption bits for tho << 2391 * This is ensured by core vm only modifying << 2392 * functions that don't touch caching- or enc << 2393 * if needed. (See for example mprotect()). << 2394 * << 2395 * Also when new page-table entries are creat << 2396 * fault() callback, and never using the valu << 2397 * except for page-table entries that point t << 2398 * of COW. << 2399 * 1988 * 2400 * Context: Process context. May allocate us 1989 * Context: Process context. May allocate using %GFP_KERNEL. 2401 * Return: vm_fault_t value. 1990 * Return: vm_fault_t value. 2402 */ 1991 */ 2403 vm_fault_t vmf_insert_pfn_prot(struct vm_area 1992 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2404 unsigned long pfn, pg 1993 unsigned long pfn, pgprot_t pgprot) 2405 { 1994 { 2406 /* 1995 /* 2407 * Technically, architectures with pt 1996 * Technically, architectures with pte_special can avoid all these 2408 * restrictions (same for remap_pfn_r 1997 * restrictions (same for remap_pfn_range). However we would like 2409 * consistency in testing and feature 1998 * consistency in testing and feature parity among all, so we should 2410 * try to keep these invariants in pl 1999 * try to keep these invariants in place for everybody. 2411 */ 2000 */ 2412 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|V 2001 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2413 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM 2002 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2414 2003 (VM_PFNMAP|VM_MIXEDMAP)); 2415 BUG_ON((vma->vm_flags & VM_PFNMAP) && 2004 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2416 BUG_ON((vma->vm_flags & VM_MIXEDMAP) 2005 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2417 2006 2418 if (addr < vma->vm_start || addr >= v 2007 if (addr < vma->vm_start || addr >= vma->vm_end) 2419 return VM_FAULT_SIGBUS; 2008 return VM_FAULT_SIGBUS; 2420 2009 2421 if (!pfn_modify_allowed(pfn, pgprot)) 2010 if (!pfn_modify_allowed(pfn, pgprot)) 2422 return VM_FAULT_SIGBUS; 2011 return VM_FAULT_SIGBUS; 2423 2012 2424 track_pfn_insert(vma, &pgprot, __pfn_ 2013 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2425 2014 2426 return insert_pfn(vma, addr, __pfn_to 2015 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2427 false); 2016 false); 2428 } 2017 } 2429 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2018 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2430 2019 2431 /** 2020 /** 2432 * vmf_insert_pfn - insert single pfn into us 2021 * vmf_insert_pfn - insert single pfn into user vma 2433 * @vma: user vma to map to 2022 * @vma: user vma to map to 2434 * @addr: target user address of this page 2023 * @addr: target user address of this page 2435 * @pfn: source kernel pfn 2024 * @pfn: source kernel pfn 2436 * 2025 * 2437 * Similar to vm_insert_page, this allows dri 2026 * Similar to vm_insert_page, this allows drivers to insert individual pages 2438 * they've allocated into a user vma. Same co 2027 * they've allocated into a user vma. Same comments apply. 2439 * 2028 * 2440 * This function should only be called from a 2029 * This function should only be called from a vm_ops->fault handler, and 2441 * in that case the handler should return the 2030 * in that case the handler should return the result of this function. 2442 * 2031 * 2443 * vma cannot be a COW mapping. 2032 * vma cannot be a COW mapping. 2444 * 2033 * 2445 * As this is called only for pages that do n 2034 * As this is called only for pages that do not currently exist, we 2446 * do not need to flush old virtual caches or 2035 * do not need to flush old virtual caches or the TLB. 2447 * 2036 * 2448 * Context: Process context. May allocate us 2037 * Context: Process context. May allocate using %GFP_KERNEL. 2449 * Return: vm_fault_t value. 2038 * Return: vm_fault_t value. 2450 */ 2039 */ 2451 vm_fault_t vmf_insert_pfn(struct vm_area_stru 2040 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2452 unsigned long pfn) 2041 unsigned long pfn) 2453 { 2042 { 2454 return vmf_insert_pfn_prot(vma, addr, 2043 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2455 } 2044 } 2456 EXPORT_SYMBOL(vmf_insert_pfn); 2045 EXPORT_SYMBOL(vmf_insert_pfn); 2457 2046 2458 static bool vm_mixed_ok(struct vm_area_struct !! 2047 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2459 { 2048 { 2460 if (unlikely(is_zero_pfn(pfn_t_to_pfn << 2461 (mkwrite || !vm_mixed_zeropage_al << 2462 return false; << 2463 /* these checks mirror the abort cond 2049 /* these checks mirror the abort conditions in vm_normal_page */ 2464 if (vma->vm_flags & VM_MIXEDMAP) 2050 if (vma->vm_flags & VM_MIXEDMAP) 2465 return true; 2051 return true; 2466 if (pfn_t_devmap(pfn)) 2052 if (pfn_t_devmap(pfn)) 2467 return true; 2053 return true; 2468 if (pfn_t_special(pfn)) 2054 if (pfn_t_special(pfn)) 2469 return true; 2055 return true; 2470 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2056 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2471 return true; 2057 return true; 2472 return false; 2058 return false; 2473 } 2059 } 2474 2060 2475 static vm_fault_t __vm_insert_mixed(struct vm 2061 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2476 unsigned long addr, pfn_t pfn !! 2062 unsigned long addr, pfn_t pfn, pgprot_t pgprot, >> 2063 bool mkwrite) 2477 { 2064 { 2478 pgprot_t pgprot = vma->vm_page_prot; << 2479 int err; 2065 int err; 2480 2066 2481 if (!vm_mixed_ok(vma, pfn, mkwrite)) !! 2067 BUG_ON(!vm_mixed_ok(vma, pfn)); 2482 return VM_FAULT_SIGBUS; << 2483 2068 2484 if (addr < vma->vm_start || addr >= v 2069 if (addr < vma->vm_start || addr >= vma->vm_end) 2485 return VM_FAULT_SIGBUS; 2070 return VM_FAULT_SIGBUS; 2486 2071 2487 track_pfn_insert(vma, &pgprot, pfn); 2072 track_pfn_insert(vma, &pgprot, pfn); 2488 2073 2489 if (!pfn_modify_allowed(pfn_t_to_pfn( 2074 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2490 return VM_FAULT_SIGBUS; 2075 return VM_FAULT_SIGBUS; 2491 2076 2492 /* 2077 /* 2493 * If we don't have pte special, then 2078 * If we don't have pte special, then we have to use the pfn_valid() 2494 * based VM_MIXEDMAP scheme (see vm_n 2079 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2495 * refcount the page if pfn_valid is 2080 * refcount the page if pfn_valid is true (hence insert_page rather 2496 * than insert_pfn). If a zero_pfn w 2081 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2497 * without pte special, it would ther 2082 * without pte special, it would there be refcounted as a normal page. 2498 */ 2083 */ 2499 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_S 2084 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2500 !pfn_t_devmap(pfn) && pfn_t_valid 2085 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2501 struct page *page; 2086 struct page *page; 2502 2087 2503 /* 2088 /* 2504 * At this point we are commi 2089 * At this point we are committed to insert_page() 2505 * regardless of whether the 2090 * regardless of whether the caller specified flags that 2506 * result in pfn_t_has_page() 2091 * result in pfn_t_has_page() == false. 2507 */ 2092 */ 2508 page = pfn_to_page(pfn_t_to_p 2093 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2509 err = insert_page(vma, addr, 2094 err = insert_page(vma, addr, page, pgprot); 2510 } else { 2095 } else { 2511 return insert_pfn(vma, addr, 2096 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2512 } 2097 } 2513 2098 2514 if (err == -ENOMEM) 2099 if (err == -ENOMEM) 2515 return VM_FAULT_OOM; 2100 return VM_FAULT_OOM; 2516 if (err < 0 && err != -EBUSY) 2101 if (err < 0 && err != -EBUSY) 2517 return VM_FAULT_SIGBUS; 2102 return VM_FAULT_SIGBUS; 2518 2103 2519 return VM_FAULT_NOPAGE; 2104 return VM_FAULT_NOPAGE; 2520 } 2105 } 2521 2106 >> 2107 /** >> 2108 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot >> 2109 * @vma: user vma to map to >> 2110 * @addr: target user address of this page >> 2111 * @pfn: source kernel pfn >> 2112 * @pgprot: pgprot flags for the inserted page >> 2113 * >> 2114 * This is exactly like vmf_insert_mixed(), except that it allows drivers >> 2115 * to override pgprot on a per-page basis. >> 2116 * >> 2117 * Typically this function should be used by drivers to set caching- and >> 2118 * encryption bits different than those of @vma->vm_page_prot, because >> 2119 * the caching- or encryption mode may not be known at mmap() time. >> 2120 * This is ok as long as @vma->vm_page_prot is not used by the core vm >> 2121 * to set caching and encryption bits for those vmas (except for COW pages). >> 2122 * This is ensured by core vm only modifying these page table entries using >> 2123 * functions that don't touch caching- or encryption bits, using pte_modify() >> 2124 * if needed. (See for example mprotect()). >> 2125 * Also when new page-table entries are created, this is only done using the >> 2126 * fault() callback, and never using the value of vma->vm_page_prot, >> 2127 * except for page-table entries that point to anonymous pages as the result >> 2128 * of COW. >> 2129 * >> 2130 * Context: Process context. May allocate using %GFP_KERNEL. >> 2131 * Return: vm_fault_t value. >> 2132 */ >> 2133 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, >> 2134 pfn_t pfn, pgprot_t pgprot) >> 2135 { >> 2136 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); >> 2137 } >> 2138 EXPORT_SYMBOL(vmf_insert_mixed_prot); >> 2139 2522 vm_fault_t vmf_insert_mixed(struct vm_area_st 2140 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2523 pfn_t pfn) 2141 pfn_t pfn) 2524 { 2142 { 2525 return __vm_insert_mixed(vma, addr, p !! 2143 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2526 } 2144 } 2527 EXPORT_SYMBOL(vmf_insert_mixed); 2145 EXPORT_SYMBOL(vmf_insert_mixed); 2528 2146 2529 /* 2147 /* 2530 * If the insertion of PTE failed because so 2148 * If the insertion of PTE failed because someone else already added a 2531 * different entry in the mean time, we trea 2149 * different entry in the mean time, we treat that as success as we assume 2532 * the same entry was actually inserted. 2150 * the same entry was actually inserted. 2533 */ 2151 */ 2534 vm_fault_t vmf_insert_mixed_mkwrite(struct vm 2152 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2535 unsigned long addr, pfn_t pfn 2153 unsigned long addr, pfn_t pfn) 2536 { 2154 { 2537 return __vm_insert_mixed(vma, addr, p !! 2155 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2538 } 2156 } >> 2157 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2539 2158 2540 /* 2159 /* 2541 * maps a range of physical memory into the r 2160 * maps a range of physical memory into the requested pages. the old 2542 * mappings are removed. any references to no 2161 * mappings are removed. any references to nonexistent pages results 2543 * in null mappings (currently treated as "co 2162 * in null mappings (currently treated as "copy-on-access") 2544 */ 2163 */ 2545 static int remap_pte_range(struct mm_struct * 2164 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2546 unsigned long addr, u 2165 unsigned long addr, unsigned long end, 2547 unsigned long pfn, pg 2166 unsigned long pfn, pgprot_t prot) 2548 { 2167 { 2549 pte_t *pte, *mapped_pte; 2168 pte_t *pte, *mapped_pte; 2550 spinlock_t *ptl; 2169 spinlock_t *ptl; 2551 int err = 0; 2170 int err = 0; 2552 2171 2553 mapped_pte = pte = pte_alloc_map_lock 2172 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2554 if (!pte) 2173 if (!pte) 2555 return -ENOMEM; 2174 return -ENOMEM; 2556 arch_enter_lazy_mmu_mode(); 2175 arch_enter_lazy_mmu_mode(); 2557 do { 2176 do { 2558 BUG_ON(!pte_none(ptep_get(pte !! 2177 BUG_ON(!pte_none(*pte)); 2559 if (!pfn_modify_allowed(pfn, 2178 if (!pfn_modify_allowed(pfn, prot)) { 2560 err = -EACCES; 2179 err = -EACCES; 2561 break; 2180 break; 2562 } 2181 } 2563 set_pte_at(mm, addr, pte, pte 2182 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2564 pfn++; 2183 pfn++; 2565 } while (pte++, addr += PAGE_SIZE, ad 2184 } while (pte++, addr += PAGE_SIZE, addr != end); 2566 arch_leave_lazy_mmu_mode(); 2185 arch_leave_lazy_mmu_mode(); 2567 pte_unmap_unlock(mapped_pte, ptl); 2186 pte_unmap_unlock(mapped_pte, ptl); 2568 return err; 2187 return err; 2569 } 2188 } 2570 2189 2571 static inline int remap_pmd_range(struct mm_s 2190 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2572 unsigned long addr, u 2191 unsigned long addr, unsigned long end, 2573 unsigned long pfn, pg 2192 unsigned long pfn, pgprot_t prot) 2574 { 2193 { 2575 pmd_t *pmd; 2194 pmd_t *pmd; 2576 unsigned long next; 2195 unsigned long next; 2577 int err; 2196 int err; 2578 2197 2579 pfn -= addr >> PAGE_SHIFT; 2198 pfn -= addr >> PAGE_SHIFT; 2580 pmd = pmd_alloc(mm, pud, addr); 2199 pmd = pmd_alloc(mm, pud, addr); 2581 if (!pmd) 2200 if (!pmd) 2582 return -ENOMEM; 2201 return -ENOMEM; 2583 VM_BUG_ON(pmd_trans_huge(*pmd)); 2202 VM_BUG_ON(pmd_trans_huge(*pmd)); 2584 do { 2203 do { 2585 next = pmd_addr_end(addr, end 2204 next = pmd_addr_end(addr, end); 2586 err = remap_pte_range(mm, pmd 2205 err = remap_pte_range(mm, pmd, addr, next, 2587 pfn + (addr > 2206 pfn + (addr >> PAGE_SHIFT), prot); 2588 if (err) 2207 if (err) 2589 return err; 2208 return err; 2590 } while (pmd++, addr = next, addr != 2209 } while (pmd++, addr = next, addr != end); 2591 return 0; 2210 return 0; 2592 } 2211 } 2593 2212 2594 static inline int remap_pud_range(struct mm_s 2213 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2595 unsigned long addr, u 2214 unsigned long addr, unsigned long end, 2596 unsigned long pfn, pg 2215 unsigned long pfn, pgprot_t prot) 2597 { 2216 { 2598 pud_t *pud; 2217 pud_t *pud; 2599 unsigned long next; 2218 unsigned long next; 2600 int err; 2219 int err; 2601 2220 2602 pfn -= addr >> PAGE_SHIFT; 2221 pfn -= addr >> PAGE_SHIFT; 2603 pud = pud_alloc(mm, p4d, addr); 2222 pud = pud_alloc(mm, p4d, addr); 2604 if (!pud) 2223 if (!pud) 2605 return -ENOMEM; 2224 return -ENOMEM; 2606 do { 2225 do { 2607 next = pud_addr_end(addr, end 2226 next = pud_addr_end(addr, end); 2608 err = remap_pmd_range(mm, pud 2227 err = remap_pmd_range(mm, pud, addr, next, 2609 pfn + (addr > 2228 pfn + (addr >> PAGE_SHIFT), prot); 2610 if (err) 2229 if (err) 2611 return err; 2230 return err; 2612 } while (pud++, addr = next, addr != 2231 } while (pud++, addr = next, addr != end); 2613 return 0; 2232 return 0; 2614 } 2233 } 2615 2234 2616 static inline int remap_p4d_range(struct mm_s 2235 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2617 unsigned long addr, u 2236 unsigned long addr, unsigned long end, 2618 unsigned long pfn, pg 2237 unsigned long pfn, pgprot_t prot) 2619 { 2238 { 2620 p4d_t *p4d; 2239 p4d_t *p4d; 2621 unsigned long next; 2240 unsigned long next; 2622 int err; 2241 int err; 2623 2242 2624 pfn -= addr >> PAGE_SHIFT; 2243 pfn -= addr >> PAGE_SHIFT; 2625 p4d = p4d_alloc(mm, pgd, addr); 2244 p4d = p4d_alloc(mm, pgd, addr); 2626 if (!p4d) 2245 if (!p4d) 2627 return -ENOMEM; 2246 return -ENOMEM; 2628 do { 2247 do { 2629 next = p4d_addr_end(addr, end 2248 next = p4d_addr_end(addr, end); 2630 err = remap_pud_range(mm, p4d 2249 err = remap_pud_range(mm, p4d, addr, next, 2631 pfn + (addr > 2250 pfn + (addr >> PAGE_SHIFT), prot); 2632 if (err) 2251 if (err) 2633 return err; 2252 return err; 2634 } while (p4d++, addr = next, addr != 2253 } while (p4d++, addr = next, addr != end); 2635 return 0; 2254 return 0; 2636 } 2255 } 2637 2256 2638 static int remap_pfn_range_internal(struct vm !! 2257 /** 2639 unsigned long pfn, unsigned l !! 2258 * remap_pfn_range - remap kernel memory to userspace >> 2259 * @vma: user vma to map to >> 2260 * @addr: target page aligned user address to start at >> 2261 * @pfn: page frame number of kernel physical memory address >> 2262 * @size: size of mapping area >> 2263 * @prot: page protection flags for this mapping >> 2264 * >> 2265 * Note: this is only safe if the mm semaphore is held when called. >> 2266 * >> 2267 * Return: %0 on success, negative error code otherwise. >> 2268 */ >> 2269 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, >> 2270 unsigned long pfn, unsigned long size, pgprot_t prot) 2640 { 2271 { 2641 pgd_t *pgd; 2272 pgd_t *pgd; 2642 unsigned long next; 2273 unsigned long next; 2643 unsigned long end = addr + PAGE_ALIGN 2274 unsigned long end = addr + PAGE_ALIGN(size); 2644 struct mm_struct *mm = vma->vm_mm; 2275 struct mm_struct *mm = vma->vm_mm; >> 2276 unsigned long remap_pfn = pfn; 2645 int err; 2277 int err; 2646 2278 2647 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)) 2279 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2648 return -EINVAL; 2280 return -EINVAL; 2649 2281 2650 /* 2282 /* 2651 * Physically remapped pages are spec 2283 * Physically remapped pages are special. Tell the 2652 * rest of the world about it: 2284 * rest of the world about it: 2653 * VM_IO tells people not to look a 2285 * VM_IO tells people not to look at these pages 2654 * (accesses can have side effec 2286 * (accesses can have side effects). 2655 * VM_PFNMAP tells the core MM that 2287 * VM_PFNMAP tells the core MM that the base pages are just 2656 * raw PFN mappings, and do not 2288 * raw PFN mappings, and do not have a "struct page" associated 2657 * with them. 2289 * with them. 2658 * VM_DONTEXPAND 2290 * VM_DONTEXPAND 2659 * Disable vma merging and expan 2291 * Disable vma merging and expanding with mremap(). 2660 * VM_DONTDUMP 2292 * VM_DONTDUMP 2661 * Omit vma from core dump, even 2293 * Omit vma from core dump, even when VM_IO turned off. 2662 * 2294 * 2663 * There's a horrible special case to 2295 * There's a horrible special case to handle copy-on-write 2664 * behaviour that some programs depen 2296 * behaviour that some programs depend on. We mark the "original" 2665 * un-COW'ed pages by matching them u 2297 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2666 * See vm_normal_page() for details. 2298 * See vm_normal_page() for details. 2667 */ 2299 */ 2668 if (is_cow_mapping(vma->vm_flags)) { 2300 if (is_cow_mapping(vma->vm_flags)) { 2669 if (addr != vma->vm_start || 2301 if (addr != vma->vm_start || end != vma->vm_end) 2670 return -EINVAL; 2302 return -EINVAL; 2671 vma->vm_pgoff = pfn; 2303 vma->vm_pgoff = pfn; 2672 } 2304 } 2673 2305 2674 vm_flags_set(vma, VM_IO | VM_PFNMAP | !! 2306 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); >> 2307 if (err) >> 2308 return -EINVAL; >> 2309 >> 2310 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2675 2311 2676 BUG_ON(addr >= end); 2312 BUG_ON(addr >= end); 2677 pfn -= addr >> PAGE_SHIFT; 2313 pfn -= addr >> PAGE_SHIFT; 2678 pgd = pgd_offset(mm, addr); 2314 pgd = pgd_offset(mm, addr); 2679 flush_cache_range(vma, addr, end); 2315 flush_cache_range(vma, addr, end); 2680 do { 2316 do { 2681 next = pgd_addr_end(addr, end 2317 next = pgd_addr_end(addr, end); 2682 err = remap_p4d_range(mm, pgd 2318 err = remap_p4d_range(mm, pgd, addr, next, 2683 pfn + (addr > 2319 pfn + (addr >> PAGE_SHIFT), prot); 2684 if (err) 2320 if (err) 2685 return err; !! 2321 break; 2686 } while (pgd++, addr = next, addr != 2322 } while (pgd++, addr = next, addr != end); 2687 2323 2688 return 0; << 2689 } << 2690 << 2691 /* << 2692 * Variant of remap_pfn_range that does not c << 2693 * must have pre-validated the caching bits o << 2694 */ << 2695 int remap_pfn_range_notrack(struct vm_area_st << 2696 unsigned long pfn, unsigned l << 2697 { << 2698 int error = remap_pfn_range_internal( << 2699 << 2700 if (!error) << 2701 return 0; << 2702 << 2703 /* << 2704 * A partial pfn range mapping is dan << 2705 * maintain page reference counts, an << 2706 * pages due to the error. So zap it << 2707 */ << 2708 zap_page_range_single(vma, addr, size << 2709 return error; << 2710 } << 2711 << 2712 /** << 2713 * remap_pfn_range - remap kernel memory to u << 2714 * @vma: user vma to map to << 2715 * @addr: target page aligned user address to << 2716 * @pfn: page frame number of kernel physical << 2717 * @size: size of mapping area << 2718 * @prot: page protection flags for this mapp << 2719 * << 2720 * Note: this is only safe if the mm semaphor << 2721 * << 2722 * Return: %0 on success, negative error code << 2723 */ << 2724 int remap_pfn_range(struct vm_area_struct *vm << 2725 unsigned long pfn, unsign << 2726 { << 2727 int err; << 2728 << 2729 err = track_pfn_remap(vma, &prot, pfn << 2730 if (err) 2324 if (err) 2731 return -EINVAL; !! 2325 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2732 2326 2733 err = remap_pfn_range_notrack(vma, ad << 2734 if (err) << 2735 untrack_pfn(vma, pfn, PAGE_AL << 2736 return err; 2327 return err; 2737 } 2328 } 2738 EXPORT_SYMBOL(remap_pfn_range); 2329 EXPORT_SYMBOL(remap_pfn_range); 2739 2330 2740 /** 2331 /** 2741 * vm_iomap_memory - remap memory to userspac 2332 * vm_iomap_memory - remap memory to userspace 2742 * @vma: user vma to map to 2333 * @vma: user vma to map to 2743 * @start: start of the physical memory to be 2334 * @start: start of the physical memory to be mapped 2744 * @len: size of area 2335 * @len: size of area 2745 * 2336 * 2746 * This is a simplified io_remap_pfn_range() 2337 * This is a simplified io_remap_pfn_range() for common driver use. The 2747 * driver just needs to give us the physical 2338 * driver just needs to give us the physical memory range to be mapped, 2748 * we'll figure out the rest from the vma inf 2339 * we'll figure out the rest from the vma information. 2749 * 2340 * 2750 * NOTE! Some drivers might want to tweak vma 2341 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2751 * whatever write-combining details or simila 2342 * whatever write-combining details or similar. 2752 * 2343 * 2753 * Return: %0 on success, negative error code 2344 * Return: %0 on success, negative error code otherwise. 2754 */ 2345 */ 2755 int vm_iomap_memory(struct vm_area_struct *vm 2346 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2756 { 2347 { 2757 unsigned long vm_len, pfn, pages; 2348 unsigned long vm_len, pfn, pages; 2758 2349 2759 /* Check that the physical memory are 2350 /* Check that the physical memory area passed in looks valid */ 2760 if (start + len < start) 2351 if (start + len < start) 2761 return -EINVAL; 2352 return -EINVAL; 2762 /* 2353 /* 2763 * You *really* shouldn't map things 2354 * You *really* shouldn't map things that aren't page-aligned, 2764 * but we've historically allowed it 2355 * but we've historically allowed it because IO memory might 2765 * just have smaller alignment. 2356 * just have smaller alignment. 2766 */ 2357 */ 2767 len += start & ~PAGE_MASK; 2358 len += start & ~PAGE_MASK; 2768 pfn = start >> PAGE_SHIFT; 2359 pfn = start >> PAGE_SHIFT; 2769 pages = (len + ~PAGE_MASK) >> PAGE_SH 2360 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2770 if (pfn + pages < pfn) 2361 if (pfn + pages < pfn) 2771 return -EINVAL; 2362 return -EINVAL; 2772 2363 2773 /* We start the mapping 'vm_pgoff' pa 2364 /* We start the mapping 'vm_pgoff' pages into the area */ 2774 if (vma->vm_pgoff > pages) 2365 if (vma->vm_pgoff > pages) 2775 return -EINVAL; 2366 return -EINVAL; 2776 pfn += vma->vm_pgoff; 2367 pfn += vma->vm_pgoff; 2777 pages -= vma->vm_pgoff; 2368 pages -= vma->vm_pgoff; 2778 2369 2779 /* Can we fit all of the mapping? */ 2370 /* Can we fit all of the mapping? */ 2780 vm_len = vma->vm_end - vma->vm_start; 2371 vm_len = vma->vm_end - vma->vm_start; 2781 if (vm_len >> PAGE_SHIFT > pages) 2372 if (vm_len >> PAGE_SHIFT > pages) 2782 return -EINVAL; 2373 return -EINVAL; 2783 2374 2784 /* Ok, let it rip */ 2375 /* Ok, let it rip */ 2785 return io_remap_pfn_range(vma, vma->v 2376 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2786 } 2377 } 2787 EXPORT_SYMBOL(vm_iomap_memory); 2378 EXPORT_SYMBOL(vm_iomap_memory); 2788 2379 2789 static int apply_to_pte_range(struct mm_struc 2380 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2790 unsigned 2381 unsigned long addr, unsigned long end, 2791 pte_fn_t 2382 pte_fn_t fn, void *data, bool create, 2792 pgtbl_mo 2383 pgtbl_mod_mask *mask) 2793 { 2384 { 2794 pte_t *pte, *mapped_pte; !! 2385 pte_t *pte; 2795 int err = 0; 2386 int err = 0; 2796 spinlock_t *ptl; 2387 spinlock_t *ptl; 2797 2388 2798 if (create) { 2389 if (create) { 2799 mapped_pte = pte = (mm == &in !! 2390 pte = (mm == &init_mm) ? 2800 pte_alloc_kernel_trac 2391 pte_alloc_kernel_track(pmd, addr, mask) : 2801 pte_alloc_map_lock(mm 2392 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2802 if (!pte) 2393 if (!pte) 2803 return -ENOMEM; 2394 return -ENOMEM; 2804 } else { 2395 } else { 2805 mapped_pte = pte = (mm == &in !! 2396 pte = (mm == &init_mm) ? 2806 pte_offset_kernel(pmd 2397 pte_offset_kernel(pmd, addr) : 2807 pte_offset_map_lock(m 2398 pte_offset_map_lock(mm, pmd, addr, &ptl); 2808 if (!pte) << 2809 return -EINVAL; << 2810 } 2399 } 2811 2400 >> 2401 BUG_ON(pmd_huge(*pmd)); >> 2402 2812 arch_enter_lazy_mmu_mode(); 2403 arch_enter_lazy_mmu_mode(); 2813 2404 2814 if (fn) { 2405 if (fn) { 2815 do { 2406 do { 2816 if (create || !pte_no !! 2407 if (create || !pte_none(*pte)) { 2817 err = fn(pte+ 2408 err = fn(pte++, addr, data); 2818 if (err) 2409 if (err) 2819 break 2410 break; 2820 } 2411 } 2821 } while (addr += PAGE_SIZE, a 2412 } while (addr += PAGE_SIZE, addr != end); 2822 } 2413 } 2823 *mask |= PGTBL_PTE_MODIFIED; 2414 *mask |= PGTBL_PTE_MODIFIED; 2824 2415 2825 arch_leave_lazy_mmu_mode(); 2416 arch_leave_lazy_mmu_mode(); 2826 2417 2827 if (mm != &init_mm) 2418 if (mm != &init_mm) 2828 pte_unmap_unlock(mapped_pte, !! 2419 pte_unmap_unlock(pte-1, ptl); 2829 return err; 2420 return err; 2830 } 2421 } 2831 2422 2832 static int apply_to_pmd_range(struct mm_struc 2423 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2833 unsigned 2424 unsigned long addr, unsigned long end, 2834 pte_fn_t 2425 pte_fn_t fn, void *data, bool create, 2835 pgtbl_mo 2426 pgtbl_mod_mask *mask) 2836 { 2427 { 2837 pmd_t *pmd; 2428 pmd_t *pmd; 2838 unsigned long next; 2429 unsigned long next; 2839 int err = 0; 2430 int err = 0; 2840 2431 2841 BUG_ON(pud_leaf(*pud)); !! 2432 BUG_ON(pud_huge(*pud)); 2842 2433 2843 if (create) { 2434 if (create) { 2844 pmd = pmd_alloc_track(mm, pud 2435 pmd = pmd_alloc_track(mm, pud, addr, mask); 2845 if (!pmd) 2436 if (!pmd) 2846 return -ENOMEM; 2437 return -ENOMEM; 2847 } else { 2438 } else { 2848 pmd = pmd_offset(pud, addr); 2439 pmd = pmd_offset(pud, addr); 2849 } 2440 } 2850 do { 2441 do { 2851 next = pmd_addr_end(addr, end 2442 next = pmd_addr_end(addr, end); 2852 if (pmd_none(*pmd) && !create !! 2443 if (create || !pmd_none_or_clear_bad(pmd)) { 2853 continue; !! 2444 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2854 if (WARN_ON_ONCE(pmd_leaf(*pm !! 2445 create, mask); 2855 return -EINVAL; !! 2446 if (err) 2856 if (!pmd_none(*pmd) && WARN_O !! 2447 break; 2857 if (!create) << 2858 continue; << 2859 pmd_clear_bad(pmd); << 2860 } 2448 } 2861 err = apply_to_pte_range(mm, << 2862 fn, << 2863 if (err) << 2864 break; << 2865 } while (pmd++, addr = next, addr != 2449 } while (pmd++, addr = next, addr != end); 2866 << 2867 return err; 2450 return err; 2868 } 2451 } 2869 2452 2870 static int apply_to_pud_range(struct mm_struc 2453 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2871 unsigned 2454 unsigned long addr, unsigned long end, 2872 pte_fn_t 2455 pte_fn_t fn, void *data, bool create, 2873 pgtbl_mo 2456 pgtbl_mod_mask *mask) 2874 { 2457 { 2875 pud_t *pud; 2458 pud_t *pud; 2876 unsigned long next; 2459 unsigned long next; 2877 int err = 0; 2460 int err = 0; 2878 2461 2879 if (create) { 2462 if (create) { 2880 pud = pud_alloc_track(mm, p4d 2463 pud = pud_alloc_track(mm, p4d, addr, mask); 2881 if (!pud) 2464 if (!pud) 2882 return -ENOMEM; 2465 return -ENOMEM; 2883 } else { 2466 } else { 2884 pud = pud_offset(p4d, addr); 2467 pud = pud_offset(p4d, addr); 2885 } 2468 } 2886 do { 2469 do { 2887 next = pud_addr_end(addr, end 2470 next = pud_addr_end(addr, end); 2888 if (pud_none(*pud) && !create !! 2471 if (create || !pud_none_or_clear_bad(pud)) { 2889 continue; !! 2472 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2890 if (WARN_ON_ONCE(pud_leaf(*pu !! 2473 create, mask); 2891 return -EINVAL; !! 2474 if (err) 2892 if (!pud_none(*pud) && WARN_O !! 2475 break; 2893 if (!create) << 2894 continue; << 2895 pud_clear_bad(pud); << 2896 } 2476 } 2897 err = apply_to_pmd_range(mm, << 2898 fn, << 2899 if (err) << 2900 break; << 2901 } while (pud++, addr = next, addr != 2477 } while (pud++, addr = next, addr != end); 2902 << 2903 return err; 2478 return err; 2904 } 2479 } 2905 2480 2906 static int apply_to_p4d_range(struct mm_struc 2481 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2907 unsigned 2482 unsigned long addr, unsigned long end, 2908 pte_fn_t 2483 pte_fn_t fn, void *data, bool create, 2909 pgtbl_mo 2484 pgtbl_mod_mask *mask) 2910 { 2485 { 2911 p4d_t *p4d; 2486 p4d_t *p4d; 2912 unsigned long next; 2487 unsigned long next; 2913 int err = 0; 2488 int err = 0; 2914 2489 2915 if (create) { 2490 if (create) { 2916 p4d = p4d_alloc_track(mm, pgd 2491 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2917 if (!p4d) 2492 if (!p4d) 2918 return -ENOMEM; 2493 return -ENOMEM; 2919 } else { 2494 } else { 2920 p4d = p4d_offset(pgd, addr); 2495 p4d = p4d_offset(pgd, addr); 2921 } 2496 } 2922 do { 2497 do { 2923 next = p4d_addr_end(addr, end 2498 next = p4d_addr_end(addr, end); 2924 if (p4d_none(*p4d) && !create !! 2499 if (create || !p4d_none_or_clear_bad(p4d)) { 2925 continue; !! 2500 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2926 if (WARN_ON_ONCE(p4d_leaf(*p4 !! 2501 create, mask); 2927 return -EINVAL; !! 2502 if (err) 2928 if (!p4d_none(*p4d) && WARN_O !! 2503 break; 2929 if (!create) << 2930 continue; << 2931 p4d_clear_bad(p4d); << 2932 } 2504 } 2933 err = apply_to_pud_range(mm, << 2934 fn, << 2935 if (err) << 2936 break; << 2937 } while (p4d++, addr = next, addr != 2505 } while (p4d++, addr = next, addr != end); 2938 << 2939 return err; 2506 return err; 2940 } 2507 } 2941 2508 2942 static int __apply_to_page_range(struct mm_st 2509 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2943 unsigned lon 2510 unsigned long size, pte_fn_t fn, 2944 void *data, 2511 void *data, bool create) 2945 { 2512 { 2946 pgd_t *pgd; 2513 pgd_t *pgd; 2947 unsigned long start = addr, next; 2514 unsigned long start = addr, next; 2948 unsigned long end = addr + size; 2515 unsigned long end = addr + size; 2949 pgtbl_mod_mask mask = 0; 2516 pgtbl_mod_mask mask = 0; 2950 int err = 0; 2517 int err = 0; 2951 2518 2952 if (WARN_ON(addr >= end)) 2519 if (WARN_ON(addr >= end)) 2953 return -EINVAL; 2520 return -EINVAL; 2954 2521 2955 pgd = pgd_offset(mm, addr); 2522 pgd = pgd_offset(mm, addr); 2956 do { 2523 do { 2957 next = pgd_addr_end(addr, end 2524 next = pgd_addr_end(addr, end); 2958 if (pgd_none(*pgd) && !create !! 2525 if (!create && pgd_none_or_clear_bad(pgd)) 2959 continue; 2526 continue; 2960 if (WARN_ON_ONCE(pgd_leaf(*pg !! 2527 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); 2961 return -EINVAL; << 2962 if (!pgd_none(*pgd) && WARN_O << 2963 if (!create) << 2964 continue; << 2965 pgd_clear_bad(pgd); << 2966 } << 2967 err = apply_to_p4d_range(mm, << 2968 fn, << 2969 if (err) 2528 if (err) 2970 break; 2529 break; 2971 } while (pgd++, addr = next, addr != 2530 } while (pgd++, addr = next, addr != end); 2972 2531 2973 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2532 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2974 arch_sync_kernel_mappings(sta 2533 arch_sync_kernel_mappings(start, start + size); 2975 2534 2976 return err; 2535 return err; 2977 } 2536 } 2978 2537 2979 /* 2538 /* 2980 * Scan a region of virtual memory, filling i 2539 * Scan a region of virtual memory, filling in page tables as necessary 2981 * and calling a provided function on each le 2540 * and calling a provided function on each leaf page table. 2982 */ 2541 */ 2983 int apply_to_page_range(struct mm_struct *mm, 2542 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2984 unsigned long size, p 2543 unsigned long size, pte_fn_t fn, void *data) 2985 { 2544 { 2986 return __apply_to_page_range(mm, addr 2545 return __apply_to_page_range(mm, addr, size, fn, data, true); 2987 } 2546 } 2988 EXPORT_SYMBOL_GPL(apply_to_page_range); 2547 EXPORT_SYMBOL_GPL(apply_to_page_range); 2989 2548 2990 /* 2549 /* 2991 * Scan a region of virtual memory, calling a 2550 * Scan a region of virtual memory, calling a provided function on 2992 * each leaf page table where it exists. 2551 * each leaf page table where it exists. 2993 * 2552 * 2994 * Unlike apply_to_page_range, this does _not 2553 * Unlike apply_to_page_range, this does _not_ fill in page tables 2995 * where they are absent. 2554 * where they are absent. 2996 */ 2555 */ 2997 int apply_to_existing_page_range(struct mm_st 2556 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2998 unsigned lon 2557 unsigned long size, pte_fn_t fn, void *data) 2999 { 2558 { 3000 return __apply_to_page_range(mm, addr 2559 return __apply_to_page_range(mm, addr, size, fn, data, false); 3001 } 2560 } 3002 EXPORT_SYMBOL_GPL(apply_to_existing_page_rang 2561 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 3003 2562 3004 /* 2563 /* 3005 * handle_pte_fault chooses page fault handle 2564 * handle_pte_fault chooses page fault handler according to an entry which was 3006 * read non-atomically. Before making any co 2565 * read non-atomically. Before making any commitment, on those architectures 3007 * or configurations (e.g. i386 with PAE) whi 2566 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3008 * parts, do_swap_page must check under lock 2567 * parts, do_swap_page must check under lock before unmapping the pte and 3009 * proceeding (but do_wp_page is only called 2568 * proceeding (but do_wp_page is only called after already making such a check; 3010 * and do_anonymous_page can safely check lat 2569 * and do_anonymous_page can safely check later on). 3011 */ 2570 */ 3012 static inline int pte_unmap_same(struct vm_fa !! 2571 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, >> 2572 pte_t *page_table, pte_t orig_pte) 3013 { 2573 { 3014 int same = 1; 2574 int same = 1; 3015 #if defined(CONFIG_SMP) || defined(CONFIG_PRE 2575 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3016 if (sizeof(pte_t) > sizeof(unsigned l 2576 if (sizeof(pte_t) > sizeof(unsigned long)) { 3017 spin_lock(vmf->ptl); !! 2577 spinlock_t *ptl = pte_lockptr(mm, pmd); 3018 same = pte_same(ptep_get(vmf- !! 2578 spin_lock(ptl); 3019 spin_unlock(vmf->ptl); !! 2579 same = pte_same(*page_table, orig_pte); >> 2580 spin_unlock(ptl); 3020 } 2581 } 3021 #endif 2582 #endif 3022 pte_unmap(vmf->pte); !! 2583 pte_unmap(page_table); 3023 vmf->pte = NULL; << 3024 return same; 2584 return same; 3025 } 2585 } 3026 2586 3027 /* !! 2587 static inline bool cow_user_page(struct page *dst, struct page *src, 3028 * Return: !! 2588 struct vm_fault *vmf) 3029 * 0: copied succeeded << 3030 * -EHWPOISON: copy failed due to hw << 3031 * -EAGAIN: copied failed (some o << 3032 */ << 3033 static inline int __wp_page_copy_user(struct << 3034 struct << 3035 { 2589 { 3036 int ret; !! 2590 bool ret; 3037 void *kaddr; 2591 void *kaddr; 3038 void __user *uaddr; 2592 void __user *uaddr; >> 2593 bool locked = false; 3039 struct vm_area_struct *vma = vmf->vma 2594 struct vm_area_struct *vma = vmf->vma; 3040 struct mm_struct *mm = vma->vm_mm; 2595 struct mm_struct *mm = vma->vm_mm; 3041 unsigned long addr = vmf->address; 2596 unsigned long addr = vmf->address; 3042 2597 3043 if (likely(src)) { 2598 if (likely(src)) { 3044 if (copy_mc_user_highpage(dst !! 2599 copy_user_highpage(dst, src, addr, vma); 3045 return -EHWPOISON; !! 2600 return true; 3046 return 0; << 3047 } 2601 } 3048 2602 3049 /* 2603 /* 3050 * If the source page was a PFN mappi 2604 * If the source page was a PFN mapping, we don't have 3051 * a "struct page" for it. We do a be 2605 * a "struct page" for it. We do a best-effort copy by 3052 * just copying from the original use 2606 * just copying from the original user address. If that 3053 * fails, we just zero-fill it. Live 2607 * fails, we just zero-fill it. Live with it. 3054 */ 2608 */ 3055 kaddr = kmap_local_page(dst); !! 2609 kaddr = kmap_atomic(dst); 3056 pagefault_disable(); << 3057 uaddr = (void __user *)(addr & PAGE_M 2610 uaddr = (void __user *)(addr & PAGE_MASK); 3058 2611 3059 /* 2612 /* 3060 * On architectures with software "ac 2613 * On architectures with software "accessed" bits, we would 3061 * take a double page fault, so mark 2614 * take a double page fault, so mark it accessed here. 3062 */ 2615 */ 3063 vmf->pte = NULL; !! 2616 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 3064 if (!arch_has_hw_pte_young() && !pte_ << 3065 pte_t entry; 2617 pte_t entry; 3066 2618 3067 vmf->pte = pte_offset_map_loc 2619 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3068 if (unlikely(!vmf->pte || !pt !! 2620 locked = true; >> 2621 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3069 /* 2622 /* 3070 * Other thread has a 2623 * Other thread has already handled the fault 3071 * and update local t 2624 * and update local tlb only 3072 */ 2625 */ 3073 if (vmf->pte) !! 2626 update_mmu_tlb(vma, addr, vmf->pte); 3074 update_mmu_tl !! 2627 ret = false; 3075 ret = -EAGAIN; << 3076 goto pte_unlock; 2628 goto pte_unlock; 3077 } 2629 } 3078 2630 3079 entry = pte_mkyoung(vmf->orig 2631 entry = pte_mkyoung(vmf->orig_pte); 3080 if (ptep_set_access_flags(vma 2632 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3081 update_mmu_cache_rang !! 2633 update_mmu_cache(vma, addr, vmf->pte); 3082 } 2634 } 3083 2635 3084 /* 2636 /* 3085 * This really shouldn't fail, becaus 2637 * This really shouldn't fail, because the page is there 3086 * in the page tables. But it might j 2638 * in the page tables. But it might just be unreadable, 3087 * in which case we just give up and 2639 * in which case we just give up and fill the result with 3088 * zeroes. 2640 * zeroes. 3089 */ 2641 */ 3090 if (__copy_from_user_inatomic(kaddr, 2642 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3091 if (vmf->pte) !! 2643 if (locked) 3092 goto warn; 2644 goto warn; 3093 2645 3094 /* Re-validate under PTL if t 2646 /* Re-validate under PTL if the page is still mapped */ 3095 vmf->pte = pte_offset_map_loc 2647 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3096 if (unlikely(!vmf->pte || !pt !! 2648 locked = true; >> 2649 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3097 /* The PTE changed un 2650 /* The PTE changed under us, update local tlb */ 3098 if (vmf->pte) !! 2651 update_mmu_tlb(vma, addr, vmf->pte); 3099 update_mmu_tl !! 2652 ret = false; 3100 ret = -EAGAIN; << 3101 goto pte_unlock; 2653 goto pte_unlock; 3102 } 2654 } 3103 2655 3104 /* 2656 /* 3105 * The same page can be mappe 2657 * The same page can be mapped back since last copy attempt. 3106 * Try to copy again under PT 2658 * Try to copy again under PTL. 3107 */ 2659 */ 3108 if (__copy_from_user_inatomic 2660 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3109 /* 2661 /* 3110 * Give a warn in cas 2662 * Give a warn in case there can be some obscure 3111 * use-case 2663 * use-case 3112 */ 2664 */ 3113 warn: 2665 warn: 3114 WARN_ON_ONCE(1); 2666 WARN_ON_ONCE(1); 3115 clear_page(kaddr); 2667 clear_page(kaddr); 3116 } 2668 } 3117 } 2669 } 3118 2670 3119 ret = 0; !! 2671 ret = true; 3120 2672 3121 pte_unlock: 2673 pte_unlock: 3122 if (vmf->pte) !! 2674 if (locked) 3123 pte_unmap_unlock(vmf->pte, vm 2675 pte_unmap_unlock(vmf->pte, vmf->ptl); 3124 pagefault_enable(); !! 2676 kunmap_atomic(kaddr); 3125 kunmap_local(kaddr); << 3126 flush_dcache_page(dst); 2677 flush_dcache_page(dst); 3127 2678 3128 return ret; 2679 return ret; 3129 } 2680 } 3130 2681 3131 static gfp_t __get_fault_gfp_mask(struct vm_a 2682 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3132 { 2683 { 3133 struct file *vm_file = vma->vm_file; 2684 struct file *vm_file = vma->vm_file; 3134 2685 3135 if (vm_file) 2686 if (vm_file) 3136 return mapping_gfp_mask(vm_fi 2687 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3137 2688 3138 /* 2689 /* 3139 * Special mappings (e.g. VDSO) do no 2690 * Special mappings (e.g. VDSO) do not have any file so fake 3140 * a default GFP_KERNEL for them. 2691 * a default GFP_KERNEL for them. 3141 */ 2692 */ 3142 return GFP_KERNEL; 2693 return GFP_KERNEL; 3143 } 2694 } 3144 2695 3145 /* 2696 /* 3146 * Notify the address space that the page is 2697 * Notify the address space that the page is about to become writable so that 3147 * it can prohibit this or wait for the page 2698 * it can prohibit this or wait for the page to get into an appropriate state. 3148 * 2699 * 3149 * We do this without the lock held, so that 2700 * We do this without the lock held, so that it can sleep if it needs to. 3150 */ 2701 */ 3151 static vm_fault_t do_page_mkwrite(struct vm_f !! 2702 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 3152 { 2703 { 3153 vm_fault_t ret; 2704 vm_fault_t ret; >> 2705 struct page *page = vmf->page; 3154 unsigned int old_flags = vmf->flags; 2706 unsigned int old_flags = vmf->flags; 3155 2707 3156 vmf->flags = FAULT_FLAG_WRITE|FAULT_F 2708 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3157 2709 3158 if (vmf->vma->vm_file && 2710 if (vmf->vma->vm_file && 3159 IS_SWAPFILE(vmf->vma->vm_file->f_ 2711 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3160 return VM_FAULT_SIGBUS; 2712 return VM_FAULT_SIGBUS; 3161 2713 3162 ret = vmf->vma->vm_ops->page_mkwrite( 2714 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3163 /* Restore original flags so that cal 2715 /* Restore original flags so that caller is not surprised */ 3164 vmf->flags = old_flags; 2716 vmf->flags = old_flags; 3165 if (unlikely(ret & (VM_FAULT_ERROR | 2717 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3166 return ret; 2718 return ret; 3167 if (unlikely(!(ret & VM_FAULT_LOCKED) 2719 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3168 folio_lock(folio); !! 2720 lock_page(page); 3169 if (!folio->mapping) { !! 2721 if (!page->mapping) { 3170 folio_unlock(folio); !! 2722 unlock_page(page); 3171 return 0; /* retry */ 2723 return 0; /* retry */ 3172 } 2724 } 3173 ret |= VM_FAULT_LOCKED; 2725 ret |= VM_FAULT_LOCKED; 3174 } else 2726 } else 3175 VM_BUG_ON_FOLIO(!folio_test_l !! 2727 VM_BUG_ON_PAGE(!PageLocked(page), page); 3176 return ret; 2728 return ret; 3177 } 2729 } 3178 2730 3179 /* 2731 /* 3180 * Handle dirtying of a page in shared file m 2732 * Handle dirtying of a page in shared file mapping on a write fault. 3181 * 2733 * 3182 * The function expects the page to be locked 2734 * The function expects the page to be locked and unlocks it. 3183 */ 2735 */ 3184 static vm_fault_t fault_dirty_shared_page(str 2736 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3185 { 2737 { 3186 struct vm_area_struct *vma = vmf->vma 2738 struct vm_area_struct *vma = vmf->vma; 3187 struct address_space *mapping; 2739 struct address_space *mapping; 3188 struct folio *folio = page_folio(vmf- !! 2740 struct page *page = vmf->page; 3189 bool dirtied; 2741 bool dirtied; 3190 bool page_mkwrite = vma->vm_ops && vm 2742 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3191 2743 3192 dirtied = folio_mark_dirty(folio); !! 2744 dirtied = set_page_dirty(page); 3193 VM_BUG_ON_FOLIO(folio_test_anon(folio !! 2745 VM_BUG_ON_PAGE(PageAnon(page), page); 3194 /* 2746 /* 3195 * Take a local copy of the address_s !! 2747 * Take a local copy of the address_space - page.mapping may be zeroed 3196 * by truncate after folio_unlock(). !! 2748 * by truncate after unlock_page(). The address_space itself remains 3197 * pinned by vma->vm_file's reference !! 2749 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3198 * release semantics to prevent the c 2750 * release semantics to prevent the compiler from undoing this copying. 3199 */ 2751 */ 3200 mapping = folio_raw_mapping(folio); !! 2752 mapping = page_rmapping(page); 3201 folio_unlock(folio); !! 2753 unlock_page(page); 3202 2754 3203 if (!page_mkwrite) 2755 if (!page_mkwrite) 3204 file_update_time(vma->vm_file 2756 file_update_time(vma->vm_file); 3205 2757 3206 /* 2758 /* 3207 * Throttle page dirtying rate down t 2759 * Throttle page dirtying rate down to writeback speed. 3208 * 2760 * 3209 * mapping may be NULL here because s 2761 * mapping may be NULL here because some device drivers do not 3210 * set page.mapping but still dirty t 2762 * set page.mapping but still dirty their pages 3211 * 2763 * 3212 * Drop the mmap_lock before waiting 2764 * Drop the mmap_lock before waiting on IO, if we can. The file 3213 * is pinning the mapping, as per abo 2765 * is pinning the mapping, as per above. 3214 */ 2766 */ 3215 if ((dirtied || page_mkwrite) && mapp 2767 if ((dirtied || page_mkwrite) && mapping) { 3216 struct file *fpin; 2768 struct file *fpin; 3217 2769 3218 fpin = maybe_unlock_mmap_for_ 2770 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3219 balance_dirty_pages_ratelimit 2771 balance_dirty_pages_ratelimited(mapping); 3220 if (fpin) { 2772 if (fpin) { 3221 fput(fpin); 2773 fput(fpin); 3222 return VM_FAULT_COMPL !! 2774 return VM_FAULT_RETRY; 3223 } 2775 } 3224 } 2776 } 3225 2777 3226 return 0; 2778 return 0; 3227 } 2779 } 3228 2780 3229 /* 2781 /* 3230 * Handle write page faults for pages that ca 2782 * Handle write page faults for pages that can be reused in the current vma 3231 * 2783 * 3232 * This can happen either due to the mapping 2784 * This can happen either due to the mapping being with the VM_SHARED flag, 3233 * or due to us being the last reference stan 2785 * or due to us being the last reference standing to the page. In either 3234 * case, all we need to do here is to mark th 2786 * case, all we need to do here is to mark the page as writable and update 3235 * any related book-keeping. 2787 * any related book-keeping. 3236 */ 2788 */ 3237 static inline void wp_page_reuse(struct vm_fa !! 2789 static inline void wp_page_reuse(struct vm_fault *vmf) 3238 __releases(vmf->ptl) 2790 __releases(vmf->ptl) 3239 { 2791 { 3240 struct vm_area_struct *vma = vmf->vma 2792 struct vm_area_struct *vma = vmf->vma; >> 2793 struct page *page = vmf->page; 3241 pte_t entry; 2794 pte_t entry; 3242 !! 2795 /* 3243 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_W !! 2796 * Clear the pages cpupid information as the existing 3244 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->o !! 2797 * information potentially belongs to a now completely 3245 !! 2798 * unrelated process. 3246 if (folio) { !! 2799 */ 3247 VM_BUG_ON(folio_test_anon(fol !! 2800 if (page) 3248 !PageAnonExclusive( !! 2801 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3249 /* << 3250 * Clear the folio's cpupid i << 3251 * information potentially be << 3252 * unrelated process. << 3253 */ << 3254 folio_xchg_last_cpupid(folio, << 3255 } << 3256 2802 3257 flush_cache_page(vma, vmf->address, p 2803 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3258 entry = pte_mkyoung(vmf->orig_pte); 2804 entry = pte_mkyoung(vmf->orig_pte); 3259 entry = maybe_mkwrite(pte_mkdirty(ent 2805 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3260 if (ptep_set_access_flags(vma, vmf->a 2806 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3261 update_mmu_cache_range(vmf, v !! 2807 update_mmu_cache(vma, vmf->address, vmf->pte); 3262 pte_unmap_unlock(vmf->pte, vmf->ptl); 2808 pte_unmap_unlock(vmf->pte, vmf->ptl); 3263 count_vm_event(PGREUSE); 2809 count_vm_event(PGREUSE); 3264 } 2810 } 3265 2811 3266 /* 2812 /* 3267 * We could add a bitflag somewhere, but for !! 2813 * Handle the case of a page which we actually need to copy to a new page. 3268 * vm_ops that have a ->map_pages have been a << 3269 * the mmap_lock to be held. << 3270 */ << 3271 static inline vm_fault_t vmf_can_call_fault(c << 3272 { << 3273 struct vm_area_struct *vma = vmf->vma << 3274 << 3275 if (vma->vm_ops->map_pages || !(vmf-> << 3276 return 0; << 3277 vma_end_read(vma); << 3278 return VM_FAULT_RETRY; << 3279 } << 3280 << 3281 /** << 3282 * __vmf_anon_prepare - Prepare to handle an << 3283 * @vmf: The vm_fault descriptor passed from << 3284 * << 3285 * When preparing to insert an anonymous page << 3286 * fault handler, call this function rather t << 3287 * If this vma does not already have an assoc << 3288 * only protected by the per-VMA lock, the ca << 3289 * mmap_lock held. __anon_vma_prepare() will << 3290 * determine if this VMA can share its anon_v << 3291 * do with only the per-VMA lock held for thi << 3292 * << 3293 * Return: 0 if fault handling can proceed. << 3294 * returned to the caller. << 3295 */ << 3296 vm_fault_t __vmf_anon_prepare(struct vm_fault << 3297 { << 3298 struct vm_area_struct *vma = vmf->vma << 3299 vm_fault_t ret = 0; << 3300 << 3301 if (likely(vma->anon_vma)) << 3302 return 0; << 3303 if (vmf->flags & FAULT_FLAG_VMA_LOCK) << 3304 if (!mmap_read_trylock(vma->v << 3305 return VM_FAULT_RETRY << 3306 } << 3307 if (__anon_vma_prepare(vma)) << 3308 ret = VM_FAULT_OOM; << 3309 if (vmf->flags & FAULT_FLAG_VMA_LOCK) << 3310 mmap_read_unlock(vma->vm_mm); << 3311 return ret; << 3312 } << 3313 << 3314 /* << 3315 * Handle the case of a page which we actuall << 3316 * either due to COW or unsharing. << 3317 * 2814 * 3318 * Called with mmap_lock locked and the old p 2815 * Called with mmap_lock locked and the old page referenced, but 3319 * without the ptl held. 2816 * without the ptl held. 3320 * 2817 * 3321 * High level logic flow: 2818 * High level logic flow: 3322 * 2819 * 3323 * - Allocate a page, copy the content of the 2820 * - Allocate a page, copy the content of the old page to the new one. 3324 * - Handle book keeping and accounting - cgr 2821 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3325 * - Take the PTL. If the pte changed, bail o 2822 * - Take the PTL. If the pte changed, bail out and release the allocated page 3326 * - If the pte is still the way we remember 2823 * - If the pte is still the way we remember it, update the page table and all 3327 * relevant references. This includes dropp 2824 * relevant references. This includes dropping the reference the page-table 3328 * held to the old page, as well as updatin 2825 * held to the old page, as well as updating the rmap. 3329 * - In any case, unlock the PTL and drop the 2826 * - In any case, unlock the PTL and drop the reference we took to the old page. 3330 */ 2827 */ 3331 static vm_fault_t wp_page_copy(struct vm_faul 2828 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3332 { 2829 { 3333 const bool unshare = vmf->flags & FAU << 3334 struct vm_area_struct *vma = vmf->vma 2830 struct vm_area_struct *vma = vmf->vma; 3335 struct mm_struct *mm = vma->vm_mm; 2831 struct mm_struct *mm = vma->vm_mm; 3336 struct folio *old_folio = NULL; !! 2832 struct page *old_page = vmf->page; 3337 struct folio *new_folio = NULL; !! 2833 struct page *new_page = NULL; 3338 pte_t entry; 2834 pte_t entry; 3339 int page_copied = 0; 2835 int page_copied = 0; 3340 struct mmu_notifier_range range; 2836 struct mmu_notifier_range range; 3341 vm_fault_t ret; << 3342 bool pfn_is_zero; << 3343 << 3344 delayacct_wpcopy_start(); << 3345 << 3346 if (vmf->page) << 3347 old_folio = page_folio(vmf->p << 3348 ret = vmf_anon_prepare(vmf); << 3349 if (unlikely(ret)) << 3350 goto out; << 3351 2837 3352 pfn_is_zero = is_zero_pfn(pte_pfn(vmf !! 2838 if (unlikely(anon_vma_prepare(vma))) 3353 new_folio = folio_prealloc(mm, vma, v << 3354 if (!new_folio) << 3355 goto oom; 2839 goto oom; 3356 2840 3357 if (!pfn_is_zero) { !! 2841 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3358 int err; !! 2842 new_page = alloc_zeroed_user_highpage_movable(vma, >> 2843 vmf->address); >> 2844 if (!new_page) >> 2845 goto oom; >> 2846 } else { >> 2847 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, >> 2848 vmf->address); >> 2849 if (!new_page) >> 2850 goto oom; 3359 2851 3360 err = __wp_page_copy_user(&ne !! 2852 if (!cow_user_page(new_page, old_page, vmf)) { 3361 if (err) { << 3362 /* 2853 /* 3363 * COW failed, if the 2854 * COW failed, if the fault was solved by other, 3364 * it's fine. If not, 2855 * it's fine. If not, userspace would re-fault on 3365 * the same address a 2856 * the same address and we will handle the fault 3366 * from the second at 2857 * from the second attempt. 3367 * The -EHWPOISON cas << 3368 */ 2858 */ 3369 folio_put(new_folio); !! 2859 put_page(new_page); 3370 if (old_folio) !! 2860 if (old_page) 3371 folio_put(old !! 2861 put_page(old_page); 3372 !! 2862 return 0; 3373 delayacct_wpcopy_end( << 3374 return err == -EHWPOI << 3375 } 2863 } 3376 kmsan_copy_page_meta(&new_fol << 3377 } 2864 } 3378 2865 3379 __folio_mark_uptodate(new_folio); !! 2866 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) >> 2867 goto oom_free_new; >> 2868 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3380 2869 3381 mmu_notifier_range_init(&range, MMU_N !! 2870 __SetPageUptodate(new_page); >> 2871 >> 2872 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3382 vmf->address 2873 vmf->address & PAGE_MASK, 3383 (vmf->address 2874 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3384 mmu_notifier_invalidate_range_start(& 2875 mmu_notifier_invalidate_range_start(&range); 3385 2876 3386 /* 2877 /* 3387 * Re-check the pte - we dropped the 2878 * Re-check the pte - we dropped the lock 3388 */ 2879 */ 3389 vmf->pte = pte_offset_map_lock(mm, vm 2880 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3390 if (likely(vmf->pte && pte_same(ptep_ !! 2881 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3391 if (old_folio) { !! 2882 if (old_page) { 3392 if (!folio_test_anon( !! 2883 if (!PageAnon(old_page)) { 3393 dec_mm_counte !! 2884 dec_mm_counter_fast(mm, 3394 inc_mm_counte !! 2885 mm_counter_file(old_page)); >> 2886 inc_mm_counter_fast(mm, MM_ANONPAGES); 3395 } 2887 } 3396 } else { 2888 } else { 3397 ksm_might_unmap_zero_ !! 2889 inc_mm_counter_fast(mm, MM_ANONPAGES); 3398 inc_mm_counter(mm, MM << 3399 } 2890 } 3400 flush_cache_page(vma, vmf->ad 2891 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3401 entry = mk_pte(&new_folio->pa !! 2892 entry = mk_pte(new_page, vma->vm_page_prot); 3402 entry = pte_sw_mkyoung(entry) 2893 entry = pte_sw_mkyoung(entry); 3403 if (unlikely(unshare)) { !! 2894 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3404 if (pte_soft_dirty(vm << 3405 entry = pte_m << 3406 if (pte_uffd_wp(vmf-> << 3407 entry = pte_m << 3408 } else { << 3409 entry = maybe_mkwrite << 3410 } << 3411 2895 3412 /* 2896 /* 3413 * Clear the pte entry and fl 2897 * Clear the pte entry and flush it first, before updating the 3414 * pte with the new entry, to 2898 * pte with the new entry, to keep TLBs on different CPUs in 3415 * sync. This code used to se 2899 * sync. This code used to set the new PTE then flush TLBs, but 3416 * that left a window where t 2900 * that left a window where the new PTE could be loaded into 3417 * some TLBs while the old PT 2901 * some TLBs while the old PTE remains in others. 3418 */ 2902 */ 3419 ptep_clear_flush(vma, vmf->ad !! 2903 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3420 folio_add_new_anon_rmap(new_f !! 2904 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 3421 folio_add_lru_vma(new_folio, !! 2905 lru_cache_add_inactive_or_unevictable(new_page, vma); 3422 BUG_ON(unshare && pte_write(e !! 2906 /* 3423 set_pte_at(mm, vmf->address, !! 2907 * We call the notify macro here because, when using secondary 3424 update_mmu_cache_range(vmf, v !! 2908 * mmu page tables (such as kvm shadow page tables), we want the 3425 if (old_folio) { !! 2909 * new page to be mapped directly into the secondary page table. >> 2910 */ >> 2911 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); >> 2912 update_mmu_cache(vma, vmf->address, vmf->pte); >> 2913 if (old_page) { 3426 /* 2914 /* 3427 * Only after switchi 2915 * Only after switching the pte to the new page may 3428 * we remove the mapc 2916 * we remove the mapcount here. Otherwise another 3429 * process may come a 2917 * process may come and find the rmap count decremented 3430 * before the pte is 2918 * before the pte is switched to the new page, and 3431 * "reuse" the old pa 2919 * "reuse" the old page writing into it while our pte 3432 * here still points 2920 * here still points into it and can be read by other 3433 * threads. 2921 * threads. 3434 * 2922 * 3435 * The critical issue 2923 * The critical issue is to order this 3436 * folio_remove_rmap_ !! 2924 * page_remove_rmap with the ptp_clear_flush above. 3437 * above. Those store !! 2925 * Those stores are ordered by (if nothing else,) 3438 * the barrier presen 2926 * the barrier present in the atomic_add_negative 3439 * in folio_remove_rm !! 2927 * in page_remove_rmap. 3440 * 2928 * 3441 * Then the TLB flush 2929 * Then the TLB flush in ptep_clear_flush ensures that 3442 * no process can acc 2930 * no process can access the old page before the 3443 * decremented mapcou 2931 * decremented mapcount is visible. And the old page 3444 * cannot be reused u 2932 * cannot be reused until after the decremented 3445 * mapcount is visibl 2933 * mapcount is visible. So transitively, TLBs to 3446 * old page will be f 2934 * old page will be flushed before it can be reused. 3447 */ 2935 */ 3448 folio_remove_rmap_pte !! 2936 page_remove_rmap(old_page, false); 3449 } 2937 } 3450 2938 3451 /* Free the old page.. */ 2939 /* Free the old page.. */ 3452 new_folio = old_folio; !! 2940 new_page = old_page; 3453 page_copied = 1; 2941 page_copied = 1; 3454 pte_unmap_unlock(vmf->pte, vm !! 2942 } else { 3455 } else if (vmf->pte) { << 3456 update_mmu_tlb(vma, vmf->addr 2943 update_mmu_tlb(vma, vmf->address, vmf->pte); 3457 pte_unmap_unlock(vmf->pte, vm << 3458 } 2944 } 3459 2945 3460 mmu_notifier_invalidate_range_end(&ra !! 2946 if (new_page) 3461 !! 2947 put_page(new_page); 3462 if (new_folio) << 3463 folio_put(new_folio); << 3464 if (old_folio) { << 3465 if (page_copied) << 3466 free_swap_cache(old_f << 3467 folio_put(old_folio); << 3468 } << 3469 2948 3470 delayacct_wpcopy_end(); !! 2949 pte_unmap_unlock(vmf->pte, vmf->ptl); 3471 return 0; !! 2950 /* >> 2951 * No need to double call mmu_notifier->invalidate_range() callback as >> 2952 * the above ptep_clear_flush_notify() did already call it. >> 2953 */ >> 2954 mmu_notifier_invalidate_range_only_end(&range); >> 2955 if (old_page) { >> 2956 /* >> 2957 * Don't let another task, with possibly unlocked vma, >> 2958 * keep the mlocked page. >> 2959 */ >> 2960 if (page_copied && (vma->vm_flags & VM_LOCKED)) { >> 2961 lock_page(old_page); /* LRU manipulation */ >> 2962 if (PageMlocked(old_page)) >> 2963 munlock_vma_page(old_page); >> 2964 unlock_page(old_page); >> 2965 } >> 2966 put_page(old_page); >> 2967 } >> 2968 return page_copied ? VM_FAULT_WRITE : 0; >> 2969 oom_free_new: >> 2970 put_page(new_page); 3472 oom: 2971 oom: 3473 ret = VM_FAULT_OOM; !! 2972 if (old_page) 3474 out: !! 2973 put_page(old_page); 3475 if (old_folio) !! 2974 return VM_FAULT_OOM; 3476 folio_put(old_folio); << 3477 << 3478 delayacct_wpcopy_end(); << 3479 return ret; << 3480 } 2975 } 3481 2976 3482 /** 2977 /** 3483 * finish_mkwrite_fault - finish page fault f 2978 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3484 * writeable once the 2979 * writeable once the page is prepared 3485 * 2980 * 3486 * @vmf: structure describing the fault 2981 * @vmf: structure describing the fault 3487 * @folio: the folio of vmf->page << 3488 * 2982 * 3489 * This function handles all that is needed t 2983 * This function handles all that is needed to finish a write page fault in a 3490 * shared mapping due to PTE being read-only 2984 * shared mapping due to PTE being read-only once the mapped page is prepared. 3491 * It handles locking of PTE and modifying it 2985 * It handles locking of PTE and modifying it. 3492 * 2986 * 3493 * The function expects the page to be locked 2987 * The function expects the page to be locked or other protection against 3494 * concurrent faults / writeback (such as DAX 2988 * concurrent faults / writeback (such as DAX radix tree locks). 3495 * 2989 * 3496 * Return: %0 on success, %VM_FAULT_NOPAGE wh !! 2990 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 3497 * we acquired PTE lock. 2991 * we acquired PTE lock. 3498 */ 2992 */ 3499 static vm_fault_t finish_mkwrite_fault(struct !! 2993 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3500 { 2994 { 3501 WARN_ON_ONCE(!(vmf->vma->vm_flags & V 2995 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3502 vmf->pte = pte_offset_map_lock(vmf->v 2996 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3503 &vmf-> 2997 &vmf->ptl); 3504 if (!vmf->pte) << 3505 return VM_FAULT_NOPAGE; << 3506 /* 2998 /* 3507 * We might have raced with another p 2999 * We might have raced with another page fault while we released the 3508 * pte_offset_map_lock. 3000 * pte_offset_map_lock. 3509 */ 3001 */ 3510 if (!pte_same(ptep_get(vmf->pte), vmf !! 3002 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3511 update_mmu_tlb(vmf->vma, vmf- 3003 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3512 pte_unmap_unlock(vmf->pte, vm 3004 pte_unmap_unlock(vmf->pte, vmf->ptl); 3513 return VM_FAULT_NOPAGE; 3005 return VM_FAULT_NOPAGE; 3514 } 3006 } 3515 wp_page_reuse(vmf, folio); !! 3007 wp_page_reuse(vmf); 3516 return 0; 3008 return 0; 3517 } 3009 } 3518 3010 3519 /* 3011 /* 3520 * Handle write page faults for VM_MIXEDMAP o 3012 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3521 * mapping 3013 * mapping 3522 */ 3014 */ 3523 static vm_fault_t wp_pfn_shared(struct vm_fau 3015 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3524 { 3016 { 3525 struct vm_area_struct *vma = vmf->vma 3017 struct vm_area_struct *vma = vmf->vma; 3526 3018 3527 if (vma->vm_ops && vma->vm_ops->pfn_m 3019 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3528 vm_fault_t ret; 3020 vm_fault_t ret; 3529 3021 3530 pte_unmap_unlock(vmf->pte, vm 3022 pte_unmap_unlock(vmf->pte, vmf->ptl); 3531 ret = vmf_can_call_fault(vmf) << 3532 if (ret) << 3533 return ret; << 3534 << 3535 vmf->flags |= FAULT_FLAG_MKWR 3023 vmf->flags |= FAULT_FLAG_MKWRITE; 3536 ret = vma->vm_ops->pfn_mkwrit 3024 ret = vma->vm_ops->pfn_mkwrite(vmf); 3537 if (ret & (VM_FAULT_ERROR | V 3025 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3538 return ret; 3026 return ret; 3539 return finish_mkwrite_fault(v !! 3027 return finish_mkwrite_fault(vmf); 3540 } 3028 } 3541 wp_page_reuse(vmf, NULL); !! 3029 wp_page_reuse(vmf); 3542 return 0; !! 3030 return VM_FAULT_WRITE; 3543 } 3031 } 3544 3032 3545 static vm_fault_t wp_page_shared(struct vm_fa !! 3033 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3546 __releases(vmf->ptl) 3034 __releases(vmf->ptl) 3547 { 3035 { 3548 struct vm_area_struct *vma = vmf->vma 3036 struct vm_area_struct *vma = vmf->vma; 3549 vm_fault_t ret = 0; !! 3037 vm_fault_t ret = VM_FAULT_WRITE; 3550 3038 3551 folio_get(folio); !! 3039 get_page(vmf->page); 3552 3040 3553 if (vma->vm_ops && vma->vm_ops->page_ 3041 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3554 vm_fault_t tmp; 3042 vm_fault_t tmp; 3555 3043 3556 pte_unmap_unlock(vmf->pte, vm 3044 pte_unmap_unlock(vmf->pte, vmf->ptl); 3557 tmp = vmf_can_call_fault(vmf) !! 3045 tmp = do_page_mkwrite(vmf); 3558 if (tmp) { << 3559 folio_put(folio); << 3560 return tmp; << 3561 } << 3562 << 3563 tmp = do_page_mkwrite(vmf, fo << 3564 if (unlikely(!tmp || (tmp & 3046 if (unlikely(!tmp || (tmp & 3565 (VM_FAU 3047 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3566 folio_put(folio); !! 3048 put_page(vmf->page); 3567 return tmp; 3049 return tmp; 3568 } 3050 } 3569 tmp = finish_mkwrite_fault(vm !! 3051 tmp = finish_mkwrite_fault(vmf); 3570 if (unlikely(tmp & (VM_FAULT_ 3052 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3571 folio_unlock(folio); !! 3053 unlock_page(vmf->page); 3572 folio_put(folio); !! 3054 put_page(vmf->page); 3573 return tmp; 3055 return tmp; 3574 } 3056 } 3575 } else { 3057 } else { 3576 wp_page_reuse(vmf, folio); !! 3058 wp_page_reuse(vmf); 3577 folio_lock(folio); !! 3059 lock_page(vmf->page); 3578 } 3060 } 3579 ret |= fault_dirty_shared_page(vmf); 3061 ret |= fault_dirty_shared_page(vmf); 3580 folio_put(folio); !! 3062 put_page(vmf->page); 3581 3063 3582 return ret; 3064 return ret; 3583 } 3065 } 3584 3066 3585 static bool wp_can_reuse_anon_folio(struct fo << 3586 struct vm << 3587 { << 3588 /* << 3589 * We could currently only reuse a su << 3590 * other subpages of the large folios << 3591 * let's just consistently not reuse << 3592 * reuse in that scenario, and give b << 3593 * sooner. << 3594 */ << 3595 if (folio_test_large(folio)) << 3596 return false; << 3597 << 3598 /* << 3599 * We have to verify under folio lock << 3600 * just an optimization to avoid lock << 3601 * the swapcache if there is little h << 3602 * << 3603 * KSM doesn't necessarily raise the << 3604 */ << 3605 if (folio_test_ksm(folio) || folio_re << 3606 return false; << 3607 if (!folio_test_lru(folio)) << 3608 /* << 3609 * We cannot easily detect+ha << 3610 * remote LRU caches or refer << 3611 */ << 3612 lru_add_drain(); << 3613 if (folio_ref_count(folio) > 1 + foli << 3614 return false; << 3615 if (!folio_trylock(folio)) << 3616 return false; << 3617 if (folio_test_swapcache(folio)) << 3618 folio_free_swap(folio); << 3619 if (folio_test_ksm(folio) || folio_re << 3620 folio_unlock(folio); << 3621 return false; << 3622 } << 3623 /* << 3624 * Ok, we've got the only folio refer << 3625 * and the folio is locked, it's dark << 3626 * sunglasses. Hit it. << 3627 */ << 3628 folio_move_anon_rmap(folio, vma); << 3629 folio_unlock(folio); << 3630 return true; << 3631 } << 3632 << 3633 /* 3067 /* 3634 * This routine handles present pages, when !! 3068 * This routine handles present pages, when users try to write 3635 * * users try to write to a shared page (FAU !! 3069 * to a shared page. It is done by copying the page to a new address 3636 * * GUP wants to take a R/O pin on a possibl !! 3070 * and decrementing the shared-page counter for the old page. 3637 * (FAULT_FLAG_UNSHARE) << 3638 * << 3639 * It is done by copying the page to a new ad << 3640 * shared-page counter for the old page. << 3641 * 3071 * 3642 * Note that this routine assumes that the pr 3072 * Note that this routine assumes that the protection checks have been 3643 * done by the caller (the low-level page fau 3073 * done by the caller (the low-level page fault routine in most cases). 3644 * Thus, with FAULT_FLAG_WRITE, we can safely !! 3074 * Thus we can safely just mark it writable once we've done any necessary 3645 * done any necessary COW. !! 3075 * COW. 3646 * 3076 * 3647 * In case of FAULT_FLAG_WRITE, we also mark !! 3077 * We also mark the page dirty at this point even though the page will 3648 * though the page will change only once the !! 3078 * change only once the write actually happens. This avoids a few races, 3649 * avoids a few races, and potentially makes !! 3079 * and potentially makes it more efficient. 3650 * 3080 * 3651 * We enter with non-exclusive mmap_lock (to 3081 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3652 * but allow concurrent faults), with pte bot 3082 * but allow concurrent faults), with pte both mapped and locked. 3653 * We return with mmap_lock still held, but p 3083 * We return with mmap_lock still held, but pte unmapped and unlocked. 3654 */ 3084 */ 3655 static vm_fault_t do_wp_page(struct vm_fault 3085 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3656 __releases(vmf->ptl) 3086 __releases(vmf->ptl) 3657 { 3087 { 3658 const bool unshare = vmf->flags & FAU << 3659 struct vm_area_struct *vma = vmf->vma 3088 struct vm_area_struct *vma = vmf->vma; 3660 struct folio *folio = NULL; << 3661 pte_t pte; << 3662 << 3663 if (likely(!unshare)) { << 3664 if (userfaultfd_pte_wp(vma, p << 3665 if (!userfaultfd_wp_a << 3666 pte_unmap_unl << 3667 return handle << 3668 } << 3669 << 3670 /* << 3671 * Nothing needed (ca << 3672 * etc.) because we'r << 3673 * which is completel << 3674 */ << 3675 pte = pte_clear_uffd_ << 3676 3089 3677 set_pte_at(vma->vm_mm !! 3090 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3678 /* !! 3091 pte_unmap_unlock(vmf->pte, vmf->ptl); 3679 * Update this to be !! 3092 return handle_userfault(vmf, VM_UFFD_WP); 3680 * handling << 3681 */ << 3682 vmf->orig_pte = pte; << 3683 } << 3684 << 3685 /* << 3686 * Userfaultfd write-protect << 3687 * is flushed in this case be << 3688 */ << 3689 if (unlikely(userfaultfd_wp(v << 3690 mm_tlb_flush_pen << 3691 flush_tlb_page(vmf->v << 3692 } 3093 } 3693 3094 3694 vmf->page = vm_normal_page(vma, vmf-> << 3695 << 3696 if (vmf->page) << 3697 folio = page_folio(vmf->page) << 3698 << 3699 /* 3095 /* 3700 * Shared mapping: we are guaranteed !! 3096 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3701 * FAULT_FLAG_WRITE set at this point !! 3097 * is flushed in this case before copying. 3702 */ 3098 */ 3703 if (vma->vm_flags & (VM_SHARED | VM_M !! 3099 if (unlikely(userfaultfd_wp(vmf->vma) && >> 3100 mm_tlb_flush_pending(vmf->vma->vm_mm))) >> 3101 flush_tlb_page(vmf->vma, vmf->address); >> 3102 >> 3103 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); >> 3104 if (!vmf->page) { 3704 /* 3105 /* 3705 * VM_MIXEDMAP !pfn_valid() c 3106 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3706 * VM_PFNMAP VMA. 3107 * VM_PFNMAP VMA. 3707 * 3108 * 3708 * We should not cow pages in 3109 * We should not cow pages in a shared writeable mapping. 3709 * Just mark the pages writab 3110 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3710 */ 3111 */ 3711 if (!vmf->page) !! 3112 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == >> 3113 (VM_WRITE|VM_SHARED)) 3712 return wp_pfn_shared( 3114 return wp_pfn_shared(vmf); 3713 return wp_page_shared(vmf, fo !! 3115 >> 3116 pte_unmap_unlock(vmf->pte, vmf->ptl); >> 3117 return wp_page_copy(vmf); 3714 } 3118 } 3715 3119 3716 /* 3120 /* 3717 * Private mapping: create an exclusi !! 3121 * Take out anonymous pages first, anonymous shared vmas are 3718 * is impossible. We might miss VM_WR !! 3122 * not dirty accountable. 3719 * << 3720 * If we encounter a page that is mar << 3721 * the page without further checks. << 3722 */ 3123 */ 3723 if (folio && folio_test_anon(folio) & !! 3124 if (PageAnon(vmf->page)) { 3724 (PageAnonExclusive(vmf->page) || !! 3125 struct page *page = vmf->page; 3725 if (!PageAnonExclusive(vmf->p !! 3126 3726 SetPageAnonExclusive( !! 3127 /* PageKsm() doesn't necessarily raise the page refcount */ 3727 if (unlikely(unshare)) { !! 3128 if (PageKsm(page) || page_count(page) != 1) 3728 pte_unmap_unlock(vmf- !! 3129 goto copy; 3729 return 0; !! 3130 if (!trylock_page(page)) >> 3131 goto copy; >> 3132 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { >> 3133 unlock_page(page); >> 3134 goto copy; 3730 } 3135 } 3731 wp_page_reuse(vmf, folio); !! 3136 /* 3732 return 0; !! 3137 * Ok, we've got the only map reference, and the only >> 3138 * page count reference, and the page is locked, >> 3139 * it's dark out, and we're wearing sunglasses. Hit it. >> 3140 */ >> 3141 unlock_page(page); >> 3142 wp_page_reuse(vmf); >> 3143 return VM_FAULT_WRITE; >> 3144 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == >> 3145 (VM_WRITE|VM_SHARED))) { >> 3146 return wp_page_shared(vmf); 3733 } 3147 } >> 3148 copy: 3734 /* 3149 /* 3735 * Ok, we need to copy. Oh, well.. 3150 * Ok, we need to copy. Oh, well.. 3736 */ 3151 */ 3737 if (folio) !! 3152 get_page(vmf->page); 3738 folio_get(folio); << 3739 3153 3740 pte_unmap_unlock(vmf->pte, vmf->ptl); 3154 pte_unmap_unlock(vmf->pte, vmf->ptl); 3741 #ifdef CONFIG_KSM << 3742 if (folio && folio_test_ksm(folio)) << 3743 count_vm_event(COW_KSM); << 3744 #endif << 3745 return wp_page_copy(vmf); 3155 return wp_page_copy(vmf); 3746 } 3156 } 3747 3157 3748 static void unmap_mapping_range_vma(struct vm 3158 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3749 unsigned long start_addr, uns 3159 unsigned long start_addr, unsigned long end_addr, 3750 struct zap_details *details) 3160 struct zap_details *details) 3751 { 3161 { 3752 zap_page_range_single(vma, start_addr 3162 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3753 } 3163 } 3754 3164 3755 static inline void unmap_mapping_range_tree(s 3165 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3756 p << 3757 p << 3758 s 3166 struct zap_details *details) 3759 { 3167 { 3760 struct vm_area_struct *vma; 3168 struct vm_area_struct *vma; 3761 pgoff_t vba, vea, zba, zea; 3169 pgoff_t vba, vea, zba, zea; 3762 3170 3763 vma_interval_tree_foreach(vma, root, !! 3171 vma_interval_tree_foreach(vma, root, >> 3172 details->first_index, details->last_index) { >> 3173 3764 vba = vma->vm_pgoff; 3174 vba = vma->vm_pgoff; 3765 vea = vba + vma_pages(vma) - 3175 vea = vba + vma_pages(vma) - 1; 3766 zba = max(first_index, vba); !! 3176 zba = details->first_index; 3767 zea = min(last_index, vea); !! 3177 if (zba < vba) >> 3178 zba = vba; >> 3179 zea = details->last_index; >> 3180 if (zea > vea) >> 3181 zea = vea; 3768 3182 3769 unmap_mapping_range_vma(vma, 3183 unmap_mapping_range_vma(vma, 3770 ((zba - vba) << PAGE_ 3184 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3771 ((zea - vba + 1) << P 3185 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3772 details); 3186 details); 3773 } 3187 } 3774 } 3188 } 3775 3189 3776 /** 3190 /** 3777 * unmap_mapping_folio() - Unmap single folio << 3778 * @folio: The locked folio to be unmapped. << 3779 * << 3780 * Unmap this folio from any userspace proces << 3781 * Typically, for efficiency, the range of ne << 3782 * unmapped by unmap_mapping_pages() or unmap << 3783 * truncation or invalidation holds the lock << 3784 * the page has been remapped again: and then << 3785 * to unmap it finally. << 3786 */ << 3787 void unmap_mapping_folio(struct folio *folio) << 3788 { << 3789 struct address_space *mapping = folio << 3790 struct zap_details details = { }; << 3791 pgoff_t first_index; << 3792 pgoff_t last_index; << 3793 << 3794 VM_BUG_ON(!folio_test_locked(folio)); << 3795 << 3796 first_index = folio->index; << 3797 last_index = folio_next_index(folio) << 3798 << 3799 details.even_cows = false; << 3800 details.single_folio = folio; << 3801 details.zap_flags = ZAP_FLAG_DROP_MAR << 3802 << 3803 i_mmap_lock_read(mapping); << 3804 if (unlikely(!RB_EMPTY_ROOT(&mapping- << 3805 unmap_mapping_range_tree(&map << 3806 last << 3807 i_mmap_unlock_read(mapping); << 3808 } << 3809 << 3810 /** << 3811 * unmap_mapping_pages() - Unmap pages from p 3191 * unmap_mapping_pages() - Unmap pages from processes. 3812 * @mapping: The address space containing pag 3192 * @mapping: The address space containing pages to be unmapped. 3813 * @start: Index of first page to be unmapped 3193 * @start: Index of first page to be unmapped. 3814 * @nr: Number of pages to be unmapped. 0 to 3194 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3815 * @even_cows: Whether to unmap even private 3195 * @even_cows: Whether to unmap even private COWed pages. 3816 * 3196 * 3817 * Unmap the pages in this address space from 3197 * Unmap the pages in this address space from any userspace process which 3818 * has them mmaped. Generally, you want to r 3198 * has them mmaped. Generally, you want to remove COWed pages as well when 3819 * a file is being truncated, but not when in 3199 * a file is being truncated, but not when invalidating pages from the page 3820 * cache. 3200 * cache. 3821 */ 3201 */ 3822 void unmap_mapping_pages(struct address_space 3202 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3823 pgoff_t nr, bool even_cows) 3203 pgoff_t nr, bool even_cows) 3824 { 3204 { 3825 struct zap_details details = { }; 3205 struct zap_details details = { }; 3826 pgoff_t first_index = start; << 3827 pgoff_t last_index = start + nr - 1; << 3828 3206 3829 details.even_cows = even_cows; !! 3207 details.check_mapping = even_cows ? NULL : mapping; 3830 if (last_index < first_index) !! 3208 details.first_index = start; 3831 last_index = ULONG_MAX; !! 3209 details.last_index = start + nr - 1; >> 3210 if (details.last_index < details.first_index) >> 3211 details.last_index = ULONG_MAX; 3832 3212 3833 i_mmap_lock_read(mapping); !! 3213 i_mmap_lock_write(mapping); 3834 if (unlikely(!RB_EMPTY_ROOT(&mapping- 3214 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3835 unmap_mapping_range_tree(&map !! 3215 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3836 last !! 3216 i_mmap_unlock_write(mapping); 3837 i_mmap_unlock_read(mapping); << 3838 } 3217 } 3839 EXPORT_SYMBOL_GPL(unmap_mapping_pages); << 3840 3218 3841 /** 3219 /** 3842 * unmap_mapping_range - unmap the portion of 3220 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3843 * address_space corresponding to the specifi 3221 * address_space corresponding to the specified byte range in the underlying 3844 * file. 3222 * file. 3845 * 3223 * 3846 * @mapping: the address space containing mma 3224 * @mapping: the address space containing mmaps to be unmapped. 3847 * @holebegin: byte in first page to unmap, r 3225 * @holebegin: byte in first page to unmap, relative to the start of 3848 * the underlying file. This will be rounded 3226 * the underlying file. This will be rounded down to a PAGE_SIZE 3849 * boundary. Note that this is different fro 3227 * boundary. Note that this is different from truncate_pagecache(), which 3850 * must keep the partial page. In contrast, 3228 * must keep the partial page. In contrast, we must get rid of 3851 * partial pages. 3229 * partial pages. 3852 * @holelen: size of prospective hole in byte 3230 * @holelen: size of prospective hole in bytes. This will be rounded 3853 * up to a PAGE_SIZE boundary. A holelen of 3231 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3854 * end of the file. 3232 * end of the file. 3855 * @even_cows: 1 when truncating a file, unma 3233 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3856 * but 0 when invalidating pagecache, don't t 3234 * but 0 when invalidating pagecache, don't throw away private data. 3857 */ 3235 */ 3858 void unmap_mapping_range(struct address_space 3236 void unmap_mapping_range(struct address_space *mapping, 3859 loff_t const holebegin, loff_ 3237 loff_t const holebegin, loff_t const holelen, int even_cows) 3860 { 3238 { 3861 pgoff_t hba = (pgoff_t)(holebegin) >> !! 3239 pgoff_t hba = holebegin >> PAGE_SHIFT; 3862 pgoff_t hlen = ((pgoff_t)(holelen) + !! 3240 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3863 3241 3864 /* Check for overflow. */ 3242 /* Check for overflow. */ 3865 if (sizeof(holelen) > sizeof(hlen)) { 3243 if (sizeof(holelen) > sizeof(hlen)) { 3866 long long holeend = 3244 long long holeend = 3867 (holebegin + holelen 3245 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3868 if (holeend & ~(long long)ULO 3246 if (holeend & ~(long long)ULONG_MAX) 3869 hlen = ULONG_MAX - hb 3247 hlen = ULONG_MAX - hba + 1; 3870 } 3248 } 3871 3249 3872 unmap_mapping_pages(mapping, hba, hle 3250 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3873 } 3251 } 3874 EXPORT_SYMBOL(unmap_mapping_range); 3252 EXPORT_SYMBOL(unmap_mapping_range); 3875 3253 3876 /* 3254 /* 3877 * Restore a potential device exclusive pte t << 3878 */ << 3879 static vm_fault_t remove_device_exclusive_ent << 3880 { << 3881 struct folio *folio = page_folio(vmf- << 3882 struct vm_area_struct *vma = vmf->vma << 3883 struct mmu_notifier_range range; << 3884 vm_fault_t ret; << 3885 << 3886 /* << 3887 * We need a reference to lock the fo << 3888 * the PTL so a racing thread can rem << 3889 * entry and unmap it. If the folio i << 3890 * have been removed already. If it h << 3891 * been re-allocated after being free << 3892 * unlock it. << 3893 */ << 3894 if (!folio_try_get(folio)) << 3895 return 0; << 3896 << 3897 ret = folio_lock_or_retry(folio, vmf) << 3898 if (ret) { << 3899 folio_put(folio); << 3900 return ret; << 3901 } << 3902 mmu_notifier_range_init_owner(&range, << 3903 vma->vm_mm, v << 3904 (vmf->address << 3905 mmu_notifier_invalidate_range_start(& << 3906 << 3907 vmf->pte = pte_offset_map_lock(vma->v << 3908 &vmf->ptl); << 3909 if (likely(vmf->pte && pte_same(ptep_ << 3910 restore_exclusive_pte(vma, vm << 3911 << 3912 if (vmf->pte) << 3913 pte_unmap_unlock(vmf->pte, vm << 3914 folio_unlock(folio); << 3915 folio_put(folio); << 3916 << 3917 mmu_notifier_invalidate_range_end(&ra << 3918 return 0; << 3919 } << 3920 << 3921 static inline bool should_try_to_free_swap(st << 3922 st << 3923 un << 3924 { << 3925 if (!folio_test_swapcache(folio)) << 3926 return false; << 3927 if (mem_cgroup_swap_full(folio) || (v << 3928 folio_test_mlocked(folio)) << 3929 return true; << 3930 /* << 3931 * If we want to map a page that's in << 3932 * have to detect via the refcount if << 3933 * user. Try freeing the swapcache to << 3934 * reference only in case it's likely << 3935 */ << 3936 return (fault_flags & FAULT_FLAG_WRIT << 3937 folio_ref_count(folio) == (1 << 3938 } << 3939 << 3940 static vm_fault_t pte_marker_clear(struct vm_ << 3941 { << 3942 vmf->pte = pte_offset_map_lock(vmf->v << 3943 vmf->a << 3944 if (!vmf->pte) << 3945 return 0; << 3946 /* << 3947 * Be careful so that we will only re << 3948 * none pte. Otherwise it means the << 3949 * << 3950 * This should also cover the case wh << 3951 * quickly from a PTE_MARKER_UFFD_WP << 3952 * So is_pte_marker() check is not en << 3953 */ << 3954 if (pte_same(vmf->orig_pte, ptep_get( << 3955 pte_clear(vmf->vma->vm_mm, vm << 3956 pte_unmap_unlock(vmf->pte, vmf->ptl); << 3957 return 0; << 3958 } << 3959 << 3960 static vm_fault_t do_pte_missing(struct vm_fa << 3961 { << 3962 if (vma_is_anonymous(vmf->vma)) << 3963 return do_anonymous_page(vmf) << 3964 else << 3965 return do_fault(vmf); << 3966 } << 3967 << 3968 /* << 3969 * This is actually a page-missing access, bu << 3970 * installed. It means this pte was wr-prote << 3971 */ << 3972 static vm_fault_t pte_marker_handle_uffd_wp(s << 3973 { << 3974 /* << 3975 * Just in case there're leftover spe << 3976 * got unregistered - we can simply c << 3977 */ << 3978 if (unlikely(!userfaultfd_wp(vmf->vma << 3979 return pte_marker_clear(vmf); << 3980 << 3981 return do_pte_missing(vmf); << 3982 } << 3983 << 3984 static vm_fault_t handle_pte_marker(struct vm << 3985 { << 3986 swp_entry_t entry = pte_to_swp_entry( << 3987 unsigned long marker = pte_marker_get << 3988 << 3989 /* << 3990 * PTE markers should never be empty. << 3991 * the best thing to do is to kill th << 3992 */ << 3993 if (WARN_ON_ONCE(!marker)) << 3994 return VM_FAULT_SIGBUS; << 3995 << 3996 /* Higher priority than uffd-wp when << 3997 if (marker & PTE_MARKER_POISONED) << 3998 return VM_FAULT_HWPOISON; << 3999 << 4000 if (pte_marker_entry_uffd_wp(entry)) << 4001 return pte_marker_handle_uffd << 4002 << 4003 /* This is an unknown pte marker */ << 4004 return VM_FAULT_SIGBUS; << 4005 } << 4006 << 4007 static struct folio *__alloc_swap_folio(struc << 4008 { << 4009 struct vm_area_struct *vma = vmf->vma << 4010 struct folio *folio; << 4011 swp_entry_t entry; << 4012 << 4013 folio = vma_alloc_folio(GFP_HIGHUSER_ << 4014 vmf->address, << 4015 if (!folio) << 4016 return NULL; << 4017 << 4018 entry = pte_to_swp_entry(vmf->orig_pt << 4019 if (mem_cgroup_swapin_charge_folio(fo << 4020 GF << 4021 folio_put(folio); << 4022 return NULL; << 4023 } << 4024 << 4025 return folio; << 4026 } << 4027 << 4028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 4029 static inline int non_swapcache_batch(swp_ent << 4030 { << 4031 struct swap_info_struct *si = swp_swa << 4032 pgoff_t offset = swp_offset(entry); << 4033 int i; << 4034 << 4035 /* << 4036 * While allocating a large folio and << 4037 * the case the being faulted pte doe << 4038 * ensure all PTEs have no cache as w << 4039 * swap devices while the content is << 4040 */ << 4041 for (i = 0; i < max_nr; i++) { << 4042 if ((si->swap_map[offset + i] << 4043 return i; << 4044 } << 4045 << 4046 return i; << 4047 } << 4048 << 4049 /* << 4050 * Check if the PTEs within a range are conti << 4051 * and have consistent swapcache, zeromap. << 4052 */ << 4053 static bool can_swapin_thp(struct vm_fault *v << 4054 { << 4055 unsigned long addr; << 4056 swp_entry_t entry; << 4057 int idx; << 4058 pte_t pte; << 4059 << 4060 addr = ALIGN_DOWN(vmf->address, nr_pa << 4061 idx = (vmf->address - addr) / PAGE_SI << 4062 pte = ptep_get(ptep); << 4063 << 4064 if (!pte_same(pte, pte_move_swp_offse << 4065 return false; << 4066 entry = pte_to_swp_entry(pte); << 4067 if (swap_pte_batch(ptep, nr_pages, pt << 4068 return false; << 4069 << 4070 /* << 4071 * swap_read_folio() can't handle the << 4072 * from different backends. And they << 4073 * things might be added once zswap s << 4074 */ << 4075 if (unlikely(swap_zeromap_batch(entry << 4076 return false; << 4077 if (unlikely(non_swapcache_batch(entr << 4078 return false; << 4079 << 4080 return true; << 4081 } << 4082 << 4083 static inline unsigned long thp_swap_suitable << 4084 << 4085 << 4086 { << 4087 int order, nr; << 4088 << 4089 order = highest_order(orders); << 4090 << 4091 /* << 4092 * To swap in a THP with nr pages, we << 4093 * is aligned with that number, as it << 4094 * This helps filter out most invalid << 4095 */ << 4096 while (orders) { << 4097 nr = 1 << order; << 4098 if ((addr >> PAGE_SHIFT) % nr << 4099 break; << 4100 order = next_order(&orders, o << 4101 } << 4102 << 4103 return orders; << 4104 } << 4105 << 4106 static struct folio *alloc_swap_folio(struct << 4107 { << 4108 struct vm_area_struct *vma = vmf->vma << 4109 unsigned long orders; << 4110 struct folio *folio; << 4111 unsigned long addr; << 4112 swp_entry_t entry; << 4113 spinlock_t *ptl; << 4114 pte_t *pte; << 4115 gfp_t gfp; << 4116 int order; << 4117 << 4118 /* << 4119 * If uffd is active for the vma we n << 4120 * maintain the uffd semantics. << 4121 */ << 4122 if (unlikely(userfaultfd_armed(vma))) << 4123 goto fallback; << 4124 << 4125 /* << 4126 * A large swapped out folio could be << 4127 * lack handling for such cases, so f << 4128 * folio. << 4129 */ << 4130 if (!zswap_never_enabled()) << 4131 goto fallback; << 4132 << 4133 entry = pte_to_swp_entry(vmf->orig_pt << 4134 /* << 4135 * Get a list of all the (large) orde << 4136 * and suitable for swapping THP. << 4137 */ << 4138 orders = thp_vma_allowable_orders(vma << 4139 TVA_IN_PF | TVA_ENFOR << 4140 orders = thp_vma_suitable_orders(vma, << 4141 orders = thp_swap_suitable_orders(swp << 4142 vmf << 4143 << 4144 if (!orders) << 4145 goto fallback; << 4146 << 4147 pte = pte_offset_map_lock(vmf->vma->v << 4148 vmf->addres << 4149 if (unlikely(!pte)) << 4150 goto fallback; << 4151 << 4152 /* << 4153 * For do_swap_page, find the highest << 4154 * completely swap entries with conti << 4155 */ << 4156 order = highest_order(orders); << 4157 while (orders) { << 4158 addr = ALIGN_DOWN(vmf->addres << 4159 if (can_swapin_thp(vmf, pte + << 4160 break; << 4161 order = next_order(&orders, o << 4162 } << 4163 << 4164 pte_unmap_unlock(pte, ptl); << 4165 << 4166 /* Try allocating the highest of the << 4167 gfp = vma_thp_gfp_mask(vma); << 4168 while (orders) { << 4169 addr = ALIGN_DOWN(vmf->addres << 4170 folio = vma_alloc_folio(gfp, << 4171 if (folio) { << 4172 if (!mem_cgroup_swapi << 4173 << 4174 return folio; << 4175 folio_put(folio); << 4176 } << 4177 order = next_order(&orders, o << 4178 } << 4179 << 4180 fallback: << 4181 return __alloc_swap_folio(vmf); << 4182 } << 4183 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ << 4184 static struct folio *alloc_swap_folio(struct << 4185 { << 4186 return __alloc_swap_folio(vmf); << 4187 } << 4188 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ << 4189 << 4190 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); << 4191 << 4192 /* << 4193 * We enter with non-exclusive mmap_lock (to 3255 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4194 * but allow concurrent faults), and pte mapp 3256 * but allow concurrent faults), and pte mapped but not yet locked. 4195 * We return with pte unmapped and unlocked. 3257 * We return with pte unmapped and unlocked. 4196 * 3258 * 4197 * We return with the mmap_lock locked or unl 3259 * We return with the mmap_lock locked or unlocked in the same cases 4198 * as does filemap_fault(). 3260 * as does filemap_fault(). 4199 */ 3261 */ 4200 vm_fault_t do_swap_page(struct vm_fault *vmf) 3262 vm_fault_t do_swap_page(struct vm_fault *vmf) 4201 { 3263 { 4202 struct vm_area_struct *vma = vmf->vma 3264 struct vm_area_struct *vma = vmf->vma; 4203 struct folio *swapcache, *folio = NUL !! 3265 struct page *page = NULL, *swapcache; 4204 DECLARE_WAITQUEUE(wait, current); << 4205 struct page *page; << 4206 struct swap_info_struct *si = NULL; << 4207 rmap_t rmap_flags = RMAP_NONE; << 4208 bool need_clear_cache = false; << 4209 bool exclusive = false; << 4210 swp_entry_t entry; 3266 swp_entry_t entry; 4211 pte_t pte; 3267 pte_t pte; >> 3268 int locked; >> 3269 int exclusive = 0; 4212 vm_fault_t ret = 0; 3270 vm_fault_t ret = 0; 4213 void *shadow = NULL; 3271 void *shadow = NULL; 4214 int nr_pages; << 4215 unsigned long page_idx; << 4216 unsigned long address; << 4217 pte_t *ptep; << 4218 3272 4219 if (!pte_unmap_same(vmf)) !! 3273 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 4220 goto out; 3274 goto out; 4221 3275 4222 entry = pte_to_swp_entry(vmf->orig_pt 3276 entry = pte_to_swp_entry(vmf->orig_pte); 4223 if (unlikely(non_swap_entry(entry))) 3277 if (unlikely(non_swap_entry(entry))) { 4224 if (is_migration_entry(entry) 3278 if (is_migration_entry(entry)) { 4225 migration_entry_wait( 3279 migration_entry_wait(vma->vm_mm, vmf->pmd, 4226 3280 vmf->address); 4227 } else if (is_device_exclusiv << 4228 vmf->page = pfn_swap_ << 4229 ret = remove_device_e << 4230 } else if (is_device_private_ 3281 } else if (is_device_private_entry(entry)) { 4231 if (vmf->flags & FAUL !! 3282 vmf->page = device_private_entry_to_page(entry); 4232 /* << 4233 * migrate_to << 4234 * under VMA << 4235 */ << 4236 vma_end_read( << 4237 ret = VM_FAUL << 4238 goto out; << 4239 } << 4240 << 4241 vmf->page = pfn_swap_ << 4242 vmf->pte = pte_offset << 4243 vmf-> << 4244 if (unlikely(!vmf->pt << 4245 !pte_sam << 4246 << 4247 goto unlock; << 4248 << 4249 /* << 4250 * Get a page referen << 4251 * freed. << 4252 */ << 4253 get_page(vmf->page); << 4254 pte_unmap_unlock(vmf- << 4255 ret = vmf->page->pgma 3283 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4256 put_page(vmf->page); << 4257 } else if (is_hwpoison_entry( 3284 } else if (is_hwpoison_entry(entry)) { 4258 ret = VM_FAULT_HWPOIS 3285 ret = VM_FAULT_HWPOISON; 4259 } else if (is_pte_marker_entr << 4260 ret = handle_pte_mark << 4261 } else { 3286 } else { 4262 print_bad_pte(vma, vm 3287 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4263 ret = VM_FAULT_SIGBUS 3288 ret = VM_FAULT_SIGBUS; 4264 } 3289 } 4265 goto out; 3290 goto out; 4266 } 3291 } 4267 3292 4268 /* Prevent swapoff from happening to << 4269 si = get_swap_device(entry); << 4270 if (unlikely(!si)) << 4271 goto out; << 4272 3293 4273 folio = swap_cache_get_folio(entry, v !! 3294 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 4274 if (folio) !! 3295 page = lookup_swap_cache(entry, vma, vmf->address); 4275 page = folio_file_page(folio, !! 3296 swapcache = page; 4276 swapcache = folio; !! 3297 >> 3298 if (!page) { >> 3299 struct swap_info_struct *si = swp_swap_info(entry); 4277 3300 4278 if (!folio) { << 4279 if (data_race(si->flags & SWP 3301 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4280 __swap_count(entry) == 1) 3302 __swap_count(entry) == 1) { 4281 /* skip swapcache */ 3303 /* skip swapcache */ 4282 folio = alloc_swap_fo !! 3304 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 4283 if (folio) { !! 3305 vmf->address); 4284 __folio_set_l !! 3306 if (page) { 4285 __folio_set_s !! 3307 int err; 4286 !! 3308 4287 nr_pages = fo !! 3309 __SetPageLocked(page); 4288 if (folio_tes !! 3310 __SetPageSwapBacked(page); 4289 entry !! 3311 set_page_private(page, entry.val); 4290 /* !! 3312 4291 * Prevent pa !! 3313 /* Tell memcg to use swap ownership records */ 4292 * the cache !! 3314 SetPageSwapCache(page); 4293 * may finish !! 3315 err = mem_cgroup_charge(page, vma->vm_mm, 4294 * swapout re !! 3316 GFP_KERNEL); 4295 * undetectab !! 3317 ClearPageSwapCache(page); 4296 * to entry r !! 3318 if (err) { 4297 */ !! 3319 ret = VM_FAULT_OOM; 4298 if (swapcache << 4299 /* << 4300 * Re << 4301 * re << 4302 */ << 4303 add_w << 4304 sched << 4305 remov << 4306 goto 3320 goto out_page; 4307 } 3321 } 4308 need_clear_ca << 4309 << 4310 mem_cgroup_sw << 4311 3322 4312 shadow = get_ 3323 shadow = get_shadow_from_swap_cache(entry); 4313 if (shadow) 3324 if (shadow) 4314 worki !! 3325 workingset_refault(page, shadow); 4315 3326 4316 folio_add_lru !! 3327 lru_cache_add(page); 4317 !! 3328 swap_readpage(page, true); 4318 /* To provide << 4319 folio->swap = << 4320 swap_read_fol << 4321 folio->privat << 4322 } 3329 } 4323 } else { 3330 } else { 4324 folio = swapin_readah !! 3331 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4325 3332 vmf); 4326 swapcache = folio; !! 3333 swapcache = page; 4327 } 3334 } 4328 3335 4329 if (!folio) { !! 3336 if (!page) { 4330 /* 3337 /* 4331 * Back out if somebo 3338 * Back out if somebody else faulted in this pte 4332 * while we released 3339 * while we released the pte lock. 4333 */ 3340 */ 4334 vmf->pte = pte_offset 3341 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4335 vmf-> 3342 vmf->address, &vmf->ptl); 4336 if (likely(vmf->pte & !! 3343 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 4337 pte_same(p << 4338 ret = VM_FAUL 3344 ret = VM_FAULT_OOM; >> 3345 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 4339 goto unlock; 3346 goto unlock; 4340 } 3347 } 4341 3348 4342 /* Had to read the page from 3349 /* Had to read the page from swap area: Major fault */ 4343 ret = VM_FAULT_MAJOR; 3350 ret = VM_FAULT_MAJOR; 4344 count_vm_event(PGMAJFAULT); 3351 count_vm_event(PGMAJFAULT); 4345 count_memcg_event_mm(vma->vm_ 3352 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4346 page = folio_file_page(folio, << 4347 } else if (PageHWPoison(page)) { 3353 } else if (PageHWPoison(page)) { 4348 /* 3354 /* 4349 * hwpoisoned dirty swapcache 3355 * hwpoisoned dirty swapcache pages are kept for killing 4350 * owner processes (which may 3356 * owner processes (which may be unknown at hwpoison time) 4351 */ 3357 */ 4352 ret = VM_FAULT_HWPOISON; 3358 ret = VM_FAULT_HWPOISON; >> 3359 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 4353 goto out_release; 3360 goto out_release; 4354 } 3361 } 4355 3362 4356 ret |= folio_lock_or_retry(folio, vmf !! 3363 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 4357 if (ret & VM_FAULT_RETRY) << 4358 goto out_release; << 4359 3364 4360 if (swapcache) { !! 3365 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 4361 /* !! 3366 if (!locked) { 4362 * Make sure folio_free_swap( !! 3367 ret |= VM_FAULT_RETRY; 4363 * swapcache from under us. !! 3368 goto out_release; 4364 * below, are not enough to e !! 3369 } 4365 * swapcache, we need to chec << 4366 * changed. << 4367 */ << 4368 if (unlikely(!folio_test_swap << 4369 page_swap_entry( << 4370 goto out_page; << 4371 3370 4372 /* !! 3371 /* 4373 * KSM sometimes has to copy !! 3372 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 4374 * page->index of !PageKSM() !! 3373 * release the swapcache from under us. The page pin, and pte_same 4375 * anon VMA -- PageKSM() is l !! 3374 * test below, are not enough to exclude that. Even if it is still 4376 */ !! 3375 * swapcache, we need to check that the page's swap has not changed. 4377 folio = ksm_might_need_to_cop !! 3376 */ 4378 if (unlikely(!folio)) { !! 3377 if (unlikely((!PageSwapCache(page) || 4379 ret = VM_FAULT_OOM; !! 3378 page_private(page) != entry.val)) && swapcache) 4380 folio = swapcache; !! 3379 goto out_page; 4381 goto out_page; << 4382 } else if (unlikely(folio == << 4383 ret = VM_FAULT_HWPOIS << 4384 folio = swapcache; << 4385 goto out_page; << 4386 } << 4387 if (folio != swapcache) << 4388 page = folio_page(fol << 4389 3380 4390 /* !! 3381 page = ksm_might_need_to_copy(page, vma, vmf->address); 4391 * If we want to map a page t !! 3382 if (unlikely(!page)) { 4392 * have to detect via the ref !! 3383 ret = VM_FAULT_OOM; 4393 * owner. Try removing the ex !! 3384 page = swapcache; 4394 * caches if required. !! 3385 goto out_page; 4395 */ << 4396 if ((vmf->flags & FAULT_FLAG_ << 4397 !folio_test_ksm(folio) && << 4398 lru_add_drain(); << 4399 } 3386 } 4400 3387 4401 folio_throttle_swaprate(folio, GFP_KE !! 3388 cgroup_throttle_swaprate(page, GFP_KERNEL); 4402 3389 4403 /* 3390 /* 4404 * Back out if somebody else already 3391 * Back out if somebody else already faulted in this pte. 4405 */ 3392 */ 4406 vmf->pte = pte_offset_map_lock(vma->v 3393 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4407 &vmf->ptl); 3394 &vmf->ptl); 4408 if (unlikely(!vmf->pte || !pte_same(p !! 3395 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 4409 goto out_nomap; 3396 goto out_nomap; 4410 3397 4411 if (unlikely(!folio_test_uptodate(fol !! 3398 if (unlikely(!PageUptodate(page))) { 4412 ret = VM_FAULT_SIGBUS; 3399 ret = VM_FAULT_SIGBUS; 4413 goto out_nomap; 3400 goto out_nomap; 4414 } 3401 } 4415 3402 4416 /* allocated large folios for SWP_SYN << 4417 if (folio_test_large(folio) && !folio << 4418 unsigned long nr = folio_nr_p << 4419 unsigned long folio_start = A << 4420 unsigned long idx = (vmf->add << 4421 pte_t *folio_ptep = vmf->pte << 4422 pte_t folio_pte = ptep_get(fo << 4423 << 4424 if (!pte_same(folio_pte, pte_ << 4425 swap_pte_batch(folio_ptep << 4426 goto out_nomap; << 4427 << 4428 page_idx = idx; << 4429 address = folio_start; << 4430 ptep = folio_ptep; << 4431 goto check_folio; << 4432 } << 4433 << 4434 nr_pages = 1; << 4435 page_idx = 0; << 4436 address = vmf->address; << 4437 ptep = vmf->pte; << 4438 if (folio_test_large(folio) && folio_ << 4439 int nr = folio_nr_pages(folio << 4440 unsigned long idx = folio_pag << 4441 unsigned long folio_start = a << 4442 unsigned long folio_end = fol << 4443 pte_t *folio_ptep; << 4444 pte_t folio_pte; << 4445 << 4446 if (unlikely(folio_start < ma << 4447 goto check_folio; << 4448 if (unlikely(folio_end > pmd_ << 4449 goto check_folio; << 4450 << 4451 folio_ptep = vmf->pte - idx; << 4452 folio_pte = ptep_get(folio_pt << 4453 if (!pte_same(folio_pte, pte_ << 4454 swap_pte_batch(folio_ptep << 4455 goto check_folio; << 4456 << 4457 page_idx = idx; << 4458 address = folio_start; << 4459 ptep = folio_ptep; << 4460 nr_pages = nr; << 4461 entry = folio->swap; << 4462 page = &folio->page; << 4463 } << 4464 << 4465 check_folio: << 4466 /* << 4467 * PG_anon_exclusive reuses PG_mapped << 4468 * must never point at an anonymous p << 4469 * PG_anon_exclusive. Sanity check th << 4470 * no filesystem set PG_mappedtodisk << 4471 * check after taking the PT lock and << 4472 * concurrently faulted in this page << 4473 */ << 4474 BUG_ON(!folio_test_anon(folio) && fol << 4475 BUG_ON(folio_test_anon(folio) && Page << 4476 << 4477 /* << 4478 * Check under PT lock (to protect ag << 4479 * the swap entry concurrently) for c << 4480 */ << 4481 if (!folio_test_ksm(folio)) { << 4482 exclusive = pte_swp_exclusive << 4483 if (folio != swapcache) { << 4484 /* << 4485 * We have a fresh pa << 4486 * swapcache -> certa << 4487 */ << 4488 exclusive = true; << 4489 } else if (exclusive && folio << 4490 data_race(si->flags << 4491 /* << 4492 * This is tricky: no << 4493 * concurrent page mo << 4494 * << 4495 * So if we stumble o << 4496 * we must not set th << 4497 * map it writable wi << 4498 * while still under << 4499 * << 4500 * For these problema << 4501 * exclusive marker: << 4502 * writeback only if << 4503 * there are no unexp << 4504 * unmapping succeede << 4505 * further GUP refere << 4506 * appear, so droppin << 4507 * it only R/O is fin << 4508 */ << 4509 exclusive = false; << 4510 } << 4511 } << 4512 << 4513 /* 3403 /* 4514 * Some architectures may have to res !! 3404 * The page isn't present yet, go ahead with the fault. 4515 * when reading from swap. This metad !! 3405 * 4516 * so this must be called before swap !! 3406 * Be careful about the sequence of operations here. 4517 */ !! 3407 * To get its accounting right, reuse_swap_page() must be called 4518 arch_swap_restore(folio_swap(entry, f !! 3408 * while the page is counted on swap but not yet in mapcount i.e. 4519 !! 3409 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 4520 /* !! 3410 * must be called after the swap_free(), or it will never succeed. 4521 * Remove the swap entry and conditio << 4522 * We're already holding a reference << 4523 * yet. << 4524 */ 3411 */ 4525 swap_free_nr(entry, nr_pages); << 4526 if (should_try_to_free_swap(folio, vm << 4527 folio_free_swap(folio); << 4528 3412 4529 add_mm_counter(vma->vm_mm, MM_ANONPAG !! 3413 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4530 add_mm_counter(vma->vm_mm, MM_SWAPENT !! 3414 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 4531 pte = mk_pte(page, vma->vm_page_prot) 3415 pte = mk_pte(page, vma->vm_page_prot); >> 3416 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { >> 3417 pte = maybe_mkwrite(pte_mkdirty(pte), vma); >> 3418 vmf->flags &= ~FAULT_FLAG_WRITE; >> 3419 ret |= VM_FAULT_WRITE; >> 3420 exclusive = RMAP_EXCLUSIVE; >> 3421 } >> 3422 flush_icache_page(vma, page); 4532 if (pte_swp_soft_dirty(vmf->orig_pte) 3423 if (pte_swp_soft_dirty(vmf->orig_pte)) 4533 pte = pte_mksoft_dirty(pte); 3424 pte = pte_mksoft_dirty(pte); 4534 if (pte_swp_uffd_wp(vmf->orig_pte)) !! 3425 if (pte_swp_uffd_wp(vmf->orig_pte)) { 4535 pte = pte_mkuffd_wp(pte); 3426 pte = pte_mkuffd_wp(pte); 4536 !! 3427 pte = pte_wrprotect(pte); 4537 /* << 4538 * Same logic as in do_wp_page(); how << 4539 * certainly not shared either becaus << 4540 * exposing them to the swapcache or << 4541 * exclusivity. << 4542 */ << 4543 if (!folio_test_ksm(folio) && << 4544 (exclusive || folio_ref_count(fol << 4545 if ((vma->vm_flags & VM_WRITE << 4546 !pte_needs_soft_dirty_wp( << 4547 pte = pte_mkwrite(pte << 4548 if (vmf->flags & FAUL << 4549 pte = pte_mkd << 4550 vmf->flags &= << 4551 } << 4552 } << 4553 rmap_flags |= RMAP_EXCLUSIVE; << 4554 } 3428 } 4555 folio_ref_add(folio, nr_pages - 1); !! 3429 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4556 flush_icache_pages(vma, page, nr_page !! 3430 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4557 vmf->orig_pte = pte_advance_pfn(pte, !! 3431 vmf->orig_pte = pte; 4558 3432 4559 /* ksm created a completely new copy 3433 /* ksm created a completely new copy */ 4560 if (unlikely(folio != swapcache && sw !! 3434 if (unlikely(page != swapcache && swapcache)) { 4561 folio_add_new_anon_rmap(folio !! 3435 page_add_new_anon_rmap(page, vma, vmf->address, false); 4562 folio_add_lru_vma(folio, vma) !! 3436 lru_cache_add_inactive_or_unevictable(page, vma); 4563 } else if (!folio_test_anon(folio)) { << 4564 /* << 4565 * We currently only expect s << 4566 * fully exclusive or fully s << 4567 * folios which are fully exc << 4568 * folios within swapcache he << 4569 */ << 4570 VM_WARN_ON_ONCE(folio_test_la << 4571 VM_WARN_ON_FOLIO(!folio_test_ << 4572 folio_add_new_anon_rmap(folio << 4573 } else { 3437 } else { 4574 folio_add_anon_rmap_ptes(foli !! 3438 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 4575 rmap_ << 4576 } 3439 } 4577 3440 4578 VM_BUG_ON(!folio_test_anon(folio) || !! 3441 swap_free(entry); 4579 (pte_write(pte) && !P !! 3442 if (mem_cgroup_swap_full(page) || 4580 set_ptes(vma->vm_mm, address, ptep, p !! 3443 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 4581 arch_do_swap_page_nr(vma->vm_mm, vma, !! 3444 try_to_free_swap(page); 4582 pte, pte, nr_pages); !! 3445 unlock_page(page); 4583 !! 3446 if (page != swapcache && swapcache) { 4584 folio_unlock(folio); << 4585 if (folio != swapcache && swapcache) << 4586 /* 3447 /* 4587 * Hold the lock to avoid the 3448 * Hold the lock to avoid the swap entry to be reused 4588 * until we take the PT lock 3449 * until we take the PT lock for the pte_same() check 4589 * (to avoid false positives 3450 * (to avoid false positives from pte_same). For 4590 * further safety release the 3451 * further safety release the lock after the swap_free 4591 * so that the swap count won 3452 * so that the swap count won't change under a 4592 * parallel locked swapcache. 3453 * parallel locked swapcache. 4593 */ 3454 */ 4594 folio_unlock(swapcache); !! 3455 unlock_page(swapcache); 4595 folio_put(swapcache); !! 3456 put_page(swapcache); 4596 } 3457 } 4597 3458 4598 if (vmf->flags & FAULT_FLAG_WRITE) { 3459 if (vmf->flags & FAULT_FLAG_WRITE) { 4599 ret |= do_wp_page(vmf); 3460 ret |= do_wp_page(vmf); 4600 if (ret & VM_FAULT_ERROR) 3461 if (ret & VM_FAULT_ERROR) 4601 ret &= VM_FAULT_ERROR 3462 ret &= VM_FAULT_ERROR; 4602 goto out; 3463 goto out; 4603 } 3464 } 4604 3465 4605 /* No need to invalidate - it was non 3466 /* No need to invalidate - it was non-present before */ 4606 update_mmu_cache_range(vmf, vma, addr !! 3467 update_mmu_cache(vma, vmf->address, vmf->pte); 4607 unlock: 3468 unlock: 4608 if (vmf->pte) !! 3469 pte_unmap_unlock(vmf->pte, vmf->ptl); 4609 pte_unmap_unlock(vmf->pte, vm << 4610 out: 3470 out: 4611 /* Clear the swap cache pin for direc << 4612 if (need_clear_cache) { << 4613 swapcache_clear(si, entry, nr << 4614 if (waitqueue_active(&swapcac << 4615 wake_up(&swapcache_wq << 4616 } << 4617 if (si) << 4618 put_swap_device(si); << 4619 return ret; 3471 return ret; 4620 out_nomap: 3472 out_nomap: 4621 if (vmf->pte) !! 3473 pte_unmap_unlock(vmf->pte, vmf->ptl); 4622 pte_unmap_unlock(vmf->pte, vm << 4623 out_page: 3474 out_page: 4624 folio_unlock(folio); !! 3475 unlock_page(page); 4625 out_release: 3476 out_release: 4626 folio_put(folio); !! 3477 put_page(page); 4627 if (folio != swapcache && swapcache) !! 3478 if (page != swapcache && swapcache) { 4628 folio_unlock(swapcache); !! 3479 unlock_page(swapcache); 4629 folio_put(swapcache); !! 3480 put_page(swapcache); 4630 } << 4631 if (need_clear_cache) { << 4632 swapcache_clear(si, entry, nr << 4633 if (waitqueue_active(&swapcac << 4634 wake_up(&swapcache_wq << 4635 } 3481 } 4636 if (si) << 4637 put_swap_device(si); << 4638 return ret; 3482 return ret; 4639 } 3483 } 4640 3484 4641 static bool pte_range_none(pte_t *pte, int nr << 4642 { << 4643 int i; << 4644 << 4645 for (i = 0; i < nr_pages; i++) { << 4646 if (!pte_none(ptep_get_lockle << 4647 return false; << 4648 } << 4649 << 4650 return true; << 4651 } << 4652 << 4653 static struct folio *alloc_anon_folio(struct << 4654 { << 4655 struct vm_area_struct *vma = vmf->vma << 4656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 4657 unsigned long orders; << 4658 struct folio *folio; << 4659 unsigned long addr; << 4660 pte_t *pte; << 4661 gfp_t gfp; << 4662 int order; << 4663 << 4664 /* << 4665 * If uffd is active for the vma we n << 4666 * maintain the uffd semantics. << 4667 */ << 4668 if (unlikely(userfaultfd_armed(vma))) << 4669 goto fallback; << 4670 << 4671 /* << 4672 * Get a list of all the (large) orde << 4673 * for this vma. Then filter out the << 4674 * the faulting address and still be << 4675 */ << 4676 orders = thp_vma_allowable_orders(vma << 4677 TVA_IN_PF | TVA_ENFOR << 4678 orders = thp_vma_suitable_orders(vma, << 4679 << 4680 if (!orders) << 4681 goto fallback; << 4682 << 4683 pte = pte_offset_map(vmf->pmd, vmf->a << 4684 if (!pte) << 4685 return ERR_PTR(-EAGAIN); << 4686 << 4687 /* << 4688 * Find the highest order where the a << 4689 * pte_none(). Note that all remainin << 4690 * pte_none(). << 4691 */ << 4692 order = highest_order(orders); << 4693 while (orders) { << 4694 addr = ALIGN_DOWN(vmf->addres << 4695 if (pte_range_none(pte + pte_ << 4696 break; << 4697 order = next_order(&orders, o << 4698 } << 4699 << 4700 pte_unmap(pte); << 4701 << 4702 if (!orders) << 4703 goto fallback; << 4704 << 4705 /* Try allocating the highest of the << 4706 gfp = vma_thp_gfp_mask(vma); << 4707 while (orders) { << 4708 addr = ALIGN_DOWN(vmf->addres << 4709 folio = vma_alloc_folio(gfp, << 4710 if (folio) { << 4711 if (mem_cgroup_charge << 4712 count_mthp_st << 4713 folio_put(fol << 4714 goto next; << 4715 } << 4716 folio_throttle_swapra << 4717 folio_zero_user(folio << 4718 return folio; << 4719 } << 4720 next: << 4721 count_mthp_stat(order, MTHP_S << 4722 order = next_order(&orders, o << 4723 } << 4724 << 4725 fallback: << 4726 #endif << 4727 return folio_prealloc(vma->vm_mm, vma << 4728 } << 4729 << 4730 /* 3485 /* 4731 * We enter with non-exclusive mmap_lock (to 3486 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4732 * but allow concurrent faults), and pte mapp 3487 * but allow concurrent faults), and pte mapped but not yet locked. 4733 * We return with mmap_lock still held, but p 3488 * We return with mmap_lock still held, but pte unmapped and unlocked. 4734 */ 3489 */ 4735 static vm_fault_t do_anonymous_page(struct vm 3490 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4736 { 3491 { 4737 struct vm_area_struct *vma = vmf->vma 3492 struct vm_area_struct *vma = vmf->vma; 4738 unsigned long addr = vmf->address; !! 3493 struct page *page; 4739 struct folio *folio; << 4740 vm_fault_t ret = 0; 3494 vm_fault_t ret = 0; 4741 int nr_pages = 1; << 4742 pte_t entry; 3495 pte_t entry; 4743 3496 4744 /* File mapping without ->vm_ops ? */ 3497 /* File mapping without ->vm_ops ? */ 4745 if (vma->vm_flags & VM_SHARED) 3498 if (vma->vm_flags & VM_SHARED) 4746 return VM_FAULT_SIGBUS; 3499 return VM_FAULT_SIGBUS; 4747 3500 4748 /* 3501 /* 4749 * Use pte_alloc() instead of pte_all !! 3502 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4750 * be distinguished from a transient !! 3503 * pte_offset_map() on pmds where a huge pmd might be created >> 3504 * from a different thread. >> 3505 * >> 3506 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when >> 3507 * parallel threads are excluded by other means. >> 3508 * >> 3509 * Here we only have mmap_read_lock(mm). 4751 */ 3510 */ 4752 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3511 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4753 return VM_FAULT_OOM; 3512 return VM_FAULT_OOM; 4754 3513 >> 3514 /* See the comment in pte_alloc_one_map() */ >> 3515 if (unlikely(pmd_trans_unstable(vmf->pmd))) >> 3516 return 0; >> 3517 4755 /* Use the zero-page for reads */ 3518 /* Use the zero-page for reads */ 4756 if (!(vmf->flags & FAULT_FLAG_WRITE) 3519 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4757 !mm_forbids_zeropage( 3520 !mm_forbids_zeropage(vma->vm_mm)) { 4758 entry = pte_mkspecial(pfn_pte 3521 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4759 3522 vma->vm_page_prot)); 4760 vmf->pte = pte_offset_map_loc 3523 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4761 vmf->address, 3524 vmf->address, &vmf->ptl); 4762 if (!vmf->pte) !! 3525 if (!pte_none(*vmf->pte)) { 4763 goto unlock; << 4764 if (vmf_pte_changed(vmf)) { << 4765 update_mmu_tlb(vma, v 3526 update_mmu_tlb(vma, vmf->address, vmf->pte); 4766 goto unlock; 3527 goto unlock; 4767 } 3528 } 4768 ret = check_stable_address_sp 3529 ret = check_stable_address_space(vma->vm_mm); 4769 if (ret) 3530 if (ret) 4770 goto unlock; 3531 goto unlock; 4771 /* Deliver the page fault to 3532 /* Deliver the page fault to userland, check inside PT lock */ 4772 if (userfaultfd_missing(vma)) 3533 if (userfaultfd_missing(vma)) { 4773 pte_unmap_unlock(vmf- 3534 pte_unmap_unlock(vmf->pte, vmf->ptl); 4774 return handle_userfau 3535 return handle_userfault(vmf, VM_UFFD_MISSING); 4775 } 3536 } 4776 goto setpte; 3537 goto setpte; 4777 } 3538 } 4778 3539 4779 /* Allocate our own private page. */ 3540 /* Allocate our own private page. */ 4780 ret = vmf_anon_prepare(vmf); !! 3541 if (unlikely(anon_vma_prepare(vma))) 4781 if (ret) !! 3542 goto oom; 4782 return ret; !! 3543 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 4783 /* Returns NULL on OOM or ERR_PTR(-EA !! 3544 if (!page) 4784 folio = alloc_anon_folio(vmf); << 4785 if (IS_ERR(folio)) << 4786 return 0; << 4787 if (!folio) << 4788 goto oom; 3545 goto oom; 4789 3546 4790 nr_pages = folio_nr_pages(folio); !! 3547 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 4791 addr = ALIGN_DOWN(vmf->address, nr_pa !! 3548 goto oom_free_page; >> 3549 cgroup_throttle_swaprate(page, GFP_KERNEL); 4792 3550 4793 /* 3551 /* 4794 * The memory barrier inside __folio_ !! 3552 * The memory barrier inside __SetPageUptodate makes sure that 4795 * preceding stores to the page conte 3553 * preceding stores to the page contents become visible before 4796 * the set_pte_at() write. 3554 * the set_pte_at() write. 4797 */ 3555 */ 4798 __folio_mark_uptodate(folio); !! 3556 __SetPageUptodate(page); 4799 3557 4800 entry = mk_pte(&folio->page, vma->vm_ !! 3558 entry = mk_pte(page, vma->vm_page_prot); 4801 entry = pte_sw_mkyoung(entry); 3559 entry = pte_sw_mkyoung(entry); 4802 if (vma->vm_flags & VM_WRITE) 3560 if (vma->vm_flags & VM_WRITE) 4803 entry = pte_mkwrite(pte_mkdir !! 3561 entry = pte_mkwrite(pte_mkdirty(entry)); 4804 3562 4805 vmf->pte = pte_offset_map_lock(vma->v !! 3563 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4806 if (!vmf->pte) !! 3564 &vmf->ptl); 4807 goto release; !! 3565 if (!pte_none(*vmf->pte)) { 4808 if (nr_pages == 1 && vmf_pte_changed( !! 3566 update_mmu_cache(vma, vmf->address, vmf->pte); 4809 update_mmu_tlb(vma, addr, vmf << 4810 goto release; << 4811 } else if (nr_pages > 1 && !pte_range << 4812 update_mmu_tlb_range(vma, add << 4813 goto release; 3567 goto release; 4814 } 3568 } 4815 3569 4816 ret = check_stable_address_space(vma- 3570 ret = check_stable_address_space(vma->vm_mm); 4817 if (ret) 3571 if (ret) 4818 goto release; 3572 goto release; 4819 3573 4820 /* Deliver the page fault to userland 3574 /* Deliver the page fault to userland, check inside PT lock */ 4821 if (userfaultfd_missing(vma)) { 3575 if (userfaultfd_missing(vma)) { 4822 pte_unmap_unlock(vmf->pte, vm 3576 pte_unmap_unlock(vmf->pte, vmf->ptl); 4823 folio_put(folio); !! 3577 put_page(page); 4824 return handle_userfault(vmf, 3578 return handle_userfault(vmf, VM_UFFD_MISSING); 4825 } 3579 } 4826 3580 4827 folio_ref_add(folio, nr_pages - 1); !! 3581 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4828 add_mm_counter(vma->vm_mm, MM_ANONPAG !! 3582 page_add_new_anon_rmap(page, vma, vmf->address, false); 4829 count_mthp_stat(folio_order(folio), M !! 3583 lru_cache_add_inactive_or_unevictable(page, vma); 4830 folio_add_new_anon_rmap(folio, vma, a << 4831 folio_add_lru_vma(folio, vma); << 4832 setpte: 3584 setpte: 4833 if (vmf_orig_pte_uffd_wp(vmf)) !! 3585 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4834 entry = pte_mkuffd_wp(entry); << 4835 set_ptes(vma->vm_mm, addr, vmf->pte, << 4836 3586 4837 /* No need to invalidate - it was non 3587 /* No need to invalidate - it was non-present before */ 4838 update_mmu_cache_range(vmf, vma, addr !! 3588 update_mmu_cache(vma, vmf->address, vmf->pte); 4839 unlock: 3589 unlock: 4840 if (vmf->pte) !! 3590 pte_unmap_unlock(vmf->pte, vmf->ptl); 4841 pte_unmap_unlock(vmf->pte, vm << 4842 return ret; 3591 return ret; 4843 release: 3592 release: 4844 folio_put(folio); !! 3593 put_page(page); 4845 goto unlock; 3594 goto unlock; >> 3595 oom_free_page: >> 3596 put_page(page); 4846 oom: 3597 oom: 4847 return VM_FAULT_OOM; 3598 return VM_FAULT_OOM; 4848 } 3599 } 4849 3600 4850 /* 3601 /* 4851 * The mmap_lock must have been held on entry 3602 * The mmap_lock must have been held on entry, and may have been 4852 * released depending on flags and vma->vm_op 3603 * released depending on flags and vma->vm_ops->fault() return value. 4853 * See filemap_fault() and __lock_page_retry( 3604 * See filemap_fault() and __lock_page_retry(). 4854 */ 3605 */ 4855 static vm_fault_t __do_fault(struct vm_fault 3606 static vm_fault_t __do_fault(struct vm_fault *vmf) 4856 { 3607 { 4857 struct vm_area_struct *vma = vmf->vma 3608 struct vm_area_struct *vma = vmf->vma; 4858 struct folio *folio; << 4859 vm_fault_t ret; 3609 vm_fault_t ret; 4860 3610 4861 /* 3611 /* 4862 * Preallocate pte before we take pag 3612 * Preallocate pte before we take page_lock because this might lead to 4863 * deadlocks for memcg reclaim which 3613 * deadlocks for memcg reclaim which waits for pages under writeback: 4864 * lock_ 3614 * lock_page(A) 4865 * SetPa 3615 * SetPageWriteback(A) 4866 * unloc 3616 * unlock_page(A) 4867 * lock_page(B) 3617 * lock_page(B) 4868 * lock_ 3618 * lock_page(B) 4869 * pte_alloc_one 3619 * pte_alloc_one 4870 * shrink_folio_list !! 3620 * shrink_page_list 4871 * wait_on_page_writeback(A) 3621 * wait_on_page_writeback(A) 4872 * SetPa 3622 * SetPageWriteback(B) 4873 * unloc 3623 * unlock_page(B) 4874 * # flu 3624 * # flush A, B to clear the writeback 4875 */ 3625 */ 4876 if (pmd_none(*vmf->pmd) && !vmf->prea 3626 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4877 vmf->prealloc_pte = pte_alloc 3627 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4878 if (!vmf->prealloc_pte) 3628 if (!vmf->prealloc_pte) 4879 return VM_FAULT_OOM; 3629 return VM_FAULT_OOM; >> 3630 smp_wmb(); /* See comment in __pte_alloc() */ 4880 } 3631 } 4881 3632 4882 ret = vma->vm_ops->fault(vmf); 3633 ret = vma->vm_ops->fault(vmf); 4883 if (unlikely(ret & (VM_FAULT_ERROR | 3634 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4884 VM_FAULT_DONE_COW 3635 VM_FAULT_DONE_COW))) 4885 return ret; 3636 return ret; 4886 3637 4887 folio = page_folio(vmf->page); << 4888 if (unlikely(PageHWPoison(vmf->page)) 3638 if (unlikely(PageHWPoison(vmf->page))) { 4889 vm_fault_t poisonret = VM_FAU !! 3639 if (ret & VM_FAULT_LOCKED) 4890 if (ret & VM_FAULT_LOCKED) { !! 3640 unlock_page(vmf->page); 4891 if (page_mapped(vmf-> !! 3641 put_page(vmf->page); 4892 unmap_mapping << 4893 /* Retry if a clean f << 4894 if (mapping_evict_fol << 4895 poisonret = V << 4896 folio_unlock(folio); << 4897 } << 4898 folio_put(folio); << 4899 vmf->page = NULL; 3642 vmf->page = NULL; 4900 return poisonret; !! 3643 return VM_FAULT_HWPOISON; 4901 } 3644 } 4902 3645 4903 if (unlikely(!(ret & VM_FAULT_LOCKED) 3646 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4904 folio_lock(folio); !! 3647 lock_page(vmf->page); 4905 else 3648 else 4906 VM_BUG_ON_PAGE(!folio_test_lo !! 3649 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4907 3650 4908 return ret; 3651 return ret; 4909 } 3652 } 4910 3653 >> 3654 /* >> 3655 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. >> 3656 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check >> 3657 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly >> 3658 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. >> 3659 */ >> 3660 static int pmd_devmap_trans_unstable(pmd_t *pmd) >> 3661 { >> 3662 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); >> 3663 } >> 3664 >> 3665 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) >> 3666 { >> 3667 struct vm_area_struct *vma = vmf->vma; >> 3668 >> 3669 if (!pmd_none(*vmf->pmd)) >> 3670 goto map_pte; >> 3671 if (vmf->prealloc_pte) { >> 3672 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); >> 3673 if (unlikely(!pmd_none(*vmf->pmd))) { >> 3674 spin_unlock(vmf->ptl); >> 3675 goto map_pte; >> 3676 } >> 3677 >> 3678 mm_inc_nr_ptes(vma->vm_mm); >> 3679 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); >> 3680 spin_unlock(vmf->ptl); >> 3681 vmf->prealloc_pte = NULL; >> 3682 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { >> 3683 return VM_FAULT_OOM; >> 3684 } >> 3685 map_pte: >> 3686 /* >> 3687 * If a huge pmd materialized under us just retry later. Use >> 3688 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of >> 3689 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge >> 3690 * under us and then back to pmd_none, as a result of MADV_DONTNEED >> 3691 * running immediately after a huge pmd fault in a different thread of >> 3692 * this mm, in turn leading to a misleading pmd_trans_huge() retval. >> 3693 * All we have to ensure is that it is a regular pmd that we can walk >> 3694 * with pte_offset_map() and we can do that through an atomic read in >> 3695 * C, which is what pmd_trans_unstable() provides. >> 3696 */ >> 3697 if (pmd_devmap_trans_unstable(vmf->pmd)) >> 3698 return VM_FAULT_NOPAGE; >> 3699 >> 3700 /* >> 3701 * At this point we know that our vmf->pmd points to a page of ptes >> 3702 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() >> 3703 * for the duration of the fault. If a racing MADV_DONTNEED runs and >> 3704 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still >> 3705 * be valid and we will re-check to make sure the vmf->pte isn't >> 3706 * pte_none() under vmf->ptl protection when we return to >> 3707 * alloc_set_pte(). >> 3708 */ >> 3709 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, >> 3710 &vmf->ptl); >> 3711 return 0; >> 3712 } >> 3713 4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3714 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4912 static void deposit_prealloc_pte(struct vm_fa 3715 static void deposit_prealloc_pte(struct vm_fault *vmf) 4913 { 3716 { 4914 struct vm_area_struct *vma = vmf->vma 3717 struct vm_area_struct *vma = vmf->vma; 4915 3718 4916 pgtable_trans_huge_deposit(vma->vm_mm 3719 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4917 /* 3720 /* 4918 * We are going to consume the preall 3721 * We are going to consume the prealloc table, 4919 * count that as nr_ptes. 3722 * count that as nr_ptes. 4920 */ 3723 */ 4921 mm_inc_nr_ptes(vma->vm_mm); 3724 mm_inc_nr_ptes(vma->vm_mm); 4922 vmf->prealloc_pte = NULL; 3725 vmf->prealloc_pte = NULL; 4923 } 3726 } 4924 3727 4925 vm_fault_t do_set_pmd(struct vm_fault *vmf, s !! 3728 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4926 { 3729 { 4927 struct folio *folio = page_folio(page << 4928 struct vm_area_struct *vma = vmf->vma 3730 struct vm_area_struct *vma = vmf->vma; 4929 bool write = vmf->flags & FAULT_FLAG_ 3731 bool write = vmf->flags & FAULT_FLAG_WRITE; 4930 unsigned long haddr = vmf->address & 3732 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4931 pmd_t entry; 3733 pmd_t entry; >> 3734 int i; 4932 vm_fault_t ret = VM_FAULT_FALLBACK; 3735 vm_fault_t ret = VM_FAULT_FALLBACK; 4933 3736 4934 /* !! 3737 if (!transhuge_vma_suitable(vma, haddr)) 4935 * It is too late to allocate a small << 4936 * folio in the pagecache: especially << 4937 * PMD mappings, but PTE-mapped THP a << 4938 * PMD mappings if THPs are disabled. << 4939 */ << 4940 if (thp_disabled_by_hw() || vma_thp_d << 4941 return ret; 3738 return ret; 4942 3739 4943 if (!thp_vma_suitable_order(vma, hadd !! 3740 page = compound_head(page); 4944 return ret; !! 3741 if (compound_order(page) != HPAGE_PMD_ORDER) 4945 << 4946 if (folio_order(folio) != HPAGE_PMD_O << 4947 return ret; << 4948 page = &folio->page; << 4949 << 4950 /* << 4951 * Just backoff if any subpage of a T << 4952 * the corrupted page may mapped by P << 4953 * check. This kind of THP just can << 4954 * the corrupted subpage should trigg << 4955 */ << 4956 if (unlikely(folio_test_has_hwpoisone << 4957 return ret; 3742 return ret; 4958 3743 4959 /* 3744 /* 4960 * Archs like ppc64 need additional s !! 3745 * Archs like ppc64 need additonal space to store information 4961 * related to pte entry. Use the prea 3746 * related to pte entry. Use the preallocated table for that. 4962 */ 3747 */ 4963 if (arch_needs_pgtable_deposit() && ! 3748 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4964 vmf->prealloc_pte = pte_alloc 3749 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4965 if (!vmf->prealloc_pte) 3750 if (!vmf->prealloc_pte) 4966 return VM_FAULT_OOM; 3751 return VM_FAULT_OOM; >> 3752 smp_wmb(); /* See comment in __pte_alloc() */ 4967 } 3753 } 4968 3754 4969 vmf->ptl = pmd_lock(vma->vm_mm, vmf-> 3755 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4970 if (unlikely(!pmd_none(*vmf->pmd))) 3756 if (unlikely(!pmd_none(*vmf->pmd))) 4971 goto out; 3757 goto out; 4972 3758 4973 flush_icache_pages(vma, page, HPAGE_P !! 3759 for (i = 0; i < HPAGE_PMD_NR; i++) >> 3760 flush_icache_page(vma, page + i); 4974 3761 4975 entry = mk_huge_pmd(page, vma->vm_pag 3762 entry = mk_huge_pmd(page, vma->vm_page_prot); 4976 if (write) 3763 if (write) 4977 entry = maybe_pmd_mkwrite(pmd 3764 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4978 3765 4979 add_mm_counter(vma->vm_mm, mm_counter !! 3766 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4980 folio_add_file_rmap_pmd(folio, page, !! 3767 page_add_file_rmap(page, true); 4981 << 4982 /* 3768 /* 4983 * deposit and withdraw with pmd lock 3769 * deposit and withdraw with pmd lock held 4984 */ 3770 */ 4985 if (arch_needs_pgtable_deposit()) 3771 if (arch_needs_pgtable_deposit()) 4986 deposit_prealloc_pte(vmf); 3772 deposit_prealloc_pte(vmf); 4987 3773 4988 set_pmd_at(vma->vm_mm, haddr, vmf->pm 3774 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4989 3775 4990 update_mmu_cache_pmd(vma, haddr, vmf- 3776 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4991 3777 4992 /* fault is handled */ 3778 /* fault is handled */ 4993 ret = 0; 3779 ret = 0; 4994 count_vm_event(THP_FILE_MAPPED); 3780 count_vm_event(THP_FILE_MAPPED); 4995 out: 3781 out: 4996 spin_unlock(vmf->ptl); 3782 spin_unlock(vmf->ptl); 4997 return ret; 3783 return ret; 4998 } 3784 } 4999 #else 3785 #else 5000 vm_fault_t do_set_pmd(struct vm_fault *vmf, s !! 3786 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5001 { 3787 { 5002 return VM_FAULT_FALLBACK; !! 3788 BUILD_BUG(); >> 3789 return 0; 5003 } 3790 } 5004 #endif 3791 #endif 5005 3792 5006 /** 3793 /** 5007 * set_pte_range - Set a range of PTEs to poi !! 3794 * alloc_set_pte - setup new PTE entry for given page and add reverse page 5008 * @vmf: Fault decription. !! 3795 * mapping. If needed, the function allocates page table or use pre-allocated. 5009 * @folio: The folio that contains @page. !! 3796 * 5010 * @page: The first page to create a PTE for. !! 3797 * @vmf: fault environment 5011 * @nr: The number of PTEs to create. !! 3798 * @page: page to map 5012 * @addr: The first address to create a PTE f !! 3799 * >> 3800 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on >> 3801 * return. >> 3802 * >> 3803 * Target users are page handler itself and implementations of >> 3804 * vm_ops->map_pages. >> 3805 * >> 3806 * Return: %0 on success, %VM_FAULT_ code in case of error. 5013 */ 3807 */ 5014 void set_pte_range(struct vm_fault *vmf, stru !! 3808 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 5015 struct page *page, unsigned i << 5016 { 3809 { 5017 struct vm_area_struct *vma = vmf->vma 3810 struct vm_area_struct *vma = vmf->vma; 5018 bool write = vmf->flags & FAULT_FLAG_ 3811 bool write = vmf->flags & FAULT_FLAG_WRITE; 5019 bool prefault = !in_range(vmf->addres << 5020 pte_t entry; 3812 pte_t entry; >> 3813 vm_fault_t ret; 5021 3814 5022 flush_icache_pages(vma, page, nr); !! 3815 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 5023 entry = mk_pte(page, vma->vm_page_pro !! 3816 ret = do_set_pmd(vmf, page); >> 3817 if (ret != VM_FAULT_FALLBACK) >> 3818 return ret; >> 3819 } 5024 3820 5025 if (prefault && arch_wants_old_prefau !! 3821 if (!vmf->pte) { 5026 entry = pte_mkold(entry); !! 3822 ret = pte_alloc_one_map(vmf); 5027 else !! 3823 if (ret) 5028 entry = pte_sw_mkyoung(entry) !! 3824 return ret; >> 3825 } >> 3826 >> 3827 /* Re-check under ptl */ >> 3828 if (unlikely(!pte_none(*vmf->pte))) { >> 3829 update_mmu_tlb(vma, vmf->address, vmf->pte); >> 3830 return VM_FAULT_NOPAGE; >> 3831 } 5029 3832 >> 3833 flush_icache_page(vma, page); >> 3834 entry = mk_pte(page, vma->vm_page_prot); >> 3835 entry = pte_sw_mkyoung(entry); 5030 if (write) 3836 if (write) 5031 entry = maybe_mkwrite(pte_mkd 3837 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5032 if (unlikely(vmf_orig_pte_uffd_wp(vmf << 5033 entry = pte_mkuffd_wp(entry); << 5034 /* copy-on-write page */ 3838 /* copy-on-write page */ 5035 if (write && !(vma->vm_flags & VM_SHA 3839 if (write && !(vma->vm_flags & VM_SHARED)) { 5036 VM_BUG_ON_FOLIO(nr != 1, foli !! 3840 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 5037 folio_add_new_anon_rmap(folio !! 3841 page_add_new_anon_rmap(page, vma, vmf->address, false); 5038 folio_add_lru_vma(folio, vma) !! 3842 lru_cache_add_inactive_or_unevictable(page, vma); 5039 } else { 3843 } else { 5040 folio_add_file_rmap_ptes(foli !! 3844 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); >> 3845 page_add_file_rmap(page, false); 5041 } 3846 } 5042 set_ptes(vma->vm_mm, addr, vmf->pte, !! 3847 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 5043 3848 5044 /* no need to invalidate: a not-prese 3849 /* no need to invalidate: a not-present page won't be cached */ 5045 update_mmu_cache_range(vmf, vma, addr !! 3850 update_mmu_cache(vma, vmf->address, vmf->pte); 5046 } << 5047 << 5048 static bool vmf_pte_changed(struct vm_fault * << 5049 { << 5050 if (vmf->flags & FAULT_FLAG_ORIG_PTE_ << 5051 return !pte_same(ptep_get(vmf << 5052 3851 5053 return !pte_none(ptep_get(vmf->pte)); !! 3852 return 0; 5054 } 3853 } 5055 3854 >> 3855 5056 /** 3856 /** 5057 * finish_fault - finish page fault once we h 3857 * finish_fault - finish page fault once we have prepared the page to fault 5058 * 3858 * 5059 * @vmf: structure describing the fault 3859 * @vmf: structure describing the fault 5060 * 3860 * 5061 * This function handles all that is needed t 3861 * This function handles all that is needed to finish a page fault once the 5062 * page to fault in is prepared. It handles l 3862 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5063 * given page, adds reverse page mapping, han 3863 * given page, adds reverse page mapping, handles memcg charges and LRU 5064 * addition. 3864 * addition. 5065 * 3865 * 5066 * The function expects the page to be locked 3866 * The function expects the page to be locked and on success it consumes a 5067 * reference of a page being mapped (for the 3867 * reference of a page being mapped (for the PTE which maps it). 5068 * 3868 * 5069 * Return: %0 on success, %VM_FAULT_ code in 3869 * Return: %0 on success, %VM_FAULT_ code in case of error. 5070 */ 3870 */ 5071 vm_fault_t finish_fault(struct vm_fault *vmf) 3871 vm_fault_t finish_fault(struct vm_fault *vmf) 5072 { 3872 { 5073 struct vm_area_struct *vma = vmf->vma << 5074 struct page *page; 3873 struct page *page; 5075 struct folio *folio; !! 3874 vm_fault_t ret = 0; 5076 vm_fault_t ret; << 5077 bool is_cow = (vmf->flags & FAULT_FLA << 5078 !(vma->vm_flags & VM_SH << 5079 int type, nr_pages; << 5080 unsigned long addr = vmf->address; << 5081 3875 5082 /* Did we COW the page? */ 3876 /* Did we COW the page? */ 5083 if (is_cow) !! 3877 if ((vmf->flags & FAULT_FLAG_WRITE) && >> 3878 !(vmf->vma->vm_flags & VM_SHARED)) 5084 page = vmf->cow_page; 3879 page = vmf->cow_page; 5085 else 3880 else 5086 page = vmf->page; 3881 page = vmf->page; 5087 3882 5088 /* 3883 /* 5089 * check even for read faults because 3884 * check even for read faults because we might have lost our CoWed 5090 * page 3885 * page 5091 */ 3886 */ 5092 if (!(vma->vm_flags & VM_SHARED)) { !! 3887 if (!(vmf->vma->vm_flags & VM_SHARED)) 5093 ret = check_stable_address_sp !! 3888 ret = check_stable_address_space(vmf->vma->vm_mm); 5094 if (ret) !! 3889 if (!ret) 5095 return ret; !! 3890 ret = alloc_set_pte(vmf, page); 5096 } !! 3891 if (vmf->pte) 5097 !! 3892 pte_unmap_unlock(vmf->pte, vmf->ptl); 5098 if (pmd_none(*vmf->pmd)) { << 5099 if (PageTransCompound(page)) << 5100 ret = do_set_pmd(vmf, << 5101 if (ret != VM_FAULT_F << 5102 return ret; << 5103 } << 5104 << 5105 if (vmf->prealloc_pte) << 5106 pmd_install(vma->vm_m << 5107 else if (unlikely(pte_alloc(v << 5108 return VM_FAULT_OOM; << 5109 } << 5110 << 5111 folio = page_folio(page); << 5112 nr_pages = folio_nr_pages(folio); << 5113 << 5114 /* << 5115 * Using per-page fault to maintain t << 5116 * approach also applies to non-anony << 5117 * inflating the RSS of the process. << 5118 */ << 5119 if (!vma_is_anon_shmem(vma) || unlike << 5120 nr_pages = 1; << 5121 } else if (nr_pages > 1) { << 5122 pgoff_t idx = folio_page_idx( << 5123 /* The page offset of vmf->ad << 5124 pgoff_t vma_off = vmf->pgoff << 5125 /* The index of the entry in << 5126 pgoff_t pte_off = pte_index(v << 5127 << 5128 /* << 5129 * Fallback to per-page fault << 5130 * cache beyond the VMA limit << 5131 */ << 5132 if (unlikely(vma_off < idx || << 5133 vma_off + (nr_pag << 5134 pte_off < idx || << 5135 pte_off + (nr_pag << 5136 nr_pages = 1; << 5137 } else { << 5138 /* Now we can set map << 5139 addr = vmf->address - << 5140 page = &folio->page; << 5141 } << 5142 } << 5143 << 5144 vmf->pte = pte_offset_map_lock(vma->v << 5145 addr, << 5146 if (!vmf->pte) << 5147 return VM_FAULT_NOPAGE; << 5148 << 5149 /* Re-check under ptl */ << 5150 if (nr_pages == 1 && unlikely(vmf_pte << 5151 update_mmu_tlb(vma, addr, vmf << 5152 ret = VM_FAULT_NOPAGE; << 5153 goto unlock; << 5154 } else if (nr_pages > 1 && !pte_range << 5155 update_mmu_tlb_range(vma, add << 5156 ret = VM_FAULT_NOPAGE; << 5157 goto unlock; << 5158 } << 5159 << 5160 folio_ref_add(folio, nr_pages - 1); << 5161 set_pte_range(vmf, folio, page, nr_pa << 5162 type = is_cow ? MM_ANONPAGES : mm_cou << 5163 add_mm_counter(vma->vm_mm, type, nr_p << 5164 ret = 0; << 5165 << 5166 unlock: << 5167 pte_unmap_unlock(vmf->pte, vmf->ptl); << 5168 return ret; 3893 return ret; 5169 } 3894 } 5170 3895 5171 static unsigned long fault_around_pages __rea !! 3896 static unsigned long fault_around_bytes __read_mostly = 5172 65536 >> PAGE_SHIFT; !! 3897 rounddown_pow_of_two(65536); 5173 3898 5174 #ifdef CONFIG_DEBUG_FS 3899 #ifdef CONFIG_DEBUG_FS 5175 static int fault_around_bytes_get(void *data, 3900 static int fault_around_bytes_get(void *data, u64 *val) 5176 { 3901 { 5177 *val = fault_around_pages << PAGE_SHI !! 3902 *val = fault_around_bytes; 5178 return 0; 3903 return 0; 5179 } 3904 } 5180 3905 5181 /* 3906 /* 5182 * fault_around_bytes must be rounded down to 3907 * fault_around_bytes must be rounded down to the nearest page order as it's 5183 * what do_fault_around() expects to see. 3908 * what do_fault_around() expects to see. 5184 */ 3909 */ 5185 static int fault_around_bytes_set(void *data, 3910 static int fault_around_bytes_set(void *data, u64 val) 5186 { 3911 { 5187 if (val / PAGE_SIZE > PTRS_PER_PTE) 3912 if (val / PAGE_SIZE > PTRS_PER_PTE) 5188 return -EINVAL; 3913 return -EINVAL; 5189 !! 3914 if (val > PAGE_SIZE) 5190 /* !! 3915 fault_around_bytes = rounddown_pow_of_two(val); 5191 * The minimum value is 1 page, howev !! 3916 else 5192 * at all. See should_fault_around(). !! 3917 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 5193 */ << 5194 val = max(val, PAGE_SIZE); << 5195 fault_around_pages = rounddown_pow_of << 5196 << 5197 return 0; 3918 return 0; 5198 } 3919 } 5199 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_f 3920 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5200 fault_around_bytes_get, fault 3921 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5201 3922 5202 static int __init fault_around_debugfs(void) 3923 static int __init fault_around_debugfs(void) 5203 { 3924 { 5204 debugfs_create_file_unsafe("fault_aro 3925 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5205 &fault_aro 3926 &fault_around_bytes_fops); 5206 return 0; 3927 return 0; 5207 } 3928 } 5208 late_initcall(fault_around_debugfs); 3929 late_initcall(fault_around_debugfs); 5209 #endif 3930 #endif 5210 3931 5211 /* 3932 /* 5212 * do_fault_around() tries to map few pages a 3933 * do_fault_around() tries to map few pages around the fault address. The hope 5213 * is that the pages will be needed soon and 3934 * is that the pages will be needed soon and this will lower the number of 5214 * faults to handle. 3935 * faults to handle. 5215 * 3936 * 5216 * It uses vm_ops->map_pages() to map the pag 3937 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5217 * not ready to be mapped: not up-to-date, lo 3938 * not ready to be mapped: not up-to-date, locked, etc. 5218 * 3939 * 5219 * This function doesn't cross VMA or page ta !! 3940 * This function is called with the page table lock taken. In the split ptlock 5220 * map_pages() and acquire a PTE lock only on !! 3941 * case the page table lock only protects only those entries which belong to >> 3942 * the page table corresponding to the fault address. >> 3943 * >> 3944 * This function doesn't cross the VMA boundaries, in order to call map_pages() >> 3945 * only once. 5221 * 3946 * 5222 * fault_around_pages defines how many pages !! 3947 * fault_around_bytes defines how many bytes we'll try to map. 5223 * do_fault_around() expects it to be set to 3948 * do_fault_around() expects it to be set to a power of two less than or equal 5224 * to PTRS_PER_PTE. 3949 * to PTRS_PER_PTE. 5225 * 3950 * 5226 * The virtual address of the area that we ma 3951 * The virtual address of the area that we map is naturally aligned to 5227 * fault_around_pages * PAGE_SIZE rounded dow !! 3952 * fault_around_bytes rounded down to the machine page size 5228 * (and therefore to page order). This way i 3953 * (and therefore to page order). This way it's easier to guarantee 5229 * that we don't cross page table boundaries. 3954 * that we don't cross page table boundaries. 5230 */ 3955 */ 5231 static vm_fault_t do_fault_around(struct vm_f 3956 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5232 { 3957 { 5233 pgoff_t nr_pages = READ_ONCE(fault_ar !! 3958 unsigned long address = vmf->address, nr_pages, mask; 5234 pgoff_t pte_off = pte_index(vmf->addr !! 3959 pgoff_t start_pgoff = vmf->pgoff; 5235 /* The page offset of vmf->address wi !! 3960 pgoff_t end_pgoff; 5236 pgoff_t vma_off = vmf->pgoff - vmf->v !! 3961 int off; 5237 pgoff_t from_pte, to_pte; !! 3962 vm_fault_t ret = 0; 5238 vm_fault_t ret; !! 3963 >> 3964 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; >> 3965 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 5239 3966 5240 /* The PTE offset of the start addres !! 3967 vmf->address = max(address & mask, vmf->vma->vm_start); 5241 from_pte = max(ALIGN_DOWN(pte_off, nr !! 3968 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 5242 pte_off - min(pte_off, !! 3969 start_pgoff -= off; 5243 !! 3970 5244 /* The PTE offset of the end address, !! 3971 /* 5245 to_pte = min3(from_pte + nr_pages, (p !! 3972 * end_pgoff is either the end of the page table, the end of 5246 pte_off + vma_pages(vmf !! 3973 * the vma or nr_pages from start_pgoff, depending what is nearest. >> 3974 */ >> 3975 end_pgoff = start_pgoff - >> 3976 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + >> 3977 PTRS_PER_PTE - 1; >> 3978 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, >> 3979 start_pgoff + nr_pages - 1); 5247 3980 5248 if (pmd_none(*vmf->pmd)) { 3981 if (pmd_none(*vmf->pmd)) { 5249 vmf->prealloc_pte = pte_alloc 3982 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5250 if (!vmf->prealloc_pte) 3983 if (!vmf->prealloc_pte) 5251 return VM_FAULT_OOM; !! 3984 goto out; >> 3985 smp_wmb(); /* See comment in __pte_alloc() */ 5252 } 3986 } 5253 3987 5254 rcu_read_lock(); !! 3988 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 5255 ret = vmf->vma->vm_ops->map_pages(vmf << 5256 vmf->pgoff + from_pte << 5257 vmf->pgoff + to_pte - << 5258 rcu_read_unlock(); << 5259 3989 5260 return ret; !! 3990 /* Huge page is mapped? Page fault is solved */ 5261 } !! 3991 if (pmd_trans_huge(*vmf->pmd)) { 5262 !! 3992 ret = VM_FAULT_NOPAGE; 5263 /* Return true if we should do read fault-aro !! 3993 goto out; 5264 static inline bool should_fault_around(struct !! 3994 } 5265 { << 5266 /* No ->map_pages? No way to fault a << 5267 if (!vmf->vma->vm_ops->map_pages) << 5268 return false; << 5269 3995 5270 if (uffd_disable_fault_around(vmf->vm !! 3996 /* ->map_pages() haven't done anything useful. Cold page cache? */ 5271 return false; !! 3997 if (!vmf->pte) >> 3998 goto out; 5272 3999 5273 /* A single page implies no faulting !! 4000 /* check if the page fault is solved */ 5274 return fault_around_pages > 1; !! 4001 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); >> 4002 if (!pte_none(*vmf->pte)) >> 4003 ret = VM_FAULT_NOPAGE; >> 4004 pte_unmap_unlock(vmf->pte, vmf->ptl); >> 4005 out: >> 4006 vmf->address = address; >> 4007 vmf->pte = NULL; >> 4008 return ret; 5275 } 4009 } 5276 4010 5277 static vm_fault_t do_read_fault(struct vm_fau 4011 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5278 { 4012 { >> 4013 struct vm_area_struct *vma = vmf->vma; 5279 vm_fault_t ret = 0; 4014 vm_fault_t ret = 0; 5280 struct folio *folio; << 5281 4015 5282 /* 4016 /* 5283 * Let's call ->map_pages() first and 4017 * Let's call ->map_pages() first and use ->fault() as fallback 5284 * if page by the offset is not ready 4018 * if page by the offset is not ready to be mapped (cold cache or 5285 * something). 4019 * something). 5286 */ 4020 */ 5287 if (should_fault_around(vmf)) { !! 4021 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 5288 ret = do_fault_around(vmf); 4022 ret = do_fault_around(vmf); 5289 if (ret) 4023 if (ret) 5290 return ret; 4024 return ret; 5291 } 4025 } 5292 4026 5293 ret = vmf_can_call_fault(vmf); << 5294 if (ret) << 5295 return ret; << 5296 << 5297 ret = __do_fault(vmf); 4027 ret = __do_fault(vmf); 5298 if (unlikely(ret & (VM_FAULT_ERROR | 4028 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5299 return ret; 4029 return ret; 5300 4030 5301 ret |= finish_fault(vmf); 4031 ret |= finish_fault(vmf); 5302 folio = page_folio(vmf->page); !! 4032 unlock_page(vmf->page); 5303 folio_unlock(folio); << 5304 if (unlikely(ret & (VM_FAULT_ERROR | 4033 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5305 folio_put(folio); !! 4034 put_page(vmf->page); 5306 return ret; 4035 return ret; 5307 } 4036 } 5308 4037 5309 static vm_fault_t do_cow_fault(struct vm_faul 4038 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5310 { 4039 { 5311 struct vm_area_struct *vma = vmf->vma 4040 struct vm_area_struct *vma = vmf->vma; 5312 struct folio *folio; << 5313 vm_fault_t ret; 4041 vm_fault_t ret; 5314 4042 5315 ret = vmf_can_call_fault(vmf); !! 4043 if (unlikely(anon_vma_prepare(vma))) 5316 if (!ret) !! 4044 return VM_FAULT_OOM; 5317 ret = vmf_anon_prepare(vmf); << 5318 if (ret) << 5319 return ret; << 5320 4045 5321 folio = folio_prealloc(vma->vm_mm, vm !! 4046 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 5322 if (!folio) !! 4047 if (!vmf->cow_page) 5323 return VM_FAULT_OOM; 4048 return VM_FAULT_OOM; 5324 4049 5325 vmf->cow_page = &folio->page; !! 4050 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { >> 4051 put_page(vmf->cow_page); >> 4052 return VM_FAULT_OOM; >> 4053 } >> 4054 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 5326 4055 5327 ret = __do_fault(vmf); 4056 ret = __do_fault(vmf); 5328 if (unlikely(ret & (VM_FAULT_ERROR | 4057 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5329 goto uncharge_out; 4058 goto uncharge_out; 5330 if (ret & VM_FAULT_DONE_COW) 4059 if (ret & VM_FAULT_DONE_COW) 5331 return ret; 4060 return ret; 5332 4061 5333 if (copy_mc_user_highpage(vmf->cow_pa !! 4062 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 5334 ret = VM_FAULT_HWPOISON; !! 4063 __SetPageUptodate(vmf->cow_page); 5335 goto unlock; << 5336 } << 5337 __folio_mark_uptodate(folio); << 5338 4064 5339 ret |= finish_fault(vmf); 4065 ret |= finish_fault(vmf); 5340 unlock: << 5341 unlock_page(vmf->page); 4066 unlock_page(vmf->page); 5342 put_page(vmf->page); 4067 put_page(vmf->page); 5343 if (unlikely(ret & (VM_FAULT_ERROR | 4068 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5344 goto uncharge_out; 4069 goto uncharge_out; 5345 return ret; 4070 return ret; 5346 uncharge_out: 4071 uncharge_out: 5347 folio_put(folio); !! 4072 put_page(vmf->cow_page); 5348 return ret; 4073 return ret; 5349 } 4074 } 5350 4075 5351 static vm_fault_t do_shared_fault(struct vm_f 4076 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5352 { 4077 { 5353 struct vm_area_struct *vma = vmf->vma 4078 struct vm_area_struct *vma = vmf->vma; 5354 vm_fault_t ret, tmp; 4079 vm_fault_t ret, tmp; 5355 struct folio *folio; << 5356 << 5357 ret = vmf_can_call_fault(vmf); << 5358 if (ret) << 5359 return ret; << 5360 4080 5361 ret = __do_fault(vmf); 4081 ret = __do_fault(vmf); 5362 if (unlikely(ret & (VM_FAULT_ERROR | 4082 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5363 return ret; 4083 return ret; 5364 4084 5365 folio = page_folio(vmf->page); << 5366 << 5367 /* 4085 /* 5368 * Check if the backing address space 4086 * Check if the backing address space wants to know that the page is 5369 * about to become writable 4087 * about to become writable 5370 */ 4088 */ 5371 if (vma->vm_ops->page_mkwrite) { 4089 if (vma->vm_ops->page_mkwrite) { 5372 folio_unlock(folio); !! 4090 unlock_page(vmf->page); 5373 tmp = do_page_mkwrite(vmf, fo !! 4091 tmp = do_page_mkwrite(vmf); 5374 if (unlikely(!tmp || 4092 if (unlikely(!tmp || 5375 (tmp & (VM_FA 4093 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5376 folio_put(folio); !! 4094 put_page(vmf->page); 5377 return tmp; 4095 return tmp; 5378 } 4096 } 5379 } 4097 } 5380 4098 5381 ret |= finish_fault(vmf); 4099 ret |= finish_fault(vmf); 5382 if (unlikely(ret & (VM_FAULT_ERROR | 4100 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5383 VM_FA 4101 VM_FAULT_RETRY))) { 5384 folio_unlock(folio); !! 4102 unlock_page(vmf->page); 5385 folio_put(folio); !! 4103 put_page(vmf->page); 5386 return ret; 4104 return ret; 5387 } 4105 } 5388 4106 5389 ret |= fault_dirty_shared_page(vmf); 4107 ret |= fault_dirty_shared_page(vmf); 5390 return ret; 4108 return ret; 5391 } 4109 } 5392 4110 5393 /* 4111 /* 5394 * We enter with non-exclusive mmap_lock (to 4112 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5395 * but allow concurrent faults). 4113 * but allow concurrent faults). 5396 * The mmap_lock may have been released depen 4114 * The mmap_lock may have been released depending on flags and our 5397 * return value. See filemap_fault() and __f !! 4115 * return value. See filemap_fault() and __lock_page_or_retry(). 5398 * If mmap_lock is released, vma may become i 4116 * If mmap_lock is released, vma may become invalid (for example 5399 * by other thread calling munmap()). 4117 * by other thread calling munmap()). 5400 */ 4118 */ 5401 static vm_fault_t do_fault(struct vm_fault *v 4119 static vm_fault_t do_fault(struct vm_fault *vmf) 5402 { 4120 { 5403 struct vm_area_struct *vma = vmf->vma 4121 struct vm_area_struct *vma = vmf->vma; 5404 struct mm_struct *vm_mm = vma->vm_mm; 4122 struct mm_struct *vm_mm = vma->vm_mm; 5405 vm_fault_t ret; 4123 vm_fault_t ret; 5406 4124 5407 /* 4125 /* 5408 * The VMA was not fully populated on 4126 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5409 */ 4127 */ 5410 if (!vma->vm_ops->fault) { 4128 if (!vma->vm_ops->fault) { 5411 vmf->pte = pte_offset_map_loc !! 4129 /* 5412 !! 4130 * If we find a migration pmd entry or a none pmd entry, which 5413 if (unlikely(!vmf->pte)) !! 4131 * should never happen, return SIGBUS >> 4132 */ >> 4133 if (unlikely(!pmd_present(*vmf->pmd))) 5414 ret = VM_FAULT_SIGBUS 4134 ret = VM_FAULT_SIGBUS; 5415 else { 4135 else { >> 4136 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, >> 4137 vmf->pmd, >> 4138 vmf->address, >> 4139 &vmf->ptl); 5416 /* 4140 /* 5417 * Make sure this is 4141 * Make sure this is not a temporary clearing of pte 5418 * by holding ptl and 4142 * by holding ptl and checking again. A R/M/W update 5419 * of pte involves: t 4143 * of pte involves: take ptl, clearing the pte so that 5420 * we don't have conc 4144 * we don't have concurrent modification by hardware 5421 * followed by an upd 4145 * followed by an update. 5422 */ 4146 */ 5423 if (unlikely(pte_none !! 4147 if (unlikely(pte_none(*vmf->pte))) 5424 ret = VM_FAUL 4148 ret = VM_FAULT_SIGBUS; 5425 else 4149 else 5426 ret = VM_FAUL 4150 ret = VM_FAULT_NOPAGE; 5427 4151 5428 pte_unmap_unlock(vmf- 4152 pte_unmap_unlock(vmf->pte, vmf->ptl); 5429 } 4153 } 5430 } else if (!(vmf->flags & FAULT_FLAG_ 4154 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5431 ret = do_read_fault(vmf); 4155 ret = do_read_fault(vmf); 5432 else if (!(vma->vm_flags & VM_SHARED) 4156 else if (!(vma->vm_flags & VM_SHARED)) 5433 ret = do_cow_fault(vmf); 4157 ret = do_cow_fault(vmf); 5434 else 4158 else 5435 ret = do_shared_fault(vmf); 4159 ret = do_shared_fault(vmf); 5436 4160 5437 /* preallocated pagetable is unused: 4161 /* preallocated pagetable is unused: free it */ 5438 if (vmf->prealloc_pte) { 4162 if (vmf->prealloc_pte) { 5439 pte_free(vm_mm, vmf->prealloc 4163 pte_free(vm_mm, vmf->prealloc_pte); 5440 vmf->prealloc_pte = NULL; 4164 vmf->prealloc_pte = NULL; 5441 } 4165 } 5442 return ret; 4166 return ret; 5443 } 4167 } 5444 4168 5445 int numa_migrate_check(struct folio *folio, s !! 4169 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 5446 unsigned long addr, int !! 4170 unsigned long addr, int page_nid, 5447 bool writable, int *las !! 4171 int *flags) 5448 { 4172 { 5449 struct vm_area_struct *vma = vmf->vma !! 4173 get_page(page); 5450 << 5451 /* << 5452 * Avoid grouping on RO pages in gene << 5453 * much anyway since they can be in s << 5454 * the case where a mapping is writab << 5455 * to it but pte_write gets cleared d << 5456 * pte_dirty has unpredictable behavi << 5457 * background writeback, dirty balanc << 5458 */ << 5459 if (!writable) << 5460 *flags |= TNF_NO_GROUP; << 5461 << 5462 /* << 5463 * Flag if the folio is shared betwee << 5464 * is later used when determining whe << 5465 */ << 5466 if (folio_likely_mapped_shared(folio) << 5467 *flags |= TNF_SHARED; << 5468 /* << 5469 * For memory tiering mode, cpupid of << 5470 * to record page access time. So us << 5471 */ << 5472 if (folio_use_access_time(folio)) << 5473 *last_cpupid = (-1 & LAST_CPU << 5474 else << 5475 *last_cpupid = folio_last_cpu << 5476 << 5477 /* Record the current PID acceesing V << 5478 vma_set_access_pid_bit(vma); << 5479 4174 5480 count_vm_numa_event(NUMA_HINT_FAULTS) 4175 count_vm_numa_event(NUMA_HINT_FAULTS); 5481 #ifdef CONFIG_NUMA_BALANCING !! 4176 if (page_nid == numa_node_id()) { 5482 count_memcg_folio_events(folio, NUMA_ << 5483 #endif << 5484 if (folio_nid(folio) == numa_node_id( << 5485 count_vm_numa_event(NUMA_HINT 4177 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5486 *flags |= TNF_FAULT_LOCAL; 4178 *flags |= TNF_FAULT_LOCAL; 5487 } 4179 } 5488 4180 5489 return mpol_misplaced(folio, vmf, add !! 4181 return mpol_misplaced(page, vma, addr); 5490 } << 5491 << 5492 static void numa_rebuild_single_mapping(struc << 5493 unsig << 5494 bool << 5495 { << 5496 pte_t pte, old_pte; << 5497 << 5498 old_pte = ptep_modify_prot_start(vma, << 5499 pte = pte_modify(old_pte, vma->vm_pag << 5500 pte = pte_mkyoung(pte); << 5501 if (writable) << 5502 pte = pte_mkwrite(pte, vma); << 5503 ptep_modify_prot_commit(vma, fault_ad << 5504 update_mmu_cache_range(vmf, vma, faul << 5505 } << 5506 << 5507 static void numa_rebuild_large_mapping(struct << 5508 struct << 5509 bool i << 5510 { << 5511 int nr = pte_pfn(fault_pte) - folio_p << 5512 unsigned long start, end, addr = vmf- << 5513 unsigned long addr_start = addr - (nr << 5514 unsigned long pt_start = ALIGN_DOWN(a << 5515 pte_t *start_ptep; << 5516 << 5517 /* Stay within the VMA and within the << 5518 start = max3(addr_start, pt_start, vm << 5519 end = min3(addr_start + folio_size(fo << 5520 vma->vm_end); << 5521 start_ptep = vmf->pte - ((addr - star << 5522 << 5523 /* Restore all PTEs' mapping of the l << 5524 for (addr = start; addr != end; start << 5525 pte_t ptent = ptep_get(start_ << 5526 bool writable = false; << 5527 << 5528 if (!pte_present(ptent) || !p << 5529 continue; << 5530 << 5531 if (pfn_folio(pte_pfn(ptent)) << 5532 continue; << 5533 << 5534 if (!ignore_writable) { << 5535 ptent = pte_modify(pt << 5536 writable = pte_write( << 5537 if (!writable && pte_ << 5538 can_change_pte_wr << 5539 writable = tr << 5540 } << 5541 << 5542 numa_rebuild_single_mapping(v << 5543 } << 5544 } 4182 } 5545 4183 5546 static vm_fault_t do_numa_page(struct vm_faul 4184 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5547 { 4185 { 5548 struct vm_area_struct *vma = vmf->vma 4186 struct vm_area_struct *vma = vmf->vma; 5549 struct folio *folio = NULL; !! 4187 struct page *page = NULL; 5550 int nid = NUMA_NO_NODE; !! 4188 int page_nid = NUMA_NO_NODE; 5551 bool writable = false, ignore_writabl << 5552 bool pte_write_upgrade = vma_wants_ma << 5553 int last_cpupid; 4189 int last_cpupid; 5554 int target_nid; 4190 int target_nid; >> 4191 bool migrated = false; 5555 pte_t pte, old_pte; 4192 pte_t pte, old_pte; 5556 int flags = 0, nr_pages; !! 4193 bool was_writable = pte_savedwrite(vmf->orig_pte); >> 4194 int flags = 0; 5557 4195 5558 /* 4196 /* 5559 * The pte cannot be used safely unti !! 4197 * The "pte" at this point cannot be used safely without 5560 * table lock, that its contents have !! 4198 * validation through pte_unmap_same(). It's of NUMA type but >> 4199 * the pfn may be screwed if the read is non atomic. 5561 */ 4200 */ >> 4201 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 5562 spin_lock(vmf->ptl); 4202 spin_lock(vmf->ptl); 5563 /* Read the live PTE from the page ta !! 4203 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 5564 old_pte = ptep_get(vmf->pte); << 5565 << 5566 if (unlikely(!pte_same(old_pte, vmf-> << 5567 pte_unmap_unlock(vmf->pte, vm 4204 pte_unmap_unlock(vmf->pte, vmf->ptl); 5568 return 0; !! 4205 goto out; 5569 } 4206 } 5570 4207 5571 pte = pte_modify(old_pte, vma->vm_pag << 5572 << 5573 /* 4208 /* 5574 * Detect now whether the PTE could b !! 4209 * Make it present again, Depending on how arch implementes non 5575 * is only valid while holding the PT !! 4210 * accessible ptes, some can allow access by kernel mode. 5576 */ 4211 */ 5577 writable = pte_write(pte); !! 4212 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 5578 if (!writable && pte_write_upgrade && !! 4213 pte = pte_modify(old_pte, vma->vm_page_prot); 5579 can_change_pte_writable(vma, vmf- !! 4214 pte = pte_mkyoung(pte); 5580 writable = true; !! 4215 if (was_writable) 5581 !! 4216 pte = pte_mkwrite(pte); 5582 folio = vm_normal_folio(vma, vmf->add !! 4217 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 5583 if (!folio || folio_is_zone_device(fo !! 4218 update_mmu_cache(vma, vmf->address, vmf->pte); 5584 goto out_map; << 5585 << 5586 nid = folio_nid(folio); << 5587 nr_pages = folio_nr_pages(folio); << 5588 << 5589 target_nid = numa_migrate_check(folio << 5590 writa << 5591 if (target_nid == NUMA_NO_NODE) << 5592 goto out_map; << 5593 if (migrate_misplaced_folio_prepare(f << 5594 flags |= TNF_MIGRATE_FAIL; << 5595 goto out_map; << 5596 } << 5597 /* The folio is isolated and isolatio << 5598 pte_unmap_unlock(vmf->pte, vmf->ptl); << 5599 writable = false; << 5600 ignore_writable = true; << 5601 4219 5602 /* Migrate to the requested node */ !! 4220 page = vm_normal_page(vma, vmf->address, pte); 5603 if (!migrate_misplaced_folio(folio, v !! 4221 if (!page) { 5604 nid = target_nid; !! 4222 pte_unmap_unlock(vmf->pte, vmf->ptl); 5605 flags |= TNF_MIGRATED; << 5606 task_numa_fault(last_cpupid, << 5607 return 0; 4223 return 0; 5608 } 4224 } 5609 4225 5610 flags |= TNF_MIGRATE_FAIL; !! 4226 /* TODO: handle PTE-mapped THP */ 5611 vmf->pte = pte_offset_map_lock(vma->v !! 4227 if (PageCompound(page)) { 5612 vmf->a << 5613 if (unlikely(!vmf->pte)) << 5614 return 0; << 5615 if (unlikely(!pte_same(ptep_get(vmf-> << 5616 pte_unmap_unlock(vmf->pte, vm 4228 pte_unmap_unlock(vmf->pte, vmf->ptl); 5617 return 0; 4229 return 0; 5618 } 4230 } 5619 out_map: !! 4231 5620 /* 4232 /* 5621 * Make it present again, depending o !! 4233 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5622 * non-accessible ptes, some can allo !! 4234 * much anyway since they can be in shared cache state. This misses >> 4235 * the case where a mapping is writable but the process never writes >> 4236 * to it but pte_write gets cleared during protection updates and >> 4237 * pte_dirty has unpredictable behaviour between PTE scan updates, >> 4238 * background writeback, dirty balancing and application behaviour. 5623 */ 4239 */ 5624 if (folio && folio_test_large(folio)) !! 4240 if (!pte_write(pte)) 5625 numa_rebuild_large_mapping(vm !! 4241 flags |= TNF_NO_GROUP; 5626 pt !! 4242 5627 else !! 4243 /* 5628 numa_rebuild_single_mapping(v !! 4244 * Flag if the page is shared between multiple address spaces. This 5629 w !! 4245 * is later used when determining whether to group tasks together >> 4246 */ >> 4247 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) >> 4248 flags |= TNF_SHARED; >> 4249 >> 4250 last_cpupid = page_cpupid_last(page); >> 4251 page_nid = page_to_nid(page); >> 4252 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, >> 4253 &flags); 5630 pte_unmap_unlock(vmf->pte, vmf->ptl); 4254 pte_unmap_unlock(vmf->pte, vmf->ptl); >> 4255 if (target_nid == NUMA_NO_NODE) { >> 4256 put_page(page); >> 4257 goto out; >> 4258 } >> 4259 >> 4260 /* Migrate to the requested node */ >> 4261 migrated = migrate_misplaced_page(page, vma, target_nid); >> 4262 if (migrated) { >> 4263 page_nid = target_nid; >> 4264 flags |= TNF_MIGRATED; >> 4265 } else >> 4266 flags |= TNF_MIGRATE_FAIL; 5631 4267 5632 if (nid != NUMA_NO_NODE) !! 4268 out: 5633 task_numa_fault(last_cpupid, !! 4269 if (page_nid != NUMA_NO_NODE) >> 4270 task_numa_fault(last_cpupid, page_nid, 1, flags); 5634 return 0; 4271 return 0; 5635 } 4272 } 5636 4273 5637 static inline vm_fault_t create_huge_pmd(stru 4274 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5638 { 4275 { 5639 struct vm_area_struct *vma = vmf->vma !! 4276 if (vma_is_anonymous(vmf->vma)) 5640 if (vma_is_anonymous(vma)) << 5641 return do_huge_pmd_anonymous_ 4277 return do_huge_pmd_anonymous_page(vmf); 5642 if (vma->vm_ops->huge_fault) !! 4278 if (vmf->vma->vm_ops->huge_fault) 5643 return vma->vm_ops->huge_faul !! 4279 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 5644 return VM_FAULT_FALLBACK; 4280 return VM_FAULT_FALLBACK; 5645 } 4281 } 5646 4282 5647 /* `inline' is required to avoid gcc 4.1.2 bu 4283 /* `inline' is required to avoid gcc 4.1.2 build error */ 5648 static inline vm_fault_t wp_huge_pmd(struct v !! 4284 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 5649 { 4285 { 5650 struct vm_area_struct *vma = vmf->vma !! 4286 if (vma_is_anonymous(vmf->vma)) { 5651 const bool unshare = vmf->flags & FAU !! 4287 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 5652 vm_fault_t ret; << 5653 << 5654 if (vma_is_anonymous(vma)) { << 5655 if (likely(!unshare) && << 5656 userfaultfd_huge_pmd_wp(v << 5657 if (userfaultfd_wp_as << 5658 goto split; << 5659 return handle_userfau 4288 return handle_userfault(vmf, VM_UFFD_WP); 5660 } !! 4289 return do_huge_pmd_wp_page(vmf, orig_pmd); 5661 return do_huge_pmd_wp_page(vm << 5662 } 4290 } >> 4291 if (vmf->vma->vm_ops->huge_fault) { >> 4292 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 5663 4293 5664 if (vma->vm_flags & (VM_SHARED | VM_M !! 4294 if (!(ret & VM_FAULT_FALLBACK)) 5665 if (vma->vm_ops->huge_fault) !! 4295 return ret; 5666 ret = vma->vm_ops->hu << 5667 if (!(ret & VM_FAULT_ << 5668 return ret; << 5669 } << 5670 } 4296 } 5671 4297 5672 split: << 5673 /* COW or write-notify handled on pte 4298 /* COW or write-notify handled on pte level: split pmd. */ 5674 __split_huge_pmd(vma, vmf->pmd, vmf-> !! 4299 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 5675 4300 5676 return VM_FAULT_FALLBACK; 4301 return VM_FAULT_FALLBACK; 5677 } 4302 } 5678 4303 5679 static vm_fault_t create_huge_pud(struct vm_f 4304 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5680 { 4305 { 5681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && 4306 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5682 defined(CONFIG_HAVE_ARCH_TRANSPARENT_ 4307 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5683 struct vm_area_struct *vma = vmf->vma << 5684 /* No support for anonymous transpare 4308 /* No support for anonymous transparent PUD pages yet */ 5685 if (vma_is_anonymous(vma)) !! 4309 if (vma_is_anonymous(vmf->vma)) 5686 return VM_FAULT_FALLBACK; !! 4310 goto split; 5687 if (vma->vm_ops->huge_fault) !! 4311 if (vmf->vma->vm_ops->huge_fault) { 5688 return vma->vm_ops->huge_faul !! 4312 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); >> 4313 >> 4314 if (!(ret & VM_FAULT_FALLBACK)) >> 4315 return ret; >> 4316 } >> 4317 split: >> 4318 /* COW or write-notify not handled on PUD level: split pud.*/ >> 4319 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 5689 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4320 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5690 return VM_FAULT_FALLBACK; 4321 return VM_FAULT_FALLBACK; 5691 } 4322 } 5692 4323 5693 static vm_fault_t wp_huge_pud(struct vm_fault 4324 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5694 { 4325 { 5695 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !! 4326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5696 defined(CONFIG_HAVE_ARCH_TRANSPARENT_ << 5697 struct vm_area_struct *vma = vmf->vma << 5698 vm_fault_t ret; << 5699 << 5700 /* No support for anonymous transpare 4327 /* No support for anonymous transparent PUD pages yet */ 5701 if (vma_is_anonymous(vma)) !! 4328 if (vma_is_anonymous(vmf->vma)) 5702 goto split; !! 4329 return VM_FAULT_FALLBACK; 5703 if (vma->vm_flags & (VM_SHARED | VM_M !! 4330 if (vmf->vma->vm_ops->huge_fault) 5704 if (vma->vm_ops->huge_fault) !! 4331 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 5705 ret = vma->vm_ops->hu !! 4332 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5706 if (!(ret & VM_FAULT_ << 5707 return ret; << 5708 } << 5709 } << 5710 split: << 5711 /* COW or write-notify not handled on << 5712 __split_huge_pud(vma, vmf->pud, vmf-> << 5713 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONF << 5714 return VM_FAULT_FALLBACK; 4333 return VM_FAULT_FALLBACK; 5715 } 4334 } 5716 4335 5717 /* 4336 /* 5718 * These routines also need to handle stuff l 4337 * These routines also need to handle stuff like marking pages dirty 5719 * and/or accessed for architectures that don 4338 * and/or accessed for architectures that don't do it in hardware (most 5720 * RISC architectures). The early dirtying i 4339 * RISC architectures). The early dirtying is also good on the i386. 5721 * 4340 * 5722 * There is also a hook called "update_mmu_ca 4341 * There is also a hook called "update_mmu_cache()" that architectures 5723 * with external mmu caches can use to update 4342 * with external mmu caches can use to update those (ie the Sparc or 5724 * PowerPC hashed page tables that act as ext 4343 * PowerPC hashed page tables that act as extended TLBs). 5725 * 4344 * 5726 * We enter with non-exclusive mmap_lock (to 4345 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5727 * concurrent faults). 4346 * concurrent faults). 5728 * 4347 * 5729 * The mmap_lock may have been released depen 4348 * The mmap_lock may have been released depending on flags and our return value. 5730 * See filemap_fault() and __folio_lock_or_re !! 4349 * See filemap_fault() and __lock_page_or_retry(). 5731 */ 4350 */ 5732 static vm_fault_t handle_pte_fault(struct vm_ 4351 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5733 { 4352 { 5734 pte_t entry; 4353 pte_t entry; 5735 4354 5736 if (unlikely(pmd_none(*vmf->pmd))) { 4355 if (unlikely(pmd_none(*vmf->pmd))) { 5737 /* 4356 /* 5738 * Leave __pte_alloc() until 4357 * Leave __pte_alloc() until later: because vm_ops->fault may 5739 * want to allocate huge page 4358 * want to allocate huge page, and if we expose page table 5740 * for an instant, it will be 4359 * for an instant, it will be difficult to retract from 5741 * concurrent faults and from 4360 * concurrent faults and from rmap lookups. 5742 */ 4361 */ 5743 vmf->pte = NULL; 4362 vmf->pte = NULL; 5744 vmf->flags &= ~FAULT_FLAG_ORI << 5745 } else { 4363 } else { >> 4364 /* See comment in pte_alloc_one_map() */ >> 4365 if (pmd_devmap_trans_unstable(vmf->pmd)) >> 4366 return 0; 5746 /* 4367 /* 5747 * A regular pmd is establish 4368 * A regular pmd is established and it can't morph into a huge 5748 * pmd by anon khugepaged, si !! 4369 * pmd from under us anymore at this point because we hold the 5749 * mode; but shmem or file co !! 4370 * mmap_lock read mode and khugepaged takes it in write mode. 5750 * it into a huge pmd: just r !! 4371 * So now it's safe to run pte_offset_map(). 5751 */ 4372 */ 5752 vmf->pte = pte_offset_map_nol !! 4373 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 5753 !! 4374 vmf->orig_pte = *vmf->pte; 5754 if (unlikely(!vmf->pte)) << 5755 return 0; << 5756 vmf->orig_pte = ptep_get_lock << 5757 vmf->flags |= FAULT_FLAG_ORIG << 5758 4375 >> 4376 /* >> 4377 * some architectures can have larger ptes than wordsize, >> 4378 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and >> 4379 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic >> 4380 * accesses. The code below just needs a consistent view >> 4381 * for the ifs and we later double check anyway with the >> 4382 * ptl lock held. So here a barrier will do. >> 4383 */ >> 4384 barrier(); 5759 if (pte_none(vmf->orig_pte)) 4385 if (pte_none(vmf->orig_pte)) { 5760 pte_unmap(vmf->pte); 4386 pte_unmap(vmf->pte); 5761 vmf->pte = NULL; 4387 vmf->pte = NULL; 5762 } 4388 } 5763 } 4389 } 5764 4390 5765 if (!vmf->pte) !! 4391 if (!vmf->pte) { 5766 return do_pte_missing(vmf); !! 4392 if (vma_is_anonymous(vmf->vma)) >> 4393 return do_anonymous_page(vmf); >> 4394 else >> 4395 return do_fault(vmf); >> 4396 } 5767 4397 5768 if (!pte_present(vmf->orig_pte)) 4398 if (!pte_present(vmf->orig_pte)) 5769 return do_swap_page(vmf); 4399 return do_swap_page(vmf); 5770 4400 5771 if (pte_protnone(vmf->orig_pte) && vm 4401 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5772 return do_numa_page(vmf); 4402 return do_numa_page(vmf); 5773 4403 >> 4404 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 5774 spin_lock(vmf->ptl); 4405 spin_lock(vmf->ptl); 5775 entry = vmf->orig_pte; 4406 entry = vmf->orig_pte; 5776 if (unlikely(!pte_same(ptep_get(vmf-> !! 4407 if (unlikely(!pte_same(*vmf->pte, entry))) { 5777 update_mmu_tlb(vmf->vma, vmf- 4408 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5778 goto unlock; 4409 goto unlock; 5779 } 4410 } 5780 if (vmf->flags & (FAULT_FLAG_WRITE|FA !! 4411 if (vmf->flags & FAULT_FLAG_WRITE) { 5781 if (!pte_write(entry)) 4412 if (!pte_write(entry)) 5782 return do_wp_page(vmf 4413 return do_wp_page(vmf); 5783 else if (likely(vmf->flags & !! 4414 entry = pte_mkdirty(entry); 5784 entry = pte_mkdirty(e << 5785 } 4415 } 5786 entry = pte_mkyoung(entry); 4416 entry = pte_mkyoung(entry); 5787 if (ptep_set_access_flags(vmf->vma, v 4417 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5788 vmf->flags & 4418 vmf->flags & FAULT_FLAG_WRITE)) { 5789 update_mmu_cache_range(vmf, v !! 4419 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 5790 vmf->pte, 1); << 5791 } else { 4420 } else { 5792 /* Skip spurious TLB flush fo 4421 /* Skip spurious TLB flush for retried page fault */ 5793 if (vmf->flags & FAULT_FLAG_T 4422 if (vmf->flags & FAULT_FLAG_TRIED) 5794 goto unlock; 4423 goto unlock; 5795 /* 4424 /* 5796 * This is needed only for pr 4425 * This is needed only for protection faults but the arch code 5797 * is not yet telling us if t 4426 * is not yet telling us if this is a protection fault or not. 5798 * This still avoids useless 4427 * This still avoids useless tlb flushes for .text page faults 5799 * with threads. 4428 * with threads. 5800 */ 4429 */ 5801 if (vmf->flags & FAULT_FLAG_W 4430 if (vmf->flags & FAULT_FLAG_WRITE) 5802 flush_tlb_fix_spuriou !! 4431 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 5803 << 5804 } 4432 } 5805 unlock: 4433 unlock: 5806 pte_unmap_unlock(vmf->pte, vmf->ptl); 4434 pte_unmap_unlock(vmf->pte, vmf->ptl); 5807 return 0; 4435 return 0; 5808 } 4436 } 5809 4437 5810 /* 4438 /* 5811 * On entry, we hold either the VMA lock or t !! 4439 * By the time we get here, we already hold the mm semaphore 5812 * (FAULT_FLAG_VMA_LOCK tells you which). If !! 4440 * 5813 * the result, the mmap_lock is not held on e !! 4441 * The mmap_lock may have been released depending on flags and our 5814 * and __folio_lock_or_retry(). !! 4442 * return value. See filemap_fault() and __lock_page_or_retry(). 5815 */ 4443 */ 5816 static vm_fault_t __handle_mm_fault(struct vm 4444 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5817 unsigned long address, unsign 4445 unsigned long address, unsigned int flags) 5818 { 4446 { 5819 struct vm_fault vmf = { 4447 struct vm_fault vmf = { 5820 .vma = vma, 4448 .vma = vma, 5821 .address = address & PAGE_MAS 4449 .address = address & PAGE_MASK, 5822 .real_address = address, << 5823 .flags = flags, 4450 .flags = flags, 5824 .pgoff = linear_page_index(vm 4451 .pgoff = linear_page_index(vma, address), 5825 .gfp_mask = __get_fault_gfp_m 4452 .gfp_mask = __get_fault_gfp_mask(vma), 5826 }; 4453 }; >> 4454 unsigned int dirty = flags & FAULT_FLAG_WRITE; 5827 struct mm_struct *mm = vma->vm_mm; 4455 struct mm_struct *mm = vma->vm_mm; 5828 unsigned long vm_flags = vma->vm_flag << 5829 pgd_t *pgd; 4456 pgd_t *pgd; 5830 p4d_t *p4d; 4457 p4d_t *p4d; 5831 vm_fault_t ret; 4458 vm_fault_t ret; 5832 4459 5833 pgd = pgd_offset(mm, address); 4460 pgd = pgd_offset(mm, address); 5834 p4d = p4d_alloc(mm, pgd, address); 4461 p4d = p4d_alloc(mm, pgd, address); 5835 if (!p4d) 4462 if (!p4d) 5836 return VM_FAULT_OOM; 4463 return VM_FAULT_OOM; 5837 4464 5838 vmf.pud = pud_alloc(mm, p4d, address) 4465 vmf.pud = pud_alloc(mm, p4d, address); 5839 if (!vmf.pud) 4466 if (!vmf.pud) 5840 return VM_FAULT_OOM; 4467 return VM_FAULT_OOM; 5841 retry_pud: 4468 retry_pud: 5842 if (pud_none(*vmf.pud) && !! 4469 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 5843 thp_vma_allowable_order(vma, vm_f << 5844 TVA_IN_PF | T << 5845 ret = create_huge_pud(&vmf); 4470 ret = create_huge_pud(&vmf); 5846 if (!(ret & VM_FAULT_FALLBACK 4471 if (!(ret & VM_FAULT_FALLBACK)) 5847 return ret; 4472 return ret; 5848 } else { 4473 } else { 5849 pud_t orig_pud = *vmf.pud; 4474 pud_t orig_pud = *vmf.pud; 5850 4475 5851 barrier(); 4476 barrier(); 5852 if (pud_trans_huge(orig_pud) 4477 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5853 4478 5854 /* !! 4479 /* NUMA case for anonymous PUDs would go here */ 5855 * TODO once we suppo !! 4480 5856 * FAULT_FLAG_UNSHARE !! 4481 if (dirty && !pud_write(orig_pud)) { 5857 */ << 5858 if ((flags & FAULT_FL << 5859 ret = wp_huge 4482 ret = wp_huge_pud(&vmf, orig_pud); 5860 if (!(ret & V 4483 if (!(ret & VM_FAULT_FALLBACK)) 5861 retur 4484 return ret; 5862 } else { 4485 } else { 5863 huge_pud_set_ 4486 huge_pud_set_accessed(&vmf, orig_pud); 5864 return 0; 4487 return 0; 5865 } 4488 } 5866 } 4489 } 5867 } 4490 } 5868 4491 5869 vmf.pmd = pmd_alloc(mm, vmf.pud, addr 4492 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5870 if (!vmf.pmd) 4493 if (!vmf.pmd) 5871 return VM_FAULT_OOM; 4494 return VM_FAULT_OOM; 5872 4495 5873 /* Huge pud page fault raced with pmd 4496 /* Huge pud page fault raced with pmd_alloc? */ 5874 if (pud_trans_unstable(vmf.pud)) 4497 if (pud_trans_unstable(vmf.pud)) 5875 goto retry_pud; 4498 goto retry_pud; 5876 4499 5877 if (pmd_none(*vmf.pmd) && !! 4500 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 5878 thp_vma_allowable_order(vma, vm_f << 5879 TVA_IN_PF | T << 5880 ret = create_huge_pmd(&vmf); 4501 ret = create_huge_pmd(&vmf); 5881 if (!(ret & VM_FAULT_FALLBACK 4502 if (!(ret & VM_FAULT_FALLBACK)) 5882 return ret; 4503 return ret; 5883 } else { 4504 } else { 5884 vmf.orig_pmd = pmdp_get_lockl !! 4505 pmd_t orig_pmd = *vmf.pmd; 5885 4506 5886 if (unlikely(is_swap_pmd(vmf. !! 4507 barrier(); >> 4508 if (unlikely(is_swap_pmd(orig_pmd))) { 5887 VM_BUG_ON(thp_migrati 4509 VM_BUG_ON(thp_migration_supported() && 5888 !is !! 4510 !is_pmd_migration_entry(orig_pmd)); 5889 if (is_pmd_migration_ !! 4511 if (is_pmd_migration_entry(orig_pmd)) 5890 pmd_migration 4512 pmd_migration_entry_wait(mm, vmf.pmd); 5891 return 0; 4513 return 0; 5892 } 4514 } 5893 if (pmd_trans_huge(vmf.orig_p !! 4515 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 5894 if (pmd_protnone(vmf. !! 4516 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 5895 return do_hug !! 4517 return do_huge_pmd_numa_page(&vmf, orig_pmd); 5896 !! 4518 5897 if ((flags & (FAULT_F !! 4519 if (dirty && !pmd_write(orig_pmd)) { 5898 !pmd_write(vmf.or !! 4520 ret = wp_huge_pmd(&vmf, orig_pmd); 5899 ret = wp_huge << 5900 if (!(ret & V 4521 if (!(ret & VM_FAULT_FALLBACK)) 5901 retur 4522 return ret; 5902 } else { 4523 } else { 5903 huge_pmd_set_ !! 4524 huge_pmd_set_accessed(&vmf, orig_pmd); 5904 return 0; 4525 return 0; 5905 } 4526 } 5906 } 4527 } 5907 } 4528 } 5908 4529 5909 return handle_pte_fault(&vmf); 4530 return handle_pte_fault(&vmf); 5910 } 4531 } 5911 4532 5912 /** 4533 /** 5913 * mm_account_fault - Do page fault accountin !! 4534 * mm_account_fault - Do page fault accountings 5914 * @mm: mm from which memcg should be extract !! 4535 * 5915 * @regs: the pt_regs struct pointer. When s 4536 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5916 * of perf event counters, but we'll s 4537 * of perf event counters, but we'll still do the per-task accounting to 5917 * the task who triggered this page fa 4538 * the task who triggered this page fault. 5918 * @address: the faulted address. 4539 * @address: the faulted address. 5919 * @flags: the fault flags. 4540 * @flags: the fault flags. 5920 * @ret: the fault retcode. 4541 * @ret: the fault retcode. 5921 * 4542 * 5922 * This will take care of most of the page fa !! 4543 * This will take care of most of the page fault accountings. Meanwhile, it 5923 * will also include the PERF_COUNT_SW_PAGE_F 4544 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5924 * updates. However, note that the handling !! 4545 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5925 * still be in per-arch page fault handlers a 4546 * still be in per-arch page fault handlers at the entry of page fault. 5926 */ 4547 */ 5927 static inline void mm_account_fault(struct mm !! 4548 static inline void mm_account_fault(struct pt_regs *regs, 5928 unsigned 4549 unsigned long address, unsigned int flags, 5929 vm_fault_ 4550 vm_fault_t ret) 5930 { 4551 { 5931 bool major; 4552 bool major; 5932 4553 5933 /* Incomplete faults will be accounte << 5934 if (ret & VM_FAULT_RETRY) << 5935 return; << 5936 << 5937 /* << 5938 * To preserve the behavior of older << 5939 * both successful and failed faults, << 5940 * which ignore failed cases. << 5941 */ << 5942 count_vm_event(PGFAULT); << 5943 count_memcg_event_mm(mm, PGFAULT); << 5944 << 5945 /* 4554 /* 5946 * Do not account for unsuccessful fa !! 4555 * We don't do accounting for some specific faults: 5947 * valid). That includes arch_vma_ac !! 4556 * 5948 * reaching here. So this is not a "t !! 4557 * - Unsuccessful faults (e.g. when the address wasn't valid). That 5949 * counter. We should use the hw pro !! 4558 * includes arch_vma_access_permitted() failing before reaching here. >> 4559 * So this is not a "this many hardware page faults" counter. We >> 4560 * should use the hw profiling for that. >> 4561 * >> 4562 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted >> 4563 * once they're completed. 5950 */ 4564 */ 5951 if (ret & VM_FAULT_ERROR) !! 4565 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 5952 return; 4566 return; 5953 4567 5954 /* 4568 /* 5955 * We define the fault as a major fau 4569 * We define the fault as a major fault when the final successful fault 5956 * is VM_FAULT_MAJOR, or if it retrie 4570 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5957 * handle it immediately previously). 4571 * handle it immediately previously). 5958 */ 4572 */ 5959 major = (ret & VM_FAULT_MAJOR) || (fl 4573 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5960 4574 5961 if (major) 4575 if (major) 5962 current->maj_flt++; 4576 current->maj_flt++; 5963 else 4577 else 5964 current->min_flt++; 4578 current->min_flt++; 5965 4579 5966 /* 4580 /* 5967 * If the fault is done for GUP, regs 4581 * If the fault is done for GUP, regs will be NULL. We only do the 5968 * accounting for the per thread faul 4582 * accounting for the per thread fault counters who triggered the 5969 * fault, and we skip the perf event 4583 * fault, and we skip the perf event updates. 5970 */ 4584 */ 5971 if (!regs) 4585 if (!regs) 5972 return; 4586 return; 5973 4587 5974 if (major) 4588 if (major) 5975 perf_sw_event(PERF_COUNT_SW_P 4589 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5976 else 4590 else 5977 perf_sw_event(PERF_COUNT_SW_P 4591 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5978 } 4592 } 5979 4593 5980 #ifdef CONFIG_LRU_GEN << 5981 static void lru_gen_enter_fault(struct vm_are << 5982 { << 5983 /* the LRU algorithm only applies to << 5984 current->in_lru_fault = vma_has_recen << 5985 } << 5986 << 5987 static void lru_gen_exit_fault(void) << 5988 { << 5989 current->in_lru_fault = false; << 5990 } << 5991 #else << 5992 static void lru_gen_enter_fault(struct vm_are << 5993 { << 5994 } << 5995 << 5996 static void lru_gen_exit_fault(void) << 5997 { << 5998 } << 5999 #endif /* CONFIG_LRU_GEN */ << 6000 << 6001 static vm_fault_t sanitize_fault_flags(struct << 6002 unsign << 6003 { << 6004 if (unlikely(*flags & FAULT_FLAG_UNSH << 6005 if (WARN_ON_ONCE(*flags & FAU << 6006 return VM_FAULT_SIGSE << 6007 /* << 6008 * FAULT_FLAG_UNSHARE only ap << 6009 * just treat it like an ordi << 6010 */ << 6011 if (!is_cow_mapping(vma->vm_f << 6012 *flags &= ~FAULT_FLAG << 6013 } else if (*flags & FAULT_FLAG_WRITE) << 6014 /* Write faults on read-only << 6015 if (WARN_ON_ONCE(!(vma->vm_fl << 6016 return VM_FAULT_SIGSE << 6017 /* ... and FOLL_FORCE only ap << 6018 if (WARN_ON_ONCE(!(vma->vm_fl << 6019 !is_cow_mapp << 6020 return VM_FAULT_SIGSE << 6021 } << 6022 #ifdef CONFIG_PER_VMA_LOCK << 6023 /* << 6024 * Per-VMA locks can't be used with F << 6025 * the assumption that lock is droppe << 6026 */ << 6027 if (WARN_ON_ONCE((*flags & << 6028 (FAULT_FLAG_VMA_LOCK << 6029 (FAULT_FLAG_VMA_LOCK << 6030 return VM_FAULT_SIGSEGV; << 6031 #endif << 6032 << 6033 return 0; << 6034 } << 6035 << 6036 /* 4594 /* 6037 * By the time we get here, we already hold t 4595 * By the time we get here, we already hold the mm semaphore 6038 * 4596 * 6039 * The mmap_lock may have been released depen 4597 * The mmap_lock may have been released depending on flags and our 6040 * return value. See filemap_fault() and __f !! 4598 * return value. See filemap_fault() and __lock_page_or_retry(). 6041 */ 4599 */ 6042 vm_fault_t handle_mm_fault(struct vm_area_str 4600 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6043 unsigned int flags 4601 unsigned int flags, struct pt_regs *regs) 6044 { 4602 { 6045 /* If the fault handler drops the mma << 6046 struct mm_struct *mm = vma->vm_mm; << 6047 vm_fault_t ret; 4603 vm_fault_t ret; 6048 bool is_droppable; << 6049 4604 6050 __set_current_state(TASK_RUNNING); 4605 __set_current_state(TASK_RUNNING); 6051 4606 6052 ret = sanitize_fault_flags(vma, &flag !! 4607 count_vm_event(PGFAULT); 6053 if (ret) !! 4608 count_memcg_event_mm(vma->vm_mm, PGFAULT); 6054 goto out; !! 4609 >> 4610 /* do counter updates before entering really critical section. */ >> 4611 check_sync_rss_stat(current); 6055 4612 6056 if (!arch_vma_access_permitted(vma, f 4613 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6057 f 4614 flags & FAULT_FLAG_INSTRUCTION, 6058 f !! 4615 flags & FAULT_FLAG_REMOTE)) 6059 ret = VM_FAULT_SIGSEGV; !! 4616 return VM_FAULT_SIGSEGV; 6060 goto out; << 6061 } << 6062 << 6063 is_droppable = !!(vma->vm_flags & VM_ << 6064 4617 6065 /* 4618 /* 6066 * Enable the memcg OOM handling for 4619 * Enable the memcg OOM handling for faults triggered in user 6067 * space. Kernel faults are handled 4620 * space. Kernel faults are handled more gracefully. 6068 */ 4621 */ 6069 if (flags & FAULT_FLAG_USER) 4622 if (flags & FAULT_FLAG_USER) 6070 mem_cgroup_enter_user_fault() 4623 mem_cgroup_enter_user_fault(); 6071 4624 6072 lru_gen_enter_fault(vma); << 6073 << 6074 if (unlikely(is_vm_hugetlb_page(vma)) 4625 if (unlikely(is_vm_hugetlb_page(vma))) 6075 ret = hugetlb_fault(vma->vm_m 4626 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6076 else 4627 else 6077 ret = __handle_mm_fault(vma, 4628 ret = __handle_mm_fault(vma, address, flags); 6078 4629 6079 /* << 6080 * Warning: It is no longer safe to d << 6081 * because mmap_lock might have been << 6082 * vma might be destroyed from undern << 6083 */ << 6084 << 6085 lru_gen_exit_fault(); << 6086 << 6087 /* If the mapping is droppable, then << 6088 if (is_droppable) << 6089 ret &= ~VM_FAULT_OOM; << 6090 << 6091 if (flags & FAULT_FLAG_USER) { 4630 if (flags & FAULT_FLAG_USER) { 6092 mem_cgroup_exit_user_fault(); 4631 mem_cgroup_exit_user_fault(); 6093 /* 4632 /* 6094 * The task may have entered 4633 * The task may have entered a memcg OOM situation but 6095 * if the allocation error wa 4634 * if the allocation error was handled gracefully (no 6096 * VM_FAULT_OOM), there is no 4635 * VM_FAULT_OOM), there is no need to kill anything. 6097 * Just clean up the OOM stat 4636 * Just clean up the OOM state peacefully. 6098 */ 4637 */ 6099 if (task_in_memcg_oom(current 4638 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6100 mem_cgroup_oom_synchr 4639 mem_cgroup_oom_synchronize(false); 6101 } 4640 } 6102 out: !! 4641 6103 mm_account_fault(mm, regs, address, f !! 4642 mm_account_fault(regs, address, flags, ret); 6104 4643 6105 return ret; 4644 return ret; 6106 } 4645 } 6107 EXPORT_SYMBOL_GPL(handle_mm_fault); 4646 EXPORT_SYMBOL_GPL(handle_mm_fault); 6108 4647 6109 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA << 6110 #include <linux/extable.h> << 6111 << 6112 static inline bool get_mmap_lock_carefully(st << 6113 { << 6114 if (likely(mmap_read_trylock(mm))) << 6115 return true; << 6116 << 6117 if (regs && !user_mode(regs)) { << 6118 unsigned long ip = exception_ << 6119 if (!search_exception_tables( << 6120 return false; << 6121 } << 6122 << 6123 return !mmap_read_lock_killable(mm); << 6124 } << 6125 << 6126 static inline bool mmap_upgrade_trylock(struc << 6127 { << 6128 /* << 6129 * We don't have this operation yet. << 6130 * << 6131 * It should be easy enough to do: it << 6132 * atomic_long_try_cmpxchg_acquire << 6133 * from RWSEM_READER_BIAS -> RWSEM_WR << 6134 * it also needs the proper lockdep m << 6135 */ << 6136 return false; << 6137 } << 6138 << 6139 static inline bool upgrade_mmap_lock_carefull << 6140 { << 6141 mmap_read_unlock(mm); << 6142 if (regs && !user_mode(regs)) { << 6143 unsigned long ip = exception_ << 6144 if (!search_exception_tables( << 6145 return false; << 6146 } << 6147 return !mmap_write_lock_killable(mm); << 6148 } << 6149 << 6150 /* << 6151 * Helper for page fault handling. << 6152 * << 6153 * This is kind of equivalend to "mmap_read_l << 6154 * by "find_extend_vma()", except it's a lot << 6155 * the locking (and will drop the lock on fai << 6156 * << 6157 * For example, if we have a kernel bug that << 6158 * fault, we don't want to just use mmap_read << 6159 * the mm lock, because that would deadlock i << 6160 * to happen while we're holding the mm lock << 6161 * << 6162 * So this checks the exception tables on ker << 6163 * order to only do this all for instructions << 6164 * expected to fault. << 6165 * << 6166 * We can also actually take the mm lock for << 6167 * need to extend the vma, which helps the VM << 6168 */ << 6169 struct vm_area_struct *lock_mm_and_find_vma(s << 6170 unsigned long addr, s << 6171 { << 6172 struct vm_area_struct *vma; << 6173 << 6174 if (!get_mmap_lock_carefully(mm, regs << 6175 return NULL; << 6176 << 6177 vma = find_vma(mm, addr); << 6178 if (likely(vma && (vma->vm_start <= a << 6179 return vma; << 6180 << 6181 /* << 6182 * Well, dang. We might still be succ << 6183 * if we can extend a vma to do so. << 6184 */ << 6185 if (!vma || !(vma->vm_flags & VM_GROW << 6186 mmap_read_unlock(mm); << 6187 return NULL; << 6188 } << 6189 << 6190 /* << 6191 * We can try to upgrade the mmap loc << 6192 * in which case we can continue to u << 6193 * we already looked up. << 6194 * << 6195 * Otherwise we'll have to drop the m << 6196 * re-take it, and also look up the v << 6197 * re-checking it. << 6198 */ << 6199 if (!mmap_upgrade_trylock(mm)) { << 6200 if (!upgrade_mmap_lock_carefu << 6201 return NULL; << 6202 << 6203 vma = find_vma(mm, addr); << 6204 if (!vma) << 6205 goto fail; << 6206 if (vma->vm_start <= addr) << 6207 goto success; << 6208 if (!(vma->vm_flags & VM_GROW << 6209 goto fail; << 6210 } << 6211 << 6212 if (expand_stack_locked(vma, addr)) << 6213 goto fail; << 6214 << 6215 success: << 6216 mmap_write_downgrade(mm); << 6217 return vma; << 6218 << 6219 fail: << 6220 mmap_write_unlock(mm); << 6221 return NULL; << 6222 } << 6223 #endif << 6224 << 6225 #ifdef CONFIG_PER_VMA_LOCK << 6226 /* << 6227 * Lookup and lock a VMA under RCU protection << 6228 * stable and not isolated. If the VMA is not << 6229 * function returns NULL. << 6230 */ << 6231 struct vm_area_struct *lock_vma_under_rcu(str << 6232 uns << 6233 { << 6234 MA_STATE(mas, &mm->mm_mt, address, ad << 6235 struct vm_area_struct *vma; << 6236 << 6237 rcu_read_lock(); << 6238 retry: << 6239 vma = mas_walk(&mas); << 6240 if (!vma) << 6241 goto inval; << 6242 << 6243 if (!vma_start_read(vma)) << 6244 goto inval; << 6245 << 6246 /* Check if the VMA got isolated afte << 6247 if (vma->detached) { << 6248 vma_end_read(vma); << 6249 count_vm_vma_lock_event(VMA_L << 6250 /* The area was replaced with << 6251 goto retry; << 6252 } << 6253 /* << 6254 * At this point, we have a stable re << 6255 * locked and we know it hasn't alrea << 6256 * From here on, we can access the VM << 6257 * fields are accessible for RCU read << 6258 */ << 6259 << 6260 /* Check since vm_start/vm_end might << 6261 if (unlikely(address < vma->vm_start << 6262 goto inval_end_read; << 6263 << 6264 rcu_read_unlock(); << 6265 return vma; << 6266 << 6267 inval_end_read: << 6268 vma_end_read(vma); << 6269 inval: << 6270 rcu_read_unlock(); << 6271 count_vm_vma_lock_event(VMA_LOCK_ABOR << 6272 return NULL; << 6273 } << 6274 #endif /* CONFIG_PER_VMA_LOCK */ << 6275 << 6276 #ifndef __PAGETABLE_P4D_FOLDED 4648 #ifndef __PAGETABLE_P4D_FOLDED 6277 /* 4649 /* 6278 * Allocate p4d page table. 4650 * Allocate p4d page table. 6279 * We've already handled the fast-path in-lin 4651 * We've already handled the fast-path in-line. 6280 */ 4652 */ 6281 int __p4d_alloc(struct mm_struct *mm, pgd_t * 4653 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6282 { 4654 { 6283 p4d_t *new = p4d_alloc_one(mm, addres 4655 p4d_t *new = p4d_alloc_one(mm, address); 6284 if (!new) 4656 if (!new) 6285 return -ENOMEM; 4657 return -ENOMEM; 6286 4658 >> 4659 smp_wmb(); /* See comment in __pte_alloc */ >> 4660 6287 spin_lock(&mm->page_table_lock); 4661 spin_lock(&mm->page_table_lock); 6288 if (pgd_present(*pgd)) { /* An !! 4662 if (pgd_present(*pgd)) /* Another has populated it */ 6289 p4d_free(mm, new); 4663 p4d_free(mm, new); 6290 } else { !! 4664 else 6291 smp_wmb(); /* See comment in << 6292 pgd_populate(mm, pgd, new); 4665 pgd_populate(mm, pgd, new); 6293 } << 6294 spin_unlock(&mm->page_table_lock); 4666 spin_unlock(&mm->page_table_lock); 6295 return 0; 4667 return 0; 6296 } 4668 } 6297 #endif /* __PAGETABLE_P4D_FOLDED */ 4669 #endif /* __PAGETABLE_P4D_FOLDED */ 6298 4670 6299 #ifndef __PAGETABLE_PUD_FOLDED 4671 #ifndef __PAGETABLE_PUD_FOLDED 6300 /* 4672 /* 6301 * Allocate page upper directory. 4673 * Allocate page upper directory. 6302 * We've already handled the fast-path in-lin 4674 * We've already handled the fast-path in-line. 6303 */ 4675 */ 6304 int __pud_alloc(struct mm_struct *mm, p4d_t * 4676 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6305 { 4677 { 6306 pud_t *new = pud_alloc_one(mm, addres 4678 pud_t *new = pud_alloc_one(mm, address); 6307 if (!new) 4679 if (!new) 6308 return -ENOMEM; 4680 return -ENOMEM; 6309 4681 >> 4682 smp_wmb(); /* See comment in __pte_alloc */ >> 4683 6310 spin_lock(&mm->page_table_lock); 4684 spin_lock(&mm->page_table_lock); 6311 if (!p4d_present(*p4d)) { 4685 if (!p4d_present(*p4d)) { 6312 mm_inc_nr_puds(mm); 4686 mm_inc_nr_puds(mm); 6313 smp_wmb(); /* See comment in << 6314 p4d_populate(mm, p4d, new); 4687 p4d_populate(mm, p4d, new); 6315 } else /* Another has populated it * 4688 } else /* Another has populated it */ 6316 pud_free(mm, new); 4689 pud_free(mm, new); 6317 spin_unlock(&mm->page_table_lock); 4690 spin_unlock(&mm->page_table_lock); 6318 return 0; 4691 return 0; 6319 } 4692 } 6320 #endif /* __PAGETABLE_PUD_FOLDED */ 4693 #endif /* __PAGETABLE_PUD_FOLDED */ 6321 4694 6322 #ifndef __PAGETABLE_PMD_FOLDED 4695 #ifndef __PAGETABLE_PMD_FOLDED 6323 /* 4696 /* 6324 * Allocate page middle directory. 4697 * Allocate page middle directory. 6325 * We've already handled the fast-path in-lin 4698 * We've already handled the fast-path in-line. 6326 */ 4699 */ 6327 int __pmd_alloc(struct mm_struct *mm, pud_t * 4700 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6328 { 4701 { 6329 spinlock_t *ptl; 4702 spinlock_t *ptl; 6330 pmd_t *new = pmd_alloc_one(mm, addres 4703 pmd_t *new = pmd_alloc_one(mm, address); 6331 if (!new) 4704 if (!new) 6332 return -ENOMEM; 4705 return -ENOMEM; 6333 4706 >> 4707 smp_wmb(); /* See comment in __pte_alloc */ >> 4708 6334 ptl = pud_lock(mm, pud); 4709 ptl = pud_lock(mm, pud); 6335 if (!pud_present(*pud)) { 4710 if (!pud_present(*pud)) { 6336 mm_inc_nr_pmds(mm); 4711 mm_inc_nr_pmds(mm); 6337 smp_wmb(); /* See comment in << 6338 pud_populate(mm, pud, new); 4712 pud_populate(mm, pud, new); 6339 } else { /* Another has popula !! 4713 } else /* Another has populated it */ 6340 pmd_free(mm, new); 4714 pmd_free(mm, new); 6341 } << 6342 spin_unlock(ptl); 4715 spin_unlock(ptl); 6343 return 0; 4716 return 0; 6344 } 4717 } 6345 #endif /* __PAGETABLE_PMD_FOLDED */ 4718 #endif /* __PAGETABLE_PMD_FOLDED */ 6346 4719 6347 static inline void pfnmap_args_setup(struct f !! 4720 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 6348 spinlock !! 4721 struct mmu_notifier_range *range, pte_t **ptepp, 6349 pgprot_t !! 4722 pmd_t **pmdpp, spinlock_t **ptlp) 6350 unsigned << 6351 bool spe << 6352 { << 6353 args->lock = lock; << 6354 args->ptep = ptep; << 6355 args->pfn = pfn_base + ((args->addres << 6356 args->pgprot = pgprot; << 6357 args->writable = writable; << 6358 args->special = special; << 6359 } << 6360 << 6361 static inline void pfnmap_lockdep_assert(stru << 6362 { << 6363 #ifdef CONFIG_LOCKDEP << 6364 struct file *file = vma->vm_file; << 6365 struct address_space *mapping = file << 6366 << 6367 if (mapping) << 6368 lockdep_assert(lockdep_is_hel << 6369 lockdep_is_hel << 6370 else << 6371 lockdep_assert(lockdep_is_hel << 6372 #endif << 6373 } << 6374 << 6375 /** << 6376 * follow_pfnmap_start() - Look up a pfn mapp << 6377 * @args: Pointer to struct @follow_pfnmap_ar << 6378 * << 6379 * The caller needs to setup args->vma and ar << 6380 * virtual address as the target of such look << 6381 * the results will be put into other output << 6382 * << 6383 * After the caller finished using the fields << 6384 * another follow_pfnmap_end() to proper rele << 6385 * of such look up request. << 6386 * << 6387 * During the start() and end() calls, the re << 6388 * as proper locks will be held. After the e << 6389 * in @follow_pfnmap_args will be invalid to << 6390 * use of such information after end() may re << 6391 * by the caller with page table updates, oth << 6392 * security bug. << 6393 * << 6394 * If the PTE maps a refcounted page, callers << 6395 * against invalidation with MMU notifiers; o << 6396 * a later point in time can trigger use-afte << 6397 * << 6398 * Only IO mappings and raw PFN mappings are << 6399 * should be taken for read, and the mmap sem << 6400 * before the end() is invoked. << 6401 * << 6402 * This function must not be used to modify P << 6403 * << 6404 * Return: zero on success, negative otherwis << 6405 */ << 6406 int follow_pfnmap_start(struct follow_pfnmap_ << 6407 { 4723 { 6408 struct vm_area_struct *vma = args->vm !! 4724 pgd_t *pgd; 6409 unsigned long address = args->address !! 4725 p4d_t *p4d; 6410 struct mm_struct *mm = vma->vm_mm; !! 4726 pud_t *pud; 6411 spinlock_t *lock; !! 4727 pmd_t *pmd; 6412 pgd_t *pgdp; !! 4728 pte_t *ptep; 6413 p4d_t *p4dp, p4d; << 6414 pud_t *pudp, pud; << 6415 pmd_t *pmdp, pmd; << 6416 pte_t *ptep, pte; << 6417 << 6418 pfnmap_lockdep_assert(vma); << 6419 4729 6420 if (unlikely(address < vma->vm_start !! 4730 pgd = pgd_offset(mm, address); >> 4731 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 6421 goto out; 4732 goto out; 6422 4733 6423 if (!(vma->vm_flags & (VM_IO | VM_PFN !! 4734 p4d = p4d_offset(pgd, address); 6424 goto out; !! 4735 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 6425 retry: << 6426 pgdp = pgd_offset(mm, address); << 6427 if (pgd_none(*pgdp) || unlikely(pgd_b << 6428 goto out; 4736 goto out; 6429 4737 6430 p4dp = p4d_offset(pgdp, address); !! 4738 pud = pud_offset(p4d, address); 6431 p4d = READ_ONCE(*p4dp); !! 4739 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 6432 if (p4d_none(p4d) || unlikely(p4d_bad << 6433 goto out; 4740 goto out; 6434 4741 6435 pudp = pud_offset(p4dp, address); !! 4742 pmd = pmd_offset(pud, address); 6436 pud = READ_ONCE(*pudp); !! 4743 VM_BUG_ON(pmd_trans_huge(*pmd)); 6437 if (pud_none(pud)) << 6438 goto out; << 6439 if (pud_leaf(pud)) { << 6440 lock = pud_lock(mm, pudp); << 6441 if (!unlikely(pud_leaf(pud))) << 6442 spin_unlock(lock); << 6443 goto retry; << 6444 } << 6445 pfnmap_args_setup(args, lock, << 6446 pud_pfn(pud << 6447 pud_special << 6448 return 0; << 6449 } << 6450 4744 6451 pmdp = pmd_offset(pudp, address); !! 4745 if (pmd_huge(*pmd)) { 6452 pmd = pmdp_get_lockless(pmdp); !! 4746 if (!pmdpp) 6453 if (pmd_leaf(pmd)) { !! 4747 goto out; 6454 lock = pmd_lock(mm, pmdp); !! 4748 6455 if (!unlikely(pmd_leaf(pmd))) !! 4749 if (range) { 6456 spin_unlock(lock); !! 4750 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 6457 goto retry; !! 4751 NULL, mm, address & PMD_MASK, 6458 } !! 4752 (address & PMD_MASK) + PMD_SIZE); 6459 pfnmap_args_setup(args, lock, !! 4753 mmu_notifier_invalidate_range_start(range); 6460 pmd_pfn(pmd !! 4754 } 6461 pmd_special !! 4755 *ptlp = pmd_lock(mm, pmd); 6462 return 0; !! 4756 if (pmd_huge(*pmd)) { >> 4757 *pmdpp = pmd; >> 4758 return 0; >> 4759 } >> 4760 spin_unlock(*ptlp); >> 4761 if (range) >> 4762 mmu_notifier_invalidate_range_end(range); 6463 } 4763 } 6464 4764 6465 ptep = pte_offset_map_lock(mm, pmdp, !! 4765 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 6466 if (!ptep) << 6467 goto out; 4766 goto out; 6468 pte = ptep_get(ptep); !! 4767 6469 if (!pte_present(pte)) !! 4768 if (range) { >> 4769 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, >> 4770 address & PAGE_MASK, >> 4771 (address & PAGE_MASK) + PAGE_SIZE); >> 4772 mmu_notifier_invalidate_range_start(range); >> 4773 } >> 4774 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); >> 4775 if (!pte_present(*ptep)) 6470 goto unlock; 4776 goto unlock; 6471 pfnmap_args_setup(args, lock, ptep, p !! 4777 *ptepp = ptep; 6472 pte_pfn(pte), PAGE_ << 6473 pte_special(pte)); << 6474 return 0; 4778 return 0; 6475 unlock: 4779 unlock: 6476 pte_unmap_unlock(ptep, lock); !! 4780 pte_unmap_unlock(ptep, *ptlp); >> 4781 if (range) >> 4782 mmu_notifier_invalidate_range_end(range); 6477 out: 4783 out: 6478 return -EINVAL; 4784 return -EINVAL; 6479 } 4785 } 6480 EXPORT_SYMBOL_GPL(follow_pfnmap_start); << 6481 4786 6482 /** 4787 /** 6483 * follow_pfnmap_end(): End a follow_pfnmap_s !! 4788 * follow_pte - look up PTE at a user virtual address 6484 * @args: Pointer to struct @follow_pfnmap_ar !! 4789 * @mm: the mm_struct of the target address space >> 4790 * @address: user virtual address >> 4791 * @ptepp: location to store found PTE >> 4792 * @ptlp: location to store the lock for the PTE >> 4793 * >> 4794 * On a successful return, the pointer to the PTE is stored in @ptepp; >> 4795 * the corresponding lock is taken and its location is stored in @ptlp. >> 4796 * The contents of the PTE are only stable until @ptlp is released; >> 4797 * any further use, if any, must be protected against invalidation >> 4798 * with MMU notifiers. 6485 * 4799 * 6486 * Must be used in pair of follow_pfnmap_star !! 4800 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6487 * above for more information. !! 4801 * should be taken for read. >> 4802 * >> 4803 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, >> 4804 * it is not a good general-purpose API. >> 4805 * >> 4806 * Return: zero on success, -ve otherwise. 6488 */ 4807 */ 6489 void follow_pfnmap_end(struct follow_pfnmap_a !! 4808 int follow_pte(struct mm_struct *mm, unsigned long address, >> 4809 pte_t **ptepp, spinlock_t **ptlp) 6490 { 4810 { 6491 if (args->lock) !! 4811 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); 6492 spin_unlock(args->lock); << 6493 if (args->ptep) << 6494 pte_unmap(args->ptep); << 6495 } 4812 } 6496 EXPORT_SYMBOL_GPL(follow_pfnmap_end); !! 4813 EXPORT_SYMBOL_GPL(follow_pte); 6497 4814 6498 #ifdef CONFIG_HAVE_IOREMAP_PROT << 6499 /** 4815 /** 6500 * generic_access_phys - generic implementati !! 4816 * follow_pfn - look up PFN at a user virtual address 6501 * @vma: the vma to access !! 4817 * @vma: memory mapping 6502 * @addr: userspace address, not relative off !! 4818 * @address: user virtual address 6503 * @buf: buffer to read/write !! 4819 * @pfn: location to store found PFN 6504 * @len: length of transfer !! 4820 * 6505 * @write: set to FOLL_WRITE when writing, ot !! 4821 * Only IO mappings and raw PFN mappings are allowed. 6506 * !! 4822 * 6507 * This is a generic implementation for &vm_o !! 4823 * This function does not allow the caller to read the permissions 6508 * iomem mapping. This callback is used by ac !! 4824 * of the PTE. Do not use it. 6509 * not page based. !! 4825 * >> 4826 * Return: zero and the pfn at @pfn on success, -ve otherwise. 6510 */ 4827 */ >> 4828 int follow_pfn(struct vm_area_struct *vma, unsigned long address, >> 4829 unsigned long *pfn) >> 4830 { >> 4831 int ret = -EINVAL; >> 4832 spinlock_t *ptl; >> 4833 pte_t *ptep; >> 4834 >> 4835 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) >> 4836 return ret; >> 4837 >> 4838 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); >> 4839 if (ret) >> 4840 return ret; >> 4841 *pfn = pte_pfn(*ptep); >> 4842 pte_unmap_unlock(ptep, ptl); >> 4843 return 0; >> 4844 } >> 4845 EXPORT_SYMBOL(follow_pfn); >> 4846 >> 4847 #ifdef CONFIG_HAVE_IOREMAP_PROT >> 4848 int follow_phys(struct vm_area_struct *vma, >> 4849 unsigned long address, unsigned int flags, >> 4850 unsigned long *prot, resource_size_t *phys) >> 4851 { >> 4852 int ret = -EINVAL; >> 4853 pte_t *ptep, pte; >> 4854 spinlock_t *ptl; >> 4855 >> 4856 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) >> 4857 goto out; >> 4858 >> 4859 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) >> 4860 goto out; >> 4861 pte = *ptep; >> 4862 >> 4863 if ((flags & FOLL_WRITE) && !pte_write(pte)) >> 4864 goto unlock; >> 4865 >> 4866 *prot = pgprot_val(pte_pgprot(pte)); >> 4867 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; >> 4868 >> 4869 ret = 0; >> 4870 unlock: >> 4871 pte_unmap_unlock(ptep, ptl); >> 4872 out: >> 4873 return ret; >> 4874 } >> 4875 6511 int generic_access_phys(struct vm_area_struct 4876 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6512 void *buf, int len, i 4877 void *buf, int len, int write) 6513 { 4878 { 6514 resource_size_t phys_addr; 4879 resource_size_t phys_addr; 6515 unsigned long prot = 0; 4880 unsigned long prot = 0; 6516 void __iomem *maddr; 4881 void __iomem *maddr; 6517 int offset = offset_in_page(addr); !! 4882 int offset = addr & (PAGE_SIZE-1); 6518 int ret = -EINVAL; << 6519 bool writable; << 6520 struct follow_pfnmap_args args = { .v << 6521 4883 6522 retry: !! 4884 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 6523 if (follow_pfnmap_start(&args)) << 6524 return -EINVAL; << 6525 prot = pgprot_val(args.pgprot); << 6526 phys_addr = (resource_size_t)args.pfn << 6527 writable = args.writable; << 6528 follow_pfnmap_end(&args); << 6529 << 6530 if ((write & FOLL_WRITE) && !writable << 6531 return -EINVAL; 4885 return -EINVAL; 6532 4886 6533 maddr = ioremap_prot(phys_addr, PAGE_ 4887 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6534 if (!maddr) 4888 if (!maddr) 6535 return -ENOMEM; 4889 return -ENOMEM; 6536 4890 6537 if (follow_pfnmap_start(&args)) << 6538 goto out_unmap; << 6539 << 6540 if ((prot != pgprot_val(args.pgprot)) << 6541 (phys_addr != (args.pfn << PAGE_S << 6542 (writable != args.writable)) { << 6543 follow_pfnmap_end(&args); << 6544 iounmap(maddr); << 6545 goto retry; << 6546 } << 6547 << 6548 if (write) 4891 if (write) 6549 memcpy_toio(maddr + offset, b 4892 memcpy_toio(maddr + offset, buf, len); 6550 else 4893 else 6551 memcpy_fromio(buf, maddr + of 4894 memcpy_fromio(buf, maddr + offset, len); 6552 ret = len; << 6553 follow_pfnmap_end(&args); << 6554 out_unmap: << 6555 iounmap(maddr); 4895 iounmap(maddr); 6556 4896 6557 return ret; !! 4897 return len; 6558 } 4898 } 6559 EXPORT_SYMBOL_GPL(generic_access_phys); 4899 EXPORT_SYMBOL_GPL(generic_access_phys); 6560 #endif 4900 #endif 6561 4901 6562 /* 4902 /* 6563 * Access another process' address space as g 4903 * Access another process' address space as given in mm. 6564 */ 4904 */ 6565 static int __access_remote_vm(struct mm_struc !! 4905 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 6566 void *buf, int !! 4906 int len, unsigned int gup_flags) 6567 { 4907 { >> 4908 struct vm_area_struct *vma; 6568 void *old_buf = buf; 4909 void *old_buf = buf; 6569 int write = gup_flags & FOLL_WRITE; 4910 int write = gup_flags & FOLL_WRITE; 6570 4911 6571 if (mmap_read_lock_killable(mm)) 4912 if (mmap_read_lock_killable(mm)) 6572 return 0; 4913 return 0; 6573 4914 6574 /* Untag the address before looking u << 6575 addr = untagged_addr_remote(mm, addr) << 6576 << 6577 /* Avoid triggering the temporary war << 6578 if (!vma_lookup(mm, addr) && !expand_ << 6579 return 0; << 6580 << 6581 /* ignore errors, just check how much 4915 /* ignore errors, just check how much was successfully transferred */ 6582 while (len) { 4916 while (len) { 6583 int bytes, offset; !! 4917 int bytes, ret, offset; 6584 void *maddr; 4918 void *maddr; 6585 struct vm_area_struct *vma = !! 4919 struct page *page = NULL; 6586 struct page *page = get_user_ << 6587 << 6588 << 6589 if (IS_ERR(page)) { << 6590 /* We might need to e << 6591 vma = vma_lookup(mm, << 6592 if (!vma) { << 6593 vma = expand_ << 6594 << 6595 /* mmap_lock << 6596 if (!vma) << 6597 retur << 6598 << 6599 /* Try again << 6600 continue; << 6601 } << 6602 4920 >> 4921 ret = get_user_pages_remote(mm, addr, 1, >> 4922 gup_flags, &page, &vma, NULL); >> 4923 if (ret <= 0) { >> 4924 #ifndef CONFIG_HAVE_IOREMAP_PROT >> 4925 break; >> 4926 #else 6603 /* 4927 /* 6604 * Check if this is a 4928 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6605 * we can access usin 4929 * we can access using slightly different code. 6606 */ 4930 */ 6607 bytes = 0; !! 4931 vma = find_vma(mm, addr); 6608 #ifdef CONFIG_HAVE_IOREMAP_PROT !! 4932 if (!vma || vma->vm_start > addr) >> 4933 break; 6609 if (vma->vm_ops && vm 4934 if (vma->vm_ops && vma->vm_ops->access) 6610 bytes = vma-> !! 4935 ret = vma->vm_ops->access(vma, addr, buf, 6611 !! 4936 len, write); 6612 #endif !! 4937 if (ret <= 0) 6613 if (bytes <= 0) << 6614 break; 4938 break; >> 4939 bytes = ret; >> 4940 #endif 6615 } else { 4941 } else { 6616 bytes = len; 4942 bytes = len; 6617 offset = addr & (PAGE 4943 offset = addr & (PAGE_SIZE-1); 6618 if (bytes > PAGE_SIZE 4944 if (bytes > PAGE_SIZE-offset) 6619 bytes = PAGE_ 4945 bytes = PAGE_SIZE-offset; 6620 4946 6621 maddr = kmap_local_pa !! 4947 maddr = kmap(page); 6622 if (write) { 4948 if (write) { 6623 copy_to_user_ 4949 copy_to_user_page(vma, page, addr, 6624 4950 maddr + offset, buf, bytes); 6625 set_page_dirt 4951 set_page_dirty_lock(page); 6626 } else { 4952 } else { 6627 copy_from_use 4953 copy_from_user_page(vma, page, addr, 6628 4954 buf, maddr + offset, bytes); 6629 } 4955 } 6630 unmap_and_put_page(pa !! 4956 kunmap(page); >> 4957 put_page(page); 6631 } 4958 } 6632 len -= bytes; 4959 len -= bytes; 6633 buf += bytes; 4960 buf += bytes; 6634 addr += bytes; 4961 addr += bytes; 6635 } 4962 } 6636 mmap_read_unlock(mm); 4963 mmap_read_unlock(mm); 6637 4964 6638 return buf - old_buf; 4965 return buf - old_buf; 6639 } 4966 } 6640 4967 6641 /** 4968 /** 6642 * access_remote_vm - access another process' 4969 * access_remote_vm - access another process' address space 6643 * @mm: the mm_struct of the target a 4970 * @mm: the mm_struct of the target address space 6644 * @addr: start address to access 4971 * @addr: start address to access 6645 * @buf: source or destination buffer 4972 * @buf: source or destination buffer 6646 * @len: number of bytes to transfer 4973 * @len: number of bytes to transfer 6647 * @gup_flags: flags modifying lookup behavi 4974 * @gup_flags: flags modifying lookup behaviour 6648 * 4975 * 6649 * The caller must hold a reference on @mm. 4976 * The caller must hold a reference on @mm. 6650 * 4977 * 6651 * Return: number of bytes copied from source 4978 * Return: number of bytes copied from source to destination. 6652 */ 4979 */ 6653 int access_remote_vm(struct mm_struct *mm, un 4980 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6654 void *buf, int len, unsigned 4981 void *buf, int len, unsigned int gup_flags) 6655 { 4982 { 6656 return __access_remote_vm(mm, addr, b 4983 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6657 } 4984 } 6658 4985 6659 /* 4986 /* 6660 * Access another process' address space. 4987 * Access another process' address space. 6661 * Source/target buffer must be kernel space, 4988 * Source/target buffer must be kernel space, 6662 * Do not walk the page table directly, use g 4989 * Do not walk the page table directly, use get_user_pages 6663 */ 4990 */ 6664 int access_process_vm(struct task_struct *tsk 4991 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6665 void *buf, int len, unsigned 4992 void *buf, int len, unsigned int gup_flags) 6666 { 4993 { 6667 struct mm_struct *mm; 4994 struct mm_struct *mm; 6668 int ret; 4995 int ret; 6669 4996 6670 mm = get_task_mm(tsk); 4997 mm = get_task_mm(tsk); 6671 if (!mm) 4998 if (!mm) 6672 return 0; 4999 return 0; 6673 5000 6674 ret = __access_remote_vm(mm, addr, bu 5001 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6675 5002 6676 mmput(mm); 5003 mmput(mm); 6677 5004 6678 return ret; 5005 return ret; 6679 } 5006 } 6680 EXPORT_SYMBOL_GPL(access_process_vm); 5007 EXPORT_SYMBOL_GPL(access_process_vm); 6681 5008 6682 /* 5009 /* 6683 * Print the name of a VMA. 5010 * Print the name of a VMA. 6684 */ 5011 */ 6685 void print_vma_addr(char *prefix, unsigned lo 5012 void print_vma_addr(char *prefix, unsigned long ip) 6686 { 5013 { 6687 struct mm_struct *mm = current->mm; 5014 struct mm_struct *mm = current->mm; 6688 struct vm_area_struct *vma; 5015 struct vm_area_struct *vma; 6689 5016 6690 /* 5017 /* 6691 * we might be running from an atomic 5018 * we might be running from an atomic context so we cannot sleep 6692 */ 5019 */ 6693 if (!mmap_read_trylock(mm)) 5020 if (!mmap_read_trylock(mm)) 6694 return; 5021 return; 6695 5022 6696 vma = vma_lookup(mm, ip); !! 5023 vma = find_vma(mm, ip); 6697 if (vma && vma->vm_file) { 5024 if (vma && vma->vm_file) { 6698 struct file *f = vma->vm_file 5025 struct file *f = vma->vm_file; 6699 ip -= vma->vm_start; !! 5026 char *buf = (char *)__get_free_page(GFP_NOWAIT); 6700 ip += vma->vm_pgoff << PAGE_S !! 5027 if (buf) { 6701 printk("%s%pD[%lx,%lx+%lx]", !! 5028 char *p; 6702 vma->vm_start !! 5029 6703 vma->vm_end - !! 5030 p = file_path(f, buf, PAGE_SIZE); >> 5031 if (IS_ERR(p)) >> 5032 p = "?"; >> 5033 printk("%s%s[%lx+%lx]", prefix, kbasename(p), >> 5034 vma->vm_start, >> 5035 vma->vm_end - vma->vm_start); >> 5036 free_page((unsigned long)buf); >> 5037 } 6704 } 5038 } 6705 mmap_read_unlock(mm); 5039 mmap_read_unlock(mm); 6706 } 5040 } 6707 5041 6708 #if defined(CONFIG_PROVE_LOCKING) || defined( 5042 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6709 void __might_fault(const char *file, int line 5043 void __might_fault(const char *file, int line) 6710 { 5044 { >> 5045 /* >> 5046 * Some code (nfs/sunrpc) uses socket ops on kernel memory while >> 5047 * holding the mmap_lock, this is safe because kernel memory doesn't >> 5048 * get paged out, therefore we'll never actually fault, and the >> 5049 * below annotations will generate false positives. >> 5050 */ >> 5051 if (uaccess_kernel()) >> 5052 return; 6711 if (pagefault_disabled()) 5053 if (pagefault_disabled()) 6712 return; 5054 return; 6713 __might_sleep(file, line); !! 5055 __might_sleep(file, line, 0); 6714 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5056 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6715 if (current->mm) 5057 if (current->mm) 6716 might_lock_read(¤t->mm- 5058 might_lock_read(¤t->mm->mmap_lock); 6717 #endif 5059 #endif 6718 } 5060 } 6719 EXPORT_SYMBOL(__might_fault); 5061 EXPORT_SYMBOL(__might_fault); 6720 #endif 5062 #endif 6721 5063 6722 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || d 5064 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6723 /* 5065 /* 6724 * Process all subpages of the specified huge 5066 * Process all subpages of the specified huge page with the specified 6725 * operation. The target subpage will be pro 5067 * operation. The target subpage will be processed last to keep its 6726 * cache lines hot. 5068 * cache lines hot. 6727 */ 5069 */ 6728 static inline int process_huge_page( !! 5070 static inline void process_huge_page( 6729 unsigned long addr_hint, unsigned int !! 5071 unsigned long addr_hint, unsigned int pages_per_huge_page, 6730 int (*process_subpage)(unsigned long !! 5072 void (*process_subpage)(unsigned long addr, int idx, void *arg), 6731 void *arg) 5073 void *arg) 6732 { 5074 { 6733 int i, n, base, l, ret; !! 5075 int i, n, base, l; 6734 unsigned long addr = addr_hint & 5076 unsigned long addr = addr_hint & 6735 ~(((unsigned long)nr_pages << !! 5077 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6736 5078 6737 /* Process target subpage last to kee 5079 /* Process target subpage last to keep its cache lines hot */ 6738 might_sleep(); 5080 might_sleep(); 6739 n = (addr_hint - addr) / PAGE_SIZE; 5081 n = (addr_hint - addr) / PAGE_SIZE; 6740 if (2 * n <= nr_pages) { !! 5082 if (2 * n <= pages_per_huge_page) { 6741 /* If target subpage in first 5083 /* If target subpage in first half of huge page */ 6742 base = 0; 5084 base = 0; 6743 l = n; 5085 l = n; 6744 /* Process subpages at the en 5086 /* Process subpages at the end of huge page */ 6745 for (i = nr_pages - 1; i >= 2 !! 5087 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 6746 cond_resched(); 5088 cond_resched(); 6747 ret = process_subpage !! 5089 process_subpage(addr + i * PAGE_SIZE, i, arg); 6748 if (ret) << 6749 return ret; << 6750 } 5090 } 6751 } else { 5091 } else { 6752 /* If target subpage in secon 5092 /* If target subpage in second half of huge page */ 6753 base = nr_pages - 2 * (nr_pag !! 5093 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 6754 l = nr_pages - n; !! 5094 l = pages_per_huge_page - n; 6755 /* Process subpages at the be 5095 /* Process subpages at the begin of huge page */ 6756 for (i = 0; i < base; i++) { 5096 for (i = 0; i < base; i++) { 6757 cond_resched(); 5097 cond_resched(); 6758 ret = process_subpage !! 5098 process_subpage(addr + i * PAGE_SIZE, i, arg); 6759 if (ret) << 6760 return ret; << 6761 } 5099 } 6762 } 5100 } 6763 /* 5101 /* 6764 * Process remaining subpages in left 5102 * Process remaining subpages in left-right-left-right pattern 6765 * towards the target subpage 5103 * towards the target subpage 6766 */ 5104 */ 6767 for (i = 0; i < l; i++) { 5105 for (i = 0; i < l; i++) { 6768 int left_idx = base + i; 5106 int left_idx = base + i; 6769 int right_idx = base + 2 * l 5107 int right_idx = base + 2 * l - 1 - i; 6770 5108 6771 cond_resched(); 5109 cond_resched(); 6772 ret = process_subpage(addr + !! 5110 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6773 if (ret) << 6774 return ret; << 6775 cond_resched(); 5111 cond_resched(); 6776 ret = process_subpage(addr + !! 5112 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6777 if (ret) << 6778 return ret; << 6779 } 5113 } 6780 return 0; << 6781 } 5114 } 6782 5115 6783 static void clear_gigantic_page(struct folio !! 5116 static void clear_gigantic_page(struct page *page, 6784 unsigned int !! 5117 unsigned long addr, >> 5118 unsigned int pages_per_huge_page) 6785 { 5119 { 6786 int i; 5120 int i; >> 5121 struct page *p = page; 6787 5122 6788 might_sleep(); 5123 might_sleep(); 6789 for (i = 0; i < nr_pages; i++) { !! 5124 for (i = 0; i < pages_per_huge_page; >> 5125 i++, p = mem_map_next(p, page, i)) { 6790 cond_resched(); 5126 cond_resched(); 6791 clear_user_highpage(folio_pag !! 5127 clear_user_highpage(p, addr + i * PAGE_SIZE); 6792 } 5128 } 6793 } 5129 } 6794 5130 6795 static int clear_subpage(unsigned long addr, !! 5131 static void clear_subpage(unsigned long addr, int idx, void *arg) 6796 { 5132 { 6797 struct folio *folio = arg; !! 5133 struct page *page = arg; 6798 5134 6799 clear_user_highpage(folio_page(folio, !! 5135 clear_user_highpage(page + idx, addr); 6800 return 0; << 6801 } 5136 } 6802 5137 6803 /** !! 5138 void clear_huge_page(struct page *page, 6804 * folio_zero_user - Zero a folio which will !! 5139 unsigned long addr_hint, unsigned int pages_per_huge_page) 6805 * @folio: The folio to zero. << 6806 * @addr_hint: The address will be accessed o << 6807 */ << 6808 void folio_zero_user(struct folio *folio, uns << 6809 { 5140 { 6810 unsigned int nr_pages = folio_nr_page !! 5141 unsigned long addr = addr_hint & >> 5142 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6811 5143 6812 if (unlikely(nr_pages > MAX_ORDER_NR_ !! 5144 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6813 clear_gigantic_page(folio, ad !! 5145 clear_gigantic_page(page, addr, pages_per_huge_page); 6814 else !! 5146 return; 6815 process_huge_page(addr_hint, !! 5147 } >> 5148 >> 5149 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6816 } 5150 } 6817 5151 6818 static int copy_user_gigantic_page(struct fol !! 5152 static void copy_user_gigantic_page(struct page *dst, struct page *src, 6819 unsigned l !! 5153 unsigned long addr, 6820 struct vm_ !! 5154 struct vm_area_struct *vma, 6821 unsigned i !! 5155 unsigned int pages_per_huge_page) 6822 { 5156 { 6823 int i; 5157 int i; 6824 struct page *dst_page; !! 5158 struct page *dst_base = dst; 6825 struct page *src_page; !! 5159 struct page *src_base = src; 6826 << 6827 for (i = 0; i < nr_pages; i++) { << 6828 dst_page = folio_page(dst, i) << 6829 src_page = folio_page(src, i) << 6830 5160 >> 5161 for (i = 0; i < pages_per_huge_page; ) { 6831 cond_resched(); 5162 cond_resched(); 6832 if (copy_mc_user_highpage(dst !! 5163 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 6833 add !! 5164 6834 return -EHWPOISON; !! 5165 i++; >> 5166 dst = mem_map_next(dst, dst_base, i); >> 5167 src = mem_map_next(src, src_base, i); 6835 } 5168 } 6836 return 0; << 6837 } 5169 } 6838 5170 6839 struct copy_subpage_arg { 5171 struct copy_subpage_arg { 6840 struct folio *dst; !! 5172 struct page *dst; 6841 struct folio *src; !! 5173 struct page *src; 6842 struct vm_area_struct *vma; 5174 struct vm_area_struct *vma; 6843 }; 5175 }; 6844 5176 6845 static int copy_subpage(unsigned long addr, i !! 5177 static void copy_subpage(unsigned long addr, int idx, void *arg) 6846 { 5178 { 6847 struct copy_subpage_arg *copy_arg = a 5179 struct copy_subpage_arg *copy_arg = arg; 6848 struct page *dst = folio_page(copy_ar << 6849 struct page *src = folio_page(copy_ar << 6850 5180 6851 if (copy_mc_user_highpage(dst, src, a !! 5181 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6852 return -EHWPOISON; !! 5182 addr, copy_arg->vma); 6853 return 0; << 6854 } 5183 } 6855 5184 6856 int copy_user_large_folio(struct folio *dst, !! 5185 void copy_user_huge_page(struct page *dst, struct page *src, 6857 unsigned long addr_ !! 5186 unsigned long addr_hint, struct vm_area_struct *vma, >> 5187 unsigned int pages_per_huge_page) 6858 { 5188 { 6859 unsigned int nr_pages = folio_nr_page !! 5189 unsigned long addr = addr_hint & >> 5190 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6860 struct copy_subpage_arg arg = { 5191 struct copy_subpage_arg arg = { 6861 .dst = dst, 5192 .dst = dst, 6862 .src = src, 5193 .src = src, 6863 .vma = vma, 5194 .vma = vma, 6864 }; 5195 }; 6865 5196 6866 if (unlikely(nr_pages > MAX_ORDER_NR_ !! 5197 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6867 return copy_user_gigantic_pag !! 5198 copy_user_gigantic_page(dst, src, addr, vma, >> 5199 pages_per_huge_page); >> 5200 return; >> 5201 } 6868 5202 6869 return process_huge_page(addr_hint, n !! 5203 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6870 } 5204 } 6871 5205 6872 long copy_folio_from_user(struct folio *dst_f !! 5206 long copy_huge_page_from_user(struct page *dst_page, 6873 const void __user !! 5207 const void __user *usr_src, 6874 bool allow_pagefau !! 5208 unsigned int pages_per_huge_page, >> 5209 bool allow_pagefault) 6875 { 5210 { 6876 void *kaddr; !! 5211 void *src = (void *)usr_src; >> 5212 void *page_kaddr; 6877 unsigned long i, rc = 0; 5213 unsigned long i, rc = 0; 6878 unsigned int nr_pages = folio_nr_page !! 5214 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 6879 unsigned long ret_val = nr_pages * PA !! 5215 struct page *subpage = dst_page; 6880 struct page *subpage; !! 5216 6881 !! 5217 for (i = 0; i < pages_per_huge_page; 6882 for (i = 0; i < nr_pages; i++) { !! 5218 i++, subpage = mem_map_next(subpage, dst_page, i)) { 6883 subpage = folio_page(dst_foli !! 5219 if (allow_pagefault) 6884 kaddr = kmap_local_page(subpa !! 5220 page_kaddr = kmap(subpage); 6885 if (!allow_pagefault) !! 5221 else 6886 pagefault_disable(); !! 5222 page_kaddr = kmap_atomic(subpage); 6887 rc = copy_from_user(kaddr, us !! 5223 rc = copy_from_user(page_kaddr, 6888 if (!allow_pagefault) !! 5224 (const void __user *)(src + i * PAGE_SIZE), 6889 pagefault_enable(); !! 5225 PAGE_SIZE); 6890 kunmap_local(kaddr); !! 5226 if (allow_pagefault) >> 5227 kunmap(subpage); >> 5228 else >> 5229 kunmap_atomic(page_kaddr); 6891 5230 6892 ret_val -= (PAGE_SIZE - rc); 5231 ret_val -= (PAGE_SIZE - rc); 6893 if (rc) 5232 if (rc) 6894 break; 5233 break; 6895 5234 6896 flush_dcache_page(subpage); << 6897 << 6898 cond_resched(); 5235 cond_resched(); 6899 } 5236 } 6900 return ret_val; 5237 return ret_val; 6901 } 5238 } 6902 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONF 5239 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6903 5240 6904 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLO !! 5241 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6905 5242 6906 static struct kmem_cache *page_ptl_cachep; 5243 static struct kmem_cache *page_ptl_cachep; 6907 5244 6908 void __init ptlock_cache_init(void) 5245 void __init ptlock_cache_init(void) 6909 { 5246 { 6910 page_ptl_cachep = kmem_cache_create(" 5247 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6911 SLAB_PANIC, NULL); 5248 SLAB_PANIC, NULL); 6912 } 5249 } 6913 5250 6914 bool ptlock_alloc(struct ptdesc *ptdesc) !! 5251 bool ptlock_alloc(struct page *page) 6915 { 5252 { 6916 spinlock_t *ptl; 5253 spinlock_t *ptl; 6917 5254 6918 ptl = kmem_cache_alloc(page_ptl_cache 5255 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6919 if (!ptl) 5256 if (!ptl) 6920 return false; 5257 return false; 6921 ptdesc->ptl = ptl; !! 5258 page->ptl = ptl; 6922 return true; 5259 return true; 6923 } 5260 } 6924 5261 6925 void ptlock_free(struct ptdesc *ptdesc) !! 5262 void ptlock_free(struct page *page) 6926 { 5263 { 6927 kmem_cache_free(page_ptl_cachep, ptde !! 5264 kmem_cache_free(page_ptl_cachep, page->ptl); 6928 } 5265 } 6929 #endif 5266 #endif 6930 << 6931 void vma_pgtable_walk_begin(struct vm_area_st << 6932 { << 6933 if (is_vm_hugetlb_page(vma)) << 6934 hugetlb_vma_lock_read(vma); << 6935 } << 6936 << 6937 void vma_pgtable_walk_end(struct vm_area_stru << 6938 { << 6939 if (is_vm_hugetlb_page(vma)) << 6940 hugetlb_vma_unlock_read(vma); << 6941 } << 6942 5267
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.